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1. Introduction. Let M, ---, M,_, denote (n — 1) bounded closed
sets in E,. Busemann [1] has established the expression

L1y [ M|--- | M| =

(7’1/_——_12_!_ g (S oo X Tz, D1y + =+ D) Vp’;*l N de’;‘_ﬂ)dwz
2 25, \J ¥4 () My 1w

where |M;| is the #n-dimensional Lebesgue measure or volume of M.
On the righthand side M;(u) is the cross-section of M; with the hyper-
plane through z normal to the unit vector w, the point p, varies in M;(u)
and the differential d V. is the (n — 1)-dimensional volume element of
M(u) at p,. The final integration is extended over the surface 2, of
the solid-unit sphere U, and dw; is the area element of 2, at point u.
By T(z, p,, -+-, »,) we will denote the r-dimensional volume of the simplex
(possibly degenerate) with vertices z, p,, -+ -, p,.

Let

_ i
(1.2) T, = ———-—-—F(Nz T

For n = 3, Busemann also shows by Steiner’s symmetrization that

(L8) (Mo [ Myl 2 2B ) 10 | M) o
for nondegenerate convex bodies M; where the equality sign holds only
when the M; are homothetic solid ellipsoids with center z. Here | M(u) |,
of course, denotes the (n — 1)-dimensional volume of M,(u). In this
regard we will also, as a matter of convenience, not index lower di-
mensional mixed discriminates and mixed volumes since the dimension
will be evident from the number of components.

The primary purpose of this note is to reinterpret (1.1) as an inte-
gration of the type (1.3) retaining the equality sign. This is given in
§3 by (3.20). In addition other integral expressions and inequalities are
derived which are geometrically of the same type as those considered
above.

2. Fenchel’s momental ellipsoid. Let M be a bounded closed set
with positive volume. The centroid s of M is defined by its rectangular
coordinates
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1
2.1 c=— wdve.
@D 5= TM Su“

If L, is a v-flat through the origin 2, then the second moment of M
with respect to L,(0 < vy < n — 1) is defined by
2.2) (M, L,) :S 7 sin? pd V7

where the distance zx is r and @ is the angle between the ray zx and
L, (forv = 0, we define ¢ = 7/2). By the same type of integration tech-
nique in [1, pp. 5-6], the reader may verify that

2. yLv:n—y n
(2.3) I(U,, L) s N

where U, has center z; a calculation which will be used later.
The matrix A, given by

2.4) A, = [L S vd V:]
M

is positive definite since

vAw = | Crardve,

where y is a column vector and y” is its transpose. The ellipsoid with
surface 27A,x =1 will be called Fenchel’s momental ellipsoid and its
polar reciprocal with respect to 2, given by 27A4x'x =1 will be called
simply Fenchel’s ellipsoid. This name is chosen since W. Fenchel first
observed the affine character of this polar reciprocal (unpublished):

(2.5) Let M be transformed into M by a central affinity with matrix
B. If F and F are the Fenchel ellipsoids of M and M respectively,
then this central affinity also carries F into F.

To see this, it may be observed from (2.4) that Ay = BA,BT or
Az = (B™)TAR'B~* which completes the proof.

If |F| is the volume of the Fenchel ellipsoid F' of M, then

(2.6) |F|?=7det (Ay) .
The result (2.5) enables one to prove readily that
2.7 T FP=det(Ay) = (n + 2) ™7, | M

with equality only if, except for a set of measure zero, M is a solid
ellipsoid with center z. _For if we transform M into M by a unimodular
central affinity so that F' is a sphere, then
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det (4,) = [n—llM_l Siwd V] .

Comparison of S_r"’d V2> with that for a sphere with center z and volume
M

| M| proves (2.7).

We will adopt the same notation for mixed discriminates as in [2,
pp. 51-b7] where the reader will find an exposition of their properties.
Consider the 7 quadratic forms ¢, = x"Ax, 1 =1, -+, r, where 4, =
[a¥] is a real symmetric matrix. For any real A, «++, A, set ¢ = \g; +

eee + Nq, = 2"Ax where A = ;,Z‘ MA,.  The discriminant D(q) = det (4)
can be written

r

D(q) —__2 ....leil °cc )’i”D(Qily °t qin)

=1 in=

where D(g;, --+, ¢;,) is independent of the order of the g¢; and is called
the mixed discriminant of ¢;, --+, ¢; . For n forms ¢; we have

(i1) (ip)
anl cee am"

1
(2-8) D(qv ] Qn) = S

n!l 6w | .

ay -+ agiy
where (i, «-- %,) is a permutation of (1 ... n).
Now consider # closed and bounded sets M; with positive volume and

let ¢; = x"A,,x be the quadratic form associated with the Fenchel momen-
tal ellipsoid of M;. By (2.4) and (2.8) we have

1
(2.9) D(qn R Qn) =
nl| M|+ | M,|
AU L
by S S ARURERI AL I < AV e dV
(ig..oe) J My My (iy) i) e °
n L e in
x;l) PP xl(") 2
T el
_ D ave, e ave
N . ) (n)
”ILHMI"‘IM"' 1 Hn (1) (n) ’ ’
L' see )

Since T'(z, xV, -++, x™) = & (1/n!) det (z{’) we then have

(2.10)  D(gy +++,qa) =
n!

S —— R N OO TR VA A (A
lle'“anISMx SM,. & » b.) n

The fundamental inequality for mixed discriminants (see [2, p. 53]) is:
(2.11) If the forms q,, ---, ¢,_, are positive definite and @ is any sym-
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metric form, then

Dz(Qv oy lpn—y Q) = D(Qn ccy Qu1y qn—lD(ql’ 0y Qg Qy Q)
where the equality sign holds only if @ = \g,_,.

If we set
(2'12) Dp(Qy Q) = D((Iu ) qnvpy Qr R Q) ’
D

then for n positive definite forms gq;, (2.11) generalizes to
r—1
(2'13) Dr(qu ctey qn) g I!:;[O D'r(q! qn*k)! r= 2: 37 R (2

with equality only if ¢q,_, = N9, for k=0, «++, r — 1.

The proof of (2.13) and the condition for equality proceed by indue-
tion from the case » = 2. The proof is analogous to Alexandrov’s gener-
alization [2, p. 50] of a corresponding inequality for mixed volumes and
consequently will be omitted here.

If we now set

@) WM, M) = e | TCpa - IV eV,

My
and

(2-15) Wp(M! Mky Z) = W(Mv ) Mn*p: Mkr e Mk: Z) 5
D

then by (2.13) and (2.10) we have
(2‘16) WT(MD Tt Mn! Z) g ﬁ Wr(Mr Mn—kr z)y r = 2y R (2
k=0

with the equality sign only if the Fenchel ellipsoids of M,_, are homo-
thetic for k=0, .-, r — 1. Applying (2.16) to the case » = n and using
(2.10) and (2.7), we have

(2.17) LIM] e M, ] < nlmi(n + 2" WM, ---, M, 2)

with equality only if (except for a set of measure zero) the M, are
homothetic ellipsoids with center z.

The reader will find other inequalities of the above type in [3, pp.
70-71].

3. Centroid surfaces. As before, M is a bounded closed set with
positive volume. An oriented hyperplane L(u) through 2z normal to the
direction u (u # 0) bounds a closed half-space lying on its positive side.
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The intersection of this halfspace with M will be denoted by C(u).
Consider the function

3.1) H(u):l—ﬂlﬂSulu-xldV;‘,u-nguixi.

Since

@ HO) =0,
(b) H(pu) = pH) for 2> 0,
(© H(u+v) = H@) + H@) ,

H(u) is the supporting function (s.f.) of a convex body K* (see [4, D.
26]), which is nondegenerate and has center z. Let P, be the supporting
plane (s.p.) to K* in the direction #'”, the supporting function of K* N P,
is given by the directional derivative

(3.2) H' (u; u) = 1lim 20 + hw) — Hu®)

B0+ h

1

— 1 . no__ - n
a | M| SO(M(O))u zdV: I M| So(—uw))u wd Ve .

Since H'(u; u) is a linear function of the u;, P, touches K* in a single
point and thus every s.p. of K* is regular and K* is strictly convex.
(See [4, pp. 25-26].) The derivatives 8H/0ou,; are continuous, homogeneous
of degree 0, and if ¥ is the point of contact of the s.p. to K* in the
direction %, then

(3.3) vr— 1 g( 2 dVr .
O(—u)

0= G = T3 VeV 1

We will call K* the centroid body of M (with respect to z) and the
surface of K™ will be called the centroid surface of M. One may observe
that if M happens to have center z, then the centroid surface of M is
precisely the set of all controids of C(u) for wec £,. In general, let s®
and s® be the centroids of C(u) and C(—u) respectively, the y is the
center of mass of the two points s® and —s® provided with mass
|Cw)!/|M]|and | C(—u) ||| M| respectively. If |C(u)| = 0, we will define
the centroid of C(u) to be the point z.

It is evident that if M is transformed into M by a central affinity,
then this transformation also carries the centroid surface of I into the
centroid surface of 1.

We now wish to impose additional restrictions on M such that H(u)
has continuous second partial derivatives and the surface of K* has
positive Gauss curvature. The following two conditions are sufficient for
this purpose:
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(@) The set M(u) has positive (n — 1)-dimensional measure for all
ue,.

(b) Foranyu® e 2, and any sequence u¥ — ', the lim,_ o M(«")
coincides with M(u'”) except for a possible set of zero (n — 1)-dimensional
measure.

To simplify the calculation of the second partial derivatives at a
point 4, we introduce what Busemann [2, p. 57] calls “standard coordi-
nates.” With the same origin and orientation, the x, axis is chosen
such that %" = «+« =u{”, =0 and %" > 0. It then follows from (3.3)
that

CHu®) _ 0Hu®) _

(3.4) =
ou,0u,, ou,,0u,,

Although standard coordinates vary from point to point, the end result
(3.9) is expressed geometrically and therefore independent of the coordi-
nate system.

For j <m,letu =(0,---,0,%u;,0, ---,0, %) and set

N, = C(w) N C"), N = C(—u) N C(—u®), N, = C(u) — N,
Nf = C(—u) — N, N; = C(u) — N,, Ny = C(—u®) — Ny.

Except for a set of zero m-dimensional measure, N, = N;* and N, = N,*.
By (8.3) we have for 7,7 <mn

<6H> _ <6H>
ou,/,, ou/o _ 2 /g dV"—g AV
3.5) - a2V = | :).
We will calculate the limit of (3.5) as either u; —> 0+ or u;—>0—. In

either case for we N, x;u; =0, 2, =0 and for xe N,, z;u; =0, 2, = 0.
For — 7/2 < v, < /2, let the hyperplane «, = (tanv,)x; intersect M
in M*(v,) for x, =0 and in M~(v,) for , < 0. Also the volume element
dVr of this hyperplane is

(3.6) dVrt=dx, ---dx,_,secv, .

We introduce new coordinates v, «++, v, by ®; =v, for 1 =1, -+, n — 1
and z, = v; tan v, which uniquely define the v, with —z/2 < v, < 7/2
for all  for which x; 0. The Jacobian J of this transformation is
J =v,sec’ v,. Also define a,0=a<x/2, by u tana = |u;|. Then
|J||u; = +v;sec’v,/u) tan @ with the plus sign for x € IV, and the minus
sign for x € N,. The difference quotient (3.5) is, consequently, given by

2 [Swsec v,,(S V0,4 V:'I)dvn
uy | M|tan a Lo M (o)
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+ Swsec v,,(& v,0,d V:“)dvn]
0 Mt (vy)

and since the integrands are continuous functions of v, by assumption
(b) we have
*H(u®) _ 2

(@) — — . =1 (7
@.7) Hiyu®) ou;0u; ud | M| Sum(onxzx]d Vi g <m).

Now let H”(u) be the supporting function (8.1) for the set M,
i=1+,mn—1 Set H=MH" + +++ +N\H"", then D, (H) is de-
fined as the sum of all principal (n — 1) rowed minors of the matrix H;;
(with components evaluated for a unit vector) and is a homogeneous
polynomial of degree (n — 1) in the ;. (See [4, p. 59] or [2, pp. 45-46].)
The quantity D(H®Y, ---, H*") denotes the factor of )\ ..., in

D, (H) divided by (n — 1)!. If we calculate (8.7) for each of the H®
using the same standard coordinates we have, because of (3.4),

. .
1 Hiw e Hifpy)

(3.8 DH®Y, e H®™ V) = . =
(3.8) ( ) (n — D! 6.5

Hgvyy «+ v Hing)
In the same way as we derived (2.10), we find for any ueQ,,
3.9) DH®Y, -.., H®)

_ (n— 1)l g S T R R
[ M| eee [ M,y ] Jaye My N AV

By comparison with (2.10) we observe that

2 M) | - - | Moa(u) |
| M| e [ M, |

(3.10) DHY, .-+, H*) = D(gyy +++, q.y)
where ¢; is the quadratic from associated with the Fenchel momental
ellipsoid of M;(u) in the (n — 1)-dimensional space L(u).

From (8.9), we may give an integral interpretation of an elementary
symmetric function {R, --- R,} of the principal radii of curvature of the
centroid surface of M. With H given by (3.1) we have form =1, - -+,
n — 1 (see [4, p. 63]),

3.11) {Rln-Rm}:(n;l)D(lul, ces,jul, H, «++, H) = D,(H) .
n—m—1 m

Set M=M,=-+:-+=M, and U, =M,,, = «-- = M,_,. Since

1 _ 2m,
(3.12) JU,”Svniu 214V, = o= ful,
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we obtain
27, ]"—""1 B (n — 1> (n — 1)12~1
i Tt W D,.(H) = B
[(n + 1)71'” ( ) m |Mlm7rz—m—1
oL T by e pa )V e Y
M(uy ) M w) )T, (0) U, (%)

m n—m—1

By integrating successively over the U,(w) and using (2.3) applied to
the appropriate dimensions we obtain
ml2m

(13 (B R}= T2 [ T py e p)A Ve a V)
| M|™ ) Mu) m

form=1, ---,n — 1.

We may also give an interpretation of each individual principal radius
of curvature. First we show:

(8.14) The Dupin indicatrix of the centroid surface of M(wrtz) at
the point of contact y of the tangent plane in the direction % is homo-
thetic to the Fenchel ellipsoid (wrt z) of M(u) in the space L(u).

A central affinity sends homothetic figures in parallel hyperplanes.
into homothetic figures. Due to the affine nature of Fenchel ellipsoids
and centroid surfaces, we need only show that if the Fenchel ellipsoid
of M(u) is a sphere, then the Dupin indicatrix at ¥ is a sphere. However,
this follows at once from (2.4) and the representation (3.7) in standard
coordinates since the principal radii of curvature E; must satisfy

H-R-.-- H,
T =0
Hnl "'Hnn—R

where H,;; are evaluated for a unit vector. (See [4, p. 61].)

Now, let the line through z, parallel to the 4th principal direction
of the centroid surface at y, be normal to the (n — 2) space L,_, through
z in L(u). Then R, is given by

2
(3.14) R; = — I(M(u), L, )
| M|
where I(M(w), L,—,) is the second moment, in L(u), of M(u) with respect.
to L,_,.
Returning to the (n — 1) bodies M, -+, M,_, for which we obtained
(8.9), let H™(u) be the supporting function (8.1) corresponding to any
bounded closed set M, with positive volume. Then (see [2, p. 46]),

(315) V(Kl*: ] Kn*) = %_ISQ H(")—D(H(l)$ ° H(n—l))dw:, |'U/| =1 ’
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where V(K*, -+, KF) is the mixed volume of K/*, --+, K}. Using (3.9),
(3.15), (3.1) and the integration technique of Busemann in [1] where it
is shown that

AVyE oo dVy = (0 — TR, Dy -+, Pu)d Vit oo AVE dawr

Pp—1 Pp-—-1
we obtain
(3.16) VK, ---, K)
:__ln___s S T e, DAV eed Y
[ M ' ce ‘ Mn ‘ My My, (z’ P ’ p") & Vpn )

Since both sides of (3.16) vary continuously with the M;, we may extend
this result to any 7 bounded and closed sets M; with | M;| > 0. Briefly,
we may assume z € M; and lete; > 0 be a sequence such that ¢; — 0,
A covering of open spheres of radius e&; with centers in M, may be
reduced to a finite covering since M, is compact. Conditions (a) and (b)
are then satisfied for the closure of such a finite covering and the ex-
tention of (3.16) follows.

There is an alternate proof of (3.16) which proceeds directly from
(38.1). We did not resort to this at the outset since the intervening
results are of interest in themselves. Briefly, the alternate proof is as
follows: We approximate the H'”(u) of (3.1) by

1
| M. |

k
E@®(y) = St lu - x| 4V
i=1

such that %% — H" as k —+ 0. Now |u - x| is the supporting function
of the segment ¥ with end-points # and —«. Also, by induction, one
shows that

VE®, «--, TM™) = 2" T(z, £V, «++, &™) .

The function E“*® is the supporting function of the linear combination

_ 1 5 n
E;, = ] %x 4Vi.

For \; > 0 the linear combination F, = MFE + <<+ + N\, B, ,, may also
be expressed as a linear combination of the nk segments Y9, Expres-
sing the volume of E, as a polynomial in the \; in two ways we have
by comparing the coefficient of N, ++<« 2\,

V(E(l,k)’ M) E(n,k))

2" k k 1 o ) n
:mjél...JZ T(z, 390, « oo, IR)4VE v 4V

n=1

and (3.16) follows in the limit as k —+ oo.
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The formula (3.16) may be substituted into inequalities of mixed
volumes to yield inequalities of the integrals. Since the number of times
a component appears on each side of a mixed volume inequality is always
the same, the coefficient on the righthand side of (3.16) cancels leaving,
as in (2.16), inequalities among the integrals only. However, in this
case when the uniqueness theorem (4.1) applies, the condition for equality
may be passed through the K* to the M,.

In [1, p. 11], Busemann shows that if M is a nondegenerate convex
body, then

(3.17) SM e SMT(Z’ Dy ooy DAV, - dV, = (Ti?ﬂ%lﬂﬂm
with equality only if M is an ellipsoid with center z. We define the
expanded centroid body K of M to be the dilation of K* about z by
the factor (» + 1)x,/27,_,. By (8.12), we see that this is the factor
which dilates the centroid body of an ellipsoid with center z into coin-
cidence with the ellipsoid.

From (3.16) we obtain a reinterpretation of (3.17) by observing the
identity n!w,7,_, = 2"z

(3.18) If K is the expanded centroid body of a nondegenerate convex
body M, then | K| = | M| with equality only if M is an ellipsoid with
center z.

The convexity of M is not an essential feature in (3.18) and the
Steiner symmetrization used to prove (3.17) may be extended to include
nonconvex sets.

Using the expanded centroid bodies K; of M;, we may write (3.16)
as

3.19) [ M| --- | M,| V(K -+, K,)
— MSM SM T(@, Py, -+, DIAVE -+ AV

2
and if we define K; to be the point z if | M;| = 0 then (3.19) holds for
any bounded closed sets M;.
Substituting (3.19) into (1.1) we have
(8.20) THEOREM. If Ki(uw) is the expanded centroid body of M;(u)
in the (n — 1)-dimenstonal space L(u), then

RUSARERRPUASY

_1 nf-zg | Myuw)| -+~ | M,_(w)]| V(K,(«), +++, K,_(u)do? .
N Ty_1 I8

The inequality V™ '(Ky(u), -+, K, ,(w)) = | Ky\(u)| -+ | K, ,(u)]| (see
[2, p. 50]) and (3.18) reproduces (1.3).
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There are two special cases of (3.20) of particular geometric interest.
First, set M =M, = .-+ = M,_,, then

(3.21) M= LEZ ) 1| K | dot

N
n—1

Next, for n =8, set M =M, = +-- = M,_,, M, , = U,, then

(3.22) | M = n(—n—~1_1) B M SKa)do:

where S(K(u)) is the surface area of K(u) in the space L(u).

4, Uniqueness theorems. In order for K* to determine M, additional
restrictions on M are necessary as may be seen by consideration of a
set M bounded by two concentric spheres.

(4.1) THEOREM. Suppose M; (i =1, 2) can be represented im polar
coordinates by 0 < r < p,(w), w € 2, where p,(u) is an even, i.e., p;(u) =
o—w), continuous function on 2,. If the centroid surface of M(wrt 2)
18 identical to the centroid surface of My (wrtz), then M, and M, are
identical.

(4.2) THEOREM. Suppose M; (1 = 1, 2) have the same representation
as i (4.1). If | M(u)| =|Myu)| for all wef,, then M, and M, are
identical.

The latter theorem is a result, for n = 3, of P. Funk [6].

We first prove (4.1). From (3.1) and the assumption on the represen-
tation of M; we have

1

") = T

Sg lu - 7] or(0)der, | 7| = 1.
Consequently, (4.1) follows from the uniqueness of the solution of an
integral equation of the first kind. Namely:

(4.3) THEOREM. Let h(7) be an even, continuous function on £2,.
If for unit vectors w and T

Sg lu - | h(z)dw® = 0

Jor all weQ,, then h(t) vanishes identically.

The result (4.3) is well known for » = 2, 3 and the recent extension
of surface harmonics to %-dimensions, in particular the Funk-Hecke
theorem, enables one to prove (4.3) for all n. There are two steps in
the following proof (which applies for » = 8). First, from the com-
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pleteness [5, p. 241] it suffices to show that

S S, (Dh(c)dw? = 0
gn

for all the linearly independent surface harmonics S, (7) of degree m and
for m=0,1,2, ---. Since k(7) is an even function we need only to
consider, now, even m. Next, from the Funk-Hecke theorem [5, pp.
247-248] we have

[, -7l Suwdor = aSa(e)
where

_ @aym!l’(v) (* v vy
(4.4) xm_mg 17| C@)(L — ) da

and v = (n — 2)/2 = 1/2. Thus, we need only to verify that ), # 0 for
m=0,2,4,---. For m =0,Cy(x) =1 and N, #+#0. For m >0,

Cfn(x) = am,v(l — xz)—v+1/2_dj_[(l _ x?)m+y—1/2]
dx™

where a,, #+ 0. See [5, p. 236] for the explicit expression of the coef-
ficient @,,,. Thus the integral in (4.4) is

Im,v = 2G/m,vg1x_.dm-[(]_ _ x2)m+v41/2]dx
o dx™

and using integration by parts

m_1

m—2 m -+ y — 1/2
I,,=2a,.,(—1) % (m — 2)! m )i 0
2

for m = 2, 4, 6, --- which completes the proof.

The result (4.2) is clearly a consequence of the following spherical
integration theorem.

(4.5) Let f(r) be a continuous even function defined on 2,. If

g f@)dwr =0
2 (w)

for all e 2,, then f(r) vanishes identically.

A proof of (4.5) for » = 3 can be found in [4, pp. 136-138]. How-
ever, a proof for all n = 3 is easily obtained from (4.1). To see this,
set g9(z) = () — [min f ()] + 1 > 0. Let p(z) = [g(t)]“**" and let M be
the set whose polar coordinates satisfy 0 < » < p(7), 7€ 2,. Using (3.13)
for m = 1, the sum of the principal radii of curvature of the centroid
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surface of M wrt z may be expressed, in this case, by

2

R+++R.,=— =
i (n + 1) | M|

g g(@)dar
2 (%)

and, by hypothesis, this is a positive constant for w e 2,. However,
this implies (see [4, pp. 117-118]) that the centroid surface is a sphere
and by (4.1), M is a solid sphere and g(z) is a constant which completes
the proof.
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