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PREDICTION THEORY FOR MARKOFF PROCESSES

A. V. BALAKRISHNAN

In this paper we consider the least square prediction problem for
Markoff processes with stationary transitions. The main result concerns
the partial differential equation characterizing the prediction operator,
and the conditions for the uniqueness of the solutions.

Introduction. Let z(f) be a Markoff process with stationary trans-
itions. It is well-known that the optimum mean square predictor of
g(x(s + t)) given x(o) for ¢ < s is given by the conditional expectation:

Elg(x(t + 5)) | x(0) = 5] .

For a Markoff process this becomes

(1.1) Elg(x(t + s)) [z(s)]
and further, if the transitions are stationary, we need only to consider:
(1.2) Elg(=(t)) | »(0)]

Let p(t, | x) be the distribution function (suitably normalized) of the
conditional or transition probability of transition from « to &€ in time ¢.
Then, of course, (1.2) becomes

(1.3) Sg(f)dep(t, £la).

Now if g¢(.) is in Cla, B], where — <a < B < + o is the interval over
which the transition probabilities are defined, we obtain a semigroup of
linear operators over C[a, B8] defined through (1.3). If now we know
the infinitesimal generator of this semigroup, we obtain an abstract
differential equation for (1.3):

(1.4) i?%ﬁ)- — fult, g)

where u(f, g) represents (1.3) and A4 is the infinitesimal generator, pro-
vided ¢(.) is in the domain of A. If we know the representation of 4,
and if in particular, it turns out to be a partial differential operator,
(1.4) offers an alternate way of determing the prediction functions (1.2)
provided uniqueness of the solution can be proved. In what follows,
we shall be concerned primarily with situations where such a reduction
is possible, and the associated conditions for uniqueness.

Received September 1960.
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1172 A. V. BALAKRISHNAN
Main Results:

2. Markoff processes of the diffusion type. A well-known set of
sufficient conditions under which the reduction to a parabolic partial
differential equation is possible are the Lindberg-Levy conditions which
we state here in their weakest form due to Feller [3,4]. Let

(i) %S,M d.P(t, £ @) — 0 as t — 0+
L, (i) %S!H,@@ — @)dP(t, & | 3)— b(x) as t — 0+

(iii) %S.e_ (€= 2V d.P(t, ] 2) — 20(0) as t— 0+

Then for each ¢(.) in Cla, 8], if we set:
@.1) T = | 0@dPt, £ o) .

T(t) is a semigroup of linear bounded operators over [@, 5] and moreover

(i) || T®)g!llg]l (contraction semigroup)

(ii) || T(@)g —g||—0 as t — 0+ (strongly continuous)

(iii) T(t)g is non-negative if g is nonnegative.
(positivity preserving)

(vi) For g(§&) = constant T'(t)g =g .

Properties (i), (iii) and (iv) are obvious from (2.1). That 7T(t)g again
belongs to C[a, B8] follows from condition (i) of L,, and so does property
(ii). Let 4 be the infinitesimal generator of the semigroup. Then the
most important property one would like to deduce from L, is that it
coincides with a second-order differential operator. Unfortunately,
however, this is not always entirely true. For example following Feller
[4], suppose we define the transition density kernels,

~ L[ — 0O =00 (), 4= —,
P(t, &| ) 751 &XP o g, a ©, 8=+
where say g(.) is a polynomial which vanishes at the origin, and ¢'(§) > 0.
Taking g(€) = &, we obtain for £ +# 0

b@=m%4
a® = £

However, at £ =0,
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a(0) = 0
b(0) =0 .

Direct substitution into (2.1) shows that for f(.) in the domain of 4,
JF(0) = f'(0) = £"(0) and that

AF(0) = Z£10).
Although for any & + 0,

@.2) A£(E) = a®) flgf + b(®) fé :

Here it may be noted that the exceptional point zero is a point of
discontinuity of the functions a(.) and b(.). One might then expect
that this may avoided if they are required to be continuous. However,
it should be noted even in this case that 4 may not still coincide
entirely with the differential operator on the right in (2.2)—in fact, it
may only be a contraction of that operator. With some additional con-
ditions on a(£) and b(£) we can nevertheless obtain a stronger result.

THEOREM 2.1. Let a(g), b(E) given by L, be continuously twice
differentiable in the open interval (a, B) and a(g) > 0 therein. Let the
limits in L, hold uniformly in x in each compact sub-interval. Suppose
wn addition they satisfy:

@3 |La@u@ds = + e = |‘a@uede
where a <0< B
_{* dt
9) = Soa(t)w(t)
w(t) = exp — S:—g—%df .

Then the infinitestmal generator A of the semigroup coincides with
the differential operator C

PPN A}
(2.4) C=a(® i + b(§) i

where the domain of C consists of functions f(€) with first and second
derivatives such that

a@f afé)
a(é) ac +b(é) dE
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belongs to Cla, B].

Conversely suppose the functions a(£) and b(£) are given, with a(£)
positive and continuous and b(£) continuous in the open interval [, 8],
and suppose (2.3) is satisfied. Then C generates a semigroup given by
(2.1) where the kernels are Markoff transition probabilities which satisfy
the conditions L,, the limits holding uniformly in 2 in each compact.
sub-interval.

Proof. Let us consider the converse statement first. Under the
conditions (2.3) on the coefficients a(§) and b(§), Hille [5] has shown
that C is the infinitesimal generator of a strongly continuous positive
contraction semigroup. Denoting this semigroup by S(t), we have, for

any f(.) in Cle, B]:
25) SO @) = | F©dPE, & 2)

where the P(t, & x) are Markoff transition kernels. Moreover, it is
readily shown that the kernels satisfy the conditions L,, with the
necessary uniformity.

Suppose next that we are given transition probabilities satisfying
L, where a(.) and b(.) satisfy (2.3). We know then (2.1) yields a strongly
continuous semigroup, and we have to show that its infinitesimal gener-
ator A coincides with C. For this, suppose f(.) is in the domain of C®2.
Then f(.) has first and second derivatives. Further, suppose f’(.) vani-
shes outside a compact sub-interval, say [r, 7,]. Now because a(&) > 0
and continuous in [«, 8], it follows that f”'(.) is continuous in compact
sub-intervals, and hence in particular in [7, 7,]. Now for each z in

[a, 8]

St f(x) —flx) _ 1

t t Slf—xbs[f(x) o f(g)]dp(t’ g I x)

£ + 09) oy
+ L1220 (¢~ ayart, ga)

where 0 < |0 < 1.
In view of L,, it follows that

(2.6) limit LS (“g—f @) — o) £"(x) +b@) ()

t—=0

and because of the asserted uniformity of the limits in L, and the con--
ditions on f(.), it is clear the limit in (2.6) is uniform in x in [a, B]..
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Hence, for such f(.) it follows that
Af = Cf .

Moreover, for the same f(.), note that Cf again vanishes outside [, 7].
Also, Cf again belongs to the domain of C and hence has first and
second derivatives. Hence the argument above can be repeated to yield
that

ACf = C°f
and, of course

CAf =Cf
or

CAf = ACf .

Denoting the semigroup generated by C by S(t) if follows readily that
S@TE)Sf =TSO S t>0

and hence using the Dunford argument [See [7]]:
SOf — TOF = | @do)S@) T©)f = | S@) T(@)Af — Cf)do
it follows that

S =T@Erf.

It only remains to show that the set of such functions f(.) is dense in
Cla, 8] . Now the class of functions in C [, 8] whose derivatives vanish
outside compact subsets is dense in the domain of C. Because of the
postulated twice differentiability of the coefficients a(x) and b(x), it
follows that this class automatically belongs to the domain of C?2,
proving the required denseness. It is quite probable the result holds
without demanding differentiability of the funections a(x) and b(x).

This proves the theorem.

We note in passing that the conditions (2.3) do not imply uniqueness
of solutions of the forward equation, as Hille [3] has shown. From our
point of view, this lack of uniqueness is of no concern to us, thus
avoiding problems associated with the duality between the backward
and forward equations. In particular, Theorem 2.1 establishes that for
Sf(.) in the domain of C,

ELf (@) | 2(0)] = u(t, )

is the unique solution of the Cauchy problem:
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ou o*u ou

ot (@) o T b(@) ox
with

u(0, ) = f(x) .

As an example, consider the situation of Gaussian white-noise input to
a nonlinear system, the input-output processes being related by [See
Doob [2, p. 273] for the notation]

2.7 da(t) =12 (x(t)* + 1)de(t)
Z(t) being the real Gaussian additive process with
E[] dg(t) '] = dt
so that the output process is Markoffian and we have for the limits in L;:

a(x) = (@* + 1)’
b(x) =0 .

These clearly satisfy all the required conditions of Theorem 2.1 and the
predication function is the solution of the equation:

ou d*u
8 — = (x* 4+ 1)
(2.8) o0 (@* + 1) e

subject to the initial condition

u(0, x) = f(x)

where it is assumed that

(@ + 1)f"(x)

belongs to C[—co, 4 o].
In this particular case, we can obtain the solution in terms of orthogonal
functions:

2.9) u(t, x) = i a, W, (x)e-nntoe
where

B R A €0))
=) e

W (x) = 1/% 1V (@* + 1) sin (n + 1)(% — arc tan x) .

[See Hille [5]] for this solution. The convergence of the series in (2.4)
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is uniform in z in [a, B].
It may be noted that functions such as

fl@) =2

and
f(x) = exp A&

are not in C[— oo, + ], so that we cannot obtain the prediction as the
solution of the partial differential equation directly, in the sense in
which we have stated that Cauchy problem. It may, however, be
possible to consider a slightly different B-space such as the space of
functions f(x) continuous in (— o, o) and such that

llimitf(x)exp— e, 0<p<1
z| o0

exist for some p, as Hille [6] does for the heat equation.

It should also be noted that in this example, the transition density
kernel has the expansion

p(t; & l 2)=(E+1)7 2:, W.(x) W, (£)e~mm+vr
As t — o, we obtain the density

(2.10) p(eo; & @) = 2[n(E + 1)~

and it should be noted that (2.9) for each t is an orthogonal expansion
with respect to this density. Also (2.10) corresponds to the (unique)
stationary first order distribution with respect to which the process is
ergodic. A sufficient condition for the existence of such an expansion
(which automatically also yield the corresponding limiting density) due
to Hille [5] is that in addition to (2.3) the following

@2.11) S:q’(x)de:w(g)dE < 4o and qu’(w)dwszw(x)dx < o

be also satisfied. In this case, the limiting density is simply

’@
a®) — (@)

All transition probabilities are absolutely continuous.

3. Markoff processes not of the diffusion type. We shall next
consider the prediction problem not of the diffusion type, i.e., whose
transition kernels do not satisfy conditions L,, but rather an extended
version of them, leading to elliptic partial differential equations. Thus,
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let the transition density kernels satisfy:

(i) 2p(t, &Ely) — o2t Ely) =0

i) | 126 €1) — plet, g [9)ldE—0 as t— 0+ L,
() | €=l £y -t £ 9E—b)
) | | -9 ) — pet £ |9l — 200)

Then the prediction function satisfies the elliptic partial differential
equation:

ou

(3.1) =

o*u ou
a(x) blx) —— =0.
+ a(x) Py + b(x) ™
As before, the main difficulty is in obtaining uniqueness of the solutions.

THEOREM 3.1. Suppose a(y), b(y) are twice continously differentia-
ble in [a, B] and a(y) > 0 therein. Suppose further that the limits in
L, hold uniformly in y in each compact subinterval. Further, suppose
that a(g), b(§) satisfy (2.3). Then for each f(.) in the domain of C,

u(t, ) = E[f(x(@)) | #(0) = ]

satisfies the partial differetial equation

3.2) 66—:‘ + Cult, @) =0

and is the only solution of it satisfying to the conditions:
(@ [lut,.)—sf()l|—ast—0
(b) [l 2u,.) —w@) ] < |1l
(¢) Sup,|lu(t, )| < .

Conversely, suppose a(€), b(E) are given such that they are continuous
n [a, B] and a(&) > 0 therein, and such that they satisfy (3.1). Then
the Cauchy problem for (8.1) has a unique solution satisfying (a), (b) and
(c) for each f(.) in the domain C, the solution being given by

ut, @) = | F©n(t, & | o)

where the p(t, &|x) are Markoff transition densities satisfying L,, the
limits existing uniformly in y in compact sub-intervals.

Proof. For a proof of the converse part [see [6]]. Since a(.), b(.)
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satisfy these conditions in the forward part as well, let us denote the
corresponding semigroup by T'(t) with generator B. Then we know that

B*= —C.
For each f(.) in Cla, 8] let us next let
u(t, x) = E[f(2(t)) | 2(0) = «] .

Then the conditions L, on the transition kernels imply that wu(¢, x)
satisfies (a), (b) and (c¢c), and moreover setting

u(t, ) = S(t)f(x)

S(t) is a strongly continuous semigroup over C|a, 8]. Let us denote
its generator by 4. We have now to show that

(3.2) £ =B=—C.

For this, let f(.) belong to Cla, 8] and let f'(.) vanish outside a compact
sub-interval [r,, 7,]. Then as in the proof of Theorem 2.1, we shall
first show that f(.) belongs also to the domain of 4* and that

Af = B*f .
For this we note that

T(2t) + tI = 2T()
1

= L] 70® — st £ 10) — 20, € ol

and as before, as t — 0, by virtue of L, this goes to

—a(@)f"(x) —b(x)f"(2)

and the rest of the arguments go over similarly. Also we readily
obtain that:

AB*f = B*A*f .
This is enough to imply that
@) f=SQ)f

and the differentiability properties of a(x) and b(x) again imply that
such functions f(.) are dense in the domain of C and hence (3.2) follows.
This concludes the proof.

The simplest example of a process with transition kernels satisfying
the conditions L, is the Cauchy additive process, with the independent
increments having a Cauchy distribution:
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Elexp 1s(5(t + 4) — £(E)] =exp —[s] 4.

More generally, such a process arises as the output of a first-order system
whose imput is the Cauchy additive process:

dao(t) = b(a(t)dt + alx(t)de(t)

in the notation of Doob (loc. cit.), £(t) being the input Cauchy additive
process (‘non-Gaussian white noise’). Now

w(t + 4) — o(t) = bla(t)]4 + alz@)][EE + 4) — ()]

where the right-side, for given x(t) is specified in terms of &(tf) whose
statistics are known. The limits required in L, are then established
by direct calculation. In the case of (i), we may note that we need
only prove it for small ¢, since the semigroup property will then imply
it for all values of . We omit the details of these calculations. The
differential equation is:

"u a(x)® 0*u

ot? + 2 oz’

b))% =9,
ox

As an example we may consider the case where: a(.) and b(.) are
constants:

a(x) =1v'2
b(x) = —2x .

The differential equation then is:

ot? ox * ox

o°u ou U
20— — .

The (unique) solution of this is the prescribed type for each initial func-
tion f(.) can be expanded in Hermite polynomials [See [6] for a general
proof]

(3.3) u@@:X%EmMW—V%t

where the H,(.) are the Hermite polynomials orthogonal with respect
to the Gaussian density:

1V &) exp — &
and

a, = 71750:@““)1{”(“) exp — xdx .

The series in (8.3) converges to the solution function uniformly in com-
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pact subsets of (— oo, +). The transition kernel density p(t, &|x)
is given by

o ¢ —[é —xexp — 20 _ ¢
bt £l2) = S =1/0%(1 — exp — 20) Xp[ (1 — exp — 20) 4‘7](10

as follows again from the theory in [6]. Alternately, it has the ex-
pansion:

P, £ @) = 3 H,@)H,(§) exp — & — V2nt .
As t — oo, the limiting density is: Gaussian:

p(§) = 1/ — exp — g

with respect to which (as first-order density) the process becomes strictly

stationary. It may be shown that the limiting density is again always
given by

p'(x)/(9(8) — 9(@))

and is thus completely determined by the system, that is by a(.) and
b(.) only. The expansion (3.3) is, of course, in terms of functions
orthogonal with respect to this density. Thus, taking the example
treated in § 2, with

a(x) = (x* + 1)V 2
b(x) =0

yielding the differential equation:

2 6? u
6t2
we have the expansion:
(8.4) w(t, x) = S 4, W(x) exp — Vi — 1)t
0

with W, (x) and a, as in (2.3). As before, a sufficient condition for the
existence of such expansion, is that (2.83) and (2.11) be satisfied. How-
ever, this is not necessary as the previous example (3.3) shows.

Extensions. A generalization of the type of process treated in §3
is got by replacing the kernels in L, by

tln [Z (Trb)(—l)’“lp(rt, £ x)]
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<,,;:> being the Binomial coeflicients, leading to the equations

o"u
ot

= (= 1)””[a(ac) +b() ]

However, we have been unable as yet to establish the conditions for
uniqueness of the solutions.

We have only so far considered first-order Markoff processes. The
extension to higher order processes is similar in principle although it
entails partial differential equations in several space variables [see [8]
for example], and the results on the related Cauchy problems are still
incomplete to a large degree.
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UPPER BOUNDS FOR THE EIGENVALUES OF SOME
VIBRATING SYSTEMS

DALLAS BANKS

1. Introduction. Let p(x) =0, x<][0, a], be the density of a string
fixed at the points £ = 0 and # = o under unit tension. The natural

frequencies of the string are determined by the eigenvalues of the
differential system

@ w” + Ap(x)u = 0, u(0) =u(@) =0.

We note that these eigenvalues depend on the density function n(x)
and denote them accordingly by

0 < )\’1(p) < )\’z(p) < )"3(p) Looee,
M. G. Krein [5] has found the sharp bounds

AHW w( M\ < mwH -
x () = = 22 (n=1,2,--)

where X(t) is the least positive root of the equation

t
1-—-¢

V' Xtan X =

and where p(x) is such that Sap(x)dx =M and 0 < p(zx) < H.
0

Sharp lower bounds are found in [1] when instead of the condition
p(x) = H, we have p(x) either monotone, p(x) convex, or p(x) concave.
The precise definitions of convex and concave are given below.

In this paper, we find sharp upper bounds for »,(p) (n =1,2,8, +++)
whenever p(z) belongs to any one of the following sets of functions:

(a) E(M, H, a), the set of monotone increasing functions where

Sap(oc)dx =Mand 0= pkx)= H, vc[0,a].
0

(b) Ey M, H, a), the set of continuous convex functions, i.e., conti-
nuous functions p(x) such that

pa) < 28 pa)+ L8 pw), 0o, =m=<a,
9 Ly Xy X,

with Sap(x)dx — Mand 0<p@ < H, z¢[0,q].
]
Received October 11, 1960.
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(¢) Ey(M, a), the set of continuous concave functions, i.e.,— p(x)

convex, such that Sap(oc)dx =M, x<]0,al.
0

In general, the values of the maxima appear as the roots of a tran-
scendental system of equations and are not obtained explicitly. However,
explicit bounds are given in some special cases.

The methods used generalize to give bounds for the eigenvalues of
a vibrating rod. Upper bounds are also found for the lowest eigenvalue
of a vibrating membrane over a circular domain when the density is
bounded and convex and also when the density is concave.

We make use of the following lemmas.

LEMMA 1. Let p(x) and q(x) be nonnegative integrable functions
defined for xela,b] and let f(x) be nonnegative, continuous and mono-
tone increasing in [a, b]. If ¢ € (a, b) is such that p(x) = q(x) for x € (a,c)
and p(x) < q(x) for xe(e,b), then

| p@ds = | q(e)da

implies that

[ p@rs@is = |'a@ s @

If f(x) ts monotone decreasing, the inequality sign is reversed.
A proof of this lemma is given in {1].

LEMMA 2. Let E, be one of the classes of functions defined above.
There exists a function p(x) < E, such that

Na(0) = sup N, (D) .
p(z)EEy
Let p(x) e E, for some k=1, 2, or 3. By the definition of FE,,
there is a number H such that 0 < p(x) £ H, #<[0,a]. (When k =3,

that is when p(z) is concave, we take H = EM—.) It follows that
a

nZn:Z

Ma(D) < .
(D) = jioe

Hence, there is a number g such that

¢ = sup \,(p) .

p(z)E By

Let E(M, H, a) be the set of all functions p(x), x<[0,a] such that
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0 < px) < H< « and Sap(x)dx = M. Krein [5] has shown that there

exists a subset {p,(x)} z)f E(M, H, a) and a function p(x)e E(M, H, a)
such that

lim <rpv(x)doc> = Sxp(x)dx .
VYoo 0 0
The convergence is uniform for x €[0, a] and furthermore

In particular if p(x) e E,, then the functions p,(x) also belong to
E,. We now show that in each of the cases k =1, 2, 3, o(x) € E, also.
We first consider E.(M, H,a), that is, the family of all monotone

increasing bounded functions p(x) such that Sap(x)dx = M. Then p,x)
]
ek(M,H a), (»=1,2,-..). Let

o(o) = | B2 .

Since p,(z) is increasing, o,(x) must be convex. Hence, lim o,(x) = 0,(%) =
a Yoo
o(x)dx must also be convex. For if
0

o@) £ T =B g (@) + 2= g (m),
2 — 1y s — Xy
(x, < x < x,), then the same inequality must hold in the limit. It then
follows that o(x) is increasing.

For the family E,(M, H, a), that is for convex p(x), we first note
that the functions p,(x) (v =1,2, --+) are also convex. We now con-
sider these funections while restricting x to lie in the interval [, a—&]
where 0 < 8§ < a/2. From the convexity of p,(x), it follows that

pv(x+h})l—pv(w) '<H/3, (els,a —8], v=1,2,--+).

Hence {p,(x)} is an equicontinuous family of functions in this interval.
We now consider

(&) — o (x + h) — o,(x)
’ h
+ o(x + h]'%) — 0(x) _ oy(x + h}z — 0(x) ‘ + ’ o(x + h})b — 04(%) + o(x)

| py(@) — p(@) | =

where z, * + he[d,a — 8]. Since ofx + hi)z,— oU%) _ (2 + 6h) for

some 0 < 8 < 1, it follows from the equicontinuity that the first term
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on the right may be made small by choosing % small. The last may
be made small by choosing # small since oi(x) = o(x). Then for fixed
h, the middle term may be made small by choosing v sufficiently large.
Thus p,(x) — p(x) as v — o in any closed interval properly contained in
(0, a). Hence we must have point wise convergence and p(x) must be
convex, x < (0, a).

The corresponding result for the family of functions E,(M, a), that
is when p(x) is concave, follows directly from the convex case by con-
sidering {— p,(x)}.

LEMMA 3. The first variation of N, (p) with the condition Sap(w)dx =
0
M s

@ Bu(p) = —M(p)| Sp(ii(o)dz

where u,(x) 18 the normalized eigenfunction corresponding to n,(p) and
Sa(Bp)dx = 0.
0

Consider the differential system associated with a vibrating string
of linear density p(x) + eq(x) = 0, namely

( + €v)” + (M + e)(p(2) + eq(@))(u + ev) =0,
#(0) + ev(0) = w(a) + ev(a) =0,

where Sa[p(x) + eq(x)]lde = M. We denote the nth eigenvalue of this

system by \.(p) + e, and the corresponding eigenfunction by u,(x) +
ev,(¢) where u,(x) is the eigenfunction corresponding to M\,(p). u, +
ev,(x) then satisfies the equation

uy + v+ (nlD) + e8)(P(@) + ea@))(u, + ev,) =0 .

Multiplying this by u,(x) and integrating the resulting expression over
the interval (0, a), we get

M) +e| uida + () + el + < Guso, + quiddz + 0@ = 0.

We have used the relation Sau;’undx = —)\,(p) and taken Sapuf,dx = 1.
0 0
Solving for p,, we find
0| a@i@ds — N ©u, — vuids + 06
0 0
1+ 0(e)

Integrating the second integral by parts, we find that it vanishes so

o =
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that letting ¢ — 0, we get

o= =) q@pi(e)ds

Hence
Bra(p) sty = —(p)| Sp(aui @)

where we have taken &p(x) = eq(x). Since Sa[p(x)+eq(x)]dx=M and
o a 0

S p(x)de = M, it necessarily follows that S dp(x)dx = 0.

0 0

2. Monotone density functions. We first consider the case where
p(x) is a monotone increasing function such that 0 = p(x) £ H < o,
that is when p(x)eE (M, H, a).

THEOREM 1. Let M, (p) be the nth eigenvalue of a wvibrating string

with fized boundary wvalues and with a monotone increasing density
Sunction p(x)eE(M, H, a). Then

Aa(D) = Ma(0)

where p(x)eE (M, H, a) is a step function with at least one and at most
n discontinuities in the open interval (0, a).

By Lemma 2 there exists a monotone bounded function o(z)e
E\(M, H, a) such that ),(0) = max,e5 M(p). Hence, letting p(x) = po(x) in
the variational formula (2), we have &\, (0) 0. We now show that
unless p(x) € E\(M, H, a) is a step function with at most n discontinuities
N (p) > 0 for some 8p = eq where p(x) + Sp(x) e E(M, H,a). Hence,
o(x) must be a step function with at most n# discontinuities.!

Let u,(x) be the eigenfunction corresponding to )\,(p). Denote the
nodal points of u,(x) by #,(k=0,1,---,7n) where 2, =0 and 2z, = a.
Since u,(x) has only one extremum point in each of the intervals (x,_,,
2,)(k=1,2, -+, n)ul(x) has only one maximum there. Let that point
in (@, 1) be T, (k=1,2,---,7n). For k=1,2, -+, 0, we let

r@) = ay = |* p@)dal@, — o), @€ lonn i -
Tr—1
Since a, is the mean value of p(x) in (xx_, Z,) and p(x) is monotone
increasing, it follows that a,,, = p(x) if z€[Z,, x.] k=1,2, ¢+, n — 1)
and that a, < p(x) if z¢[Z,, 2] k=1,2,-+,n). Hence, it is possible

! The author is indebted Z. Nehari for suggesting the variational approach used in
this paper.
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to find a point &, € (¥,, «,) such that

a, if xe[x,, &)

Qv if @ e[, 2] '

r(x) = {
satisfies the relation
Zk Ik
S_ r(x)dx = S p(x)dx
Ik xk

*k=1,2,.--,n). We have taken a,,; = H, the upper bound of p(x).
In each of the intervals (x,—;, Z,) and (&, ;) (k=1,2, --+, ), r(x) and
p(x) satisfy the hypothesis of Lemma 1.1 relative to ui(x). Hence, we
have

Sék Py (@)ds = S r@)ut(@)de

Tx Tp—1

and
S::p(x)uf,(x)dx = S::r(x)uf,(x)dx
k=1,2,+--,n). Summing on k, we find that
[Ip@) — r@i@de = 0.
The equality sign will hold if and only if p(x) = r(x), i.e., p(x) is con-
stant or is a step function with precisely one jump in each of the in-

tervals (v,, %) (k=1,2,---,m). If we let g(x) = r(x) — p(x), then
for small ¢ > 0 Lemma 3 gives the result

M(p) = —0) || e q@i(a)de
= —xn(p)SZSp(x)ui(x)dx >0

unless p(x) = r(x). Hence, p(x) = r(x) if ), (0) is a maximum. But r(x)
is a step function with at most # jumps in (0, a).

Finally, we show that the maximizing density cannot be a constant
so that there must be at least one jump. We first consider the lowest
eigenvalue. We show that o\ (p) > 0 when p(x) = M/a for a particular
op = &q.

The eigenfunction corresponding to M (M/a) is

u(x) = 1/ 2]a sin -’;i X

If we let
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— if ze(0,a/2+7),
3p(x) = eg(x) = { e @2+ 7

a2 — 7 if ze(@/24+71,a),

where 0 < 7 < a/2 then Sab‘p(x)dx =0 and
0

S(Mja) = —n(Mja) | sp@pia)de

From the symmetry of u,(x) about the point # = @/2 and Lemma 1 it
is easily seen that

S:sp(x)uz(x)dx >0.

Hence, &\(Mja) > 0 so that A\ (M/a) cannot be a maximum value of

M(p).
The corresponding result for the higher eigenvalues can be obtained

by choosing

. a
—e if xe(O,-—zz—l—v),
ép(x) = eq(x) = < e(a/2n + 1)
2n—1)a _p if xe(@/2n+7,0a),

2n

where 0 < 7 < a/2n. It then follows from the periodicity of

U, (x) = V2] sin 7%
a

and the argument used for \(M/a) that ), (M/a) cannot be a maximum
value of ,(p), e E(M, H, a).

The upper bound of \.(p), pe E(M, H, @) is thus given as the max-
imum of the lowest eigenvalue of the system.

) w" + Apo(x)u = 0, u(0) = u(a) =0
where
6H if z€][0, &a) ,
Do(X) = .
H if xelta,a];
0<6<1 and € = 1—}%@“—. That 6 = 0 may be excluded from con-

sideration follows easily from the derivation of the form of p(x) and
the fact that the maximum of w,(x) in this case must occur in the open

interval (£a, a). For we would have a, = lepg(w)dx +0.
0
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The eigenfunctions of (8), are [2]

sin VN, H (1 — &a-sin VN.0H x, x¢[0, &a),

U (%) = { sin VN0H ga-sin VNH (@ — %), we¢lEa, ]

where A, (py) is the nth positive root of

tan (EaV'N0H) +1V 0 tana(l — EWAH =0

We could now compute % and determine the value which

maximizes \;{(Po).

The determination of the bounds for the higher eigenvalues is also
seen to be a problem in ordinary calculus since the jumps of the step
function which give the maximum must occur in the open interval
0, a).

3. Convex density functions. Let p(x), £ €[0, a] be a continuous
convex function such that S p(x)dxr = M and 0 < p(x) £ H, that is, let
4]
p(x) € E(M, H, a).

THEOREM 2. Let \(p) be the lowest eigenvalue of a string with.
fized end points and with density p(x) e EM, H,a). Then

aMn(p) = #(%%)

where p(h) = [6(h — 1)t,J}/R° and t, is the least positive root of

J1,3(t)J2,3((2——];;}.1'_)3i) — J_1/3(t)J_2,3<_@_%M) =0

if 1< h<2and p(h) = h(3t,/2 and t, ts the least positive root of
Jo(t) =0 if h=2. The minimum 1is uniquely attained for the
Sunction

4
®) o) = | M —ee+ H, 2e0,af2),
pla — @) , xe(al2,a),

if1<h=%{—<2 and
[H/MYM — Hz), zec(0, M/H),
(6) o(x) = 10 , xe(M|H,al2),
ola — x) , xe(a/2,a),
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aH

if h==222=2.
M
1t is well known that M(p) is the minimum of
gau’z(x)dx
Juy ="~
| pepie)do

where the minimum is taken over all functions % € C’ which vanish at
2=0and x =a. If we let

B(x) = %[p(x) + pla — )]

then
| Py
AU(P) = max e
vee Sou”(x)dw
Sup(x)zﬁ(x)dx Sap(a — z)u(x)dx
Smax<* 4 max®

e ZSau’z(x)dx e 2Sau’2(x)dw
0 0
= M"(p)

since the eigenvalues of a string with density p(e¢ — x) are the same
as those of a string with density p(x). Hence any upper bound of \(P)
is also an upper bound of \(p).

The differential system (1) with p(x) replaced by p(x) has the same
lowest eigenvalue as the system

) W’ + APy = 0, uw(0) = w'(a/2) = 0, = <[0, a/2].

Furthermore, since p(z) is convex, so is p(x), £ <[0,a], and the bound
H is also a bound of p(x).

We now compare the lowest eigenvalue of the system (7) with that
of the same system when p(x) is replaced by

0.(@) = [4a*)(M — aH)z + H, z<[0, aj2] ,

if1<aTIwI—<Zand

%(M— Hx), =el0, M/H],
0, xe[M/H, a/2],

lol(x) -
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if % = 2. In either case, since p0,(0) = H = 2(0) and S:lzpl(x)dx:
alzﬁ(x)dx, it follows from the convexity of D(x) that there is a point

foe (0, @/2) such that o,(x) = p(x) if x € (0, &) and p,(x) < D(x) if = € (§, a/2).
There will be strict inequality in each of these open intervals unless
p(x) = p(x), x€[0,a/2]. If u(x) is monotone increasing in [0, a/2] with
#(0) = %'(¢/2) = 0, we have by Lemma 1

®) | o@m@is = | poweis

Since the first eigenfunction of the system (7) is a monotone increasing
function, it follows from the comparison theorem [2] that

M(P) = M(0)

There will be equality if and only if p(x) = o), for if u(x) is the
eigenfunction corresponding to the lowest eigenvalue of (7) with »(x)
replaced by pi(x) # D(x) then (8) will be a strict inequality and hence

S:ﬂu’z(x)dw S:Izu’z(x)dx

M(0) = = M(D) .

[p@w@ds | pen @i

But M(0,) is also the lowest eigenvalue of the system (1) with p(x)
replaced by

_ (o), zel0, a/2],
p(x) B {lol(a' - x) y X€ [a//2) a] .
aH

This is just the function (5) if 1< S7a < 2 and the function (6) if

%‘I;— = 2. Hence we see that )\ (0) = M(p) for any bounded convex p(x).

When o(x) is defined by (5) we find that

(o)

aS:p(x)dw

7\'1(10 ) =

where (k) = [6(h — 1)t,]*/k* and t, is the least positive root of
J1/s(t)J2/3(kt) - J_1,3(t)J_2,3(kt) =0,

k= _(_2_;3—}")3 [4]. When p(x) is defined by (6) we have
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H
M(0) = &ﬂf_—l

aS:p(x)dx

where p(h) = h(3t,/2)* and t, is the least positive root of J_,,(t) =0 [4].
A better bound is obtained if, instead of the bound H, we use H =
3[p(0) + p(a)] for the bound of p(x). This results in a smaller value of
aH/M) whenever p(0) # p(a).
For the larger eigenvalues we prove the following.

THEOREM 8. Let \,(p) be the nth eigenvalue of a vibrating string
with fixed boundary values and with a convex density p(x) € Ey(M, H,a).
Then

Ma(P) = Na(0)

where p(x) e EXM, H, a) is a piecewise linear convex function with at
most (n + 2) pieces.

The existence of a bounded convex function po(x) such that maxX,es,
M(P) = N, (0) follows from Lemma 2. It then follows by Lemma 8 that

u(0) = —2(0)| Doty (e)dz = 0 .

We now show that either p(x) is a convex piecewise linear function
with at most (n + 2) pieces or there exists a function ¢(x) such that
S\, (p) > 0 when 8p = eq where p(x) + 8p(x) € E(M, H,a). Let u,(x) be
the eigenfunction corresponding to M.(p). We first find a convex
function r(x) such that

[rm@as = [peueds .

Instead of trying to find r(x) directly, we carry out a preliminary con-
struction. As in Theorem 1, we denote the minimum points of ui(x)
by z, (k=20,1, -+, n) and the maximum points by Z, (k=1,2, ++-, n).
We first consider each of the intervals (£,, %) (k=1,2,--+,2—1)
separately.

Let L(x) be any linear function such that L(x) < p(x), € (%, Trr1)
for some fixed integer k(1 <k <m —1). Then m(x) = max {L(x), 0}
satisfies the inequality 0 < m(x) < p(x). Now let ¢, be any number
such that ¢, = p(x,). Then there is a number a, such that

9) §+ [a,(x — ) + ¢ ]de = r’““p(x)dx .

%k
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If aw@ — @) + ¢, = m(x), @€ (x;, Ty4), then we let
9@, ¢) = a(x — x,) + ¢, T E(Ty, Tpsy) -

If ay(x — x;) + ¢, < m(x) for some e (xy, T,.,), then we redefine a,
by the condition
@) = Y"“p(x)dx
&

k B

(10) Si’;[a,,(x —x,) + ¢, Jdx + S

where £, satisfies the equation a,(¢, — x,) + ¢, = m(£,). In this case,
we define g,(z, ¢,) by

a(x — ) + ¢, we(x, &),

gi(x, ¢;) = {m(x) , xelé, Tyt .

Now consider the interval (z,, x,). Let m(x) = max {L(x), 0} where L(x)
is any linear function such that L{x) < p(x) if « ¢ (Z,, ;). There is a
number b, such that

11) S;:[bk(x — ) + ¢)dz = g;:p(x)dx .

If b(x — z,) + ¢, = m(x) for x e (x,, x,), we let
hi(@,¢.) =bx — ) + ¢, xe@, ).

If b(x — x,) + ¢, < m(x) for some ze(Z,,x,), we redefine b, by the
condition

12) S;km(x)dac + Sjk [b.(x — x) + ¢ ]dx = S:kp(x)dx

where 7, satisfies the equation b,(y, — x,) + ¢, = m(»,). We then define
hi(z, ¢;) by

m(x) ’ re (Eki 7]k) ’
b — ) ¢y ey, ).

We may consider a, and b, to be functions of ¢,. They are conti-
nuous functions as is easily seen from the defining relations of a, and b,.
It follows that there is a number v, = p(z,) such that a, = b, if ¢, = 7,.
For if ¢, = p(x,), the convexity of p(x) implies that @, — b, =0. On
the other hand, if ¢, is sufficiently large, a, — b, < 0. Hence, by the
continuity, the value 7, exists such that ¢, = v, implies a, = b,.

In the interval [z, Z,], we define gz, c,), in the same way that
g.(x, ¢;) was defined except that we specify ¢, = p(0) = 7,. Similarly
in [%,, a] we define h,(x, c,) as above except that we take ¢, = p(a) = 7..

We now let

hi(z, ¢;) = {

r(x) = g4, v) , x€[0,Z],
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ro(@) = {hk(xy V), xelTy, 2],
y 92, %), welx,, Tyl

() = h,(x,v,), welZ, ],

k=1,2, -+, —1). From (9) or (10), which ever applies, we have

g:k_ ro(x)dx = S” o(x)dx .

Tk—1
The convexity of p(x) and the definition of 7,(x) imply by Lemma 1 that

(13) S:_lrk(x)uz(x)dx < S"

Tp—

p(ryus(x)de .
1
Similarly from (11) or (12) we have

(14) [ rena@is = | peni@ds .
Tk T
Furthermore, we have strict inequality unless 7,(x) = p(x) in each case.

We are now able to define the function 7(x) by induction. We
carry out the process only for n =3 to avoid unnecessary detail. In
(%o, T,), we let m(x) =0 and define 7 (x) as above. In (Z,, ¥,), we also
define r,(x) with m(x) = 0. Then, comparing r,(Z;) and 7,(Z,) we have
the following alternatives:

(i) If r(x) > r,(x,), we define a new function r,(x) with m(x) =
max {r,(x), 0}, z€[Z,, %,] where we define r,(x) in this interval by extra-
polation.

(ii) If r(Z) < r(x,), we define a new function r(x) with m(x) =
max {r,(x), 0}, € [x,, Z,], where r,(x) is defined in this interval by extra-
polation.

(iii) If r(Z) = r(x,) we leave 7 (x) and r,(x) as they are.

Using whichever alternative applies, we define

7‘1(11;) ’ HAS] [x(), ‘/'?1] y

i) = r(x) , xelx,7,).

Now, define r(x), « €[%,, ¥;] with m(x) =0 and compare r“(Z,) and
ry(Z,). We use the same alternatives as above, the only difference being
that if »"(Z,) < r(Z,) we must redefine »®(z) with m(x) = max {ryz), 0},
x € [x,, Z,] where as above we define 7,(x) by extrapolation.

It is clear that the above process can be completed for any integer
n. The function which we obtain by this method we call r(x). It will
be a convex function since any two adjacent segments of the graph of
r(x) can only have a point of intersection which lies on or below the
graph of p(x). Since there is possibly a subinterval of [0, a] where r(x)
may be zero, r(x) may have up to n + 2 linear pieces.
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If we sum the inequalities (13) and (14) we find that
[[ren@s < | pens@ds
0 4]

with strict inequality unless 7(x) = p(x) in (0, @). Choosing &p = eq(x) =
e[r(x) — p(x)], we have that p(x) + 8p(x) is convex if ¢ > 0 is small and
hence

SaBpuE,(x)dx <0
0

or &\,(p) >0 unless p(x) = r(x), x€[0,a]. Since we must have &\, (0)
= 0, it follows that p(x) is the same type of function as r(x). From
the method of determining 7(x), we see the p(x) is a convex piecewise
linear function with at most n + 2 linear segments.

We note from Theorem 2 that this is precisely the case when n = 1.

4. Concave density functions. We consider the case when p(x),
xz €[0, a] is a continuous concave function such that g p(x)dx = M, that
0
is, when p(x) € E,(M, a).

THEOREM 4. Let )\, (p) be the nth eigenvalue of a string with fixed
end points and with a concave density function p(x)<c E(M,a). Then

(D) = N(0)

where p(x) e E(M, a) and is a piecewise linear concave function with
at most n pieces.

The existence of a concave function o(x) such that
max \,(p) = N,(0)
PEE;

follows from Lemma 2. As in the previous cases, we must have
MN(0) £ 0. We show that it is always possible to find a function g(x)
such that

Bna(p) = =) Bp(aui()dz > 0

when p(x) = eq(x) where p(x) + Sp(x) € Ey(M, a), unless p(x) € Ey(M, a) is
a piecewise linear concave function with at most » pieces. Hence, it
follows that o(x) must be such a function.

We find the function ¢(x) by the method used in the proof of
Theorem 3. Thus, we seek a function 7(x) such that

[[rena@ds = " ponwds .
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Where u,(x) is the eigenfunction corresponding to A.(p). To apply the
method of Theorem 3, we consider

| p@ui@de = | T—p@)] [—ui(@)ds .

Then —p(x) is convex and the zeros z,(k =0,1,2, .-+, n) of u,(x) are
the maximum points of —u.(x). The maximum points Z,(k =1,2, ---, n)
of uli(x) are the minimum points of —wu%(x).

Over each of the intervals (z;, 2,..)(k = 0,1, ---, n — 1) we define
—r(x, ;) where —p(%,) <c¢,=<0. As in the convex case, thereisa
number v, such that »,(x, 7,) is linear at = Z,. Using the inductive
argument as before, we let m(x) = L(x) since L(x) will be negative and
form new functions —r.(x, v,). Finally we obtain —»(x) which is convex
and satisfies the inequality

rp(x)ui(x)dx = Sar(x)ui(x)dx .
Hence, choosing ¢q(x) = r(x) —p(x), we have
Smeui(x)dx = Sa e q(x)ui(x)dx =0,

where for ¢ sufficiently small p(x) + ép(x) € E.(M, a). Furthermore,
there is strict inequality unless p(x) is a concave piecewise linear fune-
tion with at most # pieces. This proves the theorem.
It follows immediately from Theorem 4 that
72:2
A < =
(p) = i
when p(x) is concave.! For in this case, o(x) is a linear function. But,
as was shown in the proof of Theorem 3, \(D) = M\ (0) where p(x) =
lo(x) + pla — x)]. In this case, p(x) = M/a and N\(Mfa) = m*la M.

5. The vibrating rod. The eigenvalue problem associated with a
vibrating rod with clamped ends and density p(x) = 0, z¢[0, a] is
15) u? —Ap@)u =0, uw0)=u'0)=ula)=u(@ =0.
As in the case of the string, we denote the ordered eigenvalues by
0 < M) < Nfp) < -ev

That there should be strict inequalities in this expression has been

1 This result has already been obtained by Z. Nehari. His proof is the one dimensional
analog of that given in [7] where he shows that the lowest eigenvalue of a circular mem-
brane with a superharmonic density p(x,y) is bounded above by that of a homogeneous
membrane of the same total mass.
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shown in [6].

In this section, we consider the problem of finding upper bounds
for these eigenvalues when p(x) is restricted to be either monotone,
convex or concave. In the first two cases, we require in addition that
p(xr) = H < . As in the case of the string, we denote the set of all

functions p(x) = 0, x € [0, a] with Sup(x)dac = M where p(x) is monotone
increasing, convex and concave by E(M, H,a), E(M, H, a) and Ey(M, a)
respectively. The H in E(M, H,a) and E,(M, H, a) indicates that in
these cases p(z) < H.

LEMMA 4. Let E, be one of the sets of functions defined above.
There exists a function o(x)e E, such that

Na(0) = sup (D) .

This follows in exactly the same manner as the result of Lemma
2. We need only note that the result of Krein quoted in Lemma 2
may be generalized to this case. The generalization is trivial for the
Green’s function of the system (15) and its first partial derivatives are
bounded. Krein’s proof then applies word for word to this case and
hence the proof of Lemma 4 follows as in the proof of Lemma 2.

LEMMA 5. The first variation of ©,(p) with Sap(x)dx =M 1is
1]

BL.(p) = —1.(p)| Sp(@i @)

where u,(x) is the normalized eigenfunction corresponding to A.(p).
In particular we may choose JOp(x) = eg(x) such that S op(x) = 0.
0

The result is easily derived in the same way as the result of Lemma 3.

The results of Theorems 1, 8 and 4 will now generalize to the case
of a vibrating rod with clamped ends. The only question which arises
concerns the properties of the eigenfunction wu,(x) corresponding to
M(p). It must be true that u,(x) has the same general character as
the nth eigenfunction of a vibrating string. In particular, it has been
shown in [6] that w,(x) has exactly » — 1 zeros in the open interval
(0, a). Furthermore ul(x) has exactly one maximum between any con-
secutive pairs of zeros. For suppose there are two or more maximum
points between some consecutive pair of zeros. Then u,(xr) must have
at least n + 4 zeros in [0,a]. Hence u)(x), u,)'(x) and u;”(x) must
have at least n + 3, n + 2, and n + 1 zeros respectively in the open
interval (0,a). This leads to a contradiction if p(x) > 0 since u;” =
Ap(x)u, () may have only » — 1 zeros in (0,a). If p(x) =0, we may
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apply the same argument with p(x) replaced by p(x) + ¢, € > 0. Thus,
if u,.(x) is the nth eigenfunction, u2.(x) has # maximum points in (0, a).
Letting ¢ — 0, we see that the same must be true of the nth eigenfunc-
tion when the rod density is p(x) = 0.

From these observations, Lemmas 4 and 5, and the arguments used
in Theorems 1, 3 and 4, we have the following result.

THEOREM 5. Let \,(p) be the nth etgenvalue of a rod with clamped
ends and density p(x), x €0, a], such that S p(x)dx = M .
0

(a) If p(x) is monotone increasing and bounded

Aa(D) = Na(0)

where p(x), x€[0, a] is an increasing step function with at least one

and at most n discontinuities in the open interval (0, a) and S p(x)dx =
0

M.

) If p(x) is convexr and bounded

(D) = N (0)

where p(x), xel0, a] is a bounded piecewise linear convex function
with at most m + 2 linear pieces and S o@)ydx = M.
0

(¢) If p(x) is concave

(D) = N(0)

where p(x), x<[0,a] is a piecewise linear concave function with at
most n linear pieces and S ox)dx = M.
0

In the case of the lowest eigenvalue, the density which gives the
upper bound may be obtained precisely when p(z) is convex or concave.
It follows from the Rayleigh quotient as in Theorem 2 that for p(zx) =
ip(x) + pla — 2)]

M(D) = M(D) .

This and the above theorem thus show that when p(z) is convex, p(x)
is symmetric and piece wise linear with at most three linear pieces and
that when p(x) is concave, p(x) is a constant. This result may also be
obtained by the method used in the proof of Theorem 2.

6. The membrane. We consider a vibrating membrane stretched
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with uniform unit tension over a disk D= {x,v)|2*+ y* < R}. We
assume the areal density of the membrane is given by the measurable

function p(z, y) where

SSDp(x, Ydady = M .

For such a membrane with a fixed boundary, the eigenvalues and eigen-
functions are determined by the integral equation [8]

16) we, ) = || G, v, & MIp(E, uce, Pdedy

where G(z, ¥, &, 7)) is the Green’s function of D. We denote the first
eigenvalue by M\(p) and the corresponding eigenfunction by u.(x, ¥).
We find upper bounds for A (p) by use of the following result.

LEMMA 6. The lowest eigenvalue of a circular membrane with
Jfized boundary and integrable density p(x, y) is always less than that
of a circular membrane with fixed boundary and density.

bz, y) = p(r) = —2—171_— Smp(r cos 8, r sin 6)d6 .
0

Proof. We use the fact the first eigenvalue is given by the in-
fimum of the Rayleigh quotient

[§, @2 + widady

||, Pl v, vydady

R(u) =

where the infimum is taken over all functions wu(z,y)e C’ such that
u(x, y) vanishes on the boundary D. In particular, the lowest eigenvalue
of a circular membrane with density p(r) is given by

SS (w2 + ud)dzdy
M(p(r) = inf 232 .
“ee _p(r)we, y)dady

We note that

p(r) = zighp(r, p)dep = —1—S2xp(r, ¢ + 0)dp = p(r, 0) .
T Jo 27 Jo

Hence, it follows that
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_ SS Dﬁ("" eyui(r, pyrde dr
MEm) e [ @ + wpdsay

1] ,(& w0 + oMo}, o

21 Jo
= sup
ueo’ H w? + uldzdy
D
L o [§, 20, & + Oy, pyrdadr
= -——S df - sup 22
2 Jo uel’

| e + wpdady

= _l_SZI 1 d0 = 1
27 Jo M(p) (D)

ie., M(P) £ M(P) since N\ (p) does not depend on §. We may now prove
the following.

THEOREM 6. The lowest eigenvalue of a circular membrane with
Jized boundary and a bounded convex density p(x,y) is less than the
lowest eigenvalue of a circular membrane with density

o 10 0<r<R- Ha,
) = lar—-R)+H, R—Ha<r<R,

if B> Hla and
gr)=a(r— R)+ H

R

if R < Hja where a is such that 27:3 aryrdr = M .
0

We first note that since p(zx, ¥) is convex, so is

p(r) = —1—§2xp(7' cos ¢, r sin ¢)de .
2w Jo

For suppose 7, and 7, are such that —R < 7, <7, < R. By the con-
vexity of p(x, y) we have

p(—rl—;—“— cos ¢, ﬁ—;—r— sin ¢> < 4[p(r, cos ¢, 7, sin ¢)

+ p(r.cos ¢, r;sin )] .

Integrating this with respect to ¢, we have
p(ZE ") < 3ln(r) + pra)]

‘We now consider
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L~ g SDT’ (z, yyu(x, y)dady
Mp(r)) Hb(ug + ut)dady

where u(x, y) is the eigenfunction corresponding to M(p(r)). For any
function u,(x, ¥)<C’, we then have

(] v, wdady
M) SSD(u‘;’z + uz)dady

In particular, if w(s,9) = u,(r) is the eigenfunction corresponding to
the first eigenvalue \(g) of a membrane with density q(r), it is a de-
creasing function of r. This is easily seen by considering the differential
equation which is equivalent to the integral equation (16) [3]. By Lemma
1, we thus have

a7 27r§:p?(r)uf(r)'rdr = 277S:q(7')u§(r)rd7' .
Hence,

1 - SSDq(r)ui(r)rde 1
Mp(r) SS grad u} rdrd RN

This same method yields a result if p(x, ) is a concave function.
For p(r) is also concave and the inequality (17) holds if we choose q(r) =

SS o(x, Y)dxdy = M. Hence we find that
D

M(p) < T8 pr
(» = o2

where 7, is the least positive zero of Jy(x) = 0. As pointed out in [1],
this result is a corollary to a theorem of Nehari [7] which says that if

2
p(x, y) is superharmonic in D, then \(p) < 77.'——‘—7R°TM. Since a concave

function is superharmonic, this implies the above result.
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ON THE FIELD OF RATIONAL FUNCTIONS
OF ALGEBRAIC GROUPS

A. BIALYNICKI-BIRULA

0. Introduction. Let K be an algebraically closed field of char-
acteristic 0, let k& be a subfield of K and suppose that G is a (k, K)
algebraic group, i.e., an algebraic group defined over k¥ and composed of
K-rational points. Let k(G) denote the fields of k-rational functions on
G. G, denotes the subgroup of G composed of all k-rational points of
G. If geG, then the regular mapping L,(R,) of G onto G defined by
L,z = gx (R,x = xg) induces an automorphism of k(G) denoted by g.(g,).
Let D, denote the Lie algebra of all k-derivations of k(G) (i.e., of all
derivations of %k(G) that are trivial on k) which commute with g,, for
every g€ G,.

For any subset A of k(G) let G(A) denote the subgroup of G com-
posed of all elements g such that g¢.(f) =f, for every fe A. In the
sequel we shall always assume that G, is dense in G.

The main result of this paper is the following theorem:

THEOREM 1. Let F be a subfield of k(G) containing k. Then the
Sfollowing three conditions are equivalent:

(1) F is (Gy), — stable

(2) F is D, — stable

(8) F =k(GIG(F)) and so F coincides with the field of all ele-
ments of k(G) that are fived under G(F'),.

By means of the theorem, we establish a Galois correspondence be-
tween a family of subgroups of G and the family of (G,),-stable subal-
gebras of the algebra of representative functions of G.

The author wishes to express his thanks to Professor G.P. Hochschild
and Professor M. Rosenlicht for a number of instructive conversations on
the subject of this note.

1. Let K be an algebraically closed field of characteristic 0, let k&
be a subfield of K and suppose that V, W are (k, K) — algebraic varieties.
Let k(V), k(W) denote the fields of k-rational functions on V and W,
respectively. If A is a subset of k(V) then k(A) denotes the fields
generated by k& and A.

The following result is known!:

(1) Let F be a rational mapping of V onto a dense subset of W
and let ¢ be the cohomomorphism corresponding to F. Then there exists

Received September 28, 1960, in revised form November 14, 1960.
1 See e.g. [2],
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an open subset W, < W such that F~'(x) contains exactly [k(V): (k(W))]
elements, for every x ¢ W,.

LEMMA 1. Let A be a subset of k(V) and suppose that there exists
a dense set V, C V and an open subset V, C V such that for any two
distinet points x,, x,, where x, € V,, x, € V,, there exists a function fe A
which s defined at x,, v, and f(x;) #+ f(x,). Then k(A) = k(V).

Proof. Let B be a finite subset of A, say B={f,, -++,f.}. Then
F'y denotes the rational mapping Fp: V— K" defined by Fy(x) = (fi(x),
coo, fu(®)) and Wy = (Fg(V)- < K*. Let 4(W,) be the diagonal of
Wex Wyand Vy = ((Fy x Fp)'d(Wy)~ < V x V. Then there exists a
finite subset B, C A such that V; C V,, for every finite subset Bc A
(since V x V satisfies the minimal condition for closed sets). Let V, be
an open subset of V such that Fj is regular on V;. We may assume
that V, = V, = V, since we may replace V by V, N V,. If ;¢ V,, x,e V
and x, # x, then there exists fe€ A such that f is defined at x,, x, and
f (@) # f(x.). Hence (2, x,) ¢ V|, and so (x,, 2,) ¢ VBO' Thus FBO(xl) + FBO(xz)-
Therefore, for every «e Fj(V)), F'5(¥) contains exactly one element.
But F, (V) is dense in Wy . Hence it follows from (i) that [k(V): k(B)] = 1,
i.e., kK(V) = k(By). Thus (V) = k(A).

Let G be a (k, K) — algebraic group. Suppose that G, is dense in
G. Let D be the Lie algebra of all derivations of K(G) commuting with
g., for every g €@, and let D, denote the Lie algebra consisting of all
derivations from D that map k(G) into k(G). Let k[D] (K[D]) denote
the k-algebra (K — algebra) of transformations generated by the identity
map and D,(D).

If d € D, then d restricted to k(G) is a k-derivation commuting with
g, for every geG,. On the other hand if d, is a k-derivation of k(G)
commuting with g¢,, for every g € G,, then there exists a unique exten-
sion d of d, to a K-derivation of K(G), and the extension belongs to D,.
Hence we may identify D, and the Lie algebra of all k-derivations of
k(G) that commute with ¢,, for every g ¢ G,.

(ii)* If fe K(G) and f is defined at a point g € G then df is defined
at g, for any d e K[D].

LEMMA 2. Let fe K(G) and suppose that f is defined at g G,. If
f # 0 then there exists d € k[D] such that (df)(g) # 0.

Proof. Suppose that f+# 0. If f(g) + 0 then the identity element
of k[D] satisfies the desired condition. Hence we may assume that
f(@) =0, Let &%) denote the local ring of g in k(G) (K(®))
and let m,(my) be the maximal ideal of < ,(~”x). Then fem,. Let

? See [4] p.51,
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Zy, v++, %, be elements of m, such that x, + m}, ---, 2, + m} is a k-
basis of m,/mi. The x, + mk, «--, 2, + Mm% is a K-basis of my/m%k. Hence
every mapping (x,, +-+,%,) —k can be extended to a derivation
9: 7 — K. On the other hand f == 0 and so there exists an integer ¢
such the femyz —mi'. Hence f = 3 . - X2i, o e im + f
where fiemi?, a;, . ; €K and at least one a; . ; is different from
zero. Let 8; be the derivation of £, into K such than 8, x; = J,;, where

8 = {(1) Ig: : g It is known?®, that there exist d; € D, such that (d,f)(g) =
0.f for every feg. Then (djr---dim)f(g) = 1! - iula;
i, # 0. Hence the lemma is proved.

If A is a subset of k(G) then G(A) denotes the subgroup of G com-
posed of all elements ¢ such that g, leaves the elements of A fixed.
For any A C k(G), G(A) is a k-closed subgroup of G.

(iii)* Let G, be a k-closed subgroup of G. Then G/G, is defined
over k. Let ¢ be the cohomomorphism of k(G/G,) into k(G) correspon-
ding to the canonical mapping G — G/G,. Then @(k(G/G,)) coincides with
the subfield of all elements of %(G) which are fixed under g,, for every
g €G,. In the sequel we shall identify k(G/G,) and @(k(G/G))).

Proof of the theorem.
Implications (3) = (1) and (8) = (2) are obvious.

(1) = @). Let g,eGy, 9.€ G and G(F)g, + G(F)g,. Then g,97" € G(F).
Hence there exists f, € F'such that (g.9:").f: # fo. Therefore there exists
an element geG, such that (g.9:%).f, and f, are defined at g and
(gzgl_l)rfo(g) * fu9), i.e., f(9:97'9) # fi(9), (gflg)zfo(gz) * (gflg)zfo(gl)- Let
f = (97'9).fo- Then fe F since g7'g € G,; f is defined at g, and g,, and
f(g) # f(g,). Thus it follows from Lemma 1 that F = k(G/G(F')), because
G(F)-G,/G(F) is dense in G/G(F).

2)=3). Let fi,---,f. be a set of generators of F over k, and
let V, be an open subset of G such that fi,---,f, are regular on V..
We may assume that V., = G(F)V,. Let ¢,e VN Gy, 9.¢ V;, G(F)g, +
G(F)g,. Then g,97* ¢ G(F') and so there exists f; such that (9.97Y),f: # fi.
We know that (g,9:%),f; and f; are defined at g,. Hence it follows from
Lemma 2 that there exists an element d € k[ D] such that

a((9:97).1)9) # (Af:)g), i.e., (df)(g)) # (df)(g.) .
Therefore, for any pair of distinct elements G(F)g,, G(F)g, such that
G(F)9,€ G(F)-G, N Vi/G(F) and G(F)g,¢ V,/G(F) ,
"% See [4] p.51,

1 See Proposition 2, p.495 in [5].
5 This part of the proof is modeled after the proof of Lemma 5.3 p.515 in [3].
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there exists an element f € F' which is defined at G(F)g,, G(F)g, and such
that f(G(F)g,) + f(G(F)g,). But V,/G(F) is an open subset of G/G(F),
and G(F)G, N V,/G(F') is dense in G/G(F). Hence it follows from Lemma
1 that F = k(G/G(F)).

This completes the proof of the theorem.

2. Applications. As a consequence of Lemma 2 one can get the
following corollary:

COROLLARY. If « is an automorphism of k(G) commuting with D,
and leaving the elements of k fixed them there exists heG, such that
a = h,.

Proof. « induces a rational map F,:G — G. Let ge G, be a point
such that F, is defined at g and let F,(9) = h'¢g Then heG, and
fF(g) = (af)(h'g), for every f e k(G) that is defined at g. Hence (df)g =
(a(df))(hg), for every dek[D]. But (a(df)(h'g) = (k7 (a(df)))(9) and
d commutes with & and k;*. Therefore (df)g) = (d(h {(af)(g))). Hence
it follows from Lemma 2 that f = h;%af). Thus h.f = af, for every [
that is defined at g. Therefore h,f = af, for every f e k(G).

It follows from the corollary that if F' is a D, — stable subfield of
k(G) containing k then every D, — automorphism of k(G) leaving the
elements of F fixed belongs to G(F'),, i.e., the D, — Galois group of k(&)
over F coincides with G(F'),. Combining this result and the above theorem
we obtain that there exists the usual one to one Galois correspondence
between D, — stable subfields of k(G) containing k& and k-closed subgroups
of G.

Let k[G] denote the ring of regular (i.e., representative) functions
on G. Let <2 be the family of all (G,), — stable (or, equivalently, D, —
stable) subrings R of k[G] containing k and satisfying the following con-
dition if feR,gec R and f/g<ck[G] then f/ge R. Let & denote the
family of all k-closed subgroups H of G such that G/H is isomorphic to
an open subset of an affine variety.

THEOREM 2. The mappings H— k[G] N kK(G/H) and R — G(R) es-
tablish a Golois correspondence between € and <°.

Proof. He % then k[G] N k(G/H) e < and Gk[G] N k(G/H)) = H,
since k(G/H) is generated by k[G] N k(G/H).

Now, if Re =# then G(R)e &. In fact, if Re &, then k(R) is
(G,), — stable and so k(R) = k(G/G(R)). For every fe R, (G,).f generates
a finite dimensional k-vector space, Hence there exists a finitely generated
over k (G,), — stable subring R, of R such that ¥(R,) = k(R). Let W denote

s Cf. [1] p. 324,
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the affine variety that has K, as its coordinate ring. One can define a
structure of a G-homogeneaus space on W, since K[R,] is G, — stable.
Let 7 be the canonical mapping of G/G(R) into W. Then 7 commutes
with the action of G and is birational. Hence 7 is an isomorphism of
G/G(R) onto an open subset n(G/G(R)) of W.
Moreover, R = k[G] N k(G/G(R)), since Re 2 and k(R) = k(G|/G(R)).
This completes the proof of the theorem.

Added in Proof. The equivalence (1) & (2) of Theorem 1 in the
case where k is algebraically closed has been proved by E. Abe and T.
Kanno (Tohoku Math. Jour. 2nd series 11 (1959), 376-384).
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SIMPLE PATHS ON CONVEX POLYHEDRA

THOMAS A BROWN

1. Introduction. In problems of linear programming, one sometimes
wants to find all vertices of a given convex polyhedron. An algorithm
for finding all such vertices will often define a path which passes from
vertex to vertex along the edges of the polyhedron in question [1], and
thus it is natural to ask, as Balinski does in [2], whether or not one
can always find a path along the edges of a convex polyhedron which
visits each vertex once and only once. This question has been answered
in the negative independently by Grinbaum and Motzkin [5] and the
author [3]. The purpose of the present paper is to present a modifica-
tion of the results of [3], and answer certain questions which were
asked by Griinbaum and Motzkin.

Figure 1.

Received September 5, 1960 in revised form October 20, 1960.
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2. Path numbers and path lengths. For any graph G with n(G)
nodes we let m(G) denote the number of disjoint simple paths required
to cover all vertices of G, and let p(G) denote the maximum number
of nodes contained in a simple path on G. We call m(G) the ‘‘path
number’’ of G and p(G) the ‘“‘path length’’ of G. If G can be repre-
sented as the edges and vertices of a convex polyhedron in three-dimen-
sional space, we say that G is ‘‘3-polyhedral’’. Now let

p(n) = min{p(G): G is 3-polyhedral and »(G) = n}
m(n) = max{m(G): G is 3-polyhedral and n(G) = n} .

We will show, by means of a class of examples, that m(n) =
(n — 10)/3 and p(n) < (2n + 13)/3 for all n.

3. The graphs G,. Let the graph G,(k = 3) have 3k + 2 vertices,
which we will denote by a,b,, ¢;, d;, and e(? ranging from 1 to k). Let
the edges Of Gk be (a" bi): (G,Ci), (er di)! (6,6‘,-), (ci’ ci+1)’ (Ciy bi)r (C,-, di);
(d:, ¢;+1), and (b;, ¢;+;)). Thus a and e are of valence 2k, the ¢; are of
valence 8, and the b; and d; are of valence 3. See Figure 1 for a draw-
ing of G,. G, can be represented as a triangulation of the plane, and
it is easy to show by induction [4] that if #»(G) =4 and G can be

Figure 2.
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represented as a triangulation of the plane, then G can be represented
as the edges and vertices of a convex polyhedron in 3-space. Alterna-
tively, one could apply the ‘‘Fundamentalsatz der Konvexen Typen’’ of
E. Steinitz [6]. But in the case of G, it is really unnecessary to use
any such general results, for G, is clearly the graph of the polyhedron
obtained by appropriately truncating a bipyramid whose base is a regular
2k-gon (Figure 2 illustrates how the top half of a bipyramid should be
truncated in obtaining G,).

If we color a,c;, and e black and let b; and d; be white (where 4
ranges from 1 to k), then G, consists of n + 2 black nodes and 2n white
ones. Since each white node has only black neighbors, each simple path
in G, must contain at most one more white node than black. Thus at
least 2k — (k + 2) = k — 2 disjoint simple paths are required to visit
every node of G,. The following set of paths shows that the path-
number of G, is, in fact, exactly k — 2:

b, —e¢,—d,—we—d,—c,—mb,—a—b,—c,—d,

bj—ei—d; (1=4,--+,k).

Similarly, since no simple path can contain more than k + 2 black
vertices, it follows that no simple path can contain more than

(k+2) +(k+3)=2k+5

vertices. It is easy to construct simple paths containing exactly this
many vertices, and thus the path-length of G, is 2k + 5. Since n(G,) =
3k + 2, it follows that if % = 2(mod 3),

2n + 11

< = ' -=
p(n) = 3
m(n) = n—8

To get bounds for » = 1 (mod 3), consider the graph G; obtained
by omitting one white vertex from G,. For n = 0 (mod 3), consider the
graph Gi obtained by adjoining to G, a vertex connected to ¢, d;,, and

e. It follows that

2n + 13 2n + 13

p(n) = p(n) <
n = 1 (mod 3) n = 0(mod3) .

m(n) = m(n) = 222

n—10
3

Griinbaum and Motzkin asked if n(G) = p(G) provided all of the
faces of the polyhedron representing G were triangles, and our examples
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show that this is not the case. They further conjectured that
max, g -,m(G) - p(G) = n'+ for some v > 0 .

Our examples show that

max, g -,m(G) - p(G) = 1 —gn 130

Thus for any v <1 we can find an N, such that
max, g -,m(G)-p(G) > n'* for all n = N, .

Furthermore, this result is the best possible in a sense; for since
m(G) < n and p(@) < n, it follows that

max, -G p(G) < »* for all »n .

I want to thank Dr. Michel Balinski for drawing this subject to my
attention, and the referee for making me aware of the paper by Griinbaum
and Motzkin.
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SOME CONGRUENCES FOR THE BELL POLYNOMIMALS

L. CARLITZ

1. Let a, a,, @, - -+ denote indeterminates. The Bell polynomial
¢o.(a, &y, a;, «-+) may be defined by ¢, = 1 and

— cee) = n! Eiopke .
(11) ¢n - ¢n(a1! &, U3, ) - E kll(ll)klkzl(Z!)kz . (2432 SR

where the summation is over all nonnegative integers k; such that
k1+2k2+3k3+ see =M.,

For references see Bell [2] and Riordan [5, p. 86]. The general coefficient

!
1.2 Ay, koo, gy + 0 ) = L
(1.2) ( ) PAGD R AR

is integral; this is evident from the representation

L n! (k) (k)
Anlless Toz losy =+ 2) = k() (B! -+ BIED® BB

and the fact that the quotient

(rk)!
kl(rh)®

is integral [1, p. 57].
The coefficient A,(k,, k,, ks, -+ +) resembles the multinomial coefficient

by + oy + oy + o)
Fo Ty I -0y = Lo AR :
M, Fy o =2 2) Tey e, -« -

If p is a fixed prime it is known [3] that M(k, k,, k;, -++) is prime to
p if and only if

ki= > a;p’ 0 <a;<p),
by +ky+ kg + o0 =S ap’ 0=a,<p)

and
Za/,”':a/j (j:0,1,2,“').

It does not seem easy to find an analogous result for A,(k,k, &k, --+).
For some special results see § 3 below.

Received October 31, 1960
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Bell [2] showed that
(1.3) ¢ =0t +a, (mod p)

and also determined the residues (mod p) of ¢, Pprs b,1s. He also
obtained an expression for the residue of ¢,., as a determinant of order
r 4+ 1. Generalizing (1.3) we shall show first that

(1.4) Pr=al + a7 4 e oy (mod p)
and that
(1-5) ¢1m(a1’ O,y Ugy * » ') = ¢n(¢p! Qypy gy ** ') (mOd p)

for all n = 1. Note that on the right the first argument in ¢, is ¢, and
not a,.

2. From (1.1) we get the generating function

(2.1) gqu *exp(alt+a22 o >

3!

Indeed this may be taken as the definition of ¢,. Differentiating with
respect to ¢ we get

oo n oo tr
ﬂZ: ¢7L+1 t Z:‘O n' = rH1T o 9
so that
(2°2) ¢n+1 - é <:)r?/>¢n—ra{r+1 .
Since the binomial coefficient
<p,,.n> =0 (mod p)
unless p|r and
on\ _ [(n
(or) = (%) (mod )
it follows from (2.2) that
(2'3) ¢pn+1 = TZ::) <Z.L>¢p(n—r)apr+l (mod p) .

If for brevity we put

A(t) = ?:31 atfrl,
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so that
S, g0 L = exp AW®) ,
ni

n=0
it is easily seen by repeated differentiation and by (1.3) that

2.9) 3 burri = {(A0) + A (D)4 (mod 7) .

(By the statement

ﬂ

(mod m) ,

Sal-=5B
where A,, B, are polynomials with integral coefficients, is meant the
system of congruences

A, =B, (mod m) (n=0,1,2,...)).

Hurwitz [4, p.345] has proved the lemma that if a,,a,a, -+ are
arbitrary integers then

The proof holds without change when the a, are indeterminates. Since

n k
fﬂ) =0 (mod k!) .

’ - "
A'() = ”Z;o an+17“— ’

it follows easily from Hurwitz’s lemma that

(A'(t)r = (a + i‘, @ f—)p = af (mod
- 1 = 1 7l = m p) .
Thus (2.4) becomes
2 ¢n+ﬁ— = (ap + Z a'r+P ) 2 &
which yields
— (P o (N
(2.5) burs = @ + @)y + 5 (7)trrstas (mod 7).

In particular, for » =0, (2.5) reduces to Bell’s congruence (1.3).
Similarly

P = (A + @) + Ay = G, + @y,
¢p+2 = ¢p¢2 + 20.'p+10f1 + ap+2 ’
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and so on.

We remark that (2.5) is equivalent to Bell’s congruence involving a
determinant [2, p. 267, formula (6.5)]. Also for s=a, =a, = ..., (2.5)
reduces to
(2.5) @, ,(8) = (s? + s)a,(s) + s ; <f)arr(3)

= 0y14(8) + 8%a,(s) (mod p) ,
where {5, p. 76]
an(s) = ¢n($, S, ** ') = Z S(n7 k)sk
k
and S(n, k) denotes the Stirling number of the second kind. The con-

gruence (2.5)" is due to Touchard [6].
If in (2.5) we replace n by pn we get

(2.6) Pointn = Ppbunp + i_‘ll </,:,.,L>ap(r+l)¢p(n47) (mod p)

for all » =0,1,2,---. Thus ¢,, is congruent to a polynomial in ¢,
Oy, sy, +++ alone. Moreover, comparing (2.6) with (2.2), it is clear that

2.7 Pon = PulPyy Aoy Ay =+ +) (mod p) ,

so that we have proved (1.5).
Replacing % by pn in (2.7) we get

Dozn = PpulDpy Aoy Aapy <+ 2) = DuPh + Ay, gy, Az, <2 0)
In particular for n =1
b=+ ap=0af +a) +ay.
Again replacing n by pn we get
Poin = PulPh2 + s, Qapsy W3, =2 7)
so that in particular
Pps = Pl + Pps = ' + A + A + A

Continuing in this way we see that

(28) ¢p7'n = ¢n(¢p"‘7 azp"’ aspT’ b ') (mOd p)
and
(2.9) b =Pt oy =al +al e Ay (mod p) .

We have therefore proved (1.4) as well as the more general congruence
(2.8).
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Since

(}5220.'3-{-052,
¢3=a§+3a1a'2+a3,
¢, = aj + 6aia, + daa; 4 303 + «

it follows from (2.8) that

¢2pT = ¢);T + a2p" )
(2.10) ¢3pr = (]527' -+ 3¢pra2pr + aapr ,
bipr = ¢§ﬂ' + 64’?)"“21;"' + 4¢)p7’a3pr + 3“31,7‘ + Oy

and so on.
We note also that (2.3) implies

¢p"‘+1 = ¢'p7'a1 + ap"'-(-l ’
(211) ¢2p7‘+1 = ¢2p7'a1 + 2¢p7‘a’p7+1 + a’zp7‘+1 ’
Papris = Poprty + Sapryriy + BPyrQlpris + Aapryy .

3. By means of (1.5) we can obtain certain congruences for the
coefficient A(k., k,, ks, +++). Indeed by (1.1) and (1.3)

(3-1) ¢n(¢)py Ropy gy ** ')
= Z An(kly k29 ks; °e ')(a{’ + a’p)klaggalefg tee (mOd p) s

where the summation is over nonnegative k; such that
k,+ 2k, + 8k + «+- =m.
The right member of (3.1) is equal to

(3.2) S Ayl T, T, - ) 3 (B ) regadiady -
(k3) 7r=0

On the other hand
(3.3) Pon = 3, Al by, By <+ )0 < -

summed over

(3.4) hy +2h, +8hy + ++- = p, .
It follows from (1.5) that
Apn(hlv hZ! h3! ° ') = 0 (mOd p)

except possibly when

(3.5) ki =0 (G>1,p+7).
When this condition is satisfied (3.4) becomes
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h1+p(h’p+2h2p+ "’) = pn ;
consequently k, = pk, and (3.3) becomes
¢1m = Zl Azm(pkly 09 * 0, hp! M ‘)“fkla'zpag,?” oo

We have therefore proved the following result:

THEOREM 1. The coefficient A,,(h,, Ry, hs, =+ ) occurring in (3.8) s
certainly divisible by p unless (8.5) is satisfied and h, = pk,. If these
conditions are satisfied then

Ayl oy iy <=+ = (32) Aulles = gy iy P, ) (mod p) .
D
If we make use of (1.4) we obtain the following simpler

THEOREM 2. Let
hy +2h, + 8hy; + «++ ="
Then the coeffictent A,(hy, by, hsy +<+) ts divisible by D except when
hi=0 (@+35, hi=p,
for some j, in which case
Apr(hyy oy by +o0) =1 (mod p) .

Using (2.10) and (2.11) we can obtain additional results. For example
take

By + 2Ry + 8hy + -o0 = 2p" .

Then A, r(hy, hyy hsy -« +) is divisible by p unless (i) all 2, =0 (s # J),
h;=1o0r2; (i) all b, =0 (s #1,5), hy =h; =1. In case (i) A=1, in
case (ii) A =2 (mod p).

For n = 3p" the corresponding results are more complicated.

4, We turn now to the polynomial C,(a;, a,, o, -++), the cycle in-
dicator of the symmetric group [5, p. 68]:

4.1) C, =Cua, a, as, -++) = ¢, (a, &y, 2y, +++)

where the summation is over all nonnegative k; such that
ki + 2k, +8k,+ +--=mn.

It is convenient to define C, = 1.
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Put

!
_ Ko gy e ee) = L. )
4.2) Culley, Koy Foay <+ 2) el - < 15125235 -

the general coefficient of C,. Clearly c¢,(k, k., k,, --+) is integral and
indeed a multiple of A, (k, k,, ksy +++) .
From (4.1) we get the generating function

43 GO =3 Gl = exp(at + Lot + Taf ).
=0 ml 2 3

For brevity put

) = 3 -t

n=1

Differentiating (4.8) with respect to ¢ we get
G'(t) = C'(1)G() ,
that is

This implies

(4°4) CrH—l - %Faﬂ r+lc'r 12
so that
(4.5) Con = a,C, (mod n) .

By repeated differentiation of (4.3) we get (compare (2.4))

(4.6)

L6 = (Cty + CPOI0) (mod ) .

Now since

C'tH) =S awt’, CV(t)=3 (n+p— 1)!a,m% ,

it is clear that
C'eN =at, CPF) =—a, (mod p) ;

at the last step we have used Wilson’s theorem. Thus (4.6) becomes
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3 Gt = @ —a) 5, 0
so that
4.7 Crip = (@ — a,)C, (mod p) .
In particular we have
(4.8) C,=a} —«a, (mod p)
and
(4.9) Crirp = () — a,)C, (mod p)

We remark that for p = 3,5,7, (4.8) is in agreement with the explicit
values of C, given in [5, p. 69].
By (4.9) with n = 0 we find that the coefficient

crp(kly kz; ka; °* ') =0 (mOd p)

unless all k; except k, and k, vanish and %, is a multiple of p; in this
case we have

(4.10) @8, 0, +++, 0, Iy, +2) = (=1)2(]) (mod p) .
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EXTENSIONS OF HOMOMORPHISMS
PauL CiviN

1. Introduction. A multiplication was introduced by R. Arens[1][2]
into the second conjugate space B** of a Banach algebra, B, which
made B** into a Banach algebra. The algebra of the second conjugate
space was studied by Civin and Yood [3], with particular attention given
to the case where B was L(®), the group algebra of the locally compact
abelian group ®@. Among the results they noted was that the algebra
M(®) of finite regular Borel measures on & was isomorphic as an algebra
with a quotient algebra of L**(®). With $ also a locally compact abelian
group, P. J. Cohen showed [4, p. 220] that any homomorphism of L(®)
into M(9) has an extension which was a homomorphism of M(®) into M(9).

In §3 we discuss the extensions of homomorphisms defined on a
Banach algebra A into either the second conjugate algebra B** of a
Banach algebra B or certain of its quotient algebras. The result of
Cohen quoted above is included in Theorem 3.7 when & and 9 are
compact groups. In §4 we indicate, for compact 9, a class of homomor-
phisms from L(®) into M(D), which are induced by homomorphisms of
L(®) into L**(9).

2. Notation. The notation of Civin and Yood [3] is used throughout.
If A is a Banach algebra, A*, A**, ... denote the various conjugate
spaces of A, For f e A*, v € A, {f, ) ¢ A* is defined by {f, 2> (y) =
Sflxy),y € A. For F e A**, f € A%, [F, f] € A* is defined by [F, f](z) =
F(f, %)), ® € A. Also for F' e A**, G ¢ A** the multiplication FG is
defined in A** by FG(f) = F(G, f1), f € A*.

For some purposes, Arens [2] also considers a second multiplication
F.G defined for F' and G in A** in a manner similar to the above,
except that at the first stage, {f|x)> € A* is defined by {f|z> (y) = fyx),
fe A* xz,y € A. Arens calls the multiplication in A regular provided
that F.G = GF for all F,G € A**. C(learly, if A is commutative, then
A** is commutative if and only if the multiplication in A is regular.
The same notation as above, in terms of bilinear functionals, is used in
the sequel with respect to a multiplication in A**** which comes from
the first of the above multiplications in A**.

If 7 is the natural mapping of A into A**, we say that a mapping
@ defined on A** into a set & is an extension of a mapping p defined
on A into & if ¢(zx) = p(x) for x € A.

For any subset & in A*, we use the notation J* for {F' € A**|F(f) =
0, feg

Received December 12, 1960. This research was supported by the National Science
Foundation, grant NSF-G-14, 111.
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For a commutative Banach algebra A, we let 9(4) denote the closed
subspace of A* generated by the multiplicative linear functionals. If
A = L(®), the group algebra of the locally compact group &, we write
D(S) in place of P(L(B)).

3. Extension of homomorphisms. We first consider the possibility
of extending a bounded homomorphism of the Banach algebra A into
the Banach algebra B** to a w*-continuous homomorphism of A** into
B**, Throughout this section we adopt the notation m for the natural
mapping of A into A** and ¢ for the natural mapping of B* into B***.

3.1 THEOREM. Let A and B be Banach algebras. Let ¢ be a
bounded homomorphism of A into the center of B**. Then there is a
unique w*-continuous homomorphism ~r of A** into B** which 1s the
extension of .

Proof. Let f ¢ B** and z,y € A. Then {p*0 f, 2> (y) = ¢*0 f(xy) =
Pl (f) = 2we@)(f) = 2@ (e@), f]) = ¢*ole@),fI(y). Thus
{p*o f, wy = p*a[p(x), f]. Forany G e A**, [G, P*af](x) GKp*af, xD) =
Gp*alp(@), f1 = o***G([P(®), f1) = 0*P**GP()(f) = P)o*P**G(f) =
Pleo*p**G, fI) = o¢*alo*e**G, fl(x). Consequently, [G,9*sf] =
p*alo*p**G, f]. Therefore for any F e A**, F(G, 9*af]) =
F(e*olo*p**G, f]) = o*¢**F([c*9**G, f]). Hence o*¢**(FG)(f) =
FG(p*af) = F(G, p*af]) = a*o**F(lo*9**@G, f]) = 6*¢**Fo*p**G(f). Thus
0*®** is a homomorphism of A** into B**,.

Forx € A, and f € B*, ¢*¢**(zx)(f) =nx(p*of) = p*of(x) = af (p(x)) =
P(x)(f). Thus o*p**(zx) = ¢(x) and ¢*@** is an extension of @.

Let G ¢ A**, G, ¢ A** and suppose G = w*-limG,. Then for
any f € B*, lim 0*¢**G.(f) = im G (p*0f) = ¢*9**G(f), and so g*p**
is w*-continuous.

The assertion of uniqueness follows from the following.

3.2 LEMMA. Let A and B be Banach algebras, and let @ be any
bounded linear tramsformation of A into B**. Then c*@** is the only
w*-continuous extension of @ to a transformation of A** into B**,

Proof. That o*@** is a w-continuous extension was given above.
Suppose that 4 is a w*-continuous extension of @, so that J(zx) = o(x)
for all x ¢ A. Let G € A** and let {x,} be a net in A such that w*-lim
72, = G. Then for f ¢ B*, y(G)(f) = lim Y(zx,)f = lim @(x,)(f) = lim
P*of(x,) = lim 7mx(p*of) = G(p*of) = ¢*P**G(f). Hence (G) =
O.*Q**G-

If B is commutative with a regular multiplication, an alternative
proof of Theorem 3.1 may be given on the basis of the following lemma
and Theorem 6.1 of [3].
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3.3 LEmMMA. If Bis a commutative Banach algebra with a regular
multiplication then o* s a homomorphism of B**** into B**,

Proof. Since multiplication in B is regular, B** is [2] a commutative
algebra. Let U, V e B****. For f € B*, and F, G € B**, {of, F)(G) =
of(FG) = FG(f) = GF(f) = G(F,f)) = o|[F, fl(G), and therefore
Lof, F) = olF.f]. Also [V,of|(F) = V(df, F)) = V(o[F,f]) =
o*VIF, f1 = (e*V)F(f) = Fa*V(f) = F([o*V, f]) = ale*V, fI(F). Thus
[V,af] =o0olo*V, f]. Consequently a*(UV)(f) = UV(af) = UV, of])=
Uolo*V, f1) = a*U(lo*V, f]) = ¢*Us*V(f) and ¢* is a homomorphism
a claimed.

We note that it is impossible in general to conclude that the range
of the extension of @ is in the center of B** even though the range
of @ is in the center. For let A = B be a commutative algebra whose
multiplication is not regular, and let ® = x. Then the w*-continuous
extension of 7 is the identity map and B** is not commutative.

One further example is in order, to see that in general a bounded
homomorphim @ from A into B** does not admit a w*-continuous extension
as a homomorphism from A** into B**. For this purpose let A be the
group algebra of the integers, ®, and let B= A. Let t,, v ¢ ® be the
translation operator on A*, defined by %, f(a) = fla + v), fe A%, and «,
v e ®. Let e e A* correspond to the function identically one on . Let
S ={F e A**|F(t,f) = F(f), for all v ¢ ®, f e A*}. Then as noted in
formula (3.2) of [3],

(3.1) GF =G@eF, FeJ, G e A**,

In particular any F ¢ & with F(e) = 1 is an idempotent. As noted in
[3], ¥ is a two sided ideal in A** with only zero in common with the
center of A**. Since ® is a discrete group A has an identity and thus
[3, Lemma 5.4] A** has an identity E. Let F be a nonzero idempotent
in . Thus E — F'is also an idempotent. Let @(x) = na(E — F). Since
wA is in the center of A**, @o(x) is a homomorphism of A into A**.
If @ had a w*-continuous extension as a homomorphism, the extension
Yr would have the value (G)=GE — F), G ¢ A**. We now show
that v is not a homomorphism. As noted above F' is not in the center
of A**, so we may pick H € A** such that HF # FH. Also pick
G € A** such that G(e¢) = 1. Then y(GH) =GH(E — F) = GH — GHF =
GH — (GH)(e)F. Now e is a multiplicative linear functional on A, and
so by Lemma 3.6 of [3], (GH)(e) = G(¢)H(e) = H(e). Thus 4 (GH) =
GH—H(e)F’=GH — HF. On the other hand V/(G)Y(H) = (G—GF)(H—
HF)=(G — F)(H— H()F)=GH — FH— H(e)GF + H(e)F = GH — FH.
Since F'H + HF, \(GH) # y(G)y(H) and +r is not a homomorphism.
Before turning to other types of extensions we note one further
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item on the matter of w*-continuity of homomorphisms.

3.4 LEMMA. If A and B are Banach algebras and r is a bounded
homomorphism of A** into the center of B**, then there 1s a w*-continuous
homomorphism p of A** into B** such that r(nx) = p(zx) for x € A.

Proof. Since rw is a homomorphism of A into the center of B**,
we may take 0 = o™ **7** and apply Theorem 3.1.

Homomorphisms of A** into B** which are not w*-continuous exist,
as may be seen in the following example. Let & be an infinite compact
group and let A = B be the group algebra of &. Then by Lemma 3.8
of [3], A** has a right identity E which is not an identity. Define for
F e A**, yW(F) = EF. Then (F'G) = EFG = EFEG = y(F)(G).
However +r although bounded is not w*-continuous. For let G € A**
and let {x,} be a net such that w* —lim 7wz, = G. Then if 4 were
w*-continuous we would have Y(G) = lim yr(7x,) = lim Erx, = lim 1, =
G. However, y(G) = EG and EG # G for some G € A**,

We next turn to the question of extending homomorphisms from A
into certain quotient algebras of B** in the case in which both 4 and B
are commutative. We must first characterize the w*-closed ideals of a
second conjugate algebra.

3.5 LEMMA. Let A be a commutative Banach algebra. Let  be
a w*-closed subspace of A** and let J,={f e A*|F(f)=0,F ¢ }.
Then § ts an ideal of A** of and only if [G,f] ¢ J for all
G e 4%, f e Q..

Proof. Since & is w*-closed, X = &*t. Suppose & is an ideal of
A**, Forany FeJ,Ge A, and f ¢ &, FIG ¢ & and FG(f) = 0.
Therefore F'([G, f]) = 0 for all F e &, and so by definition [G, f] € J,.
Suppose next that the stated condition holds. Let F € ¥ and G ¢ A**,
For any f € 3, [@, f] € & and thus FG(f) = F([G, f]) =0. Consequently
FG e &+ =% and & is a right ideal. For any « ¢ 4, nx is in the
center of A*™*, hence if F' ¢ &, nxF = Frx ¢ . Since w4 is w*-dense
in A** and left multiplication is w*-continuous [2], we see that GF ¢ &
for any G € A**, and thus ¥ is an ideal of A**.

3.6 THEOREM. Let A and B be commutative Banach algebras. Let
I be a w*-closed ideal of B**. Suppose that ¢ is a bounded homomor-
phism of A into the center of B**|X. Then there exists a w*-closed
tdeal I of A and a homomorphism r of A**|Y' into B**|X such that
of @ s the natural embedding of A into A**, then y(wx + ) =
P(z), x € A.
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Proof. Since & is w*-closed, & = &t where J§, = {f € B*|F(f) =0
for all F ¢ §}. Let B be the linear space isometric isomorphism of J,*
onto B**/Y defined for F, ¢ & by BF, = F + ¥ where F' ¢ B** is an
arbitrary extension of F,. Define multiplication in J,* so that 8 (and
thus 8%) is an algebra isomorphism. For f ¢ J,, define ¢, f by @, f(x) =
B o) (f),» ¢ A. Then @,f is linear and since ¢ is bounded
e f@I=lell =]l [ fll, and ¢, fe A*.

Let &' be the w*-closure of the range of @, and let § = b
Clearly & is w*-closed. We next show that & is an ideal of 4**. Let
fe3. Then for any z,yeA,<p.f, 2)(y) = 9. flxy) = (B pay)f =
(B7'9(yx)) (f), since the range of ¢ is commutative. Suppose that ¢(y) =
U+ 3, and o(x) = V 4 & so that (yz) = UV +J. Then (B~ ¢(xy))(f) =
UV(f) = UV, f]). Since fe$,, and J = J,* isanideal, g =[V, fle
by Lemma 3.5. Hence (87'9(yx))(f) = Ulg) = (87'?(¥))(9) = ¢,9(y), for
all ye A. We therefore have {g.f, ) = @.g9 and so {p,.f, z>eg’, for
any x€A and fe.. Suppose next that ¢¢ S/, and xe 4. Say g =
w*-lim ¢, f, with f, € J,. Then for y € 4,<g, 2>(y) = g(xy) =lim ¢, f,(zy) =
lim<{p, f., x>(y), and hence g, 2> = w* — lim<{p, f., >. However, by
the above, {p, f., 2> e Iy, and &, is w*-closed so {g, x> e Y, for any ge I,
and z ¢ A.

Let Ge A** and let fe/. Let {x.,} be a net in A such that
w*-limzz, = G. Then [G, fl1() = GKf, 2)) = limzz,((f, D)) = lim
Sy 2)(®,) = lim f(xx,) = lim fx,x) = lim {f, 2, »(x) for x € A. Consequently
[G, f] = w* -lim {f,2.>, and is thus in &' as Y, is w*-closed. Hence, by
Lemma 3.5, ¥ = J,/* is a w*closed ideal of A**.

For Fe A**, define YF(f) = F(p,.f) for fe<. Clearly vF is a
bounded linear functional on g, and so has an extension of the same
norm which is an element of B**. We again denote the extension by
YF. Thus v is a bounded linear map from A** into B**. Note that if
F,—F,ey and fe$,, then ¥(F, — F)(f) = (F, — F)(®, /)0, and thus
YF, — vF,eQ3. Thus for any FeF, + &, |[vF, + ¥ = [7F + & <
lYFIl < [|F||ll@,|l and hence [|vF, + Il = | Fo + | [l @.l.

Define v on A**[Y’ by Y(F + ) = vF + &. By the above, we see
that + is a bounded linear mapping of A**/Y into B**/X.  Also for
reA, P(re + J) = ynx + J. Since vrx(f) = mu(p.f) = ¢, f(x) =
(B70(x)) (f) for feS, vz — B'p(x) €Y, and Y(zz + J)' = o(x).

Thus all that remains is to see that yr satisfies the required multi-
plicative property of a homomorphism. Let F,Ge A**. To see that
Y(FG)=+(F)y(G), we must show that for fe S, {(Y(F)7(G)—7(FG)}(f)=0.
Since {Y(F)7(G) — v(FO}(f) =v(F)([7G), f)—FG(2.f)=F(p,[vG), f1—
G, 9.f]), it suffices if we show that ¢,[v(G), f] —[G, #,f]=0. Let
%,y € A and suppose that @(x) = U + J, @(¥) = V + &, and thus ¢(zy) =
Plye)=VU+J. It follows that {p, f,2>() =2, flay)= VU(f) = V(U, f]).
Now, since fe ,,[U, f] € S, by Lemma 3.5. We therefore have<o. f,x)(y) =
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?.1U, flly) for all ye A, and consequently <9, f, ¢> = ¢,[U, f]. Thus
[G, 2. f1(x) = GKp. S, D) =G(@.[U, 1) = ¥G(U, f1= (vG)U(f). On the
other hand, @.[7G, f1(x)= U(vG, f])= UrG(f). Since under our hypothesis
Px) = U+ J is in the center of B**/J, UvG(f) = (vG)U(f) for fe$,
and we have the desired result.

It should be noted that the ideal ¥ in general is dependent on the
homomorphism . Two instances should be noted where this is not the
case. The first, when ' = 0, has already been treated in the discussion
of w*-continuous extensions of homomorphisms of A into the center of
B**, The other is the following.

3.7 THEOREM. Let A and B be commutative Banach algebras. Let
@ be a homomorphism of A into B**[DL(B). Then there is a homomor-
phism +r of A**|PH(B) such that (e + P) = p(x).

Proof. If in the proof of Theorem 3.6, &, = Y(B), it follows from
Lemma 3.6 of [3] that for any feS, which is a multiplicative linear
functional on B, that o.f is a multiplicative linear functional on A.
Hence, the norm closure of the range of @, is contained in 9(4). In
view of Lemma 3.6 of [3], the subspace Y+(A4) is a w*-closed ideal of
A** and if used in the role of ' affords the same conclusion. Note
that the homomorphism ¢ is not postulated to be bounded or with range
in the center of B**/Y*(B). This is legitimate since in view of Theorem
3.7 of [3], B**/9* is automatically commutative and semi-simple, and
thus @ is automatically bounded.

If A and B are the group algebras of the compact groups & and
9, then A**|/9(A) and B**/Y*(B) may be identified with the measure
algebras M(®) and M(9D) respectively by Theorem 3.18 of [3]. Thus
Theorem 3.7 includes in the case of compact groups, the result of
P. J. Cohen [4] quoted in the introduction.

4. Group algebras. Let & be a locally compact abelian group.
As in §3, we denote the group algebra of & by L(®) and the algebra of
finite regular Borel measures on & by M(®). For noj:ational purposes,
it is also convenient to identify the character group & of & with the
subset of L*(®) consisting of the nonzero multiplicttive linear functional
on L(®). The topology of & is then in agreement with the w*-topology
of & as a subset of L*(®).

Suppose that © is a locally compact abelian group. A continuous
homomorphism v of & into © is called nonsingular if for every Borel
set E is © with zero Haar measure, v(€) is of zero Haar measure in ®.

A complete characterization of all homomorphisms ¢ of L(®) into
M(9) was given by P. J. Cohen [4]. He utilized the function ¢, from
$ into {@5 0} defined by @, f(x) = ¢@)(f), € L(®), fe 9.
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4.1 THEOREM. (P.J. Cohen) Let & and $ be tocally compact abelian
groups, ¢ @ homomorphism of L(®) into M(D), P, the induced map of
O into, {®,0}. Then there are a finite number of sets &, which are

cosets of open subgroups of é, and continuous maps r;: @i—»@i, such
that

(4.1) Vi@ + y —2) = Pil@) + YY) — i)

for aoll x,y and z in K;,, with the jfollowing property: There is a
decomposition of O into the disjoint union of sets S;, each lying n
the Boolean ring generated by the sets &;, such that on each &;, ¢, is
either identically zero or agrees with some r;,, where &; C &,

Conversely, for any map of © into {@i, 0}, there is a homomorphism
of L(®) into M(9) which induces it. The map ¢ carries L(®) into
L(9) if and only if ¢, of every compact subset of & is compact.

Suppse that the sets &; are cosets of theAsubgroLJps ; of $. There
is a closed subgroup 9; of 9, 9; = {heD|(h, h) =1, hell}, such that U;
may be viewed [6, p. 130] as the character group of $/9;. Let a,¢ 8&;,
and define y,: U, — & by

(4.2) V' (x) = Prila; + ) — \Pi(ai); zel,.

The condition (4.1) on +; is _then equivalent to the assertion that ;' is
a homomorphism of U; into &, and +/ is continuousA along with ;. We
may also consider the dual homomorhism p;: & — U, = $/9;, defined dy

(4'3) (1["@'(%)7 g) = (xr Bz(g))y re uz = (’@/'@i)/\y g€ ®-

In view of the Cohen theorem, the homomorphism +» is determined by
the sets &, &; and the functions B;. The notation introduced above
will be used in the sequel without further comment. We also use the
notation o, as the mapping of L*() into L*(®) which is defined by

P f(@) = p(x) (f), v € L(®), fe L*(9), whenever p is a bounded linear map
of L(®) into L**(9).

4.2 LEMMA. Let ) be a nonsingular homomorphism of & into a
locally compact abelian group . Then N induces a homomorphism p
of I(®) into L**(R) such that for fe &, p(f) = fo.

Proof. For ke L*(®), define ), (k) by
Me(B) (@) = ko Ma), aeG,

We first must show that A\, is a well-defined bounded linear mapping of
L*(®) into L*(®). Suppose that K, andK, are two bounded Borel measur-
able functions on & such that k,(8) = k.(8) for almost all 8 in R Let

= {a e &k, (M) # ky(Ma))}. Then & = A(M(€)) and by the hypothesis
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of non-singularity & has measure zero in &. Since it is now immediate
that |h. (k) (@)] = ||E|| for almost all @ in &, it follows that ), is a
bounded linear map of L*(®) into L*(®).

For x e I(®), define o(x) on L*(&) by

@) (f) = MS@),  feL*(R).

Clearly p(x) e L**(R), and p is a bounded linear mapping from L(®) into
L**(®), and po,f = fo .

We next show that p satisfies the multiplicative condition for a
homomorphism. Let z,ye L(®) and fe L*(®). Then

Py (f) = N F(ay) = | 1@ | sl — £)dpda
= | s TV @)@ — B ds da
= [ |6 7O + BB (@) dg da.
For any ze L(®), and 8¢ &, it is easily seen [3] that {f,2>(8) =
|/ + 9)2(x) d7.  Therefore,
[00), F1@) = pW)KF, ) = ML, W) = | \<F D@y(@) da
= | <2 DM@WE@da = | |, For-r@)my@) dr da.

Since the order of integration may be reversed, we see that for ve R,

(o), £10) = | £ + MB)Y(B) dB. Hence,

P@P@) () = p@ (o), F) = Nlpw), F1@ = | Xlow), Fl(@(@) da
= [ [0, F10@)z(@ da = || M) + M ENw(@)e(@) dB dar

Since we thus have p(zy)(f) = p(x)oy)(f), for all feL*(K), p is a
homomorphism.

4.3 THEOREM. Let & and © be locally compact abelian groups,
with © compact. Let ¢ be a homomorphism of L(®) into M(D). Let
M(D) be regarded as L**(9)/D*(D), and let 6 be the natural mapping
of L**(D) onto L**(D)/D(D). Then if each homomorphism pB;, de-
termined by @, is nonsingular, there is a homomorphism p of L(®)
into L**(D) such that ¢ = 0 < p.

Proof. The justification for considering M(9) as L**(9)/D(D) is
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Theorem 3,18 of [3].

If (f)=0 for all fe&,;, define p;: L(S)— L**(9) by p,(x) =
0, xe L(©).

Suppose that &; C & C %, and @,(f) =Y (f) for fe®;. In view
of (4.1), the homomorphism +, of U; into G may be defined by (k) =
ik + k) — 4i(k;) for an arbitrary k; € &,;. The dual homomorphism B;
of & into /9, is by hypothesis nonsingular. Thus by Lemma 4.2, there
is a homomorphism ©," of L(G) into L**($/9;) such that p;,'(k) =k o 8;,
for ke (/D) = 1.

For fe L($/9;) define 0,(f) on $ by 0.)(8) = f(B + ;). Suppose
that the Haar measure on ; is normalized so that the measure of o,
is one. The formula relating integration on a group with that on a
quotient group shows that 6, is an isometric isomorphism of L($/9;)
into L(9). Thus by Theorem 6.1 of [3], 6,** is a homomorphism of
L**($/9,;) into L**(9). Also for any u e L(D/9;), and fe L*(9),

6.17w) = S0 = | AE0.w) (8) 4B
B Smi Sgi F(B +8:w) (B + v)dvdB,

where df3 is the Haar measure on 9/9;. Thus
077w = |, o w@ |, &8 +mavap,
i i

and we conclude that ¢,*f(8) = S B+ v)dy.

It is well known that in a group algebra the pointwise multiplication
by a character is an automorphism of the algebra. We next show that
the same situation prevails in the second conjugate algebra of a group
algebra. Let ¥ be a locally compact abelian group and define, for
ﬁeﬁ, 7og and 7og by pointwise multiplication on T if xe L(T) and
ge L*(X). Define 70G(g) =G(nog) for Ge L**(). Clearly the map
G —7no(r is a one-to-one bounded linear map of L**(T) onto itself.
Let F,GeL**(%) and ge L*(T¥). It remains for us to show that
(oF)(o6) (9) = 7o(FG)(9). Since (7oF)(7oG)(g) = 7o F([yoG, g]) =
F(ne[neG, g]), while no(FG)(g) = FG(nog) = F([G, neg)), it suffices if we
show that for all x e L(X), 9o[1-G, g](x)=[G, nog](x). Now 50[1eG, g](x) =
[7]°G, 9] (7]°90)=77°G(<g, 77090>)=G(7)0<g, 77°x>)! while [G, 77°Q](90)=G(<77°g, x>)v
so it suffices if we show that for all y € L(X), 9o{g, nox)(y) ={og, )(y).
Since 704g, Nox)(y) = g((7ox) (n°y)) = g(noxy) = Mog(xy) = {Yog, x)(y), the
original assertion follows.

Define the mapping p; by

(4.9 (&) = k00 **pi(i(k;)ow) , zeL(©®),
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where the dot at each occurrence indicatesAmultiplication of the appro-
priate functions. Since k; ¢ §,_), and +ri(k;) €®, p; is a composite of four
homomorphisms and is thus a homomorphism of L(®) and L**(D).
Suppose that fe&; C&;, so that ¢, f =+, f. Since &, is a coset of
U,, there is a ke, such that f=k;, + k. We use the same notation
for & when it is viewed as a member of (9/9;)". For any ze L(®),
Pixf (@) = pi@)(f) = k7100, 0i(rik:)ox) (f) = 0% pi(yri(k)ox) (k) =
Oi(ri(k;)ox)d,*(k). From the formula obtained earlier for 4,*, it is
immediate that 6,* simply transfers k from being viewed as a member
of I, C 9, to being viewed as a member of /%) < L*(9/9;). Thus

01 (@) = Pl o) (6) = | 0100) @yl (@e() da
= | (k, B@Y (k) @(@) da = | | (i), () (@)o(e) e,

by use of (4.3). Thus by use of the definition of +r; in terms of k,, we have
01of@) = | Gl + ) — e, @) (1), () dex

= | ri(), (@ dar = | | @ () da

We therefore conclude that p;.f(x) = @,f(x) for all xe L(®) or that
Pif = P f for fe&,.

Now, by the Cohen theorem, 9:> is the disjoint union of the sets &;.
The characteristic function of &; is then the Fourier transform of an
idempotent measure in M(9) = L**(9)/D (D). Let F; be any member
of L**(9) such that 6F; is the Fourier transform of the characteristic
function of &,. Then F? — F; e 9+(9). Now, Theorem 3.15 of [3] states
that 9+4(9) is the radical of L**(9), and therefore Theorem 2.3.9 of [5]
yields E; e L**(9) such that E? = E; and 0E; = 0F,.

We next show that if 4+ j, then E.FE; = 0 for any Fe L**(9).
Suppose that fe 3‘9, then Lemma 3.6 of [3] yields

EFE(f) = ENHF(NEL(S) .

For fe 9, E.(f) = F.(f) = 1(&,)(f), where x(&,) is the characteristic
function of &,. Thus since S; and S; are disjoint E,FE,(f) =0. Hence
E.FE; e %+, the radical of L**(9). For a compact group 9, the radical
is also the right annihilator of L**(9) by Theorem 3.5 of [3]. Thus
since K, = E?, E,FE; = E,(E,FE;) = 0.

Let p be defined on L(®) by

o) = Ep,(x)E, + +-- + E0(0)E,,  xeL(©),

where % =&, U -+ U®,. Clearly p is a bounded linear transformation
of L(®) into L**(9), and to see that o is a homomorphism it suffices if
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we show that E,0(xy)E; = E,0,(x)E,0(y)E;. The latter equality is
ertablished by an identical argument to that used above to show E,FE; =
0 for 7 # j. Thus p is a homomorphism of L(®) into L**(9).

To see that fop = ¢, it suffices if we show that o (f) =

(000).(f) for fe % Suppose that fe S,. Then for x € L(®), (0op),.(f)(x)=
000(x) (f) = E,p(x)EL(f), since E(f) = 0 if v # k. Thus (8o0),(f)(x) =
0.(2)(f) = 9. f as was shown earlier.
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ASYMPTOTIC DECAY OF SOLUTIONS OF
DIFFERENTIAL INEQUALITIES

PauL J. COHEN AND MILTON LEES'

1. Introduction. Let A be an operator in a Hilbert space H, and
let u(t), 0 <t < o be a strongly continuously differentiable function of
t with values in H such that Awu(f) is continuous. We say that u(¢f) has
property S if, as t — oo, it cannot vanish faster than every exponential,
unless identically zero. A sufficient condition for all solutions of the
abstract differential inequality

(1.1) |2 — au| = oy i, 0<t<w,

dt

to have property S was determined by P. D. Lax [1]. The required
condition is that there exists an infinite sequence of lines parallel to the
imaginary axis whose abcissae )\, tend to — o and on which the resolvent
operator (A — A)™* is uniformly bounded by some constant d~*, and that
sup ¢(t) < d.

In this paper we give another sufficient condition for all of the
solutions of (1.1) to have property S. We require that the operator A4
be symmetric, i.e., (Au, v) = (u, Av), for all v and v in the domain of
A, and that the function ¢(t) be continuous and in L?(0, «), for some
pin1<p <2 Actually, under these conditions, we prove a slightly
stronger result; namely, that there exist constants K > 0 and p¢ such
that the non-trivial solutions of (1.1) satisfy || w(t) || = Ke*.

The restriction in Lax’s result on the size of ¢(t) cannot be lessened
in general. For in the contrary case he constructed a solution of (1.1)
that, as t — oo, behaves like exp (—bt?), b being a positive linear function
of sup ¢(f). It is therefore natural to ask whether there exist solutions
of (1.1) which, as ¢ — oo, tend to zero faster than exp (—2At?), for every
A > 0. We shall show that, at least for symmetric operators, this is
only rossible for the trivial solution. More generally, we obtain results that
relate the rate of decay at infinity of the solutions of (1.1) to the asymp-
totic behavior of the function ¢(t).

In the final portion of this paper we derive similar results for solu-
tions of concrete parabolic differential inequalities. Results concerning
the asymptotic behavior of solutions of parabolic partial differential ine-
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qualities have been obtained recently by M. H. Protter [2].

2. The estimate from below. Throughout this paper A will denote
a symmetric operator in a Hilbert space H, and u(t) will denote a strongly
continuously differentiable function defined for 0 < ¢ < o« with values
in H such that Au(t) to continuous. We shall also assume that ¢(¢) is

a positive continuous function belonging to L?(0, ), for some p in the
interval 1 < p < 2.

THEOREM 1. If wu(t) is a solution of the abstract differential ine-
quality

2.1) |%ﬁ—mw<¢mnwi 0=t< o,

and w(0) #= 0, then there exists K > 0 and p such that
(2.2) lu(@) |l = Ke** , 0=t< oo.

The proof of Theorem 1 requires several lemmas concerning operators
in finite-dimensional Hilbert spaces. Let D be a symmetric operator in
a finite-dimensional Hilbert space F. Since F' is finite-dimensional and

D is symmetric, there is no loss of generality in assuming that D is in
diagonal form.

For any real number A and any vector » in F, denote by P,v the
projection of v onto the subspace of F' spanned by those eigenvectors of

D whose eigenvalues are not less than M. Since D is in diagonal form,
we have

(2.3) (DPyv, Pyv) = )M || P |]* .
Similarly, if we define R = v — P,v, then
(2.9) (DR, Rw) = M| Ry ||* .

Let o be an arbitrary positive number, and define a sequence {t,}

as follows: t, =0, and ¢,, for positive integers 7, is determined from
the relation

(25) | ey = o,

where ¢,., = o if
qu(v)dr/ <p.

LEMMA 1. Let v(t), 0 <t < o, be a differentiable function of t
with values in F such that
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(2.6) |%§—Dv|l§¢(tnlvn, 0t< .

Assume that v(0) + 0 and that

(2.7 (| Pyo(t,) || = || Raw(t,) ] .

Then there exists p, > 0 such that for all p < p,

(2.8) 2||Pwllz IR, bhsSt=t,,.
Proof. The set T'= {t: 2|| Rw || = || Pw]|} is closed, and the ine-

quality (2.8) obviously holds for each ¢ in 7. Thus it is sufficient to

prove (2.8) for ¢ in CT, the complement of 7. Since CT is an open set

of reals, it can be represented as a denumerable union of disjoint open

intervals. Therefore it suffices to prove (2.8) for a generic open interval,
a <t <b say, forming this union.

We have
(2.9) I Pow@) Il <2l Bw®) i, a<t<b,
and
(2.10) Il Pyv(a) || = || Byv(a) ]

Since the space F' is finite dimensional, D is a bounded operator (the
bound for D may depend on the dimension of F'), and this implies that
the inequality (2.6) can have only one solution with prescribed initial
value v(0). Thus #(¢) can never vanish since v(0) #= 0. It follows now
from (2.9) that R,»(t) is nonzero in a <t < b, so that we can form the
funection

_ P |
2.11 _ I Po® |
&1 7O = R P
Differentiating f(¢t), we find that
Af : dv

12 1B 5L = 4| Ry | Re( Pro, P2 )

. dv

— 4| P Re(Rw, Rh—&;> .

Since w(f) satisfies the inequality (2.6) and P, and R, are projections,
we can write

(2.13) PA% — D(Pw) + @,

and



1238 PAUL J. COHEN AND MILTON LEES

2.14) P2 — DRw) + Q.
dt
where
(2.15) Qi < ¢®) 101l (=1,2).

It follows from (2.13) and (2.15) that

Re( P, P32 = (P, DPo) — 90 0] -

Applying (2.3) to the first term on the right, we obtain

(2.16) Re(Po, P22 ) 2 M| P |l = 90 [0 [

Similarly, we have

(2.17) Re( B, B 32) <\ | B | + (t) | 0|1

Entering the estimates (2.16) and (2.17) into the right side of (2.12),
we find that

2.18) | By ll4% > —8¢(t) | v || .

Here we have made use of the inequalities || Pw || = ||v]|| and || R\ || <
lvl]l. It follows from (2.9) that

Nv|[P=|Pwlf+|Bw|f =5 Rv] .
This inequality and (2.18) imply that

af - _
ar = —200¢(%) ,
and therefore
(219) £(8) = £(@) — 200] 9)dr) -

Now, according to (2.10) and (2.11), f(a) = 1. Therefore if we make
use of (2.5), we conclude from (2.19) that

NP~ 1 _ 9000 = 3,
I Bw@) [ = o=t

provided that 8000, = 3. This completes the proof of the lemma.

LEMMA 2. Let v(t) satisfy the conditions of Lemma 1. If
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(2.20) T =x— 20000, —t,),
then, for all p < 0,
(2.21) | Po(tas) | = [| Bevasa) 1] -

Proof. First, assume that

(2.22) | Po@) || = 2[| Ro@) 1], b o<t <t
Setting

_ 1 Pv@
2.23 b= I Po® 1P
(2.23) g(?) TR
we obtain

4 dg _ . d_’l)
(2.24) 1B l'—- = 41| B ] Re(Pw, P >
2 dv
— 4| Po | Be( R, R"d—t> .

As in the proof of Lemma 1, we have
dv 2 2
(2.25) Re(Roo, RAY) <z || Rov | + $(0) | v |

Inserting the estimates (2.16) and (2.25) into the right side of (2.24), we
conclude that

@26 || Rw w% > 400 — ) || R || P | — 8¢(t) || v | .

Since | P || = || Py ||, (2.22) implies that || v || = 5| R.v ||, which, when
inserted into (2.21), yields

dg o || PP
2.27 =2 = 20004(t, 4, — t,) U2l — 2004(%) .
(2.20) 2 200060 — 107 P — 200900)
Here we have employed the inequality || Rv || = || Rw]||. By Lemma 1,

4||Pwl|*= || Rw |’ so that we obtain from (2.27)

(2.28) j_-‘t’ > 2000(tnss — t,)"* — 2004(t) .

Finally, when we integrate (2.28) between ¢, and ¢,., and apply (2.7)
and (2.23) to the result, we obtain the desired inequality (2.21).

Now assume that there is a value of ¢ <¢,., such that || P,v|| > 2|| R,v||-
Let ¢ be the last such value of t. If ¢ =t,,, there is nothing to prove,
so we assume that ¢ < t,.,. In this situation we have that



1240 PAUL J. COHEN AND MILTON LEES

IPo@) Il = 2| Ro@) ], t<t<tu,

and
| Po(t) || z 2| Ro(t) ] .
The reasoning emplyed to prove Lemma 1 can now be used to establish
the inequality
111 _
1P0(t) | = 551 Rt I, E<t=to,,

which certainly implies (2.21).
From the sequence {t,} we form the series

M3

g = (tn+1 - tn)_l .

n

il

0

Our assumption that ¢(t) belongs to L?(0, o), for some p in the interval
1 < p <2, implies that ¢ converges. This is clear when p = 1 since in
this case the series has only a finite number of nonzero terms. Assume
that 1 < p < 2. Applying Holder’s inequality to (2.5), we obtain the
nequality

o= ([ oman) . — e,

n

where p~* 4+ ¢7' = 1. Therefore
1 tpt1 a/p
ton =t = 07 ([0 ean)”

which, since ¢ = p, implies that ¢ converges.

Also, we note here that our assumption that ¢(¢) belongs to L?(0, «),
for some p in the interval 1 < p < 2, implies that there exist constants
C, and C, such that

(2.29) [ #ndn = ct + C,.
From now on we shall assume that o has the fixed value p,.

LEMMA 3. Let v(t) satisfy the conditions of Lemma 1. If

(2.30) Il Pyv(0) || = || Ryw(0) ],
then
(2.31) [[v(@) || = 3¢~ v(0) || e** , 0=t< o,

where pt =\ — 2000,0 — 3C,.

Proof. Set )\, =» — 2000,0. We assert that



ASYMPTOTIC DECAY OF SOLUTIONS OF DIFFERENTIAL INEQUALITIES 1241

(2.32) 2|1 Pyp@®) 1l = [ Ryo@) ] 0<t< o,

Let ¢t be arbitrary. Then for some =, {, <t =<t,,,. It follows from
(2.30), Lemma 1 and Lemma 2 that

(2.33) 2| Po@) || =z || RBo@) ], by St =St
Hence the inequality
Ppllzl|Pollz 3Rl =3 Ryl

implies (2.32) for this particular value of %.
It follows from (2.32) that

(2.34) To@) Il = 311 Pyv@®) 1] 0<t< .

Set z(t) = P,v(t). Then by (2.34) z(f) is a solution of the differential
inequality

(2.35) |2 — pz|| = 3801121, 0<i< .

Differentiating ||z ||’, and taking (2.35) into account, we get

(2.36) —C;l—t 2| = 2Re<z, —3%) = 2Re(z, Dz) — 6¢(t) || 2 ||* .

Since z(t) = P, v(t), it follows from (2.3) and (2.36) that

(2.37) OV EY
Consequently, if we integrate (2.37), we obtain

2
o(e) [ = 11 2(6) [ = 11 20) [ exo [ 2] 0w — 36GDdn) | 2 e[| 0(0) e,
which is equivalent to (2.31).
To pass from the finite to the infinite dimentional case, we have to
show that the cut-off parameter ) can be selected independently of the
dimension of the space F.

LEmMMA 4. Let v(t) satisfy the conditions of Lemma 1. Then there
exists a N, depending only on || v(0) ||, ||vQ) || and ¢(t), such that
(2.33) [Py |l = [| Row@) || .

Proof. Define w(t) = v(1 —t). Then w(¢) is a solution of the dif-
ferential inequality
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(2.39) “fl—@t‘wpw”gat)uwu, 0<t< oo,

If for some M
| Py || < || By |l

then
(2.40) 1 P_xw(0) || > || B_,w(0) ]| .
Applying Lemma 3 to (2.39) and (2.40), we find that

1o(0) || = Il w) || = 4% [ w(0) || €™ ,
where

= —)» — 200p,06 — 3C, .

Hence
2.41) A,glog[éﬁ%ﬁg?ﬁL ] 2000, — 3C, .

Thus if )\ is chosen smaller than the right side of (2.41), then the desired
inequality (2.38) holds.

3. Proof of Theorem 1. Let % be an arbitrary positive integer.
Using the continuity of the derivative of v(f), one can show that for
any ¢ > 0 there exists a 8 = (¢, k) > 0 such that

3.1) u(t) — ““*m““@H<e

|

for [h| <8 and |t]| £ k.
We subdivide the interval 0 < ¢ < k into equal subintervals of length

4, where 4 < 8, and
(3.2) | Au(t + h) — Au) || < e,

for |h| < 4. We assume that the point ¢ =1 is included in the sub-
division.

Let G be the subspace of H generated by u(0), u(4), u(24), - - -, u(k).
Let A, = EA, where E is the projection of H onto the subspace G.
Clearly, the operator A, restricted to the subspace G is symmetriec.

For any subdivision point 74, we have

@3 | MDD —MID _ gt = (1+ 5 )eED a1,

where M is the infimum of ¢(¢) || u(t) || for 0 < ¢ < k. Let u,(t) be equal



ASYMPTOTIC DECAY OF SOLUTIONS OF DIFFERENTIAL INEQUALITIES 1243

to u(t) at the subdivision points and be linear in between. Note that
u,(t) has its values in the finite-dimensional subspace G of H.
It follows from (3.2) and (3.3) that

G4 1 Dauft) — Agu0) || = (1 + 2 )a(i) ) |

where D, denotes right differentiation, and j4 <t < (5 + 1)4. By tak-
ing 4 sufficiently small and taking into account the continuity of ¢(2),
Wwe obtain

(3.5) [| Dyuy — Aguto || = 260) || wo || 0st=k.
By Lemma 4, there is a x = X(|| %(0) ||, || (1) ||, 24(¢)) such that
(3.6) || Pruo(1) || = || Bruo(1) ||

Now we observe that the lemmas of the preceding section remain
valid when v(t) has a right derivative everywhere and is continuously
differentiable, except at a finite number of points. Once this observation
is made, we can conclude from (3.5), (8.6) and Lemma 3 that

a1l 2 & 11 w0) | exp | {"wdn] 1<isk,
where
Y()) = X — 4000,0 — 64(7) .
Hence
| ut) || = Ke, 1<t<k.
Letting 4 — 0, we conclude that
lu(t) || = Ke*, 1<t<k,

which is easily seen to imply the inequality (2.2) of Theorem 1.

In the proof of Theorem 1 we tacitly assumed that «(¢) never vanishes.
The proof of this fact is easy. For let ¢, denote the first value of ¢ for
which u(t) is zero. Since u(0) #= 0, t, > 0. According to Theorem 1, we
have || u(t) || = Ke*, for 0 < t < t,, which shows that u(f) cannot possibly
vanish at ¢,.

4. An A priori inequality. In this section we derive an a priori
inequality for a class of functions with a prescribed rate of decay at
infinity.

LEMMA 5. Let y(t) belong to L*0, a), for every a >0, and define

t
0

4.1) B(t) = xg (t — Py .
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Let U(t) be a strongly continuously differentiable mapping from 0 <

t < o with values in H such that AU(t) is continuous. If the support
of U(t) is contained in 0 < e <t < oo and

(4.2) lim | U®) |l expB(t) =0,
Jor every x> 0, then

(4.3) M ez o) || U@ rdt = G

aU 2
—— — A
l 7 U ll dt ,
provided that the left side is finite.

Proof. We may assume that U(¢) vanishes for all sufficiently large
values of t. For in the general case we can approximate U by the se-
quence U,(t) = &,@)U(t), &,.(t) being a C= function equal to one for
t<mn, zero for t=n+1and 0=¢, =<1 in between. As n— o, the
inequality (4.8) for U, goes over into (4.3) for U.

Now consider the integral

I= wezﬁ(t)

lﬂ _ AUszt .
dt
If we make the transformation U(t) = e #®V(¢), then

(4.4) I= g:

AV _ Ay — d—BVH2dt .
at at

It follows from the elementary inequality
(a — by = —2ab
and (4.4) that

(4.5) I= —2S Re< ‘Z‘t’ ‘;f v+ Av)d

We have

R P I
Sy = oL

The first integral on the right vanishes since V(f) has compact support.
Hence

(4.7) —25 Re< ‘Zf ‘ftf )dt - )»S:ezﬁ‘“a,lﬂ(t) | U@) |de .
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In view of (4.5) and (4.7) it is sufficient to prove that

(4.8) S:Re<%tK, AV )it =0.

Taking into account the symmetry of A, we have that

(4.9) (%,AV) :-&%—(V,AV)—<—ddTV,AV),

the bar denoting complex conjugation. Therefore

zRe(%tK,Av) - ;T(V,AV) ,

from which (4.8) follows directly by integration. This completes the
proof of the lemma.

5. A special instance of Theorem 1. As a first application of
Lemma 5, we give a direct proof of a slightly weaker version of Theorem
1 in the case that ¢(¢) belongs to L*0, ).

THEOREM 2. Let u(t) be a solution of the abstract differential in-
equality

5.1) l du

%—Auugcﬁ(t)llufl, 0=<t< o,

where ¢(t) belongs to L0, «). If
(5.2) }im lu(t)]| e =0

Sfor every N > 0, then w has property S, i.e., it vanishes identically for
05t < oo,

Proof. Since ¢ € L*(0, =), it follows from (4.1) that (we take ¥ = ¢)
Bt = M| oy .

Therefore (5.2) implies that

(5.3) lim [ u(t) || exp B(t) = 0

for every A > 0. Let {(t) be a C= function equal to one for 0 < 2 < ¢,
equal to zero for 0 = ¢ < cand 0 < ¢ < 1in between. Set U(t) = &(t)u(z).
Because of (5.3) and the fact that

§:¢2(t)e2ﬁ(t) ” U(t) Ilzdt < o ,
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all of the conditions of Lemma 5 are met, and therefore

M @00 (| (e = |ene

lﬂ - AU”zdt
dt

+ | O lutt) Irae .
If » = 2 then

© * alu
2(4)p28(0) 2 Jt < 2B(¢)
64 [ Fee ue it < [Tero | L0

— AU lIZdt .
Using the monotonic character of B(t), we get from (5.5) that
65 | #0lut) rds = explsee) — oo | LT~ avfar.
Since B(2¢) — B(8s) — — o as N — oo, it follows from (5.5) that
[ lue Pt = 0.
Therefore u(t) =0 for ¢ = 3¢c. Since ¢ is arbitrary, u(t) vanishes identi-
cally for 0 =t < o,

In much the same way we can prove the following result for bounded

.

THEOREM 3. Let u(t) be a solution of the abstract differential im-
equality (5.1), where ¢(t) < const. If

lim || u(t) || exp (\t*) = 0

for every n\ > 0, then u(t) vanishes tdentically.
More generally, we have the

THEOREM 4. Let u(t) be a solution of the abstract differential im-
equality (5.1). Assume that ¢(t) belong to L*0, a) for every a > 0, and

@) = exp 1] ¢ — e,

Jor all sufficiently large t and ). If

lim [[u®)|lexpB(t) =0,
for every N > 0, then u(t) vanishes identically.

6. Parabolic differential inequalities. Let G be a bounded domain
in the real Euclidean n-space E". For two real functions w(x) and v(x)
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belonging to L*G) we denote by
(w, v) = Lu(m)v(x)dx
their real scalar product and by ||« |, = (#, #)"'* the associated norm.

Let H{(G) denote the closure of C;°(G), the C~ functions on G with com-
pact support in G, relative to the norm

2 2 a
tulp = (1@ + 5| 2
Consider the differential operator
a iJ
(6.1) L _uzl o, <a (x)axj> '

where a”(x) = a’(x). We assume that there exist positive constants m
and M such that, for all # in G' and all real vectors & = (,,&,, « -+, &),

(6.2) mB = D @G = ML

Thus L is a real elliptic differential operator.
If we H(G) we say that Lu e L¥G) when {a®’(x)}(0u/0x;) is differen-
tiable with respect to x; (in the sense of distributions) and

] 2
5 (@@ 5 ) € 146
It is not difficult to show that

(6.3) (Lu, v) = (u, L) ,

for v and v in HXG) and Lu and Lv in L*(G), the common value of (6.3)
is

(6.4) (Lu,v):—g<2a 66“ ;’;‘)x

Thus the operator L is formally self-adjoint.
Let I'(t) = exp [vg 1,&2(7])d77], and introduce the function
0

(6.5) ot) = | 10| T ©pdedy .

The function ¢(t) is non-decreasing provided that ¥ and A\ are nonnegative.
We also note that

(6.6) rzdt_[r—l ‘jl‘Z] — At
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If the functions ¢(¢f) and +(¢) e L*0, «), there exists a constant I,
depending on 7, such that

6.7) o) =Nt .

We introduce the norm

ou

Tl = Sag ox;

2
dx ,

which is equivalent to the norm defined above for H{(G).

LEMMA 6. Let ¢(t) and +(t) belong to L*0, ). Let Z(t) be a
strongly continuously differentiable mapping from 0=t < o with
values in HXG) such that LZ(t)e L*(G) is continuous. If the support
of Z(t) is contained in 0 < t, =t < o and

(6.8) lim || Z(t) [Le = 0,

for every \ > 0, then

“ —1 20 ()
SO (e

' Lz %% szt > xrl’—l(t)e‘“"%*"(t) | Z |t
6.9) o b 0
+ mvSo (e oyt || Z |ldt

Proof. The integrals on the right side of (6.9) are finite because
of (6.7) and (6.8). As in Lemma 5, we may assume that Z(t) is identi-
cally zero for all sufficiently large values of . Set Z(t) — e V(t). Then
if J denotes the integral on the left side of (6.9), we have

(6.10) J= —28 1(t)(dV LV + V‘é")d

Integrating by parts and using the fact that V(¢) has compact support,
we find that

6.11) —25 1(t)<dV ydo

T 1y 2o 2 2
p )dt_xsof (t)e=O$ () || Z |dt .

In proving (6.11) we have made use of (6.6).
Since L is real and symmetric, we have

o[ ( LY - [t
(6.12) 2S0r (t)( L ,Lv)dt = —{r L wv.Lvu.
Another integration by parts yields

(6.13) —ZS:l’—l(t)(%—, Lv)dt = —«yS:r—l(t)«pZ(t)( V,LV)dt .
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In view of (6.2) and (6.4) we have (V,LV) < —m|| V||, so that (6.13)
implies that

o
0

o R av -1 20 (2) ]2 2
619 —2(r oeLe LV )at 2 m | T@e w1 Z it
Combining (6.10), (6.11) and (6.14), we get (6.9).

THEOREM 5. Let ¢(t) and (t) belong to L*0, «). Let u(t) be a
strongly continuously differentiable function from 0 <t < o with values
n HAG) such that Lu(t) e L(G) is continuous. If u(t) satisfies the dif-
Sferential inequality

(6.5) |2 = Sr[ = vO1ut s voIur, 0si<e,
and
lim [ u(t) [, = 0.,

for every » > 0, then u vanishes identically.

Theorem 5 follows from Lemma 6 in much the same way that Theorem
2 follows from Lemma 5, and for this reason the proof will be omitted.

If in Theorem 5 we only assume that ¢(¢) is bounded, then we can
deduce from Lemma 6 that only the trivial solution of (6.15) can vanish
faster than exp (—t?), for every » > 0.
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SELF-INTERSECTION OF A SPHERE ON A
COMPLEX QUADRIC

I. FAry

1. The real part S™ of a quadric V in complex, affine (n + 1)-space
is a sphere. The self-intersection of S® in V is the same as the self-
intersection of a ‘‘vanishing ecycle,”” introduced by Lefschetz, and plays
a certain role in [4], [5]. We will compute here this self-intersection
number, using elementary tools.

Let us introduce some notations. P,.; denotes the complex projective
space of algebraic dimension n + 1, hence of topological dimension

dmP,;;, =2n+ 2.

To each projective sub-space P, of P,., a positive orientation can be
given, thus it can be considered as a cycle p,,. Then we agree that

1) if k+1=n+1, then (s, py) =1 in P,

be true for the intersection numbers of cycles. This is the usual con-
vention, the one in [1], for example; in [7] another convention is
adopted.

Let 2, ---, #,, be a fixed system of projective coordinates in P,.,.
Then

(2) Qn:w%—i—"'"{“wi_{_zzo

is a non-singular quadric; dim @, = 2n. The points of P,., whose last
coordinate is non-zero form a complex affine space C,,,, and

V: Q'n, n C'n+1 = [x: T ean wn+2 i O]

is a non-singular affine quadric. If zeC,.,, we denote by z, «++, 2,.,
those coordinates for which z,,, =4 where ¢*= —1; thus z, +++, 2,1,
are affine coordinates in C,.,. Then

Vizdl+ oo +200=1 (€ Cpra)
St 22 eee 422, =1,2 474, 2,4, Teals
are the equations of an affine quadric and its real part respectively;
this real part S™ is, of course, a sphere. We consider S® with an
arbitrarily chosen and fixed orientation as a cycle s. It is well known
(see, for example, [2], p. 35, (g)) that
Received September 12, 1960.
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(3) the homology class s, of the cycle whose carrier is S*, generates
H(V; Z),

where Z denotes the ring of integers.
As dim V =2 dim S®, the self intersection number

(4) (s,8) =(S"8"), (in V),

of s in V, is well defined; we may write (S”, S*) for this self intersec-
tion number, because (s,s) does not depend on the orientation of S*,
used in (3).

2. M. F. Atiyah communicated to me his computation of the in-
tersection number (4) for n = 2, showing that the sign in [2], p. 35
(10) is not the right one.! The determination of the sign of (4) given
below is a generalization to n dimensions of the construction of Atiyah.
In [2] we used only the fact that (4) is not zero, if % is even, hence other
results of that paper are not invalidated by the false sign in (10), p. 35. The
mistaken sign is ‘‘classical.”” Wrong sign appears in [4], p. 93, Théoréme
sur les I"y_, de C,, I, [5] on top of p. 16, [8], p. 102, (3), and [7], p. 104,
Theorem 45 (although in [7] not the convention (1) is used, the alter-
nation of the sign in question is independent of any convention). After
the completion of the present paper [6] appeared, where the classical
mistake in sign is corrected (see (11.3) on p. 161). The results of [1]
are in agreement with the sign (5) below.

3. Using the notations and conventions introduced above, we will
prove the following theorem.

THEOREM. Let s be the homology class of the oriented sphere S
m H,(Q.; Z) where n =2h is even. Let us denote by (s,s) the self-
intersection number of s computed with the convention (1). Then

-2, if h-—-% is odd ;
(5) (s,8) =

+2, if h=121’- 18 even ;

holds true.

1 ] take the opportunity to correct another mistake in [2], also noticed by Atiyah. In
Proposition 2, p. 27, we have to suppose that the singularity in question is conical. In [2],
Proposition 2 is stated without proof; Atiyah gave an example showing that the statement
does not hold true, if the singularity is mot comical, and gave a proof with the correct
hypothesis. Proposition 2 is used in [2] only in connection with conical singularities; thus
other results of [2] are not affected by the incomplete formulation of that Proposition.
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4. We prepare the proof of this theorem; for the first part of
the proof, see [1]. (See also [3], pp. 230-232.) In order to describe
easily linear sub-spaces of @,, we introduce new projective coordinates
in P,

I T TR A @=-1).
Vj = Lyjog — o5
Let us notice that
(6) u; = v; =0 if and only if ®,;-, = 2,; =0
The equation of @, is
Uy¥y + 2o+ UpiaVnea =0,

in the new coordinates.
We consider the following linear sub-spaces of @,:

) A: u;=0, j=1,+++,h, b +1;

(®) B: u;=0, j=1,-+,h; vu=0;
©)] C: v;,=0, =1, +1.

Let us remark that,

10) ANC=¢, BN C is just one point,
by (6).

LEMMA 1. Let X be one of the projective spaces A, B, C. If, in
the system of equations defining X, we replace an even number of
equations u; = 0 by the corresponding v; = 0, or vice versa, we define
a mew linear sub-space of Q, belonging to the same continuous system
as X. Similarly, without leaving the continuous system containing
B, we may replace u, =0, v,,, =0 in 8) by v, =0 and u,,, =0.

Proof. Let us suppose that we want to replace v, =0, »,=0 in
) by 4, =0, u, = 0. Let us consider the linear space

av, + Bu, =0,

V3 =0,¢0,0,.,=0,
_av1+3wz:0>

defined for every (a, B8) + (0,0). This projective space is clearly con-
tained in @,. For (1,0) we have C and for (0,1) the desired replace-
ment. The last statement of the lemma is proved similarly using the system

Uy, + Bup =0,
—Bv, + AV =0 .
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Let us consider now A4, B, C as cycles of @,, and let us denote by
@, b, ¢ their respective homology classes in H,(Q,; Z).

LEMMA 2. If h is odd, them ¢ =a. If h is even, then ¢ = b.

Proof. If h is odd, the 2 + 1 equations of (9) can be replaced by
the equations u; =0, =1, «-+, b + 1. Hence A and C belong to the
same continuous system. If % is even, we can replace the first A
equations defining C by w; =0, j =1, ---, h. Hence C and B belong
to the same continuous system.

LEMMA 3. As to the intersection numbers, we have

(11) 1f h 1s odd, then (a,a) =0, (6,0) =0, (a,0) =1,
(12) if h is even, then (a,a) =1, (b,b) =1, (a,b) =0.

Proof. (1) Let & be odd. By Lemma 2 and the first equation of
(10), we have (a,a) = 0. Similarly, the second equation of (10) and
Lemma 2 prove (a,b) =1. In order to prove (b, 5) = 0, we consider
the space

B': v;=0, j=1,«-,h, %, =0.

We claim that B and B’ are in the same continuous system. In order
to prove this statement, we use Lemma 1 twice. First, we replace the
last two equations of (8) by v, =0, and #,.; =0. Second, in the
system obtained by the first step, we replace the first A — 1 equations
by v; =0. Now B N B’ = ¢, and this proves (b, b) = 0.

(2) Let h be even. The proof of (12) is similar to the previous.
one. The last two equations of (12) are immediate from (10) and
Lemma 2. Using Lemma 1, we can find presently a B, such that
B N B"” be just one point.

LemMmMA 4. Using the previous motations s, a, b, for homology
classes,
(13) s=%(@—0),

the sign depending on the chosen orientation of S™.

Proof. Let us denote by I the hyperplane «,i, = 0, Then, clearly,.
AnI=BnNnI.
We denote by J this intersection (J/ = A N B). Let us consider a pencil
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of k-planes, 2k + dim A =2n 4+ 2, in general position. If N is a neighbor-
hood of J in B, the k-planes of the pencil project N into a neighborhood M
of J in A. Given now a Riemann metric of P,,,, if N is a small
enough neighborhood of J, the corresponding points of N, M determine
unique geodesic segments. We consider now B as a cycle, whose sim-
plexes are so small that those intersecting J are contained in N, Using
the geodesic segments introduced above which start at points of the
simplexes of B intersecting J, it is easy to construct a chain E of Q,,
such that

(14) A — B+ 6E

be a sum of simplexes of V= Q, — I. Hence, s being a generator of
H,(V; Z), (14) will be homologous to a multiple of s. Thusa — b = ms
for some integer m. Now (¢ —b,a) =m(s,a) is +1 by Lemma 3,
hence m = *1.

Proof of the Theorem. (1) Let us suppose that % is odd. We
use (13) and (11): (s,s) = (@ —b,a — b) = (a, a) — (b, a) — (a, b) + (b, b)
= —0,a) — (a,b) = —2.

(2) Let us suppose that h is even. This time we use (12): (s, s)
= (@, a) + (b, b) = +2. Hence the proof of (5) is complete.
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GROUPS WHICH HAVE A FAITHFUL REPRESENTATION
OF DEGREE LESS THAN (p — 1/2)

WALTER FEIT AND JOHN G. THOMPSON

1. Introduction. Let G be a finite group which has a faithful
representation over the complex numbers of degree n. H. F. Blichfeldt
has shown that if p is a prime such that p > (2n + 1)(n — 1), then the
Sylow p-group of G is an abelian normal subgroup of G [1]. The pur-
pose of this paper is to prove the following refinement of Blichfeldt’s
result.

THEOREM 1. Let p be a prime. If the finite group G has a faithful
representation of degree n over the complex numbers and if p>2n + 1,
then the Sylow p-subgroup of G is an abelian mormal subgroup of G.

Using the powerful methods of the theory of modular characters
which he developed, R. Brauer was able to prove Theorem 1 in case p*
does not divide the order of G [2]. In case G is a solvable group,
N. Ito proved Theorem 1 [4]. We will use these results in our proof.

Since the group SL(2, p) has a representation of degree n = (p — 1)/2,
the inequality in Theorem 1 is the best possible.

It is easily seen that the following result is equivalent to Theorem 1.

THEOREM 2. Let A, B be n by n matrices over the complex numbers.
If A" = I = B, where every prime divisor of rs is strictly greater than
2n + 1, then either AB = BA or the group generated by A and B 1is
wmfinite.

For any subset S of a group G, Cu(S), Nx(S), | S| will mean respec-
tively the centralizer, normalizer and number of elements in S. For any
complex valued functions ¢, £ on G we define

€ Ho = = S ¢@E@) ,
|G| @
and |[¢]|% = (&, &)s. Whenever it is clear from the context which group
is involved, the subscript G will be omitted. H <] G will mean that H
is a normal subgroup of G. For any two subsets A4, B of G, A — B will
denote the set of all elements in A which are not in B. If a subgroup
of a group is the kernel of a representation, then we will also say that
it is the kernel of the character of the given representation. All groups
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considered are assumed to be finite.

2. Proof of Theorem 1. We will first prove the following prelimi-
nary result.

LEmMMA 1. Assume that the Sylow p-group P of N is a normal
subgroup of N. If x is any element of N such that Cy(x)N P = {1},
then M) =0 for any irreducible character N of N which does not
contain P in its kernel.

Proof. Since | Cy(x)| is not divisible by p, it is easily seen that
Cy(x) is mapped isomorphically into Cy,»(Z), where Z denotes the image
of # in N/P under the natural projection. Let g, ft, +++ be all the
irreducible characters of N which contain P in their kernel and let
Ay Ny o+« be all the other irreducible characters of N. The orthogonality
relations yield that

Sp@ = 1Crp@ | 2 | Cy@) | = S| @) [ + ZIN@) .

This implies the required result.

From now assume that G is a counter example to Theorem 1 of
minimal order. We will show that p* does not divide |G|, then Brauer’s
theorem may be applied to complete the proof. The proof is given in

a series of short steps.
Clearly every subgroup of G satisfies the assumption of Theorem 1,

hence we have

(I) The Sylow p-group of any proper subgroup H of G is an abelian
normal subgroup of H.

Let P be a fixed Sylow p-group of G. Let Z be the center of G.

1) P s abelian.

As P has a faithful representation of degree n < p, each irreducible
constituent of this representation has degree one. Therefore in com-
pletely reduced form, the representation of P consists of diagonal matri-
ces. Consequently these matrices form an abelian group which is iso-
morphic to P.

(I1I) G contains no proper mormal subgroup whose index in G is a
power of p.

Suppose this is false. Let H be a normal subgroup of G of minimum
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order such that [G: H] is a power of p. Let P, be a Sylow p-group of
H. By (I) P,<{H, hence P, <]{|G. Thus Ci(P) <{G. If C«P,) + G, then
by (I) and (II), P <] C4(P,), thus P <| G contrary to assumption. There-
fore C«P,) = G. Burnside’s Theorem ([3], p. 203) implies that H contains
a normal p-complement which must necessarily be normal in G. The
minimal nature of H now yields that p does not divide | H|.

If ¢ is any prime dividing | H|, then it is a well known consequence
of the Sylow theorems that it is possible to find a Sylow g¢-group @ of
H such that PS N(Q). Hence PQ is a solvable group which satisfies
the hypotheses of Theorem 1. Ito’s Theorem [4] now implies that P <] PQ,
thus @ S N(P). As q was an arbitrary prime dividing | H|, we get that
|H| divides | N(P)|. Consequently N(P) = G, contrary to assumption.

(IV) Z is the unique maximal normal subgroup of G. G|Z is a non-
cyclic simple group. |Z| is not divisible by p.

Let H be a maximal normal subgroup of ¢, hence G/H is simple.
Let P, be a Sylow p-group of H. Then by (I) P, < H, hence P, G,
thus C(P) < G. If C(P)+ G, then by (I) and (II) P <] C(P,), hence
P G contrary to assumption. Therefore C(P,) = G. If P, =+ {1}, then
it is a simple consequence of Grin’s Theorem ([3], p. 214) that G con-
tains a proper normal subgroup whose index is a power p. This contra-
dicts (III). Hence P, = {1} and p does not divide | H].

By (III) PH =+ G, hence by (I) P <| PH. Consequently PH =P x H,
and PS C(H) < G. If C(H)+# G, then (I) yields that P <] C(H). Hence
once again P <] G, contrary to assumption. Consequently C(H) = G.
Therefore H= Z. As G is not solvable, neither is G/H. Now the
maximal nature of H yields that H = Z and suffices to complete the
proof.

(V) PnxPx™ = {1} unless x is tn N(P).

Let D= PN «Px™* be a maximal intersection of Sylow p-groups of
G. Then Pis not normal in N(D). Hence by (I) N(D) =G, or DG.
However (IV) now implies that DES Z. Hence (IV) also yields that

D = {1} as was to be shown.
Define the subset N, of N(P) by

N, = {x |2 e N(P), C(x) N P+ {1}} .
Clearly {P, Z} < N,.

(VI) N(N)) = N(P). (N,— Z)na(N, — Z)z is empty unless z € N(P).

Clearly N(P) < N(N,). Since P consists of all elements in N, whose
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order is a power of p, it follows that N(N,) S N(P).

Suppose ye (N, — Z) N (N, — Z)z™*. Then y and z~'yx are both
contained in (N, — Z). Let P,=Cy)NP, P,=C(x'yx)P. By as-
sumption P, # {1} # P,. It follows from the definitions that P, and xPx*
are both contained in C(y). Since y is not in Z, C(y) # G. Hence (I)
yields that P, and z Pz~ generate a p-group. Thus by (II) zPax* < C(P,).
Now (V) implies that P,x~* = N(P). Consequently 2Px~* < P. By (V),
this yields that x € N(P) as was to be shown.

From now on we will use the following notation:

|Pl=p°, |Z|=2, |N(P)|=p%t.

Let %, =1, x,, --- be all the irreducible characters of G. Define «;, 8;, b;
by

Xi]N(P) = Q; + 18@ ’ bi = Bm(l)
where «; is a sum of irreducible characters of N(P), none of which

contain P in their kernel and B; is a character of N(P) which contains
P in its kernel.

(VII) If © =+ 0, then b; < (1/p*") xi(1).

By (VI) (V, — Z) has | G|/p°zt distinct conjugates and no two of them
have any elements in common. Since ¥; is a class function on G, this
yields that

il > L L6 ,
1=]xl*> Gl p Z(No -z | 2:(@) |
={L&aume+xmm@+Bmwy
pezt

If xeZ, then |1:(@)|* =|1:(1)|>. As P < N,, we get that
1

i (D)2 + 2y il ()| + a;(x)B(x) + m—)ﬁz(x)} + 35| Bi@) '] .

Since P is in the kernel of B;, we get that |Bi(x)| =b, for z ¢ PZ.
Lemma 1 implies that « vanishes on N(P) — N,. Hence

1> — AT l;)(;t(l)l + e ||y + (@ B)wr + (@ By + % .

By definition (a;, B8;) = 0, hence

ILDE > ey — 1+ 2L
Dt

By (IV) the normal subgroup generated by P is all of G, hence «; # 0.
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Therefore || a; || = 1. This finally yields that

p°t >t

’

which is equivalent to the statement to be proved.

(VII) If I is the character of G induced by the trivial character 1p
of P, then (I", x;) = b,.

If ) is an irreducible character of N(P) which does not contain P
in its kernel, then X\ is not a constituent of the character of N(P)
induced by 1. Hence by the Frobenius reciprocity theorem (A, 1), = 0.
Consequently (@;», 15)» = 0. The Frobenius reciprocity theorem now
implies that

(Xh F) = (Xi!P! 1P)P - (AB‘HP’ 1?) =b;.

From now on let x be an irreducible character of minimum degree
greater than one. Define the integers a; by

a; = (i XX) -
(IX) x(1) —1 = Sixa:bi.
By (VIII)

—_— 2 —
by + Sab; = () = XV 4 15 ety
= »° pet

=L s =175
D
By (II), x,» is a sum of x(1) linear characters of P. Consequently
agb, + % ab; = x(1) .

As y is irreducible, a, = 1. Clearly b, = 1. This yields the desired ine-
quality.

We will now complete the proof of Theorem 1.

It follows from (IX) that

(VII) yields that

1
%aibi < W%“iliﬂ) .
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The definition of the integers a; implies that
Sax(l) =@y —1.
170

Combining these inequalities we get that

) —1< XL
p

T
or

pP<yx)+1.
By assumption x(1) < (p — 1)/2, hence

PPy +1<p.

This implies that ¢ < 2. Thus e < 1.
R. Brauer’s theorem [2] now yields that P <]G contrary to as-
sumption. This completes the proof of Theorem 1.
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MEAN CROSS-SECTION MEASURES OF HARMONIC
MEANS OF CONVEX BODIES

WiILLIAM J. FIREY

1. In [2] the notion of p-dot means of two convex bodies in
Euclidean n-space was introduced and certain properties of these means
investigated. For p =1, the mean is more appropriately called the
harmonic mean; here we restrict the discussion to this case. The har-
monic mean of two convex bodies K, and K,, which will always be
assumed to share a common interior point @, is defined as follows. Let
K denote the polar re01procal of K with respect to the unit sphere E
centred at @; let 1 — z?)K + 19K1, with 0 £ ¢ £ 1, be the usual arith-
metic or Minkowski mean of K, and K The harmonic mean of K, K,
is the convex body [(1 — NEK, + 9K,]". In more analytic terms, if Fy(x)
are the distance functions with respect to @ of K,, for ¢ = 0,1, then
the body whose distance function with respect to @ is (1 — H)Fy(x) -+ FF ()
is the harmonic mean of K, and K.

In the paper mentioned, a dual Brunn-Minkowski theorem was es-
tablished, namely

Unf(1 _ < &) & ]
(1) Vir((1 — DK, + oK) = 1/[ TRy + VS
where V(K) means the volume of K. There is equality if and only if
K, and K, are homothetic with the centre of magnification at Q.
Here we develop a more inclusive theorem regarding the behaviour
of each mean cross-section measure, (‘‘Quermassintegral’’) W(K), v =
0,1,+++,n —1, cf. [1]. The result is

(2) WHm—([(1 — 19)[{ 4+ &K] ) = 1/[ Wi V:?;{o) + Wl/(nzi)(K)] .

The cases of equality are just those of the dual Brunn-Minkowski theorem,

»=0).

2. We first list some preliminary items used in the proof of (2).
We shall use Minkowski’s inequality in the form

3) =052+ o170 <[ = o[ de) + ([ 7da)]".

Here the functions f; are assumed to be positive and continuous over
the closed and bounded domain of integration common to all the integrals,

Received September 29, 1960.
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and, for our puposes, p satisfies —1 < p < 0. There is equality if and
only if fi(x) = \fi(x) for some constant M. See [3], Theorem 201, coupled
with the remark preceding Theorem 200.

Our second tool, which we shall refer to as the projection lemma,
was established in [2]. Let K* denote the projection of K onto a fixed,
m-~dimensional, linear subspace FE,, through @ for 1 <= m < n. We have

(4) [A — NHEF + 9K 2{[1 — DK, + 9K} .

Since E, contains @ and the polar reciprocation is with respect to sphere
E centred at Q, in forming K* the order of operations is immaterial.
This result is proved by a polar reciprocation argument from

1—NKNE,) +HKNE,) =[1—NK, +9K]NE, .

There is equality in either inclusion if K, and K, are homothetic with
centre of magnification at Q.

The dual Brunn-Minkowski theorem (1) will be used.

Finally we shall make use of Kubota’s formula and some of its
consequences. This material is covered in [1]. An (» — y) dimensional
cross-section measure (‘‘Quermass’’) of K is the (» — v) dimensional
volume of that convex body which is the vertical projection of K onto
an E,_,. The mean cross-section measures are usually defined as the
coefficients in Steiner’s polynomial which describes V(K + \E), that is

(5) V(K +2E) = 5 (1) Wk .

If we denote the (v — 1)™ mean cross-section measure of the projec-
tion of K onto that E,_, through @ which is orthogonal to the vector
u, by W,_(K, w,), then Kubota’s formula is

WK) = Kl S Wi (K, u)d, , v=1,2 -, v —1.
n—1 n
Here the integration with respect to the direction %, is extended over
the surface 2, of F, dw, is the element of surface area on 2, and «,_,
is the volume of the m — 1 dimensional unit sphere.
Kubota’s formula can be applied to the mean cross-section measure
W,_(K, u,) for fixed u,:

WK, w) = 1| WK, w, o,
n—2 n—1

where W', is the (v — 2)th mean cross-section measure of the projection

of £ onto the E,_, through @ orthogonal to u, and u, with u, orthogonal

to u,. After v such steps we have as the extended form of Kubota’s

formula:
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WL(K)
— 1 S S o 05 WOM(K, UpyUgy =2, uv)dwn—v' * 'dwn—-lda)n .
gn gn—l Qn-—v

,Cn—llcn—z M Icn—v

Each vector u, is orthogonal to u, for ¢ <p and W (K, w,, uy, +++, u,)
is the Oth mean cross-section measure of the projection of K onto that
E,_, through @ which is the orthogonal complement of the subspace
spanned by w;, Uy, * <, U,.

Steiner’s formula (5) with A = 0 shows that W(K) is the volume
of K and so W is an (» — v) dimensional cross-section measure of K.
Thus, to within a numerical factor depending on n and v, W,(K) is the
arithmetic mean of the (n — v) dimensional cross-section measures.

In §3 we shall use the following abbreviations: for dw,_,- - -dw,_dw,
we write d@ with sign of integration and omit reference to the domains
of integration; for one 1/, £, ;- +£,_, We write k; finally for W*(K, u,,
Uy ++0,U,) We write o(K*). In this notation the extended Kubota
formula reads

W(K) = kSo(K*)ch .

3. We now prove (2). By the extended form of Kubota’s formula

) e - HE, + oK) = [ K|otla — )&, + sk ya] "
1/(n—v)

< [kga([(l — HEr + 19121*]A)da‘)]

in virtue of the projection lemma and the set monotonicity of ¢ i.e.,
o(K*) £ o(K*) if K* = K* with equality in the latter relation implying
that in the former. We now apply (1), in E, ,, to the integrand to
obtain

o0 - DR + 9K = {1/ [ al/%_;(?;) + o'llm—f(Kl*) ]} i

Here we take advantage of the fact that
(B) = (K" .

This gives

(7) W= (L — 9K, + 9K,]")

= [kg{l/[ 0‘1/(3:—:(2*) + gl/(n—zj(Kl*) :I}(ndwd(?)]l/m_w .

There is equality if and only if all the projections K and K* are
homothetic with the centre of magnification at Q. This condition is
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sufficient for equality in (6); it is necessary and sufficient for (7).
We now use Minkowski’s inequality (8) with p = —1/n—v. This
yields

W1 — DK, + 0K,)
1 -9 3
+ 1/(7»—»):)

<1
B / [(kga(m*)d@)”‘"’” (kga(m*)d@

= 1/[ Wv(’}l/(n——_v)l(?}(l)) + WJ“”Zi)(K'l)] .

The necessary and sufficient conditions for equality in (7) are sufficient
for equality in (3) since K, = MK, implies o(K;*) = \"¢(K*). This
establishes (2).
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THE WAVE EQUATION FOR DIFFERENTIAL FORMS

AVNER FRIEDMAN

1. The Problem. Let M be a compact C= Riemannian manifold of
dimension N, having a positive definite metric. The operator 4 = dé +
dd (see [13] for notation) maps p-forms (0 < p < N) into p-forms and
it reduces, when p = 0, to minus the Laplace-Beltrami operator. Let
¢(P) be a C= function which is nonpositive for Pe M, and consider the
Cauchy problem of solving the system

N AV
(1.1) <L + ’a_t?>” = (4 e+t a—ﬁ)v — f(P, 1)
1.2 v(P, 0) = g(P), —g—tv(P, 0) = r(P) ,

where f,g,h are C= forms of degree p. The main purpose of the
present paper is to solve the system (1.1), (1.2) by the method of Fourier.

The Cauchy problem for second order self-adjoint hyperbolic equations
was solved by Fourier’s method by Ladyzhenskaya [8] and more recently
(with some improvements) by V. A. II'in [6]. In [8], other methods are
also described, namely: finite differences, Laplace transforms, and analytic
approximations using a priori inequalities. Higher order hyperbolic equa-
tions were treated by Petrowski [12], Leray [9] and Garding [5].

The Fourier method can be based on the fact that the series

(1.3) 5 2@ < 102002 52 |8Pn(0)[0*

g0 AZ Ap>0 et x>0 Ak

are uniformly convergent. Here {®,} and {\,} are the sequences of
eigenfunctions and eigenvalues of the elliptic operator appearing in the
hyperbolic equation. In [6] the convergence of (1.3) is proved for a =
[N/2] + 1. Our proof of the analogous result for eigenforms is different
from that of [6] and yields a better (and sharp) value for a, namely,
& = Nj2 + ¢ for any ¢ > 0. It is based on asymptotic formulas which
we derive forAZSAlafcpn(ac)/é?o(,'fl2 as N — oo,

In §2 we recall various definitions and introduce the fundamental
solution for L + 68/0t which was constructed by Gaffney [4] in the case
¢(P)=0. In §3 we derive some properties of the fundamental solution.
These properties are used in § 4 to derive the asymptotic formulas for
>, | 0'p,(x)/dx’ |*, by which the convergence of the series in (1.3) for any

ApsSA

a > N/2 follows. In §5 we solve the problem (1.1), (1.2); first for f, g, h

Received January 13, 1961. Prepared under Contract Nonr 710 (16) (NR 044 004) between
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infinitely differentiable and then under much weaker differentiability
assumptions with regard to M, ¢, f,9,h. In §6 we briefly treat the
Cauchy problem for the parabolic system

ou _
(1.4) Lu + Fri S (P, 1)
(1.5) u(P, 0) = g(P) .

2. Preliminaries. The first one to use fundamental solutions of the
heat equation in the study of the asymptotic distributions of eigenvalues
and eigenfunctions was Minakshisundaram [11]. Gaffney [4] extended
his method to derive asymptotic formulas for eigenvalues and eigenforms.
We shall describe here some well known facts and some of the results
of [4] which we will need later on. Slight modifications will be made
due to the fact that in [4] ¢ = 0.

As is well known, there exists a sequence of eigenvalues {\,} (0 <
M e £\ — 0 as k— o) and a sequence of the corresponding eigen-
forms {w,} of degree p (0 < p =< N, p is fixed throughout the paper) of
L, that is, Lw, = \®,, such that the eigenforms form a complete
orthonormal set in L2(M) (square integrable p-forms on M). The w,(p)
are C~ forms. The fundamental solution #(P, Q, t) of

@.1) (L + gt.)w —0

is a double p-form which is twice differentiable in @, once differentiable
in t, satisfies (2.1) in (Q,t), Q<€ M,t > 0, (for any fixed P) and, for any
Pe M,

t—>0

2.2) lim SM@(P, Q, t) * a(Q) = a(P)

for any L* p-form « which is continuous at P. As in [4] one easily
derives the expansion (provided & is known to exist)

2.3) O(P, Q,1) = é @, (P)o(Q)e

where the series on the right is pointwise convergent for all P, Q ¢ M,
t > 0 (that is, the series of each component is pointwise convergent).
A p-form a can be written locally as
a= 3 A; ;dxt...dar=3"Adx’
<. <ip

where ' indicates summation on I = (4,, ++-,%,) with 4, < .. <4,. The

absolute value of a at P is given by
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|a(P)| = [2"A(x)A"(2)]'"

where z is the local coordinate of P. Similarly, for a double p-form
having local representation a(P, Q) = 3'A,,(x, y)dx'dy’ where y is the
local coordinate of @, we define the absolute value by

la(P, Q)| = [X Aus(w, »)AV (@, »)I' .
The right “half-norm’ is defined by
1/2
1@ =[{ Jap,@rave]”.

Given two double p-forms a and B, a new double p-form is defined
by

(o, 8] = [, BIP, @) = | a(P, W)*6@ W) .

One then verifies:

(2.4) [[a, BIP, Q)| = | |[(P)| B (Q) -
The following inequalities are immediate:
(2.5) la + 8| =|al+ |8, |la+ Bl =|all + 18],

where «, 8 are any double p-forms.

In order to construct &, one first constructs a parametrix. Gaffney
[4] constructs a parametrix by generalizing the method of Minakshi-
sandaram [11], making use of some calculation of Kodaira [7]. Given
a point P, let y = (y*) be normal coordinates about P (with coordinates
z‘). A p-form can be written as a vector X with (¥) components and then

(2.6) 4X = —39"9,0,X + YA'0,X + BX

where (g;;) is the metric tensor, (¢°’) is the inverse matrix, 8, = 8/,
and A‘, B are matrices depending on the g;, and their first two deriva-
tives. If X = f(»’) W(x, y) where r is the geodesic distance from 2 to
¥ (each component of X is now a vector so that W is a square matrix),
then

@) 4[ArIW] = F)4, W — F ) 2N — 4K + 4 ZAw — iy w,

where K = K(x,y) is a C= matrix which vanishes for y = x.
There exists a C> matrix M satisfying

2.8) r aﬁ M= KM (x fixed), M@, z)=1
r
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where I is the identity matrix. Using (2.8), (2.7) is simplified to
2.9) M4 (fMW) = f(M-4M), W — f'{zN + dr %}W AW
(2.9) will now be applied with
2 — 1 —7r2[at
f(r,t)—-We ! t > 0 fixed) .
Setting
H,=S\fMUt, U =I
i=o
one then gets
JH. = U5, {(M~1AM) Uit + l(zN +ar Dy — T Utf} .
= 4t or 42 7’
Calculating also 0H./0t, one then obtains
@-+£ﬁ&:ﬁMi&M”ﬂw+®U+(w2+j+0U V
ot = ! or o
which leads to the successive definitions:
@w)le—%ﬂhWMM+®UHMa§j<o% where U,=1.
0

We conclude that, for any m = 0,

0 1 —r2/4tsm—N /2
2.11) (L,, + 55)11,,5 = e LML)

H, is a local parametrix. Note that when P, Q vary in a sufficiently
small neighborhood V (contained in one coordinate patch), H,, is defined
and is C= in (P, Q, %) if t > 0. Let 7.(r) be a C= function of » which
is equal to 1 for r < ¢ and is equal to 0 for r > 2e. If ¢ is sufficiently
small then the support of 7.(r)H,(P, @, t) (where r is the distance from
P to Q) as a form in Q lies in V, provided Pe W, where W is a given
open subset of V, W c V. We can cover the manifold M by a finite
number of sets W, call then W,. Let the H, corresponding to (the
corresponding) V; be denoted by H:. If {a;} is a C> partition of unity
subordinate to {W.}, then the support of a,(P)y.(r)H:i(P, Q,t) as a form
of (P,Q) lies in W, x V; and hence this form is C~in (P, Q,¢t)if t > 0.
The global parametrix is given by

(2.12) 0.(P, Q, 1) = Za(P)y(r)H,(P, Q, t) .
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The fundamental solution should then formally be
@13) 6P, Q1) = 0.(P, Q1) + | [ra(P, U, 1), 6u(Q, Uyt — 1)}dr
0

where 7, is defined by

(2.14) u(P, Q1) = 35 (~1)8L(P, @, 1)
(2.15) 8P, @, 1) = | [0(P, U, ©), 84(Q, U, ¢ — 9)ldr,
1 0
8L = (L,, + E)@'" :

Using (2.4) and the inequality
2 N 1] .
(2.16) Hoa(P, Q, z‘)drl < ( p )S \a|dr

Gaffney establishes the uniform convergence of the right side of (2.14)
and then proves that @, as defined in (2.13), is a fundamental solution,
for any m = 0, written in matrix form. We shall use the matrix notation
of & and the usual double form notation for & interchangably; the same
for 6,,.

3. Properties of the fundamental solution. We denote by 8.0(P, Q, t)
an hth derivative of ® with respect to the coordinates of P, in a given
coordinate system. If A = (h,, -+, hy), set |h|=h, + <<+ + hy. From
the formulas defining @ it is clear that 0.8(P, Q, t) exists and is continu-
ous (in fact C=) in P,Qe M and t > 0. Let

3.1 06(P, Q,1) ~ 3% BP, ) (@)
be the Fourier expansion of %0, for (P,t) fixed. Then (recalling (2.3))

3.2)  B(P,?) :E 0(P, U, t) * w(U) = a;z§ 6(P, U, t) * wU)
= §"w;(P)e ",

where 8% is abbreviated by 8* when there is no confusion.
By the (easily verified) Parseval’s equality we get

(3.3) WP, Q.0 =|6(P, U L), 08( UL)]

= 3. 0h.(P)ohw (@

and the series is pointwise convergent for P, Q< M,t > 0.
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We need the following notations. Let « be a double p-form. If it
is locally represented by 3'A,,dx’dy’, then we set

[a(P, P)] = 3' AL .

If B is also a double p-form, then we define [[a(P, U), B(P, U)],] to be
[v(P, P)] where 7(P, Q) = [a(P, U), BQ, U)].
Using (2.13) and the definition of + in (3.8) we have

@9 5100 e = [y(P, P, 1)]
~[[-(r, v &) s (p v )] ]
[ 1o w0607, — < faeen(r. 0 )] ]
+[[[ T, w0, 0.0, W £ = o) o
[Tt w00 (0w =]

= Ji(P, 1) + 2Jy(P, 1) + Jy(P, ¢) .

We proceed to estimate the J;. We shall make use of the inequality
[4]

(35) laP, PN = () 1a@, P,

and of the inequality [1]

3.6) S‘Sl exp{—M|z — 2|/t —7)} exp{—\|z—yl/r} ;5.

0 (t — ‘L‘)"‘ T
< const. _€XP {—\]z —y |t}
tutv—1-N[2

where dz = dz' -+ dz¥ and A > 0, # < N/2 + 1,y < N/2 + 1. The follow-
ing, easily verified, inequality will also be used:
3.7 SG: exp{—r|xz — z|}tlexp {—\ |z — y|*/t}dz

< const. exp {—u |z — y [}[t}t~"?

where dz = dz' --- d2" and » > ¢ > 0. We shall denote by A, constants
which (unless otherwise stated) may depend only on % and on the mani-
fold M.

Using (3.6) one can prove by induction on 7 that

(38) Iah 5:,,(P U t)l %’ tt(m+l 1R1/2)—1— N/ze—rz/bz .
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The case ¢ =1 follows by (2.11), (2.12). (In deriving (3.8) we also use
the elementality inequality re=** < const. ¢=®* for all » > 0, where «, 8§
are constants and @ > 8 =0.) In (3.8) it is understood that t° (if it
occurs) must be replaced by -logt. From now on we take m such that

h|
112y,
m + B >

Using the definition (2.14) we then conclude from (3.8) that
3.9) [0:7n(P, Q, t)| < Ay tgm-tIni+miz

Next, from the definition of &, one derives

(3.10) | 0%0.,(P, Q, 1) | < Aje /g tIntsmiz
Combining (3.9) and (3.10) (- = 0) and applying (3.6), we get

—2r2
é A,,e 2r /5ttm+1-(lh|+N)/3 .

@3.11) IS:’Z[a’;vm(P, W, ), @,,,( U, W,% - T)]d?.’

Using (3.10), (3.11) one easily derives, applying (3.7),
(3.12) JA(P, t) < Agrri-mi-wi

Similary one gets
(3.13) J(P, t) < Aggrm-im-niz

Evaluation of J,(P,t). From the construction of 0, it follows that
for every sufficiently small neighborhood V we may take it to be of the
form

3.14) 0,.P Ut)=H.(P,Ut)+ R, (P, U,t) for all PeV
where H, is constructed in § 2 and where, for some a’ > 0,
(3.15) |03 R.(P, U, t)| < Aje @ /itIMHVE < Agts

for any &£ > 0. A, depends also on ¢. Next,

(3.16) AHAP, Ut =50 5 (M o)
7=0 v|=0
where (ﬁ) = <£Ll> oo <ﬁ”) It is easily seen that
1 N
Yo
3.1 v 2 — g Yy— 3 g)gatIn
(3.17) orr 0 = 3 Ha(LE) 50 by

where ¥, #* are the coordinates of U, P respectively, and H,(z) is a
polynomial in z = (2!, ---,2¥) with C= coefficients which, for H,, are



1274 AVNER FRIEDMAN

functions of « only. Substituting (3.17) into (8.16) and recalling that
M(P, U)y, becomes (87) at P = U, we obtain

(3.18)  OMH.(P, U 1) = Ha ¥ = )£ DY + Sy(P, U, 1)
where Y is the matrix (67) and

(3.19) | Su(P, U, t)| < Age1mga=n-mwiz
Combining (3.14), (3.15), (3.18), (3.19) we conclude that

(3.20) 9:0,(P, U, t) = H( y1/'_t_x>f(rz, t)t-™12Y + T, (P, U, t)

and
| T.(P, U, t)| < A to-"n'-m

Using the definition of J;, and substituting (3.20) in the part of the
integral [0%0.,.(P, U, t/2), 320,.(P, U, t/2)], taken over a coordinate patch

V, containing V: y' — ' = £V ¢, we find that
(3.21) JUP, t) = (Co(P) + By(P, t))t—'»'-vn

where C,(P) is a continuous function of P, and | B(P,t)| < 4,/ t for
PcV,0<t<b, for any b > 0. A, depends on b.

Combining the evaluation of J, with (3.12), (3.13), we obtain from
(3.4),

(3.22) 5 100(P)[ e = Cu(P)t-="" + Dy(P, t)t-r-v-ve

where D,(P,t) is a uniformly continuous function of (P, %), Pe V' and
0<t<b for any b > 0. Thus

(8.23) | Dy(P, t)| < A,

where A,, depends on b.
Note that the A;, in particular A,,, are independent of P which
varies in V.

4. Asymptotic formulas. To derive asymptotic formulas from the
equation (3.22) we use a Tauberian theorem due to Karamata, specialized
to Dirichlet series [14; p. 192]. It states:

Let g, =0 and 0 A, SN oo =N, £ +o0, and assume that the

Dirichlet series f(t) = iake—*k‘ converges for t > 0 and satisfies
=1



THE WAVE EQUATION FOR DIFFERENTIAL FORMS 1275

£(t) ~ -t‘%as N0 (r=0).
Then the function a(x) = >, a, satisfies
Agpsz

NL
r'(v+1)

Applying it to (8.22) (using (3.23)), we get

a(x)

Xr — oo ,

@ gl = ih(ﬂ Ny " 0wl e)

and o(1) - 0 as » — oo, uniformly in Pe V.
Let A\, = +++ =%, = 0,2, > 0. Using the asymptotic formula (4.1)
we shall prove:

THEOREM 1. For any h and for any € > 0, the series

(4.2) i |0"w,(P)|*

i=e )\lév/2+1m+e

18 uniformly convergent in Pe M.

Proof. We introduce the function
B(P,M) = 3 [0"w(P)|.
AgEXN A
Then, we can write the series (4.2) in the form

Smw for any 0 <N <A,.

A’ XN/2+|M+2

Integrating by parts we get

#3)  lim [Mr” . (% k) + s)g“’ B(P,\) g,

)\‘N/2+lhl+5 A=A )\,XN/7+HLI+E+1

—00

Since, by (4.1), B(P, ) < A \*+92 gnd since B(P,\') =0, the first
term in (4.3) vanishes. The integral in (4.3) converges uniformly in P
in view of the bound on B(P,\) just given. The proof of Theorem 1 is
thereby completed.

5. Solution of the system (1.1), (1.2). We first derive the formal
solution. Substituting

(6.1 9(P) = 3, 0.0.(P), (P) = S hw(P), f(P, 1) = 5, f(tho,(P)
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(5.2) (P, 1) = 3} v.(t)w.(P)
into (1.1), (1.2) we arrive at the equations
(5.3) v/ (1) + Nua(t) = fa)
(5.4) v,(0) = g, v2(0) = h

If A, = 0 the solution is
0(t) = 0o + ot + S:f(f)(t — 7).

If X, > 0 the solution is

_ - h, . _— 1 S‘ L
'U,,(t) =0 n 1/*);; n 1/3\; ofn(T) sin 1/)‘% (t - T)dT .
Hence, the formal solution of (1.1), (1.2) is
G5  o(P,t) = i 9.@,(P) cos V' x, & + qz_‘,lhnwn(P)t

0, (P)sin VR, t + 5, wn(P)S FuO)(E — Dt

5&

1/ = ,,(P)S £.(2) sinV'x, (t — )z

To prove that the formal solution is a genuine one we observe that

if X, >0

(5.6) 9. = | 0(@r0.@ = —S L g(Qw.(Q)

n

for any positive integer m. Applying Bessel’s inequality, we get

(5.7) Sarg: = | Lro@+Lro@ =1 Lrg ).
Similarly,

68 Sk = LR SNRAOF S I LI

It will be enough to show that the part of the first series on the
right side of (5.5), where summation is on X\, > 0, when differentiated
term-by-term twice with respect to P is uniformly convergent in Pe M,
0=<t<b, for any b > 0. Now the series obtained is majorized by

62 P 2k g2 62 n ?
210, 170,(P)] =3x8 0, 1T2P) < sygyy [P0
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Hence that series is uniformly convergent if k£ > N/2 + 1.

It is clear that each series in (56.5) can actually be differentiated
term-by-term any number of times and the resulting series is uniformly
convergent.

By a solution of (1.1), (1.2) we mean a p-form which is (a) twice
continuously differentiable in (P, t) for Pe M,t > 0 (b) once continuously
differentiable in ¢ for Pe M,¢t = 0 and (c) satisfies (1.1), (1.2).

The uniqueness of the solution can be proved as for the classical
wave equation. Assuming g=0, h=0, f=0 and using the rule

Sdu*a) = Su*&o one finds that if w is a solution then

% S [usu, + Suxdu + duxdu — cuxu] =0 .
M

Since the integral vanishes for ¢ = 0, it vanishes for all ¢ > 0. Since
the integrand is nonnegative, u,xu, = 0, which implies %, = 0 and hence,
u =0.

We have thus completed the proof of the following theorem.

THEOREM 2. Let g,h be C> p-forms and let fbe a C> p-form such
that 0% f ts continuous in (P, t), for any N. Then the Cauchy problem
(1.1), (1.2) has one and only one solution. The solution is a C= p-form
and is given by (5.5).

The assumption that the manifold M is C> can be weakened. Indeed,
the theory of differential forms used above remains valid under the
assumption that the metric tensor is C° (Gaffney [3]; see also Friedrichs
[2]). The assumptions on f, g,k can also be weakened without any
modification of the preceding proof of Theorem 2.

We need the assumptions:

(A) The metric tensor g¢;, belongs to C™¥/** and to C® and ¢ belongs
to C¥+1 (recall that ¢ < 0).

(B) The form g belongs to CW¥/2+3 gnd LI¥+/4lg belongs to C*.

(C) The form % belongs to C'#+* and LI'"+2/p belongs to C*.

(D) The form f and its first [N/2] + 2 p-derivatives are continuous for
PeM,0=<t=<b (for any b > 0); L%+ f gnd its first p-derivatives
are continuous for Pe M, 0 <t < b.

THEOREM 2'. Under the assumptions (A) — (D), there exists one
and only one solution of the Cauchy problem (1.1), (1.2). It is given
by (5.5).

The assertion of Theorem 2’ remains valid if we further weaken
the assumptions (A) — (D) by replacing the classes of continuous deriva-
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tives C* by classes of “strong” derivatives W! (see [6]), assuming that
g.,€ C°.

6. The heat equation. The method of §5 can easily be extended
to solve the system (1.4), (1.5). The formal solution is

(6.1) w(P, t) = % gn@,(P)e™* + g‘f wn(P)S:fn(r)e—*n“—“dr :

We shall need the assumptions:
(A) g;; belong to C¥+ gnd to C°, and e belongs to C/4,
(B') The form g belongs to CW/1+' and LY/Yig belongs to C.

THEOREM 3. Under the assumption (A'), (B'), (D) there exists a
unique solution of the system (1.4), (1.5). It is given by (6.1).

REMARK 1. The assumption ¢ < 0 is not needed for the validity of
Theorem 8 since it can be achieved by a transformation u = e¢*u for
any constant a = c.

REMARK 2. Assuming ¢ <0, f=0, we can rewrite (6.1) as an operator
equation

6.2) T, = H+ ki A

where {z,} is the sequence {\,} taken without multiplicities, H, is the
projection into the space of eigenforms corresponding to (,, H corre-
sponds to f, = 0, and T, is the operator which maps g into the solution
u, that is, w(P, t) = T.9g(P). Formula (6.2) was derived, in a different
way (for ¢ = 0) by Milgram and Rosenbloom [10].
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BASES OF TENSOR PRODUCTS OF BANACH SPACES

B. R. GELBAUM AND J. GIL DE LAMADRID

1. Introduction. In this note we use the conventions and notations
of Schatten [4] with the exception that we use B’ to indicate the dual
(conjugate) space of a Banach space B and <{x, ") as the action of an
element & and a functional ' on each other. Schatten defines the tensor
product B, & . B, as the completion of the algebraic tensor product B, @ B,
of two Banach spaces B, and B, on which the cross norm « has been
imposed. We discuss the proposition, ‘‘If B, and B, have Schauder
bases, then B, ® B, has a Schauder basis.”” We prove this for ¢ =
(B, ® ,B, is the trace class of transformations of Bjinto B,). We also prove
it for « =\ (B, Q .B, is the class of all completely continuous linear
transformations of B] into B,) in the case in which the bases of B, and
B, satisfy an ‘‘isometry condition’’. This condition is not very restrictive.
We know of no instance in which it is not satisfied. Next we show
that unconditional bases of B, and B, do not necessarily yield an uncon-
ditional basis for the tensor product, even in the nicest conceivable in-
finite dimensional case, that in which B, = B, = Hilbert space, and the
bases are orthonormal and identical.

We recall certain facts about Schauder bases, and set some general
notation that we use throughout the paper. We usually work with a
biorthogonal set 2 = {x,, x}}; associated with a Banach space B, so that
¥ = {2z}, is a basis for B with coefficients supplied by the corresponding
sequence of functionals ¥’ = {x]};. We will have to do with the closed
linear manifold B? of B’ generated by the elements of ¥'. Since B and
B? are in duality it is possible to embed B in (B?)’ by the same formula
that effects the embedding of B in B”. We denote by ,P, the projec-
tion of B defined by P,z = >, <z, z,>x;. The double sequence {,Pp,},.m
is uniformly bounded. We denote by T’ the transpose of any transfor-
mation 7. The following lemma, given without proof, is but a trivial
strengthening of [2, p. 18, Theorem 1].

LEMMA 1. Let E be a dense vector subspace of B, 2 a biorthogonal
set of B such that y C E, the vector space spanned by y is dense in E

and the sequence {,P,}, . ts uniformly bounded on E. Then Q defines
a basis for B.

2. The tensor product of two biorthogonal sets. Let 2, = {;, zi};
be a biorthogonal set of B, and 2, = {y;, ¥!}; a biorthogonal set of B,.

Received November 15, 1960. This research was supported in part by NSF research
grant No. NSFG 14137 and in part by NSF research grant No. NSFG 11048.
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The elements ] ® y; can be considered as belonging to (B, ® ,B,) for
any cross norm « [4 p. 43], and {x; Q y;, 2} ® ¥}}; ; is clearly a biorthogonal
set. We enumerate it, not by the diagonal method, i.e., as in the usual
proof that the rationals are denumerable, but as follows: In the table

2. RY 2, RY, X, R Yy
902®Z/1 w2®y2 a’}2®y3 ......
TRQUY T RQY, TR Ygervees

-----------------------------

we simply order the elements by listing the entries on the two inner
sides of each successive upper left hand block to obtain x, ® y,, z, ® .,
2y Q Yay T Q Yy 1 QR Yy 2 R Yy s R Yy s Q Yy £, Q Yy, =2+, 2 Q Yy €, Q
Ye ' T QUi T Q Ypoty *o+ , £ Q Yy . @ ¥y, +++. This double sequence
with the given order is called the tensor product of y, = {x;}; and ¥, =
{y,}; and is denoted by x; & x%.. Similarly ! @ x} denotes the set {x! ® ¥}}; ;
with the corresponding order. The biorthogonal set formed by » & .
and y1 @ xs is called the tensor product of £, and £, and denoted by
2, Q..

THEOREM 1. If 0, defines a basis for B, and 2, defines a basis
for B,, then 2, R 2, defines a basis for B, K ,B..

Proof. We show that the vector space spanned by ) & y, is dense
in B,Q® B,. To see this let ,P., be the ,P, defined in §1 for 2, and
define

D) 4n=s@y— 3 o2 1)n Qv = ¢ @y — [Pl Q [Pyl
=2 Q[y — Pyl + [2 — Pzl ® Py .
Then

(2) 7(4z) = llzll [ly — Payll + lle — Paz|l . Payll .

The right hand side of (2) tends to zero with m . This argument extends
by linearity to sums of elements of the form z Q y.

Let now T, be the ,P, defined in §1 corresponding to 2,® 2,. It
remains to show that {7,}, is uniformly bounded. It is easy to show
that each T, has one of the following three forms: ,P,®.P? ,P.®
P PP P Q i Plii. Hence, it suffices to show that
{Pr @ P}y r nm is uniformly bounded. Let M be a common bound for all
.Prand P2, For SxQRQyeB K B,

(3) .Pn @ P22 Q y)] = M2(Prr) @ (Fry)]
= Gl lyihM* .
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Since (3) holds for any representation Sz Q¥ of a given tensor product
element, we may replace in it the sum % |[z|| ||y|| by 7(2z Q y), there-
by proving our assertion. From Lemma 1, we can conclude that 2, ® 2,
defines a basis for B, Q ,B..

3. The space of completely continuous transformations. We recall that
there is a canonical imbedding of B, with a biorthogonal set £ defining
a basis of B, into (B?)’. The norm of the image of an element x¢ B is
less than or equal to [[z||. We say that £ satisfies the condition of
isometry if the imbedding is actually an isometery. For such an 2,
(B%? = B, isometrically. We state first the following corollary of The-
orem 1.

COROLLARY 1. If 02, is a biorthogonal set defining a basis for
B,k=1,2 then 2, R 2, defines a basis for B K \Bj:.

Proof. Each z!® ¥y} is an element of Bf1 @ B3> which, as a subset
of B!® .B), can be imbedded isometrically in (B, ® ,B,) [4, p. 47, The-
orem 3.2]. What is more, the vector space spanned by {z}Q ¥} ; is
dense, with respect to )\, in B71( B, hence in B Q) ,Bf. This is
true because

(4) M’ @Y — (X <o @) @ (X W DU S 1[0 Q' —
(3 <@ 052 @ (35 war vOV)]

and the latter quantity tends to 0. Hence B{1 R .Bi* = (B, ® ,B,)"®%,
Our result is a consequence of this.
The next theorem follows easily from this corollary.

THEOREM 2. If both 2, and 2, satisfy the condition of isometry
2, R 2, defines a basis for B, Q \B.

Proof. If in Corollary 1 we replace B, by B{: and B, by B%, we
conclude that 2, ® 2, defines a basis for (Bf)% & A(Bs2)%. When the
condition of isometry is satisfied the last tensor product can be identified
with B, Q ,B., owing to the relations B, = (B7*)% for k =1, 2, and the
universal character of \, [4, p.35, Lemma 2.12].

Theorem 2 can be considered as a sharpening of the well known
fact that if B, and B, have bases, then every completely continuous
linear transformation of B! into B, can be uniformly approximated by
finite dimensional linear transformations. Our theorem goes further to
state that if 2, and 0, satisfy the condition of isometry, the space of
all completely continuous linear transformations of Bj into B, has a
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basis consisting of one-dimensional linear transformations.
The condition of isometry deserves some explanation. It is satisfied
by a large class of bases, which includes every base for which

(5) Ba:BI -(1)

The equation (5) holds always for reflexive spaces. It also holds for
certain bases of non-reflexive spaces.

A non-reflexive example of (5) is exhibited in [2, p. 188, Example
1], involving the usual basis of ¢, ; = {8i};, with «{ = {8}, *, An ex-
ample of the condition of isometry, in the absence (5), is obtained from
this first example, by setting [2, p. 188, Example 2] y, = x,, and %, =
T, — Ty + o+ + (=1)", for ¢ > 1, and y; = ] + @i,. For 0 = {y;, 4!},
rie B'\B?. 2 satisfies the condition of isometry for, if xzec, then

135 <o wi> | = 1135 <o, bl < .

The conclusion is now a consequence of the following theorem and its
corollary.

THEOREM 3. If for every x'e B’, ||\P.,x'|| — ||z'||, then Q satisfies
the condition of isometry.

Proof. Let x,€ Band z; € B’ such that [[x{]| = 1 and <{x,, 2> = [| 2.
Then

Ly, JPray
11_I£W = || 2,]] , Q.E.D.

COROLLARY 2. If ||,P,|| =1 for every n, then Q satisfies the con-
dition of isometry.

Proof. We show the above hypothesis implies the hypothesis of
Theorem 3. To see this, let e B’, and ¢ > 0. There is x,¢ B so that
2ol = 1 and <{xy, 20> > ||2,]| — /2 and an integer N > 0 so that

gl = H1P;x(’)” = <x0,1P;x6> = <1an0y x5> > <960, $6> — &2
> ”x(,)” — &, Q.E.D.

As we have seen, the two biorthogonal sets described above for ¢,
satisfy the hypothesis of Corollary 1.

An example of the isometry condition in which B’ is not separable
is furnished by Schauder’s basis for C([0, 1]), given by the biorthogonal
system 2 = {x,;, x}; described in [1, p.69]. We consider [0, 1] imbedded

t This equation may be described by saying that {xi}: is a retrobasis for B, [2, p.188,
Definition 1].
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in B’ and treat its points as functionals. The space B? of this example
contains the set D of all dyadic fractions. Consequently 2 satisfies the
condition of isometry, since, for fe B, ||f|] = subDaseon|f(d)].

We know of no biorthogonal set defining a basis which does not
satisfy the condition of isometry. Neither do we know if B, ® ,B, has
a basis for an arbitrary cross norm «, even if B, and B, have bases.
It is clear that for any element of B, & B, the formal expansion of
Theorem 1 converges to that element with respect to «, since it does
with respect to v = a. The difficulty lies in establishing that the set
{+P; Q ,Pi}y . is uniformly bounded with respect to a.

4. Hilbert spaces and unconditional bases. The problem of approxima-
tion of compact operators by finite dimensional operators in a Banach
space, can, after elaborate rearrangement, lead to the following question:
Can there exist a matrix C = (¢;;)7;=: satisfying the following conditions:

(a) For some a; = 0, ia% < oo, o] = aaj;
=1

(b)y C°=0;

(© Seu=17

Of course, (b) and (c) are incompatible if C is in the trace class. Thus
there arises the question: Does (a) imply that C is in the trace class?
To this we can give a definite negative answer via the following theorems.

Therem 4. Let Q = {x;, xi};, x; = {8i};, =} = {8i}; be the canonical
orthonormal basis in l,. Then 2 X Q2 defines an unconditional basis
w1, QL if and only of condition (a) implies C is i1n the trace class.

Proof. Let 2 2 define an unconditional basis for I/, ,l,, Then
we note that (a) may be rephrased by stating: c¢;; = ¢ a.a;, |&;] =< 1.
Since 1, ,l, is precisely the trace class of operators [4] it follows that
Dm0 (x; @ ;) exists in I, ® ,I, and is therefore in the trace class.

On the other hand, if (a) implies that C is in the trace class, then
for a®eae in L,®,L (@ =(a,0a, ), aR®Ra =00z RDx,). If
B = (¢;a,a;) is in the trace class, then B has an expansion Y7,_c.a.a;
(z; ®;), which shows 2 @ 2 defines an unconditional basis for I, ®,l,.

THEOREM 5. QR £ does mnot define an wunconditional basis for

I, @41

Proof. Let A, =(a;;) be a 2 x 2 matrix witha,, =a;, =y = —a, =1,
and A, the 2" x 2" matrix (4,;) 4,7 =1,2, with 4, = A4, = 4,, = — A4,
= A,,. Let B be the direct sum of the matrices {1/2"24,},. Then a
direct computation reveals that B is unitary. Let B = (b;), and let
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C=(by)). If 2Q 2 were an unconditional basis for I,®,l,, then for
B, regarded as a member of (,&®,lL) [4, p.47, Theorem 3.2] and
arbitrary 4 Qv in 1, ® 4, 37 i-u:0<%;, Bx;> would converge uncondi-
tionally, i.e. >7;ou,v;/b;;] would converge. In particular, let u = v,
where u is given by the vector: >, (1/n)z., (/2*)x, = (0,0,---0,

2" S~

2(an1—1)

——t
1,1,.-+,1,0,0,---). A simple verification shows that w exists in I,.
On the other hand, more calculation shows 3>.7,.|b;;luu; = . The
contradiction implies the theorem.

Theorem 5 remains valid when v is replaced by X, since [,® ,l, =
(l: ® il,)’, and unconditionality of 2 ® 2 in I, ® ,l, implies the same in
I, QL.

Note. We owe to the referee the remark that a space B with a.
biorthogonal set 2 which defines a basis for B can always be renormed,
preserving the topology of B [1, Theorem 1, p.67], in such a way that
2 satisfies the condition of isometry (section 3) with respect to the
resulting norm of B and the corresponding norm of B’. This makes
possible the following completely general form of Theorem 2.

THEOREM 2'. If Q, defines a basis for B;, for ¢ = 1,2, then 2, Q 2.
defines a basis for B, @ \B..

Proof. Renorm B, and B, as indicated above. Then, if \' denotes.
the operator norm with respect to the new norms of B, and B,, B, & »B,
has a basis defined by 2, ® 2, (Theorem 2). But B, Q B, = B, & ,B»
both point-set-wise and topologically. Hence our conclusion.
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INFINITELY DIVISIBLE PROBABILITIES
ON THE HYPERBOLIC PLANE

R. K. GETOOR

1. Introduction. This paper may be regarded from two points of
view. First of all it presents the theory of infinitely divisible radially
symmetric probability measures on the hyperbolic plane and the naturally
associated limit theorems. This point of view provided the motivation
for the present paper and is explained in some detail in §2 and 3.
However, just as the analagous theory in the Euclidean case may be
viewed as a chapter in the theory of Fourier transforms, so may the
present theory be viewed as a chapter in the theory of Legendre trans-
forms. That is, by using the Harmonic analysis described in §§2 and 3
one can set up a one-to-one correspondence between the radially sym-
metric probability measures, £, on the hyperbolic plane and certain func-
tions of a complex variable ¢(z) in such a way that the convolution of
2 and g, on the hyperbolic plane corresponds to the pointwise product
of their “transforms” ¢, and ¢,. Since p is radially symmetric it is
completely specified by a distribution function F (M) on A =0 and the
correspondence between ¢ and  (or F') is given by

(L.1) #() = Kz NIF()

where K(z, \) is a certain Legendre function given by (4.9). The convo-
lution of £, and g, at least in the case where F, and F, have densities,
is written down explicitly in (3.9).

This second point of view is adopted for the most part beginning
in §4 and so the majority of the paper (sections 4-10) deals with certain
problems in the theory of the Legendre transform (1.1). The tools we
use are those of classical analysis, but the problems treated are motivated
by probability theory. The main results of the paper are contained in §§ 7
and 8. In §10 Gaussian and stable distributions are defined within the
present context. Finally in §11 we indicate the extensions of these
ideas to a wider class of Legendre transforms which includes the theory
of radially symmetric probability measures on the higher dimensional
hyperbolic spaces as special cases.

We would like to thank Professor H. P. McKean who first introduced
us to the material in § 2, and who expressed interest and encouragement
when the present paper was in its formative stages.

Received January 10, 1961. This research was supported, in part, by the National
Science Foundation.

1287



1288 R. K. GETOOR

2. General Remarks. The present section is devoted to a general
situation that we will specialize to the hyperbolic plane in the next
section. We follow, more or less, the expository article of Godement
[4]. Let G be a locally compact second countable topological group and
let K be a compact subgroup. Let z,y, z denote elements of G and «,
v elements of K. We define two equivalence relations on G as follows:

2.1) r~y&&xy'teK
(2.2) r~ Y& there exist u,v e K such that z = uyv.

Thus H = G/~ is the space of right cosets and R = G/~ is the space
of double cosets. We give H and R the usual quotient space topology.
Let dx be right invariant Haar measure on G, then dx induces measures
dh and dr on H and R which are invariant under the (right) action of
G. In order to avoid notational complications it will be convenient to
regard all functions as being defined on G. Thus the statement f e L,(R)
will mean f(z) = f(y) if x~y and S] f@)|dx < o with the obvious

conventions for functions defined almost everywhere. Thus we have
(2.3) L,(R) C L,(H) C L&)

for each p > 0.
If f and g are in L,(G) we define their convolution

24 fra.@) = |Fereway .

It is well known that L,(G) is a Banach algebra and it is immediate
that L,(R) and L,(H) are closed sub-algebras. The basic assumption of
[4] is that L,(R) be commutative. Selberg [6] has shown that if H is
a symmetric (or more generally, weakly symmetric) space then L,(R) is
commutative. For us the following simple sufficient condition (whose
proof is a routine calculation and is therefore omitted) will suffice.

THEOREM 2.1%. If x ~ a7 for all x in G, then L,(R) is commutative.

In the remainder of this section we will assume that L,(R) is com-
mutative. If a is a multiplicative linear functional on L,(R) then

(2.5) a(f) = Sm(w)f(x)dx

where p, is in L.(R). It is easy to see that a defined by (2.5) is a
multiplicative linear functional if and only if

26) Pu()p) = | Puloun)du

t This remark is due to H. P. McKean.
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for almost all xz, y. Here du is normalized Haar measure on K. More-
over (2.6) implies that p, is equal almost everywhere to a continuous
function and thus the multiplicative linear functionals on L,(R) may be
identified with the bounded continuous functions on R satisfying (2.6).
Such functions are called spherical functions on R.

Let C.. be the continuous functions on G with compact support. If
feC. we define f(x) = f(x). A (signed) Radon measure £ on G is said
to be of positive type if

@1 UFxf) =0

for all feC.. A continugus function p on G is of positive type if the
measure p(x)dx is. Let K be the totality of all spherical functions on
R which are of positive type. For fe L,(R) we define

(2.8) Fo) = {f@p@dz for peR,

then, at least if G is unimodular, one can develop a complete theory of
harmonic analysis including a Plancherel theorem. For details see [4].
Since we won’t need this general theory we will terminate our general
discussion at this point.

3. The Hyperbolic Plane. Let D be the interior of the unit disc
in the complex plane, i.e., D = {z : z complex, | z| < 1}. The set D furnish-
ed with the Riemannian metric

(3.1) ds* = 41 — r)*[da® + dy’]

where 7' = |z|* = 2* + y* will be called the hyperbolic plane. The geo-
desic joining 2, and 2, is the unique circle through them cutting the
circle |z| = 1 orthogonally. The hyperbolic distance &(z,, 2z,) between z,
and z, is given by

(3-2) thé’/2: ‘zl'—z2! ° ll_zlzzrl

where “th” denotes the hyperbolic tangent, similarly “ch” and “sh” will
denote the hyperbolic cosine and sine. See [2] for a discussion of the
hyperbolic plane including the above facts.

If v and b are complex numbers with |%| = 1and |b| < 1 we define
the hyperbolic motion (u, b) as follows:

(8.3) (u, b) : 2 —u(z — b)(1 — bz)™*.

It is easy to check that (3.3) maps D onto D and preserves the hyper-
bolic distance (3.2). Let G be the totality of all such motions with the
obvious topology. Clearly G is a topological group satisfying the hy-
potheses of § 2. The multiplication in G is composition, i.e.,
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3.4 ’ bl ’ bz = ul(u2 + 12_152), uzbz + 111
( ) (ul )(uz ) <u2(ﬁ2 + blbz) Uy + b1b2>
and

(3-5) (u’ b)-—l — (ﬁ, ——ub) .

Let K be the compact subgroup consisting of motions (u,0), then
K is just the circle group. It is straight forward to check that the
equivalence relations defined in (2.1) and (2.2) become

(3'6) (uv bl) ~ (U, bz) &b, = b,
3.7 (U, by) ~ (uyy b)) > |0, = [ by] .

Thus H can be identified with D and R with the half-open segment
0=<r<1. Moreover Haar measure in G can be chosen so that the
invariant measure induced in H = D is just that associated with the
Riemannian metric (3.1).

It is convenient to introduce geodesic polar coordinates (¢,6) in D
with pole at z = 0. Here ¢ is the hyperbolic distance and the coordinates
of the point 2 = r¢® with 0 < 0 < 27 are (logl + r/1 — 7, 6). In terms
of these coordinates we have ds® = d¢* + sh’¢d0* and the corresponding
volume element is given by

(8.8) she de dé .

We now regard R as the half-line 0 < ¢ < « and write f(ch¢) for the
generic function defined on R. Theorem 2.1, (3.5), and (3.7) imply that
L(R) is commutative and routine calculations show that if f, ge L/(R),
then their convolution is given by

3.9)  frg.(cht) = S“’S Fleh\)gleheehn — sheshh cos O1shadod
- S”S Flehtchn — shish cos 01g(chN)shadody .
0Jo
Moreover the defining equation (2.6) for spherical functions becomes

(3.10) p(chA)p(ché) = %S:zp[chmhg — shash¢ cos 0]d0 .
From (3.10) one can show that p is a solution of the Legendre differential
equation and since p(1) = 1, it follows that the solutions of (3.10) are
P,(cht) where P, denotes the Legendre function of the first kind. See
[3]. Equation (3.10) is then a simple consequence of the usual addition
theorem for Legendre functions [3].

Since the spherical functions are bounded we must have —1 =
Re(v) < 0. Finally it is not too difficult to see that P,(ch¢) is of positive
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type if and only if Re(v) = —1/2. Thus we have identified the spherical
functions and the spherical functions of positive type for the hyperbolic
plane. See also [4].

The fact that the two integrals in (3.9) are equal is, of course, a
consequence of the general theory of § 2. However, one can see this
directly as follows. In the first integral in (3.9) we regard (), §) as
geodesic polar coordinates for the hyperbolic plane D with pole at 0.
Let 2, be the point whose coordinates are (¢, 0) and let (¢, ) be geodesic
polar coordinates for D with pole at z, with the same polar axis. Using
(8.2) it is not difficult to see that relationship between the coordinates
(O, 0) and (¢, #) of a point z is

(3.11) chpt = chachf — shasht cos 0
ch\ = chpch + shpsh cos @ .
Thus regarding the first integral in (3.9) as an integral over the hyper-

bolic plane we see that it is equal to (the volume elements are shad\df
and shpdude, see (3.8))

S: S:x Sflehpeh + shpshg cos plg(chp)shpdpd p

and this is obviously equal to the second integral in (3.9). The relation
expressed in (3.11) is just the law of cosines for hyperbolic trigonometry.

4. Preliminaries on Legendre Functions. We intend to study integral
transforms of the form

(1) P(v) = S:Pv(chx,)dF(x)

where F' is a bounded monotone nondecreasing function and P,(ch)) is
the usual Legendre function. In this section we gather together some
facts about the kernels P,(ch)\) that we will need in the sequel.

Combining formula (3) of §3.2 and formula (22) of § 2.1 of [3] we
see that

@ re (YR

for all complex v provided 0 <\ < «, where F' is the usual hyper-
geometric function. In all statements to follow A is a nonnegative real
number. It is immediate from (4.2) that for each fixed )\ the function
P,(ch)\) is an entire function of the complex variable v. Also

(4.3) P(1)=1
Pychn) = P_(cha) = 1.
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From formula (9) of §3.7 of [3] we have

ch(v + >t dt
4.4 Pohn) = -V 2 27
(4.4) (chx) = - sin wrg ENEITE

provided —1 < Re(v) < 0 and in particular for real « we have

45 Pori(ch ‘/2 hr S”_Cﬁﬁt_dt_.
( ) 1+z (C ) = cC (chx + cht)l/z

Using (4.2) above and the standard integral representation for the
hypergeometric function (§2.1.3 of [3]) we find that

(4.6) Py(ch\) = (1—'{"2—Ch>—“>y[1“(——u)l“(1 + )
-t

provided —1 < Rey < 0. For v real with —1 <y < 0 it is immediate
from (4.6) that

(4.7) 0 < PJch)) =1

and since P,(ch)\) is a continuous function of v the inequality (4.7) must
hold for all v in the interval —1 < v < 0. On the other hand using
formula (14) of § 3.7 of [3] we have

| P(ch)) | < lgﬂ[chx + sk cos £]7dt = Py (ch))
T Jo

and combining this with (4.7) we obtain
(4.3) | P(chM)] =1

provided —1 < Rey < 0.
Let z =z 4+ 7y be a complex variable and define the function

(4.9) K(z,\) = P—%+iz(0h>")

for =0 and —1/2 <y < 1/2. For each fixed ), K(z, \) is an analytic
function of 2z in the strip —1/2 < ¥y < 1/2 and is continuous in the closed
strip —1/2 < y < 1/2. The properties (4.3) and (4.8) become

(4.10) K(z,0) = 1, K<— _;_ x> = K(% x) -1
|K(z, V)| =1.

Moreover K(xz, \) is given by the right hand side of (4.5).



INFINITELY DIVISIBLE PROBABILITIES ON THE HYPERBOLIC PLANE 1293

5. Uniqueness and Continuity. Let & be the collection of all
bounded monotone nondecreasing real valued functions defined on 0 <
A < o and normalized so that

6.1 (1) F0)=0
(ii) F\)—>F(¢) as N | ¢ forall £>0.

Note that F(0+) need not be zero. Let & be those Fe & which
satisfy

(.2) F(e) =lim F(\) = 1.

All integrals are to be in the Lebesgue-Stieltjes sense. Integrals over
0 <)< oo will be written S , while integrals over 0 < A < o will be

0

oo

written S

It {F:; is a sequence in % and Fe & then we say that F, con-
verges weakly to F (written F, — F') provided

(5.3) S” fdF, — r fdF

for all continuous f with compact support. We say that F, is Bernoulls
convergent to F provided (5.3) holds for all bounded continuous f. It
is obvious that if each F,e % and F,—>F, then Fe % (F,=>F
means ¥, is Bernoulli convergent to F'.)

If K(z, \) is the kernel defined in (4.9) we define the transform of
Fe & by

G.4) P(2) = S:K(z VAFO) .

It is immediate that @ is bounded in absolute value and continuous in
the strip —1/2 < ¥ < 1/2, and is analytic in —1/2 <y <1/2. In parti-
cular @(x) is a real valued even function of #, and F'e & if and only
if @(—4/2) = 1. Of course, the values of @ on the real axis completely
determine @ in the strip —1/2 <y <1/2. We now show that F is
uniquely determined by .

THEOREM 5.1 If @ is the transform of F, then P(x) uniquely de-
termines F.

Proof. It suffices to prove that if F' is of bounded variation (not
necessarily monotone) and if the integral in (5.4) vanishes for all z then
F is identically zero. Using the representation (4.5) for K(x, \) we have

(5.5) Swh(t) cos xtdt = 0 for all x
0
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where
©.6) h(t) = Hicht) = g:[chx + cht]2dF(\) .

The interchange of order of integration is justified since
[h@)| < Var(F)[1 + cht] % .

Moreover h is continuous and the above inequality implies % e L,, hence
(5.5) coupled with the uniqueness theorem for Fourier integrals yields
ht) =0 for all ¢ = 0. Thus if we define G(u) = F(ch™(u)) for u=1
and G(u) =0 for 0 < u <1 we have

H®) = | (@ + 4G = 0
for all t = 1. But
H(t) = n‘%S:S:e“"““o‘%deG(u)
= n—‘%gje*”o‘%g(o)da

where g(o) is the Laplace-Stieltjes transform of G. Since H(t) = 0 for

t =1 we see that o-2g(¢) = 0 for almost all ¢ which in turn implies
that G, and hence F), is zero. Here we have used the uniqueness theorem
[7] for Laplace transforms twice.

In the present work the following rather weak continuity theorem
will suffice.

THEOREM 5.2. (i) If F,— F and F,() = M then ¢,(x)— ¢(x).

(i) Let @, be the transform of F, and suppose @,(—1i/2) = F,() <
M, then if ¢,(x) — P(x) there exists an Fe & such that F,— F and
@ s the trasform of F.

Proof. (i) For each x the function K(x, -) is continuous and (4.5)
implies that it vanishes at infinity. Thus it is immediate that for each
fixed £ we have @,(x) — @(x).

(ii) Since F, () < M the Helly theorem implies the existence of a
subsequence {F)} weakly convergent to F’. If ¢’ is the transform of
F’ then (i) implies that @'(x) = @(x) for all x. If the entire sequence
{F,} does not converge to F”, then there exists another subsequence
{F}"} converging to F'" + F’'. But as before ¢”(x) = ¢(x) = ¢'(x) which
contradicts the uniqueness theorem. Thus if we let F = F"' the proof
of (i) is complete.
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REMARK 1. Since the limit @ in (ii) above is a transform it follows
that ®(z) may be defined as a continuous function on the strip —1/2 <
y < 1/2 which is analytic in the open strip. If ¢(—1/2) = lim ¢,(—1/2),

then F,(o) — F(o) which implies that F, = F.

REMARK 2. If F, = F then since K(z, \) is continuous and bounded
for A = 0 and z in the strip —1/2 < y < 1/2, it follows that ¢,(2) — ¢(2)
uniformly on each compact sub strip —1/2=<y=<1/2 and 0 <z < x,.
See, for example, Lemma 1.5.2 (iv) of [1].

6. Closure Properties. Let Z7(<%) be the class of all transforms
of functions in # (). It is then immediate that if ¢ and + are in
Z and o, 8 =0 then ap + By e &?, while if p,yre FHand a + B =1,
a=0,8=0, then ap + Byr€ F5. Moreover Theorem 5.2 (ii) implies
that if {®,} is a sequence in & and @,(x) — ®(x), then @ e &7,

The main result of this section is that & and <% are closed under
pointwise products. The proof of the following theorem is, of course,
motivated by the general discussion of §§ 2 and 3.

THEOREM 6.1. If @, and @, are in FP(FH) then PP, is in FP(FA).

Proof. Let @, and @, be the transforms of F, and F,. We first
consider the case in which F, and F, have continuous densities fi(ch))
and fy(ch\) with respect to the measure shxdr. Of course, f;(ch\) may
be unbounded near » = 0. Thus

©6.1) P(x) = S:K(x NS ichshrdy §=1,2
rfj(chx)shxdx <o fch)=0;5=12.

For the purposes of the present proof it will be convenient to write
(6.2) p(z, ch\) = K(z, ) = P_1.:,(ch)) .

An immediate consequence of the addition theorem for Legendre func-
tions [3] is that

(6.3) Ple, PGz, chgt) = —— | "ple, a(0))d0
where
(6.4) a(0) = chacht — shashptcos 6 .

Therefore
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P,(2)P4(2) __S fl(chx,)shxdxg S Fichtyp(z, a(0))shudody: .

If in the inner integrals we make the change of variable described in
the last paragraph of § 3 we find (the manipulations are justified since
filchp) € Li(shudy) and p is bounded)

Py(2)Py(2) = S:p(z, chp)h(chpt)shpd
where
h(chp) = L ﬂ"fl(chx) Fia(0)shndbdn .
27 Jo Jo

clearly h = 0 and

S N oy G B W
Fy()Fi(<) = 9, — 2 )ps( — ) = | hichpmshpdp
Thus @9, is in &2, and if ®,, ¢, are in &3, then ¢,9, is in A.
We now turn to the general case. Let k(A\) =e¢* if » =0 and
Ev) =0 if A <0, and put k,(\) = nk(n\). Defining F)(\) and F,(\) to
be zero for A < 0, it is clear that

S0 =" k= maFe) = [k — aF @)

are continuous functions of N = 0. Moreover if we define ,F,(\) =
A
S JSip)dy, it follows that F,e &, and F,e % if F;e . Here 1 =
0
1,2. It is well known [1, Th. 1.5.3] that ,F;=F; as n— . If
«gi(ch)) = , f:(\) then ,g,(ch\)(sh\)™ is the density of ,F, with respect
to shadh. Thus if ,®; is the transform of ,F}, it follows from what we
proved above that +,(2) = ,9,(2),P:(?) is in & (or &#). But by the
second remark following theorem 5.2 we have ,9.(2) — @,(2) everywhere
on the strip —1/2 <y < 1/2. Thus @,(2)P,(?) = lim+,(2) is in &7, and
PP, e F if both @, and @, are since yr,(—1/2) — ¢,(—1/2)p,(—i/2). This
completes the proof of Theorem 6.1.

The following theorem gives another interesting closure property of

P

THEOREM 6.2. If @€ P, then () = exp (t[p(z) — P(—1/2)]) is in
F for all t > 0.

Proof. If a = @(—1i/2) = F(wx) =0, then

Yr(z) = e~* lim Z, ¢ (z)k .

n—oo k=
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Using Theorem 6.1, the fact that <# is closed under positive linear
combinations, and Theorem 5.2 it follows that Y€ &?. (Theorem 5.2 is

applicable since
)
N 2/

k!

A

ewt

for all ».) Moreover y+(—%/2) =1 and so € .

7. Limit Theorems. In this section we will consider only the class
A. We begin by making the following definitions suggested by proba-
bility theory.

DEFINITION 1. @e g3 is infinitely divisible if for each positive
integer n there exists a +r, € & such that ¢ = (yr,)".

DEFINITION 2. @ ¢ &% is a generalized limit if there exist ¢,, € &7
for n=1,2,-++,and k=1,2, .-+, k, with k, — « as n — o« such that

1.1 max | P,u(@) — 1] —0

uniformly on each bounded interval 0 < z < x, < oo, and
En

(1.2) Pu(@) = 11 Pusn(z) = (@)

for all z.

In this section we will show that @ is infinitely divisible if and
only if @ is a generalized limit, and at the same time obtain a canonical
form for such ¢. In the course of our discussion we will need the
following two lemmas which we state here for convenience. The proofs
of these lemmas will be given in §9.

LEMMA 7.1. (i) There exist constants N, >0 and M, < « such
that V2|1 — K(z,\)| £ My provided 0 <\ <)\, and |2| < R (of course
z is in the strip —1/2 <y = 1/2).

(i) M1 — K(z, )\)] — 1/4(1/4 + z*) as A — 0.

LEMMA 7.2. Let H,(\) = —;—r[l — K(z, M]dz, then
0

(i) 0= H, =2 and H,(\) >0 for »>0;

(il) H;(x) —1 as x— o ;

(i) N*H,A)—C(T)>0as x—0.

We begin with the simple half of our main result.
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THEOREM 7.1. If @ is infinitely divisible, then @ is a generalized
limit.

Proof. Letting k, =n and @,, = <, for all &t we see that @, (de-
fined in (7.2)) is identical with @ for all n. Thus we need only verify
(7.1). But (4.10) implies that |@(x)| = 1, and, of course, @(z) and ¥, (x)
are real. Therefore

D@ = [P(@)]F — (@)

where yr(x) =0 or 1 according as @(x) =0 or @(x) #0. But ¢Q) >0
and hence 4(0) = 1. Moreover +%ec g3 and thus Theorem 5.2 implies
that € &?. In particular r(x) is continuous and since 4 can only take
on the values 0 and 1 it follows that «(x) =1 for all z. Hence o(x)
never vanishes and since +r,(x) = exp [1/z log @(x)] in a neighborhood
(depending on n) of 0 we must have +r,(x) = exp [1/n log ¢(x)] for all
2 =2 0. Therefore +r,(x) —1 as n— c. This completes the proof of
Theorem 7.1.

We now turn our attention to the converse of Theorem 7.1. This
will not be established in full generality until §8. In working with
Definition 2 we will adopt the convention that F,, is the element in
3 whose transform is @,,, similarly @, is the transform of F,, ¢ of F.
We begin with the following result.

THEOREM 7.2. Condition (7.1) of definition (2) is equivalent to
(7.3) max | dF..() — 0
as n— oo for all ¢ > 0.
Proof. Suppose (7.3) holds then
max | @,,(e) — 1] = max| [L — K@, VIdFu0)
+ m;:a,x S:[l — K(z, M]AF, (V)
<eM,+ 2 mkax S:dF,,k(x)
provided ¢ < ), and 0 < 2 < R where ), and M, are defined in Lemma
7.1. Thus (7.1) follows.
Suppose (7.1) holds and (7.3) does not hold, then there exists an

e >0 and a subsequence 7, such that

(7.4) max deFnjk =7>0.
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Let k; be the value of k¥ at which the maximum in (7.4) is attained
0=k =< lcnj) and let G, = F,,j,,j. Let +, be the transform of G,, then
(7.1) implies that +r,(x) — 1 which is the transform of E (unit mass at
the origin). Thus G, — E weakly, but this is clearly a contradiction

since S“dG, =7>0.

THEOREM 7.3. If @ is generalized limit then @(x) = exp[—(2)]
where

(7.5) via) = |1 — K@, v 25X dop)

with Qe 7.

Proof. Theorem 6.1 implies that each ¢, € ;. Hence F,() =1 =
F(») and since o,(x) — @(x) we see that F, — F. Combining these
facts yields F, = F. Thus ®,(z) — ®(2) uniformly on each strip —1/2 <
y=1/2and 0 <2 =< x,. (Remarks following Theorem 5.2). Also @(x)
can not vanish near x = 0 since @ € &%. Let x, be the first zero of @,
then @,(x) — @(x) uniformly on 0 < z < x,. Condition (7.1) implies that
@,.(x) doesn’t vanish for 0 < x < x, and all k provided that = is suf-
ficiently large (how large depending only on x,). Thus for 0 <2 < «,
and 7 sufficiently large we can write

—log ¢,,(x) = —log {1 — S:[l — K(x, x)]dFM(x)} .
Letting
anl@) =1 — 2@) = | 11 = K@, WIdFu() 2 0,

it follows from (7.1) that a,.(x) — 0 uniformly on 0 < z < x, uniformly
in k as n— . Hence
En

(7.6) —log p.(@) = — 3 log @.u(0) = 3\ 5 (1) @)’

=1

and letting » — « we obtain
IG’VL k’ﬂ bad .
& ~log p(z) = lim { Sy e, + 3% 3% (9) (@)}

provided 0 = x < x,.
Since all the terms involved are nonnegative we have for 0 < 2 <

@8 0= 55600 = max () 3 5 (@)

J=2
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— 0(—log #(x)) = 0
as n— oo, If we define
G = 3, Ful)
and use (7.7) and (7.8) we obtain
(7.9) ~logo() = lim S:u — K, VdG.(V)

provided 0 < 2z < x,.

We now investigate the behavior of the functions G, as n— o.
It is an immediate consequence of Lemma 7.2 that for each 7> 0
there exists a constant A(7") > 0 such that

S[l — K@, Ve = A(T) 2 + v

for all A = 0. Also from (7.6) and the definition of G, it is clear that
g2, (@) = | [L — Ko, MIG.0)
0

for 0 < 2 < @, and n sufficiently large. Moreover since ¢,(x) — P(x)
uniformly on 0 <z <1, and @(x) is continuous and bounded away]from
zero on 0 < x =< 1/2x, it follows that log @,(x) — log ®(x) uniformly on
0<2=1/22,. Thusif0 < T < 1/2x, and » large enough we have

[T 260 = [TADI|] —log 9.y
— [TAD| ~log p(@)da < oo .

Hence there exists a constant M < o such that

(7.10) S‘”

dG,(\) = M.

14\ ™ =

Next we will show that given ¢ > 0 there exists an R (independent of
n) such that

(7.11) S:dGﬂ(x) <e.

To this end we first note that @, (iy) — ®@(iy) uniformly an —1/2 < y < 1/2.
Also (4.2) and (4.9) yied 0 < K(iy, M) =1 for A= 0and —1)2<y = 1/2
with K(—%/2,)) =K@, x) =1. Thus @,(iy) and @(iy) are strictly
positive on —1/2 <y <1/2. Since a,,(iy) = 1 — @,,(iy) < 1 an argument
similar to the one leading to (7.6) yields
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(1.12) —log 2.(@w) = |11 — K(iy, WG,

Let » > 0 be given, then since ®(—%/2) =1 we can choose T such that
—1/2< T <1/2 and
—2

T
—=—1 1 y)d .
2T+1S—% og P(iy)dy <7

Moreover (4.4) and (4.9) imply K(iy,\) — 0 as A — o for each fixed ¥
with —1/2 < y < 1/2. Thus we can choose R, so that

2 ST :
—= | [1— K@y, M]dy >1—
5T 11 _12_[ Gy, Mldy > 1 -7

for all A = R,. Since 9,(1y) — ®(1y) uniformly on —1/2 <y < T and @
is bounded away from zero there we can choose n, so that for n > n,

2T + 1

|, los @)y = |", g eidy +7 = 2.
- 2

2T +1

Thus for n > n, we have

2T+ 1 0

-2 ST .
1 dy < 27,
5T+ 1)4 og P,(iy)dy = 27

[La—nde.o = 22" [ — Ky, M1d6, 00y

=

or Sden =< 1277 if n > mn, It is now evident that given ¢ >0 one
Ry

can choose an R so that (7.11) holds (each G, being monotone nondecreas-

ing and bounded).
Define

(7.13) 2,00 = S: - i t dG. (@) .
+ 2

Then each 2, is in & . Using (7.10), the Helly theorem implies the
existence of a subsequence (call it £, again) such that 2, — Q with
PeF and 2 (o) < M. Moreover from (7.11)

[la2.00 = [Ta6.00 =

uniformly in » for R sufficiently large and this easily implies that 2, =
Q. Therefore

(7.14) S:u — K, M)] L 1‘ M 10,00 — S:[l — K, \)] L ‘)t RIPT
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where the integrand is defined by continuity, using Lemma 7.1, to be
1/4(1/4 + 2*) at » = 0. Combining (7.9), (7.13), and (7.14) we obtain

(7.15) —log ¢(x) = g:u — K(z,M] L ;V do()

provided 0 < « < 2,. But 2, was the smallest zero of o(x) and thus
—log (x) — o as « | x, while the integral in (7.15) remains bounded.
Hence @(x) never vanishes and (7.15) must hold for all . Finally defin-
ing Y(x) = —log @(x) we obtain Theorem 7.3.

THEOREM 7.4. A function r has the representation (7.5) if and
only if it can be written in the form

(7.16) Vo) =2 (741‘— n x) n S;u — K(z, V)]AGO)

where ¢ = 0 and G is monotone nondecreasing, right continuous for x>0,
G(e0) = 0, and satisfying.

(7.17) §:+x2da(x) < oo

Proof. 1If 4 has the representation (7.5) define ¢ = 2(0+) = 0 and
G = — r (1 4 t)dQ2(t) for A > 0, then using Lemma 7.1 (i) it is
clear that (7.16) holds and that G has the required properties. Con-
versely if (7.16) hold define 2(0) =0 and 2(\) = ¢ + S (1 + ) 'dG(@),
then clearly 2 e & and (7.5) holds. "

8. Uniqueness and Simple Consequences of (7.5). In order that
our theory be reasonably complete the following uniqueness theorem is
required.

THEOREM 8.1. The representation (7.5), and hence (7.16) also, is
unique.

Proof. 1t is sufficient to prove that if 2 is of bounded variation
and

8.1) ¥@) = [T - K, 115> d00) = 0

for all z, then y = 0. We will use the following formula [5, p. 168]
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8.2) (ch + cht) = nS: “Z;hg: K(z, )K(z, 1)ds

which holds for all », ¢ = 0. (Robin’s K, (ch\) is our K(zx,)).) Since
K(0,») =1, if we multiply (8.1) by mashmx(chmx)2K(x, ) and integrate
from 0 to « we obtain, using (8.2),

= ohn —1 142
8.3 S c do() = 0
®-3) o chxn +chpt N ™)

The interchange of order of integration is justified since (| K(z, y)| =1
and K0, ) =1)

[ 282 | e, ] (711 — Ko, M]”’“dlﬂl@)dw

S2(1+ch>n) i 22T <o

where | 2| stands for the total variation of 2. But (8.3) may be written
8.4) S“’(t + 8)'dQ*(t) = 0

for all s =1, where for { = 1

-1

®8.5) Q*(t) = S" N1+ M)k — A2V

Noting that 2* is of bounded variation on each finite interval 1 <t < T,
we can apply the uniqueness theorem for Stieltjes transform [7, p. 336].
This leads to the conclusion that ©2*, and hence £, is identically zero.

THEOREM 8.2. Given a + of the form (7.5) then ® =e¥ is an
infinitely divisible element of %,

Proof. Since K(-,N) is in &£ for each M =0, it follows from
Theorem 6.2 that exp {—b[1 — K(-,M]} is in &% for all b,\x = 0. Thus
if we approximate the integral defining v(x) by a Riemann sum and use
the above fact and Theorem 5.2, we find that @(x) = exp [—v(2)] is in
. Since @ is in &2 it can be extended to a function ®(z) which is
continuous on the strip —1/2 < y < 1/2 and analytic on —1/2 < y < 1/2.

Using Lemma 7.1 (i) it is immediate that the integral in (7.5) con-
verges for z in the strip —1/2 < y < 1/2 to a function which we denote
by +(2). It is also clear that 4 is continuous on —1/2 <y <1/2 and
analytic on —1/2 < y < 1/2. It now follows that ®(z) = exp [—(2)] for
all z in the strip —1/2 =<y <1/2. Since (—1/2) =0 it follows that
®e . Similarly exp[—1/ny] is in & for each n >0 and thus ¢ =
exp (—+) is infinitely divisible.
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COoROLLARY 8.1. @ is a generalized limit if and only if ¢ is infi-
nitely divisible.

Proof. This results from Theorems 7.1, 7.3, and 8.2.
Actually contained in the proofs of Theorem 7.3, 8.1, and 8.2 is the
following result which we state explicitly for completeness.

THEOREM 8.3. Let @,x€ FA for n=1,2,++- and k=1,2, +++,k,
with k, —  and satisfy (7.1). Let @, be defined by (7.2), then a
necessary and sufficient condition @, — @€ A is that

En (A 2
2,00 = 3 | {5 dPu®)

be Bernoulli convergent to Qe % . In this case ¢ = exp (—+) where
18 defined by (7.5).

9. Proofs of the Lemmas. We begin with Lemma 7.1 (i). In view
of the definition (4.9) of K(z, \) it will suffice to show A *|1 — P(ch)) | <
M, for 0 =M =), and |v| =< r. Choose \, such that the inequalities.

9.1) chh —1<1; % echh—1) <1
hold for 0 <\ < \,. Since [3, p. 122]

9.2) Pch\) = F(—v,v + 1; 1; _;— (1 — ch\)
provided |1 — ch)| < 2, we easily find that for 0 =\ =< ),

V1= P = F([v] ¥+ 5L 1).

Taking M, = F(r,r + 1; 1; 1/2) we obtain the desired conclusion.
Let A, be as above, then from (9.2) and (4.9) we have for 0 <\ < ),

Kz, \) = F[% — iz, % ¥ iz 1 % a-— chx)] .

Expanding the hypergeometric function we find that

21 — Kz, V)] + lx—ﬂ[@ + w”)(l — chx)] = G(z,)\)
2 4
where G(z, 1) > 0 as » — 0 for each fixed . The second conclusion of
Lemma 7.1 is now immediate.
Finally all of the conclusions of Lemma 7.2 with the possible excep-
tion of Hy(\) > 0 for » > 0 are easy consequences of Lemma 7.1 and
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(4.5). But if H,(»,) = 0 for », > 0 we would have K(z,),) =1 for all
2 in [0, T]. In particular K(0,),) = 1. Using (4.5) and the fact that
K(0,0) = 1 this leads to the conclusion that

Sw dt _ r dt
o [chng + k] Jo [1 + cht]?

which is clearly impossible if A\, > 0. This then completes the proofs of
our lemmas.

10. Gaussian and Stable Distributions. It is an immediate conse-
quence of Theorems 8.2 and 7.4 that for each ¢ > 0 the function

(10.1) P() = exp[—t(% + x)]

is an infinitely divisible element of 4. Following Bochner [1] a ® of
the form (10.1) will be called Gaussian (or normal). Let U,(\) be the
element in & corresponding to exp[—t(1/4 + x?)]. If one uses the in-
version formula of Fock [5, p. 165] and the fact that [5, p. 154]

= sinxt dt

V2 S
K(x, \) = TCOth AN (ot — o)™

one finds that
A
v = | utt, yshudp

where

= se%ds
x (chs — cha)?

e—t/4
(10.2) ult, \) = (2t)3’2§
The function (¢, ») defined in (10.2) is therefore the density (with re-
spect to shad)\) of the rotationally invariant Gaussian distribution on
the hyperbolic plane. It is not difficult to check directly that

ru(t, Nshady =1 for all ¢ >0,
0

although it is not necessary for us to do so since we know that U, e .
Finally it is interesting, but not unexpected, to note that

ou 0 ou
10. % — s 2 (sm 2.
(10.3) ot =~ M7 S
The differential operator on the right side of (10.3) is the radial part of
the Laplace-Beltrami operator in geodesic polar coordinates (A, 6) for the
hyperbolic plane.
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Let 0 <a <1 and let g.(w) be the positive continuous function
defined on v = 0 by the relation

(10.4) ot = Sme“”gw(u)du

0
for s> 0. See §4.3 of [1]. (The function g, is the density of a one-
sided stable law of index @ on the real line.) For ¢ > 0 we define

(10.5) ualt, V) = S”u(t%»s, N)gu(s)ds

where u(t, ») is the normal density (10.2). Clearly u.(¢, ) is a probability
density with respect to shad:. Moreover

(10.6) rK(x, Ntta(t, N)sh(\)dr = exp [— t(1/4 + @]

Thus for each t > 0 the function exp[—t(1/4 + 2%*] is an infinitely
divisible element of <Z. By analogy with the Euclidean case one might
call the densities (10.5) or the transforms (10.6) stable. We will investi-
gate the properties of these distributions in a future paper, in particular,
we will give a fuller justification of the name stable.

11. Higher Dimensional Hyperbolic Spaces. All that has gone before
can be easily extended to a more general class of integral transforms
that are related to the higher dimensional hyperbolic spaces. Let x be
a real parameter with ¢ > —1/2 and define the kernels

(11.1) K@, \) = 24T°(2 + 1)(sh\) P %)y, ia(ch\)

_ (.1_4"21’%_)‘“17(1/2 i, 12 4w g+ 1 “Td‘w ,

where P/* is the usual associated Legendre function [3]. Similarly we
define K,(z,\) for complex z by replacing « by 2z in (11.1). Clearly
K,(z,\) is analytic in z and it is not difficult to verify that

(11.2) | Kz, V) =1 if —p—12=y=1/2
and
(11.3) K.(z,0) =1, K. (—i(¢e +1/2),\) =1.

Moreover it follows from 3.7(8) of [3] that

2 22r'(p+1 A 12
11.4) Kz, =./2 In — cht)~ tdt
AL Ko = 2 T+ 1)y So(c chty*™" cos atdt

and combining this with (11.2) results in
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(11.5) 1< K@MN<=1.

If £ =0 then K, reduces to the kernel K considered in the previous
sections.

Let = N/2 —1 where N =2 is an integer, then the functions
K,(z, -) are the spherical functions on N-dimensional hyperholic space
and the functions K, (x, -) are the spherical functions of positive type.

If for arbitrary ¢ > —1/2 we define the p-transform of an element
Fe 7 by

(11.6) P(x) = S:K(x NAF M)

then all of the results of the preceding sections can be carried over to
p-transforms with only minor changes. In particular, in (7.16) one
must replace c/4(1/4 + =% by c¢/[4( + D][(¢ + 1/2)* + «’] and then the
Gaussian elements have the form exp (—t[(# + 1/2)* + «?]). The proofs
require only minor technical changes with the exception of Theorem 6.1.

In order to prove the analog of Theorem 6.1 for f-transforms one
needs the following formula

_ 22}‘«[’(1 + ﬂ)? xK . 2“6 9
(11.7) Ko, VKo, t) = TS S (&, w) sin®0d

where
w = chacht + shisht cos 6 .

Formula (11.7) is a simple consequence of the addition theorem for
associated Legendre functions (formula 80 of Peter Henrici, Addition
Theorems for General Legendre and Gegenbauer Functions, Journ. of Rat.
Mech. and Anal. (4) 1955; note the misprint in this formula, namely
—p —n should be —v —n) and the orthogonality relations for Gegenbauer
polynomials. Using (11.7) the fact that the product of two p-transforms
is again a pg-transform is proved by an argument similar to the one
used in § 6.

Note added in proof. Some results which are similar to a part of ours appeared in a
paper by F. I. Karpelevitch, V. N. Tutubalin, and M. G. Sur entitled “Limit theorems for
convolutions of distributions on Lobachevsky’s plane and space’”, Theory of Probability and
its Applications, 4, (1959), 432-436. These authors were particularly interested in con-
vergence to the normal distribution.
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SEQUENCES IN GROUPS WITH DISTINCT
PARTIAL PRODUCTS

BAsiL GORDON

1. In an investigation concerning a certain type of Latin square, the
following problem arose:

Can the elements of a finite group G be arranged in a sequence
a, Ay, *++, @&, S0 that the partial products a,, @@, +++, @@, «-+ a, are all
distinct?

In the present paper a complete solution will be given for the case
of Abelian groups, and the application to Latin squares will be indicated.
Let us introduce the term sequenceable group to denote groups whose
elements can be arranged in a sequence with the property described
above. The main result is then contained in the following theorem.

THEOREM 1. A finite Abelian group G is sequenceable if and only
if G is the direct product of two groups A and B, where A is cyclic
of order 28 (k > 0), and B is of odd order.

Proof (i). To see the necessity of the condition, suppose that G is
sequenceable, and let a,, a,, -+-, @, be an ordering of the elements of G
with a,, a,@,, +++, a,a, - -+ a, all distinct. The notation b, = aa, - .. a; will
be used throughout the remainder of the paper. It is immediately seen
that a, = b, = ¢, the identity element of G; for if a;, = e for some 7 > 1,
then b,_, = b,, contrary to assumption. Hence b, # e, i.e., the product
of all the elements of G is not the identity. It is well known (cf [2])
that this implies that G has the form A x B with A cyelic of order
2%k > 0) and B of odd order.

(ii) To prove sufficiency of the condition, suppose that G = A x B,
with A and B as above. We then show that G is sequenceable by
constructing an ordering a,, @, + -, @, of its elements with distinet partial
products. From the general theory of Abelian groups, it is known that
G has a basis of the form ¢,e¢, -+, ¢,, Where ¢, is of order 2%, and
where the orders &, 8,, -+, 8, of ¢, ¢, -+, ¢, are odd positive integers
each of which divides the next, i.e., 8;{8;,, for 0 <7 < m. If jis any
positive integer, then there exist unique integers j,, i, *++, j. such that

(1) J =7y (mod 8,8, -+ 5,)
j():jl +j281 +j38182 + e +jm81°" Sm—l
0=7 <3

Received January 3, 1961.
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0=7,<5,

Oéjm<8m-

The proof of the existence and uniqueness of this expansion will be
omitted here; it is entirely analogous to the expansion of an integer in
powers of a number base.

We are now in a position to define the desired sequencing of G. It
is convenient to define the products b, b,, < -+, b, directly, to prove they
are all distinct, and then to verify that the corresponding a;, as calcu-
lated from the formula a, = ¢, a; = b;},b,, are all distinct. If 7 is of the
form 25 + 1(0 < j < m/[2), let

szﬂ — c;’c;’lc;’z cee Cr_nj"" )
where j,, Js *+*, J are the integers defined in (1). On the other hand,
if 7 is of the form 27 + 2(0 < 7 < n/2), let

— pitlaiitladgtl im 1
byjiz = CiFleI et v ogmtT |

The elements b,, b,, -+, b, thus defined are all distinct. For if b, =b,
with s =2u + 1,¢t = 2v + 1, then

(2) % = v(mod 2F)
%, = v,(mod 8,)

U,, = v,(mod 3,,) .

From the inequalities in (1) we conclude that v, = v,, --+, u,, = v,. Hence
Uy = v, S0 that 4 = v(mod §, - - §,,); coupled with the first of equations
(2), this gives # = v (mod »), which implies v = v. Similarly b,,,, = sy,
implies v = v, so that the ‘‘even’’ b’s are distinct.

Next suppose

b2u+1 = va+2 .

Then
—u = v + 1 (mod 2¥)
—u, = v, + 1 (mod 8,)
—U, = v, + 1(mod $,,)
or equivalently,

(3) % + v + 1 = 0 (mod 2¥)
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%, + v, + 1 =0 (mod 8,

U + UV +1=0(mod3,,) .

Since 0 < u, +v, +1 =206, —1) +1 <28, we must have u, + v, +1 =
8,. Reasoning similarly for 7 = 2, ---, m we obtain

U, +v,+1=28,
Uy + v, +1=29,

Uy +Vp +1=06, .

Multiplying the (7 + 1)’st equation of this system by 8,8, +++ 8, (1 <1 < m)
and adding, we get #, + v, +1=8,---95,, which implies u +v+ 1=
0(8; +++3,). Combining this with the first of equations (3), we find that
% 4+ v + 1 = 0 (mod n), which, on account of the inequality 0 <u 4+ v +
1 < m, is impossible. Hence b, b,, ---, b, are all distinct.

Next we calculate a,, @y, +++, a,. If © =254+ 2(0 =7 < n2), then

a; = bilb, = ¢ttt oo climtL |

These are all different by the same argument as above. If 7 =25 + 1,
and j, # 0, then

a; = ¢;¥er et ol g mt

If i=25+4+1and 7, =0, but 7, # 0, then a;, = ¢;¥c;*2¢;2s-1 ... ¢ 2ImY,
while if j, =7,=0 but j; # 0, then a; = c;¥c;¥c;¥e " «vv c;¥m 1) ete.
These a;’s are obviously distinct from each other by the same reason-
ing as before. Because of the exponent of ¢, they are also distinct
from the a; with 7+ even. This completes the proof of the theorem.

As an example of the construction of Theorem 1, consider the group
G =C,x C; x C;. We use basis elements ¢, ¢, ¢, of orders 2,3,3 re-
spectively. Using the notation (a, 8, v) for the element cicfc), the
sequences a; and b; are then the following:

a; bi
0 0 0) 0 0 0
a1 1 L1 1
0 1 2 1 2 0
1 0 1) 0 2 1)
0 2 2 0 1 0)
12 1 1 0 1)
O 0 1 0 2
1 1 0 0 1 2
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a; b;
O 1 0 o 2 2)
@a o o a2 2
o 2 0) a1 2
@ 2 0 O 0 2
O 0 2 O 0 1)
a12 a10
O 11 a2 1
a o 2 o 2 0
o 2 1) o 11
a 2 2 @a o o0

2. Application to Latin squares. Consider the following Latin square:

1 2 3 4

2 4 1 3
3 1 4 2
4 3 2 1

Given any ordered pair (a3) with a # 3, it occurs as a pair of consecutive
entries in some row of this square. In general, an n x n Latin square
(c.;) whose elements are the integers 1, ---, n will be called horizontally
complete if for every ordered pair («, 8) with 1 = a, B<n and a # 8,
the equations

(4) C, =

cs,t-H = B
are solvable. Similarly a vertically complete square is one for which

Cst =
Cot1,t = /8

can be solved for any such choice of «a, 8. A square which is both
horizontally and vertically complete is called complete.

Note that in a horizontally complete square, the solution of equa-
tions (4) is unique, since the total number of consecutive pairs a,, @, 1
is equal to the total number of order pairs («, B) with @ # 8. Conversely,
uniqueness implies existence for the same reason.

Complete Latin squares are useful in the design of experiments in
which it is desired to investigate the interaction of nearest neighbors.

THEOREM 2. Suppose that G is a sequenceable group, and let a,,
Gy -+, a, be an ordering of its elements such that b,b, ---, b, are
distinct. Then the matrix (c,.) = (b;*b,) is a complete Latin square.
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Proof. It is immediately seen that (c,) is a Latin square, since
either b;'b, = b;'b, or b;b, = b;'b, imply t = u by elementary properties
of groups. To show that (¢,;) is horizontally complete, suppose

cst = cuu
cx,t+l = cu,v+1 .

We must show that s =« and ¢t = v. From the definition of ¢,,

(5) b,tb, = by'b,
( 6) bs_lbtﬂ = b;1b0+1 .

Inverting both sides of (5) yields b;%b, = b;'b,. Combining this with (6)
we get (bflbs)(b;be+1) = (bilbu)(bglbvﬂ)r or b;'b,i; = b;'b,y, e, Ap1 = Apige
This implies ¢ = ». Substituting in (5) we obtain b,%b, = b;%,, from
which s = u follows immediately. The proof that (c,,) is vertically com-
plete is entirely similar and will be omitted.

This method enables one to construct a complete Latin square of
order n for any even n (note that B may be trivial in Theorem 1).
Whether or not complete, or even horizontally complete, squares exist
for odd » is an open question.

3. Extension to non-Abelian groups. The problem of determining
which non-Abelian groups G are sequencable is unsolved at the present
time. Considerable information about the nature of a sequence a,, - -+, @,
with distinct partial products, if one exists, can be obtained by mapping
G onto the Abelian group G/C, where C is the commutator subgroup.
Using this technique, for example, it can be shown that the non-Abelian
group of order 6 and the two non-Abelian groups of order 8 are not
sequencable. On the other hand the non-Abelian group of order 10 is
sequencable. To see this, denote its elements by e, a, b, ab, ba, aba, bab,
abab, baba, ababa, where a* = b* = (ab)®° = e. A suitable ordering is then
given by e, ab, abab, ababa, bab, aba, b, a, baba, ba, the partial products
being e, ab, baba, a, abab, bab, ba, b, aba, ababa. In view of Theorem 1
and the results of [2], one might conjecture that G is sequencable if
and only if it does not possess a complete mapping. However, the sym-
metric group S; does not possess a complete mapping (cf [1]) and is also
not sequenceable. Whether or not the two properties are at least mutu-
ally exclusive is still an open question.
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RELATIVE SELF-ADJOINT OPERATORS
IN HILBERT SPACE

MaGNUS R. HESTENES

1. Introduction. Let A be a closed operator from a Hilbert space
$ to a Hilbert space . The main purpose of this present paper
is to develop a spectral theory for an operator A of this type. This
theory is analogous to the given in the self-adjoint case and reduces to
the standard theory when A is self-adjoint. The spectral theory here
given is based on generalization of the concept of self-adjointness. Let
A* denote the adjoint of A. An operator T on  to £ will be said
to be an elementary operator if T7*T = T. If T is elementary, the
operator TA*T can be considered to be an adjoint of A relative to T.
If A= TA*T, then A will be said to be self-adjoint relative to T. The
polar decomposition theorem for A implies the existence of a unique
elementary operator R relative to which A is self-adjoint and having
the further property that R has the same null space as A and that
A*R is a nonnegative self-adjoint operator in the usual sense. Every
elementary operator 7' relative to which A is self-adjoint is of the form
T=1T+R,— R,, where R= R, + R, and T, R,, R, are *-orthogonal.
Two operators B and C are said to be x-orthogonal if B*C =0 and
BC* =0 on dense sets in  and ' respectively.

An operator B will be called a section of an operator A if there is
an operator C =x-orthogonal to B such that A =B+ C. If R is the
elementary operator associated with A, there exists a one parameter
family A4,, By (0 < M < =) of sections of A, R respectively such that R,
is the elementary operator belonging to A,, || A\l =N 4, (<)) is a

section of A, and A = rdeA. From this result it is seen that A pos-

sesses a spectral decompgsition relative to any elementary operator T
relative to which A is self-adjoint. These results can be extended to
the case in which A is normal relative to T. When ' =9 and T
is the identity, these results give the usual spectral theory for self-
adjoint operators. Examples are given in §§ 4 and 10 below. In par-
ticular spectral resolutions are given for the gradient of a function and
its adjoint, the divergence of a vector. The finite dimensional case has
been treated in a recent paper by the author.

The results given below are elementary in nature and are based

Received October 11, 1960. The preparation of this paper was sponsored in part by
the Office of Naval Research and the U. S. Army Research Office. Reproduction in whole
or in part is permitted for any purpose of the U. S. Government.

1 M. R. Hestenes, Relatively hermitian matrices, to be published in the Pacific Journal
of Mathematics.
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upon the fundamental ideas concerning Hilbert spaces. These ideas can
be found in the standard treatises on Hilbert space. The concept of
*-commutativity is introduced. This concept is used in the development
of the spectral theory. It is shown that a reciprocally compact oper-
ator has a discrete principal spectrum. The concept of reciprocal com-
pactness is connected with the concept of ellipticity of differential oper-
ators, as is indicated in the last section below.

2. Preliminaries. Let  and ' be two Hilbert Spaces over a scalar
field €. The field € will be taken to be either the field of real numbers
or the field of complex numbers. The two case can be treated simul-
taneously by defining the conjugate b of b to be b itself in the field of
reals. The spaces © and ' may coincide. The same notations will be
used for the inner product in each of the two spaces. Thus, the symbol
(%, x,) denotes the imner product of x, and x,, whether x, and x. are
in § or in . The norm of x will be denoted by || x||. Strong con-
vergence of a sequence {x,} to xz, will be denoted by z,= x, and weak
convergence by x, — X,

The closure of a subclass <& of © will be denoted by <& and
its orthogonal complement in © by <#FL. Clearly &' is a subspace
of ©. By the sum U + <& of two linear subclasses U and <% will be
meant the class of all elements of the form x + ¥ with z in A and ¥
in &#. It will be called a direct sum if A and <Z have no nonnull
elements in common.

A linear tranformation A will be said to be from $ to o if its
domain D, is in O and its range Z, is in . If &, = © the phrase
“on © to 7’ will be used to emphasize this fact. The phrase “4in ”’
will be used occassionally in case O = . A linear transformation B
from 9 to ' will be called an extension of A, written A < Bor B = A4,
in case 7,0, and B=A on &r,. If &,=9, then 4 will be
said to be dense in . The transformation A will be said to be bounded
if it maps bounded subsets of <7, into bounded sets of . If A is
bounded, its norm || A || is defined to be the least upper bound of || Az ||
for all # in &, having ||z || = 1. If whenever z,€ D, z, =z, Az, =
Y, we also have z,€ &7, and Ax, = y,, then A will be said to be closed.
If whenever z,, 2,€ &2, and *=>x, Ax,=>y, we have Ax, =1y, then
A is said to be preclosed. A closed dense linear transformation is
bounded if and only if &, = . The minimal closed extension of A4,
if it exists, will be called the closure of A and will be denoted by A.
If A is preclosed, its closure exists. By the null class N, of A will be
meant all ¢ in <, such that Ax = 0. There is a unique extension of
A whose domain is <7, + N, and whose null space is %, If 4 is
closed then %, is closed.

Consider now a dense linear transformation A from 9 to © and let
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= ,* be the class of all vectors ¥ in © for which there exists g vector
A*y in © such that the relation.

(Az, y) = (v, A™y)

holds for all # in & ,. The transformation A* from £ to O so defined
is a closed linear transformation whose domain is <7 ,*, whose null class
N* is 2+ and whose range <#,* is a subclass of 9t4.

A linear transformation A from  to © will be said to be self-
adjoint if it is dense and if A* = A. A self-adjoint linear transforma-
tion A will be said to be nonnegative, written A = 0, if the inequality
(Az,x) = 0 holds for all z in <,. By a projection E in o will be
meant a self-adjoint operator such that E* = FE.

It will be convenient to use the term ‘‘operator’ to denote a closed
dense linear transformation. We shall have occassion to use the follow-
ing well known result.

THEOREM 2.1. Let A be an operator from O to O'. Then its adjornt
A* 18 an operator from O to . Moreover, A** = A, N,* = opL, N,
= @5*. For each vector x, in O and y, in ' there is a unique vec-
tor x in &, and y in <F such that

2.1 o=+ A%y, Yy=Ar —y.

The transformation A*A is a nonnegative self-adjoint operator in
whose null space is MN,. Similarly AA* is a nonnegative self-adjoint
operator in O whose null space i1s N,*. The operator A 1is bounded
iof and only if A* is bounded. In this event || Al = || A*|.

3. The reciprocal and #-reciprocal of a closed operator. Consider
a linear transformation A4 from 9 to £ whose domain D, is expressible
as a direct sum <, = ¢’ + N,, where ¥, is the null space of 4 and
&, is orthogonal to £,. The class %7, will be called the carrier of A.
If M, is closed, then <7, has such a representation. Consequently, the
carrier of a closed linear transformation is well defined.

The transformation A establishes a one-to-one correspondence between
its carrier and its range. The inverse transformation on <2, onto &,
when extended linearly so as to have .<#% as its null space and <#, +
i as its domain, defines a linear transformation A~ which will be
called the reciprocal? of A. The carrier of A~ is the range of A and
the range of A~ is the carrier of A. It is clear that A= is dense in
9’ and that N,_, is closed.

The reciprocal of A~ for an arbitrary linear transformation A will

2 See E. H. Moore General analysis I, Memoirs, American Philosophical Society (1935).
See also, J. von Neumann, On regular rings, Proc. Nat. Acad. Sci, 22, (1936), 707-715.
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be defined to be the reciprocal of the extension A, of A whose domain
is 2, + N, and whose null space is ©,. The carrier of 4, will be
defined to be the carrier of A. The reciprocal of A~ is accordingly the
extension of A whose domain is &7, + N, + &4 and whose null space
is M, + o2 +. Hence A is the reciprocal of A~ if and only if A is
dense in $ and its null space is closed. If N, is closed, then A is closed
if and only if A~ is closed. If A possesses an inverse, then A~ is the
inverse of A.

THEOREM 3.1. The adjoint of the reciprocal of an operator A is
the reciprocal of its adjoint, that is, (A™')*= (A*). The operators
A and A7'* have the same null spaces.

Clearly My-1n = H11=N,. Let x be a vector in =,—... Then
(Ay,, 2) = (y,, A"x) for every ¥, in &4 = .#,. Hence (2, z) = (Ax,,
A"x) if xye &, and hence if x, ¢ & ,. It follows that A"z is in &,
and that * = A*A 'x. Consequently #-1.C & = “u-1. Conversely
if e &, then (x,, x) = (Ax,, A*'x) holds for all x, in =, or equiva-
lently (A~'y,, ) = (¥, A*'x) holds for all ¥, in Z=,-1.. It follows that
2 isin &, and that A"z = A*'x. It follows that 47'*, 4* coincide
on their carriers, as well as their null spaces and hence are identical.

The element A*~* plays an important role in the results given below
and will be called the x-reciprocal of A.

As an immediate consequence of the last theorem we have

THEOREM 3.2. Let A be an operator from © to D'. Then A, A*,
A*1 = A7 are operators. The products A*A, A7 A*~' are nonnegative
self-adjoint operators, are reciprocals of each other and have the same
null space as A. Similarly, the products AA*, A*'A-' gre mnon-
negative self-adjoint operators, are reciprocals of each other and have
the same null space as A*.

A linear transformation A will be said to be reciprocally bounded
if its reciprocal is bounded, or, equivalently if there is a positive number
m >0 such that ||Az|| = m | x|l on the carrier of A. The following
theorem is self-evident.

THEOREM 3.3. Let A be an operator from © to O'. Then A 1s
reciprocally bounded if and only if its range is closed. Hence A 1is
reciprocally bounded if and only if the equation Ax = y has a solution
x in Z, whenever y is orthogonal to every solution z of A*z =0.
The operator A 1is reciprocally bounded if and only if A* is recipro-
cally bounded. Finally, A is reciprocally bounded if and only if
A*A (or AA*) is reciprocally bounded.
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The concept of reciprocal boundedness is the basis for a large class
of existence theorems for ordinary and partial differential equations. In
view of the last conclusion in the theorem existence theorems for non-
self-adjoint problems follows from those for self-adjoint problems.

THEOREM 3.4. Let A be an operator from $ to ©'. If a and B
are posttive numbers, then

aA + BA*, aAd* + BA™?

are reciprocally bounded operators and are adjoints of each other.

In order to prove the theorem it is sufficient to consider a transforma-
tion of the form B =)\A + (1/A)A*™', where )\ is a positive number.
Let ¥, be a vector in =7,. By Theorem 2:1, with A replaced by MA,
there is a unique vector # in <, and ¥ in <, such that

0=2 +NA*Yy, Y, =NAx —y .

The vector ¥ is therefore in .<#, = NL and in the carrier of A*, Conse-
quently, ¥ = (1/A»)A* 'z and

Yy, = (xA + —>1CA*‘1>x = Bx .

The range of B is therefore closed. It follows that B is reciprocally
bounded and closed. Similarly C = MA* + (1/A)A™ is reciprocally bounded
and closed. Clearly C = B*. This proves the theorem.

CoROLLARY 1. If A s self-adjoint operator, and o, B are positive
numbers, then aA + BA™ is a reciprocally bounded self-adjoint oper-
ator, Moreover the reciprocal of A* is A~ = (A7)

THEOREM 3.5. Let C = BA, D= A"'B", where A is an operator
Srom © to O and B is an operator from £ to a Hilbert space .
Suppose that N, =Ny Then Ny =Ny, Ny = Npe. If D is dense, then
D =C". If either A or B~ is bounded then C and D are closed.

Suppose that z,e€ &, x, >, Cx,=>7,. Sety,= Az,, 2z, = By, =
Cx,. If A is bounded, then y, = Az, Since By, = Cx, =z, it follows
that 2z, = BAx, = Cx,. Consequently C is closed. Observe that this
conclusion is valid even if N, # N,. Since y, e &, we have y, = Az,
= B7%,. If B™' is bounded, then ¥, = Axz,= B7'2,. Hence B2, =
Az, that is 2z, = BAx, = Cx,. Consequently C is closed in this event
also. The remaining statements in the theorem are readily verified.
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COROLLARY. If A is bounded and reciprocally bounded and 9. DO
Ny, then the products C and D described in Theorem 3.5 are operators
and are reciprocals of each other.

This follows readily from Theorem 3.5 because we can replace A
by F'A where F' is the projection in " whose null class is %,. We
then have N, = N,.

4. Examples. The results here given were motivated in part by
certain applications to differential equations. It will be convenient to
explain in part two of these applications at this time.

ExaMPLE 1. Let $ be the class of all real valued Lebesgue square
integrable functions x in the interval 0 < ¢ < w. This class with

(e, 9) = | sue)ar

as its inner product and the real numbers as scalars from a Hilbert
space. Let 2 be the class of all absolutely continuous functions x(t)
(0 £t = ) whose derivatives © are in . Let A be the differential
operator d/dt having as its domain the class <, of all functions in U
having 2(0) = 2(7) = 0. The carrier of A is <7, itself. Then range
A, consists of all functions ¥ in O satisfying the condition

(4:1) S:y(t)dt —0.

Since <#, is closed it follows that A is reciprocally bounded. The
reciprocal of A is

Ay = S:y(s)ds ~ %S:y(s)ds .

The adjoint A* of A is the operator —d/dt with <7 . = U as its domain
and ¥ N <#, as its carrier. Since A is reciprocally bounded so also A*.
Moreover . <#Z+ = . The reciprocal of A* is

A* Ty = —Stac(s)ds -+ lsngrx(s)dsdr
0 T JoJo
by virtue of the relation (4.1). Let <& be all functions in % whose
derivatives are also in 2. The operator A*A is the operator —d*/d¢?
having as its domain all functions in <# such that x(0) = 2(x) =0. The
range of A*4 is . The operator AA* is the operator —d?*d¢* having
as its domain all functions 2 in <# whose derivative & satisfies the con-
ditions %(0) = #(w) = 0. The range of AA* coincides with that of A.
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The operator AA* is also reciprocally bounded.
A preview of the theory to be presented below can be given for
this example by recalling certain known facts. Let

o) =/ Zsinnt, ) = /L, u) = Y Zoosnt m=1,2,3--).

The function x, form a complete orthonormal system in . A function
2z in 9 is accordingly given by the fourier sine series.

M

r=>a2,, a,=(,

n=1

where convergence is taken to be convergence in the mean of order 2
Similarly a function ¥ in © is expressible in the form

y:b0y0+§bnyn’ bj:(yyyj) (j:]-’zy'")'

If x and y are in the appropriate domains we have

Az = inan'yn , Ay = i —71;
(4.2)

o

A e = 3 Lanyn , Ay = fl nb,x, ,
n n=1

as one readily verifies. These formulas can be put in another form by
defining the operators R and R; (1 =1, 2,3, --+) by the formulas

Rx:ﬁanyn) Rix:aiyi (’i:1’2;37°'.)'
Observe that
R*y:ibnxny R:ky:blxz (i:1y2;37”.)'
n=—1

The operator R maps O isometrically onto <#,. Its adjoint R*
maps %, isometrically onto $ and annihilates <#Z;. We have the
relations

=S\R., R'R,=RiR., RR=R.R}
R*R;, =0, RR;=0 (t+17).

(4.8)

Moreover, by (4.2) we have

A=3nR,, A‘lzi%R,’f

(4.4) .1
=3 R, A*=3nRf.
n=1 N
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These formulas constitute a spectral resolution of 4, A~%, A*!, A*. It
is our purpose to show that every operator A can be resolved in terms
of elementary operators having the properties similar to those given in
(4.3).

The example just given can be modified so as to include all complex
valued functions in © and so that A = i(d/dt). Then A is a symmetric
operator but is not self-adjoint. The theory for this case is not signifi-
cantly different from that just described.

ExaMPLE 2. Let $ be the class of all real valued Lebesgue square
integrable functions «(s,?) on the square 0 <s =<7, 0 <s <m. Then

9 together with the inner product (x, ¥) = ) ﬁx(s, t)y(s, t)dsdt defines a

Hilbert space with the real numbers as its socaolar field. Let 2 be the
class of all functions x in $ such that

(i) x(s,t) is absolutely continuous in s on 0 =< s < r for almost
all t on 0 <t <7 and is absolutely continuous in ¢ on 0 <¢<nr for
almost all s on 0 < s < m;

(ii) The partial derivatives x,, x,, (which exist almost everywhere)
are in . Let 9 be the Hilbert space defined by the cartesian product
9 x H. Observe that the gradient of x, written grad =z, is defined on
A and maps U into O'.

We shall be concerned with the operator 4Ax = grad & whose domain
<, consists of all functions 2 in 2 which vanish on the boundary, in
the sense that (0, ¢) = x(z,t) = 0 for almost all £ on 0 <t<x and
2(s,0) = (x7) = 0 for almost all s on 0 <s < =w. It can be shown that
the mapping A so defined is a closed dense operator A from $ to 9.
In fact it is the closure of the transformation grad z restricted to
functions of class C’ that vanish on the boundary of the given square.
Its adjoint A* is defined by A*y = —div y, where div y is the closure
of the usual divergence operator defined on the class of all vectors ¥ in
9" of class C’. The ranges of A and A* are closed. Consequently 4
and A* are reciprocally bounded. The operators A~ and A*' are
bounded and can be given an integral representation but we shall not
pause to do so here.

The functions

(S, 1) = Esin ms sin nt m,n=1,23, +-+)
v

form a complete orthonormal system in . Consequently every vector
2z in © can be expressible in the form

X

s

a’mnwm’n ’

m,n=1
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where convergence is taken iu the mean of order 2. The vectory ¥m.
in ' whose components are

n
zvV'm? + n?

2m

L — sin ms cos nt
TvV'm’ + n?

cos ms sin nt ,

form an orthonormal system in ' that is incomplete. However, it is
complete in <Z,. Consequently every vector ¥ in ' is expressible in
the form

Y=Y + > 1bm”ym

m,n=

where y,c.22%, that is, A*y,=0. If z and y are in the appropriate
domains we have.
bmn

mn

A* T = ZI imn Yun » A*y = E)‘mnbmnwmn

mn

AT = D M@oYy, ATY =3

xmn

where ),, = (m’ + »*)"? and m, n summed over the positive integers.
Defining R and R,, by the formulas.

Rx = Z a’mnymn ’ Rmnm = a/mnym‘n
it is found that R and R, satisfies relation analogous to (4.3) and that

R maps  isometrically onto <2Z,. Moreover,
A= SN, A7 = A0 R.
A = SN R, AT = X N R
These formulas are analogous to (4:4) and with minor modifications

illustrate the spectral theory given below for an arbitrary closed operator
whose reciprocal is compact.

5. Some properties of nonnegative self-adjoint operators. It is the
purpose of this section to establish certain properties of nonnegative
self-adjoint operators. The first of these is given in the following

THEOREM 5.1. Let A be a nonnegative self-adjoint operator from
O to D and let E be the projection
(5.1) E=A7A = AA',

There exists a unique pair of nonnegative self-adjoint operators C and
D such that

62 C+D=E, A=CD’'=D"'C, A'=C'D=DC.
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The operators C and D are bounded and are given by the formulas
(5.3) C'=A"'"%+E, D'=A+E.

They have the same null space as A. Moreover

(5.4) CD=DC, C'D*=D*'C*'=C*'+ D,

In order to prove this result let C and D be defined by the formula
(5.3). Then C and D are bounded. In fact ||[C|| <1, || D||<1. The
set o = ,N 2,41 is the domain of each of the transformations
C'D*, D*C*, C'+ D*. In view of (5:1) we have

C'D*'"=A"A+A+A*+E=C*'+D*'=D"C,

These operators are accordingly reciprocally bounded operators and are
the reciprocals of CD and DC, by Theorem 3.5. Hence (5.4) holds. In
addition

C-C=D"D=E=D"CCD=(C"+ DCD=D+C,
C'=C*C+D)=E+C?D=(C+D)C"=E+DC",
D" =DXC+D)=DC+E=(C+D)D*=CD"+E.

Comparing this result with (5.3) it is seen that (5.2) holds. On the
other hand equations (5.2) imply that A, C, D have the same null space
and it follows from the computation just made that (5.3) holds. This
proves the theorem.

THEOREM 5.2. Let A be a monnegative self-adjoint operator from
O to . There is a unique nonnegative self-adjoint operator P from
H to O such that P* = A. The operator P will be called the square
root of A and will be denoted alternatively by A"’. The square root
of A7 is P,

If A is bounded, this result can be established by elementary
means’. In this event every bounded self-adjoint operator that com-
mutes with A also commutes with AY?. The truth of the theorem for
the unbounded case can be obtained from the spectral theorem. As-
suming the truth of the theorem for the bounded case one can establish
its truth for the unbounded case without the direct use of the spectral
theorem. As a first step in the proof we shall prove the following

LEMMA 5.1. Let P and A be two self-adjoint operators from $ to
9 such that P2 = A. Then A ts nonnegative and (P™')* = 41,

Clearly A is nonnegative. In order to show that C = (P~)* is the

8 See, for example, F. Reisz and B. Nagy, Lecons d’Analyse Fonctionelle, p. 262.
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reciprocal of A observe that on &, we have CA = (P'P)* € E, where
E=A"A. Tt follows that C 2 A*. Since C and A are self-adjoint
we have A 1= (A)* 2 C*=C. Hence A7 = C, as was to be proved.

COROLLARY. A reciprocally bounded nonnegative self-adjoint oper-
ator possesses o UNIQUE square root.

We are now in position to complete the proof of Theorem 5.2. To
this end let C and D be related to A as described in Theorem 5.1.
Since C and D are bounded and commute, their square roots M and N
satisfy the relations

M+ N*=E, MN=NM, M 'N7'=N"'M",
Moreover £ = M'M = N'N and
N'=N'M+N)=N"'M"+N=(M+ N)N"'=MN" + N.
Hence N7'M*> = M°N™ and
MN*=FEMN"'= N"'"MN"'= M"'N"M*= N"'M"M*
=N'EM=N"'M
Similarly M*N = NM . In addition
(N My =N"'"MN"M=N"M=D"'C=A4A, (M'N)=A4".

Setting ¥y = Nx with « in the carrier of N and using the fact that
MN = NM = 0 we find that

(MN™'y, y) = (Mx, Nz) = (MNz, z) = 0

for all y in the carrier of MN'. Hence MN ' is a nonnegative self-
adjoint operator whose square is A. It remains to show that if Pis a
nonnegative self-adjoint operator whose square is A, then P= MN.
To do so observe that

(P+P =P +P*+2E8=A+ A" +2E=C"D" = (MN-) .

Since reciprocally bounded operators have unique square roots it follows
that

P+ P'= M"'N"',
Moreover

PM~=PC*=PA" + PC P+ P =M"'N"'=N"Y"
P=PM—M*c N"M~"M*= N"M .

Since P and N'M are self-adjoint, they are equal. This completes the
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proof of Theorem 5.2.

6. Elementary operators and the polar form. By an elementary
operator R from $ to ' will be meant one that is its own *-reciprocal,
or equivalently one whose adjoint is its reciprocal. It is characterized
by the relation

(6.1) RR*R=R.

An elementary operator maps its carrier isometrically onto its range.
If R+0 then ||R||=1. It is easily seen that an operator R is
elementary if and only if £ = R*R is a projection in 9. Similarly R
is elementary if and only if £’ = RR* is a projection in &'. If =
$’, then an elementary operator R is normal if and only if E= E’,
that is, if and only if R and R* have the same null spaces. A projec-
tion is a nonnegative self-adjoint elementary operator. An elementary
operator R is self-adjoint if and only if it is expressible as the difference
R=FE, — E_ of two projections E, and E_ that are orthogonal. For
if R is self-adjoint, then

. =4E+R), E.=3%FE—-R)
satisfy the relations
E*=FE.=E*, E*=FE =FE*, E.E =EE, =
and hence are projections. Moreover
R=FK, —E , E=E,=FE_ =R"*.

Conversely, if R is expressible in this form it is a self-adjoint ele-
mentary operator, as one readily verifies.

It should be observed in passing that if E is an elementary operator
from  to O and F is a projection in © that commutes with the pro-
jection K = R*R, then S = RF is also elementary. This follows
because S*S = FR*RF = FEF = FF is projection. Similarly if F' is
a projection in ' that commutes with RRE*, then F'R is elementary.

Let R be an elementary operator from D to £'. An operator A
from © to ' will be said to be self-adjoint relative to R in case

(6.2) A = RA*R .

If =9 and R is the identity, this concept reduces to the usual
definition of self-adjointness. We have the following

THEOREM 6.1. Let A be an operator from 9 to ' that is self-
adjoint relative to an elementary operator R. Then A* is self-
adjoint relative to R, Similarly A*, A~ are self-adjoint relative to
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R*. Moreover N, N, and Ry C Ny  The operators A and R satisfy
the further relations

(6.3a) A= RR*A =AR*R, RA*A =AA*R
(6.3b) A*R= R*A, AR* = RA*
(6.3c) (A*R) = A*A, (AR*) = AA*.

It is clear from (6.2) that N, < RN, N C Ny and R*AR* = A*.
Moreover

RR*A = RR*RA*R = RA*R = A = AR*R
RA*A = RA*RA*R = AA*R .

Hence (6.3a) holds. The relation (6.3b) and (6.3c) follow from the com-
putations

A*R = R*AR*R = R*A, RA* = RR*AR* = AR*
(A*R)* = A*RR*A = A*A, (AR*))= AR*AR* = AA* .
In view of the corollary to Theorem 3.5 it is seen that RA-'R is
the reciprocal of A* = R*AR*, that is, A** = RA*R. This proves the
theorem.

It is easily seen from the formula (6.2) that N, = N,if and only
if Mee = N,.. In addition we have the following

COROLLARY. An operator A 1is self-adjoint relative to an ele-
mentary operator and only if

(6.4) A=RR*A = AR*R, R*A =A*R, RA* = AR*.
The existence of elementary operator R relative to which 4 is self-

adjoint is established in the following

THEOREM 6.2. Given an operator A from $ to ' there is a unique
elementary operator R such that A is self-adjoint relative to R, N, =
Nz and A*R is nonnegative. The operators AR, AR* and A*'R*
are also nonnegative and N = Ny

In order to prove this result P be the square root of A*4. Then
P is nonnegative and %, = N,. We shall show that the operator R =
(P~'A*)* has the properties described theorem. Observe first that

(6.5) R2 AP', R* 2 P'A*,
and hence that
E=R*R2 P'A*AP™' = P'P*P~' = (P'P)(PP™) .

This is possible only in case K is a projection. Hence R is elementary
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and Mz =N, =N,, N, = Np. By Theorem 8.5, the operators R*A
and A*R are closed. Moreover by (6.4).

E=R*R2 R*AP*', E=R*R2 P'A*R.
It follows that P*R = R*A = 0. Consequently
RP = RA*R = RR*A = A,

the last inequality holding since N, = N.. and RR* is a projection on
9. Since A7'R= P!, AR* = RPR*, A*'R* = RA'RR* = RP'R*,
these products are nonnegative. The uniqueness of R follows from
(6.3¢c) and the uniqueness of the square root of A*A.

The elementary operator R described in Theorem 6.2 will be called
the elementry operator belonging to or associated with A. The pro-
jections £ = R*R, £’ = RR* are such that £'A = AE = A and will be called
the projection associated with A. It should be observed that if we
set P=A*R, @ = AR*, then, A = RA*R = RP = QR. This formula
is commonly called the polar decomposition of A. It was first established
for an unbounded operator in Hilbert space by J. von Neumann.!

COROLLARY. If R is the elementary operator associated with A,
then R 1is the elementary operator associated with A*™' and R* s the
elementary operator associated with A* and A

THEOREM 6.3. Let A be an operator from $ to  and let R be the
associated elementary operator. Then A is normal if and only if R*
commutes with A. If A is mormal so also is R. The operator A is
self-adjoint if and only if R 1is self-adjoint and commutes with A.
Finally A 1is self-adjoint and monnegative tf and only if R is a
projection.

Since A*A and AA* are equal if and only if their square roots R*4A
and AR* are equal, it follows that A is normal if and only if A com-
mutes with B*. If A = A* then R*A = AR* = RA, by (6.3b). Hence
R=R* and R commutes with A. Conversely if R commutes with A
and R= R*, then A is normal and A*R = RA = AR. Hence A* = A.
If R is a projection, AR = RA*R’*= RA*R = A = RA. Hence 4 is
self-adjoint and nonnegative. The converse is immediate and the theorem
is established.

COROLLARY 1. If A 1is a self-adjoint operator from  to 9, it is
expressible as the difference A = A, — A_ of orthogonal nonnegative

+ Neumann, J. v. Uber Adjungierte Funktionaloperatoren Annals of Math., 33 (1932),
294-310.
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self-adjoint operators.

This follows because its associated elementary operator R is self-
adjoint and hence is the difference R = E. — E_ of two orthogonal
projections. Since K and E = E, + E_ commute with A so also does
E. and E_. Using this fact it is seen that A. = AF., A_ = AE_have
properties described in the corollary.

COROLLARY 2. If A 1is self-adjoint relative to an elementary

operator T so also is its associated elementary operator R, that is R
= TR*T.

7. #*-orthogonality and sections. Two operators A and B will be
said to be x-orthogonal if their carriers are orthogonal and their ranges
are orthogonal. This is equivalent to the statemnt that A*B =0 (or
B*A =0) on a dense set in  and AB* =0 (or BA* = 0) on a dense
set in . It is clear that A is *-orthogonal to B if and only if 4*
is x-orthogonal to B. If one of the pairs A, B; A*, B*; A, B™
A*L B*t form a x-orthogonal pair, then the remaining pairs form
*-orthogonal pairs. Finally two operators A and B are x-orthogonal if
and only if their associated elementary operators R and S are k-orthogo-
nal. The following result is readily verified.

THEOREM 7.1. Let B and C be x-orthogonal operators from 9 to
9. Then A= B+ C is an operator and A™ = B~ + C~!, A* = B* +
C*, A** = B*' + C*'. Moreover A is elementary if and only if B
and C are elementary. If S and T are respectively the elementary
operators associated with B and C, then R =S + T is the elementary
operator associated with A = B + C.

An operator B will be called a section of an operator A, if there
is an operator C *-orthogonal to B such that A= B+ C. If Bis a
section of A, its associated elementary operator S is a section of the
associated elementary operator K of A. As a first result characterizing
sections of A we have the following.

THEOREM 7.2. Let E=A"A, E' = AA~ be the projections as-
sociated with A. Let F, F' be projections in O and ' respectively.
Suppose that AF 2 F'A., Then EF = FE and F'F' = F'E'. Moreover
AF is a section of A and its adjoint is A*F’,

Since the domain of F’A is <7, it follows from the relation AF 2
F'A that B = AF is dense. Since B is closed, it is an operator. Since
AFE = A it follows that AFE 2 F'A. Hence AFE — AF = A(EFE —
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EF)=0 on &7,. This possible only in case EFE = EF and hence only
in case EF = FE. Similarly, since A*F' 2 FA*, it follows that F'E’
= E'F'. Moreover B* = A*F'. The projections associated with B are
accordingly G = EF and G' = E'F’. The operator C = A(E — G) has
E — G and E' — G’ as its associated projections. It follows that C and
B are x-orthogonal. Moreover A = B + C and the theorem is established.

THEOREM 7.3. Am operator B is a section of A if and only if A*B
= B*B and AB* = BB*.

If A= B+ C, where Bis *-orthogonal to C, then A*B = (B* + C*)B
= B*Band AB* = B*B. Conversely suppose that A* B= B*B and AB* =
BB*. Let FF= B™'B, F' = BB~'. Then

B* = A*BB—' £ A*F', B= AB*B*'Z AF'.

It follows that F'A < B< AF and hence that B= AF. In view of
Theorem 7.2 the operator B is a section of A, as was to be proved.

THEOREM 7.4. Let R be an elementary operator and let E = R*R.
Let F be a projection in . Then S = RF is a section of R if and
only if EF = FE. Similarly if F' is projection to ', then F'R is a
sectton of R if and only if E'F' = F'E’, where E' = RR*,

If S= RF is a section of R, then
S*S= R*S = R*RF = EF,
is a projection in . Hence EF = FE. Conversely if EF = FE then
R*S = R*RF = EF = FEF = FR*RF = S§*S ,
SS* = RFR* = RS* .
Consequently, S is a section of R, by Theorem 7.8. The last statement
in the theorem follows similarly.
8. *-commutativity, A bounded operator B from $ to ' will be
said to *-commute with an operator A from $ to o’ if
8.1) A*B2 B*A, AB* 2 BA*.

It should be observed that products A*B and AB* appearing in (8.1)
are closed and dense and hence are operators. In the present section
we shall derive some elementary properties of *-commutative operators
of this type. Throughout this section the operator B is restricted to
be bounded, while A is arbitary. The associated projections will be
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denoted by
8.2) E=474A4, E'=4A", F=B'B, F'= BB,
as a first result we have
LEMMA 8.1. Suppose that B #-commutes with A. The product

A*B s self-adjoint and is the closure of B*A. Similarly, the product
AB* is self-adjoint and is the closure of BA*.

Suppose that B *-commutes with A and that A*B is not the closure
of B*A. Then there is vector x, = 0 in the domain of A*B such that
(2, ) + (A*Bzx,, B*Az) = 0
for all x in <7,. Since (B*A)* = A*B it follows that
(8.3) (o, ) + (A*BA*Bx,, x) = 0

for all z in < ,, and hence for all x in ©. Choosing « = B*Bz, and
making use of (8.1) we find that

(“‘.Ur B*on) + (A*AB*B(.UO, B*BZO) = (.
Since B*Bx, is in &7, we have
|| B2y || + || AB*Bx, ||* = 0

and hence Bx,=0. Using (8.3) we find that x, = 0, contrary to our
choice of z,. The closure of B*A is accordingly A*B. The last state-
ment in the lemma follows by symmetry.

LEMMA 8.2, Suppose that N, = Ny and N, = Ny, If the first of
the relations

(8.4) A*B2 BA, AB* 2 BA*,
(8.4b) A-'BD B*A*', A*'B* 2 BA™,
(8.4c) B-'A*1 2 A'B*', B*1A- D A*'B-,
(8.4d) B-'A D A*B*', B*'A* 2 AB-,

holds, so the others hold also. If (8.4) holds, the products appearing
on the right are operators.

The last statement in the theorem follows from Theorem 8.5. Sup-
pose now that (8.4a) holds. Then A*B = B*A on <r,. Consequently,
on & ,., we have

A*—-IA*BA»I —_— A*—IB*AA—I —_ A*—IB* .
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Hence the second relation in (8.4b) holds. The first relation follows
similarly. The right and left members of (8.4c) are the reciprocals of
the corresponding right and left numbers of (8.4a). Hence (8.4c) holds.
Similarly (8.4d) holds.

LEMMA 8.3. Suppose that B x-commutes A. Then A and B are
expressible uniquely as sums of sections

(8.5) A=A,+4,, B=B,+ B,

such that (a)A, s *-orthogonal to B and B, is *-orthogonal to A: (B)
B, x-commutes with A, and N, = Nz, Ny = Ny  Moreover

(8.6) A, = B*'A*B, A} = B7'AB*.
Conversely, if A and B are expressible in the form (8.5) such that
(@) and (B) hold, them B x-commutes with A.

Suppose first that B x-commutes with A. Using (8.1) and (8.2) it
is seen that
EB*A = B*A, E'BA* = BA*, FA*B= A*B, F'AB* = AB*.
Hence
EB*E’' = B*E': E'BE = BE, FA*F'= A*F' F'AF = AF.

Consequently BE = E'B, AF 2 F'A. In view of Theorem 7.2 it follows
that A, = AF, B, = BE are respectively sections of A and B, each
having EF and E'F’ as their associated projections. We have according-
Iy R, = Na, N = Ny = z%;. Choose 4, and B, so that (8.5) holds.
The operator A, has ¥ — EF and E' — E'F’ as its associated projections
and is accordingly *-orthogonal to B, B,, B, and A,. Similarly B, is
*-orthogonal to A, A,, A, and B,. Using (8.1) again we see that

BfA, = EB*AF & EA*BF = (A + AX)(B, + B,) = A’B, .

Likewise B,AFf = A,Bf. This proves the first conclusion of the lemma.
The last statement is immediate.
It remains to obtain the formulas (8.6). To this end observe that

B*'A*B = Bf'A!B, 2 Bf'BfA, = A, .

In view of the result we may suppose that A = A,. Assume that A #
B*'A*B. Since B*'AB* and A are closed, there is a vector x, # 0
such that

(8.7 (2o, ) + (B**A*Bx,, Ax) = 0
for all # in <7 ,. Consequently, by (8.4d),
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(2, x) = —(A*B*'A*Bux,x) = —(B'AA*Bux,, x)

for all z in <, and hence for  in . Choosing ¥ = B*Bz, we find
that

|| B, || = —(AA* B, Bxo)) = —|| A*Bu, ||" .

This relation together with (8.7) can hold only in case x, = 0. It follows
that the first formula in (8.6) holds. The second is obtained by sym-
metry and the lemma is established.

COROLLARY 1. Suppose that B x-commutes with A. The associated
projections (8.2) satisfy the relation EF = FE, BE'F'= F'E'. Moreover
R, =R, if and only if i = NE.

As a further result we have

COROLLARY 2. If an elementary operator T x-commutes with A,
then TA*T is a section of A.

In view of Lemma 8.2 and 8.3 we have

COROLLARY 3. Suppose that B *x-commutes with A. Then B
*-commutes with A*~! and with @A + BA*™, where a and B are posi-
tive numbers.

The restriction that «, B are positive is made only to insure that
aA + BA*! be closed.

LEMMA 8.4, Let T be an elementary operator such that TA*T =
A and suppose that B x-commutes with T. Then B x-commutes with
A if and only if AT*B 2 BT*A.
If B x-commutes with A then
AT*B = TA*TT*B = TA*B2 TB*A = BT*A .
Conversely, if AT*B2 BT*A, then
A*B=T*AT*B2 T*BT*A = B*TT*A = B*A
AB* = TA*TB* 2 TB*TA* = BT*TA* = BA*

as was to be proved.
9. Decomposition of an operator. As a first result we have

THEOREM 9.1. Let R be the elementary operator associated with



1334 MAGNUS R. HESTENES

an operator A from O to 9. Let T be second elementary operator
that *-commutes with A. Then T x-commutes with R and the operators
A, R, T are expressible uniquely as sums and difference

91 A=A, +A, +A., R=R+R,+R., T=T +R, —R.

of mutually *-orthogonal operators such that R,  R., R_ are the ele-
mentary operators associated respectively with A, A,, A_ and T, 18
x-orthogonal to A. Moreover T is *-orthogonal to A, and R, and *-com-
mutes with A,, A_, R, and R_.. Conversely if A, R, T are expressible
wn the form (9.1) then T sx-commutes with A and R.

Suppose that 7' x-commutes with A. Then, by Lemma 8:3, they
are expressible in the forms A=A, + A, T= T,+ T, where A4, is
*-orthogonal to T and A,, T, is #-orthogonal to A and T, %, = N,,
Ny = Ny and T *-commutes with A, Moreover, by Theorem 7.1 R =
R, + R,, where R, is the elementary operator belonging to A, and R,
is the elementary operator belonging to A,. In view of this result we
can restrict ourselves to the case in with A4, =0, T, =0, R, =0. Then
Ny =Ny =N and N, = Ny = Neo. Since A*T is self-adjoint, its as-
sociated elementary operator S is self-adjoint and hence is expressible
as the difference S= E, — E_ of two orthogonal projections E,, E_
whose sum is E = R*R. The operator A*TS is nonnegative and self-
adjoint. It follows from Theorem 6.1 that R = TS and T = RS. Set-
ting R, = RE,, R_ = RE_ we see that

R=RE=R.,+R., T=RS=R, —R_.

Since AR* = AR* + AR* and AT* = AR* — AR_ are self-adjoint,
so also are AR*¥ and AR*. Moreover ART >0 and AR* >0 since
they are orthogonal and AR* = 0. The elementary operators R, and
R_ are therefore the elementary operators associated respectively with
A, =AFE, and A_ = AE_. Since R, and R_ are *-orthogonal it follows
that A, and A_ are *-orthogonal. Consequently A, R, T are expressible
in the form (9.1). The remaining statements in the theorem are easily
established.

COROLLARY. Two elementary operators R and T on $ to O x-com-
mute if and only if there exist mutually x-orthogonal elementary
operators R, R., R_, T, such that R=R,+ R, + R, T=T,+ R, —
R_. Moreover, this representation s unique.

THEOREM 9.2. Let R be the elementary operator associated with
an operator A from £ to . Given a positive number \ there are
unique decompositions.
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(9-2) A= AA+ + Ay + As-, R = RM— + RAo + Ry

of A and R into sections such that R,., Ry, R.., K., — R._ are 7re-
spectively the elementary operators associated with A,., A, A,_, A —
AR, Moreover,

(9.3a) A, = R,A*R,,, An=\R,, A.-=R,_A*R,_.
The relations

(9.3b) TAvz || >N Bzl , (Awz, Byx) > )] Bezll,
hold for all x in <7, such that Ry,.x + 0 and the relations
(9.3¢) NAvz |l <M Byxll, (Arz, By2) < M| Rya|?

kold for all x in O such that R,_x + 0. If M <p, then A,_ + A,, is
a section of A,., and A, + A, 18 a section of A,,. Similarly R,_ +
R,, 1is a section of R, and R,, + R,. is a section of R,,.

In order to prove this result let C = A — AR, where ) is a fixed
positive number. Let T be the elementary operator associated with C.
Since R #-commutes with A and R, it follows that E *-commutes with
C. By virtue of Theorem 9:1 R also *-commutes with 7. Similarly T
k-commutes K and C and hence also with A = C + MR. Applying Theorem
91 to A, R, T and to C, T, R it is seen that they aree xpressible
uniquely as sums

A:A0+A++A__, R=R0+R++.R__
c=¢+C,—C., T=T,+R, —R._

of mutually #*-orthogonal operators such that K. is the elementary
operator associated with A, and C,; R_ is the elementary operator
associated with A_ and C_; R, is the elementary operator associated
with 4,. Since N, D N, it follows that C, = T, = 0. From the relation
C = A — MR we obtain the relations

AO - )\’RO y A+ == C+ + XR+ y - = "—C_ + XR_ .
Moreover, if we set £, = R*R,, E_ = R*R_
R*A, =R*C, +)\E., R*A_= —R*C_+ \E_.

It follows that the second relations in (9.3b) and (9.3¢) hold. If x is
in &, then

A | = N[ R []* = || Cox || + 2MRY Ciw, 2) 2 0 .

Hence the first relation in (9.3¢) holds. Since P= R*A_=0and @ =
R*C_ = 0 satisfy the relation P+ Q@ = AE_, they are bounded and
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commute. Hence PQ = A*C_ = C*A_ = 0. Using the relations
|| A_w ||* + 2(A*C_w, x) + || C_z ||* = N || R_x ||*

it is seen that the first relation in (9.3c) holds.

In order to prove the last statement with £ > A apply the results
described in the first part with A4,., R,,, ¢# playing role of A4, R, .
One then obtains the partitions

(9.4a) Av=4u +An+ Ay, Ri— R+ Ro+R,.
Setting

(9.4b) A, =A.+A,+A_, R_=R,+R,+ R,
We have

A=Ay +Ay+A_, R=R., + R+ R._

with B,, — R,_ as the elementary operator A — ¢#R. The last statement
of theorem follows from the relations (9.4). This completes the proof
of Theorem 9.2.

COROLLARY 1. Suppose that A is bounded and set M = || A||. Let
m be the largest number such that || Az || = m|| Rx|l. If x = M, then
R,=0. If m>0 and 0 <N <=m, then R_=0. If m<\<M,
then | A — AR|| £ max [M — »\, » — m].

COROLLARY 2. The operator R, = R,,+ R.- (0 <\ < ) is the
elementary operator belonging to A, = A,, + A_ = R\A*R,. Moreover

(1) lmR =R, ImR, =0, limA,=A4, limA,=0.
A=co A=0 A=co A=0

(2) If »< p, then R, is a section of R,, A, is a section of A,
and

MRzl < || Aw — Aw || = ¢l Bl

3 lim R, =R,, lim A, = A,.
w=A+0 w=a+0

Let A,(0 <X < ) be the one parameter family of sections of 4
described in the last corollary. By the principal spectrum A of A will
be meant the set of all numbers A, on 0 <\ < o such that A4, is con-
stant on no neighborhood of A,. The principal spectrum of A* is also
4. The spectrum of A~* and A*~' is the closure of the reciprocals 1/:
of the points N = 0 in A.

If R, is the elementary operator of A, described in the last corol-
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lary, we have the representations
A——-S MR, , A*—:g MR},
0 0

A*-t — Sw)v"dRA . A= rx-ldR;‘ ,
0

0

where the integrals are defined in the usual manner. It should be
observed that FE, = R}R, and E) = R,R} are resolutions of £ = R*R
and E' = RR*, respectively. Since R, = RE, = E}R we have, from
the polar form of A,

A= RS:xdEA - (g:xdE;)R :

It follows that the results given above can be derived from the self-
adjoint case, if one so desires.
An extension of the results given above is found in the following

THEOREM 9.3. Let A be an operator and T be an elementary
operator such that A = TA*T. Given a real number N there exist a
unique decomposition

(9.6) A=Ay +Aw+ A, T=Ty+Thw+ The (—o0 <A< )
of A and T into sections such that

(9.73) A)\+ = T)\.(_A* T)\+ N A)\o = XT,\O y A)\__ = T)\_A* T)\_
(9.7b) (A, .z, Thx) > M| Tz | for all © in =, having Ty,x + 0,
(9.7¢) (As_z, T\x) < N || Taz | for all x in =2, having T,_x +0 .

If p> 2\, then A+ A,_ is a section of A,.., T+ Th_ is a section
of T., Ay + A, is a section of A,y and T, + T, is a section of Ths.
In order to prove this result observe first that by Theorem 9.1 the
operators A, R, T have unique decompositions
A=A +A4,, R=R +R,, T=T,+ R, — R,

where R,, R, are the elementary operators associated with A,, A, respec-
tively and 7T, is #-orthogonal to A. The terms A, and R, described in
Theorem 9.1 are zero since A = TA*T. If )\ is positive let

A1 = A1>\+ + Alt\o + Am— ’ R1 = R1A+ + Rmo + Rx\— ’
be the decompositions of A, and R, described in Theorem 9.2. Then

A}d_ = A1A+ , A)‘o = Ano ’ A}\— = An— + A2
TM = Ry. T,\o = Ruo ’ T)\— = Rm— - Rz + TO
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have the properties described in Theorem 9.3. If A = 0 set

A)\+:A1y Ayn=0, A, =4,
T.. =R, Ty=T,, T. =—R,.

Ifrx=—px<0let
Az = Azp--:— + Azmo + Azu— ’ Rz = Rz;H— + Rzuo + Rzy-—
be the decomposition of A, R, described in Theorem 9.2. Then

A=A + A2M~ y Ase = Ao, A= Azm— (,U = —\)
T\w=R,— Ry, Th= Ry, T= — Ry

have the properties described in Theorem 9.3. The uniqueness of the
decomposition follows from (9.7) and the connections between 7 and R.

COROLLARY. The operators T, = T+ T\, A, = A, + A,_= T,
= A*T, have the following properties:
) imT,=T, AlimTA:0, ImA, =4, limA4,=0.
— A=—o0

A=+oo =—o A=+oo =
(2) If M <p, T\ s a section of T,, A\ is a section of A,
@) lim T,.=T,, lim A4, = A..

H=A+0 B=A+0
4) (T\x, Ax) = N|| Tox || for all x in =, .

In view of the results obtained in the last corollary we shall define
the spectrum A of A relative to T to be the set of all real numbers
A\, such that the operators A, described in the last corollary is constant
on no neighborhood of )\,. The spectrum of A* relative to T* is also
A. Similarly the spectrum of A*~' relative to T and A~!' relative to
T* is the closure of the reciprocal 1/» of the points A #0 in 4.
Moreover A and A* are representable

A= S“’ T, , A* = r TS

If gaA = mT, then

)

a =" var, a0 =T

—o0 —o0

When =9 and T is the identity one obtains the usual spectral
resolution for self-adjoint operators.

10. Spectrum of the gradient operator. Let  be the class of all
complex valued Lebesgue square integrable functions x(f) = x(¢,, -- -, ts)
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of points t = (¢, ---,t,) in an m-dimensional Euclidean space. It is
convenient to normalize a function in © to be equal to the limit of its
integral mean whenever these limits exist and setting 2(tf) = 0 elsewhere.
The class so normalized forms a Hilbert space over the field of complex
numbers with

(951, xz) = S;%(t)mdt

as the inner product, where Z(t) denotes the conjugate of x(¢). As is
well known the Fourier transform
(10.1) &(s) = cg“ e-ista(t)dt , St = s+ +re + Sntn

where ¢ = (2/7)™?, defines an isometry on  onto  and hence is an
elementary operator, whose inverse is given by

(10.2) w(t) :CS ¢3(s)ds .

Let <7 be the class of all functions « in  that are linearly abso-
lutely continuous® and whose partial derivatives are in . A function
x in &7 is characterized by the condition that s&(s), -:-, s,%(s) are
square integrable, where Z(s) is the Fourier transform of z. In fact
one has

——iM = cr e's,x(s)ds .
ot, —oo

The gradient operator A defined by —1(8/ot,), ---, —i(0/0¢,) is a closed
operator from © to the cartesian product £ of © by itself m times.
The domain A is <. It is not difficult to see that A is the closure of
the restriction of A to the class of functions of class C~ with compact
support.

Let y(t) = [y.(t), « - -, Ya(t)] be a function in £'. If y(f) is of class
C= and has compact support, then the divergence

. . 0y . Oy
divy =1—-2+ + ceo 4 j—Zm
Y ot, ot.,
is in . This operator from 9’ to $ is preclosed and its closure is the
adjoint A* of A. If §(s) is the Fourier transform of y(t) then y is in
4 if and only if the sum s,7.(s) is square integrable. Moreover
Ary = cr

e“'s,J.(s)ds, (a summed) .

5 Calkin J. W. ““Functions of several variables and absolute continuity I,”” Duke Math
J. Vol 6 (1940) pp. 170-186. See also Morrey Jr. C. B. “Functions of several variables
and absolute continuity II, Duke Math J. 6 (1940), 187-215.
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The elementary operator R associated with A is given by the
formulas.

(Rx)y = r e“‘-—slﬁ(—s)ds (@=1,.+m),
— s

R*y — CS‘” eisz Smgw(s) dS
— |8
where |s| is the distance from s to the origin. The carrier of B* is
the set of all functions ¥ in ©" whose Fourier transforms ¢,(s) are of
the form s,Z(s)/| s| such that Z(s) is in . Similarly the carrier of A*
consists of all functions y in ' whose Fourier transform is of the form
7.(8) = s,%(s)., such that |s|*Z(s) is in . It is easily seen that

(A*‘lx),, — CSN gtst 8,%(8) ds
" lsP
A-—ly — CS‘” eiss sagw(s)ds .
" sp
The operator A*A is, of course, the Laplacian.
The operators A,, R, described in Corollary 2 to Theorem 9.2 are

defined by the formulas

(A), = cS” ¢5tp, (5)8.8(s)ds

Sm&}(s) dS

s

where @,(s) is the characteristic function of the sphere |s| <. The
principal spectrum of A is accordingly point set 0 < A < o,

e’ ' py(s)

(Ry2). = cr

11. Principal values and principal vectors. In the present section
we shall be interested in certain special points of the principal spectrum
of A which we shall call principal values of A. Before defining this
concept it will be convenient to introduce the concept of the rank of
an operator. By the rank of an operator A will be meant the dimen-
sion of its carrier, or equivalently the dimension of its range. It is
clear that the ranks of A, A*, A7, A*', A*A, AA* are the same. If
the rank of A is finite, then A is bounded and reciprocally bounded.

A number » on 0 < )\ < o will be said to be a principal value of
an operator A if the rank of the section A,, = AR,, of A described in
Theorem 9.2 is not zero. The rank of A,, will be called the order of
) as a principal value of A and A,, will be called the corrersponding
principal section of A. The non-null vectors in the carrier of A4,, will
be called the principal vectors of A corresponding to A, The non-null
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vectors in range of A,, will be called the principal reciprocal vectors
of A corresponding to . The latter are the principal vectors of A
corresponding to 1/x. The order of 1/» as principal value of A4 is
equal to the order of )\ as a principal value of A. A number ) is a
principal value of A if and only if it is a principal value of A* and its
order as a principal value of A is equal to its order as a principal
value of A*. A positive number ) is a principal value of A if and
only if \?is a principal value of A*A. Again the order of corresponding
principal values are the same. The principal values of A*A are the
nonzero eigenvalues of A*A. The eigenvectors A*A corresponding to
nonzero eigenvalues are the principal vectors of A. Similarly the
eigenvectors of AA* corresponding to nonzero eigenvalues are the princi-
pal reciprocal vectors of A. Principal values of A belong to the princi-
pal spectrum of A. Isolated points of the principal spectrum of A are
principal values of A.

A vprincipal value » of A can be characterized in another way. 4
value ) is a principal value of A if and only if there is a non-null
vector x in its carrier such that Ax = MRx, where R is its associated
elementary operator of A. The vector ¥ = Rx is a principal reciprocal
vector of A and satisfies the relation A*y = AR*y. Consequently,

(11.1) Ar =Ny, A*y =) x.

Conversely if )\ is a positive number such that there exist a vector
x#0 on =, and a vector ¥ #+ 0 in <&, such that (11.1) holds, then
M is a principal value of A, x is a principal vector and ¥ is a principal
reciprocal vector. IFrom these remarks, it follows that the principal
values of A are the positive eigenvalues of the self-adjoint operator

(0 A*
A0
from the cartesian product © x ' to © x ©'. It is clear that the
foregoing results could have been obtained from the study of this self-

adjoint operator. However, the author prefers the more direct approach
here given.

THEOREM 11.1. Suppose the principal spectrum of A apart from
A =0 consists of a set of isolated points A, N, +--. Then ) 28 a
principal value of A and has associated with it a unique elementary
operator R; as described in Theorem 9.2. The elementary operators
R, R, -+, are mutually *-orthogonal and

A=3uR,, A*=3I\R*, A*'= E%Ri , A7 = 2’—1—R:‘ .

¥ 4
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12. Further results on *-commutativity. Throught this section we
shall be concerned with a closed operator A and bounded operator B
from $ to ©'. As a first results we have the following converse of a
statement in Lemma 8:4.

LEMMA 12.1. If B x-commutes with aA + BA™ for every pair
of positive numbers o and B, then B x-commutes with A.

Suppose that B *-commutes with C = a4 + B,A** and D = a,A +
B.A*"' where a;, B, a,, B, are positive numbers such that a8, — 8.,
= 1. These operators have the common domain & = o, N P 4.
The operator 3,C — a, D is the restriction of A to <. Since C*B =
B*C and D*B = B*D on <» it follows that A*B= B*4A on <. In
order to show that A*B= B*A on <7, consider a vector x in <7,.
Let z, = E,x — E,,x, where E, = RfR, and R, is the section of R
described in Corollary 2 to Theorem 9.2. The vector x, is in <& and
z, > x, Az,=> Az. Consequently A*Bx, = B*Ax, = B*Ax. Since A*B
is closed we have A*Bx = B*Ax. We have accordingly A*B2 B*A.
Similarly AB* 2 B*A and the lemma is proved.

COROLLARY. If &' =9 and ad + BA*' s self-adjoint for all
pairs of positive numbers a and 3, then A is also self-adjoint.

This result is obtained from lemma by selecting B = I, the identity.

LEMMA 12.2. Suppose that © = 9 and that B *-commutes with
A. If one of A or B is self-adjoint and positive, the other is self-
adjoint.

Consider first the case in which A is bounded and A = A* > 0.
Since AB= B*A and AB*= BA, the difference C = B — B* sgatisfies
the relation AC = —CA. Hence A"C = (—1)"CA" and e'4C = Ce 4,
The inverse e is ¢~ %4, We have accordingly

C = et4Ceot4

Since A > 0 it follows from the spectral theorem for A that lim, .. e "z

=0 for each # in . Consequently C =0, that is, B = B* for the
case here considered.

If A is reciprocally bounded, then A*~!is bounded and B #%-commutes
with A*-'. If A is self-adjoint and positive, so also is A* ' = A-' and
B x-commutes with A~'. Hence B = B* by virture of the result just
obtained. If B = B* > 0 then A* ' is self-adjoint and hence A is also
self-adjoint.
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In the general case if A= A* >0, then A + A~ is self-adjoint,
reciprocally bounded and positive. Since B x-commutes with A + A7,
it follows that B = B*. If on the other hand B = B* > 0, then C =
aA + BA* ' is self-adjoint whenever o and 3 are positive. This follows
because C is reciprocally bounded and *-commutes with B. By virtue
of the last corollary the operator A is self-adjoint and the lemma is
established.

LEMMA 12.8. Let R and S be the elementary operators associated
with A and B respectively. If B x-commutes with A, then B *-com-
mutes with R, and S *-commutes with A.

In order to prove this result we may suppose, by Lemma 8.3 that
N,=Ng and N, =Nz, In fact, we may assume that N, =N, =0,
N =Ng =0. Under these assumptions P= A*R = R*A is positive
and self-adjoint. Setting @ = R*B we obtain

PQ =A*RR*B=A*"B=2 B*A = B*ER*A = Q*P
P*Q = R*AB*R 2 R*BA*R = QP.

Hence @ *-commutes with P and @ = R*B = B*R by the last lemma.
Similarly RB* = BR*. Consequently B *-commutes with R.

In order to prove that S #*-commutes with A it is sufficient, by
Lemma 12.1, to show that S *-commutes with C = a4 + BA*"', where
o and 3 are positive numbers. The operator C is reciprocally bounded
and *-commutes with B. The operator C*' is bounded and *-commutes
with B. Hence S %-commutes C** and also with C. This completes
the proof of the lemma.

LEMMA 12.4. If an elementary operator T x-commutes with A,
then T x-commutes with a section A, of A if and only if it s-commutes
with the elementary operator R, associated with A,.

Let A, be a section of A and let A, be the section of A such that
A=A,+ A,. Let R, R, be the elementary operator associcated with
A,, A, respectively. Suppose that 7T *-commutes with R,. Since T
s-commutes with R = R, + R,, it follows that T *-commutes with E,.
Consequently T, = R,T*R, and T, = R, T*R, are x-orthogonal sections
of T. The section T, = T — T, — T, is x-orthogonal to A. Consequently
the operators A*T and AT* are expressible as sums

A*T = AFT, + AFT,, AT* = ATy + AT

of orthogonal operators. Hence A}T, and A, T} are self-adjoint and T}
s-commutes with A,. Since AT = AFT, and A, T* = A T}, it follows
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that T x-commutes with A, as was to be proved.

13. Representations of operators as products. The present section
will be devoted to an extension of Lemma 5.2 and some of its con-
sequences.

THEOREM 13.1. Let A be an operator from  to © and let R be
1ts associated elementary operator. There is a unique pair of opera-
tors C and D from  to O such that

(13.1) C+D=R, A=D*'R*C=CR*D*'.
The operators C and D are determined by the formulas
(13.2) C'=A4"7'4+ R*, D*'=A*+ R*

and have R as their associated elementary operator. The operators C
and D are bounded and *-commute. In addition

(13.3a) C-RD-' = D'RC~' = C~* + D
(13.3b) A= C-RD* = D*RC-', A* =C*RD=D-RC*,
A*—l — C*—lR*D = DR*C*—I .

This result is an easy consequence of Lemma 5.2. The operator
A, = R*A is self-adjoint and nonnegative. Let C, and D, be the
bounded nonnegative self-adjoint operators related to A, as described in
Lemma 5.2. The operators C = RC,, D = RD, have the properties
described in the theorem, as one readily verifies. An alternate proof
can be made by defining C and D by (13.2) and making computations
analongous to those made in the proof of Lemma 5.2. Finally, a proof
can be made by the use of the integral representation (9.5) of A. In
this case C and are defined by the formulas.

Y - 1
= dR, , D:S dR, .
¢ Sol+x * c14+n

THEOREM 18.2. Let C be the operator related to A as described
iwn Theorem 13.1. A bounded operator B *x-commutes with A if and
only if B x-commutes with C.

If B *-commutes with A, then B *-commutes with R and A* =
¢* ' — R. Consequently B x-commutes with C** and hence with C.
Conversely if B #-commutes with, C, then B #-commutes with R, C**
= A*'4+ R, A** and A. This proves the theorem. It is clear that
the results described in the theorem hold equally well with C replaced
by D=R-—C.
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We state without proof the following

THEOREM 13.3. Let C be the operator related to A as described
wn Theorem 13.1 and let

ct=<1;‘>R+tc, D,=R—-C(-1=t=1).

The one-parameter family of operators
A, =D 'R*C,=C,R*D* (—-1=t<1)

contains A for t =1, A** for t = —1, R for t =0 and 4s such that
A, (-1 < t<1) is bounded and reciprocally bounded.

As a further result we have

THEOREM 13.4. Let C and C, be the bounded operators related
respectively to two operators A and A, as described in Theorem 13.1.
Then A, is a section of A if and only if C, is a section of C.

Let R, and R be the elementary operator associated with A, and A
hence also with C, and C. If A, is a section of A, then

RC'R,=RA'R,+ RRR*R, = A"+ R, =C[".

Since R, *-commutes with C it follows that C, is a section of C. The
converse is readily verified.

The result given in Theorem 13.2 enables us to extend the defi-
nition of *-commutativity to two unbounded operators A4, and A,. To
this end let C, and C, be the bounded operators related respectively to
A, and A, as described in Theorem 13.1. The operators A, and A, will
be said to #-commute if the operators C, and C, *-commute. This
definition is consistent with the one given heretofore for the case in
which one of the operators is bounded. The result described in Lemma
12.3 is valid without the assumption that B is bounded.

14. Further decomposition of operators. In this section we assume
that A and B are arbitrary operators from  to . As an extension
of Theorem 9.1 we have

THEOREM 14.1. Let R and S be the elementary operators associated
with A and B respectively. If B x-commutes with A, then A, R, B
S are expressible uniquely as sums and differences

A=A +A, +A., R=R,+R,+R_

14.1
( ) B=BO+B+—B_, S:S0+R+_R_
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of mutually x-orthogonal operators such that (x) R, R., R_ are the
elementary operators beloging to A, A., A_ respectively; (8) S, R,, R_
are the elementary operators belonging to B,, B., B_. respectively; (v) A,
and R, are x-orthogonal to B, and S;; (8) B, x-commutes with A. and
B_ x-commutes with A_. Conversely if A, R, B, S are so expressible
then B and S x-commute with A and R.

In view of the results given in the last section we may assume
that A and B are bounded. Suppose that B x-commutes with A4, then
B x-commutes with R, and S *-commutes with A, by Lemma 12.3. By
virtue of Theorem 9.1 applied to A4, R, S, it is seen that A, R, S have
the decomposition (14.1) such that condition («) holds and S, is *-or-
thogonal to R, Applying Theorem 9.1 to the operators B, S, R it is
seen that B, S, R have the decomposition (14.1) such that condition (3)
holds and S, is *-orthogonal to R,. Since the decomposition of R and
S are unique, the decomposition (14.1) holds such that (a), (8), and (7)
hold. Since

A*B= A*B, — A*B_, AB*=A.Bf — A_B*

are self-adjoint it follows that each of the operators on the right are
also self-adjoint. Consequently B. *-commutes with A, and B_ x-com-
mutes with A_. The converse is immediate and the lemma is established.

COROLLARY. If B *-commutes with A there is elementary operator
T such that A = TA*T and B = TB*T.

The operator T = S, + R has this property.

THEOREM 14.2. Suppose that A and B x-commute and are self-
adjoint relative to an elementary operator T. Then the operators A,
A,,A_ B, B,, B_ described in Theorem 14.1 are also self-adjoint re-
lative to T.

Since the elementary operators R and S belonging to A and B are self-
adjoint relative to T it follows that
R, = {(SR*S + RS*R), R = {SR*S — RS*R),

are self-adjoint relative to 7. The same is true for R, and S,. The
theorem follows readily with the help of Lemma 12.4.
The result just given can be extended as described in the following

THEOEM 14.3. Suppose that B *-commutes with A and T 1s an
clementary operator such that A = TA*T and B= TB*T. Then T,
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A and B can be decomposed uniquely in the form
T=T=T+T,+ T+ Ti+ Ty + T, + T, + T,

(14.2) A=A —A + A+ A, + A, — A,
B=B,—B,— B,+ B, + B,— B,

wnto mutually x-orthogonal operators such that () T; is the elementary
operator associated with A; (j =1,2,+++,6) (B) T, is the elementary
operator associated with B, (k=38,4,++--,8) (v). The operators T;,
A;, B, s-commute.

In order to prove this result let A4, B, R, S have the decomposition
(14.1). By virtue of the last theorem the operator 7T *-commutes with
each of the operators given in (14.1). Applying Theorem 14.1 to A,
and T we see that A, can be expressed as the difference A, = 4, — A
of x-orthogonal operators A, and A, whose associated elementary operators
T, and T, are sections of 7. Similarly B, = B, — B;, where B, and B,
are *-orthogonal operators whose associated elementary operators T, and
T, are section of 7. Applying Theorem 14.1 to A,, T; B,, T; A_, T
and B_, T we obtain differences A, = A, — A,, B, = B, — B, A_= A,
— Ay, B_ = B; — B, of *-orthogonal operators such that A,, B; have the
same associated elementary operator 7%, a section of 7.

From these relations one obtains the decomposition (14.2), the section
T, of T being x-orthogonal to A and B. In view of Theorem 14.1, the
operator T, A;, B, *-commute. This proves the theorem.

THEOREM 14.4. Let A,., Ay, Asr- (0 < A < ) be the sections of A
described in Theorem 9.2 and let B, By, B (0 < ¢t < ) be the
corresponding sections of B. Suppose that B x-commutes A. Then the
operators B, B.., By, B., B, = By, + B._ *-commute with each of the
operators A, A, ., Ax, As_, Ay = A, + A,_.

In order to prove this result recall, by Theorem 9.2, that T = R,,
— R,_ is the elementary operator associated with C = A — AR. Since
B x-commutes with A it *-commutes with R, C, T, RC*T and hence
also with

+ = C + RC*T= 2(A)‘+ - XRA+) y C_ = C - RC*T= 2(AA_. - ):R)‘..) .

The elementary operators of C, and C- are R,. and R,_ respectively.
It follows that B *-commutes with A,., A,_ and hence also with A.,,.
Similarly B,., B, B.- *commutes with A. The operators therefore
k-commute, as described in the theorem.

THEOREM 14.5. Suppose that B x-commutes with A and that T s
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an elementary operator such that A = TA*T, B= TB*T. Let A,, T\
(—0 <N < ) be the sections A and T described in the corollary to
Theorem 9.3. Let B, T, (—co < pt < ) be the sections of B and T
obtained by having B playing the role of A in this corollary. Then
A, A, T\, B, B, T., T\. = T\T,T. *-commute with each other. More-
over

A= S°_° \T, = S S” T, , B= S”_’ pdT, = S‘” Y_" pd Ty, .

—o0 J —

If the scalars are the complex numbers, then

a+iB=|"|" o+ imdr..

15. Bounded normal operators relative to 7. In the present
section it will be assumed that the scalars are the complex numbers.
Let T be an elementary operator from  to ' and let A(T) be the
class of all bounded operators A such that the relation

(15.1) AT*T=TT*A=A

holds. Let <Z(T) be the class of all operators A in A(T) that *-com-
mute with 7. These are the operators A in A(T) that satisfy the
relation A = TA*T, that is, the operators in <Z(T) that are self-adjoint
relative to T. Every operator A in A(T) is expressible uniquely in the
form A = A, + 1A, where A, and A, are in B(T). The operators A,
and A, are given by the formulas

(15.2) A =3A+ TA*T), A, = x(A— TA*T).

It should be observed that, by virtue of Lemma 8.4, two operators A
and B in <#(T) *-commute if and only if AT*B = BT*A.

Let & (T) be the class of all operators A in A(T) such that TA*A
= AA*T. An operator A in &(T) will be said to be normal with
respect to T. It is clear that an operator that is self-adjoint relative
to T is also normal relative to 7. An operator A in 2(T) is in <& (T)
if and only if the operators A, and A, defined by (15.2) *-commute. In
order to prove this fact observe that

B=AT*A, + A,T*4A,, C=AT*A, — A,T*A,
are in < (T) and
TA*A =B +1C, AA*T=B—C.

Consequently TA*A = AA*T if and only if C =0, that is, if and only
if A, *-commutes with 4,. If A is in &(T), there is by virtue of
Theorem 14.5, a section T, corresponding to each complex number «
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such that
A= Sad T,

where the integral is taken over the complex plane.

Given an operator A in &(T) let (A, T) be the class of all
operators B in &(T) such that TA*B = BA*T and AT*B = BT*A.
If Bisin (A, T), then TB*A = AB*T also. Moreover, TB*T is in
& (A, T). Let M(A, T) be all operators B in & (T) such that (4, T)
Cc (B, T). If B and C are in M(A, T), so also are aB + BC and
BT*C, where « and B are complex mumbers. Moreover

| BT*Cll = IBIlIICIl.

It follows that if we define BT*C to be the product of B and C, the
class TY(A, T) is a Banach algebra with the operator T as a unit
element and TB*T as an involution. The subclass <“(4, T) of all
operators B in YA, T) such that B= TB*T form a Banach algebra
over the reals.

16. Compact and reciprocally compact operators. An operator A
from $ to ' will be said to be compact if given a bounded sequence
{x,} in &r,, the sequence {Ax,} has a strongly convergent subsequence.
An operator A will be said to be reciprocally compact if its reciprocal
is compact. Since compact operators are bounded, it follows that re-
ciprocally compact operators are reciprocally bounded. It should be
observed that an operator A is compact if an only if given a weakly
convergent sequence {x,} in <r,, the sequence {Ax,} converges strongly.

THEOREM 16.1 Amn operator A is of finite rank if and only if it is
compact and reciprocally bounded. An operator A is of finite rank
if and only if it is bounded and reciprocally compact An operator
A s of finitte rank if and only if it s compact and reciprocally
compact.

Suppose that A is compact and reciprocally bounded. Then %, and
&, are closed. Let {x,} be a sequence in &, converging weakly to a
point x,. Since A is compact ¥y, = Ax, converges strongly to y, = Ax,.
it follows that * = A~'y, converges strongly to , = A~'y. Consequently
weak convergence on &, implies strong convergence. It follows that
&, is of finite dimension. Hence A is of finite rank. Conversely if A is
of finite rank, then A is compact and reciprocally bounded. The re-
maining statements follow readily.

THEOREM 16.2 Let A be the sum A= B+ C of two %-orthogonal
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operators B and C from o to O'. Then A is compact, reciprocally
compact, bounded, or reciprocally bounded if and only if B and C
have the same property. If C is of finite rank, then A is compact,
reciprocally compact, bounded, or reciprocally bounded if and only if
B has the same property.

The first conclusion is immediate from the definitions of the terms
involved. The second follows from the first. In view of the second
statement sections of finite rank can be disregarded in determining the
properties of compactness, reciprocal compactness, boundedness and
reciprocal boundedness.

THEOREM 16.3. An operator A is compact if and only if its re-
ciprocally bounded sections are of finite rank. Similarly, an operator
A is rectprocally compact if and only if its bounded sections are of
finite rank.

The second statement follows from the first. If A is compact, its
sections are compact and hence its reciprocally bounded sections are of
finite rank, by Theorem 16.1. Suppose now that A is an operator whose
reciprocally bounded sections are finite rank. Then as was seen in §9,
given a number ) > 0, the operator A can be written as the sum A =
A,. + A, of two x-orthogonal operators such that A, is reciprocally bounded
and A, is of norm at most N. In view of our hypothese A4,, is of
finite rank and hence is compact. It follows that A is bounded and
that &7, = . Let {x,} be a sequence in <7, converging weakly to
zero. Then,

| Az, || = || Axszn || + || sz || = 1 Arsn [l + 0 2 ]]

Since A, is compact we have lim,_..|| A,.2,]| = 0. Consequently lim ,-..sup
|| Az, || £ »M where M is a bound for the sequence || z,|[. Since M\ is
arbitrary it follows that Ax,= 0 and hence that A is compact, as was
to be proved.

THEOREM 16.4. An operator A is compact if and only tf its
spectrum (apart from » = 0) consists of a bounded set of isolated
principal values of finite order. It is reciprocally compact if and
only if its spectrum consists of isolated primcipal wvalues of finite
order bounded away from zero.

Again, the second statement follows from the first. In order to
prove the first statement we use the decomposition A = A4,, + A, of
A into the x-orthogonal sections described in § 9, where ) is an arbi-
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trary positive number. The points of the spectrum of A that exceed
» comprise the spectrum of A,,. The remaining points of the spectrum
of A comprise the spectrum of A,. If A is compact, then A, , is of
finite rank. Consequently the points of the spectrum of A that exceed
M consist of a finite number of principal values of A,., each being of
finite order. Since )\ is arbitrary it follows that the spectrum of A
consists of a bounded set of isolated principal values of finite order.
Conversely if the spectrum of A consists of a bounded set of isolated
principal values of finite order, then A,. is of finite rank for every
value of A. Consequently A is compact, as was to be proved.
The following corollary is immediate.

COROLLARY. If one of the operators A, A*, A*A, AA* is compact,
then the others are compact. Similarly, if one of the operators A,
A* A*A, AA* 1s reciprocally compact so also are the others.

17. Operators of finite character. By the nullity of an operator
will be meant the dimension of its null space. An operator A will be
said to be of finite character if it is of finite nullity and if its bounded
sections have finite rank, or equivalently by, if it is of finite nullity
and is reciprocally compact. Operators of this type play an important
role in the calculus of variations and in existence theorems for elliptic
partial differential equations. In fact the condition of ellipticity is
equivalent to the condition that an operator be of finite character
relative to a suitably chosen norm, provided the domain of the inde-
pendent variable is bounded. The operators described in §4 are of
finite character.

THEOREM 17.1. An operator A is of finile character if and only
if given a bounded sequence {x,} in <, such that {Ax,} is also bounded,
then {x,} has a strongly convergent subsequence. Amn operator A is of
finite character if and only if tt is of finite nullity and given a
sequence {x,} in the carrier &, of A such that {Ax,} is bounded, then
{x,} has a strongly convergent subsequence.

Suppose that A is of finite character. Then the nullity of A is
finite, and A" is compact. Let {x,} be a sequence in %, such that
{Az,} is bounded. Setting v, = Ax, we have x, = A7'y,. Since {y,} is
in the carrier of A and A~ is compact it follows that {x,} has a
strongly convergent subsequence. Suppose next that {x,} is a bounded
sequence in <7, such that {Ax,} is bouneded. Then « is expressible in
the form 2z, = «,, + %,, where z,,e%, and %, € &,. Since N, is of
finite dimension and Ax, = Ax,,, the boundedness conditions imposed
imply that {x,} has a strongly convergent subsequence. The -criteria



1352 MAGNUS R. HESTENES

given in the theorem are accordingly necessary conditions for A to be
of character.

Suppose conversely that every bounded sequence {z,} in &, for
which {Az,} is bounded has a strongly convergent subsequence. Then
the nullity of A is finite, since otherwise there would exist a orthonormal
sequence {z,} in ,. Such a sequence would have Ax, = 0 and would
possess no strongly convergent subsequence. The reciprocal A~ is
bounded. If this were not so we could select a sequence {z,} in &,
such that ||z,||=1 and || Az, || = 1/n. In view of the last inequality
the sequence could be chosen so as to converge strongly to a vector x,.
Since A is closed it would follow that x, would be in &, ||,|| =1 and
Ax, =0. This is impossible. Hence A~ is bounded. Consider next a
bounded sequence {y,} in &,,. Set x, = A7'y,. Since A' is bounded
the sequence {x,} is also bounded and hence, by our ecriterion, has a
strongly convergent subsequence. The operator A~! is therefore com-
pact. Hence A is of finite character, as was to be proved.

COROLLARY 1. Let A be an operator from D to O and let B be
the operator that maps a point x in <, into the pair {x, Ax} in O x 9.
The nullity of B is zero. Moreover A is of finite character if and
only if B is of finite character.

COROLLARY 2. If B and C are =x-orthogonal operators and C is
finite rank, then A = B + C 1is of finite character if and only if B
is of finite character.

Let T be an elementary operator such that 4 = TA*T and let R
be the elementary operator associated with A. By Theorem 9.1, T is
expressible uniquely in the form T = 7, + R, — R_ where T,, R,, R_
are *-orthogonal and R = R, + R_.. The operator T will be said to be of
finite index relative to A in case one of the operators R, and R_ is of
finite rank. The minimum of the ranks of R, and R_ will be called
the index of T. Clearly the index of T is the minimum of the ranks
of the sections A, = R,A*R, and A_ = R_A*R_ of A. In the self-
adjoint case with 7T = I, the identity, this index is the smaller of the
ranks of the orthogonal nonnegative operators A,, A, such that A = 4,
— A,. In this event this index is frequently called the index of A or
of the quadratic form (Az, x).

THEOREM 17.2. Let T be an elementary operator such that TA*T
= A. Ewvery bounded sequence {x,} such that {(Ax,, Tx,)} is bounded
has a strongly convergent subsequence if and only if A is of finite
character and T s of finite index relative to A.
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This criterion, stated in a somewhat different form, is the basis
for a large class of existence theorems for weak solutions of partial
differential equations.

Since || T*Ax || = || Az || it follows from Theorem 17.1 that A is
finite character if and only if 7T*A is of finite character. Moreover
T*A is self-adjoint. It follows that it is sufficient to consider the case
A=A* and T=1. Let {x,} be a bounded sequence such that {Az,} is
bounded. From the inequality

| (Az, z) | = [ |l ]| Az |

it follows that {(Ax,, xz,)} is bounded. Consequently if the criterion
described in the theorem holds, then {x,} has a strongly convergent
subsequence. By virtue of Theorem 17.1 the operator A is of finite
character. It remains to show that if A is expressed as the difference
A =B-—-C of two orthogonal nonnegative self-adjoint operators, then
either B or C is of finite rank. If this were not the case one could
select an orthogonal sequence {y,} in &5 and {z,} in %, such that
(BY o, ¥a) = (C2,2,) = 8,.. The vectors x, = a,(¥, + z,) then satisfy the
relation

(Axm’ xn) - aman[(Bymy yn) - (Cymy yn)] = 0 (mr n = 1) 27 3 M ') .

Choosing «, such that ||z, || =1, we obtain an orthogonal sequence {x,}
such that (Az,,x,) = 0. This sequence cannot have a strongly con-
vergent subsequence. Consequently either B or C is of finite rank, as
was to be proved.

Conversely suppose that B or C is of finite rank and A = B— C is
of finite character. For definiteness suppose that C is of finite rank.
Then B is of finite character. Consider now a bounded sequence of
vectors {z,} in &, such that {(Az,, z,)} is bounded. Select y, in =%
and z, in &, such that «, =¥, + 2,. Then

(Axn’ xn) = (Bym yn) - (sz Z) .

It follows that {(By.,v,)} is bounded. Consequently, {y,} has a con-
vergent subsequence. Since {z,} is restricted to a finite dimensional
subspace of <7, it follows that {x,} has a strongly convergent subse-
quence. This completes the proof of the theorem.

THEOREM 17.8. Let A be an operator from 9 to ' of finite char-
acter and let B be an operator from © to a Hilbert space 9". If
Dy C Z,, then B is of finite character.

Since &7y, C &, there is a constant « such that if x is in &7,
then
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lAz || = a{]| Bz || + [l« |} .

If {x,} is a sequence in &, such that ||z, ||, || Bx, || are bounded, then
[| Az, || is bounded also. It follows from Theorem 17.1 that {x,} con-
verges strongly in subsequence. Consequently B is of finite character,
by virtue of Theorem 17.1.

A linear transformation K from $ to " will be said to be compact
relative to A if &g O <, and if for every bounded sequence {z,} in
=, such that {Axz,} is bounded, the sequence {Kz,} has a strongly
convergent subsequence.

THEOREM 17.4. Let A be an operator from © to ' of finite char-
acter. Let K be an operator from O to " such that <, > o,
Then K 1is compact relative to A if and only if given a positive
number « there 1s a number B such that the inequality

(17.1) | Ke|l < all Az || +8 ]|« ||
holds on <7 ,.

Suppose that K is compact relative to A. Suppose further there
is an a > 0 such that (17.1) holds on <, for no constant 3. We can
select a non-null sequence {x,} such that

| Ke, || = all Az, || + n |2, || .

We can suppose that || Kz,|| = 1. Then || Az, || is bounded and x, = 0.
Since K is compact relative to A it follows that Kx, =0, in subsequence,
contrary to the fact that || Kz, || = 1.

Suppose that (17.1) holds as stated. Let {x,} be a bounded sequence
such that {Aw,} is bounded. A subsequence, rename it {x,}, converges
strongly to a vector x,, The point xz, is in <, since A is closed.
Given a > 0 choose B so that (17.1) holds. Then

[| K(x, — %) || = |l Az, — zo) || + Bl % — x|
and
limsup || Ko, — K%, || < alimsup || A(x, — %) || .

Since « is arbitrary it follows that {Kx,} converges strongly to Kux,.
The operator K is therefore compact relative to A, as was to be proved.

THEOREM 17.5. Let A and K be operators from O to © such that
K is compact relative to A. The operator A is of finite character if
and only if B= A + K is an operator of finite character,
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In order to see that B is closed when A is of finite character let
{z.} be a sequence such that x,= x,, Br,=¥,. In view of (17.1) with
a<l

| Ko, || = a|| Az, || + Bl 2. || = a || Br, || + a|| Kz, || + Bl @, || .

We see that {Kx,} is bounded. Consequently {Ax,} is bounded also. It
follows that {Kx,} converges to Kz, and that Ax,= y, — Kx,. Since 4
is closed y, — Kx, = Ax,, that is, y, = Bx,. The operator B is according-
ly closed. Since B and A has the same domain, B is of finite character.
Conversely if B is an operator of finite character, so also is A since
£ B = Z A

In a similar manner we obtain

THEOREM 17.6. Let A be an operator from O to ' and let K be an
operator from  to D" that is compact relative to A. Let B be the
operator that maps a point x in =, into the point {Ax, Kz} in O =
9". Then A is of finite character if and only tf B is an operator
of finite character.

THEOREM 17.7. Let A be an operator from 9 to O and suppose
that every bounded sequence {x,} tm <, for which {(Azx,, x,)} is bounded
has a strongly convergent subsequence. Then A is of finite character,.
Moreover, a linear subclass <& of <, on which (Ax,x) =0 is of
finite dimension.

The proof of this result is like that of Theorem 17.2 and is equiva-
lent to the result given in Theorem 17.2 is A = A*. In this theorem
the role of (Ax, x) may be replaced by (Azx, x) + (x, Ax).

18. Elliptic partial differential equations. The purpose of the
present section is to indicate the connections between the results de-
sceribed in the preceding pages with the theory of elliptic partial differ-
ential equations. To this end let 2 be a bounded region in an m-
dimensional Euclidean space of points ¢ = (¢, +++, t,). The boundary of
2 will be assumed to be nonsingular and to be of class C~. The results
given below are valid under much weaker assumptions but we shall not
consider them at this time.

The symbol a will be used to designate an m-tuple @ = (a,, + -+, @,,)
of nonnegative integers. Let |a|=a;, + -+ + a&,. The symbol D,.
will be used to denote the differential operator

alwl

D= (=) —2 .
(=) oty - - OtL”

Let 9,. be the class of all Lebesgue square integrable complex valued



1356 MAGNUS R. HESTENES

functions zi(t) (te2;5=1,---,n;|a|=k), normalized so as to be
equal to the limit of their integral means whenever this limit exists
and to be zero elsewhere. The class 9,, with

@9 = | aiOUi@dt G=m,|a|=Fk),

(7 and a summed) as its inner product forms a Hilbert space over the
field of complex number. The symbol x, will be used to denote an
element in 9,,. The cartesian product of .o, Ouy **+, . Will be denoted
by ©f. Its elements x are of the form x = (2, 2, -+, ;). An element
x in ! such that x,: 2’(t) is of class C* and such that x, is the set of
derivatives x} = D,x’|a| = r of order r will be denoted by &* The
closure of &« * will be denoted by <k In view of our normalization
of the functions in 9,,, it can be shown the formula zi(t) = D, x'(t)
| a| =r =<k holds almost everywhere on 2, where x/(t) are the functions
defining «, in (x,, «,, +-+, 2,). The projection of <} in 9,, will be
denoted by <= ,.. The class &r,, is a closed subspace of 9,,.

Since an element (x,, «,, +++, %;) in =k is uniquely determined by
its inital element x, a function G, on ) = 9,, to Ot is defined. The
range of the function is <. Its domain <<, is the projection of
2% on ,. The functions G, (k =1,2,3, --+) have the following pro-
perties:

(1) The function G, is a closed and dense linear transformation
from $ = 9,, to HE.

(2) The operator G, (k > 0) is of finite character and zero nullity.
(8) The operator G; (5 < k) is compact relative to G,.

These results follow from well known connections between partial
derivatives and can be found in papers on this subject.

Let C be a bounded operator from <% (k > 0) to a Hilbert space
De. Given a restriction B, of G, that is closed and dense in = 9,,,
the product A, = CB, defines a dense linear transformation. Such an
operator will be said to be elliptic in case it is closed. This definition
of ellipticity is an extension of the one usually given. An elliptic
operator of this type is necessarily of finite character by Theorem 17.3
since B, has this property. It is clear that A, is elliptic if and only if
there is a constant & > 0 such that

(18.1) I Bex |l = kIl Aw || + [ 2]

for all  in & 5,. It should be observed that if A, (k=1) is elliptic,
then the equation A,x = ¥ has a solution x for all ¥ orthogonal to the
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solutions z of 4*,2 = 0. The existence of strong solutions is thereby
established.

In order to illustrate these ideas consider the case in which the
operator C is defined by a formula of the form

(18.2) c@)xit) 6=1,---,¢;i=1 -+, m|a| =k)

where jJ and « are summed and the coefficients are continuous on the
closure of 2. Select B, = G,. Then A, = CB, is elliptic, that is, an
inequality of the form (17.1) holds if and only if the following two
conditions are met:

(1) Given a point ¢t in £ there is no non-null set of real numbers
E=(§, - -, E,) and no non-null set of complex numbers ¢ = (¢, +--, £")
such that the relations

(18.3) ngngJ:O (0:17"'7q7lal:k)

holds, where £ = EPER «- - E%m,

(2) Given a point ¢ on the boundary of £ the relations (18.3)
cannot be satisfied by non-null complex numbers ¢ = (&', -+, &) and by
non-null numbers & = (&, ++-,£,) whose normal component is complex
and whose tangential components are real.

If the first of these conditions is met then A, = CB, is elliptic,
where B, is the restriction of G, defined by the closure of the subclass
of &7t whose elements are continuous and have zi(t) =0 (la| < k) on
the boundary of 2.

These and related results can be found in the recent papers® on
partial differential equations by Aronszajn Browder, Friedrichs, Gaarding,
Hormander, Morrey, Nirenberg, Schechter and the author.

For a list of references see Hestenes, Magnus R. Quadratic Variational-theory and
linear elliptic partial differential equations to be published soon in the Transactions of the
American Mathematical Society.






ON A THEOREM OF FEJER

Fu CHENG HSIANG

1. Let
T: (7,,) n=0,1,2,+++;v=0,1,2, -+ )
be an infinite Toeplitz matrix satisfying the conditions
(1) limz,, =0

for every fixed v,

(i) lim 3,7, = 1
and
G SIEAES?

K being an absolute constant independent of =.
Given a sequence (S,) if

lim 37,8, = S,
v=0

then we say that the sequence (S,) or the series with partial sums S, is
summable (7') to the sum S.

2. Suppose that f(x) is integrable in the Lebesgue sense and periodic
with period 27. Let

f(x) ~ -é—ao + i (@, cos nx + b, sin nx) .
n=1

Let
2 n(b, cos nx — a, sin nx) = >, B,(x)

be the derived series of the Fourier series of f(x). Fixing x, we write

Yo (t) = flw + ) — fle — 7).
Fejér [1] has proved the following
Received July 20, 1960.
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THEOREM A. If f(x) is of bounded variation in (0, 27), then {B.(x)}
18 summable (C, r) to the jump U(x) = {f(x + 0) — f(x — 0)}/x for every
r >0 at each point x.

Recently, Siddiqi [3] extended Fejér’s result and established the
following

THEOREM B. Let A:(\,,) be a triangular Toeplitz matrix, i.e.,
Moy =0 for v >mn. If it satisfies, in addition, the condition
(v S 1 an,, | = 001)
as n— oo, then {B,(x)} is summable (A) to l(x).

It is known [2] that a series which is summable by the harmonic
means is also summable (C, r) for every r > 0 but not conversely. We
take, for the (C, r) means, \,, = A;7}/AT,

Ar=I'(n+r+D/ITn+DIr+1),

and for the harmoniec means, »,, = 1/(n — v +1). Both satisfy (iv).
Thus, we infer that Siddiqi’s theorem contains Fejér’s as a special case.

In this note, we develop Siddiqi’s theorem into the following general
form for the summability (T') of {B.(x)} at a given point.

THEOREM. If . (t) is of bounded variation in the neighborhood of
t =0 and absolutely continuous in (7, ) for any 0 <y <, then {B,(x)}
is summable (T') to the jump l(x) at .

3. Let us consider

7.(2) = 3, T By(@)

8~ »\Mg

i Ty S O«pz(t)u sin vidt

v=0

= I(x) i Thy —71? g Ycos vidr.(t)
= I(@) + 0(1) + —71; Seul,.

We are going to prove that >\7,.I, = 0(1) as n — o. Since Y, (¢) is of
bounded variation in the neighborhood of ¢ = 0, for a given ¢ > 0, we
can choose & > 0 such that

[1anol<e.
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Write
§ Fa
I, = G + L) cos vidiyr,(t)
0
=L+ 11,

say. Then

I\
M

ESINEACY

2 Taly
y=0

0

<
Il

IT"LVI

<
1]
=)

N A
[0
M

€.

Remembering that +r.(t) is absolutely continuous in (8, 7), we have
S:cos vtdar,(t) = S:cos virL(t)dt .
For the given ¢ > 0, we can find v, such that
[S:cos vt«,lr;(t)dtl <e

for v < vy, by Riemann-Lebesgue’s theorem. Fixing v,, we can take a
positive integer %, making |7,,| <&/(v, +1) 0 v <y, n < n, If we
write

S I = (ﬁ + i) - S:cos vt (t)dt
v=0 e s

:II+I21

say, then
PAESEMANRAON”

Yo
y=

< M(v, + D/(vo + 1)
= Me .

for n > n,, where

M= ||y de

oo

IIzlz

Tn,,S:COS viyl(t)dt

v=yp+1

<e S |Twl

v=vp+1



1362 FU CHENG HSIANG

IA

AL
Ke

fiA

by (iii). From the above analysis, it follows that

2Tl
y=0

< (M 4+ 2K)e

for m > m,. Since ¢ is an arbitrary quantity, we obtain STl = 0(1) as
n — oo, This proves the theorem.
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ON N-HIGH SUBGROUPS OF ABELIAN GROUPS
JOHN M. IRWIN AND ELBERT A. WALKER

In a recent paper [2] the concept of high subgroups of Abelian
groups was discussed. The purpose of this paper is to give further
results concerning these high subgroups. All groups considered in this
paper are Abelian, and our notation is essentially that of L. Fuchs in
[1]. Let N be a subgroup of a group G. A subgroup H of G maximal
with respect to disjointness from N will be called an N-high subgroup
of G, or N-high in G. When N = G* (the subgroup of elements of in-
finite height in G), H will be called high in G.

After considering N-high subgroups in direct sums, we give a char-
acterization (Theorem 3) of N-high subgroups of G in terms of a divisi-
ble hull of G. Next we show (Theorem 5) that if G is torsion, N = G,
and H is N-high in G, then H is pure and (Lemma 7) the primary com-
ponents of any two N-high subgroups have the same Ulm invariants
(see [3]). These results generalize the results in [2]. The concept of
Y-groups is introduced, and it is shown that any two high subgroups of
torsion X-groups are isomorphic. Further, torsion 2X-groups are char-
acterized in terms of their basic subgroups. Theorem 3 of [2] is generalized
to show that high subgroups of arbitrary Abelian groups are pure. This
leads to the solution of a more general version of Problem 4 of L. Fuchs
in [1]. Finally, the question of whether any two high subgroups of a
torsion group are isomorphic is considered, and a theorem in this direction
is proved.

Preliminaries.

LEMMA 1. Let M and N be subgroups of a primary group G
such that M is meat in G and M[p]€ Nip] = G|p]. Then M is N-high
n G.

Proof. Suppose M is not N-high in G. Then there exists an N-
high subgroup S of G properly containing M. Let 0# s+ M be in
(S/M) [p]. By the neatness of S in G ([1], pg. 92) we may suppose
that se S[p]. But this contradicts M[p]D N[p] = G[p], and so M is
N-high in G.

As a consequence of Lemma 1, we obtain a standard

CorOLLARY. ([3], pg. 24). Let G be a primary group, and H a pure
subgroup containing G[p]. Then H = G.

Received August 10, 1960.
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Proof. Purity implies neatness. Now put N =0 in Lemma 1.
A useful generalization of Lemma 1 to torsion groups is

LEMMA 2. Let M and N be subgroups of a torsion group G such

that M is neat in G and M[p] D N[p] = G[p] for each relevant prime
p. Then M is N-high in G.

Proof. Use the proof of Lemma 1 with the observation that since
S properly contains M, (S/M)[p] # 0 for some relevant prime p.
Concerning N-high subgroups in a direct sum, we have

THEOREM 1. Let G = 3G, be an arbitrary direct sum of torsion
groups, where H, and N, are subgroups of G,, and where H, 1s
N,-high in G, for each a. Let N= 3XN,. Then H = YH, is N-high
n G.

Proof. First notice that H is neat in G. To see this, use the neat-
ness of H, in G, for each « (see [2] Lemma 10). Next observe that
Glp] = 3G, [p] = ZH,[p] P 2 N,[p] = H[pr] ® N[p] for each relevant prime
p. Now apply Lemma 2 to get H to be N-high in G.

An interesting result concerning high subgroups (which are our main
interest) in a direct sum is a corollary of Theorem 1.

THEOREM 2. Let G = 3G, be an arbitrary direct sum of torston
groups where H, is a high subgroup of G, for each o. Then H= XH,
18 high in G.

Proof. By [2], Lemma 9 we have G' = 3(G,)'. Now use Theorem
1 and the definition of high subgroup.

Divisible hulls and high subgroups. Now we shall discuss the notion
of a divisible hull for a group G, and the connection of such a hull with
high subgroups. A group E minimal among those divisible groups con-
taining G as a subgroup will be called a divisible hull of G. We need
a few lemmas. The following lemma is almost obvious, and its proof is
omitted.

LEMMA 3. Let E be a divistble hull of a torsion group G. Let
E =2E, and G = 2G,. Then E, = E, and E, is the unique divisible
hull of G, in E for each relevant prime p.

LeMMA 4. Let D be a divisible hull of a mixed group G, and E
be a divisible hull of the torsion subgroup T of G in D. Then D=E@F
where E is torsion and F is torsion free divisible.
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Proof. Since E is divisible, it is a direct summand of D. Thus
D= FE@ F for some subgroup F of D. That E is torsion follows from
Lemma 3. Next we show that the torsion subgroup 7T, of F is zero.
To see this, consider T, NG T N TC ENF=0toget T, NG =0.
Then by Kulikov’s Lemma, ([1], pg. 66) applied to D, T, = 0 and F is
torsion free. That F'is divisible is clear, and the lemma is proved.

The following theorem gives a characterization in terms of divisible
hulls of N-high subgroups of a torsion group G.

THEOREM 3. Let N be any subgroup of a torsion group G, and E
be a divisible hull of G with D a divisible hull of N in E. Then the
set of N-high subgroups of G is the set of intersections of G with com-
plementary summands of D in E.

Proof. Let H= AN G, where A@D=FE. Now by [2], Lemma
1, and [1] pg. 67, we have for each relevant prime p,

Glpl = Elp] = Alp] ©® Dlp] = (A N G)[p] @ Nip] = H[p]® Nlp] -

By [1] pg. 92, H is neat in G, and finally by Lemma 2, H is N-high in
G. Now for the converse, suppose H is N-high in G, so that Hn N=0.
Now HN D =10. To see this, notice that (HN D) N N=HN N=0,
and by Kulikov’s lemma, H N D =0. Since D is an absolute direct
summand (see [1]), there exists A containing H with A@ D= FE. But
Hc ANG, and since (A N G) N N =0, by the maximality of H with
respect to HN N =0, we have H= A N G.

The reader will note that in particular Theorem 3 yields a character-
ization of high subgroups in torsion groups.

In general, a group G may have many high subgroups. It is even
possible that H N K = 0 for two high subgroups H and K of G. The
following theorem indicates the extent of the non-uniqueness of N-high

subgroups.

THEOREM 4. Let G be a primary group, let N be a subgroup such
that | N[p]| = |G| and such that |G[p]: N[p] = |G |. Then there exist
260 distinct N-high subgroups of G. Furthermore, there exists an in-
dependent set {H,}uer 0f N-high subgroups of G such that |R|=|G]|.

Proof. Let H be an N-high subgroup of G. By [2], G[p]=
Hipl@ Nipl. Clearly | H[p]| = | N[pl| = |G|. Let H[p] = SuesCrd
and N[p] = Spe{¥s>. Then |S|=|T|=|G|. There exists 2'* one-to-
one mappings of S onto 7. Let f be such a mapping, and let

p, :m% o + Yy -
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If g is any one-to-one mapping of S onto 7' such that f # g, then it is
easy to see that P, = P,. Let H, be an N-high subgroup of G contain-
ing P,. Then H,[p] = P;, and since P, # P, it follows that H, # H,.
Hence there exist 2'°/ N-high subgroups of G. Let T = Uge =T, where
|Tel=|TI|, |[R|=|TI|, and Ty N Ts; =¢ if B+ 8. That is, partition
T into | T'| subsets each of cardinal | T'|. Let f; be a one-to-one mapping
of S onto 7%, and let Hg be an N-high subgroup containing

Py = wgs@cm + Yspy -

It is straightforward to verify that {Pslger is an independent set of sub-
groups of G, that Hg[p] = P,, and hence that {Hg}ze, is an independent
set of subgroups such that | R| = |G|. This concludes the proof.

It is easy to find examples of reduced primary groups G such that

|G'p]] = [Glp]: G'[p]] = | G |.

Purity of N-high subgroups of torsion groups. We now state and
prove a generalization to N-high subgroups of torsion groups of [2]
Theorem 3, namely that high subgroups of torsion groups are pure.

THEOREM 5. Let N be a subgroup of a torsion group G with N G,
and let H be an N-high subgroup of G. Then H is pure in G.

Proof. That it suffices to consider the primary case here follows
from the fact H, is N,-high in G, (see [2] Lemma 10 and [2] Lemma
11). So let G be primary. Now by [2] Lemma 1, we have G[p] =
H[p]® N[p]. Since G'[p] D N[p], then G'[p] = (H N G)[p]@ N|[p].
Now let H, be an (H N G")[p]-high subgroup of H. Since N-high sub-
groups are neat (see [1] ¢, d pg. 92) and neatness is transitive, we have
that H, is neat in G. By [2] Lemma 1, H|[p] = H,[p] D (H N GY)[p], so
that G[p] = H[p] @© G'[p]. An application of Lemma 1 yields H, high in
G. Finally, by [2], Lemma 8, H, contains B basic in G, so that by [2]
Lemma 2, H is pure in G as stated.

Before stating some corollaries, we would like to pose the following
question: characterize all subgroups 7T of an Abelian group G such that
T-high subgroups of G are pure. Suitable examples are easy to find
which show that just any subgroup 7" will not do.

A couple of corollaries of Theorem 5 are

COROLLARY 1. Let N, and N, be subgroups of a torsion group G
with N, & N, S G'. Then every N,-high subgroup of G contains an
N;-high subgroup, and in particular every N,-high subgroup K contains
a subgroup H high in G.
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Proof. The proof is similar to the proof of Theorem 5.

COROLLARY 2. Let N be a subgroup of G' in a torsion group G,
and let S be an infinite subgroup of G with S N N=0. Then there
exists a subgroup K pure in G with | K| =S| and KN N=0.

Proof. Substitute N for G' in the proof of [2], Theorem 2.
This last corollary is a generalization of the solution in [2] of Fuchs’
Problem 4.

J-groups. The following ideas arose from an investigation of the
question of whether or not all high subgroups of a given group are iso-
morphic. A natural query in this direction is: If one of the high sub-
groups of a given group G is a direct sum of cyclic groups, are all of
them direct sums of cyclic groups? The answer for torsion groups is
yes. It is this observation that gives rise to so called Y-groups. Before
discussing this notion further, we need a few lemmas.

LEMMA 5. Let N be a subgroup of a torsion group G with H and
K both N-high subgroups of G. Then (HPN)/N)[p]=((KDN)/N)[»]
for each relevant prime p.

Proof. For he H we have that o(k + N) = p if and only if o(h) = p.
Suppose ke H[p\(K N H). Then there exists k€ K, ne Nwithh —k =
n, whence o(k) = p. Thus h + N = (k + N)e (K& N)/N)[p]; and since
p was arbitrary, we have by symmetry that

((H @ N)/N)[p] = (K& N)/N)[p]

as stated.

LEMMA 6. Let N be a subgroup of a torsion group G with NG
Let H be an N-high subgroup of G. Then (H N)IN) is pure in
G/N.

Proof. Suppose m(g + N) =h + N for some he H, ge G, m a non-
zero integer. Then mg — n = h for some ne N, and since neG' and
H is pure (Theorem 5), we have h = mh, for some h,e H. Thush + N =
m(h, + N) and the lemma is proved.

COoROLLARY. Let N be a subgroup of a reduced torsion group G
with NS G* + 0, and let H be an N-high subgroup of G. Then H 1is
not closed,
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Proof. This follows easily from a theorem of Kulikov and Papp
({1] pg. 117).

LEMMA 7. Let H and K be any two N-high subgroups of a primary
group G with N a subgroup of G'. Then for all positive integers n

(a) p"H ts N-high in p"QG,

(b) p"H is pure in p"G,

() (@ ((H® N)/N))[p] = (p"(K D N)/N))[pl,

(d) H, K, and G have the same nth Ulm invariants (see [3]).

Proof. (a) Use the proof of Theorem 5 (e) in [2] and the fact that
N < p"G for all n.

(b) Use (a), N = (p"G)', and Theorem 5.

(¢) First notice that p"((HP N)/N) = (p"HPH N)/N. Now (c) follows
immediately from Lemma 5 applied to the right sides of this equation
and the corresponding one for K.

(d) The proof is similar to that of Theorem 6 in [2].

The following theorem is a slight generalization of the fact that
any two high subgroups of a countable group G are isomorphic. (See
[2], Theorem 5 (u).)

THEOREM 6. Let N be a subgroup of a countable torsion group G
with N < G*, and G elementary. Then any two N-high subgroups H
and K of G are isomorphic.

Proof. Write G = 2G,, H=3YH,, K= YK,. Now H, and K, are
both N, high in G,, and N, & G, for each relevant prime p. Let
H,=(H,® N,)/N, and K, = (K,® N,)/N,. Using Lemmas 5 and 6 and
the fact that G' is elementary, we get immediately that (p°H,)[p] =
(»°K,)[p], and that (p**'H,)[p] = »*"'K,)[p] = 0. Thus for @ = w, the
ath Ulm invariants of H, and K, are the same. Since H,~ H, and
K, = K,, Lemma 7 (d) implies that H, and K, have the same Ulm in-
variants. Since G' is elementary, H and K are reduced, and Ulm’s
theorem yields H = K.

REMARK. In Theorem 6, if we take N to be a subgroup of G* such
that N[p] # G'[p], then neither H nor K will be a direct sum of cyeclic
groups as is easily seen.

A Z-group is any group G all of whose high subgroups are direct
sums of cyclic groups. This means that in a torsion 3-group every high
subgroup is basic. This implies further that in 3-groups, every high
subgroup is an endomorphic image. Examples of ¥-groups are very to
easy to find. For instance, direct sums of countable groups turn out to



ON N-HIGH SUBGROUPS OF ABELIAN GROUPS 1369

be Z-groups. Also, any group G such that G/G* is a direct sum of cyclic
groups is a Y-group. (See the proof of Theorem 7.) For a non-Y-group,
see [2], Theorem 5(%).

THEOREM 7. Let H and K be high subgroups of a torsion group
G. Then if H is a direct sum of cyclic groups, so is K. Moreover
H=K.

Proof. Let S be the image of S under the natural homomorphism
of G onto G/G'. Now H = H, K = K, and by Lemma 5 we have K[p] =
H[p] for each relevant prime p. By [3], Theorem 12, we have that
H [p] is the union of a sequence P, of subgroups of bounded height in
H. The purity of H (Theorem 5) tells us that P, has bounded height in
K for each n. Hence by [3], Theorem 12, each K, is a direct sum of
cyclic groups, so that K is a direct sum of cyclic groups. Thus K, which
is isomorphic to K, is a direct sum of cyclic groups. Since H and K
are both basic in G, we have H = K. Thus we have shown that in a
torsion group, if one high subgroup is a direct sum of cyclic groups,
they all are, and they are all isomorphic.

From Theorem 7 we see that if in a torsion group G there exist
two non-isomorphic high subgroups, then no high subgroup is a direct
sum of cyclic groups. The next theorem shows that torsion X-groups
are closed under direct sums.

THEOREM 8. For torston groups it is true that a direct sum of
2-groups 1s a X-group.

Proof. By Theorem 2, a direct sum of highs is high. But such a
direct sum is basic. An application of Theorem 7 completes the proof.

COROLLARY. A direct sum of countable torsion group is a S-group.

Proof. 1t suffices by Theorem 8 to verify that a countable torsion
group is a Y-group, and this is very easy.

REMARK. Examples exist of torsion groups G such that G/G' is a
direct sum of cyclic groups, but such that G is not a direct sum of
countable groups. Therefore, we see that the class of torsion Y-groups
properly contains the class of all torsion groups that are the direct sum
of countable groups.

The next theorem gives an interesting characterization of torsion
2-groups.

THEOREM 9. A torsion group G s a Z-group if and only if G



1370 JOHN M. IRWIN AND ELBERT A. WALKER
contains a maximal basic subgroup.

Proof. If G is a X-group, then any high subgroup will be a maximal
basic subgroup of G. Now suppose G contains a maximal basic subgroup
B. Let H be a high subgroup containing B, and suppose B+ H. By
[1] pg. 114, there exists B, basic in H with B, > B. Since H is pure
and G/H is divisible, B, is basic in G, a contradiction. Therefore B=H,
and G is a X-group by Theorem 7.

The next theorem is a result concerning the 3-groups of a torsion
group.

THEOREM 10. FEwvery torsion group G contains a X-subgroup R pure
wm G such that R = G*.

Proof. First if G* =0, put R = B basic in G. Also if G is a 32-
group, but R = G. So suppose that G' # 0 and G is not a Y-group. Let
B be a basic subgroup of G. Embed B in a high subgroup H of G. By
Theorem 8 and the assumptions on G, H/B + 0. B is basic in H so that
G/B = H/B@® R|B, where the divisibility of H/B guarantees that E/B
may be chosen to contain (G*& B)/B. Hence R contains G'. The
purity of R/B in G/B gives us that R is pure in G. Hence R! = G.
Now H N R = B, so that G[p] = H[p] B G'[p] and

R[p] = (R N H)[p] D G'[r] = B[p] D E'[p] .

By Lemma 2, B is high in R so that by Theorem 7, R is a Y-group,
and the proof is complete.

We do not know whether every subgroup of a X-group is a J-group.
However, every pure subgroup of a torsion X-group is a X-group. In
fact, we have

THEOREM 11. Ewvery subgroup L of a torsion X-group G with L' =
L NG is a X-group.

Proof. Embed a high subgroup H, of L in a high subgroup H
G. Since G is a X-group, H is a direct sum of cyclic groups and hence
so is H,. Now apply Theorem 7 to L to get that L is a S-group.

COROLLARY. Ewvery pure subgroup R of a torsion Z-group G ts a
2-group.

Proof. R*= R N G* and Theorem 11 then yields the desired result.

COROLLARY. FEvery pure subgroup of a direct sum of countable
torston groups s @ X-group.
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High subgroups in mixed groups. In this section we will discuss
some properties of high subgroups of arbitrary Abelian groups and
generalize some of our results for the torsion case. A lemma which is
useful is

LEmMMA 8. Let S be any subgroup of an Abelian group G with
SNG =0. Then for any subgroup T with (T|S) N (G/S)! = 0, we hawve
TNG =0.

Proof. Suppose T'N G'= 0. Then (T/S) N (G/S)* + 0.

The following theorem was proved in [2] for the torsion case. The
fact that G* is divisible in the torsion free case makes this case easy, so
we proceed directly to the general case.

THEOREM 12. Let H and K be any two high subgroups of a group
G. Then

(a) G/H 1is divisible

(b) G/H is a divisible hull of (G* P H)/H = G*

(¢) G/H = G|K.

Proof. (a) Let T/H be the torsion subgroup of G/H. Now T/H
is divisible, for if not, T/H would have a non-zero cyclic direct summand
L/H. But L/H would be a direct summand of G/H since T/H is pure
in G/H. Hence (L/H)N (G/H)} =0, and Lemma & gives us that
L NG =0. Consequently H is not high in G, a contradiction. Thus
we have G/H = T| H@® F/H, where F/H is torsion free. This means
that (F/H)' is divisible, whence F/H = (F|H) &P R/H. Now clearly,
(R/H) N (GIH)* = 0, so that by Lemma 8, R = H, and G/H is divisible
as stated.

(b) As a divisible group, G/H must contain a divisible hull D/H of
(G*®H)/H. Put G/H=D/H@L/H. Clearly LN G'=0, hence L/H=0
and (b) is proved.

(¢) This follows from (G* P H)/H = G' = (G* D K)/K and the fact
that divisible hulls of isomorphic groups are isomorphic. Thus we see
that G/H is a structural invariant of G.

We shall now discuss a generalization to arbirary Abelian groups of
a theorem proved in [2] for the torsion case. Here again, the torsion
free case is easy (G is divisible), and for a torsion free group G we see
easily that all high subgroups are isomorphic. First we need

THEOREM 13. Let T be the torsion subgroup of an Abelian group
G, H be a high subgroup of G, and Ty be the torsion subgroup of H.
Then Ty ts high in T.
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Proof. We need only consider the case of a mixed group G. Let
E be a divisible hull of G with D, and D, divisible hulls in E of H
and G'. Then EF=D, @ Ds (see [2]). Next let Dy, and Dy, be
divisible hulls of T, and T, in D, and D, respectively. Then

E = DH@D(;l = DTH@Dl@DT(;lEBDz:DTHEBDTGI@D1®D2 -

Applying Lemmas 3 and 4 to D, and D, we have that Ty =D,,PBTr,
is the torsion subgroup of E, and D, @ D, is torsion free. Clearly
(Lemma 3) T, is a divisible hull of 7 in E. Now by Theorem 3, it
remains to verify that T'N D;, = Ty. To this end put L =Tn D,,,.
That Ty < L is clear. By Lemma 4, H 0 D,, = T,. So suppose there
exists te (G\H) N L. Then by the definition of H, there exists he H
with b 4+ mt = g, + 0, where ¢g,€G'. But since L is torsion we have
that he T,. Hence (b + mt)e D,,, and h -+ mt = g, + 0 together with
D,, © Dy contradict D, N Dy = 0, and T, is high in T as desired.

CorROLLARY. Let H be a high subgroup of G, and let T, be the
torsion subgroup of H. Then T, is pure in G.

Proof. By Theorem 13, T, is high in 7, and consequently pure in
T. Since T is pure in G, it follows that T, is pure in G.

THEOREM 14. Let H be a high subgroup of an Abelian group G.
Then H is pure in G.

Proof. Let the notation be the same as in Theorem 13. Now by
Theorem 13 T/Ty is divisible, so that G/T, = T/T, P R/T,, whexre R
is chosen such that R/T, contains H/Ty. Since Ty is pure in G, R is
pure in G, and since H is neat in G, H/T, is neat in R/T,. But R/T,
is torsion free and since a neat subgroup of a torsion free group is pure
we have that H/T, is pure in K/T,. Thus H is pure in R, so that H
is pure in G, and the proof is complete.

The following embedding theorem is a generalization to arbitrary
Abelian groups of the solution to Fuchs’ Problem 4 (see [1]).

THEOREM 15. Let S be any infinite subgroup of an Abelian group
G with SN G* =0. Then there exists a subgroup K pure in G with
SCK, KNG'=0,and [ K|=|S]|.

Proof. Embed S in H high in G. By [1] pg. T8 N, there exists
a pure subgroup K of H with SC K and |S|=|K|. The purity of
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H implies the purity of K in G, and KNG 'c HN G' =0, so that
K N G* =0, completing the proof.

An unsolved problem. To conclude the present paper we shall
make a few remarks concerning the question of whether all high sub-
groups of an Abelian torsion group are isomorphic. The reader may
have observed, from the proof of Theorem 6, that this question is a
special case of the more general open question: Given two pure sub-
groups A and B of a primary group G with A[p] = B[p], is it true in
general that A = B? The authors feel that an affirmative answer to
this question would have important consequences in the theory of Abel-
ian torsion groups. A step in this direction is

THEOREM 16. Let A and B be pure subgroups of primary group
G with A|lp] = B[p]. Then G = AP C implies G = B C and A = B.

Proof. Let G =A@ C. Then G[p] = A[lp] D C[pr] = B[p]® C[p].
We will show that G = B C. First notice that A[p] = B[p] gives us
that BN C=0. To prove G = B&EC, it suffices to verify that
G c B@C. For this purpose it is sufficient that G[p"] € B C for
each n. But this is true if and only if A[p"] € B@ C for each n.
Now we use induction to show that G[p"] € B@ C for each n. First,
G[lp] € B C by hypothesis. Next suppose that G[p"] € B C, and
let a € A with o(a) = p**'. Then p"a = be A[p] = B[p]. By the purity
of B, p"a = p"b, with b€ B, and p™"(a —b,) =0, so that a —b,e BPC
by the induction hypothesis. Hence a€ B C, therefore

Alp""]c B C,

which means that G[p"*'] € B C. Thus G = B C. Finally A =G/C
=~ B, and the proof is complete.
The foregoing theorem suggests the following generalization.

THEOREM 17. Let G be a direct sum of torsion groups, G=3,c .G,
and let {T.}.eq be a family of subgroups pure in G with T,[p]=G.[»]
for each relevant prime p and each ae A. Then for any subfamily
{Tw}mES, G:ZwesTmea ZwesGw- I’ﬂ particular, G:ZwEATm (I/i’Ld Gw; Tm
for each ae A.

Proof. Put T = >,e,T,. It suffices to show that G =7 We
show as before that for each n we have G[p*] — T. This is true if for
each ae¢ A we have for the primary components G,, that Golp"lc T
for each n. This is accomplished as in the proof of Theorem 16, Finally,

that T, = G, for each a follows as before,
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The results in this paper were part of a doctor’s thesis completed
in February 1960 under Professor W. R. Scott at the University of
Kansas. The author wishes to express his gratitude to Professor Scott
for his advice and for checking the results.

In what follows, all groups considered are Abelian. Let G* be the
subgroup of elements of infinite height in an Abelian group G (see [2]).
A subgroup H of G maximal with respect to disjointness from G' will
be called a high subgroup of G. If N is a subgroup of G, H will be
called N-high if and only if H is a subgroup of G maximal with respect
to disjointness from N. Zorn’s lemma guarantees the existence of N-
high subgroups for any subgroup N of G. A group E minimal divisible
among those groups containing G will be called a divistble hull of G.
Unless otherwise specified, the notation and terminology will be essentially
that of L. Fuchs in [1].

The main theorem says that high subgroups of Abelian torsion groups
are pure. After proving some preparatory lemmas, we will prove the
main theorem. Then we will discuss Fuchs’ Problem 4 and list some of
the more important properties of high subgroups. Finally we will state
some generalizations.

A lemma describing N-high subgroups is

LEMMA 1. Let G be a primary group with H an N-high subgroup
of G, D a divisible hull of G, A any divisible hull of H in D (this
means that A < D), and B any divisible hull of N in D,

Then

a) D=AGB.

(b)) ANG=~H, and H and B N G are neat in G.

(¢) Any complementary direct summand of A in D containing IV is
a divisible hull of N.

(d) Any complementary direct summand of B in D containing H is
a divisible hull of H.

() D is a divisible hull of any subgroup M with (H@ N)[p] C
McG.

() Dlp] = (HD N)[p] = Hlp] D Nlp] = Glp] .

(g) All N-high subgroups H of G may be obtained as £ N G, where
E is a complementary direct summand of a divisible hull ¥ of N in D.

Proof. When N = 0 there is nothing to prove, so suppose N = 0.
Received October 31, 1960.
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(@) To see this, we first show that AN B=0. If 0xcAn B,
then by Kulikov’s lemma ([1], p.66) there exist positive integers » and
s such that p"x # 0 == p°x and p'x e H, p’r € N. But 0+ p™="9gzcH N N
= 0, which is impossible. The divisibility of A @ B provides a decom-
position D=APBPHC. If CNG=+#0, H will not be N-high in G,
whence C N G = 0. By Kulikov’s lemma, C = 0, and we have D = A@ B
as stated.

(b) That A N G = His clear. The neatness follows from [1], p. 92, &,

(¢) and (d) follow from (a) and the definition of H,

(e) and (f) follow from Kulikov’'s lemma,

(g) follows from (a) and (b). This concludes the proof of Lemma 1.

In what follows {z> will denote the cyclic subgroup of G generated by
2€(G. An interesting and helpful lemma is

LEMMA 2. Let N be a subgroup of a primary group G, H an N-
high subgroup of G, and let H contain a basic subgroup B of G. Then
H is pure in G.

Proof. The group G/B is divisible since B is basic in G. Now
H|B c G/B, and by [1], p. 66, Theorem 20.2, there exists a divisible hull
E|B of H/B in G/B. Suppose E/B > H/B. Then E > H, and hence
E N N=+#=0. Thus there exists a nonzero element ge N with 0 #
{g+ B>cC E|B. Now {g+ B> N (H/B)=0. To see this, suppose 0 #
m(g+B)=mg+B=h+B. Then mg—h=>beB, and 0+mg =
h + be H, contradicting H N N = 0. Thus we have (g + B) N (H|B) =
0. By Kulikov’s lemma, {g + B> = 0, and therefore g € B, which implies
that ¢ = 0, contrary to the choice of g. Thus E/B = H/B is divisible,
and therefore is pure in G/B. Then the purity of Bin G together with
[1], p. 78, M imply that H is pure in G.

A useful lemma with a standard proof is

LEMMA 8. If G = S T, where each element of S has finite height,

then G < T and T = G'.
A lemma which displays an inheritance property is

LEMMA 4. If G =S@ T, where S C H and H 1is high in G, then
H=S®HNT, and HN T is high in T. (Note: This implies that
H N T is maximal with respect to disjointness from G* in T by Lemma 3.)

Proof. Put M = H N T, and suppose that there exists 0 = t e T\ H,
with {M,t} N T* = 0. But this means that {M, ¢} N G = 0, and hence
[SH{M, t}]] N G* = 0; for otherwise we would have s + (m + kt) =g # 0
with seS,meM,geG'. Then s=0and m +kt =9+ 0. But m +
kte{M,t}, which is not possible. Thus [S@{M,¢}] NG =0 and
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[SP {M, t}] > H, contrary to the assumption that H is high in G.
A lemma on making new basic subgroups out of old ones is

LEMMA 5. Let BP +--- P B, DG, =G, where B= 3B, is basic in
G. Let T,=B,. P B,.PH ---be basic in G,. ThenC=BP--P
B, P T, is basic in G.

Proof [1], p. 109, Exercise 9a.

An e G will be called a pure element of G if and only if (x> isa
pure subgroup (and therefore is a direct summand) of G.

The next lemma is the kingpin in the proof that if H is high in
G, then H contains B basic in G. It is not altogether obvious that H
contains nonzero pure subgroups of . The proof of the next lemma
will be carried out in several steps. We will consider special cases which
are perhaps unnecessary, but which will help to clarify the method of
proof.

LEMMA 6. Let H be a high subgroup of a primary group G. If
G contains nonzero pure elements of order p*, but not of smaller order,
then H contains pure elements of G of order p".

Proof.

Case 1. n =1. Let beG be pure of order p with b¢ H. Then
there exists h € H such that 2 + b =g #= 0, where geG'. Clearly this
means that the orders of » and b are the same. Now % and b both
have finite height, and hence their heights must be equal (since their
sum is an element of infinite height in G). Here we are making use
of the fact that if o(k) = p and (k) = 0, then <h> is pure in G. The
fact that b is a pure element of order p in G necessarily means that
5(b) = 0; whence h(h) = 0, and & is a pure element of G.

Case 2. m>1. Let b be a pure element of G of order p” such
that b¢ H. Then there exists an h € H such that h + p’b = g + 0, where
geG and 05 < m.

Case 2.1. j=0. Then we have h+b=g¢g and p"'h+p* b=
p"'geG'. Clearly p*'h has order p and height » — 1 in G and in (k).
Thus by [1], p. 78, J, we have that & is a pure element of G.

Case 2.2. 1=<j<mn. Now the equation h -+ p’b =g+ 0 clearly
implies that the height of # in G is j. If the height of i in H were
also j, that is if & = p’h’ for some R'e H, then A’ would be a pure
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element of G of order p~. To see this simply consider the equation
PR+ ptb = p"I'ge G o(p™'h') = p and obviously A(p*'h') =
n — 1. The height of p*'a’ in {A') =n — 1, so that by [1], p.78, J,
k' is a pure element of G of order p™ in H. Thus it remains to verify
that the height of 2 in H is j.

From the neatness of H and the fact that geG*, it follows that
h = ph, for some h, ¢ H. Now if h(h,) > 0, we again have by the neatness
of H that h, = ph, for some h,c H. Continuing in this way, we must
eventually arrive at k = p’~*h,, h, € H where the height of %, in G is 0.
If k> 0, then let m be the least positive integer such that p™h, = p™*iz
for ze G (if worst comes to worst m = j — k will do). Then clearly
O<m=j—k<j<mn, p"(h,—pz)=0, and p™*'(h, —pz) #0 has
height m — 1 in G by the choice of m and &,. Thus since o(p™(h, — P2))
= p, and the height of p™*'(h, — pz) is m — 1 in <{h, — pz>, we have
by [1], p. 78, J, that h, — pz is a pure element of G of order p™ < p".
This contradicts the hypotheses on G. Hence we must have k = 0,
h = p’h,, and h, is a pure element of G in H of order p".

If B= YB, is a basic subgroup of G where B, is a direct sum of
cyclic groups of order p*, then such a subgroup B, which does not consist
of 0 alone will be referred to as a B, of G.

LEMMA 7. Let G be a primary group, H a high subgroup of G,
and n the least positive imteger such that G contains a B,. Then H
contains a B, of G.

Proof. By Lemma 6, H contains pure elements of G of order »".
The fact that the union of an ascending chain of pure subgroups is pure
together with [1], p. 80, Theorem 24.5 allows us to apply Zorn’s lemma
to obtain a p*-bounded direct summand H, of G, maximal with respect
to the property of being contained in H. We wish to show that H, is
a B, for G. To see this write G=H,O R, and H=H,{ HN R,
where by Lemma 4, H N R, is high in E,. Suppose that H, is not a
maximal p"-bounded direct summand (a B,) of G. Then there exists a
B, of G with H, < B,. Now G = H,® R,, so that B, = H, B, N R,.
Now the transitivity of purity tells us that B, N R, + 0 is pure in G.
Thus R, contains pure elements of order p"” since G contains no pure
elements of order less than p". This means by Lemma 6 that H N R,
as a high subgroup of R, must contain a pure element & of order p".
Then G = H, P R, = HP <Y D R;, and (H, P <{h)) > H, implies that
H, is not a maximal p"-bounded direct summand of G contained in H,
contrary to the choice of H,. This means that H, isa B, of G contained
in H after all, and this concludes the proof.

LEMMA 8. Let G be a primary group, and let H be a high sub-
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group of G. Then H contains a basic subgroup of G.

Proof. By a theorem of Baer ([1], p.62), it suffices to consider the
reduced case. Lemma 7 provides a start for the induction. Let B; be
a first B, of G. By lemma 7, H contains a B, and G = B, @ R, with
H=B, ®HNR. Let B, be the next B; of G. By Szele’s theorem
([1], p.99) and Lemma 5, R, contains a B,, but no preceding B,, We
apply Lemma 7 to H N R, as a high subgroup of R, to see that H N R,
contains a B,, of G. By successive application of this procedure, we
have by induction, Szele’s theorem, Lemmas 5 and 7 that H contains a
basic subgroup of G.

We are now ready to state and prove our main theorem.

THEOREM 1. Let G be a primary group and H a high subgroup of
G. Then H is pure in G.

Proof. As in the proof of Lemma 8, it suffices to consider the case
where G is reduced. Lemmas 2 and 8 complete the proof.

In his book [1], L. Fuchs asks the following question: ‘Let G be
a primary group and H an infinite subgroup without elements of infinite
height. Under what conditions can H be imbedded in a pure subgroup
of the same power and again without elements of infinite height?”’
Theorem 1 allows us to give the best possible solution to this problem.

THEOREM 2. Let G be an Abelian primary group. If S is any
wnfinite subgroup of G with S N G* =0, then S can be embedded i a
pure subgroup K of G so that KN G' =0 and |K|=|S]|.

Proof. By Zorn’s lemma, there exists a subgroup H high in G with
H>S. By Theorem 1, H is pure in G. Szele has shown that every
infinite subgroup can be embedded in a pure subgroup of the same power
([1], p.78). So let K be a pure subgroup of H containing S and of the
same power as S. Then by the transitivity of purity, we have that K
is pure in G. Since K C H, it follows that K N G' = 0. This concludes
the proof.

The following discussion yields the solution to Fuchs’ question in the
torsion case. The proofs of the next two lemmas are standard and con-
sequently will be omitted.

LEMMA 9. Let G be a torston group. If G = 3G, then G' = 3GL.

LEMMA 10. Let G be a torsion group. Then an internal direct
sum of pure subgroups of the direct summands of a given direct de-
composition of G is a pure subgroup of G.

Concerning the primary decomposition of a torsion group G, we have,
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LemMA 11. If H is a high subgroup of a torsion group G, then
writing G and H in terms of their primary components G = 3G, and
H=2XH,=YHN G,, we have that H, is a high subgroup of G, for
each relevant prime p in the primary decomposition of G.

Proof. Clearly H, N G} = 0. So suppose for some p, H, is not high
in G,. Then there exists an x ¢ G,\H, with {H,, } N G}, = 0. Replacing
H, by S,={H,,x} in H= YH,, we obtain from Lemma 9 a subgroup
S> H with SN G' = 0. But this is contrary to H high in G.

A generalization of Theorem 1 is

THEOREM 3. If H is a high subgroup of a torsion group G, then
H is pure in G.

Proof. Write G = 3G, and H = YH, and by Lemma 11, we have
that H, is high in G, so that by Theorem 1 we have H, is pure in G,.
Now by Lemma 10, H is pure in G.

The generalization of the solution to Fuchs’ question to torsion groups
is

THEOREM 4. Awny infinite subgroup S of a torsion group G with
SN G =0 can be embedded in a pure subgroup K of G so that | K| =
S| and KN G* = 0.

Proof. Use Theorem 3 and the proof of Theorem 2.
We mention for completeness that Lemma 8 has a suitable generali-
zation to torsion groups.

LEMMA. 12. Let G be a torsion group and let H be a high sub-
group of G. Then H contains a basic subgroup of G.

Proof. Use Lemma 8, the primary decomposition of H, and [1],
p. 109, Exercise 9a.

Some of the more interesting properties of high subgroups are con-
tained in

THEOREM 5. Let G be a reduced primary group with G + 0, and
let H and K be high subgroups of G. Then

(a) H contains B basic in G

(b) H 1is pure in G

() G|H is a divisible hull of (G*@ H)/H = G*

d) G/K=G/H

(e) p"H is high in p*G for all nel (I is the set of positive in-
tegers.)
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(f) »"H is pure in p"G for all nel

(g) G ={H, p"G} for all nel

(h) H s infinite

(i) H 1is of unbounded height in G

(i) "G = {p"H, p"**G} for all n, kel

k) p"H[p""*H = p"G[p"**G for all n,kel.

(1) »"G/p"H = G|H for all nel.

(m) G is minimal pure containing H P G*

m) HAG <G

() |HOG| =G|

() |G < |Glimplies |H| = |G|

(@) |K|=|H| (This also holds for N-high subgroups of infinite
rank.)

() |G| = |HP

(s) G/p*H = H|p"H D p"G[p"H for all nel.

(t) H 1is not always basic

(w) If H s countable, then H 1is basic in G, and H = K,

Proof. (a) and (b) have already been proved.

(¢c) Is easy.

(d) Follows from (c) and the fact that isomorphic groups have
isomorphic divisible hulls (see [1], p. 66, Theorem 20.2).

(¢) To see that p*H is high in p"G, suppose that there exists x € G
with {p"H, p"z} N G* = 0 and p"x ¢ p"H. (Here we are using the fact
that (p"G)' = G'.). Now by purity of H, p"x ¢ p"H implies p"x ¢ H. Thus
we have some h e H with h + mp"c =9 #+= 0,9 G. But then » must
be in p"H contrary to {p"H, p"x} N G* = 0.

(f) The purity of p*H in p"G follows from (e), and Theorem 1
applied to p"G.

(g) This is an immedite consequence of (c).

(h) And (i) both follow from (g) and the fact that a high subgroup
of a reduced group is not a direct summand.

(j) Follows from (e) and (g).

(k) Follows from (j), the second isomorphism theorem, and (f).

(I) Is an immediate consequence of the fact that both quotient
groups are divisible hulls of G*. This is also a straightforward applica-
tion of (g).

(m) This follows from Lemma 1 (f) and [1], p. 78, K.

(n) Follows from the fact that (c) holds and hence H is not a direct
summand of G.

(o) TFollows from Lemma 1 (f) and an easy set theoretic argument.

(p) Is an easy consequence of (o).

(@) Here some cases are taken care of by (d), but a proof for the
general case is not difficult. To show that |H| = | K|, it suffices (by an
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easy set theoretic argument) to verify that H[p] = K[p]. For this
purpose let D be a divisible hull of G, and C be a divisible hull of G*
in D. By Lemma 1, if 4 and B are divisible hulls in D of H and K
respectively, then A and B are complementary direct summands of C in
D. Finally A = D/C = B and Hp] = Alp] = B|p] = K[p]. The same
argument shows the result for N-high subgroups of infinite rank.

(r) Follows trivially from (a) and [1], p. 102, Theorem 30.1.

(s) To see this, use (g) and the purity of H.

(t) Let G be the direct sum of an unbounded closed primary group
and any primary group with nonzero elements of infinite height.

(u) This follows from (b), (c), (q), the fact that a countable H is
a direct sum of cyclic groups, and that any two basic subgroups of G
are isomorphic.

For a comparison with the properties of basic subgroups see [1],
p.101. The reader will notice that (d) is an interesting property of high
subgroups which basic subgroups do not possess.

We are now ready to discuss the question of whether or not any
two high subgroups of a reduced primary group are isomorphic. Let A
be a subgroup of G, and let A be the image under the natural homo-
morphism from G onto G/G*. It is a simple matter to verify that G is
a reduced primary group without elements of infinite height. Thus if
H is a high subgroup of G, we have that H = H. This provides us a
natural way to study the properties of high subgroups without actually
looking at these subgroups themselves.

A result concerning Ulm invariants as defined by Kaplansky in [2],
and providing another proof that two countable high subgroups of a
group G are isomorphic is the following

THEOREM 6~ Let H and K be high subgroNups of a primary group
G. Then (p H)[pl/(p""H)[p] = (0"K)[pl/(p""K)[p]. In particular, H
and K have the same Ulm invariants. Moreover, their nth Ulm invar-
iants are the same as the nth Ulm invariant of G.

Proof. Consider H and K. First we notice

(i) Hlp]= K[p].

To see this we observe that o(k) = o(h + G*). Suppose ke H[p]\H N
K. Then there exists ke K with h — k = g +# 0 where geG*. Clearly
o(k) = p and we have h =k + g. This proves that H[p] c K[p]. Thus
by symmetery H[p] = K[p]. Next we have

(ii) p H[p] = p"K[p] for nel.

To see this use Theorem 5 (e), and the foregoing (1i).

Now from (ii) we have that (p"H)[p]\(p*H)[p] = (0"K)[p]/(p*+K)[p]
since the numerators are equal and the denominators are equal, and
hence the Ulm invariants of H and K are equal. Finally the fact that



HIGH SUBGROUPS OF ABELIAN TORSION GROUPS 1383

H = H gives us that H and K have the same nth Ulm invariants. The last
part of the theorem follows from (p"G)[pl/(p™"'G)[p] = (»"H o)/ (e H)[p]
which is obtained with the help of Lemma 1 (f), Theorem 5 (e), and the
second isomorphism theorem. .

We will now mention a few generalizations to modules. In what
follows, R will denote a principal ideal ring. This means that R is an
integral domain (commutative ring with an identity and no divisors of
zero) in which every ideal is principal. By an R-module we mean a
unitary left E-module, and by submodule of an R-module we mean a
sub-R-module. An R-module M is called primary if and only if the
order ideal of every element of M is generated by a power of the same
prime element p of K. We shall be content with a generalization to
primary modules of our main results for primary groups. We rely heavily
on the generalizations of Theorems 1 to 14 in [2].

We make a blanket assertion: All of our lemmas and theorems for
primary groups are true for primary modules. Only minor, straight-
forward modifications of the definitions and proofs are necessary, and
these can be easily carried out by imitating all the previous definitions
and proofs. When referring to orders of elementsin a primary module,
we say that o(x) is smaller than o(y) if and only if the generator of the
order ideal of z divides the generator of the order ideal of v.

In conclusion we state without proof the most worthwhile lemmas
and theorems.

LEMMmA 13. Let M be a primary R-module. Let L, N be sub-
modules of M with L containing a basic submodule B of M, and L
maximal with respect to disjointness from N. Then L is pure in M.

THEOREM 7. Let H be a high submodule of a primary R-module
M. Then H is pure in M,
The solution of Fuchs’ question for primary modules is

THEOREM 8. Let S be an infinitely generated submodule of the
primary R-module M with R countable and S N M'=0. Then S can
be embedded in a pure submodule K of M such that KN M*=0 and
|K|=|S].

The only essential difference between this theorem and Theorem 2
is that the word infinite has been replaced by the words infinitely
generated to make |K| = |S| true in all cases. The proof is the same
as before. The countability assumption on R makes the proof of [1]
p. 78 N easy.

The author conjectures that all high subgroups of a given primary
group are isomorphic, and also wishes to pose the questions:
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For what subgroups N of a primary group G is it true that
(a) all N-high subgroups are pure

(b) all N-high subgroups are isomorphic

(¢) all N-high subgroups are endomorphic images of G

(d) G/N divisible implies N contains B basic in G?
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QUOTIENT RINGS OF RINGS WITH ZERO SINGULAR IDEAL

R. E. JOHNSON

Many papers have been written recently (see [2]-[14] of bibliography)
on extensions of rings to rings of quotients. In most of these papers,
strong enough conditions are imposed on the given rings to insure that
each has a vanishing singular ideal (first defined in [5]). It seems
appropriate at this time to collect these results and present them in as
general a form as possible. In this paper, it is assumed that each ring
has a zero right singular ideal. A subsequent paper will give the
quotient structure of a ring having a vanishing right and left singular
ideal.

1. Introduction. If Ris a ring and M is an R-module, then L(R)
and L(M, R) will designate the lattices of right ideal of R and R-sub-
modules of M, respectively. Superscripts ‘“‘r”’ and ‘I’ will be used
in designating the right and left annihilators, respectively, of an element
or subset of a ring or module. The context will always make it clear
from what set the annihilators are to be chosen.

In a lattice L with 0 and I, an element B is called an essential
extension of element A, and we write A C’B, if and only if Ac B
and C N A= 0 for every C in L for which C N B+# 0. An element A
of L is called large if A C’I. The sublattice of L of all large elements
is designated by LA.

If Ris a ring and M is a right R-module, then let

MAR)={x|x eM z- ¢ LAR)}, R*={x|xecR, 2" cLMR)}.

It is easily shown that M4(R) is a submodule of M and R* is a (two-
sided) ideal of R. The ideal R* is called the singular tdeal [5; p. 894]
of R.

A ring R with zero singular ideal has the unusual property, proved
in [7; Section 6], that each A e L(R) has a unique maximal essential
extension A° in L(R). The mapping s: A — A° of L(R) is shown there
to be a closure operation on L(R) having the following properties:

1 0°=0,

(20 (AN B)=A°N B* for each A, Be L(R), and

) (x*Ay=u"A°*foreachx c Rand A € L(R), wherex'B={y|y ¢ R,
xye B}. The set L'(R) of closed right ideals (i.e., A = A°) may be
made into a lattice in the usual way by defining the union of a set of

Received December 10, 1960. This research was supported in part by a grant from
the National Science Foundation.
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elements of L*(R) to be the least upper bound of the set. The result-
ing lattice L°(R), which is not in general a sublattice of L(R), is proved
to be a complete complemented modular lattice in [7; Section 6]. If
M is a right R-module for which M4(R) = 0, then the closure operation
s may be defined in a similar way on L(M, R). The resulting lattice
LM, R) has similar properties to those of L‘(R), as was shown in [7;
Section 6].

For A, Be L(R), B is called a complement of A if BN A=0
whereas C N A = 0 for every C D B,C + B. If B is a complement of
4, then clearly A + Be LA(R). Furthermore, if R* =0, then Be
LR).

If A is a two-sided ideal of R for which A N A' = 0, then evidently
4 is the unique complement of A in L(R). Since (A + A = A' N A¥,
clearly AY” is the unique complement of A’ in case R4 =(. In this
case, both A' and A" are in L%(R). By [7; 6.7], C°(R)={A|A ideal
of R,AN A =0, A = A" is the center of the lattice L°(R). For each
A e C3(R), it is easily seen that A* =0, that L*(4) = {B N A| Be L%(R)},
and that C*(4A) ={BnN A|BeC*(R)}. Of course, L(4) c L(R) and
CA4) c C(R).

Every regular ring R has a zero singular ideal. This is evident
because ¢" N eR =0 for each idempotent ee R. Since R =¢R + ¢,
evidently eR and ¢” are complements of each other and each is in L*(R).
Consequently, each principal right ideal aR e L*(R).

A ring R for which R4 =0 and C%R) = {0, R} is called (right)
irreducible. An irreducible ring need not be prime. For example, the
ring of all » x » triangular matrices over the ring Z of integers is
irreducible by [8; 3.5]. Clearly this ring has a nonzero nilpotent ideal.
By [8; 2.1], an irreducible ring is prime if and only if it contains no
nonzero nilpotent ideal.

If R is a subring of ring @ then @ is called a (right) quotient ring
of R, and write R < @, if and only if ¢R N R # 0 each nonzero g € Q.
It was proved in [5] that each ring R for which R* = 0 has a umique
maximal quotient ring R. By [5; Theorem 2], B is a regular ring with
unity. Essentially, the definition of R in [5] was as follows:

R = U Homy(4, R) .
4EIA(R)
If x,yel?, then we take £ = y if and only if xa = ya for every @ in
some large right ideal A < Dom x N Dom y.

In case R is a subring of a ring @, then we may consider @ as a
right R-module. If we do so, then the assumption B < Q implies that
Rc’Q, considering R and Q as right R-modules. It is easily verified

The more general definition of a quotient ring in [12] and {2] is equivalent to ours
in case B4 =0.
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that if R < @ then Q*(R)=0 if and only if R4 = 0.

2. Some basic lemmas. The rest of this paper will be concerned
only with a ring R for which R4 = 0. We shall prove in this section
that if @ is a quotient ring of such a ring R, then the lattices of
closed right ideals of R and @ are isomorphic.

2.1 LEMMA. If R=<Q and AcL(Q), then Ac LA2Q) if and only
if AN ReLA(R).

Proof. If AeL*(Q) and be R, b+ 0, then AN bQ #0 and a =
bg +# 0 for some acA and ge Q. Now ¢C C R for some C e LA(R) by
[7; 6.1]. Since Q*(R) =0, bgC # 0 and therefore A N bR+ 0. Hence
(ANRNOR+0and AN ReLA*R).

On the other hand, let us assume that Ae L(Q) and A N Re LA(R).
For each nonzero ¢ e @, ¢C < R for some Ce LAR). If we let B=C N
(A N R), then Be LA(R) and ¢B + 0 since Q*(R) = 0. Hence ¢B N (4
N R)#+ 0 and we conclude that ¢Q < A # 0 for each nonzero qe Q.
Thus, A e LA(Q).

2.2 LEMMA. If R=Q and M is a right Q-module, then M is «a
right R-module and MA(R) = M*(Q).

Proof. If xe M and A=2"(in @) then Ae LA(Q) if and only if A N
Re ILA(R) by 2.1. Therefore, M4(R) = M*(Q).

2.3 COROLLARY. If R < Q, then Q* = 0.

This follows from 2.2 if we let M =@ and use the assumption
that B4 = 0.

24 LEMMA., If R=<Q and M is a right Q-module such that
MAQ) = 0, then L' (M, R) = L*(M, Q).

Proof. If AcL’(M,R) and gqe@, then ¢gBC R for some Be
LA(R). Therefore (Ag))Bc A and AgC A by [7; 6.4]. Hence, Ac
L(M, Q) and we conclude that L(M, R) C L(M, Q).

If AeL(M,Q),xe M and B, ={b|be@, xbec A}, then ze 4A* if and
only if B,eLA(Q) by [7; 6.4]. Therefore, in view of 2.1, the closure
of A relative to Q is the same as its closure relative to R. Thus,
LM, R) = L*(M, Q).

2.5 THEOREM. [f R=Q, if M s a right @-module for which
MA*Q)=0 and if NeL*M, R), the L*(M, Q)= L’(N, R) under the
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correspondence A—- A N N, A e L(M, Q).

Proof. By [7; 6.8], L*(M, R) = L*(N, R). Thus 2.5 follows from
2.4.

2.6 COROLLARY. If R =< Q, then L Q) = L(R) wunder the corre-
spondence A — A N R, A e LQ).

If R is an irreducible ring, so that C*(R) = {0, R}, then C:(B) =
{0, R} by 2.6. Hence R also is irreducible. Actually, since R is regular,
R is a prime ring by [8; 2.1]. We state this result as follows.

2.7 THEOREM. If R is an tirreducible ring, then R is a prime
ring.

3. L(R) atomic. Let us assume in this section that R is a ring
for which R4 = 0 and the lattice L°(R) is atomic. We define this to
mean that L°(R) has minimal nonzero elements, called atoms, and that
each element of L°(R) contains at least one atom. It is proved in [7; 6.9]
that a nonzero element x of R is contained in an atom if and only if
2" is a maximal element of Lf(R). Incidentally, (xR)* is the atom
containing .

Two atoms A and B are said to be perspective [1; p. 118], and we
write A ~ B, if and only if A and B have a common complement. It
is easily shown in our case that A ~ B if and only if 4 U B contains
a third atom [1; p. 120, Lemma 3]. We proved in [7; 6.10] that A ~ B
if and only if a” = b" for some nonzero a € A and be B. If A ~ B and
B~ C then a" =b" and b] = ¢" for some nonzero acA,b,bcB and
ceC. Since B is an atom, bR N bR + 0 and there exist z, z, ¢ R such
that bx = bz, # 0. Hence, (ax)” = (bx)" = (b,x)" = (cx,)". It follows that
perspectivity is an equivalence relation on the set of all atoms of L5(R).
Clearly for a finite set {4, ---, A,} of perspective atoms, there exist
nonzero a; ¢ A; such that a] = a} for each 7 and j.

For each atom A of L*(R), let A* be the union in L)(R) of all
atoms perspective to A. It is proved in [7] that A* is an ideal of R
[7; 6.7] and that A* is an atom of C*(R) [7; 6.12]. Conversely, each
atom of C*(R) is of the form A* for some atom A of Li(R).

Since C*(R) is a Boolean algebra, R is the direct union of all atoms
of C°(R). Hence, if {Af;ic 4} is the set of all distinet atoms of C3(R),
then the ring-union S of the atoms of C°(R) is a discrete direct sum of
these atoms,

Since S' = 0, evidently S < R. Consequently, the maximal quotient
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ring of R is just the maximal quotient ring of S.

The following theorem characterizes R in terms of left full rings.
We shall call a ring R a left full ring if there exists a division ring
D and a right D-module M such that

R = Hom,(M, M) .

Evidently we may consider M as a (R, D)-module.

3.1 THEOREM. If R s a right iweduAcible ring, then R is a left
Sull ring. If R is right reductble, then R is a complete direct sum
of left full rings.

Proof. Consider first the case in which R is irreducible. Since R
is regular and L(R) = LS(R), the lattice LS(R) is atomic and its atoms
are principal and hence minimal right ideals of R. Since R is prime
and has minimal right 1deals it is primitive. Let e be an idempotent
element of B such that eR is a minimal right ideal. Then M = Re
is a minimal left ideal of B and D = eRe is a division ring. Since
xRe+0 for each mnonzero ze R by the prinleness of l@, evidently R
is a right quotient ring of M. However, K is a maximal right quo-
tient ring so that we must have M = K. Besides being a ring, M
may be considered to be a (R, D)-module. Clearly the right ideals of
M are its D-submodules. Thus, M is the only large right ideal of M.
Consequently,

Homy (M, M) ,

considering M as a right M-module, is the maximal right quotient ring
of M. Since x(ae) = x(eae) for each x € M and a ¢ K, evidently

Hom, (M, M) = Homy,(M, M) .

Since M = }?, this proves that R is a left full ring.

If R is not irreducible, then there exists a set {E; ¢ ¢ 4} of ir-
reducible rings, each having an atomic lattice of closed right ideals,
such that

2R =R

1€4
by our previous results. We shall not give the details, but it is easily
seen that if

S=3R;, then S = SV R,
1€4 1€4

where 3 designates the complete direct sum. Since S = R, this proves
the second part of 3.1.
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The important special case of this theorem when R is a primitive
ring was proved by Utumi [12; 5.1] and Wong [13; 4.1]. Both Utumi
and Lambek [10] have independently proved the theorem if R is
prime,

4. L(R) finite-dimensional. The usual assumption that R4 = 0 is
made for each ring R of this section. If either the a.c.c. or the d.c.c.
holds for L*(R) then so does the other one. In fact, each is equivalent
to the assumption that L°(R) contains a maximal chain of finite length.
When this condition is satisfied, a dimension function d may be defined
on L°(R) as follows [1; p. 67]: for each A e L*(R), d(A) is the length of
the longest chain joining 0 to A. Incidentally, every maximal chain
Joining 0 to A has the same length d(4). We shall assume in this
section that such a dimension function d is defined on L°(R) and that
d(R) is finite. Since the lattice L°(R) is also complemented, each A€
L:(R) is a direct union of d(A) atoms [1; p. 105].

It is proved in [9; 3.4] that if d(R) is finite then for each ac<R,
aRe LA(R) if and only if " = 0. Of course, a' = 0 whenever aRe L*(R).
Thus, D(R)={a|ac R, aRec LA(R)} is the set of regular elements of R.
Each ae D(R) has an inverse in R. For, by the regularity or }?,
(@b — )a = a(ba — 1) = 0 for some be R. Since (ab — 1) O aR, a large
element of LA(R), ab — 1 =0 in view of 2.1 and 2.3. Also, ba — 1 =0
since a” = 0 in B as well as in B. Consequently, b = a%.

4.1 THEOREM. If R is irreducible and d(R) = n, then R is a full
ring of dimension n.

By a full ring of dimension # we mean a ring isomorphic to
Hom, (M, M) where D is a division ring and M is a right D-module of
dimension «.

If we select M = Re as in the proof of 3.1, then M < R and the
lattices L*(R), L°(M) and L*(R) are isomorphic by 2.6. Since the right
ideals of M are its D-submodules, M is an n-dimensional vector space
over D. Hence 4.1 follows from 3.1.

A different proof of 4.1 was given in [9; 3.6].

If R is a prime ring for which d(R) is finite, then it was proved
in [3; Theorem 10] and in [9; 3.5] that every large right ideal of R
contains a regular element. Since B={b|bec R, gbe R} is a large right
ideal of R for each qe IAB, clearly ¢b = a for some be D(R) and acK;
that is, ¢ = ab™. This proves the following theorem of Goldie® [3]
(also proved in [11] and [9]).

2 That each ring considered by Goldie has a zero singular ideal is proved in [4; 3.2].
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4.2 ?HEOREM. If R is a prime ring for which d(R) = n, then not
only is R the full ring of linear transformations of an wm-dimensional
vector space over a division ring but also R={ab™"|a e R, be D(R).

From 8.1 and 4.1, we easily deduce the following theorem.

4.3 THEOREM. If R is a ring for which d(R) is finite, then R is
a direct sum of a finite number of finite-dimensional full rings.

A ring R is called semiprime if it contains no nonzero nilpotent
ideal. We recall that if S is the direct sum of the atoms of C:(R),
then S < R. Since each nonzero ideal of K has nonzero intersection
with some atom of C*(K), evidently R is semiprime if and only if each
atom of C*(R) is prime. The following theorem was recently proved by
Goldie [4].

4.4 THEOREM. { f R is a semiprime ring for which d(R) is finite,
then mot only is R a direct sum of a fintte number of finite-dimen-
stonal full rings but also R={ab™"|ac R, bec D(R)}.

The first part of 4.4 follows directly from 4.3. To prove the second
part, let S = R@P---PR, be the sum of the atoms of C°(R). Then
R=8= R®-- -@ﬁk. If ¢q,eR, then ¢, = ab;* for some a;c R, and
b,e D(R) by 4.2. Thus, if ¢q=q¢,+ - +q,a=0a,+ -+ +a,, and
b=5b + v« +b,, ¢ =ab? This proves the second part of 4.4,

A converse of 4.4 has been given by Goldie [5; 4.4]. He proved
that if R is a ring for which d(R) is finite and R = {ab'|acR,be
D(R)}, then R is semiprime. Naturally, this implies the following
converse of 4.2: If R is a ring for which R is a finite-dimensional full
ring and R = {ab'|a e R, be D(R)} then R is prime.
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THE ASYMPTOTIC DISTRIBUTION OF THE TIME-TO-
ESCAPE FOR COMETS STRONGLY BOUND TO
THE SOLAR SYSTEM

Davip G. KENDALL AND J. L. MoTT.

1. Introduction This paper is one of a series (Hammersley and
Lyttleton [1], [2], Kerr [3], Kendall [4], [5], [6]) concerned with the
statistical-dynamieal properties of the sun’s family of comets. For the
astronomical background, terminology, conventions, units, etc., we refer
the reader to [5].

We consider a comet in the energy-state x > 0 (so that the total
energy per unit mass is equal to — ) which is approaching perihelion,
not necessarily for the first time, and we write T for the total time
spent by the comet in describing complete circuits subsequent to this
perihelion. We ignore the low energy (high x) catastrophes (capture by
Jupiter, falling into the sun, etc.) and consider the fate of the comet sub-
ject to independent energy-perturbations at perihelion, the magnitudes of
which we suppose to be distributed according to the probability law

te~ ™ dw(b (— o <w< ),
the so-called ‘double-exponential law’. It is then known [5] that T is
almost certainly finite.

The probability distribution of 7 cannot be found explicitly, but its
Laplace-Stieltjes transform ¢ satisfies a differential equation which we
treat by a perturbation method. At first sight it seems unlikely that a
perturbation procedure followed by a Laplace inversion could yield any
positive information about the distribution being studied, but in fact by
a careful arrangement of the argument we are able to calculate the
exact limit-law

lim Pr{ < o]}

for the reduced random variable T/1/x; the result is given at (15) below.

If we are chiefly interested in the origin of comets we can identify
the given perihelion with the comet’s first, and 2z is then its initial
energy-state. There are indications ([5], [6]) that this value of % is small
when compared with the average size of the perturbations, but information
about solutions for large = can be extracted from Hammersley [2], and
the present result thus forms a useful complement to some of his results,
with which it is consistent: in fact, the same (limit-) law was obtained
by Hammersley in his exact solution to the corresponding problem involv-

Received November 16, 1960.
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ing Brownian motion.

If we do not identify the given perihelion with the comet’s first,
then our result tells us the distribution of the remaining time-to-escape
T for a comet which happens to have entered a high energy-state.
From this point of view the result is of value whatever opinion we may
hold about the origin of comets, but it is of course limited by the fact
that when « is large (i.e.,the comet is strongly bound) then one cannot
properly neglect the low-energy (high x) catastrophes.

The justification for the use of the double-exponential perturbation
law will be found in [3], [4], [5], [6]. Because of the asymptotic character
of the present result one might expect the detailed form of the pertur-
bation law to be unimportant, and one might hope that identically the
same result would follow for any perturbation with zero mean and a
finite variance. The proof that this is so is the object of an investigation
by C. Stone and J. Lamperti, who will in a forthcoming paper discuss the
appropriate invariance theorem.

In the course of our work we shall make use of some Bessel function
formulae given by Watson [7]. We shall refer to these formulae as
(AW), « -+, (6W), where (1W) is given on p. 80 of [7] at (19), (2W)-T7(2),
(BW)-202(1), (4W)-203(2) and (5W)-80(15).

2. The asymptotic distribution of 7/y/x. T is the total time during
which a comet remains in the system, measured from (say first) perihelion;
thus 7 is the total time spent in describing complete circuits. The
comet is subject to energy perturbations at perihelion distributed
according to the double-exponential law, and there is also a chance
k(0 <k < 1) of disintegration at each perihelion passage; for the moment
we retain the possibility of disintegration but our main results depend
on a method which would not be very easy to handle when % > 0, and
we shall shortly put k£ = 0.

Define

H(s|w) = & (e |x);

here z is the energy-state of the comet during the approach to first
perihelion, so that # > 0,and s = 0. V(y) = y~**(y > 0) gives the peri-
odic time of an orbit in state y, but (following Hammersley [2]) we
shall first set V(y) = y=®. We shall later put a = 3/2 to give our main
result, and afterwards remark briefly on the more general case.

Consideration of the possible events at first perihelion leads to the
integral equation for ¢:

B(s|z) =k + (1 — k) {% sl S‘” 1b71 gm0l g ) sl 1 4 gp) duw

+ Sz % b_1 eAw/b e—sV(:c—w) ¢(S]w . ’ll)) d’W},

0
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whence
(1) glslo) =k + (1 — k) fae + 30t e | emvr e (s o) duo
+ 4 bte? S: evlt g=sv qS(st)dw}.

Since 0 < ¢ <1 for £ > 0 and s = 0, and ¢(s]-) is measurable for s = 0,
we see from (1) that ¢(s|-) is continuous on the interval 0 < z < co.
But then ¢(s|-) is also differentiable, and with D = 8/ox,

(2) (1 — k)—l DqS = —} b1t g—=l® + % b2 evlt Sw oW/t g=sVw) ¢(slw)dw
_ % b—z e—z/b Sz ew/b 6~sV(w) ¢(SI w) dw’

also

oo

(3) (1 - k) D? d=4b" e + 1 b et S e~wib g—sviw) ¢(SI’W)dw

xz

. b—2 e—sV(z:) ¢>(S].’)C) + % b—3 e-—:c/b Sz ew/b efsV(w) (f)(Si’W)dw-
0

Thus from (1) and (8)
(4) Di¢p=0{1 — (1 —Fk)e"@}¢p(s|x) — kb~* (x > 0);

and now we have that, in fact, ¢ ¢ C~.
We now put k = 0, and then write (4) as

(5) D¢ — g9¢ = fo,
where
g=s8b2V(x) and f={1—sV(x)—e"=}b

We discuss the nature of ¢ by using the standard method of variation
of parameters, and so postulate as a solution of (5) (for the moment we
suppress the variable s)

P(x) = A®) O0.(x) + B() Oo(x),
where 8,(x), 0,(x) are independent solutions of
(6) D¢ — gp = 0.

We find that

() #(0) = 02) | 70 6(w) 0.0 Ayl W = 0,0) |" 7 0) ¥(w) 0.0) dyl W,

where W = 0(y) 0.(y) — 0(y) 6.(y) (actually a nonzero constant) and ¢, d
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here are constants. When a = 8/2, which is the case we shall work
through in detail, we can take (cf. Watson [7], p. 96)

(8) 0.(x) = 2 K,(4b~ ' s'2 x*) and O, (x) = 2/ I,(4b~" 8 2'1*) ;

also W= — }, using 1W). We now rewrite (7) in the more convenient
form:
(9) o) = A0@) + Boo) — 40.0) || FW)#w) 0.0} dy

— 46(@) | @) $(0) .00y,

where A and B are constants (possibly involving s) to be found later;
this we can do because, for fixed s, 6,(y) ~ Cy (y—0) and 0,(y) ~
Cyte~'"" (y — =), by (2W) and (3W). Here (and elsewhere) C is
some positive constant (often depending on s), but not necessarily the
same each time it occurs. Thus the effect of our work so far has been
to replace the natural integral equation, (1), by a second, (9); but (9) is
the easier to handle.
We now find A and B. We first note that B=0. For

(i) 6(y) ~ Cy*fexp(— 407" s y"") (y — =), by BW),

(i) 0x(y) ~ Cy’® exp{db~' s y'") (y — o), by (4 W) and

(ili) f(y) = O(W™®) (y — o=); thus the two integral terms of (9) tend
to zero as « — o. Since 0 =< ¢ =1 for all x, there is (for x — «) just
one unbounded term in (9) if B # 0, and so B = 0.

To find A we need further boundary conditions on ¢. From (1)
(with k£ = 0) we have

(10) P10 +) =4+ 4071 J,
where

J = Sw e~ =V g(sfw)dw ;

and from (2) (with £ = 0)

Dp(s|0 +) = — 3 b7 + 152 J.
Thus
(11) H(s]0 +) =1 + bD(s]0 +)

which, with (9), allows us (after some detailed calculation) to evaluate
A. We find, by elaboration of the methods used below, that

b? s 4s s\
A:{— S log (% - _} :
83+ 5 og<b2>+(2’7 1) ik
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we shall not give the details because the asymptotic distribution of
T/v/x is obtainable without this complete treatment of A. We shall
show later (in § 4) that

(12) ¢ = Ab’[8s + O(x'") (x—0),
when s > 0, whence ¢(s]0 +) = Ab*/8s. Then from (10), recalling that

A depends on s, we see that

lim (Ab*/8s) = 4 + 4 b~ lim S o= g~ s | 10) daw

s—0 s—0 JO
— 34 1b Swe*’””’dw Pr{T < e} =1
0
(because almost certainly there will be only finitely many complete circuits),
so that
A ~ 8s/b* (s—0).

Now put sp/2 =0 >0 in (9) and let £ — « and s — 0, ¢ being
fixed. Then

(13) E(e " |x) = ¢(s|x) > 8020 K, (4b71 /o), (0 > 0, © - o).

1f both integral terms of (9) tend to zero; this is in fact the case, as
we show in §3. The (honest) probability distribution

16 4\ dr
14 16 _4)\adr o
(14) bi exp < bz,[> g (0<7< =)

has the expression on the right-hand side of (18) as its Laplace transform,
so that

lim & (e=°%V*|x) = & (e7°7)
for all ¢ > 0. It follows by the continuity theorem for the Laplace-

Stieltjes transforms of probability distributions of nonnegative random
variables that

(15) lim Pr{;/% = clx} = t—? S:exp <—E§z:> %‘g, = (1 + —1;21—0> exp <_Z§§ .

L0

This is our main result; but it is clear that (to some extent at least)
the precise value of a affects the detail of (15) rather than its essential
nature. For a #= 2 we can take as independent solutions of (9)

0w) = 22 K(20b~ s 2’ ~07%) and () = o™ L(2vb~* s = 1ve),

where v = |a — 2|7 (for & = 2 the solutions are powers of ), and then



1398 DAVID G. KENDALL AND J. L. MOTT

find as before that W is a constant independent of y. But some limi-
tations on « are imposed by the need for suitable behaviour of various
integral terms, and we merely note here one analogue of (15):

if V(x) = a7, then

(16) lim Pr{—g— = clx} =1 S:exp (— 1 >‘i:—., = exp(———1—> .

3. Analytical details. Consider the behaviour of the integral terms

in (9) when ¢ — « and sy/z =0 > 0. These terms are (apart from
constant factors)

@ 0.@) |, 7w #(s1) 0w dy

and
(b) 0.) | ) 61v) 0.) d.

Write (@) as 0@ { | + | /@) 961w 6@ay} = 4, + 4, say, and

consider separately the terms A, and A,. Using |f| < 2b~2sy=*(y > 0),
and noting that 4,(x) = gs™* K(4b~*1/0), we have

£ vn [52(2) o

1
0y

<o L(2)

|All<c%5

for x sufficiently large, since L,(\') = O(\'"*) (A = 0). Thus 4, = O(z™?)
(x > o). For A, we use |f| < }s*y*b* and find

|4;| < C —Z— Sj ;—: y'* I, [z—llg—g <1;—>1/4] dy < Cs Sj Yy dy,

since I(f) is bounded for 0 = ¢ < 4b7*1/0. Thus 4, = O(x") (x — =),
so that (a) > 0 as ©* > o with sz = ¢ > 0.
For (b) have

O <Cor |y Ly =0a) (@)

which completes the proof that the integral terms tend to zero.

4. Analytical details (continued). We now prove (12). To do this
we need (part of)
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(i) 6y(w) = b"[8s — 3" + O(x log ) (x—0),

(ii) Ox) = 280 x + O(x*?) (x —0)
and

(i) 1 —sV(@) — e = — sz 4+ OQ1) (x—0).

Proofs. By (6W)
Kyz) =222 — 1 + O(z*log 2) (z—0),
whence (i) follows. Likewise, using (2W), (ii) follows from
L(z) = 2°/8 + O(z") (z—0).

Finally, (iii) follows from 0 < e~*"* < 1 for > 0, s > 0.
We now note that (12) follows at once from (9) if we show that

i) 0@ | @) o 60)dy = 0@ (@ —0)
and

@) 0@ | @) ¢w) 0@ dy = 0@ @—0).
These results follow from those already given. We have

f@) =0w™) (y—0) and 6&,(y) = O(y) (y — 0)
so that

[ f) 6@ 6.0)dy = 0@") (- 0).

Since 6,(x) = O(1) (x — 0), this gives (iv). The proof of (v) is similar.
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THE SPECTRUM OF SINGULAR SELF-ADJOINT
ELLIPTIC OPERATORS

KURT KREITH
This note deals with the Dirichlet problem for the second order
elliptic operator

0
ox;

1 & 0 <
L - - a/i]' x‘
r(x) «%il ox, @

>+c(x)

whose coefficients are defined in a bounded domain G C E". We suppose
the following:
(@) The a;;(x) are complex valued and of class C' in G;a,; — @;;.
(b) c¢(x) is real valued, continuous, and bounded below in G.
(¢) 7(x) is continuous and positive in G.
(d) There exists a function ¢(x), continuous and positive in G
satisfying

n

a;;EE; =0 é:{ [& 7

1

(2%

for all x in G and all complex n-tuples é = (&, &, +++, .
Under these assumptions it is easy to show that L is formally
self-adjoint in the Hilbert space <%(G) of functions which satisfy

S¢|u|2dx<oo.
q

We denote by C(G) the set of infinitely differentiable functions with
compact support in G. The operator L defined on C7(G) is a semi-
bounded symmetric operator in $2%G) and therefore has a Friedrichs
extension which is self-adjoint in &(G). This operator, to be denoted
by L, will be referred to as the Dirichlet operator associated with L
on G. It is well known that L is unique, has the same lower bound
as the symmetric operator L, and that in sufficiently regular cases, L
can be obtained by imposing Dirichlet boundary conditions on the
domain of L*. The purpose of this note is to state a criterion for the
discreteness of the spectrum of L.

We shall say that the spectrum of an operator A is diserete if the
spectrum of A consists of a set of isolated eigenvalues of finite multi-
plicity. The complex number X\ belongs to the essential spectrum of A
if there exists an orthonormal sequence {u,} it the domain of A for
which (4 — M)u, — 0. If A is self-adjoint, then it can be shown (see

Received December 6, 1960. This research was partially supported by a grant of the
National Science Foundation NSF G 5010.
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[2]) that \ belongs to the essential spectrum of A if and only if ) belongs
to the spectrum of A and is not an isolated eigenvalue of finite multiplicity.
Thus the spectrum of a self-adjoint operator is discrete if and only if
the essential spectrum is empty.

In case G is bounded and the conditions (a)-(b) are satisfied in G
as well as G, then it is well known that L has a discrete spectrum.
Here we shall allow the possibility that ¢(x) and »(x) tend to 0 or < on
a set S C 8G. With this generalization the spectrum of L need not be
discrete.

In order to state criteria for the discreteness of the spectrum of
L, it is convenient to express the problem in the canonical form where

Gcix|xz, >0}
Sciz|z, =0}

0 ] =0 0
PR T S R P W
ox, ox, z%l ox; ! or;

Mihlin [1] has shown that this canonical form can in general be attained
by a change of variables. Previous criteria for discreteness derived by
Mihlin {1], Wolf [2], and others depend on the behavior of a,, near S.
The criterion to be derived here is independent of the behavior of a,,;
with minor modification, the method can also be applied if G is an
unbounded domain.

We define
G.=GNn{z|z. <t}
Et:G ﬂ {w]xn:t}y
and denote by % the coordinates (%, +++,®,-,) in E,. Let L, denote the

Dirichlet operator associated with L on G,. Then the following is a
special case of an invariance principle due to Wolf [2].

LEMMA 1. For t >0 the essential spectrum of L, is identical
with the essential spectrum of L.

LeEMMA 2. Iflim inf _(I_Il'ﬁ%) — oo, then the spectrum of L is discrete.
-0 ueog@y) || W

Proof. Suppose to the contrary that there is a ), < o which
belongs to the essential spectrum of L. We can choose ¢, > 0 sufficiently
small so that

inf 2222 >\ 41,

ue03(@, ) Hwl® —

Then, by the definition of L,
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(Etgu’ u) g )\10 + 1
IKAIE

for _all % in the domain of f/to, and ), does not belong to the spectrum
of L,. By Lemma 1 this is a contradiction.
For ¢t > 0 the operator

1 i/ i
T = — e ;
r(Z, t) Z(“ @ )axi)—l-c(x )

is a nonsingular elliptic operator defined on E,. Therefore T, the
Dirichlet operator associated with 7, on ZZ“ has a discrete spectrum.
Let m(t) denote the smallest eigenvalue of T',.

THEOREM. If lim m(t) = o, then the spectrum of L is discrete.
t—0

Proof. If weCy(G@), then clearly w(Z,t)e Cy(E). Thus for all
weCo(G)

m(t)L;uiﬁrdzgg [Za ou_ o% +7'cluf2]df

{F e
: gli5=1 7 0%, 0x;

2

Defining m(f) = inf m(r) and integrating both sides from =z, =0 to
Tt

oy,

2 n—1 i
ox,

$,5=1 ax,‘ 6.’76]

z, =t we obtain

2 n—1 37
m(t)g | u |Prdx gg [am ou + > “-ﬂ— ou +rc|u|2]dx.
@, a, ox, i7= ox, 0x;
Since lim m(f) = « we have
-0
lim inf M_’“z)_ =,
~0ue0p @, 1Kl

The desired result now follows from Lemma 2.
We give two simple applications of the preceding theorem.

COROLLARY 1. Let V, denote the (n — 1)-dimensional Lebesgue
measure of KE,. Let ¢(t) and p(t) be continuous positive functions
satisfying

(i) o) = 7@, 1
(i) #0516 S S aq DEE, for all £= (&, o, £
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If lim ¢(t)/o(t) Vi** = oo, then the spectrum of L is discrete.
t—0

Proof. Let p(t) denote the smallest eigenvalue of the Dirichlet
operator associated with —4 = —>371Zi0°/ox} on E,. By (i) and (ii)
m(t) = @) uE)/o(t). It is well known that z(¢) is minimized if E, is a
(n—1)-dimensional sphere of volume V, and that then p(t) = C/Vi*, C
being a constant. Therefore m(t) = Cop(t)/p(t) V"' and the result
follows from the preceding theorem.

The preceding corollary made no use of the shape of E,. The
following corollary gives stronger results in case E, becomes ‘‘narrow’’
in the proper sense.

COROLLARY 2. Suppose we can find functions on(z,), -, a,—(,),
v(x,) and o(x,) which satisfy conditions (a)-(d) and
(1) Elia,-(xn)lé.- [* é,gaﬁ&& SJor all &§=(&, -+, &) and all «
= t,5=1

m G.
(ii) v(=,) = c(x) for all z in G.
(i) p(x,) = r(x) for all x in G.

Suppose also that we can enclose G in a region
= {wlft(xn) <z < gi(xw)’i: 1y "',’}’L—l;0< xn<b< °°} .
If for some © < n

i ai(t)
= p@Ogt) — FOTF

then the spectrum of L is discrete.

+ @) = o

Proof. Denote by p(t) the smallest eigenvalue of the Dirichlet
operator associated with

T(t) = Z () + (t)
(t)

on I' N {x |z, =t}. By classical variational principles £(¢) < m(t). Since
we can compute
H=ns i
MO =T o@ie) — 70T
the discreteness of the spectrum of L follows from the preceding
theorem,

+ (@),
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THE SEMICONTINUITY OF THE MOST GENERAL
INTEGRAL OF THE CALCULUS OF VARIATIONS
IN NON-PARAMETRIC FORM.*

LIONELLO LOMBARDI

Summary. The positive quasi-regularity of integrals depending upon
any number of surfaces in non-parametric form, each with any number
of dimensions, is defined. Positive quasi regularity is proved to be
sufficient for lower semicontinuity.

1. Let D{(t=1,2,---,m) be a closed bounded set of the n-dimen-
sional euclidean space of the variable vector z; = {&i}(5 = 1,2, ---, n),
bounded by surfaces which are absolutely continuous in the sense of
Tonelli [60, 62, 63], without multiple points, and let D be the cartesian
product [I7"D;. Lety = {y;}(? = 1,2, - -+, m) denote a vertical m-vector, and
let p denote @ man matrix, whose row-vectors are p; = {pi}(=1,2, -+,
n). Let x be the m-n matrix whose row-vectors are x; and ¢z, ¥, p]
a real function, defined for z;¢ D, t =1,2, .-+, m) and for any y and
p, which is continuous with all its partial derivatives of the types

oplx, y, p] 0*¢lz, y, pl
op: 0p:op!

(r=1,--,m;s,t=1,---2).

Let ¢ = m be a positive integer and let U, denote a set of distinct
positive integers out of the first m; let ¢ be an index ranging over U,,
and let p(8) be a mapping of U, into the set of the first n integers.
It will be assumed throughout that, for every ¢, every U, and every
(), all the partial derivatives

0|z, y, vl

(1.1) ]jlax?(g)ap?(g)

exist and are continuous for every xz ¢ D and for every y and p.

Let y(z) = {y(z)} ¢ =1, 2, .-+, m) denote a vector-valued function of
the matrix x, such that each component y(x;) depends only upon the
row vector x;. We assume that each y,(x;) is absolutely continuous, in
the sense of Tonelli [63]; we shall call Variety V the set of m surfaces
represented by y(z).

Received July 29, 1960. The preparation of this paper was sponsored in part by the
Office of Naval Research and the Office of Ordnance Research, U. S. Army. Reproduction
in whole or in part is permitted for any purpose of the United States Government. The
author also wishes to acknowledge the help given Gerald W. Kimble in the preparation of
this paper. The author is now with Scientific Information Treatment Centre, EURATOM.
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We shall say that V is of class 1 if all the first partial derivatives
of all the y,(x;) exist and are continuous; we shall say the V is of class
2 if the same is also true for all the partial derivatives of the second

order.
Let

pi(e) = D). (=12 m j=1,2-..,7),

and

dx

m n .
[1.I1.de:

Il

ﬁidxi
The m-n integral’
I, = | ¢l, v(@), p@)lde

is called variety integral in mon-parametric form; all the varieties V
where I exists and is finite are called ordinary.

REMARK 1.1. Varieties V of class 1 and 2 are ordinary for any

function ¢[x, y, p].
Let p = {p,} = {p!} denote another variable in the space of the matrix

p, ¥ = {7.} another variable in the space of the vector y, V= 5(z) = {7,(x,)}
another variety V; let

0y(x:) .

-{ X;) = - ’
pi(x;) o0

the distance o(V, V) between V and V is defined by the formula
o(V, V) = sup,, ;| ydx) — 7x) | .

Continuity and semicontinuity of the real function I, will be considered

throughout with respect to this m-uniform metric.
In one of our previous papers [33] the following theorem was

proved:

CONTINUITY THEOREM 1.2. Necessary and sufficient conditions for
the continuity of I, at every V is that the function [z, y, p] is Ui-
near with respect to each one of the wvectors p;.

REMARK 1.3. As a consequence of Theorem 1.2, the most general

function ¢fx, ¥, p], such that S olz, y(x), p(x)] dx is continuous at every
D

1 For the relation between this integral and non local field theories see bibliography
[1,6,27, 2§, 29, 40,41, 42, 46, 47, 48, 58].



THE SEMICONTINUITY OF THE MOST GENERAL 1409

V, may be written in the form
(1.2) > S S {Ag @, ) I 95},
¢=1Tq p SE Uy
where we assume by convention that, if 7 is a variable integer ranging
over a set S and {a,} is a sequence of numbers, then

IT @, = 0, whenever S is empty .
neS

Let L[z, y, p, §] denote a polynomial in the indeterminates
(1.3) [ — p7]

of degree not exceeding 1 in any of the vectors [p; — p;], whose coef-
ficients Wy, u(%, ¥, p) are functions of (x,y,p) which are continuous
together with all their derivatives of the form

(1.9 P Woql®, U, 7)
Haxg@

¢eu,

Liz, y, p, p] may be written in the form

(15) i Z Zn {qu,u(xr Y, ;D)ggfq[p?(g) _ prs(g)]} .

q=1Uq K

Let us define the generalized Weierstrass function E,[x,y, p, D] of
L, with respect to L[z, y, p, p], by the formula

(1.6) E(z,y,p, p) = ¢, y, ]l — Llz,y, p, p] .

The integral I, = S¢[x, y(x), p(x)]dx is said to be positively quasi-
regular with respect to L (abbreviation: LPQR) if both the relations

(1-7) EL[xy yy p; p] = 0
(1'8) EL[xy y7 p, ﬁ] _2_ 0

hold for every x e D and for every vy, p, D.

REMARK 1.4. Notice that if I, is LPQR, then the element of
degree 0 of the polynomial L[z, y,p,p] must be ¢[x,y, p], and the
vector consisting of the coefficients of the elements of degree 1 is the
gradient of [z, y, p] with respect to p: therefore, if m =1, i.e., if I, is
a usual multiple integral [60, 62], the fact that I, is LPQR completely
determines the function L[z, 7y, p,p]. This does not happen if m > 1,
as was shown by an appropriate example [30], referring to Fubini-Tonelli
integrals, i.e., to the case (m = 2,n = 1).

We say that I, is positively quasi-regular (abbreviation PQR) if
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there exists at least one function L[z, y, p, ] such that I, is LPQR.

REMARK 1.5. Let us say that I, is negatively quasi-regular with

respect to L (abbreviation: LNQR) if S — ¢z, y(x), p(x)]dx is LPQR. Then
D

it is easy to prove that, if I, is both L,PQR and L,NQR, then
Li[z, y, p, p] = L[, y, p, Pl, and ¢[x, y, p] is a polynomial of degree not
exceeding 1 in each p;; i.e., by Theorem 1.2, I, is continuous. Theorem
1.2 also implies that every continuous I, is both LPQR and LNQR for
some L[z, y, p, P].

REMARK 1.6 In the case m =1, our definition of positive quasi-
regularity reduces to the one which was given by Tonelli [59, 60] and
Cinquini [1] for simple and multiple integrals. In this particular case,
the positive quasi-regularity of an integral is equivalent to the lower
convexity of its figurative, i.e., of ¢[x, ¥, p] considered as a function of
p only.

In the case n = 1, the definition of positive quasi-regularity reduces
to the one given by this author for the Fubini-Tonelli integrals [30]-

REMARK 1.7. If I, is PQR, then its value is + o at every non-
ordinary variety.

2. Let us prove the following

THEOREM 2.1. If I, is PQR, then it is lower semicontinuous at
every variety V of class 2; i.e., if V is of class 2, there exisis a
positive function p(€) of the positive variable ¢ such that, if V = ()
18 any variety, then

2.1) I; — I, > — ¢, whenever p(V, V) < p(¢),

regardless of whether or not V is of class 2.

Proof. Let Lix, v, p, P] be a function, such that I, is LPQR. By
(1.6) we may write

@2 I I = | Bl 1), ). p@ldo — | B, v(@), p@), plo)ds
+ | 2o, 7@, 2@, @d — | Liw, v(a), pla), pl@)lda .

Let V = y(x) be a variety of class 2;

Plx, ¥, p] = L[z, ¥, p(z), D]
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is a polynomial of a degree not exceeding 1 in each 7, and all of the
derivatives

(2.3) OP[x, ¥, P] oPle,y,p] ~ 0"Plx, 7, Dl
op; 0D;0D} Hgaxét(s‘)az—)g(s‘)

(7'21,2,"',m;S,t:].,Z,"‘n)

exist and are continuous for every [z, %, p] and for every q, U, u(¢),
r,8,t as a consequence of the existence and continuity of the functions
(1.4) and of the partial derivatives of the first two orders of the functions
yr(x): (1" =12 .-, m)-

By the continuity Theorem 1.2,

J, = | Pla, 4@), p(@)lda

is continuous; hence the difference of the last two integrals on the right
side of (2.2) is smaller than any predetermined real positive ¢, whenever
o(V, V) is less than a certain positive number o(¢). Since the first in-
tegral on the right side of (2.2) is not negative by (1.8) and the second
vanishes by (1.7), (2.1) holds: the theorem is thus proved.

3. (a) In this section the concept of asymptotic evaluability of
the integral I, is defined; the lower semicontinuity on every very variety
V of any positively quasi-regular and asymptocally evaluable integral
is proved. The results of this chapter may be regarded as extensions
of Tonelli’s theorems on usual multiple integrals [59, 60], and of our
results on Fubini-Tonelli integrals [30].

(b) Suppose that I, = S ¢z, y(x), p(x)lde is PQR, and let L[x,y,
D

D, ] be one of the functions, such that I, is LPQR.
The function

(3.b.1) Pz, y, p] = Ejfx, 9, 2,9],

where 2 is a m-n matrix whose elements are all 0, is never negative.
Furthermore,

(35.2) I, = | @12, @), p@)lda
is LPQR, where
(8.b.3) Llx,y, p, Pl = Llz, y, p, ] — LIz, y, 2, D).

By (1.7), the equation
Dlx, y, 2] = 0
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holds for every x e D and every y.
Let R denote a positive real number and let ¢%x, y, p] denote a
function such that the following conditions are satisfied:

I. 9%, y,p] is continuous with all its partial derivatives of any
of the forms
0P, y, pl O, y, pl 0 p=lz, y, pl

q

op; op;0p; Hgaxg'oapg(s‘)

II. The integral
(3.b.4) Y, = SDW[% v, (@), p(x)lde
is PQR.

JII. The relation
(3.b.5) 0 < @[, y, p] < ?[x, y, Pl

holds for every ¥, p and for every x e D; furthermore

(3.b.6) Pz, y, p] = [z, y, p], whenever i @)y =R.

=1 =1
IV. There exists at least one function Alx,y, p, §], such that Y,
is APQR, and such that, for each T > 1, there exists a number Q, for
which the following condition is satisfied:
Let q, U, &, p(&) be defined as they were in §1; let U, denote the
complement of U, with respect to the set of the first m positive in-

tegers, and let T be an index ranging over U,. Then the inequality

Wz, v 91 < Q1+ I p2®))

seu,
where Wi}q‘,;[ac, Y, ] denotes the coefficient of the element
H [Z—)ig(g) . plg(g)]
¢EU,
of the expression Alx,y, p, p], holds for every q, U, p, for every x ¢ D
and for every y such that
Iyz|<T (i:]-rzy"'y/n)'

REMARK 3.1. In the case of the usual multiple integrals (m =1),
Condition IV reduces to the boundedness of the derivatives
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0pt|x
P, ¥, P (s=1,2,+++,7m)
opi

in any domain where y(x) is bounded; this condition is exactly the one consi-
dered by Tonelli [59, 60].

In the case of Fubini-Tonelli integrals (n = 1), this condition reduces
to the one that this author considered in [30, §1, page 132].

REMARK 3.2. Y, exists and is finite on every variety V, i.e., every
variety V is ordinary for the integral Y,.

(¢) LeEmMA 3.3. The integral Y, defined by (3.b.4) is lower semi-
continuous at every variety V.

Proof. Let V = y(x) = {y.(x;)} be any variety; and let 1 > ¢ > 0 and
R > 0 be given, and let © = n(x) = {7,(x;)} denote a variety of class 2,
such that

(3.c.1) oz, V)<e
Let T =sup|y:x;)| + 2.

x50

Let (o) = | 7@ | = || ZZEL]], =12 e mij =12, ),

and let D; c D; denote set of the points x;, such that, for some 7,
either p!(x;) does not exist or it is such that

{3.c.2) | 7'i(x;) — pi(x) [z €.
Suppose further that, for each ¢ (t =1,2, +--, m),

B.c3) | S0 | + | pia) llde, < .

The construction of such a variety = is possible for any V [68].
If V =¥y(x) = {yx)} is any other variety, we may write

B.c.4) Yy — Y, = | Bils, 50), 7(@), 5@)lde
_ SDE;’[x, y(x), 7'(x), p(x)]dx
+ SDA[x, ¥(), 7'(), P(x)|de

— [ te, v6a), = @), p)lde

where

{3.¢c.5) Edlx, y, p, ] = ?lz, y, p] — 4lz, y, p, D)
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The first integral on the right side of (3.c.4) may not be negative
because Y, is PQR; since 7w is a variety of class 2, we may show in
the same way as we did for proving Theorem 2.1, that there exists a
0 < p, <1, such that, if P(V, V) < p,, then the difference between the
last two integrals on the right side of (3.c.4) is less than e.

Let us consider the expression

(3.6) [, | Etle, y(@), #@), pla)] | de

by (3.c.5), (3.b.7) and (3.c.3), recalling the defininition of A[z,y, p, B],
i.e., the definition of L[z, y, p, p], since #'(x;) (¢ = 1,2, --+, m) is bounded,
there exists a number %k, which depends upon m, n, the variety V and
the diameters of the sets D, (1 = 1, 2, - -+, m), but which depends neither
of # nor of ¢, such that the expression (3.c.6) is less than ¢-%k ([59,
vol. 1, § 11, # 142]; [60, § 3, #9]; [30, § 3, c]). Consequently the absolute
value of the integral on the right side of (8.c.4) is also less than e-k;
hence

Yy > Y, — &1 + k), whenever po(V, V) < p, .

Thus the theorem is proved.

(d) DEerFINITION 3.4. Then integral I, is said to be asymptotically
evaluable (abbreviation: AFE), if it is PQR and if there exists a function
L[z, y, p, p] such that I, is LPQR and if, for every positive R, there
exists a function @*[x, y, p] (as described in § 3.b).

ReMARK 3.5. Tonelli [59, vol. 1, page 398-9] gave a procedure by
which @%[x, y, p] may be constructed starting from any simple integral
(m = n = 1), which is PQR: he thus proved that, if a simple integral
is PQR, it is necessarily AE. Some criteria of asymptotic evaluability
are exhibited in [30, §2, page 140]; although it appears intuitively that
every PQR integral is also AFE, this fact was never proved, except in
the case (m = n = 1); therefore the statement of any theorem of semi-
continuity in whose proof the function @[, ¥, p] is used, has to contain
the hypothesis that this function can be constructed, i.e., that the
integral considered is AE.

THEOREM 3.6. If the inmtegral I, is PQR and AE, it is lower
semicontinuous on every ordinary variety.

Proof. Let us first point out that existence and lowers emi-
continuity on any variety of I,, and those of the integral I, defined by
(3.b.2), are equivalent, since the integral
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[, @12, y@), p(@)] - Bz, y@), p@de = | Liz, y@), 2, p)da

exists and is continuous at every variety, by the Continuity Theorem
1.2,

Let V = y(x) = y.(x;) be an ordinary variety, and let ¢ > 0 be given.

Since @[z, y, p] is never negative, it is possible to find a positive
number R, such that, if D;(1=1,2, .-+, m) is the subset of D, con-
sisting of the points @#; such that, for each j (7 =1,2,..., %), the
partial derivative o0y(x,)/0x! exists and its absolute value does not
exceed R, the inequality

3.4.1) E~Wmd@%y@mewx<d2

I s
lz (3

holds.

The integral Y,, that we associate with I, and R (see §3.b) is lower
Semicontinuous on V by Lemma_3.3; i.e., there exists a positive number
0 such that, for each variety V

(8.d.2) Y7 > Y, — ¢/2, whenever p(V, V) > p .
From (3.b.5) and (3.d.1) we have
I, — Y, <¢l2
whence, by (3.d.2)
I > I, — ¢, whenever o(V, V) < p

i.e., I, is lower semicontinuous at any ordinary variety, and so is I,.

DEFINITION 3.7. We shall say that the integral I, is lower semi-
continuous at a variety V, such that I, = + oo, if there exists a positive
funetion p(¢), defined for each positive ¢, such that, if V is any ordinary
variety, then

I > ¢, whenever o(V, V) < p(e) .

THEOREM 3.8. An integral I,, which is PQR and AE, is lower
semicontinuous at every variety V.

In the case in which V is ordinary, Theorem 3.6 states the lower
semicontinuity of I, on V. If V is not ordinary, the value of I, on V
is + o« (see Remark 1.7).

Let us again consider I, instead of I,. Let ¢ be a given number,
and let R be another positive number, such that, if D, (i =1,2, ---,
am) denotes the subset of D, consisting of the points xz; where all the
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partial derivatives of y;(x;) exist and are less than R in absolute value,
then

(8.e.1) g,’? . Oz, y(x), p(x)lde > ¢+ 1.

Like in the proof of Theorem 3.6, we consider again ¢%[z,y, p].
Y, exists finite and is lower semicontinuous at V: hence we may find
a positive number p, such that, if V is any variety such that

(3.e.2) oV, V)<p,
then

Y >Y,—1.
By (3.b.5) and (3.b.6),

Y, = S _ o[z, y(@), p())de

;D
lli

= | 01w, 9@, p@Nde ,

117z1’¢
hence, considering (3.e.1), if (3.e.2) is satisfied,
T7 >e€.

Therefore I, is semicontinuous at V, and so is I,. The theorem is thus
completely proved.

Conclusion. Let us list four problems which are still open in the
area of the study of the semicontinuity of the integrals of the Calculus
of Variations in non-parametric form:

Problem 1. No example of any lower semicontinuous integral which
is not PQR is known: it appears worth while to investigate whether or
not positive quasi-regularity is also necessary for lower semicontinuity.

Problem 2. For proving Theorems 3.6, 3.8, we used the construction
of the function ¢%[z, y, p], and we had to assume that this construction
could be made for every R (see § 3.b). It would be interesting to prove

Theorem 3.8 without using this construction, i.e., dropping the hypothesis
that I, is AE.

REMARK C.1. The semicontinuity at any variety V of class 1, or
even just such that all the functions y;(x;) are Lipschitzian, can easily
be proved for any I,, which is PQR, without any hypothesis of asymp-
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totic evaluability, by generalizing the procedure followed in [30, §3,
First Theorem of Semicontinuity].

Problem 3. No example of any integral I,, which is PQR without
being AE, is known. It would be useful to devise a general method
by which it would be possible to construct ®*[x,y, p] from R and
¢[x, ¥, p]: thus proving that if I, is PQR, it is necessarily AE.

Problem 4. Only varieties which are absolutely continuous in the
sense of Tonelli [63] and the m-uniform metric were considered in this
paper; however, it appears that positively quasi-regular integrals are
lower semicontinuous even with respect to weaker metrics, on more
general classes of varieties. Generalization of the results contained in
this paper may be considered.

BIBLIOGRAPHY

1. C. Bloch, On field theories with non-localized interactions, Det Kongelige Danske
Videnskabernes Selskab, Matematisk-fysiske Meddeleser, (1952).

2. S. Cinquini, Condizioni mecessarie per la semicontinuitdé degli imtegrali doppi del
Calcolo delle Variazioni, Annali Matem. Pura ed Appl., 10 (1932), 233.

3. , Nuovt teoremi di esistenza dell’estremo in campi illimitati per 1 problems di
ordine n, Ann. Scuola Norm. Super. Pisa, (1930).

4. , L’estremo assoluto degli integrali doppi dipendenti dalle derivate di ordeme
superiore, Ann. Scuola Norm. Super. Pisa (2) 10 (1941), 215.

5. , Sopra Uestremo assoluto degli integrali doppi in forma ordinaria, Ann.
Mat. Pura Appl. 30 (1949), 249.

6. M. E. Ebel, Casual Behaviour of Field Theories with Non-Localized Interactioms,
(Magazine quoted in [1], 1954).

7. S. Faedo, Condizioni mecessarie per la semicontinuitd di un muovo tipo di funzionali,
Ann. Mat. Pura Appl. (4) 23 (1944), 69.

8. , Un nuovo tipo di fumzionali continut, Rend. Mat. Appl. (5) 4 (1943), 1.

9. , Sulle condizioni di Legendre e di Weierstrass per gli integrali di Fubini-
Tonelli, Ann. Scuola Norm. Super. 15 (1950), 127.

10. L. Giuliano, Sulle condiziont sufficienti per la semicontinuité degli integrali doppt del
Caleolo delle Variazioni, Ann. Scuola Norm. Super. Pisa (3) 1 (1941), 161.

11. , Osservazioni sopra alcumi teoremi di semicontinuitd degli integrali doppt
(Idem, 1941).

12. La variazione prima met problemi di Lagrange, (Rend. di Mat. App. (1947).
13. , Sulla continuité degli integrali curvilinet del Calcolo delle Variazioni (Nota
I), (Rend. dell’Acc. Naz. Lincei, (1947).

14. , Idem (Nota II), (Idem, 1947).

15. , Idem (Nota III), (Idem, 1949).

16. , Sulla continuito deglt integrali curvilinei del Calcolo delle Variazioni, (Ann.

della Scuola Normale Superiore, Pisa, (1947).

17. M. R. Hestenes, A sufficitency Proof for Isoperimetric Problems in the Calculus of
Variations, Bull. Am. Math. Soc. (1938).

18. , Sufficient Conditions for Multiple Integral Problems in the Calculus of
Variations Amer. J. Math. 70 (1948), 239.



1418 LIONELLO LOMBARDI

19. , Application of the theory of Quadratic Forms in Hilbert space to the
Caleulus of variations, Pacific J. Math. 1 (1951), 525.

20. , Sufficient Conditons for the General Problem of Mayer with Variable End.
Points, University of Chicago Press, (1952).

21. , On sufficient conditions in the problems of Langrange and Bolza, Ann.
Math. 37 (1936), 543.

22. , A Direct Sufficiency proof for the Problem of Bolza in the Calculus of
Variations, Trans. Amer. Math. Soc. 42 (1947), 141.

23. , Generalized problem of Bolza in the calculus of wvariations, Duke Math. J.

5 (1939), 309.
24. , The problem of Bolza in the Calculus of Variations, Bull. Amer. Math. Soc.
48 (1942), 50.

25. , An Alternate Sufficiency Proof for the Normal Problem of Bolza, Trans.
Amer. Math. Soc. 61 (1947), 256.
26. , An indirect Sufficiency Proof for the Normal Problem of Bolza in Non-

Parametric Form Trans. Amer. Math. Soc. 62 (1947), 509.

27. P. Kristensen, and C. Moller, On a Convergent Meson Theory, Journal quoted in [1], (1952).
28. A. Kryzwiki, I. Rzewuski, I. Zamorski, and A. Zieba, Non local problems in the Calculus
of Variations, Annales Polonici Matematici, (1955).

29. A. Krzywiki, I. Rzewuski, I. Zamorski, and A. Zieba, Idem, Second Paper, Idem, (1957)
30. L. Lombardi, Sulla semicontinuité degli integrali di Fubini-Tonelli, Annali della
Scuola Normale Superiore, Pisa 312 (1958), 129-153.

31. , Sull’esistenza del minimo deglt imtegralt di Fubini-Tonelli, Rendiconti
dell’Istituto Lombardo Sci. A 92 (1958), 446-458.

32. , Sur la Méthode du Gradient dans le Caleul des Variations, Comptes-Rendus
du Congrés Les Mathématiques de ' Ingénieur, 216-225 Mons-Bruxelles, (1958).

33. , The continuity of the most general integral of the calculus of variations in
non-parametric form, J. of Mathematical Analysis and Applications (in press).

34. E. Magenes, Intorno agli integrali di Fubini-Tonelli: condizioni sufficienti per la
semicontinuitd, Annali della Scuola Normale Superiore, Pisa (3) 2 (1948), 1.

35. , Intornmo agli integrali di Fubini-Tonelli: teoremi di esistenza dell’estremo,
(Idem, (3) 3 65, 1949).

36. , Sul minimo degli integrali di Fubini-Tonelli, Giornale di Battaglini, Napoli,
(1949-50).

37. , Sulle condizioni di Eulero relative agli integrali di Fubini-Tonelli, Rend.
Sem. Math. Padova. 19 (1950), 62.

38. , Un’osservaione sulle condiziont mecessarie per la semicontinuitd degli in-
tegrali di Fubini-Tonelli, (Idem, 17 44, 1950).

39. , Sul minimo semiforte degli integrali dv Fubini- Tonelli, (Idem, 20 401 1950).

40. C. Moller, Non-local Field Theory (Intern. Conference on Elementary Particles, Bombay,
(1950).

41. , On the Problem of Convergence in Non-local Field Theories,!Proc.”of the
Intern. Congress on Theoret. Physics, Kyoto and Tokyo, (1953).
42. , Motion of free particles in discontinuous gravitational fields, Amer. J. of

Physics, (1959).
43. C.B. Morrey, Functions of several variables and absolute continuity, Duke Math, J. 6

(1940), 187.

44. , Multiple Integral Problems in the Calculus of Variations and Related
Topics, University of California Publ. in Math, (1943).

45. , Quasi-convexity and the lower semicontinuity of multiple integrals and

related topics, Pacific. J. Math. 2 (1952).

46. W. Pauli, On the Hamiltonian structure of Non-local field theories, Nuovo Cimento,
10 (1953), 648.

47. 1. Rzewuski, On differential structure of non-local field theories, Bull. de 1I’Academie



THE SEMICONTINUITY OF THE MOST GENERAL 1419

Polonaise des Sciences, 2 (1954), 429.

48. ___, differential structure of non-local theories, Acta Physica Polonica, 14 (1955),
121.

49. B. Schweizer, A. Sklar, Statistical metric spaces, Pacific. J. Math. 1 (1960).

50. , Statistical metric spaces arising from sets of random variables in Euclidean

n-space, (Forthcoming).

51. G. I. Silova, The existence of the absolute minimum of the multiple integrals of the
caleulus of variations, Doklady Akad. Nauk SSSR, 102 (1955), 669.

52. . Two dimensional problems of the calculus of wvariations, Uspechi Akad.
Nauk SSSR, 6 (1951), 16.

53. A. G. Sigalov, Conditions for the existence of a mimimum of double integrals in an
unbounded region, Doklady Ak. Nauk SSSR, 8 (1951), 741.

54. , Regular Double Integrals of the Calculus of Variations in Non-Parametric
Form, (Idem, 73 891, 1950).
55. , Two dimensional problems of the calculus of variations transformed from

non-parametric to parametric form, Mat. Sbornik, 73 (1954), 385.

56. G. Stampacchia, Sopra una classe di funzioni di due wariabili; applicazioni agls
integrali doppi del Calcolo delle Variazioni, Giorn. di Battaglini, 79 (1950), 169.

57. , Gli integrali doppi del Calcolo delle Variazioni in forma ordinaria, Atti
Accad. Naz. dei Lincei, VIII 8 (1950), 21.

58. E. C. G. Stueckelberg, G. Wanders, Acausalité de l'intéraction non-locale, Helv. Phys.
Acta, 27 (1954), 667.

59. L. Tonelli, Fondamenti di Calcolo delle Variazioni, Zanichelli, Bologna, 1921, vol. 1

and 2).

60. , Sur la semicontinuité des intégrales doubles du calcul des variations, Acta
Math., 53 (1939), 323.

61. , Gli integrali del Calcolo delle Variazioni in forma ordinaria, Annali della
Scuola Superiore, Pisa, (2) 3 (1934), 401.

62. , L’estremo assoluto degli integrali doppt, (Idem, (2) 2 89, 1933).

63. , Sull’approssimazione analitica delle fumzioni di pié variabili, Rend. Circ.
Mat. Palermo, 32 (1910), 297.

64. , Sui massimi e minimi assoluti del Calcolo delle variazions, (Idem, 1911).

65. , Sul caso regolare nel calcolo delle variaziont, (Idem, 35 49, 1913).

66. ,» Sur une méthode directe du Calcul des Variations, (Idem, 39 233, 1915).
67. , La semicontinuitdé nel Calcolo delle Variazionsi, (Idem, 44 167, 1920).

68. , Sopra alcune proprieté di unm polinomio di approssimazione, Rend. Acc.

Naz. dei Lincei, (1926).

UNIVERSITY OF CALIFORNIA, LOS ANGELES






GAME THEORETIC PROOF THAT CHEBYSHEV
INEQUALITIES ARE SHARP

ALBERT W. MARSHALL AND INGRAM OLKIN

1. Summary. This paper is concerned with showing that Chebyshev
inequalities obtained by the standard method are sharp. The proof is
based on relating the bound to the solution of a game. An optimum
strategy yields a portion of the extremal distribution, and the remainder
is obtained as a solution of the relevant moment problem.

2. Introduction. Let X be a random vector taking wvalues in
&£ C R*, and suppose that Ef(X) = E(f(X), -++, f/(X)) = (9, -+, P.)
= @ is given, where f; is a real valued function on .2°. For convenience,
we suppose f; = 1. An upper bound for P{Xe 97}, 9 C 22, may be
obtained as follows. If @ = (a, ---,a,)e B” and X is the indicator of
7" then af’ = X on .2° implies P{X e .7 } <a¢’, and if & ={a:af' =
X7 on 27}, a “‘best’” bound is given by

2.1) P{Xe 7} = inf ag’.
a€ o
In general, a bound is called sharp if it cannot be improved, For
some cases, when .7 is assumed to be closed, the bound can actually
be attained by a distribution satisfying the moment hypotheses.
The main result of this paper is

THEOREM 2.1. Inequality (2.1) is sharp in the following cases.

(I) X=X, ---, Xp) with EXX; or EX, and EX,X, given,
9, J5=1,+--, k.

(II) X has range (— o, =), [0, ), or [0,1], and EX’ is given,
j — ]_, cee M.

(IlI) X is a random angle in [0, 27) and the trigonometric moments
Ee* a¢ = +1, ..., £ m are given.

Sharpness has been shown in (I) by Marshall and Olkin [6] when
7" is convex, and by Isii [3, 4] in the unbounded cases of (II). Sharp-
ness has also been proved in a number of specialized situations.

In §3 the proof for (I) will be given in detail. The necessary
alterations for each of the remaining cases will be given in §4,5,6, 7.
The solution of certain moment problems depend on conditions on Hankel
matrices, i.e., matrices of the form H = (k,;,;), and some results concer-
ning these matrices are given in § 8.

Received August 31, 1960. Research sponsored by the Office of Naval Research at
Stanford University.
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The notation A > 0(=0) is used to mean that the matrix A is
symmetric and positive definite (p.s.d).

3. The multivariate case. The relation between inequality (2.1) and
a game can be greatly simplified if we use matrix theoretic arguments.
This is true in part because functions of the form af’,aec o7, can be
written very naturally as quadratic or bilinear forms.

Let X = (X, «--, X;) be a random vector on R* with EX = p and
moment matrix EX'X = 3. If u = u(z) = (1, x) for € R*, then Eu’(X)

wWX) = (}1, g.) = II. We assume II > 0, for otherwise the dimension-

ality of X can be reduced.
Functions of the form af’,ae. v, can be written as uAu', A:
E+1xk+1, Ae v ={A;A=0,udu’ =1 for xc€.7}. Hence

3.1) P{Xe 77} = inf ap’ = inf trAll .
XN A) A€
Let «,, -+, 2, be points (row vectors) in R*, u;, = u(x,), p,, ***, DPus

2p; =1 be probabilities, 7 = (ui, --+, u}), D, = diag (p,, --+,p,), and
H=TD, 7. By H~ 7 we mean that all z;€ 7. The condition
uAuw' =1 for £ € 7 can then be written as trAH =1 for H~ 7, so
that & ={4: 4= 0,trAH =1 for H~ 7 }.

With this notation, we can rewrite the bound (8.1) in a form which
is suggestive of a game.

3.2) inf trAll = inf tr Al
Ae {A4: inf trAH=21, 420}
BH~T
=inf [ 2" tr S __|sup inf tr SH)\™
szo | inf trSH]| = \ s=0 g~ trSII
H~T

=( sup inf trSH)'=v".
{S:SgO,trSHgl} o~

In view of (3.2) it is natural to consider the game G = (&2, 57, 9),
where & ={S: S=0,trSII <1} and 57 = {H: H~ 7} are the strat-
egy spaces for players I and II, respectively, and ¢(S, H) = tr SH is the
payoff to player 1.

Clearly & and 57 are closed and convex. Further, & is bounded
since

ISIF = (trS§') = (trS)ew(S) = (tr 8)* = (tr SHY[et (M) = 1/ci, (1),

where ¢,(A), cx(A) are the minimum and maximum characteristic roots
of A. For the present we assume that 57 is bounded, then by [2, Sec-
tion 2.5], G has a value and there exist optimal strategies S, e &/, H,e 57,
such that
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(3.3) trSH, < trS,H, =v < trS,H, for all Se ¥, He 27.

The optimal strategy S, has the property that inf gegtrAll =trA,00,
where A, = S,/v.

To prove sharpness of (3.1), we must show that there exists a
distribution for X such that P{Xe 97} =1/v, and Eu'u = II. H, is the
moment matrix of a distribution F) on points in .Z~. If we can prove
the existence of a probability distribution F for X of the form F =
F,)v + F,, and with moment matrix 7/, then this distribution attains
equality in (8.1). To see this, note that F' assigns at least probability
v to .7, and by (38.1) it can assign at most probability v to 7.

To show the above, we need only show that a distribution F, exists
with total variation 1 — 1/v and moment matrix ¥ = /I — Hy/v. The
following Lemma yields this result.

LEMMA 8.1. Let IT >0, &¥ ={S:S=0,trSII <1}.

(i) IftrSH=<v for all Se . &#, then ¥ =11 — H[v =0 .
(ii) If trSH = v for some S,€.%”, then ¥ 1is not strictly > 0.
(iii) If trSH < v for all Se.&”, then T > 0.

Proof. There exists a representation I/l = WW', H= WD,W’,
| W| # 0, D, = diag(6,, -+-, 8,), and hence ¥ =0 if and only if 4, < v,
i =0, k. If WSW= (ég) then Se.o”, and from trSH =
trW'SWD, < v, we obtain 0, < v. Part (i) follows using permutations.
If trSH < v, then in the above argument, each 0, <vy. If trS,H =
tr(W'S,W)D, = v and tr W'S, W < 1, then at least one of the 0, is equa
to v.

The condition that 57 be bounded now can be removed, since
N Hol* < (tr Hy)? < [v tr [T]?, by Lemma 3.1.

REMARK 3.1. We note that tr S,/7 = 1, for if not, aS, for & > 1 would
violate (3.3).

S, and H, are related by vS,/I = S,H,. This follows from the fact
that tr S¥ = tr S,(II — H,/v) = 0 and ¥ = 0 implies that S}*¥Si* =0, or
equivalently that Si*¥'? = 0, which yields the result.

REMARK 3.2. In the above development we assumed that EX = p

was given. If this is not the case, then choose ¥ = {S = <gg> S> 0,
1

trSI <1}, Si:k x k, and the entire development remains unchanged
with S, replacing S, since S = 0 if and only if & >0, S, = 0 and tr Sl =
a+trSJ2.

We now summarize the essential points of the proof which are ap-
propriately modified in each of the remaining cases.
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(1) Introduce vectors u(x) and v(x) (4 = v in the above) such that
(i) EVX)u(X) = II is a matrix of given moments,
(ii) af’,ae ., can be written as uAv" with Ae o,
To define o we first must characterize o7,
(2) Define 5, a set of moment matrices of the same kind as 11,
but corresponding to distributions on .o .
(3) Define & and show that & is bounded.
(4) Use the game to assert that H, exists, and show that the
moment problem with moments defined by ¥ = Il — H,/v has a solution
with Yy =1— 1/v.

4. Univariate distributions on (—c, ). Let u(x) = v(z) = (1, z,
+++,2"). Then polynomials af’(x) of degree = 2n which are nonnegatve
in (—oo, o) can be expressed as wAu', 4 = 0, [7, p.82]. Hence &7 =
{A: A= 0,uAw' =1 for x € 7}, and (3.1) holds. Note that /7 = (z;,;_,) =
(EXH, 4,5 =1,--+,n+ 1. Let —co <t;, < oo, U, =u(t,),1=1,+--,m,
T=(u,- -+, un), D,=diag(py, +++,9,) =0, trD, =1, H=TD,T' =
(hisjs), 1, 5=1, -+, m+1. Define & ={H: t,e 7 ,1=1,-++,m}, & =
{S:S=0,trSII <1}. We assume that the moment problem correspond-
ing to the given moments {7, ++-, 7,,} is not determined so that /I > 0,
[8, Th. 3.3], and the previous argument that & is bounded holds.
Assuming that 27 is bounded, there exists an S, and H, = (h%:;.,)
satisfying (3.3), and with Lemma 3.1 we conclude as before that the
boundedness condition on 57 can be removed.

Since 7, = k) = 1,4, =1 — 1/v. Define 4, = |y ;.|7%,; then since
¥ =20, by Theorem 8.1 it follows that 4, >0, ++, 4,_, > 0,4, =0, ++-,
4, =10, for some ». The reduced (Hamburger) moment problem has a
solution if and only if ¥ = 0, in which case there exists a (unique) rep-
resentation ; = SV_pEL, 7 =0,1,--,2n — 1, and Y, = S pE” +
¢,c=20, and ¢ =0 if r = n, [8, p.85].

In the event ¢ > 0, by using an e-good strategy for player II to
guarantee ¥ strictly > 0, we obtain a distribution with moments {z,, +--,
T}, which assigns probability 1/(v + €) to & .

REMARK 4.1. The representation obtained from [7, p.82] is of the
form (2u,c,)* + (Zu,d;)?, which is expressible as uAu’, where A = ¢'c + d'd.
However, the same class of polynomials is obtained if we include all
A=0.

REMARK 4.2. If < is bounded, there exists an extremal distribu-
tion with a spectrum consisting of at most 2(n + 1) points. This follows
from the fact that the least number of points contributing to H, is at
most (# + 1), [2, §2.5], and to ¥ is at most (n + 1) points by the previous
argument.
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5. Univariate Case on [0, ). Consider first the case m =2n—1, and
let u(x) = (1, z, -+, 2" %), v@x) = A, %, -+, 2"). Then polynomials af’(x)
of degree < 2n — 1 can be expressed as u[(B, 0) + (0, C)]v' = uAdv', where
B=0,C =0 are » x % matrices (See [7, p. 82] and Remark 4.1). Hence
& ={A:B=0,0=0, uAv' =21 for xe. 7}, and (3.1) holds. Now
= (77"«;+j—2) — (EXi+J~2), 1= 1, -+, m + ]_;j_—_ ]_, cee, M. Let O <t < oo,
U; = ’b(/(t,;), v, = v(ti)r 1= 1, cee, M, Tl = (u{y ) u;n)’ T2 = (’I);, tty v;n),
D,=diag (p,, *++, Pn) =0, trD,=1, H=T\D, T} =(h;+;5), 1 =1, «-+,n +
1;7=1,+--,n. Define 577 ={H:t;,e 7, t=1,---,m}, &¥={S=
(5,8):8=0,8,=0, tr[(S,,0) + (0, SH}MT =1}, S, S;:m x 0, 0:n x 1.
Assuming that the moment problem corresponding to /I is not determined,
ie., Iy, = (W), 4,5 =1, -,m, IV = (Tirj—1), 1, J = 1, «++, n, are posi-
tive definite, [8, p. 6], the argument of § 3 that . is bounded holds, with
181 = 11(8,, 0) + (0, S))|l.

Assuming that 57 is bounded, there exists an S, = (S, 0) + (0, Sx)
and H, = (h},;_,),1=1,---,n+1;5=1, .-+, n, satisfying (3.3). Define
Hy,, and H in the some manner as /1, and /I, An application of
Lemma 8.1 yields &, = I, — Hyy,/v =0 and &Y = 1Y — HPJy = 0.
The boundedness condition of 27 can now be removed since ||H,||* =
[ Hull* + | HP P S vir(ll g + %), Also g = Ty — /v =1 — 1/v.

In order for the reduced (Stieltjes) moment problem to have a solu-
tion, it is necessary that both &, and ¥® be = 0.

Recall from §4 that 4, = |y ), ¢, 9 =1,-++, 7+ 1. Now define
40 =il 4,5=1,++--, 74+ 1. From Theorem 8.1 it follows that
either

(1) 4,>0,+4,4,>0,4,,=-+-=4d,=0and 4" >0, «c. 42 >
0, 48, = -.- = 4P =0, or

(i) 4>0,++-,4,>0, 4,,=-++=4,=0 and 4»>0,---,
AP, >0, 4Y = .o = 4P = 0, for some . But these are the conditions
that there exist a distribution whose spectrum consists of » + 1 points
distinet from 0 in case (1) and including 0 in (ii).

If m = 2n, let w(z) = v(z) = (1,2, +-+, 2"). Then polynomials af’'(x)

of degree < 2n can be expressed as v[B + <8 g)]v’, where B:n 4+ 1 x

n+1 C:nxn, B=0, C=0, [7, p.82]. The remainder of the proof
is essentially the same as for the case m = 2n — 1 above.

6. Univariate distribution on [0,1]. We first deal with the case
when an odd number of moments is given. Let u(x) = (1, x, ---, 2*),
v() =1,z -+, 2"). Now I =(7;;)=EX"1=1 - n+1;
3=1,++-,n. Then polynomials af’(x) of degree = 2n — 1 which are

t This result was communicated to the authors by S. Karlin. The proof is similar to
that for the reduced Hausdorff moment problem given in [5].



1426 ALBERT W. MARSHALL AND INGRAM OLKIN

nonnegative in [0, 1] can be expressed as u[(B, 0) + (0, C — B)[v' = uAv’,
where B and C are m x n matrices, B=0,C =0, (See [7, p.82] and
Remark 4.1). Hence & ={A:B=0, C=0, uAv' =1 forxe 7}, and
(3.1) holds. We assume that the moment problem corresponding to the
given moments {7,, «++, 7,,_,} is not determined. This means that I7® =
(Tivi—), 4,5 =1,++,m, and I, = (Ti1joy — Tivj), 4, =1, <+, m, are
both positive definite, [5, p.55] or [8, p.77]. (In the latter reference
the conditions are presented for the interval [—1, 1].)

Let 0=¢ =1, wy=ul), vi=0v¢), 1 =1, -««,m, T, = (u, -+, ul),
T,=(vi, +++,vn), D,=diag(p, +++,P,) =0, trD,=1, H= T.D, T} =
(Bivj—s)y t=1,++,m+1; g=1,+--,n. Define s ={H:t,e 7,1=1,
eee,m), & =1{(S,8,):8,=0,8,=0, tr[(S;0) + (0, S, — SH|T < 1}. We
first show that .&” is bounded:

ISP = 11(S, 0) + (0, S; — S| = 2tr ST + tr S < 2(tr S,)* + (trS,)* .

But trSII =trS I, + trS, I =<1, and I, >0, I® >0, so that
trS, < 1/c, (1 3), trS, < 1/e,(II™), and .&” is bounded.

Assuming that 57 is bounded, there exists an S, = (S,,, 0) + (0, S,, — Sy)
and Hy= (R ;,), 1=1,-+,m+1; j=1, -+-, n, satisfying (3.3). Define
Hy,, and H{® as for Il, and II'V; then an application of Lemma 3.1

yields
Vo=1IHg — Hyylv=0, ¥ =101%—HPlv=0.

The boundedness condition on 57 can now be removed since || H,|]* <
2| Hyy | + 2[| HP [P = vir (o + OY). Also v, = 7, — hofy =1 — 1/v.

In order for the reduced (Hausdorff) moment problem to have a
solution, it is necessary that both ¥ and Z“ be = 0, [5, p.55].

If an even number of moments is given, we let w(z) = v(z) = (1, =,
eee,2"). Now II = (Wiyj-), 4,5 =1, +++,n+ 1. Polynomials af’(x) of
degree =< 2n which are nonnegative in [0,1] can be expressed as
u[(f 8> + (8 g) + <g _%)] %' = uwAu', where B and C are n x n ma-
tricess, B=0, C =0, (See [7, p.82] and Remark 4.1). Hence &% =
{A: B=0, C=0, uAu' =1 for xe 77}, and (3.1) holds. We assume
that the moment problem corresponding to the given moments {z,, *+-,
T,.} is not determined. This means that II and 11, = (z,,;_, — ;:)),
1,7 =1, -+, n, are positive definite, [5, p.55] or [8, p.77].

The remainder of the argument is analogous to the odd moment
case.

REMARK 6.1. As in Remark 4.1, if & is bounded, there exists an
extremal distribution with a spectrum consisting of at most 2(n + 1)
points. This follows from [2, §2.5] and [5, § 17].
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REMARK 6.2. A condition for the solution of the Hausdorff moment
problem with an infinite number of moments is the condition that

gty = gy — (D + (5 + oo+ (C1P 20, BG=0,1, -

However, this condition with k,7=0,1, ---,n is not sufficient for a
solution of the reduced moment problem. It is interesting to note that
this condition enters naturally using an alternative formulation. Poly-
nomials af’(x) which are nonnegative in [0, 1] may be represented as
Ja;;(1 — x)'x’, where a;; = 0. If welet w(x)=(1,Q —x), -+, (1 — 2)"),
v(z)=(1, =z, --+,2"), then the representation is uwAv’, a; =0. Now
II=(EQ - X)X = (L"), 1, =1,+--,n + 1. Using a similar
development as before, & = {S:s;; =0, trSII <1}, and from Lemma
31, ¥ =1 — Hfv = (47;,) — (47¢;-/v) = 0. Let ; = p; — hylv,
¥ = (4"r;_,); we wish to show that 4, , = 0. By choosing S to
have all zeros except s;; = 1/4*'xw;_,, trSII = 1. The result follows after
using (3.3).

7. Random angle in [0, 27). If w(x) = v(x) = (1, €™, -+, ¢™), then
polynomials af’(x) which are nonnegative in [0, 27) can be expressed as
uAu', A = 0, (See [7, p.82] and Remark 4.1). Hence .o~ ={4: A =0,
wAuw' =1 for xe 77}, and (3.1) holds. Now /I = (7;_,) = (Ee*~*%),
5 k=1,--e,n+ 1.

The proof is virtually that of §4, noting only that the reduced
trigonometric (Herglotz) moment problem has a solution if the Toeplitz
matrix I > 0. (See footnote, §5.)

7.1. An example. The authors are unaware of any Chebyshev
inequalities when trigonometric moments are available, and we present
a simple illustration.

THEOREM 7.1. If X s a random angle in [0, 27) and E sin X = «,
Ecos X = 3, then

T1) PRI<X<2)=1— 1 — asin(@ + ¢) — B cos(d 4 9)

1 — cos(p — 0)
(1.2) P20 < X <29} < Lt asin@ + o) + Bcos@ + 9)
o - 1 + cos(p — 6) ’

0=sd<p=<rm.

Proof. Choose f(x) = ¢, + ¢, sinxz + ¢, cos x. The conditions
fO+9)=0, f(20)=f(2p)=1 lead to (7.1), and the conditions
JO+ o+ 7)) =0, f(20) = f2p) =1 lead to (7.2).
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8. Properties of Hankel matrices. In this section we obtain several
properties of Hankel matrices which were required in §§4 and 5. These
properties are known as a consequence of the solution of moment pro-
blems, but it may be of interest to present matrix theoretic proofs. We
need the following preliminaries.

A matrix U= (4;1;), t,J =1, +++,n is called a Hankel matrix.
By the rth compound, A", of a matrix A: n x n we mean the matrix
whose elements are the rth order minors of A arranged in lexicographic

order; thus A : <Zf> X <f) The following properties of compound ma-
trices are well-known, e.g., [1].

(8.1) Let A be symmetric. The characteristic roots of A™ are the
<Zf> products of 7 characteristic roots of A. Thus, A™ = 0 if and only
if A=0.

(8.2) |A™| = |A1(7’L:i) .

THEOREM 8.1. If the Hankel matrix U = (U;;.), t,5j=1, -,
r+1, 48 =0, and tf 4, = |U; ;5|7 ;20 = 0, then 4,., = 0.

Proof. Suppose 4, = 0, then by nonnegativity of each 2 x 2 prin-
cipal minor, it follows that w,=u, = -+ =u,, , =0, u,, = 0. But
U™ = 0 has first element 0, and hence its first row is 0, so that 4, = 0.

THEOREM 8.2. Let U= U;3;), 4,5 =1, +1, V= (uy;),
t,ij=1 e, r+1, U=0, V=0. Then 4,=0=24" =0=24,, = 0,
where 4, = [Uisial, 1,0 =1, «oo,m; 40 = |Usij], 1,7 =1, -+, m.

Proof. In the rth compound U™, 4, = u{y = 0 implies that u{> =
4% = 0. In the rth compound V', 4 = v{’ = 0, and hence all »{7 = 0,
except possibly the last diagonal element, which is a function of #,,.;.
In U", the last column does not depend on #,,,,, and its elements are
the »7 which are zero. Hence |U"*"| =0, so that 4,,, =0,

9. Acknowledgment. We are grateful to Herman Rubin for some
valuable discussions. He also pointed out that sharpness of Chebyshev
inequalities can be proved quite generally without knowledge of moment
problem solutions by an application of the Hahn-Banach extension theorem.
However, the present proof provides considerable information concerning
extremal distributions.
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PRIMITIVE ALGEBRAS WITH INVOLUTION

WALLACE S. MARTINDALE, 3RD

A well known theorem of Kaplansky ([1], p. 226, Theorem 1) states
that every primitive algebra satisfying a polynomial identity is finite
dimensional over its center. Related to this result is the following con-
Jecture due to Herstein: if A is a primitive algebra with involution
whose symmetric elements satisfy a polynomial identity, then A is
Jinite dimensional over its center. Our main object in the present
paper is to verify this conjecture in the special case where A is assumed
to be algebraic. In the course of our proof we develop some results,
which may be of independent interest, concerning the existence of non-
trivial symmetric idempotents in primitive algebras with involution.

1. Some preliminary remarks. In the present section we mention
a few definitions and observations which we shall need in the remainder
of this paper.

By the term algebra over @ we shall mean an associative algebra
(possibly infinite dimensional) over a field @. A primitive algebra over
@ is one which is isomorphic to a dense ring of linear transformations
of a (left) vector space V over a division algebra 4 containing @ (see
{1], v. 82). The rank of an element ¢ of a primitive algebra is the
dimension of Va over 4. We state without proof the following three
remarks,

ReEMARK 1. Let A be a primitive algebra with identity 1 contain-
ing a set of nonzero orthogonal idempotents e, e,, -+ -, e, such that

(@) es+e+ - +e,=1

(b) ranke; =7, < 0, 1=1,2,--+,m.
Then the dimension of V over 4 is >.7n7r; < .

REMARK 2. Let A be a primitive algebra with center Z. If za =10
for some 2z = 0e Z and some a € A, then ¢ = 0.

ReMARK 3. Let A be a primitive algebra. If ¢ and b are nonzero
elements of A, then aAb #+ 0. More generally, if a,, a,, -+, a, are non-
zero elements of A, where % is any natural number, then

a,Aa,A - a, A, # 0,

An IL-algebra is an algebra in which every non-nil left ideal contains
a nonzero idempotent. An algebra over @ is algebraic in case every
Received September 23, 1960.
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element satisfies a non-trivial polynomial equation f(t) =0, where f(t) =
Saitt, a,e @, One can show that every algebraic algebra is an I-algebra.
In the proof of this fact (see [1], p. 210, Proposition 1), however, the
following sharper result is obtained.

REMARK 4. Let a be a non-nilpotent element of an algebraic alge-
bra. Then the subalgebra [[a¢]] generated by a contains a nonzero
idempotent.

An involution* of an algebra A over @ is an anti-automorphism of
A of period 2, that is,

(@ +b)* =a* + b*
(aa)* = aa*
(ab)* = b*a*

a**:a

for all a,be A, e @. It is to be understood that in the rest of this
paper the characteristic of @ is assumed to be unequal to 2. An element
a is symmetric if a* =a; a is skew if a* = —a. * is an involution of
the first kind in case every central element is symmetric. * is an in-
volution of the second kind in case there exists a nonzero central ele-
ment which is skew. Every involution is of one of these two kinds.

2. S,-algebras. The notion of an algebra satisfying a polynomial
identity can be generalized according to the following

DEFINITION. A subspace R of an algebra A over @ satisfies a poly-
nomial identity in case there exists a nonzero element f(t,¢t, +-+,t,)
of the free algebra over @ freely generated by the t; such that

f(xly Loy "'9xn) =0

for all ;e B. R will be called a Pl-subspace of degree d if the degree
d of f(t, t,, «+-,t,) is minimal.

The element f(¢,, t,, - -, t,) is multilinear of degree n if and only if it
is of the form

2a(0)tets, o+ L., a(0) €@, some a(o) # 0,
where ¢ ranges over all the permutations of (1,2, .-, n).

LEMMA 1. Let R be a Pl-subspace of degree m of an algebra A.
Then R satisfies a multtlinear polynomial identity of degree .

This lemma is a slight generalization of [1], p. 225, Proposition 1.
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The same proof carries over directly and we therefore omit it.
Our main purpose in this paper is to study algebras of the follow-

ing type.

DEFINITION. Let A be an algebra with an involution * over 9.
Suppose that the set S of symmetric elements is a PI-subspace of degree
<mn. Then A will be called an S,-algebra. In case * is of the first
(second) kind, we shall refer to A as an S,-algebra of the first (second)
kind.

It is surprisingly easy to analyze S,-algebras of the second kind, as
indicated by

THEOREM 1. Let A be a primitive S,-algebra of the second kind.
Then A s finite dimensional over its center.

Proof.! According to Lemma 1 S satisfies a multilinear polynomial
identity of degree mu: f(t, t, ---,t,) = 0. Let 2z be a nonzero central
element of A which is skew. If k is skew, then

(zk)* = k*2* = (— k)(— 2) = kz = zk
and hence zk is symmetric. Therefore we have
0= f(Zkly Sgy S3y ¢ v *, Sn) = zf(kly Sgy S5y * 0 *, sn)

for all k, € K, s;€ S, where K is the set of skew elements. By Remark 2
Sy, 8,85 ¢+ +,8,) =0. It follows that f(, S, S, =+, 8,) =0 forall z, € A4,
s; €S, since every x € A can be written x =s+ £k, se S, ke K. Continuing
in this fashion we finally have f(x,, «,, -++,2,) = 0 for all z,¢ A. The
conclusion then follows from the previously mentioned theorem of Kaplan-
sky ([1], p. 226, Theorem 1).

3. Some basic theorems. The assumption that the symmetric ele-
ments of an S,-algebra satisfy a polynomial identity is used chiefly to
prove

THEOREM 2. Let A be a primitive S,-algebra over @. Then there
exist at most n orthogonal non-nilpotent symmetric elements.

Proof. Suppose s, 8;, +++,8,., are n + 1 orthogonal non-nilpotent
symmetric elements. Using Remark 3 and the fact that the s; are non-
nilpotent we may choose elements x,, %,, --+, 2, € A so that

SIS, o0 82,8, F 0.

1 A similar proof was communicated orally to the author by I. N. Herstein.
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Now set u; = s;2,;8;4; + 8;1.xF¥s;, 1 =1,2, -+, n. By Lemma 1 S satisfies
a multilinear identity of degree u:

(1) f(tl! ty oo, tn) = t1t2 e tn + Za(g)taltvz e to'" ’
a#I

where ¢ ranges over all the permutations of (1,2, ---,7n) except the
identity permutation I. f(u, u,, -+, u,) = 0 since the u,; are symmetric.
To analyze the right hand side of (1) we first note that if wu,u, = 0,
%, J, k distinct, then either =7+ 1 and k=% +2, or j=4¢—1 and
k =1 — 2, because of the orthogonality of the s;. It follows that

Sy gy ooy Uy) = Uglhy oo 0 Uy + AU,y =0 Uy
for some awe @. Hence
(2) 0 = 82,832,550 * * * 83&nSpiy + S, L TASHTS _y + o+ SIS, |

Multiplying (2) through on the left by s,, we have 0 = six,si, « + - S %, 8,41
a contradiction.

An idempotent ¢ of an algebra A is called non-trivial in case e # 1
(if A has an identity) and e = 0.

THEOREM 3. Let A be a primitive I-algebra with an involution*.
Then:

(@) If there exists an x # 0€ A such that xx* = 0, then either A
contains a non-trivial symmetric idempotent or A is isomorphic to the
total matrixz ring 4,, where 4 is a division algebra. In the latter case
E} = Ey», where the E;; are the ynit matrices, v, j =1, 2,

(o) If zx*+0 for all x #0c A, then either A is a division
algebra or A contains a mnon-nilpotent symmetric element which has
no wmverse in A. If xx* =0 for all x +0c A and A is algebraic over
@, then either A is a division algebra or A contains a mon-trivial
symmetric idempotent.

Proof. Suppose first that there exists an x # 0 € 4 such that z2* = 0.
We can choose an a € A such that e = ax is a nonzero idempotent, be-
cause A is an [I-algebra. Since zz* =0, ¢ + 1. From the equations
ee™ = (ax)(ax)* = axx*a* = 0 it is easy to check that e 4+ e* —e*e is a
non zero symmetric idempotent. We may thus assume that 1e 4 and
e+ e* —e*e=1. eAe is a primitive I-algebra ([1], p. 48, Proposition 1,
and p. 211, Proposition 2). If eAe is not a division algebra, then it contains
an idempotent f=-¢ebe, f+0, f+#e.  Since [ff* = ebee*b*e* =0,
f+f*—f*f is a nonzero symmetric idempotent. It is unequal to 1
since otherwise ¢ =e(f + f* — f*f) =f. We may therefore assume
that ede is a division algebra and consequently that rank e =1. Since
1—e* Y1 —e)=1— (e + e* —e*e) = 0, a repetition of the above argu-
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ment allows us to assume that 1 — ¢ is also an idempotent of rank 1.
It follows from Remark 1 that A is the complete ring of linear trans-
formations of a two dimensional vector space V over a division algebra 4.

If e*e = 0 as well as ee* = 0 it is easy to show that relative to a
suitable basis of V ¢ = E, and e* = E,. In this case we are finished.
Therefore suppose e*e = 0. We shall sketch an argument, leaving some
details to the reader, whereby a non-trivial symmetric idempotent can
now be found. First find a basis (u,, #,) of V such that u,e = u,, ue = 0,
we* =0, u,e* = xu, + u,, where » # 0c 4. By setting v, =\, and
v, = U, we obtain a basis (v, v,) of V relative to which ¢ = E, and
e* = FE, + E,. From this we have

E’ﬁ - E21 + Ezz
E; = [(Ezl + Ezz)En]* = (E21 + Ezz)En = E21
Ef=e—FEi=FE,—FE,.

Set E} = ak, + BE,; + vE, + SEy,, «,B,7,8€ 4. From the following
three equations

E, — E, = E} = (E,E.,)* = ESE] = BE, 4 0K,
E, + E,, = E} = (Ep,E,))* = E;E} = all, + BE,
ak, + BE, + vE, + 0E, = E}, = (E,E,)* = ELE
= BE,, + BE,, + 6K, + SE,

we obtain ¢« =1, =1, vy=—1, and § = — 1. Hence
E;; == Eu + E12 _’ E21 - Ezz

and —E.,E% = FE, + E,, is then a non-trivial symmetric idempotent.

There remains the case in which zx* %= 0 for all x = 0ec 4. We
note that in this situation there exist no nonzero nilpotent symmetrie
elements, for, if s # 0 is symmetric, then s* =ss* =+ 0. If A is not al-
ready a division algebra then we can find an element % # 0e A such
that x4 is a proper right ideal. It follows that xzx*4 & x4 is also a
proper right ideal, and so xzx* is a nonzero, and hence, non-nilpotent
symmetric element which has no inverse. In case A is algebraic over
@ the subalgebra [[xx*]] generated by xx* contains a non-trivial sym-
metric idempotent, by Remark 4.

4. Total matrix rings with involution. We begin by proving

THEOREM 4. Let A be the total matriz ring 4, with an involutton
*, where 4 is a diviston algebra over @. Then there exists a set of
orthogonal symmetric elements e, €, + =+, €y, f1fo, <+, fu, such that:

(a) The e, are non-nilpotent elements of rank 1. In case A 1is
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algebraic over @, the e, are idempotents of rank 1.

(b) The f; are idempotents of rank 2, and f;Af; is isomorphic to
4y, with Ef; = E,, (see Theorem 3).

(c) m, + 2m, = m.

Proof. Let s, 8, +++, S, be a set of nonzero orthogonal symmetric
idempotents, with 2 maximal. By the maximality of - we have

S+ 8+ e +s8,=1.

Each s;As; may itself be regarded as a total matrix ring 4,, with an
involution induced by *, where 7, is the rank of s;. We first consider
those s;As; having the property: there exists an x = 0 € s,4s; such that
xz* = 0. Theorem 3, together with the maximality of %, then says
that s;As; is isomorphic to 4,, with E = E,,. Relabeling these s; as
Si for oo+, fuyy We have taken care of (b).

The remaining s;, of course, have the property that xzz* == 0 for all
x +0es;As,. As we have noted before, s;4s; can have no nonzero
nilpotent symmetric elements, since xzz* = 0. Consider a typical s;As;
and select from it an element x, of rank 1. Then ¥, = 22* =0 is a
non-nilpotent symmetric element of rank 1. Now assume that k(<7;)
orthogonal non-nilpotent symmetric elements v,, ¥,, ---, ¥, of rank 1 have
been found. Since the dimension of W = >¥.,Vy, is less than r, we
can find an element «,,, of rank 1 such that Wx,,, =0. Then y,,, =
2,2, Is a non-nilpotent symmetric element of rank 1 such that
Wy, =0, that is, ¥4 =0, 1=1,2,-++, k. Also y,,.,94, =0, ¢ =
1,2, .-+, k, since (¥pu¥:)* = YiYf = Yis = 0. It follows that there
exists in s;A4s; a set of 7, non-nilpotent orthogonal symmetric elements
Y Yor ***, Yspr €ach of rank 1. If A is algebraic over @ the subalgebra
[[¥;]] generated by each y; contains a nonzero idempotent z; (necessarily
of rank 1), and so we have #; orthogonal symmetric idempotents
2, %, ***, 2, each of rank 1. Repeating the argument for all the
s;As; and labeling either all the y; or all the z; as ¢,e, e e,, We
have completed the proof of (a). (c) follows readily from the fact that
rank ¢; = 1, rank f; = 2, and e, + 3, f; = L.

To illustrate Theorem 4 we consider the following simple example.
Let A = @,, where @ is a field, and define an involution * in A4 by:

(al o\ * (0 —1 (afl a3>< 0 1
= , a, €@
o, a, 1 0 \ea, a,J\—10
The reader may verify that A contains no symmetric elements of rank
1. Similar examples of higher dimension can also be given.

In the remainder of this section we derive a result which will enable
us, at least in the algebraic case, to ‘‘pass’”’ from the total matrix ring
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4,, to the division algebra 4 itself.

LEMMA 2. Let A be the total matrix ring 4,, algebraic over @, with
an involution *, where 4 is a division algebra over @. Suppose Ei=FE,.
Then one of the following two possibilities must hold:

(a) A contains a symmetric idempotent of rank 1.

(b) The involution * in 4, is of the form:

(al a@)* _ ( 0 —B“)(C‘tl a, < 0 B
a o) \B* 0 )\a, a,)\—p8 o)
Sor all o, 4, some B+ 0¢ 4, where a — & s an involution in 4.

Proof. It is well known (see for example [2], p. 24, Theorem 9)
that the involution * in A has the form:

a, az*—U’l a, o, 7
aS a4 C_(2 a4

Y . .
where U = <+§ f) is a nonsingular element of 4, and @ — @& is an in-
volution in 4. Consider the equation E, = E} = U —E, U, that is,

5 o 1)=lo o)l
+3 8) 0 1)” +3 8)
It follows that ¥ = & = 0, and hence U = < )

At this point we observe that an element (71 )GA is a_non-
. DA ) —|—B B
nilpotent element of rank 1, unless v, + v, = 0. Now set B = ( )

. +B £8 +8 B)

It is easy to check that B* = U™ )U + B, and hence B is
0

either symmetric or skew. If B3+ 8 =0, ie., U= we are

’

finished. Therefore assume that 8+ 5 # 0. We then apply the ob-
servation made at the beginning of this paragraph to conclude that B
is a non-nilpotent element of rank 1. Since B is either symmetric or
skew, it follows that B? is a non-nilpotent symmetric element of rank
1. The proof is complete when we note that, as A is algebraic over
@, the subalgebra [[B’]] generated by B*® over @ contains a symmetric
idempotent of rank 1.

THEOREM 5. Let A be the total matrix ring 4,, algebraic over O,
with an tnvolution  *, where 4 is a division algebra over @, Then
there exists a division subalgebra D of A such that D* = D agnd D 1is
isomorphic to 4.
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Proof. Theorem 4 asserts the existence of either (a) a symmetric
idempotent e of rank 1 or (b) a symmetric idempotent f of rank 2,
where fAf is isomorphic to 4, with the induced involution * such that
E} =E, In case (a) we merely set D =ede and the required con-
clusion follows. In case (b) 4, satisfies the hypothesis of Lemma 2. If
4, contains a symmetric idempotent of rank 1 we proceed as in case (a).
Otherwise we conclude from Lemma 2 that the involution * in 4, is

given by:
<a1 a2>* [0 —,8*1>(6—¥1 a, ( 0 B
a, a, "(—,8—1 0 /\a, CE) —B 0) .

Let D be the division subalgebra of 4, consisting of all elements of the
a 0
form {0 a’}’ aed. D is obviously isomorphic to 4. Furthermore, one

verifies that

{a 0}*_{,8"&,8 0,
0 a 0 B-ag)

and we see that D* = D.
5. Division S,-algebras. We begin this section by stating

LEMMA 3. Let 4 be an algebraic division algebra over its cenmter
@ for which there exists a fixed integer h such that the dimension of
O(x) over @ 1is equal to or less thanm h for every separable element
xed. Then 4 is finite dimensional over @.

Except for the restriction of separability, this lemma is virtually
the same as [1], p. 181, Theorem 1. The proof appearing in [1] carries
over directly, and we therefore omit it.

LemmA 4. Let 4 be an algebraic S,.-division algebra of the first
kind over its center @. Suppose E is a finile dimensional field exten-
sion of @. Then E@,4 is isomorphic to the total matrixz ring I,
where I' is a division algebra and m = 2n.

Proof. E X 4 is well known to be a simple algebra over @ with
minimum condition on right ideals. Hence E ) 4 is isomorphic to I,
where I" is a division algebra and m is a natural number.

An involution 7 can be defined in E® 4 as follows:

@)y =aRz*

for «e E, xed. It can be verified that = is a well-defined involution
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and that every symmetric element (under 7) in £ & 4 can be written
in the form:

(3) Zai®3i;a’ieE,sieS-

Let f(t, t,, +++,t,) = 0 be the multilinear polynomial identity of degree
n satisfled by S. Because this identity is multilinear and because E is
the center of £ 4, it follows from (3) that the set of symmetric ele-
ments of E® 4 under 7 also satisfies f(¢,, ¢, -+, t,) = 0.

Now regard £ 4 as the total matrix ring I",, with involution 7.
By Theorem 4 there exists in /7, a set of at least & non-nilpotent
orthogonal symmetric elements, where 2k = m. Theorem 2 tells us that
k < n, and hence m < 2k < 2n.

We are now able to prove

THEOREM 6. Let 4 be an algebraic S,-division algebra. Then 4
18 finite dimensional over its center.

Proof. By Theorem 1 we may assume that 4 is an S,-algebra of
the first kind over its center @. Suppose 4 is not finite dimensional
over @. Then by Lemma 3 there exists a separable element 2 ¢ 4 whose
minimal polynomial g(¢) over @ has degree r > 2n. Let E be a finite
dimensional field extension of @ containing the 7 distinet roots
a, O, oo, &, of g(t).

We claim now that the element * — a; is a zero divisor in EQ® 4,
©1=1,2,+--,7r. Indeed,

0=g@)=T@—a)=@-a)l@-a),

and it suffices to show that ][;.(x — a;) is a nonzero element of EX 4.
Suppose II,-(x — a;) = 0, that is,

(4) @OV ONa)+ - = 1R [a)=0.

Since 2™, 272, -+, 1 are linearly independent over @, all the correspond-
ing terms of E in (4) must be zero, which is clearly impossible. There-
fore  — «; is a zero divisor in K 4.

According to Lemma 4 E & 4 is isomorphic to the total matrix ring
I, where m < 2n. We may therefore regard E Q) 4 as the complete
ring of linear transformations of an m-dimensional vector space V ower
the division algebra I". Set Vi={veVi]ive —a)=0}, ¢t =1,2, .-, 7.
V; is a nonzero subspace of V since v — a; is a zero divisor in E® 4.
Using the fact that the a; are distinct elements belonging to the center E,
we have that V, are independent subspaces of V. It follows that
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mzdmS V=5 @imV)zr>2n.

A contradiction now arises since m < 2n. We must therefore conclude
that 4 is finite dimensional over its center.

6. Primitive S,-algebras. We are now in a position to proceed with
the proof of our main result.

THEOREM 7. Let A be a primitive algebraic S,-algebra. Then the
center of A 1is a field, and A is finite dimensional over its center.

Proof. Since A is primitive, A may be regarded as a dense ring
of linear transformations of a vector space V over a division algebra
4. According to Theorem 2 there exist at most » orthogonal symmetric
idempotents. Let e, €, +++,e, be a set of m orthogonal symmetric
idempotents, with m(= n) maximal. For each ¢, ¢;Ae; is again a primitive
algebraic algebra with involution induced by *. The same is true for
(1 —e)A(1 —e), where e =¢, + ¢, + +-- +¢,, if A should not already
happen to have an identity. We now use Theorem 3 in conjunction
with the maximality of m to assert that the rank of each ¢; is 1 or 2, and
that A does have an identity 1 =¢, 4+ ¢, + -+ +¢,. It follows that
the dimension k¥ of V < 2m and consequently that A is isomorphic to
the total matrix ring 4,. The center of A is, of course, a subfield of
4. Theorem 5 now says that 4 is an algebraic S,-division algebra. By
Theorem 6 4 is finite dimensional over its center. Hence A is finite
dimensional over its center.

COROLLARY. Let A be a primitive algebraic algebra with an in-
volution * such that the set K of skew elements is a Pl-subspace of
degree n. Then A is finite dimensional over its center.

Proof. Let f(t,t,, -++,t,) =0 be the multilinear polynomial identity
of degree m satisfied by K, according to Lemma 1. If s, s,eS, where
S is the set of symmetric elements of A, then s;s, — 8,5, € K. From this
it follows that f(u,v, — ViU, UgVy — Vg, =+, UV, — V,U,) =0 is a non-
trivial polynomial identity of degree 2n satisfied by the elements of S.
In other words, A is a primitive algebraic S,,-algebra, and the conclusion
follows from Theorem 7.

Note. Herstein’s original conjecture was: if A is a simple ring (or
algebra) with involution whose skew elements satisfy a polynomial identity,
then A is finite dimensional over its center. In this paper we have
verified his conjecture in the special case where A is a simple algebraic
algebra which is not a nil algebra.
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DECOMPOSITION OF HOLOMORPHS

W. H. MiLLs

Let G be a group, and let H be its holomorph. There are two
situations in which H is known to be decomposable into the direct product
of two proper subgroups. If G is the direct product of two of its proper
characteristic subgroups, say G, and G,, then H is the direct product of
the holomorphs of G, and G,. If G is a complete group, then H is the
direct product of G and G*, where G* is the centralizer of G in H. In
this paper we will show that if G is not the direct product of two proper
characteristic subgroups, and if G is not complete, then H is indecom-
posable. Thus we have a complete characterization of those groups
whose holomorphs are indecomposable.

A decomposition of H into the direct product of indecomposable
factors is known for the case where G is a finite abelian group [1]. Our
present results enable us to generalize this and give a decomposition of
H into the direct product of indecomposable factors, whenever G is the
direct product of a finite number of characteristically indecomposable
characteristic subgroups. In particular this gives a complete decomposi-
tion of H whenever G is a finite group.

Peremans [2] has shown that a necessary and sufficient condition for
G to be a direct factor of H is that G be either complete or the direct
product of a group of order two and a complete group that has no sub-
groups of index two. This result is related to the present paper. In
fact Peremans’ result can be deduced from Lemma 1%,

1. Preliminaries. Let G be a group, and let A be the group of all
automorphisms of G. Let e and [ denote the identities of G and A4
respectively. The holomorph H of G can be regarded as the semi-direct
product of G and A, i.e., the set of all pairs (g,0),9¢G,oe 4, with
multiplication defined by

(9, o), 7) = (9(0h), 07) .

We identify ¢ in G with (g9, 1) in H. Then H is a group that contains
G as an invariant subgroup, and every automorphism of G can be ex-
tended to an inner automorphism of H.

For all @ in G we let A, denote the inner automorphism of G cor-
responding to the element a. Thus A\, = aga.

All the results of this paper depend on the following lemma:

LEMMA 1. Let H= H, x H,, Then G N H, and G N H, are char-
acteristic subgroups of G and
Received November 1, 1960.
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G=GNH)x(GNH).

Proof. We note first that G N H, and G N H, are normal subgroups
of H, and hence they are characteristic subgroups of G.

For 7+ =1 or 2, let ¢; denote the projection of H onto H, correspon-
ding to the decomposition H = H, x H,. Thus if a € H, and 8¢ H,, then
&(aB) = a and e(aB) =B. Put J, =¢G. Clearly J, S H, and J, is a
normal subgroup of H. Let F, and S; denote the set of all first and
second components respectively of elements of J;. Thus F, < G and
S; € A.

Let (a, 6) be an element of J,. Then for some g in G we have
&9 = (a, 0). Put e,g = (b, 7). Then g = (a, 6)(b, 7). Therefore 7 = ¢
and (6b™,0) = (b,7)'eJ,. Hence g S, It follows that S, S,. By
symmetry S, £ S;, and hence S, = S,.

Let o be an element of S, and let & be an element of A. Put
e, &) = (9:, &), 1 =1,2. For some a and ¢ in G we have (a,0)ecJ, and
(c,0)ed,. Now

(a, 0)(g:, &) = (9,, E:)(a, 0)
and

(0, o)(gly El) = (gu &)(cv 0) .

Comparing second components we see that o commutes with both & and
&. Since £ = £, we have ¢ = £o. It follows that S, is contained in
the center of A.

Let (@, 0) be an element of J;, and let (d, ¢£) be an element of J,.
Since ¢ is contained in the center of A and since (a, 6)™ = (¢7%a?, 07Y),
it follows that

d(a, 0)d7(e, Moa)(@, 0) (e, Noa)™ = d(ad)* .
Therefore d(od)? e H,. Moreover
d(ed)™ = (d, (e, 0)(@, )7, 0) " e H, .

Hence d(od)'e H, N H,. This gives us d(¢d)™ =e¢ and 0d =d. Thuso
leaves every element of F, fixed. By symmetry, since ¢S, =S, it
follows that ¢ leaves every element of F) fixed. Now let g be an
arbitrary element of G. Then g = (f, v)(k, {) with (f,v)eJ, and (4, {)
edJ,. Since g = f(vh), of = f, and ovh = voh = vh, it follows that og = g.
Hence 6 = I. Therefore S, and S, consist of the identity alone. It fol-
lows that ;€GN H, J, =GN H, and

Gedix,c( GNH)x(GNH)SG.
Therefore G = (G N H,) x (G N H,) and the proof is complete.
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2. Some known results. Suppose G =G, x G, X +++ x G,, where
the G, are characteristic subgroups of G. Let A; denote the group of
all automorphisms of G,. We identify o, in A; with the element ¢ in
A such that

g ifgeGj;jiif

o9 = .
g o9 if ge@,; .

Then A = A4, x A, x -+« x A,. Moreover H;, the holomorph of @, be-
comes a subgroup of H, and H=H, x H, x +++« x H,.

The centralizer of a group in its holomorph is called its conjoint.
The conjoint G* of G consists of the elements (97, A,), 9 € G. The map-
ping 7 defined by

7(g, 0) = (97, Ne0)

is an automorphism of H that maps G onto G* and maps G* onto G.
Therefore G and G* are isomorphic, and G is the centralizer of G* in
H. Furthermore Lemma 1 is equivalent to the following:

LEMMA 1*. Let H= H, x H,, Then G* N H, and G* N H, are
characteristic subgroups of G* and

G*=(G* N H) x(G*NH).

If G is complete, i.e., if G is a centerless group with only inner
automorphisms, then H = G x G*.

3. Decomposable and indecomposable holomorphs. If G is the
direct product of two proper characteristic subgroups, then G is said to
be characteristically decomposable. If not, then G is said to be char-
acteristically indecomposable.

THEOREM 1. Let G be a group, and let H be its holomorph. If G
is either characteristically decomposable or complete, then H is decorn-
posable. If G s characteristically indecomposable and mnot complete,
then H is indecomposable.

Proof. We have seen in § 2 that H is decomposable if G is either
characteristically decomposable or complete. Suppose that G is char-
acteristically indecomposable and that H = H, x H,. It follows from
Lemma 1 that either G N H, = G or G N H,=G. Thus either G< H,
or G S H,. Similarly it follows from Lemma 1* that either G* < H; or
G* < H,. Without loss of generality suppose that G = H,. Then H, is
contained in the centralizer of G, thatis H, £ G*. If G* & H, we have
H,2 H and H= H,. Thus we need only consider the case G* & H,.
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Here G* = H, and H, is contained in the centralizer of G*. Thus H, < G,
and hence H, =G. Now G N G* is the center of G, and G N G* =
H, N H,, Hence G is centerless. Since H = H, x H, =G x G*, it
follows that G has only inner automorphisms. Therefore G is complete.
This completes the proof of the theorem.

4. Decomposition of the holomorph into indecomposable subgroups.
To complete our discussion we need the following result:

LEMMA 2. If a group is complete and characteristically indecom-
posable, then it is indecomposable.

Proof. Let G be a complete group and suppose G = G, x G,. Since
every automorphism of G is inner, it follows that every automorphism
of G maps G, and G, onto themselves. Hence G, and G, are character-
istic subgroups of G. This establishes the lemma.

THEOREM 2. Suppose G 1is the direct product of a finite number
of characteristically indecomposable characteristic subgroups: G =
G, X Gy x +++ x G,. Suppose that G; is complete for 1 <¢=<r, and
that G; is not complete for r +1 < j =< n. Then a decomposition of H
into indecomposable subgroups is given by

(1) H=11G, xII1G! x 1l H;,
i=1 i=1 i=r41
where G and H; are the conjoint and holomorph respectively of G,
and where Il denotes a direct product.

Proof. It follows from § 2 that (1) is a decomposition of H, By
Lemma 2 the groups G; and G} are indecomposable for 1 <+ <, and
by Theorem 1 the groups H,; are indecomposable for » +1 < ¢ < n.

Since a characteristic subgroup of a characteristic subgroup of G is
itself a characteristic subgroup of G it follows that G satisfies the con-
dition of Theorem 2 whenever the characteristic subgroups of G satisfy
the descending chain condition. In particular Theorem 2 gives us a
decomposition of H into indecomposable subgroups whenever G is a finite
group.

If G is the direct product of an infinite number of characteristic
subgroups, then H is not the direct product of their holomorphs. Thus
Theorem 2 does not hold in this case.
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ON THE REPRESENTATION THEORY
FOR CYLINDRIC ALGEBRAS

DoNALD MoNK

The main purpose of this paper is to give some new sufficient con-
ditions for the representability of infinite dimensional cylindric algebras.
We also discuss certain problems and results in the representation theory
reported on by Henkin and Tarski in [5].

In general we adopt the notation of [5]. §1 contains some ad-
ditional notation, the statement of a representation theorem of Henkin
and Tarski frequently used in this paper, and an embedding theorem
which throws some light on that representation result. §2 is devoted
mainly to some simple proofs for known results about the general alge-
braic theory of representable cylindric algebras. Then in §38 we turn
to representation theory proper. The first result of this section gives
a sufficient condition for representability in terms of isomorphic reducts
of an algebra (this result was independently obtained by Alfred Tarski).
Then follows the definition of a new class of cylindric algebras, diagonal
cylindric algebras. The main theorem of this paper is that every diago-
nal cylindric algebra is representable; this result represents a consider-
able improvement of some previously known representation theorems.
Several interesting corollaries are derived from this result.

1. Introduction. We use the notation of [5] with the following
additions. For abbreviational purposes we use standard logical notation:
— (implies), V (there exists), and A (for all). The identity map on a
set A is denoted by &,. The function f restricted to the subset A of
its domain is denoted by f | A. If R is a binary relation and A4 is a
set, then R*(A) = {yl Vx€A<xy> € R}° If A = <A’ +, 0 =€ dx)\>x,)\<w Is
a CA,, then 2, =4, +, -, —> is the Boolean part of A. Directed
systems are understood in the sense of [7] p. 65.

We need some notions of general algebra, adapted from [9]. Let K
be a class of similar algebras; say all algebras of K are indexed by a
nonempty set Ng, so that if A e K then A = A, ODiey,, the O, being
operations on A. We let HK = the class of all homomorphic images of
algebras of K, PK = the class of all Cartesian products of systems of

Received December 15, 1960. The results of this paper were obtained in part while
the author was a National Science Foundation predoctoral fellow and in part while the
author was engaged in a research project in the foundations of mathematics directed by
Alfred Tarski and supported by the National Science Foundation (Grant No. G-14006) The
author wishes to thank Professor Alfred Tarski for the valuable advice he gave during the
preparation of this paper. The results of this paper constitute part of the author’s doctoral
dissertation submitted in May 1961 at the University of California, Berkeley.
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algebras of K, and SK = the class of all subalgebras of algebras of K.
If JS Ngand e K, we let A, = {4, 0>;e;; and we let K; = {U;|Ac K}.

To fit cylindric algebras into this scheme of universal algebra, let
us make the following agreement. For each ordinal «, let M, =
{0,1,2,<0, £5,40, £, \heorcar If A=A, +, -, —, €, drderca is a CA,,
we let O,= 4+, O,=-, O,= —, Oy =2=¢, and Oy, =d,, for all
£, < a; finally we let A* = <A, 0Die, . We let CA; = {UA*|Ae CA}.
Thus CA} is a class of similar algebras in the above sense. When no
confusion results we shall identify CA, with CAZ.

In several of the proofs below we use a method of construction
whose general form is as follows. We are given a class K of similar
algebras, a directed system © = {D, =), and, for each d € D, an element
A, of K. We let R={{f,9>1f,9¢laerAsand ViepAcer(d <e— f, =
g.)}. Clearly R is a congruence relation on J[[s.ep,s; R is called the
eventually equal congruence of A and D.* In case K = CA¥ for some
a, {fI<{f,0>¢c R} is called the eventually zero ideal of A and D. In
case J & Nx and B is a subalgebra of 2[,; for each d € D, we may define
natural isomorphisms g and f of B into [[sepUsr and [[].e, A /R], re-
spectively. For each be B and de D let g(b), =b. For each be B let
f) =[g)]. If K= CA,and J =1{0,1, 2}, g and f are called the natu-
ral Boolean isomorphisms of B into [].e A, and [.e»Ua/R respectively.

The essential steps in the proofs of the representation theorems here
presented use the following theorem of Henkin and Tarski (see [5] Theo-
rem 2.15).

THEOREM A. A CA, U is representable 1f and only if for each
£ < w A can be neatly embedded in some CA,,..

There now exist purely algebraic proofs of this theorem. Theorem
A is to be contrasted with the following theorem:

THEOREM 1. If 6 = a = w, then every CA, is embeddable in some
CA;, t.e., 1s a subalgebra of the a-reduct of some CA;.”

Proof. It suffices to take the case 6 = a + 1. For each B < w we
define v® with domain a 4+ 1 by:

K if k<8,
v — tk+1if Bk <w,
R fose<a,
B if t=a,

! NgepWa/R is a reduced product in the sense of Frayne, Scott, and Tarski (Notices
Amer. Math. Soc., 5 (1958) 673). In fact, let J={X|X S D and VaenAcep (d<e—e & X)}.
Then J is an ideal in the field of all subsets of D, and R is the congruence relation on
Ilae Vg determined by J.

* This theorem, due to the author, is stated in [5].
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for all k <@ + 1. Thus v is one-to-one. Let 2 be a given CA,, and
let Bg be the a + 1, vP-reduct of A. Let I be the eventually zero ideal
of Band <w, =>. Let € = []5.., B/, and let g, f be the natural Boolean
isomorphisms of A into T]s..8s and € respectively. If 0 <k<pB<w
or 0=B8<w=k<a then v# =&«, and so, with aec A, (cg(@))s=
cBeg(a)s = c‘”ma = cla = g(c.)p; similarly for diagonal elements. It fol-

lows that f is a cylindric isomorphism of 2 into the a-reduct of €, as
required.?

Since for each a = w there are non-representable CA,’s, Theorems
A and 1 indicate the significance of the notion of neat embedding.

2. Universal algebra and cylindric algebra. In [5], Henkin and
Tarski state several universal algebraic properties of representable cy-
lindric algebras, indicating that their proofs use in an essential way some
metamathematical results. Thus after proving that RCA, is a universal
class, they infer that

(i) a cylindric algebra is representable if and only if every finitely
generated subalgebra of it is representable, and

(i) a cylindric algebra is representable if and only if every finite
reduct of it is representable.

Further, after proving that RCA, is equational they infer that RCA,
is closed under the taking of homomorphic images. For all these
algebraic results they raise the question concerning the existence of simple
algebraic (as opposed to metamathematical) proofs.

With the essential help of Theorem A, which, as mentioned above,
has algebraic proofs, we shall give algebraic proofs of the above results.
In addition, we obtain a new proof of the equational character of RCA,.

THEOREM 2. A homomorphic image of an RCA, is an RCA,.*

Proof. Suppose U is an RCA, and I is a cylindric ideal in %; we
want to show that /I is an RCA,. Let B be a CA,,. such that U is
neatly embedded in B (by Theorem A), where # < w. Let J be the
ideal in B generated by I. Clearly J ={b|be B and V,e (b <a)}, and
so JNA=1 It follows that the natural Boolean homomorphism of
A/I into BJJ is a cylindric isomorphism of /I onto an algebra neatly
embedded in B/J, and by Theorem A our theorem follows.

It is easy to see that RCA, is closed under direct products and
subalgebras. Hence by Birkhoff’s theorem (Theorem 2.1 of [9]), RCA,
is equational. Thus in particular, RCA, is a universal class, and the
above characterizations (i) and (ii) of RCA, follow. Recently the author

3 Theorem 1 can also be easily proved metamathematically. In fact, it was such a

proof that first occurred to the author.
¢ [5], Theorem 2.20.
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obtained simple algebraic proofs of these two characterizations. Alfred
Tarski, upon being informed of these proofs, recalled that in 1955
Saunders MacLane outlined to him a proof of a universal algebraic theo-
rem from which (i) follows; the author’s proof of (i) was a specialization
of MacLane’s proof. Since MacLane’s proof has never appeared in
print, we shall take this opportunity to present it here. Subsequent to
the above work, the author obtained a corresponding algebraic proof of
a generalization of (ii).

Of the two corollaries below, the first is a strict specialization of
the universal algebraic case, while for the second corollary we apply an
additional argument.

THEOREM 3. Let K be a class of similar algebras such that HK =
K, PK =K, and SK = K. Then for every algebra U, e K if (and
only if) every finitely generated subalgebra of U is in K.

Proof. The necessity of the condition is obvious. Now suppose that
every finitely generated subalgebra of U is in K. Let I = {F|F is a
finite subset of A}, and for each F'el let B, be the subalgebra of A
generated by F. Let R be the eventually equal congruence of B and
I, 2>, and let € = [[;e,B7/R. By hypothesis, € ¢ K. Define g with
domain A and range included in [],¢;Br by:

any element of B, if a ¢ B, ,
g(a), =

a if ae B, ,
for all a€ A and Fel. It is easy to see that the function f, defined
by f(a) = [g(a)] for all a € A, is an isomorphism of 2 into €. Hence
Ne K.
From Theorems 2 and 3 we obtain:

CoroLLARY. e RCA, if (and only if) every finitely generated
subalgebra of A is representable.’

THEOREM 4. Let K be a class of similar algebras such that HK =
K, PK = K, and SK = K. Then % e K if (and only 1f) for every finite
subset F' of Nk we have U, € SK;.

Proof. The necessity is obvious. Now suppose that the above con-
dition holds. For each finite subset F' of Nx choose B ¢ K such that
A, € B, Choose 1,€ Ng. Let I ={F|F is a finite subset of Nx and
,e F}. Let R be the eventually equal congruence of B and {I, 2>,
and let € = [[,¢,; 8% /R. Let g and f be the natural isomorphisms of

5 [5], Theorem 2.13 (i).
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Wy, into [1re Bl and €, respectively. We claim that f is an iso-
morphism of U into €. For, if 7¢ Nk, say with O¥ binary, and if
a,be A, we have for {i} S Fel

[9(0¥(a, b))]r = O¥(a, b)
= 0¥(a, b)

= 0% (a, b)

= 03" ([g(@)], [9(D)],)
= [0:(9(a), 9(0))]r -

Thus f(0¥(a, b)) = 0,(f(a), f(b)). We deduce that % € K by the hypothe-
sis of the theorem.

Again, we have a corollary for cylindric algebras. As mentined
previously, this corollary is not quite as immediate as the corollary to
Theorem 3; we need the following lemma in order to derive the corollary
easily.

LEMMA 1. Let K be a class of stmilar algebras such that PK = K
and SK = K. Suppose that U is an algebra such that for all x,yc A
with x +y there is a homomorphism f of U onto an algebra Be K
such that f(x) + f(y). Then e K.

In case additionally K = CA, it is enough to assume that for all
xeA with x + 0 there is a homomorphism f of WA into an algebra Be K
such that f(x) # 0.

The proof of this lemma is simple; it is essentially due to Birkhoff
([1).

The proof of necessity in the following corollary gives a simple
proof of Theorem 2.12 of [5].

CoroLLARY. Ue RCA, if and only if every finite reduct of A is
representable.’

Proof. Necessity. Suppose A e RCA,, i.e., U is isomorphic to a
sub-direct product of CSA,’s. Now a reduct of a product of CA4,’s is
equal to the product of the corresponding reducts. Hence we may as-
sume that 2 is a CSA,, say with base U. Suppose £ < @ and fea* is
one-to-one; let B be the «, f-reduct of A. Suppose be B and b + 0;
choose feb. For each ge U* we define g* ¢ U® by:

gs-15 if M€ range 6,
| f, otherwise.

gx

6 [5], Theorems 2.12, 2.13 (ii).
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Define F(x) = {ge U*|g* e x} for each x e B. It is easy to verify that
F is a homomorphism of B onto a CSA, such that F(b) + 0. Since b
is arbitrary, we deduce from Lemma 1 that B e RCA,.

Sufficiency. We now assume that every finite reduct of % is repre-
sentable. Let a finite subset F' of M, be called regular if there is a
finite subset G of a such that F = {0,1,2,<0, £>, €0, £, A\>} e Now
it is known, and easy to see, that an RCA, can be neatly embedded in
an RCAg for each B = «; if we apply this argument here we see that,
by our assumption, A} = BF'* for some B e RCA,, for each regular
finite subset F of M,. If F' is any finite subset of M,, then there is a
regular finite subset G such that FF = @, and so A; = (AF), S (B *)p ¢
[(RCA})s]r = (RCAZ),. Hence by Theorem 4, A* € RCA}, i.e., A ¢ RCA,.

We conclude this section with the following theorem.

THEOREM 2'. Let a and k be ordinals. Let K be the class of all
CA.’s which can be neatly embedded in a CA,... Then K is an equa-
tional class.

Proof. Clearly K is closed under direct products and subalgebras.
The proof of Theorem 2 may be applied to show that K is closed under
homomorphisms. Our theorem is now a consequence of Birkhoff’s theorem.

From this theorem we can derive two corollaries similar to the above
stated corollaries. This can be done metamathematically, in the obvious
way, or mathematically as follows. For the first corollary we can again
use Theorem 3, while for the second we can use a direct argument
similar to the proof of Theorem 4. (We do not know of any way of
using Theorem 4 or something like it to derive the second corollary.)

3. Some representation theorems. Now we shall prove several new
sufficient conditions for the representability of cylindric algebras. The
following simple lemma will be found useful in the proofs of the main
results.

LEMMA 2. Let a, B, and v be ordinals, and suppose that e B**Y
18 ome-to-one. Suppose N is a CA,, B is a CAgz, T e B4, and the follow-
wng conditions hold:

(i) T is a Boolean homomorphism of U into B,

(i) ¢BoT = Toc¥ for all £ < «,

(i) T(d%) =d>3 ., for all k£, < a.
Then T is a cylindric homomorphism of U into the a-reduct of some
CA,... If in addition the following condition holds:

(iv) BT =T forase<a+y,
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then T is a cylindric homomorphism of A into an algebra neatly
embedded in some CA,,; .

Proof. Let € be the a + v, t-reduct of B, and let D be the
a-reduct of €. Then T is a cylindric homomorphism of 2 into O, for
Tocl = ¢2oT (by (ii)) = ¢CoT = ¢PoT for each £ < a, and T(d%) =
d% ., =dS =dD for all x,» < a. If in addition (iv) holds, then for
a<k<a+v we have €T = ¢2oT = T.

As a consequence of Theorem A and Lemma 2 we have the follow-
ing representation theorem, which was independently obtained by Alfred
Tarski.

THEOREM 5. Assume that A is a CA,, 0 s a one-to-one element of
a® such that a ~ range (o) is infinite, and B is the a, o-reduct of 2.
Suppose T is an isomorphism of A into B such that AT (x) = T(x)
whenever xe A and kca ~ range (6). Then A is representable.

Proof. Let T be a one-to-one element of a®'* such that 7 | a = 4.
Then for all £ < & we have ¢%oT = c¢%oT = ¢PoT = Toc¥. Moreover,
for all £, \ < « we have T(dY) = d3 = d% .,. Finally,iffa <t <a+ o,
then ¢%oT = T. Hence by Lemma 2 U can be neatly embedded in a
CA..., and our theorem follows from Theorem A.

We should mention that recently Tarski obtained a stronger version
of Theorem 5, in which the condition “a ~ range (o) is infinite” is
replaced by the condition “a ~ range (o) + 0.

Theorem 5 leads to an interesting insight into the relationship be-
tween cylindric and polyadic algebras, of a different kind from the
insight obtained from the relationships established in [2]. A polyadic
algebra with equality is, roughly speaking, a cylindric algebra with two
additional structures: infinite cylindrification, and substitution (see [3]).
If we eliminate only the infinite cylindrification, we arrive at a notion
of a substitution on a cylindric algebra. A substitution on a CA4, U is
a function Se (44" which satisfies certain natural conditions (due to
Halmos). As a corollary of Theorem 5 we easily see that if A is a CA,
with a substitution and if & = w, then A is representable. Now from
[6] it is known that every infinite dimensional polyadic algebra is re-
presentable, while there are infinite dimensional polyadic equality alge-
bras which are not representable (with equality corresponding to the
functional equality). Here by representable we mean as in cylindric
algebras—isomorphic to a subdirect product of (O-valued functional poly-
adic algebras. Our corollary shows that by eliminating infinite cylindri-
fication we recapture representation.

It is natural to ask if the corollary can be strengthened by re-
placing “substitution” by ‘“finite substitution”—a concept defined like
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that of substitution, but in which S applies only to those tea* for
which there is a finite subset F’ of « such that t e ~ F=3§,.,. The
answer is no: for each a = w there exists a CA, with a finite substitu-
tion which is not representable. The construction of such algebras de-
pends on the results of [8], which in turn depend upon unpublished work
of Henkin and Tarski.

We now define a class of cylindric algebras which includes both the
class of simple infinite dimensional cylindric algebras and the class of
dimensionally complemented cylindric algebras. A CA, U is called a
diagonal cylindric algebra (GCA,) provided that for every non-zero a € A
and every finite subset F' of a there are distinet £, A € @ ~ F such that
a+d. #+ 0. The importance of this concept derives from the following
theorem:

THEOREM 6. Ewvery diagonal cylindric algebra is representable.”

Proof. Let A be a GCA,. We want to apply Lemma 1, with K
replaced by the class of all CA.’s which can be neatly embedded in
CA,.’s. Hence suppose that a e A and a = 0. Since A e GCA, we can
define functions g, v with domain @ inductively by letting f and v, be
distinct members of a ~ {¢,, vi| N < &} such that a-d,, + 0.

Now we prepare to apply Lemma 2. It is easy to see that there
is a unique 7 € a**! such that the following conditions hold:

(1) 7 is one-to-one,

(2) 7 is the identity on a ~ {¢,, v.|x < w},
3) ¢, = v, for each £ < w,

4) tv.= e, for each £ < o,

6) Ta=p,.

For each £ < w, let B, = A. Let I be the eventually zero ideal of B
and {w, =5, and let € = A“/I. For each xc¢ A and £ < @, define

F @) = SoSi « - SpeSirw

where Sfx = ¢o(dy,-) for all 6, 0 < a and x € A. Let T(x) = [f(x)] for
all xe¢ A. The following statements may now be verified:

(6) T is a Boolean homomorphism of 2 into C,
(M c&oT = Toc¥ for all X < «,

7 After reading a preliminary draft of this paper, Henkin obtained a generalization of
this theorem, which may be stated as follows. If for every nonzero x € A and for every finite
I' £ a there is a {€ a~T and an endomorphism T of o such that ¢,oT = T, ¢xoT = Tocx for
each k€I, and T(z)+0, then YU is representable.
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(8) T@L) =dS ., for all \, g < a,

9 &oT =T.
In verifying (7), one can make use of the following easily verified
arithmetic law:

(10) Sge,Six = ¢,S5Six for all xe A and all distinet o, 0, 7w < a.

We can now apply Lemma 2, and infer that 7 is a cylindric homo-
morphism of 2 into an algebra neatly embedded in a CA,,,. Suppose
T(a) = 0. Choose k < w such that f(e).=0. Applying successively
Sy, Sia, +++, S« we infer that Sfca =0, and so a-d, . = 0, which is
a contradiction. Since a is arbitrary, from Lemma 1 we conclude that
A can be neatly embedded in some CA,,, ©. Let g be an isomorphism
of U onto an algebra neatly embedded in D.

Let N be maximal among ideals P such that g¢*(4) N P = {0} (by
Zorn’s lemma). Let € = DN, and let pr be the natural homomorphism
of © onto €. Clearly prog is an isomorphism of U onto an algebra
neatly embedded in €. Suppose x €D, F' is a finite subset of a, and
[z} = [—d..] for all distinct k,nea ~ F. Suppose that x¢ N. Then
N U {#} generates an ideal P such that PN g*(4) =+ {0}. Choose ye A
such that g(y) # 0 and g(y) € P. Then there are £, --+,&,_,ea + 1 and
ne N such that g(y) =n +c -+ ¢, _® Let F'=FU/{Kk, -, k_}.
Then [g(y)] < [—d..] for all distinet £, xea ~ F’; but this contradicts
the fact that 2 is a diagonal cylindric algebra.

It follows that € is a GCA,,,. Hence all the preceding proof can
be applied inductively to give, in virtue of Theorem A, the desired
result.

We now proceed to derive some consequences of Theorem 6.

THEOREM 7. Ewery simple infinite dimensional algebra is a diago-
nal cylindric algebra, and so is representable.

Proof. Suppose A is a simple CA,, a = w, ac A, a + 0, and Fis a
finite subset of . There are M e w ~ 1 and p£ € " such that ¢, --+c, a =
1. Choose k, v distinet in a ~ (F'U{tt, +«-, thh}). If a-d,, =0, then,
applying ¢, ---c,.,_,, we see that d. = 0; hence 0 = 1, contradicting the
simplicity of 2.

From Theorem 7 we can infer the following negative theorem which
limits the possible extensions of Theorem 1.

THEOREM 8. If 1< a < w, then it is mot the case that every CA,
can be embedded (in the sense of Theorem 1) in a CA,.

Proof. Assume the contrary. Henkin and Tarski have constructed
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a non-representable CA, 2, in unpublished work. Clearly we may as-

sume that U is simple. Let B be a CA, such that U is a subalgebra
of the a-reduct of B. Let I be a maximal ideal in B, and let € = B/L.
By Theorem 7, € is representable. Since U is simple, AN I = {0}, and
so the natural homomorphism of 2 into € is an isomorphism. It follows
that ¥ is representable; but this is a contradiction.

A CA, U is weakly dimensionally complemented, e WDCA, if
a ~ 4x is infinite for every x e A.

THEOREM 9. Ewvery weakly dimensionally complemented cylindric
algebra 1s a diagonal cylindric algebra, and so is representable.®

Proof. Suppose U is a WDCA,, acA, a+0, and F is a finite
subset of a. Choose k£, ) distinet in a ~ F such that ¢.c,a =a. If
a-d., = 0, then a = 0, contradiction.

THEOREM 10. Let « be an infinite ordinal, and let A be a CA,.
Suppose there is a finite subset F of o ~ 8, such that [[, er — dar =
0. Then U is a diagonal cylindric algebra, and so is representable.’

Proof. Suppose ac A, a + 0, and G is a finite subset of @. Choose
kew ~1 and pea* such that ¢ maps &£ one-to-one onto the field of F,
i.e., onto (M| VycoN, vD> € For (v, \)e F)}. Also choose vea* such that
y is one-to-one and range v S a ~ G ~ (field of F'). Let

H = {vp 'k, v 2 |k, \pe F} .

Applying S50+« S8t to [l ner — den, We see that [[w.exr — dea = 0.
Moreover, H is a finite subset of a® ~ &, such that (field of H)N G = 0.
Since a # 0, choose <{x, \> ¢ H such that a-d,, #+ 0. Thus % is a diagonal
cylindric algebra.

In conclusion, we would like to make a few remarks about the
general theory of diagonal cylindric algebras. In the first place, GCA.
is properly included in RCA,; the cylindric set algebra formed from all
subsets of w” forms an example of an element of RCA, ~ GCA,; in this
algebra the element {6,} is included in the complement of every non-
unity diagonal element. Clearly GCA, is closed under direct products
and subalgebras. But from Theorem 2.19 of [5] it follows that GCA,
is not equational, and so is not closed under homomorphisms. For,

8 This is a solution of a problem of Henkin and Tarski, who showed that % is represen-
table if o« ~ (dx U 4y) is infinite for all z,y € A.

9 Actually a somewhat stronger theorem holds. In fact, instead of assuming that F' is
finite, it suffices to assume that a ~ Field (F') is infinite. Then, in general, the product
mentioned in Theorem 10 may be an infinite product.
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LCA,= GCA,c RCA,, and by the quoted theorem RCA, is the smallest
equational class including LCA,.
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A NOTE ON
GENERALIZATIONS OF SHANNON-MCMILLAN THEOREM

Suu-Texr C. Moy

1. Introduction. This paper is a sequel to an earlier paper [6].
All notations in [6] remain in force. As in [6] we shall consider tw
probability measures f, v an the infinite product o-algebra of subsets
of the infinite product space 2 = 7#X. v is assumed to be stationary
and ¢ to be Markovian with stationary transition probabilities. Ex-
tensions to K-Markovian ¢ are immediate. v, ,, the contraction of v to
T 15 assumed to be absolutely continuous with respect to p,.,, the
contraction of ¢ to . %, ., and f,., is the Radon-Nikodym derivative. In

[6] the following theorem is proved. If Slog Joody < o and if there is

a number M such that
(1) S(logfo_n —logfy, )dv = Mforn=1,2, -

then {n'log f,.} converges in L,(v). (1) is also a necessary condition
for the L,(v) convergence of {n*log f,.}. We consider this theorem as
a generalization of the Shannon-McMillan theorem of information theory.
In the setting of [6] the Shannon-McMillan theorem may be stated as
follows. Let X be a finite set of K points. Let v be any stationary
probability measure of . and g the equally distributed independent
measure on % Then {n'logf,.} converges in L,(v). In fact, the
P(xy, x,, - -+, x,) of Shannon-McMillan is equal to K 'V f; .. The convergence
with probability one of {n7'log P(x,, -+, x,)} for a finite set X was
proved by L. Breiman [1] [2]. K.L. Chung then extended Breiman’s
result to a countable set X. [3]. In this paper we shall prove that the
convergence with v-probability one of {rn'log f; .} follows from the follow-
ing condition.

(2) S—&Ldu§L,n:1,2,---.

0,n—1

(2) is a stronger condition than (1) since by Jensen’s inequality

logg—f—"'—"—dv = Slog—fi”—du .

0,7n—1 0,n—1

An application to the case of countable X is also discussed.

Received November 28, 1960.
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2. The convergence theorem. As was proved in |6], condition (1)
implies the L,(v) convergence of {log f-., — log f_, _i} ([6] Theorem 1, 4).
The convergence with v-probability one is automatically true ([6] Theorem
3). Applying a theorem (with obvious modification for T not necessarily
ergodic) of Breiman ([1], Theorem 1) the convergence with v-probability
one of {n*log f,.} follows from the condition

(3) [sup log £ ss — log fss|dv < e .
We shall now investigate conditions under which (8) is valid.
Lemma 1. The following inequality is always true.

(4) Ssup logi‘—"—'—"dv < .

kz1 —k.0

Proof. Let v_,, be as in Lemma 1 [6]. Then

U_.k’o << lJ’—k,o << /’Z—k,ﬂ

and

d”—k.oz Soro AVin =f .

v, f—k.—l, dﬂ—k.io) e
Since ¢ is Markovian, v’ , , are consistent for £k =1,2, ---. We shall
prove (4) under the assumption that there is a probability measure »'
on #., which is an extension of v',, for k =1,2, ---. We shall also
prove Lemma 2 under this assumption. If no such v’ exists, the usual
procedure of representing £ into the space of real sequences may be
used and the same conclusion follows (cf. the proof of Theorem 4[6]).

Let m be a nonnegative integer and

E(m) = [sup log §— >m],

—k.0

E(m) = [sup log—fl"l < m, log formn > m].

1=5<k —jo k.0
On E(m) we have

Soro =2

Hence

|, fode=e|  fodp
By (m) By (m)

k

so that
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V[E(m)] = 27"V [E\(m)] .
Therefore
v[E(m)] = 27"V [E(m)] = 27"

and

Ssup logj}” JokAdy < Suv[E(m)] = 22 ™ < oo,

k>1 —k,0 m0

Note that (4) is proved without assuming the integrability of either
Soio

—k,—1

log f_., or log f_, _, or log ~£=k2

LEMMA 2. If there is a number L such that

(5) S-f'—"—*"—dngfork:I,&--
—k,—1
then
(6) Ssuplog f“""’du< o .,
kz1 f»k.—l

Proof. 1t is clear that

Loy = [(Leya

where V' is defined in the proof of Lemma 1.
Since {f_ioffor.-1nk =1,2,---} is a v-martingale, {(f_ro/f, ) k=
1,2, ---} is a V-semi-martingale. Hence (5) implies that

V_ o LV, S(%?"de < oo, <f::jl>

are uniformly v'-integrable and {(f_1.of f-1.-1)% (ool foa 1) ===, (dy_, o/dV')}
is a V'-semi-martingale (Theorem 4.1s, pp. 324[5]).
Hence for any set F' defined by z,, x_;, +++, x_,

o = (g or = ] (5o

so that

Sk < Stk 0 dy < Vs
(D SFf—k 1d’) SFf—k+l) -1 g SF dy @

In fact, we have just proved that
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s o

is a v-semi-martingale. Now let

F(m) = [iglp log ff—"‘——‘-’— > m]

—k,—1

and

Fg(m) = [sup log Soio = m, logi‘k—'0 >m].

1<k —J.-1 —k,—1
On F,(m) we have

Sor1 270

Hence

Srk(mf_k'_li_bo—dﬂ =27 SFk(m) (hﬁ—)zd#

y —
— 2—m f—k.O .
SFk(m) f_k,_ldv

Applying (7), we obtain

V[Fy(m)] < 2—m§ gy,

Frm) dy'
therefore,
| F(m)] < 2—mg gy <o,
F(m) d}J'
Hence

Ssup log -ff—*ﬁidu S S F(m)] = 32 "L < oo,

k=1 —k,—1

Combining Lemmas 1, 2 and noting that

S—Jf’—"i—du = S}[_:l%dv

(cf. Theorem 1, [6]), we obtain the following theorem.
THEOREM 1. If there is a mumber L such that

S—fﬂ—"——dv§Lfor n=12 -+ then

0,n—1
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[sup l10g £-40 — Tog frs 1 [dv < <o

and {n*log f,.} converges with v-probability one.
Extensions of Lemma 1, Lemma 2 and Theorem 1 to K-Markovian
/¢t are immediate.

3. The countable case. Let X be countable with elements denoted
by a. Let v be an arbitrary stationary probability measure on # Let
P(ag @, + =+, a,) = v[X, = a5, €, = @y, +++, &, = a,] .

Let
H = —5, P(a)log P(a) = —Slog P(z,)dy .

Carleson showed that
(8) H, < o

implies the L,(v) convergence of {n7'log P(x,, «,, +++, «,)} [3]. Chung
showed that (8) also implies the convergence with v-probability one of
{n*log P(x,, %1, +++, x,)} [4]. Let z be defined by

p[wm = am merl == a’ly * xn = an—*m] = P(aO)P(a’l) e P(an—m) .

¢ may be called the independent measure obtained from v. Thenv,, <
Un.. With derivative

P(xmr "'7xn)

A T B
and
fm,n —_ P(x'm’ ...’xn) —
(9) log f—m.nﬂ log Pl 7 log P(x,) .

It follows from (9) that
S(logfm —log f,, )dv < §~ log P(z,)dv = H, .

Hence (8) implies that (1) is satisfied, therefore {n='log f,.} converges
in L,(v) by Theorem 5 [6]. Since

log f,.. = log P(x,, -+, %,) + élog P(x,) ,

Carleson’s theorem follows immediately. Furthermore, it follows from
(9) and Lemma 1 that
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Ssup [log @y +-+, 21) + log P(z,)]dy < oo .
kz1 P(x—k’ ctty wo)

Hence (8) implies

P(x_y, «+-, 2_ )
sup lo » 2 gy
Skg? & P(x_y, »+-, 2,) <
and Chung’s theorem [4] follows.

By using a similar approach we shall give a sharpend version of
Carleson’s and Chung’s theorems.

Let

Pla_;, +++, a_y, ay)
Pla_y, +++,a_,)

P(ao!a~l! e,y =

and let
121: _— Z P(a’—l, LN ao)logP(aola_l, ...’a—l)
L =1

= _glOg Pz, |z, -+, T, )dy .

H, is nonnegative but may be + . It is known that

Let
H=I1lmH,.

l—o0

The limit is taken to be + o if all H, are + .

THEOREM 2. If H < o then {n=*log P(x,, *-+, ®,)} converges both in
Ly(v) and with v-probability one.

Proof. There is an I such that H, < «. We define an [-Markovian
measure ¢ on . as follows.

ﬂ[xm = Qgy g = Aqy o, T = an—m] = P(a'l)’ ey an——m)
fn—mc<l,
.u[xm = gy ppt1 = Agy ** 2, &, = an—m]
= P(am Sty al)P(a’H-l l Ay o0, a’l) e P(a’n~m { Apy—yy **°*, an—m—l)

if n—m >1. It is easy to check that g is well defined and v, , € fn....
It is clear that, if n —m > 1,

log fmn — log P(xma ) wn)

— log P(x, | ®p—gs * =, 2,,) .
fm,n—l 1_—,(967’””.’937'_1 2 ( | 14 X 1)
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The rest of the proof goes in the same manner as for the case H, < «
since Theorem 5 [6] and Lemma 1 of this paper remain true for (-
Markovian pe.
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AN IMBEDDING SPACE FOR SCHWARTZ
DISTRIBUTIONS

DoNALD E. MYERS

1. Introduction. We consider here a facet of the problem of justi-
fying the methods of the operational calculus and in particular the use
of the ‘‘Dirac Delta Function”’. L. Schwartz’s ‘‘Theorie des Distribu-
tions’’ [6] is the most complete exposition to date on generalized fune-
tions but the operational calculus as such is largely omitted. B. Van
Der Pol [8] discusses the latter but not in the context of distributions.
Ketchum and Aboudi [4] suggested using unilateral Laplace Transforms
to construct a link between Schwartz’s theory and the operational caleulus.
This paper will enlarge on the latter suggestion. Two principal results
are obtained. An imbedding space is constructed and a comparison be-
tween the topologies is made.

Let S denote the strip g, < R(z) < 0, in the complex plane. Con-
sider the one parameter family of functions {e*’}, where the parameter
2z ranges over S and —oo <t < o. This family is not a linear space
but each member possesses derivatives of all orders. In a manner analo-
gous to Schwartz we define an Lg-Distribution to be an analytic complex-
valued functional on the above family of functions, where by analytic
we mean with respect to the parameter z. If a is any complex scalar
and F, o are two such functionals then we require that F'.e* £ g.¢* —
(F + 0)-0, and (aF')-¢* = F'-(ae**). The latter property then allows
us to define the derivative in a manner similar to that of Schwartz,
that is F'-e* = F.(¢®) = F.ze®* = zF-.¢*. 1t also follows that the
Laplace Transform supplies an integral representation of some of the
functionals. The other Lg-Distributions define generalized functions for
similar integral representations. That is, each function analytic for z € S
has for its values, the values of an Lg-Distribution acting on a function
e®® and the Ls-Distribution has an integral representation utilizing the
symbolic inverse Laplace Transform of the analytic function. In most
of this paper we deal only with analytic functions whose inverse trans-
forms exist but the definitions and theorems will be stated without this
restriction where possible. Following a practice used by other authors,
we will call the inverse Laplace Transform, symbolic or not, an Lis-
Distribution rather than the functional. Because of the relation between
the functional and an analytic function we concentrate on the latter and
utilize the already known properties of such functions. By emphasizing
the integral representations rather than the functionals we utilize the

Received January 3, 1961. Based on the author’s thesis at the University of Illinois,
1960 (unpublished).
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Riesz Representation Theorem for continuous linear functionals to es-
tablish a correspondence to Schwartz Distributions.

As stated above each functional has a representation by an analytic
functions, using this we will define convergence in a fashion similar to
that of Schwartz. That is, a sequence of Lg-Distributions will converge
if the sequence of values, when operating on an arbitrary member of
the one-parameter, converges. Because of the parameterization this
definition can be stated directly in terms of the representations by the
analytic functions.

2. Ls-Distributions.

DEFINITION 1. If an Lg-Distribution is determined by an analytic
function f(z), then f(2) is its bilateral Laplace Transform. Denote this
Ls-Distribution by [f(2)]. or f,.. Further, abbreviate Lg-Distribution by
Ls'D.

DEFINITION 2. The derivative of an L¢D, [f(2)]. = f, is the Ls-D,
[2f()]. = f,. For a fixed S, the set of all L¢-D’s is metrized by a
Frechet type metric on the transforms. See [7], page 137. For a pair
of functions f(z), g(2) analytic in S, denote the metric by Ny(f,g). The
following property of this metric could have been used a definition since
it is the only property used in this paper.

THEOREM 3. A sequence of functions, all analytic in S, converges

with respect to the metric N 1if and only if the sequence converges
uniformly on every compact subset of S.

DEFINITION 4. p(f:, 9,) = Ns(f, g9) where f,, g, are the Ly-D’s whose
transforms are f(z), g(z) respectively.

DEFINITION 5. If f(2), analytic in S, is the bilateral Laplace Trans-
form of a point-function F'(t), then F'(t) is called a Point-Function Ls-D
or P.F.Ls-D.

THEOREM 6. If Fi(t),7=0,1,2,8, --- all possess bilateral Laplacs
Transforms analytic in a strip S, 0, < R(z) < 0,, and

Sm | e Fy(t) Pdt < o ,
0
So | e~ Fi(t) Pdt < oo

Sfor all <, then let
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oo 1/2
AF, F) = [|Tet | R — Fio 2 e
0 1/2
n [S_ o2t | F(t) — Fy(t) |° dt] .
If d(F,, F}) — 0 as ¢ — o then
F(t) — Fi(t) as P.F.Ly-D’s.
Proof. Write the transform of F(f) — Fi(t) as
el F(®) — Fitldt
+ S“e—“m)eam‘[m(t) — Fy0))dt .
0
By the Cauchy-Schwartz Inequality

1742) — £2)|
1 g | F(E) — e qp |
= [ g ) 1O — R ]

g, — R(z)]
+[_2_[_R(ﬁ Sme‘ | Fit) — Fiyt)|* dt]m .
It
o(e) = max [‘/2(R(z)1 — ) 1/2(02 - R(z))J
then

[ fi(®) | = 9(x)g9(F;, FY)

and hence f,(z) — fi(2) uniformly on each compact subset in Sif d(F,, F,) —
0 as i — oo,

An interpretation of Theorem 6 might be that if {e "'*F(¢)} converges
in L0, o] to e *F(t) and {e "*F(t)} converges in L,[c, 0] to e "2F,(t)
and each F(t) has a bilateral Laplace Transform then the sequence of
P.F.LD’s converges with respect to the metric pos.

THEOREM 7. Let fi(2),7 =0,1,2,8, --- be an infinite sequence of
Sunctions analytic in a strip S, 0, < R(z) < 0, and further suppose
there exists a C such that | fi(z)| < Ce ™I®1 for some 7, > 0, in all of
S. If Ng(f;, f)—0 as 7— o then F,;(t)— Ft) uniformly on every
bounded interval in the t-line. F;(t) denotes the inverse bilateral Laplace
Transform of f;(z).

Proof. The hypothesis is sufficient to ensure the existence of the
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inverse transform of each f;(2),[2]. That is,
Fit) = |” e filw + iv)ldy
foro, <z < o,.

Then
B0 = F) | = || el + ) — e + i)y,
T |J—e
+ || enlfie + i) — fite + Wy |
Tll-p
+ eu‘Swenqjxx-%iy)-—fxx—+iyﬂdyf-
2w e

2e*C'e~m®
k3

0

and J such that [ ] Ny(fi, o) < €/2 for j > J, then

For ¢ > 0, and a < ¢ < b, let p be such that < ¢/2 and J such

| Fi(t) — Fyt)]| < eforj > and
a<t<b.

THEOREM 7.1. If in Theorem 7, o, < 0 < 0, then Fy(t) — F,(t) uni-
formly for —oo <t < oo,

DEFINITION 8. For each Lg-D, f;, define f,., to be [e*f(z)],.

THEOREM 9. If f, is an arbitrary Ls-D then

(ﬂwlﬁ,ﬂ>a0%h~0.
Proof. By definition
fi =212l
Sin = [€"£(2)],
so that
fuszdi_ g

[ CEFCELC)

t
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and since
hz® | k%
+

or Tgr T

uniformly on each compact set in S as & — 0, the theorem is proved.

DErFINITION 10. An L¢-D f, is said to have point-values F(t) for
¢ <t < d if there exists a g(¢) such that for some £k, f(2) = 2%9(2), g(2)
being the bilateral Laplace Transform of () and finally that ¢®(t) =
F@t) for (¢ <t <d).
For example [1], has zero-point values in every open interval, in
the t-line, that does not contain the point £ = 0. Since
1, £t > 0 has for

Ht) =
®) 0,t>0

its transform 1/z and [1], = [z%]t finally H'(t) = 0 for all t 0. [1], is

the “Dirac Delta Function’’.

THEOREM 11. If {.f.} s a sequence of Lg-D’s converging to an Lg-D
of: then {,f*} converges to f/® for all kK =0,1,2, +--

Proof. By definition {,f,} converges to
oft Smax |, f(2) —  f(2)| -0
2EK

as n— oo for all compact K S. Since in the complex plane, a set is
compact < if it is closed and bounded, there exists an M, for each
K|z| < My for z¢ck.

Then max |, f(z) — . f(2)| = 0=

| Mg ¥|,f(z) —f()] >0 as n-— o for each fixed

positive integer k apply Definition 2.

ExaMPLE. The following will be used as a counter-example in the
last section. Consider the Taylor-expansion for

R T A RN Gt 3 AR
et =lozd g gt H i

[e7*]; is the ‘‘Delta Dirac Function’’ translated so that Lg-D has zero
point-values for all ¢ except for

=1 [(~1E) = E e =y
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The latter L-D has zero point-values for all ¢ = 0. Since the Taylor
Series converges for all z and hence uniformly for compact sets the
series of Lg-D’s converges

3. General L;-Distribution. The set of all Lg-D’s for any fixed
S does not contain a subset isomorphic with the set point-functions having
pointvalues a.e. For example, the function F(t) =1 does not have a
transform even though it is continuous for — o <t < «. However
each member of the sequence of functions

Fit) =1, (1=t =)
1 =0, 0,1,2,38,4, --.)

does possess a transform. Further for each open interval (c,d) only a
finite number of the elements of the sequence have different point-values
than F(¢) in (¢, d). The sequence represents F(t).

DerFINITION 12. A sequence {,f,} of LsD’s is called Fundamental
if for each open interval (¢, d) there exists an integer N such that for
n>N,f, — ,of2=0,1,2,8, --+ is an Lg¢D with zero point-values in
(¢, d). Fundamental sequence of Lg-D in abbreviated by F.S.S.

DeriniTION 18. Two F.S.S.’s, {,9.} and {,f:} are said to be Similar
if for each open interval (¢, d) there exists an integer N such that for
n > N,g, — .f, is an Lg-D with zero pointvalues in (¢, d).

LEMMA 14. The Similarity defined tn Definition 13 for pairs of
F.S.S.’s is an Equivalence relation and is imvariant under addttion

and differentiation.

THEOREM 15. The equivalence classes under the Similarity relation
are called G.Lg-D’s or General Lg-D’s. They form an Abelian group,
closed with respect to scalar multiplication and differentiation.

The Representation Theorem.

THEOREM 16. Let A denote the entire complex plane, then thewre is
o subset, D, of the set of all G. L,D’s that s isomorphic with the
set of all Schwartz Distributions. The isomorphism is invariant with
respect to addition, scalar multiplication and differentiation.

(a) By definition, a Schwartz Distribution is a linear functional on
the space of infinity differentiable point-functions with compact supports
and is continuous when restricted to the set. Each Schwartz Distribu-
tion has an integral respresentation when restricted to a bounded closed
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interval, [3]. This representation has the form
b (r
D) = (~1y| Fep*at

where F'(t) is continuous on |a, b] and 7 is an integer dependent on [a, bl
and the distribution D,. ¢(t) is any function with support the closed
interval la, b). Let [a,, b,] be a sequence of intervals where — o —
0pn=a,=b,<b,,—> o as n—> o, For each n there is an F,(¢) and
an r,. Let

G.(t) = (—1)F,(t), (@, =t <0,
:0; (t>bnrt<an)-
Then let
23
fi(z) = S o<tz (t)di |

It remains to be shown that the sequence {,f,} is an F.S.S. and that
the equivalence class is independent of the sequence of covering intervals.
The G.Lg-D determined is the representative of D,.

(b) Let I be an arbitrary open interval in the ¢-line, denoted (¢, d).
There exists an N then such that for n > Nf{a,, b,] D (¢, d). Let F.(2),
F, . (), T4, r.rp, be the continuous functions and integers given for the
representation of the distribution D, on the intervals [a,, b,] and [a,.,,
b,.,] respectively. Using Halperin’s notation, let S{a,, b,] denote the
class of testing functions associated with the interval [a,, b,] that is, if
¢ e Sla,, b,] then ¢*'(t) is zero for t ¢ |a,, b,], and ¢*'(t) exists for all

te [a’n! bn] for k = Oy 1: 27 3r ---. It is seen that S[a/n! bn] c S[a/nﬁ D bn**P]‘
It ¢cSla,, b, C S[an.,, b,.,] then

D) = (=1 "F.@0)p (0)dt

= ( — ]_)Tn+pg ' ‘LpFn+p(t)¢(Tn +p) (t)dt

an+p
or
by
S [F(8)p"7(8) — (—1)mrr7aF,  (t)p "+ (t)]dt = 0
since
d*(t) = 0 for t¢|a,, b,].
Let

T. F(t) = S” F(0)da
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T F,(t)=T-[T-F,(@1)].

Then if r,., = 7,
bn
0= S [(—1)mtornTreirra o F(E)$(E) 40 — F,, (£)pTr+0(8)]dt .

It follows then that
(_]_)Tn+p“7'nTTn+p—7'n . Fn(t) — Fn+p(t)

is a polynomial @Q,(¢) of degree m =< 7,,, — 1 for a, <t =<b,. Similar
results are obtained if », = », + p.

enf@) = 1@ = |G,

%n+p

— Sbne“”z’"Gn(t)dt .

Using @Q.(t) we have

a

winf@) = oS = |7 oG, Bt

In+p

+ ane‘z‘z” Q) (H)di

n

+ g:wpe‘”z”"rPGMp(t)dt .

The first integral can be considered as the transform of the r,.,th
derivative of a function with zero point-values exterior to the interwval
{@,:p @,] and hence interior to the interval (¢, d). The second integral
can be considered as the transform of the #,,,th derivative of a poly-
normial of degree less than or equal to r»,,, — 1. Hence the Lg-D
determined has zero pointvalues on the interior and exterior of the inter-
val [a,, b,] and hence on the interior of (¢, d). This L¢-D may not have
zero point-values at ¢t =a, or ¢ = b,. Finally then the third integral
considered as a transform determines an Lg — D with zero pointvalues
exterior to the interval [b,,b,.,] and hence on the interior of (c, d).
ninft — oft 18 an Lg-D with zero pointvalues on the interior of (¢, d),
if m > N. The sequence constructed in part (a) is an F.S.S.

(¢) Suppose |a,, b,] and [c,, d,] are two expanding sequence of closed
intervals covering the real line. Let {,f,} and {.9.} be the F.S.S.’s
obtained from the consturuction of part (a) using the former sequences.
Let I be an arbitrary open interval in the ¢-line. Then there exists
integers N}, N/ such ,.,f, —.f: for n < N; and ,.,9, — ,9, for n < N}
Lg-D’s with zero point-values for ¢ € I. Further there exists an integer
Ms]a,, b,] C[Cy, dy] for n = M and N = N;. Consider
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'nf,f — 20 = nft —'Kft + Kft —th + th — 20

where K is the largest of N}, N}, M. For m > K then the first differ-
ence on the right is an Lg-D with zero point-values for ¢e] since
{»fi} is an F.S.A. The second difference can be shown to be an LD
with zero point-values for ¢ € I by the method of part (b). Finally the
third difference is an Ls-D with zero point-values for ¢eI since {.g.}
is F.8.A. The two F.S.A.’s are similar and hence determine the same
G.L,.-D. The correspondence between the Schwartz Distribution and
the G.L,.-D. is one-to-one. The invariance of this isomorphism with
respect to addition, differentiation and scalar multiplication follows from
Lemma 14.

4. A Topology for G.L-D’s

DEFINITION 16. An F.S.S. {,f} is said to have point-values F(t)
for te(c, d), an open interval, if there exist an integer N, such that
for n > N, ,f, is an L¢D possessing pointvalues F(¢) for te(c,d). A
G.Ls-D is said to have pointvalues F(f) for t < (¢, d) if there is an F.S.S.
unit equivalence class possessing that property.

DerFINITION 17. Let {,f.},, *++, {..fi};y +++ be a sequence of F.S.S.’s.
Denote the nth element of the jth F.S.S. by (,f.);,» Then sequence is
said to converge to the sequence of Lgs-D’s {,f.},, if for &> 0 there
exist integers N, J. such that o [(,f); (»f.)e] <& when n > N, j> J.

DEFINITION 18. Let D,, D,, --- be a sequence of G.Ls-D’s. Further
suppose L,, L,, -+ is a sequence of F.S.S.’s each having support [a, b]
and that for each 7 = 1,2, --+ L; represents D; is (@, b). That is, for
some F.S.S. in D;, the difference of L; and the F.S.S. has zero point-
values in (a, b). Then if L, L,, --+ is convergent in the sense of Defi-
nition 17, D,, D,, -+ is said to converge to D, where D, is the G.L¢-D.
determined by L,.

THEOREM 19. If a sequence of Schwartz Distributions is convergent
n an open interval (a, b) in Schwartz’s sense then the sequence of G.L-D’s
isomorphic to the respective Schwartz Distributions is convergent in
the interior of every closed interval contained in (a,b).

Proof. Let D,, D, --- be a sequence of Schwartz Distributions con-
vergent in Schwartz’s sense in (a, ). For any closed interval [c, d] con-
tained in (a, b) there exists a sequence of representation

D#) = (— 1| Futypteyat
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for ¢ e Sl¢, d]. Since the sequence D, D,, --. is convergent there exists
one integer 7, which can be used in all the representations and also the

limit representation.
For each j, construct the F.S.A. {, f.}; where {,f.}; = (f,),; and

() = [[e=Gyt)at |

where

Gi(t) = (—1)<Ft), cst<d
=0, otherwise .

Since the sequence of Distributions is convergent
lim T Fy(t) = Fyt) [uniformly [¢, d]]j — oo
K= ; S:zfce~zt[Trch(t) - Go(t)]dt{
Sld —cle ™ [TTGi(t) — Got) [ dr] .
It follows that

K =[(f); — (f()| = Me
forj > J, M= |d —cle 1|0, .

Then (f(2)); = (f(2)), uniformly on every compact set in the strip g, <
R(z) < 0, and hence in the metric p;. By definition then (f,); — (/)
and hence

{ufidy oo+, {ufi}sy -+ converges to {,f}, in the interior of (¢, d). The
sequence of G. Lg-D’s converges for t < (c, d).

The example given earlier for a series representation of “Delta’”’
Distribution with a discontinuous at ¢ = 1 converges in the sense defined
herein but not in Schwartz’s sense. The LgD [e7*], and its series
representation furnish a solution to the differential equation

flo =1 = @) + @) + LE 4 7@

BIBLIOGRAPHY

1 s, Bochner, Lectures on Fourier Integrals, Princeton University Press, Princeton, 1956.
2. G. Doetsch, Theorie und Andwending der Laplace Transformation, Juluis Springer,
Berlin, 1937.

3. 1. Halperin, Introduction to the Theory of Distributions, University of Toronto Press,
Toronto, Canada, 1952.

4. P. Ketchum, and R. Abondi, Schwartz Distributions, Proceedings of the Second Midwest
Symposium on Circuit Theory, Michigan State University, 1956.

5. D. Myers, An Imbedding Space for Schwartz Distributions, Thesis University of Illinois,



AN IMBEDDING SPACE FOR SCHWARTZ DISTRIBUTIONS 1477

1960.

6. L. Schwartz, Theorie des Distributions, I et II, Herman et Cie, Paris, 1950-1951.

7. W. Thron, Introduction to the Theory of Functions of a Complex Variable, John Wiley,
New York, 1953.

8. B. Van Der Pol, Operational Calculus, Cambridge University Press, 1950.






CATEGORY METHODS IN RECURSION THEORY**

J. MYHILL

The heavy symbolism used in the theory of recursive functions has
perhaps succeeded in alienating some mathematicians from this field, and
also in making mathematicians who are in this field too embroiled in
the details of thier notation to form as clear an overall picture of their
work as is desirable.®* In particular the study of degrees of recursive
unsolvability by Kleene, Post, and their successors® has suffered greatly
from this defect, so that there is considerable uncertainty even in the
minds of those whose speciality is recursion theory as to what is super-
ficial and what is deep in this area.® In this note we shall examine
one particular theorem (namely the Kleene-Post theorem asserting the
existence of incomparable degrees®) and show that it is a special case
of a very easy and well-known theorem of set-theory. Exposition will
be such as to require (except in a few footnotes) no preliminary ac-
quaintance with recursive matters. It is to be hoped that some mathe-
maticians in other areas may be stimulated by this exposition to try their
hand at some open questions about recursive functions: it is to be hoped
also that they will not carry away the impression that all of recursion
theory is as trivial as this paper will show the Kleene-Post theorem to be.

First let me describe in an informal way what relative recursiveness
is. The only properties of it which we shall need will be apparent from
this informal discussion.

Denote by ¢ the set of all nonnegative integers. A jfunction shall
mean a number-theoretic function f: e -—¢. A function is called recursive
if it can be computed in an effective (mechanical) manner: we shall
not need the details of the definition.” Sometimes two functions f and
g are so related that the function f can be calculated In an effective

Received December 27, 1960.

t Composition of this paper was supported by NSF grant G-7277.

2 Category methods have also been used by the author in [12], and form the basis of
the entire treatment of degrees in [3].

3 A related (but much deeper) contribution to the methodology of recursion theory bas
made by Addison, e.g., in [1].

¢+ See, e.g., [7], [14], [15], [19]. A sadly neglected paper in the same area which
completely avoids these unnecessary complications is Lacombe [10].

5 The principal result of Spector [19] (minimal non-recursive degrees) is probably
‘deep’ in this sense, as is likewise the Friedberg-Mulnik proof ([4], [11]) of the existence
of incomparable degrees of recursively enumerable sets.

6 Strictly speaking, the Kleene-Post theorem ([7], p. 390) gives more information than
our version, since it gives incomparable degrees <0’. But this result too can be obtained
by a category argument, as I shall show in a later publication.

7 Cf., e.g., Davis [2], p. 41.
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(mechanical) way apart from requiring, for the computation of each
particular funection-value f(n,), a finite amount of information concerning
values of the function g: in this case we say that f is recursive in or
relative to g. The simplest way to envisage this relation is probably in
terms of Turing machines.® We say that f is recursive in ¢ if there
exists a Turing machine with input and output tapes such that if the
values g(0), g(1), g(2), ... are fed in that order into the input, then for
every nonnegative integer % the unique true statement of the form
f(n) = m will appear after a finite time on the output tape (and no
false statement of that form will ever appear). Another characterization
which may also aid the intuition is the following: f is recursive in g if
there is a formal system® X such that every true statement of the form
fn) = m, and no false statement of that form, is deducible in ¥ from
a finite number of true statements of the form g(x) =y. The exact
definitions of Turing machine and formal system are quite irrelevant
for our purposes: all that matters is that

(1) only finitely many values of g are used to compute any value
of f and

(2) the total number of Turing machines or formal systems
is countable.

In both cases (2) is a consequence of the fact that the process of
computation of one function from another can be described by a finite
description using only symbols belonging to a finite alphabet fixed in
advance; the same will be true if we characterize relative recursive-
ness in some way other than by Turing machines or formal systems.'

To every Turing machine or formal system corresponds uniquely a
mapping @ from functions to functions, called a partial recursive oper-
ator. It is important to notice that certain such @ may not be defined
for all functions as arguments. It may well be that a certain Turing
machine 7, on being supplied with the values of a certain function g,
will print statements of the form f(m) = n on its tape only for certain
m. In that case we say that T computes only a partial function from
g. We regard the operator @ as defined on the family of all those g¢
from which 7' computes a full (everywhere defined) function. For
example, suppose we consider the mapping which assigns to every function
f the function < @f > such that

<Of > (v) = (1) (fly) = 0);"

8 Davis [2], Ch. 1-2.

9 For ‘formal system’ see Davis [2], Ch.6 and 8, Smullyan [17] passim. The first
use of formal systems to define partial reqursive functionals seems to date from Myhill-
Shepherdson [13], p. 315, where we followed a suggestion of Marian Boykan (now Pour-El).

10 E.g., by systems of recursion equations (Kleene [5], pp. 326-327).

1 (py) (...y...) denotes the least y satisfying the condition ...y... if such exist,
and otherwise is meaningless.
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then @ is a partial recursive operator whose domain of definition is the
family of all functions which vanish for at least one value of the argu-
ment (and whose range is the family of all constant functions).

We denote by .7~ the family of all functions, and we topologize it
as the product of countably many replicas of the integers each with
the discrete topology. This corresponds to the metric

1
(px)(f(x) #+ g(®)) + 1

or 0 if f=g¢. It is well-known' that this is a complete metric space,
hence of second category on itself. This is the basic fact that we shall
use in what follows.

By a finite function we mean a mapping of a finite subset of ¢ into
¢; if f, is such a function, we define, _#7(f,) as the family of all (full)
functions which extend f,. We can take as a (countable) basis for .7~
the collection of all families " (fy). @: 9> 7 with F< 7 is con-
tinuous (in the induced topology on & )* just in case

fe F<Of> @) =y—>@f)(fe (/) and (vf')
(f'e 4 (), [fle 7= <0f" > @ =y),

o(f, 9) =

i.e., if and only if any value < @f > is determined by finitely many
values of f. In view of what was said above it follows that all partial
recursive operators are continuous™ (on their domain). For use later on
we observe also that the domain of definition of such an operator is a
Gd set; this too is an immediate consequence of the preceding informal
remarks.

We write f < g if f is recursive in g,f < g if f < g butnotg < f.
The relation f < ¢ is a pre-order; hence its symmetrization f=g¢ (i.e.,
f<gand g <f)is an equivalence relation. The equivalence classes
into which it divides .7  are called degrees; we call one degree <7 lower
than another degree Z* and write @ < o™* if f < g for all (equiva-
lently, for some) fe &, ge Z*.

Now we can prove the existence of incomparable degrees. Observe
first the there are exactly ¢ degrees, since there are ¢ functions and at

iz Sjerpinski [16], p. 191.

13 A partial recursive operator defined on a dense subset of -7~ need not have a continuous
extension to the whole space (Kleene [5], p. 685); and even when it does this extension
need not be partial recursive (Lacombe [10], p. 155, Theorem XIX). Hence it will not
suffice for our purposes to consider only everywhere defined operators.

14 This observation is essentially Kleene’s (cf. the proofs of Theorems XXIa and XX VI
in [5], pp. 339, 348-349); that the property in question amounted to continuity was observed
apparently independently by Lacombe (in a series of papers in Comptes Rendus going back
at least to 1953) and later by Trahtenbrot [20]. Davis ([2], pp. 164 seqq.) oddly uses the
word ‘compact’ to mean ‘continuous’.
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most (in fact, exactly, but we shall not need this) W, functions belong-
ing to any given degree. Observe also that there are at most |, degrees
lower than a given degree. For let < * be a degree; then if f belongs
to a degree lower than <»* it must be of the form < @g > where
ge * and @ is partial recursive. But there are only countably many
g’s in &* and only countably many @’s; hence there are only countably
many functions of degree < <»* and a fortiori only countably many
degrees < =r*.® This gives a plausibility argument for the existence
of incomparable degrees, for if every two degrees were comparable we
would have a simply ordered set of the power of the continuum in which
each element had only a (finite or) countable number of predecessors;
and this is easily seen® to imply the continuum hypothesis.

The continuum hypothesis is equivalent’ to the assertion that the plane
is the union of countable many curves (where a curve is the set of all
points (z, f(x)) or of all points (f(x), x) for some (not necessarily every-
where defined) real function f). We know also that the plane is not
the union of countably many continuous curves,” since each such curve
1s nowhere dense and the plane is of second category on itself. These
considerations yield at once the existence of incomparable degrees. If
every two degrees were comparable the space .72 would be the umion
of all curves {(f, < @f >)} and {(< @f >, f)} with @ partial recursive.
But this is impossible because as we have seen each of these curves is
continuous and hence by a classical argument nowhere dense,”® and
because .77?% like &, is a complete metric space and hence of second
category on itself, q.e.d.

Now we use the same method to establish a stronger statement
which answers a question rather recently raised (and still more recently
settled) by Shoenfield.® Do there exist uncountably many degrees any
two of which are incomparable? We shall obtain an affirmative answer
to this question using only the hypotheses that & is a complete metric
space and hence of second category on itself, and that there are only
countably many partial recursive operators each of which is continuous

15 For the lowest degree (that to which recursive functions belong) there are of course
no degrees lower. There are also degrees than which only a finite nonzero number of
degrees are lower (Spector [19], Theorem 4).

16 Sjerpinski [16], p. 23.

17 Sierpinski [16], p. 11.

18 Nor of countably many measurable curves (i.e., Lebesgue measurable in the plane);
this is the foundation of Spector’s proof in [18] of the existence of incomparable hyper-
degrees. (Measure arguments have to replace category arguments in the study of hyper-
degrees because hyperarithmetic operators are in general discontinuous.)

19 The only hypothesis needed is that < is a Hausdorff space with no isolated points.

20 Raised in [15], settled in [14]. More recently Sacks has obtained (unpublished) a
continuum number of pairwise incomparable degrees and Lacombe and Nerode (unpublished)

have obtained a continuum number of independent (and minimal non-recursive) degrees
(see [7], p. 383 for the definition of independence).
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in the topology induced on its domain.

Given any basic open set _#"(f;) and any partial recursive operator
@, it may or may not be the case that < @f > has the same value for
all fe _+°(f,) for which it is defined. If this happens for some _s(f))
we call < @f > a singular function; in symbols

g singular — (3,) (32) (@ partial recursive and
(VFe 47(f)) (< Of > defined > < Of > = g)) .

A funection which is not singular we call regular. Clearly there are ¢
regular and at most ¥, singular functions.”

We wish to exhibit an uncountable collection of pairwise incomparable
degrees, or, what comes to the same thing, an uncountable family of
functions none of which is recursive in any other. We prove this by
establishing successively the following propositions.

A. If fis regular and @ partial recursive, then @ '(f) is nowhere
dense.

B. If f is regular, then the family of all functions of degree =
the degree of f is of first category.

C. If f is regular, then the family of all functions of degree
comparable with the degree of f is of first category.

D. If & is a (finite or) countable family of regular functions, then
the family of all functions which are either singular or of degree compa-
rable with that of some function belonging to # is of first category.

E. If & is a (finite or) countable family of regular functions,
there exists a regular function of degree incomparable with the degree
of every function in &7

F. There exists an uncountable family of pairwise incomparable
degrees.

Clearly A-B—->C—>D—->E—F, so we have only to prove A. Let
then f be regular, s~ a basic open set, @ a partial recursive operator.
We seek a subneighborhood _#; of _#~ such that for all ge _y; @g is
undefined or #=f. If < @g > is undefined for all g€ #] take _s;7= _+-
If on the other hand < @g > is defined for some ge._#, then there
exists (since f is vegular) such a g for which < @g > +# f. Let # be

2t The singular functions are precisely the functions f for which the relation flx) =y

is hyperarithmetic (see Davis [2], p. 192 for the definition of hyperarithmetic). The proof
is essentially contained in [8].
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the domain of @. Then {g| < @9 > # f} = 47N F for some open
A, Consequently we can take _#7= 4 N 47 and @7(f) is nowhere
dense, q.e.d.

It must be stressed that some existence thorems in the literature
of degrees apparently cannot be reduced to category arguments, at least
not in the topology which we used.” Also Shoenfield’s proof of the
existence of Y}; pairwise incomparable degrees is essentially different
from the above, and yields the further information that given any
countable family of non-recursive functions (i.e., not of the lowest
degree, not effectively calculable) there 1s a function of degree incompara-
ble with all of them. We only obtain the statement (E above) reading
‘regular’ for ‘non-recursive’; and this is weaker as we have seen. If
possible we seek a category argument which will yield this stronger
vesult. However we cannot do this without more structure on & . For
we can exhibit a countable family of continuous operators

0. F > T
with the following four properties:
I. They are closed under compositionwhenever possible.
II. They contain the identity.

III. The domain of each is a G8.

IV. There exists a minimum in the induced ordering f<g¢g

such that it is false that given any countable family of functions none of
which is minimal in the sense of IV, then there is a functions incompa-
rable with them all.

The following additional assumption however, which is true for
partial recursive operators, yields enough additional structure for us to
obtain Shoenfield’s result by essentially his method.

V. If the domain of @ is dense on an open set, its intersection
with that set contains a minimal (i.e., recursive) point.

It is obviously enough (in view of the earlier part of this paper) to
prove that @*(f) is nowhere dense for each non-recursive f. For this,
consider such an f and let _#~ be a basic open set and @ a partial
recursive operator. We seek again a subneighborhood .+ of _s~ disjoint
from @-*(f). If the domain & of @ is not dense on _4/; this is trivial;

22 Spector’s proof in [19] of the existence of minimal non-recursive degrees has been

made into a category argument by Lacombe (unpublished); but the topology used is highly
artificial.
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so assume it is dense. By V, its intersection with _#" contains a re-
cursive point 9. If < @9 > =f, f would be recursive, contradicting
the hypothesis. Hence < @g > = f and as alove we can take 4=
A7 N 4~ where _#7{is an open set such that {g| < @9 > # f} =1 N .F
q.e.d.

The proof of V however seems to require essential use of (non-topo-
logical) properties of recursive functions as distinguished from operators,
specifically their closure under a certain iterative procedure. We conclude
that Shoenfield’s result (and a fortiori the results of Sacks and Nerode
mentioned in footnote 20) probably do not, like some of the other theo-
rems on degrees mentioned in this note, rest solely on elementary set-
theoretic considerations. However, the distinction between those which
do and those which do not require more advanced and specialized means
(i.e., between those which are truly °‘recursive’ and those which are
merely set-theoretic) seems worth making, if only because it throws
some light on aspects of the methodology of the whole domain which

the present treatment in the literature leaves almost completely in the
dark.

REFERENCES

1. John Addison, Separation principles in the hierarchies of classical and effective de-
scriptive set-theory, Fund. Math., 46 (1959), 123-135.

2. Martin Davis, Computability and unsolvability, New York, McGraw, Hill, 1958, xxv +
210 pp.

3. Jacob Dekker and John Myhill, Recursion theory, to be published by North Holland.
4. Richard Friedberg, Two recursively enumerable sets of incomparable degrees of unsol-
vability, Proc. Nat. Acad. Sci. U.S.A., 43 (1957), 236-238.

5. Stephen Kleene, Introduction to metamathematics, New York, Van Nostrand, 1952, x +
550 pp.

6. Stephen Kleene, Recursive functions and intuitionistic mathematics, Proc. Int. Cong.
Math. (Cambridge, Mass., U.S.A.) 1 (1952), 679-685.

7. Stephen Kleene and Emil Post, The upper semi-lattice of degrees of recursive unsol-
vability, Ann. of Math., ser. 2, 59 (1954), 379-407.

8. A. V. Kuznecov and B. A. Trahtenbrot Investigation of partial recursive oparators by
means of the otheoryf Baire space, Proc. Acad. Sci. USSR, 105 (1955), 897-900.

9. Daniel Lacombe, Sur le semi-réseau constituté par les degrés d’indecidabilité récurstve,
C. R., 239 (1954), 1108-1109.

10. , Quelques procédés de définition en topologie récursive, in Comstructivity n
Mathematics, Amsterdam, North Holland, (1958), 129-158.

11. A. A. Muénik, Negative anser to the problem of reducibility of the theory of algorithms,
Proc. Acad. Sci. USSR, 18 (1956), 194-197.

12. John Myhill, Note on degrees of partial functions, Proc. Amer. Math. Soc., 12 (1961),
519-521.

13. John Myhill and John Shepherdson, Effective operations on partial recursive functions,
Zeit. fir Math. Logik u. Grund. der Math., 1 (1955), 310-317.

14, Joseph Shoenfield An uncountable set of incomparable degrees, Proc. Amer. Math. Soc.,
11 (1960), 61-62.

15. , On degrees of unsolvability, Ann. of Math., ser. 2, 69 (1959), 644-653.




1486 J. MYHILL

16. Waclaw Sierpinski, Hypothese du continu, New York, Chelsea, 1956, xvii + 274 pp.

17. Raymond Smullyan, Theory of formal systems, Annals of Mathematics Studies, No. 47.
18. Clifford Spector, Measure-theoretic construction of incomparable hyperdegrees, J. Symb.
Log., 23 (1958), 280-288.

19. Clifford Spector, On degrees of recursive unsolvability, Ann. of Math., 64 (1956), 580-
592,

20. B. A. Trahtenbrot, Matrixz representation of recursive operators, Proc. Acad. Sci. USSR,
101 (1955), 417-420.



ON EXTREMAL PROPERTIES FOR ANNULAR
RADIAL AND CIRCULAR SLIT MAPPINGS
OF BORDERED RIEMANN SURFACES

Paur A. NICKEL

Introduction. There exist functions which map a planar Riemann
surface W of arbitrary conectivity conformally onto plane slit regions.
Functionals I, extremized in the class of all conformal mappings of W
by only one slit mapping, are known. Such functionals can be repre-
sented as limits of functionals I,, where each I, is itself extremized by
a horizontal or vertical-slit mapping with domain of finite connectivity.

A planar bordered Riemann surface of finite connectivity can be
mapped conformally onto a radial or circular-slit annulus with inner and
outer boundaries corresponding to any two contours of the surface. In
this investigation, extremal properties of such mappings are obtained
and extended to surfaces of infinite connectivity. The geometric nature
of the extended mappings, called principal analytic functions, is then
deduced from the extended extremal properties. In addition, certain
combinations of principal analytic functions are investigated from both
extremal and geometric points of view.

First, we consider a planar bordered oriented Riemann surface W,
of infinite connectivity. It is assumed that W has two compact border
components, 8 and 7, such that no point of & U v is a limit point of
points of any other boundary components. Such contours are called isolated.
W is “approximated’”’ by a sequence of compact bordered Riemann
surfaces {W,}, where each W, is of finite connectivity. On W,, an-
nular radial and circular-slit mappings Fj, and F), are constructed.
Among all normalized conformal annular mappings F of W,, F,, max-
imizes

27 log(r(F)) + t.(F)
and F,, minimizes
27 log(r(F)) — p.(F) .

Here, r(F') is the quotient 7,/rs, where r, and 7; represent the radii of
the positively oriented F'(v) and the negatively oriented F'(8) respectively,
and ¢,(F) is the complementary area of log(F'(W,)).

It is then shown by the reduction theorem (Sario[4]) that these ex-
tremal properties hold in the limit for the limit functions F, and F7.

Received August 22, 1960. The results of this paper are part of the contents of the
author’s Ph. D. thesis, done under the direction of Professor Leo Sario, to whom I wish to
express my most sincere gratitude.
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Furthermore, the extremal properties of F; and F} imply that the former
is a radial slit mapping of W and that the latter is a circular slit mapping.
By establishing a deviation formula, it is seen that the functions F, and
F, are, up to a rotation, the only normalized conformal annular maps
of W extremizing the limit functionals. As another application of the
reduction theorem, we find that the univalent function /F, . F max-
imizes u(F'), the complementary logarithmic area, among all conformal
annular mappings of W.

Next we pose the question: When does W have distinet radial and
circular-slit mappings. The answer is given in terms of AD-removability,
at least when W is a plane region bounded by an outer contour v and
an inner contour 8. A point set E of the extended plane is called AD-
removable when the only analytic functions with finite Dirichlet integral,
defined on the complement of E, are the constant functions. In partic-
ular, we find that the principal analytic functions are, up to a rotation,
identical, if and only if the plane region bounded by v and & minus W
is AD-removable.

1. We consider W an open planar bordered Riemann surface with
two compact non-point border components, 8 and 7. In order to describe
the remaining part of the boundary of W, we recall that such a
surface can be embedded in a Riemann sphere S®. With respect to this
embedding, we assume that W and its boundary components satisfy the
following conditions:

(1) no point of 8 U v is a limit point of points of any other bound-
ary components, and (2) W — (8 U 7) is open in S%.  Operations in W
such as interior, boundary, ete., are referred to S2.

It is possible to exhaust an open Riemann surface by a countable
collection of compact approximating regions {W,}. In fact, W can be
countably exhausted in the following modified sense:

1. sUvycC W,

2. W,cInt W,

3. The boundary of W, consists of a finite number of disjoint an-
alytic Jordan curves.

4. Each component of W — W, is relatively non-compact,

5. W=uUW,.

There is no loss in generality in assuming that each W, contains a
¢ e W, where ¢ is arbitrary but fixed in advance.

Evidently & and v are two border components of W,. The remaining
border components will be denoted B.(W,), BAW,), «++, Biw(W,). When
only one approximating subregion is under consideration, the notation
for these remaining border components will be shortened to B, B, **°,
Bum. For convenience we define 3, as
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Ba= U B(W,) . 1=1,2 - k(n)

I. Extremal Properties of Harmonic Functions Defined on Approxi-
mating Regions.

2. We consider, in this and the following section, certain classes of
harmonic and analytic functions defined on an approximating region W,.

DEeFINITION. H,(h + k) is the set of functions p, harmonic on Int
W, U8 U7 and satisfying

(1) p(2) = cy(p) = const. for ze v with S dp* = 2n(h + k),
Y

(2) »©) =0,
(3) p(z) = e,(p) for zed with Ssdp* = —2n(h + k), and

(4) S dp* =0 for i =1,2, +--, k(n).
B

h and k are real numbers. When the function p is defined only on Int
W, U & U v, then the integrals S dp* andg pdp* are understood

Bi(Wy) Bi(wq)

as lim dp* and lim pdp*. Here { W]} is an exhaustion of the sur-

k—'mSBi(W’k) ;ngsi(wrk)
face Int W, and each B,(W}) is homologous (in W,) to 8(W,). An ap-
plication of Green’s formula shows that these limits are independent of
the exhaustion {W}}. The class H,(1) will be denoted H,.

Principal harmonic functions p,, and p.,, belonging to H, are obtained
as harmonic extensions of functions constructed by use of linear operators
on Riemann surfaces (Sario [2]). In fact on each 8,1 =1,2, ..., k(n),
090.,/on = 0 and p,, = const. Hence for arbitrary h and %k, the function
Dnin = IDo, + kp,, belongs to the class H,(h + k), which is then not
empty.

3. THEOREM 1. P,,, minimizes the functional S_ pdp* —
Bn

2r(h — k)e(p) among all pe H,(h + k), where c(p) = cy(p) — ci(p).

The value of the mintmum s —2x[h’c(p,) — k*c(p.,)].

The deviation of this functional from its minimum 18 Dy (D — Dyia)s
and the minimizing function is unique.

Proof. Let B be the entire border of W,. Then by Green’s for-
mula, we have

Dy (D — Drra) = L(p — Drin) (D — Prra)”

Since p and D, € H(h + k), we conclude at once that SS (P — Durn)
+y
d(P — Dpin)* = 0. Green’s formula becomes
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Dwn(p ~ Dnin) = SE pdp* +S‘.3 Drin@Dien — SE Drindp™ + pdpk, .
We now expand the last term and find that

SB DpindD™ + DAPS, = hSE Do, dp* + pdpy, + kSB D,.d0™ + pdp}, .

But on B,, p,. has vanishing normal derivative, and p,, is constant.
This means that S pdpl, = S Pudp* = 0 when pe H(h + k). Thus we
Bn Bn

can infer from Green’s formula that

SE DrindD* + DdDF,, =h55+yp0ndp* — pdpg, + kL DL.dp* — pdpf, .
n +y

A direct application of the conditions (1), (3), (4) of H,(h + k) now
yields the formula
| Padp® + pdpii, = 22 — K)e:(p) — ev)
+27k(h 4 k)(eAp1) — €:(P1n))

We obtain in a similar fashion
|, Pasadii, = E| Dol — padpi
n n

= -—hkg Pondpfn - pzndpz;kn
8+y
= —21hk[c(Pon) — €:(Den) — (€o(D1n) — Ci(D1a))] .

Collecting contributions, we find
DWn(p — Dnin) — 27‘5[]7/2(62(})0") — (D)) — kQ(CZ(pln) - Cl(pm))]
= | pap* — 2200 — W) — @) .

Since the Dirichlet integral is nonnegative, we have that p,,, minimizes
the given functional. Clearly, for any pe H,(h + k) the deviation of
the functional from its minimum is Dy (P — Dais).

We consider now the uniqueness of the minimizing function. For
another minimizing function p’, we would have a deviation of the func-
tional from the minimum equal to Dy (p" — Pyi,). But p’ also minimizes,
$0 Dy (0" — Pria) = 0. Since pu(§) = p'(§) = 0, we see that pu., = 7'.
This completes the proof of Theorem 1.

4. Our interest in Theorem 1 will be with the following special
cases which we state as corollaries.
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COROLLARY 1. p,, maximizes the functional 2mc(p) — S pdp*
Pn
among all pe H,.

COROLLARY 2. p,, minimizes the functional 2mc(p) + S_ pdp*
Bn

among all pe H,.

COROLLARY 3. _;‘(pﬂn + p,) minimizes the functional S_ pdp*
Ba

among all pe H,.

COROLLARY 4. pPo. — D1, maximizes the functional 4mwe(p) — Dy (D)
among all pe H,(0).
Each extremizing function 1s unique.

Corollaries 1, 2, and 3 follow immediately from Theorem 1 for
h +k=1. As for Corollary 4, clearly p,, — p.. € H,(0). Now for any

v e H,(0), Green’s formula reads Dy (p)= X 53 pdp* = SB pdp*, and
Y+8+By n
Corollary 4 follows.

II. Geometric Properties of Analytic Functions Defined on Approx-
imating Regions.

5. DEFINITION. A, is the class of functions F' analytic on Int
W, U 8 U v such that

(1) F(y) is a circle traced once in the positive direction,

(2) [F©Ol=1,

(8) F(8) is a circle traced once in the negative direction,

(4) F is univalent on Int W, U & U 7.
In this definition, F(y) and F'(8) are understood as oriented images of
oriented border cycles and the radii of these images are denoted r,(F’)
and r5(F).

Some useful relations between the classes A, and H, are expressed
in the following theorem.

6. THEOREM 2. (a) For any FeA,, log|F| s of class H,.
(b) The following analytic functions are of class A,:

(1) F,, = exp(Po, + 1Pu’) , (2) Fi, = exp(P, + 10:.%) .

The functions F,, are referred to as principal analytic functions.

Proof of (a). Evidently 2r = Syd(a'rgF(z)) :Syd(loglF(z)l)* and
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Condition 1 of H, is verified. Condition 3 is checked just as easily and
(2) is apparent. As for (4), let B; be any component of the border of

W, other than & or v. Suppose that B ~ B, and that § yd(log| F|)* =
Bi

2nk, where k is an integer. There exists a path from 8 to v which
does not meet B3;. But if k£ # 0, then every path from F(8) to F(v)
meets F'(B)). But F is univalent, so k = 0.

Proof of (b). We consider first the function F,, and omit the
analogous proof for F,,. First, it is evident that 27 = S dpf = S d(argF,,)
Y Y

and r(F) = exp ¢y(p.,) = const. Certainly F..(7) is a circle traced once
in the positive direction, and (1) of No. 5 is satisfied. Condition 3 is
verified in a similar manner and (2) is trivial.

To verify the Condition 4, we consider the extended version of the
argument principle, and reason in a manner analogous to Ahlfors [1],
p. 203.

7. DEFINITION. The multiple-valued functions P,, are defined as
P, = p,, + ipf. However P,, — P,, is single-valued, and the principal
analytic functions are expressible as F);, = expP;,, 2 = 0, 1. We also fix
the following terminology: 7(F') denotes the ratio »(F')/rs(¥) and ,(F)

denotes the complementary logarithmic area _SE log| F'(z)|d(argF(2)), a

nonnegative quantity when Fe A,.

THEOREM 3. F,, maximizes 27 logr(F') + t.(F) among all Fe A,.

F,, minimizes 2xlogr(F) — 1, (F) among all Fe A, .

P, =V'F,, - F,, maximizes [L(F) among all Fe A, .

F,|F,, maximizes 4mwlog r(F') — Dy (log| F'|) among all quotients of
Sfunctions n A,.

P,, — P,, maximizes 4n|Re(F(z;) — F(2,))] — Dy (F) among all an-
alytic functions on W, the real part of which is constant on §,constant
on 7, and 0 at &. Here z, and 2z, are on v and & respectively.

Proof. We have log|F,.(2)| = Du(?), so it follows from Corollary 1
of Theorem 1 that log|F,,| maXimizes the functional 27¢(p) — SE pdp*

among all pe H,. But according to Theorem 2, when Fe A,: the
log| F'(z)| € H,. Hence F,, maximizes the functional 27 log »(F) + (. (F)
among all FeA,. The proof of the second part of this theorem is
analogous, and so is the proof of the third part when it is shown that
P, =Vv'F, - F,, Iis of class 4,, a fact that is proved in the appendix.

It is easily seen that log| Fi./Fi.| = De — Di., hence according
to Corollary 4 of Theorem 1, log|F,/F,| maximizes 4zc(p) — Dy, (D)
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among all pe H,(0). If F = G/H, where G and He A,, then it follows
from Theorem 2 that log|G | and log | H| € H,, and we have S d(log| F|)* =
Y

S d(argF') = g d(argG/H) = 0. Other similar calculations show that
Y Y

log| F'(z)| € H,(0). Thus F%,/F}, maximizes 4z log r(F') — Dy, (log| F'|) among
all quotients of functions in A4,.

The extremal property of P,, — P,, follows from Corollary 4 as well
when it is observed that Re(P,, — P..) = Do, — Pix, and that ReFe H,(0)
when F'is analytic on W,.

The following corollary of Theorem 3 will be useful when we are
considering geometric properties of conformal maps of W.

COROLLARY. The functional r(F) is maximized, uniquely up to a
rotation, by F,, and minimized, uniquely up to a rotation, by F,, among
all FeA,.

Proof. It follows from the definition of F,, given in No. 6. that
d(argF,,) = dpg, which is0 on 8,. Since £,(F) = 0, we have 27 log 7(F) <
2rlog r(F') + p(F) < 2x log r(Fy,) + t.(Fi,) = 2r log r(F},), that is, (F')
is maximized by Fj,.

Analogous reasoning shows that Fj, minimizes »(F') among all Fe A4,.

In order to establish the uniqueness, we let r(F') = r(F,,) for some
Fe A,. Then an application of Theorem 3 yields 0 < f£(F) = p(F,,) < 0,
which means that F' also maximizes the functional 27log »(F) + p,.(#)
among F'e A,. But an application of the deviation formula of Theorem
1 shows that Dy (log|F/Fi,|) =0, from which it follows that F = cF\,
with |¢| = 1.

III. Extremal Properties of Principal Harmonic Functions.

8. We propose in the present section, to develop for domains of
infinite connectivity, extremal theorems which will generalize the results
of §1 for finite connectivity. An essential role is played by the

Reduction Theorem (Sario [4]).

Assume that Z and Z, are classes of functions with domains W,
an arbitrary open Riemann surface, and W,, an exhausting subregion
of W, respectively. In addition, suppose that real-valued functionals
m and m,, defined on Z and Z,, satisfy the following conditions.

(R1) If W, c W, and if fe Z,, then f|, cZ .
Here W, may be replaced by W, and Z, by Z.

(R2) If {f\} is a sequence the elements of which belong to Z,, and
if {f.} converges uniformly to fe Z,, then m,(f,) converges to m,(f).

R3) m(f) = lim m,(f), for any fe Z.



1494 PAUL A. NICKEL

(R4) There exists a function f,€ Z, such that f, minimizes the
functional m, among all fe Z,.

(R5) For k < h, and fe Z,, mf) = my(f).

(R6) The family {f,;f. minimizes m, among fe< Z,} is a normal
family, and the limit functions belong to Z.

Then any limit function f = lim,_.f, minimizes m among all fe Z,
and value of minimum s m(f) = lim,_ .m,(f,).

The proof of the reduction theorem is established by selecting an
exhaustion of W, and can be carried out for a bordered surface W as
well, as soon as an exhaustion is known to exist.

9. Let W be an open planar bordered Riemann surface, {W,} an
exhausting set, § and v separated boundary components, all as described
is no. 1.

LEMMA 1. The families {p,.} and {p..} are normal.

Proof. 1f {F,,} ({F1.}) is a normal family, then so is {p,,} ({D.})-
Hence it suffices to show that for every compact set S, there exist a
constant M and and integer N such that |F,,(2)| < M (| F..(z)| < M) for
all # > N and all ze S. Let S be any compact subset of W and choose
n sufficiently large so that S < W,. Forany zeS and W, c W,, since
Fi,(v) is the outer contour of an image annulus we have 27 log| F,,(2)/
ri{Fop)| = 27 log (r(Fy,)) + t.(Fy,). But according to Theorem 3, the right
hand side is bounded by 2z log (r(F:,)). We now recall that |F,({)| = 1
that is 75(F,,) < 1. Hence |F,,(2)] is bounded for all ze S and for all
p = n, and the family {F,,} is normal.

As for {F},}, we have

2r log| FL,(2)[rs(F.) | = 2w log (r(F},)) < 2x log (r(F,,)) .

The second inequality follows from the Corollary of Theorem 3. We
conclude that {F},} is bounded on any compact set S and is normal. This
completes the proof of Lemma 1.
An immediate consequence of Lemma 1 is that the family {p,..} is
normal.
10. LEMMA 2. If n < n/, then the inequality
g, pdp* = g pdp*
B B
holds for all pe H,.(h + k).

Proof. We apply the first form of Green’s formula to the region
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W, — W, and find

EE pap’ — Sﬁ pdp* = Dy, _y, () 2 0.

DEFINITION. H(h + k) is the class of functions p, harmonic on W,
satisfying

(1) p(2) = ¢i(p) = const. for zev with S dp* = 2r(h + k),
Y
(2) »)=0,
(8) p(2) = ¢i(p) = const. for z e with Ssdp* = —2rn(h + k), and

(4) S dp* =0 where o is any cycle which is homeomorphic to a

circle and which does not separate & and 7. A cycle o is said to separate

S and v if every path from 6 to v intersects ¢. Let H denote the class
H(Q).

DEFINITION. For any pe H(h + k), S,pdp* is understood to be
B

limgﬁ pdp*. The existence of this limit is guaranteed by the monotoni-

n—eo ﬁn

city condition of Lemma 2.

LEMMA 3. If the sequence {p,; v, < H,(h + k)} converges on compact
subsets to p’, then p' e H(h + k).

We recall that a sequence {f,} converges on compact sets if for every
compact set S, there exists an N such that {f.;n = N} converges uni-
formly on S.

Pyoof. The convergence p, — p’ is uniform on compact sets. The
conditions (1), (2), and (3) for H(k + k) can therefore be inferred from
those of H,(k -+ k). Let o be any cycle which does not separate & and
v. Then there exists # such that the compact 6 < W,, and we have

o~ bd + b

where the B} are homologous to components of the border of W, (Ahlfors
and Sario [1]). We embed W, in the complex plane with v as an outer
boundary, and fill in the ‘“‘holes’”” whose boundaries are the B)s. Now
o — b8 =0A, and every path from & to ¥ meets ¢. This is a contradic-
tion, unless b, = 0.

Using the uniform convergence of {p,} along with Green’s theorem,
we obtain

S dp'* = limg dp¥ = limg Apy = limZaiSB,dpff =0.
T v ¢

00 n—sc0 Z“iﬁi n—o0
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DEFINITION. A harmonic function p,, is defined as the limit of any
sequence of the normal family {p,..} Which converges on compact sets.

THEOREM 4. p,, minimizes the functional qudp* — 2n(h — k)c(p)
among all pe H(h + k). ’

The minimum wvalue of this functional is —2m(R’c(p,) — ke(py)).

The deviation of this fumctional from its minimum value 1s
D(p — p,) and the minimizing function is unique.

11. There exists a subsequence {p,;.} of {Pn..} Which converges to
Dne On compact sets and satisfies lim,._.pu. = D, + kp, where »; =
lim, .0, © = 0,1. The uniqueness of Theorem 4 then allows us to as-

sume that p,. = hp, + kp, for all ~ and k.

Proof. That p,, minimizes and gives the functional the wvalue
—2r(h*e(p,) — ke(p,)) will follow from Theorem 1 if we ecan verify
(R1) — (R6) of the reduction theorem. The funectionals m, and m are

taken to be g pdp* — 2x(h — k)e(p) and g pdp* — 2z(h — k)e(p) respec-

tively, while the classes Z, and Z are H,(h -+ k) and H(h + k).
If pe H(h + k), then p|, satisfies the Conditions 1,2, and 8 for

H,(h + k). Since no B,(W,) separates & and v, SB dplwn =0 and (4)

W)

is satisfied. Hence ply, € H,(h + k) and (R1) is verified. The uniform
convergence of f, to f makes (R2) evident, and the functional S_pdp* —
B

2n(h — k)e(p) is defined as limn_.wg_ pdp* — 2n(h — k)c(p), asrequired by
(R3). o

Theorem 1 shows that (R4) is satisfied, and Lemma 2 of no. 10 shows
the same for (R5). That the family {p,..} as defined in no. 2 is
normal, follows from Lemma 1 of no. 9, and that the limiting functions
belong to H(h + k) is then a consequence of Lemma 3 of no. 10. Thus
by the reduction theorem, the limit function, p,,, minimizes the limit
functional among pe H(h + k) and the minimum value of the limit
functional is the limit of minimum values.

12. In order to establish the deviation formula, we first denote
the functional of Theorem 1 by +, and consider its value on the func-
tion pe = P, + €(® — pnr). Upon expanding, we find
(2) Pupe) = | puudii — 220 — K)e(p) + a(h)e

8285 (P — Pu)d(® — Pri)*,
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where for each %, this is a polynomial in &, and a,(n) is the coefficient
of the ¢ term. But the last integral is

S_ (P — Pu)A(® — i) = S (P ~ Pu)d(® — Dri)* = Dy (D — Duz) -
Bn Bp+8+7y
The first equality follows from the fact that » and p,, both belong to
H(h + k). Therefore, in the sense of limits, we write

(0 = a0 = 1) = D = pu)

where D is the integral over the entire bordered surface W. In a
similar fashion, we find

(3) | prsdpis — 2(h — Ke(pu) = D(pas) — dhep) -

By an earlier part of this theorem, the left hand side of equation (3)
is finite. Thus we have that D(p,.) < oo.
We assume that D(p — p,) is finite. By the triangle inequlity for

the Dirichlet integral (Courant [1]), D(p), and consequently S _pdp* are

both finite. Now in equation (2), with ¢ =1, consider theﬂ limit as
n— o, The limit of every term, except a,(n), exists and is finite.
Hence the same can be said of lim,..a,(n). But Y(p.) = lim, .y, (D.)
has, by part (1) of our theorem, a relative minimum for ¢ = 0. There-
fore, lim,_.a,(n) = 0, and the deviation formula (p) = (p,,) + D(p —
Dni) results when e = 1 is substituted into equation (2) after taking
limits.

When D(p — p,) = <, this formula holds in the sense that y(p) = «
as well. This completes the proof of Theorem 4.

IV. Extremal and Geometric Properties of Principal Analytic Func-
tions.

Extremal properties for harmonic functions defined on a surface of
finite connectivity were used in § 2 to establish extremal properties of
analytic functions, also defined on a surface of finite connectivity. In
the present section, we exploit the extremal properties of harmonic
functions, now defined on a surface of infinite connectivity, for the
purpose of establishing both extremal and geometric properties of analytic
functions.

13. A competing class of analytic functions is defined as follows.

DEFINITION. A is the class of analytic functions on W such that
(1) F(7) is a circle traced once in the posititive direction, (2) |F(¢)| =
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1, (8) F(d) is a circle traced once in the negative direction, and (4) F
is univalent on W.

THEOREM 5. For any Fe A, log|F|e H. Furthermore F,= exp(p,
+ipHed, 1 =0,]1.

No ambiguity will result in referring also to F, and F) as principal
analytic functions.

Proof. For any F e A, consider log|F'|, which clearly satisfies (1)~(3)
of the definition of H in no. 10. Then let S d(log| F'|)* = 0 for ¢ not

separating & and v. If S d(log| F'|)* = 2rk, k an integer, then F'(0)

separates F'(§) and F(y). But F is univalent on W and we have the
contradiction that o separates 8 and v. This means that log|F|e H.

Let F; = exp(p; + ip¥), 1 = 0,1. Conditions 1-3 for A are easily
verified. An application of the extended argument principle to any
exhausting subregion W, shows that F; is univalent on § U v, when
univalence is established at interior points. For interior points of W,
F; can be represented as exp(p; + tp;) = lim,_..exp(p;, + ip}) = lim,_.. Fi,.
So each F; is univalent by Theorem 2 and the well-known Hurwitz
theorem.

14. The following five theorems are concerned with analytic funec-
tions constructed from the harmonic functions p, and p,,w hich are
uniquely defined by Theorem 4.

DEFINITION. F is an annular radial (circular) slit mapping of W
provided that F(W) is an annulus minus a point set each component of
which is a radial (circular) slit or point. Let {w;ry(F) < |w]| <
r(F)} — F(W) be denoted by S;, 7 =0, 1.

DEeFINITION. For a surface of infinite connectivity, the comple-
mentary logarithmic area ((F') is defined as lim, ..z, (F) for any Fe A.
That this limit is defined independently of an exhaustion follows from
Theorem 5 and Lemma 2.

THEOREM 6. F, = exp(p, + ©p;) maximizes 2mlog(r(F)) + t«(F)
among all FeA.

The value of the maximum is 2xwlog(r(F,)).

The deviation from the maximum is D(log| FF,|), and the maxi-
mizing function is unique up to a rotation.

The 2-dimensional Lebesgue measure of the point set S, is 0.

F, is an annular radial-slit mapping.



ON EXTREMAL PROPERTIES FOR ANNULAR MAPPINGS 1499

Proof. We apply Theorem 4 with ~# =1,k =0 and obtain that
log| F,| minimizes S_ pdp* — 2me(p) among all pe H. According to The-
B

orem 5, we may use Theorem 4 on logarithms of functions in 4 as well,
that is, F, maximizes the functional 2zlog (r(¥)) + £(F') among all Fe A4,
the maximum value of this functional is 27 log (r(F})), and the deviation
from the maximum is D(log|F/F,]).
As for the 2-dimensional Lebesgue measure of S, consider the
annulus
{w; rs(Fy) = lw] = /rv(Fo)}

and set ¢ = log w. The transformation mapping w into log w is denoted
L, and the image of {w; rs(F,) = |w| < r,(F)} under L is called R. Now
it is easily seen that

LS, = Q [CALEW)],

where Cj is understood to mean complement with respect to R. L(Fy(W,))
is compact and closed in R, and this means that Cy[L(F(W,))] is open
and measurable. Hence, LS, a countable intersection of measurable
sets, is measurable. Its measure M is then given by

M(L(S) = lim 1, (FY) ,

where f,(F)) is defined in no. 7. But according to an earlier part of
this theorem, the term on the right is 0. When we observe that L,
defined on the cut annulus, preserves sets of measure zero, we conclude
that the 2-dimensional Lebesgue measure of S, is zero.

Suppose that the complement, with respect to {w; rs(F,) <|w| <
r(F,)}, of F(W) is a point set, the components of which are not all
radial slits or points. The full annulus

{w; rs(Fo) = |w| = r(Fo)}

minus such a component, denoted 7, is called W,. We embed W,in the
Riemann sphere S* and consider the simply connected point set S? — 7,
which can be mapped conformally onto the complement of a unit disc.
Let E be this conformal mapping, and denote by 9 and &"” the sets
E(8,) and E(v,), where 8, = F,(8) and v, = Fi(v). Now E(W,) is of finite
connectivity, so we can apply Theorem 2 to construct a radial-slit mapping
@ of E(W,) onto an annulus, minus one radial slit, with inner boundary
®(8") and outer boundary @(v”). @ is normalized by [PoEoF(¢)| = 1,
and belongs to A, for E(W,). We then apply the corollary of Theorem
3 to @ and find that 2zlog(r(®)) > 2rlog(r(E)) = 2xlog (r(F,)). Then
the map @oEoF;, where E and @ are properly restricted, belongs to A.
But 2rlog (r(poEoFy)) = 27 log(r(®)) > 2rlog (r(F,)). This is a contradie-
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tion, for according to an earlier part of this theorem F,, up to a rota-
tion, uniquely maximizes the functional 27 log (r(F,)) in A. This completes
the proof of Theorem 6.

COROLLARY. The primcipal analytic function F, maximizes the
Sunctional r(F') among ol Fe A.

Proof. The maximm value of the functional in Theorem 6 is 2=z
log (r(F})), that is pF)= 0. The proof is complete when we observe
that p(F') is nonnegative for all Fe A.

THEOREM 7. F =exp(p, + ip¥) minimizes 2mlog(r(F)) — M(F)
among all Fe A.

The value of the minimum s 2x log (r(F))).

The deviation from the mintmum ts D(log| FIF}|), and the mint-
mizing function is unigre up to a rotation.

The 2-dimensional Lebesgue measure of the point set S, is zero.

F. is an annuler areular-slit mapping.

The proof is analogous to that of Theorem 6 and uses h =0,k = 1.

COROLLARY. The primcipal analytic function F, minimizes the
Sunctional r(F) among oll Fe A.

THEOREM 8. P=VF,. F, maximizes ((F) among all Fe A.

The value of the mximum s p(P).

The deviation from the maximum ts D(log| F/P|), and the maxi-
mizing function is unigue up to a rotation.

The proof uses h=12, k = 1/2.

THEOREM 9. Q=F/F| maximizes 4xlog (r(F')) — D(log| F|) among
all quotients of functions in A.

The value of the mximum is 27 log (r(Q)).

The deviation from the maximum is D(log| FIQ]).

Proof. When the condition 2 = 1, £k = —1 is substituted into The-
orem 4, it is easily seenthat the technique of Theorem 8 will establish
Theorem 9.

Consider the multiple-valued functions P, = p, + 4ps and P, = p, +
ip¥. The difference of these functions has zero flux around any cycle
of W and is single-valued.

THEOREM 10, P,-P, maximizes
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4| Re(F(2,) — F'(2))] — D(F)

among all analytic functions on W the real part of which is constant
on 8, constant on v, and 0 at &. Here z, and z, are on v and & re-
spectively.
The value of the maximum is —2xRe[(P, — P)(2;) — (Py — P)()].
The deviation from the maximum is D(F — (P, — P)).

The proof again applies Theorem 4, with # =1 and k = —1, as well
as the observ_ation that Re(P,— P) =p, — p, and ReFe H when F is
analytic on W.

V. The Existence of Distinct Principal Analytic Functions.

15. We consider the problem of determining conditions under which
there exist two different principal analytic functions on the planar
bordered Riemann surface W of no. 1. The principal analytic functions
under consideration are defined in no. 13, and have properties described
in Theorems 5, 6, and 7 of no. 14. The following concepts are dealt
with in Ahlfors and Sario [1].

DEFINITION. Two compact sets in the plane, each with connected
complement, are said to be equivalent if their complements are con-
formally equivalent.

For the remainder of this chapter, we let E be a compact plane set
with connected complement.

THEOREM (Ahlfors and Sario [1]). The complement of E is of class
0., if and only if every set which is equivalent to E has 2-dimensional
Lebesgue measure 0.

DEFINITION. Let U be any open set which contains E, and suppose
that a function F' is analytic on U — E. FE is said to be a removable
singularity for F if there exists analytic extension of F to U.

THEOREM (Ahlfors and Sario [1]). E s a removable singularity for
all functions of class AD in a neighborhood of E if and only if the
complement of E (with respect to the Riemann sphere) is of class 0,p.

16. DEFINITION. A planar bordered Riemann surface W as de-
scribed in no. 1 is said to have rigid radius when 7»(F) is constant for

every F in the class A of no. 13.

THEOREM 11, Let F, and F, be the principal analytic functions
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belonging to A. The surface W has rigid radius if and only if F, =
¢k, where |[¢| = 1.

Proof. If W has rigid radius, then according to Theorems 6 and
7, both F, and F, minimize the same functional. Hence F, = cF|, with
le| =1, On the other hand, if F, = c¢F}, we conclude from the corollaries
of Theorems 6 and 7 that F, maximizes, and F, minimizes the functional
r(F) among all F'e A. Bzcause |[¢| = 1, we have that the radius is rigid.

6. AD-Removability.

17. Our next condition for distinguishing F, from F) is most natu-
rally stated if we take the bordered Riemann surface W to be a plane
region, with v and & as outer and inner boundaries respectively. In
addition, we let W, denote the plane point set bounded by v and §, with
E the difference W, — W.

THEOREM 12. Let F, and F, be the principal analytic functions
of no. 13. Then F, = cF,, with |¢| =1, if and only if S* — Eec0,p.

Sufficiency. F, and F, map a neighborhood U of E onto an open
set of finite area and are of class AD in this neighborhood of E. Then
according to no. 15, the principal analytic functions may be extended to
all of W. If the extension F; of F, satisfies Fi(z) = w, for some w,
with r(F,) < |w,| < r(F.), then

dF, dF,

ol AR gl _AF o1
@mgmﬂ_M (mgmﬂ_m i=0,1

Since F,e A, the second integral is 1 and the extensions are univalent.
This means that F) o F';* is a conformal mapping of a full closed annulus,

and in fact that 7(FY) is equal to 7(F)). We have F;, = cF}, with |¢| =1,
as a consequence of Theorem 11.

Necessity. If S* — E'is not of class 0,,, then, aceording to no. 15,
there exists a one to one conformal mapping with positive complementary
area. Such a mapping will have positive complimentary logarithmic area

as well. Therefore, according to Theorem 8, (v F,-F}) is positive, and
Theorem 6 guarantees that F), &= cF..

APPENDIX

An argument of Ahlfors and Beurling [1] (p.111), which will be
referred to and not repeated, is crucial in the proof of:

18. THEOREM 11. The analytic function P,=1'F,_.F, 1is of

s
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class A,.

Proof. Verification of the Conditions 1,2, and 3 for 4, of no. 5
is immediate. Only (4) remains to be checked. If log F), and log Fi,
are considered in the roles of ¢ and p of Ahlfors and Beurling [1],
p. 111, then log /F,, -F,, may be considered in the role of i(q + p).
We observe that d(log F,)/d(log Fi,) is well defined on the approximating
W,. Hence, by the technique of Ahlfors and Beurling already cited, we
may conclude that Re(d log F.,/d log F,,) is of constant sign with no zeros
in W,. This implies that the image of each contour 3; is a convex
curve, and each image is traced once as each (3; is traced once. This
also implies that each of the curves F'(3,) is traced in the same direc-
tion, and this direction will be determined now for one F'(5;).

We observe that for each 1, P,(8,) is a compact set, and we may
then choose w; and w! so that w, is that point of P,(8;) which is closest
to P,(v) and w} is that point of P,(¥) which is closest to P,(B;). We
now assume that the 3, are indexed so that min{d(w;, w}); 1 =1,2, .-+,
k(n)} is d(w,, w;) where d(w, w') is the usual Euclidean distance from w
to w'. That is to say, P,(3,) is as close to P,(7) as any of P,(B,), :--,
P,(Bim). The line segment /” joining w, to w] is a univalence path for
P, in the sense that each point of /7 is taken exactly once by a point
of W,. Clearly P, is one to one on P,;'I’, and we may conclude that
B, and P,(3,) are similarly oriented. The reasoning in the paragraph above
then establishes that each P,(83;) is oriented as is P,(3,), and in fact, for
each ¢ we have that the winding number for points inside P,(3;) is —1.

An application of the argument principle is now all that is needed
to show that P, is univalent on Int W, U 6 U 7.
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PRIMAL CLUSTERS OF TWO-ELEMENT ALGEBRAS

EDpwARD S. O’KEEFE

1. Introduction. The development of a structure theory for uni-
versal algebras which subsumes the familiar structure theory of Boolean
and Post algebras and p-rings (Foster, [1]-[4]) has focused attention on
certain classes of functionally complete universal algebras, called primal
clusters. A primal cluster is a set of primal algebras in which every
finite subset is strictly independent (see definitions §2, below). Each
such cluster determines a unique subdirect factorization for each algebra
satisfying all the identities common to some finite subset of the cluster.
In other words, every function over a direct product of strictly inde-
pendent primal algebras, expressible in terms of the algebras’ operations,
has a decomposition and reconstruction analogous both to the Boolean
theory and the Fourier transform theory. In order to broaden the domain
of application of the generalized theory, we must find strictly independent
sets of primal algebras.

The purpose of this paper is to present the theory of independence
of primal algebras in a new dimension. Simple necessary and sufficient
conditions for strict independence of primal algebras of one primitive
operation, regardless of the number of elements, have been obtained [5].
We now give necessary and sufficient conditions for strict independence
of certain two-element primal algebras of the same species, regardless
of the number of primitive operations.

2. Basic notions, the ¢-conditition. The following definitions are
stated for easy reference.
Let % = (A4, 0, 0, +++) be a universal algebra.

2.1. The species Sp = |u,, %y, ---1 of A is the sequence of ranks of
the primitive operations o, of %, where n; is the rank of o,.

2.2. An expression ¢(&, -, £,) of species Spis a finite set of one
or more indeterminate symbols &;, composed by operation-symbols of Sp.

2.3. A strict UA-function is an expression interpreted in algebra 2L.
The notation ¢ = x(2) means that the strict function represented by ¢
in algebra 9 is the same as that for .

2.4. A is a primal algebra if every transformation of A x A x .-+ x A
into A can be represented by a strict 2-function, and Sp is denumerable.
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2.5. A finite set of algebras {¥,, %;, ---, ¥,}, all of the same species
Sp, is strictly independent if each given set of strict functions ¢, has
a single expression v» which reduces to the given function ¢, in the
algebra 2; i.e., ¥ = ¢,(%,).

2.6. Ais a primal cluster if A is a set of primal algebras and every
finite subset of ¥ is strictly independent. The totality of pairwise non-
isomorphic primal algebras of species [s] constitutes a primal cluster [5].
Various other categories of primal clusters are known, largely of species
[2, 1].

The ¢-condition is analogous to the factorization of functions of real
numbers. It is simply that any strict function may be represented by
any expression operating on some set of strict functions.

2.7. The ¢-condition. For every strict UA-function, 6(¢,7, ---, ),
and every strict A-function, (&, ---,&,), provided that no variable £,
occurs twice in x, there exist strict UA-functions, (&, 7, -+, ¢), ---,

Vol 9, =+ ¢, £), such that
(2-1) K("!’l(é! 7, "'vC)’ tty ‘#m(&r Ny oeey é’)) = 6(5’ Ty ooy é:) .

Formerly primal algebras were defined to be finite. However, this
property is now derived from the denumerability of Sp.

THEOREM 2.8. FEwvery primal algebra is finite.

Proof. Let A =<4,0, ++-,0,, *++> be a primal algebra. The two-
valued functions on any infinite set have a larger cardinal number than
the set of expressions made of a denumerable set of operations. There-
fore, the fact that the functions on A x A to A are represented by ex-
pressions in the operations of A means that A is not infinite.

From |5], we require the following basic results.

THEOREM 2.9. In any primal algebra in which the primitive
operations are onto transformations, the $-condition holds.

THEOREM 2.10. Let %A = (A,o0, +++) and A = (B, o, -++) be two non-
isomorphic primal algebras of the same species, Sp. Then there exists
a set of unary expressions {¢;} = {1, -+, b} of species Sp such that
(2.2) ==+ = ()

and such that every wnary B-function is equivalent modulo B to one

of the ¢y, «+« ¢,
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THEOREM 2.11. Let {3, -+, U,} be a set of wuniversal algebras of

species Sp, in which every pair of algebras is strictly independent.
If the ¢p-condition holds in each algebra, the set is strictly independent.

3. The two-element independence theorem. Our main result is

THEOREM 3.1. Ewvery set of primal algebras is a primal cluster

if:

(i) every algebra in the set has exactly two elements,

(ii) mo two algebras are isomorphic,

(ili) mo primitive operation is constant,

(iv) all algebras in the set are in the same species, Sp = [n,, +- -,
R

The proof of Theorem 3.1 is preceded by three lemmas.

LEmmA 3.2. Let B = (B, B}, 0,+++) be a two-element primal
algebra with no constant primitive operations. Every expression ¢(&,,
«oo, &), in which no wvariable occurs twice may be changed, modulo
algebra B, to any given function Y(€) by replacing some variable by a
properly chosen strict B-function (&), and all others by constant strict
B-functions.

Proof. If the expression ¢(&, -+-, &,) has but one operation-symbol
0;, then, since no operation-symbol represents a constant, there are con-
stants 6, and v, such that

Oi(8n tt 87»7;) = X(lel)
0i(Y1y * v 0y V) = x(Bs) .

We alter 8, to 7., 8; to v,, etc. until the function changes value. Some
jth argument must give the change from x(8,) to x(53.). We choose the
expression (&) so that

(3.1)

‘#(181) =9;
(3.2) Y(B:) = v;
0/(Y1s =+ 5 Vimay Y(Bi)s Sv1r * 25 8ui) = 2(BY) k=1,2).

Since there are but two elements in the algebra B,  is now completely
represented

(3.3) 0i(Yay ++*y Vimay Y(E)y 8jay o0+, 8)) = X(E) .

On the other hand, let ¢(&, -+, &,) be composed of m operation-symbols.
Assume that the theorem holds for all expressions with fewer than m
operation-symbols. ¢ is a set of expressions ¢, ++-, ¢, composed by
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primitive operations o0;: ¢ = 0;(¢y, **+, $,,). &y, * -, b, have fewer than
m operation-symbols, so by assumption,

¢Ic = Y&y for k:]-’ "',j'—l
(8.4) ¢; = (&)

¢j+1 - 81’1—1’ c ani = BnL ’
where all variables but one have been replaced by constants. But,
obviously, in ¢,, k == 7, the last variable may also be replaced by a con-
stant, since a constant result is desired and is given by either value of

the variable. This leaves only one variable in ¢;; but with these replace-
ments

(35) ¢(¢)1’ M) ¢)7L;) - X(g)

and the proof is complete.

LEMMA 3.3. If tn two primal algebras A and B, A satisfies the
¢-condition, then, for every e B and every a(§), there is an expression
11(&) such that

[a(E)(20)
[ B ®).

Proof. Modulo B, there must exist expressions for constants in B.
Therefore, letting #4(£) = B(B), replace each occurrence of £ in ¥ by a
variable from the set &, ---,£,, so that in #g(&, «-+, &), no variable

occurs more than once. Applying the ¢-condition to #4(&, -+, £,) with
respect to A, there +, +++, 4, such that

3.7) Kg(Yuy <+ 05 Yr) = a(E)()

By Theorem 2.10, there exists a set of expressions {¢,} with

(3.6) 1) =

(3.8) ¢ =P(A) and ¢ =P = -+ = $(B) .
Then

3.9) Ke(bs, < +5 ) = a(E)Q) ,

by (3.7), but

(3.10) Ka(py, =+, b)) = £e($(E))(B) = B(B) .

LemMA 3.4. Let A = (4,0, +++,0,) be a primal algebra of species
Sp in which every primitive operation o; 1s a transformation onto A.
Let B be a two-element primal algebra of the some species Sp, with
no constant primitive operations. Then if U and B are not isomorphic,
they are strictly independent.
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Proof. The operations of B are transformations onto B, since they
are non-constant and B has only two elements. Moreover, B is primal.
Therefore Theorem 2.9 applies; the ¢-condition holds in algebra B. A
is also primal with the same kind of primitive operations; hence, by
Theorem 2.9, the ¢-condition holds for 2 too.

Since A is primal, there exists an expression, (&, &), and an ele-
ment o< A such that

2,0 =¢&,
Z(O’ ?) = § .
Let p be the number of occurrences of £ in 2 and ¢ the number of
occurrences of £. Replace each occurrence of £ or ¢ by a different
variable from the set (¢, -+, &,) or (§y, <+, ,) respectively. Let the

resulting expression be denoted X(&, +++,&,, &1, ¢+, &,). By Lemma 3.2,
there exist a strict B-function ;({) and constant B-functions such that

(3'12) 2(717 ey Yio1y /‘1&'](:)7 /8_7'+1r c ey /8p+q) = é‘(%) .
Suppose 7 < p, then by Theorem 2.10, there are ¢/{) such that
O(QI) (1::1:"'51))
v.(8) =1,---,5—1)

Vi§) B)i=j
B(B) (t=7+1,---,p)

and by Lemma 3.3, ¢,(&) such that

{E(%I) G=p+1, -+, p+9)
BBt =p+1,-+,p+q).

(3.11)

(3.13) ¢ =

(3.14) ¢ =

Thus,
200, &) = &Q)
Z‘(r)/l, ey YVien 'l]!,\J(C)’ Bj+1y Tty Bp+q) = §(%) .

An exactly similar argument shows the construction if p < j. There-
fore, it is always possible to find an expression ¥ such that

(%)
£(®) ,

and the two algebras are strictly independent by Definition 2.5,
We now return to the proof of Theorem 3.1.

(315) Z((i’u cc ey ¢p+q) = {
(3.16) 1E D) = {

Proof. Each algebra is primal, and every primitive operation is an
onto transformation because none is constant and each algebra has but
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two elements. Therefore, by Theorem 2.9, the ¢-condition holds in each
algebra. Moreover, by Lemma 3.4, each pair of algebras is independent.
Therefore, by Theorem 2.11, every finite subset of {¥;, ---} is indepen-
dent, and {2, ---, %, --+} is a primal cluster.
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APPLICATIONS OF THE TOPOLOGICAL METHOD OF
WAZEWSKI TO CERTAIN PROBLEMS OF
ASYMPTOTIC BEHAVIOR IN ORDINARY

DIFFERENTIAL EQUATIONS

NELSON ONUCHIC

Introduction. The main objective of this paper is to present some
results concerning the asymptotic behavior of the integrals of some
systems of ordinary differential equations.

As Wazewski’s theorem, used in our work, is not very well known,
we state it here, giving first some definitions and notations.

HypotHESIS H. (a) The real-valued functions fi(t,z, -+, 2.),
i=1, e, n, of the real variables t,x,, +++, x,, are continuous in an
open set 2 < R,

(b) Through every point of £2 passes only one integral of the
system

T = f(t, x) ( = —%—> where

9'71 .]i;(ty Lyy 00y xn)
z= 1], fltx)=[ 1 ceeeeeeeess and (t, x) e Q .
xﬂ fﬂ(t’ xl? °* .! xﬂ)

Let w be an open set of R*", w C 2 and let us denote by B(w, 2)
the boundary of w in Q.

Let Py (t, x) e 2. We write I(t, P) = (¢, z(t, P,)), where 2(¢, P,) is
the integral of the system & = f(¢, ) passing through the point P,.

Let (a(P,), B(F,)) be the maximal open interval in which the integral
passing through P, exists. We write

I(4, P) = {(t, 2(¢, P)) [ t e 4}

for every set 4 contained in (a(F,), B(F,)).

We say that the point P, (t, ;) € B(w, £2) is a point of egress from
w (with respect to the system # = f(¢, ) and the set Q) if there exists
a positive number 8 such that I([t, — 8, %), P,) C w; P, is a point of
strict egress from w if P, is a point of egress and if there exists a
positive number & such that I((¢, t, + 8], P,) € £ — ®@. The set of all
points of egress (strict egress) is denoted by S(S¥).

If A c B are any two sets of a topological space and K: B— A is
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a continuous mapping from B onto A such that K(P) = P for every
Pc A, then K is said to be a retraction from B into 4 and A a
retract of B.

THEOREM OF WAZEWSKI. Suppose that the system & = f(t, x) and
the open sets w — 2 C R satisfy the following hypotheses:

(1) Hypothests H.

2 S=8*

(3) There exists a set Z C w U S such that Z N S is a retract of
S but is not a retract of Z.

Then there is at least one point Py (t,, x,) € Z — S such that I1(t, P,)
C w for every t, < t < B(P,).

The theorem of Wazewski [6, Théoréme 1, p. 299] is actually more
general than the one stated above.

If fit, 2, +++,2,),t =1, -+, n, are complex-valued functions of the
real variable ¢ and of the complex variables x,, ---, x,, the n-dimensional
complex system & = f(¢, ) can be considered as a 2n-dimensional real
system, so that the theorem of Wazewski is also extensible, in a
natural way, to complex systems [5, p. 19. §1 and p. 21, §2].

The most difficult part in the applications of the method of Wazewski
is, in general, to verify that S = S*. To accomplish this Wazewski
introduced the concept of a regular polyfacial set [6, §14 p. 307 and
§ 15, p. 309]. However the distinction established by Wazewski between
positive and negative faces has certain inconveniences. In some appli-
cations of the method of Wazewski there appear sets w such that S = S*
but whose faces are only ‘‘almost positive’’ and ‘‘almost negative’.
We thus have to work sometimes with sets w that are similar, in some sense,
to the regular polyfacial sets and that satisfy the condition S = S*.

In the first part of our work we give a generalization of polyfacial
regular sets eliminating the distinction between positive and negative
faces and such that the main theorem concerning the polyfacial regular
sets [6, Théoréme 5, p. 310] remains valid. We observe that the sets
@ considered in Z. Szmydtéwna’s paper [5, §4, Théoréme 1, p. 24],
in our Theorem II-1 and in Barbalat’s paper [1, Théoréme 1, p. 303;
Théoréme 2, p. 305] are generalized regular polyfacial sets, in our
sense, but are not regular polyfacial sets.

Szmydtéwna [5, Corollaire 1-Remarque 2, p. 30] proves a theorem

1 Szmydtéwna’s Theorem 1 is false. We observed that the proof is wrong because
the statement: ‘‘La frontiére de w touchant celle de Q exclusivement sur le plan ¢t = o
... [5, p. 28] is false.

J. Lewowics [3], developing a counter-example suggested by J. L. Massera, has shown
that the theorem is actually false. Nevertheless, Theorems 2 and 3 deduced from Theorem
1 are correct because, in the particular case of linear systems z = Az, with A(t) defined
for T £t < o, the solutions are defined for all T <t < oo,
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which generalizes a theorem of Perron. In part II of our work (Theo-
rem II-1) we obtain the same conclusion but starting from hypotheses
different from those of Szmydtowna.

Note?. Our Theorem II-1 improves a result of N. I. Gavrilov. 1.
M. Rapoport in his book ‘‘On some asymptotic methods in the theory
of differential equations’’, Kiev (1954) has also studied problems of this
type. For some reference to their work to see ‘““Forty years of Soviet
Mathematics’’, Moscow (1959), Vol. i., pp. 520-521.

Our Theorem II-2 follows the same line of ideas.

Theorem II-3, due to Professor J. L. Massera, shows that in the
case n = 2 the asymptotic behavior can be described more completely.

Consider two systems

@ ¥ = Alt)y
2 & = At)x + g(t, x)

where A(t) is a continuous matrix for ¢ = T and g(¢,®) a continuous
vector-function in 2 = [T, ) x R™.

Suppose that g(¢, x) satisfies some condition ensuring the uniqueness
of the solution through each point P, 2 and that all solutions are
defined for T <t < . We say that (1) and (2) are asymptotically
equivalent if there exists a homeomorphism ¢ from the plane t = T
onto itself such that if @, = ¢(P,) then lim [z(¢, P)) — y(t, Q)] =0 [4,
Cap. IX, §4, p. 634]. t

In part IIT of our work the main result is the establishment of a
condition that implies the asymptotic equivalence between two linear
systems (Theorem III-3).

The author is deeply indebted to Professor J. L. Massera for his
constant guidance and invaluable help during the preparatation of this
paper, the result of work done at the Instituto de Matematica ¥
Estadistica, Montevideo, Uruguay

ParT 1
Let the real-valued functions
fz(tyxu"’rxn)y Ii:‘l,"'yny

of real variables ¢, x, -+, x, belong to C?, p =1, on an open set 2 C
R™, i.e., all partial derivatives

k
97,

P +20+ - +p, =k < p)
ot™ow, e « +Bxom

¢ The information given in this Note is due to the referee. We have not had
access to the above works. We are indebted to him for this.
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exist and are continuous on 2.
Consider the differential system

4y &= f(t, x)
where

xl Jfl(ty L1y ’ xn)

xr = and f(¢, x) = ............

a;n fn(t; Lyy 0y xn)

with (t, ) e 2.

Let g(¢, ) be a real-valued function belonging to C**' on 2, let
Py (b, %) € 2 and let x(tf) be the integral of system (I) passing]through
the point P,. We set @(t) = g(t, «(t)); since f(¢, )€ C? and g(t,x)e C***
it follows @(t) € C*** on (a(P,), B(P,)).

The qth derivative, ¢ < p + 1, of g(¢t, ) at the point P: (¢, x,) with
respect to the system (I), is by definition

[ j; ¢>(t)] and is denoted by [D7g(P)ls, .

Let H(P) = H(t,x),1 =1, ---, m, be functions € C*™ on the open

set 2 C R+,
Let

w={PeQ|H(P)<0,i=1, -+, m}
I;={PeQ|H(P)=0,H(P)<0,j=1,+--,m}

The I"; are called faces of w.

Such a set w will be called a generalized regular polyfacial set
relative to (I) if, for each i =1, ---,m and each P, (t, x)el’;, the
following alternative holds:

(1) The smallest index ¢ = p + 1 such that [D! H,(P)], # 0 is
odd and the corresponding derivative is positive;

(2) P, is not a point of egress.

Let L;, M, be the corresponding sets of points. Useful criteria to verify
Pye M, are:

() the smallest index ¢ =p + 1 such that [D%H(p)l,, # 0 is
either odd with a negative value of the derivative or even with a posi-
tive value of the derivative;

(b) There exists [a, d] C (@ (F,), B(P,)) such that a < ¢, <b and
I(a,b], P) c ..
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LEMMA 1. If w is a generalized regular polyfacial set relative
2o (I),

S:S*=0L¢—GM1‘-

=1 =1

Proof. Since I'y=L; U M;, B(w,2)c U1,
S*cSc(_nJLi—LmJMi,
i=1 =1

it is enough to show that any point P, belonging to this last set is a
point of strict egress. For such a P, J={j|PeL;}+¢. If jed,
H;(P,) =0 and there exists a & > 0 such that H;(t, I(t, P,)) < 0 in [t, —
8, t,) and Hyt, I(t, P)) > 0 in (¢, t, + 08]. If 7€ J, P,¢I"; whence H,(P,)
< 0 and there exists a 8 > 0 such that H,(¢, I(¢t, P,)) < 0 in [t, — 3, ¢,).
There exists therefore a & > 0 such that H,(t, I(t, P,)) < 0,7 =1, .-, m,
telt, — 5, %), and, for at least one j(cJ), Hy(¢, Py)) > 0, t e (¢, t, + 8], so
that P,e S*.

PArT 11

Consider the linear differential system
U= fOys + 2 950; i=1.0,m

where the coefficients f;, 9:;;, T =<t < o, are continuous functions (in
general complex-valued) of the real variable t.
By using Wazewski’s method Z. Szmydtéwna proved that if

R(fi = i) >0, [RGi—fiddt=co, k=1 m—1,
and

; 9.5 — 5= oo =1, cee. p —

REGo g O W Thrnm Ee b
then there is a system of n linearly independent solutions (y,,, «--, ¥,.),
k=1, n, with im, ..y;./¥, = 0 for © # k [5, Corollaire 1, Remarque
2, p. 30]. This theorem generalizes a theorem of Perron who obtains
the same result requiring the existence of a constant ¢ > 0 such that
R(f) > R(fis) +¢, k=1,---,n—1, and lim,...9;; = 0.

We notice that Szmydtowna allows the f;,7 =1, ---, n, to be large
and the g¢;; to be small in some sense. In the following theorem we
obtain the same result allowing also the f; to be large and the g,; to
be small but in a sense completely different from Szmydtéwna’s.
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THEOREM II-1. Suppose that the system
D & = fil)e: + 3 gt)e; , i=1,.,m,

satisfies the following hypotheses:

(1) The coefficients fi, g5 T =t < o0, are continuous functions
(in general complex-valued) of the real variable t.

(2) There exists a real-valued continuous function h(t), T <t <
oo, such that for all © + 5 we have

| B(f: — £)| < h(t),
|l emvdt < oo
and

S“’, R(giz - gj]) i eZPdt < oo |
7

where H(t) — S h(s)ds

Then there is a system of m linearly independent solutions

xu(t)a ey xln(t)
(xl(t), oee, xn(t)) — | et ececane
xnl(t)y cec, mnn(t)
with lim, .2 /% = 0 for all © + k.
Proof.
For every fixed integer p, 0 < p =< n, we set
0, ={P:({, )| |= | — |2, "9(t) < 0,7 % p, t >t = T}

where @(t) and #, will be conveniently chosen so that, for every ¢ = ¢,
P(t) > 0, ¢ is differentiable, lim,..p(f) =0 and ®, is a generalized
regular polyfacial set.

Let

H(P) = |w; " — [z, [9(t) , TED,
Hp(P):to’—ty

it follows that w, = {P|H(P) < 0,4 =1, -+-, n}.

Set, for q + p,
F,=r,—{Q:@¢2|z=0
={P| |a,| = |2, |P), |2.| =|a, [ P(t) for © # p, t = ¢, x,+ O}.

An easy computation shows that
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%[Dm)HQ(P)]Pe Iy = |y POOIRfs — fo + Gu — Gun)]

17 PPOPD) — [, 190 5105 |12

_ 2 X foJ,qu| .
Rl e

Since |z, | = |, | o(t) = | ;| for j +# p it follows that |x,|/|x,| =

®(t). As we want @(t) > 0 and lin,..p(t) = 0 we can take ¢, such that
@) <1 for t = t,. Then

DL HPIPE I = |5, PORF, — fo + 9 = 00)
— |, FPOP(E) = |2, PO 531 05| — 2 P9(0) 531 0us] -
since

POR, = Fo+ Gua — 92) = PO = 2O 51055 | — 1005 >
— () — p(OR() — 9(t)

where
9(t) = {; | B(9: — 955) | + 91} + e 707",

in order to have, for q + p, [DuyH(P) € [, >0, it is sufficient to choose
@(t) such that
(A) $) + POIE) + 9(t) = 0.

P(t) = e“H‘“S g(s)e® ds is indeed a solution of (A) satisfying the
conditions @(f) >t0, @ differentiable and lim,_.o(¢) = 0.

If w, is defined in this way, taking into account that [D,H,(P)]re Iy
= —1 and that the set {Pe /", |z, =0} < M,, for q + p, it follows that
w, is a generalized regular polyfacial set.

For ¢ # p we have

Li=T;and L,=¢,
Mz:M:{P:(t,x)\tgto,xzo} and Mp:Fp_

By Lemma 1
S=S=Url,—-r,—M.

17D
We choose

Zy={Pit o)t =v>t o, =2, # 0, [o | =|w|e@, i =11 B;
i#p

where B? is a solid sphere in R%. We have
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Z,N8=2Z,N[Ur~r,—M =Yz, 0% —T,—M].

For i # p

Z, N[l =Ty — M]={P:(t, )¢ =7,2, =, | x| = |22 p(c),
l2;| S jap|P(2), = p} = Bi X +++ X BLy X S!x B%, X +++ x B!

(in the cartesian product above B? is exclued) where S! is the boundary
of B} in R*.

Modulo homeomorphisms we have therefore Z, = B*~* (solid sphere
in B and Z, N S = §*~* = Boundary of B**in R** so that Z, N S
is not a retract of Z,.

There is however a retraction ¢:S— Z, N S given by ¢(P) = P*,
with t* =7, 2y = a3, ¥ = o(7)[PE) | 2% |/| 2, | +2;, © = p. The verification
is trivial.

By using the theorem of Wazewski we can conclude the existence
of at least one point P (7,2,)€ Z, — S with I(t, P,) w, for every
t =z 7. This means that the solution z,(t) = (x.,(t), ---, z,,()) of ()
passing through P, satisfies

{g_ii%lT<¢(t) for t =7 and 7« p.

Letting p =1, -+, n we find n solutions (x,(¢), «--, ,(t)) with the
required property. Let us show that these solutions can be taken
linearly independent.

By choosing Z, with sufficiently large = and z!, = 1 the absolute
values of the coordinates #;,, ¢ # p, of the points of Z, can be made
arbitrarily small. We then have

xl(T) €n e &,
xz(z_) . Ea * 0 &
xn(z.) enl et snn

where ¢; = 1 and the |¢;;| are smaller than any given positive number
for all © # 5. This completes the proof

In the following theorem we will look for linearly independent
solutions of (II) with similar properties to those of Theorem II-I but
not necessarily requiring that they form a fundamental set of solutions
of (II).

THEOREM II-2. Suppose that the system (II) satisfies the following
hypotheses:
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(1) The coefficients fi,9:;, T <t < oo, are continuous functions
(in general complex-valued) for the real variable t.

(2) There exists a natural number r < n such that R(f,) = ... =

R(f.), B(f) = R(f,) for all 1 <, Swf g:5(8) | dt < o for all ©+j and
oo T
| BG: — 0,9 [ dt < o

Then there exists s + 1 (r + s = n) linearly independent solutions

x“‘(t) tee xln(t)
(x, (), «+ -, 2,(0)) = ( ............. )
Lpr(t) « o+ 0,,(0)

such that lim, .2 /%, =0 for all i £k, bk =1r, ---, n.

Proof. Given an integer p, r < p = n, we prooceed exactly as in
Theorem II-1 up to the point where we got the expression:

GD(t)R(fq - fp + Geqg — g:op) - @(t) - (/D(t)j;p I gpjl _j;q [ gqj]
which we denote by B,.
As we have R(f, — f») = 0 for all g, 0 < g < n, it follows (p(t) < 1)

B, = — ¢(t) — g(t) where S;g(t)dt < .

Making o(t) = r[g(s) + e~*]ds it follows that () > 0, ¢ is differ-
entiable, lim, ..(f) = 0 and B, > 0.

Proceeding as in Theorem II-1 we find a set of (s + 1) solutions
(x.(@), «--, 2,(t)). Still by a similar reasoning we may show that these
solutions can be so chosen that for a sufficiently large z we have

(@ (T), sov, 2(T)) = eeroornnns

rry 2%y Epn

with ¢;; = 1 and the | ¢;; |, 2 # J, smaller than any given positive number,
so that, they are linearly independent.

If » =2 Theorem II-2, with some supplementary hypotheses, leads
us to a deeper result. As already mentioned in the Introduction the
following theorem is due to Professor J. L. Massera with whose per-
mission it is reproduced here.

THEOREM II-3. Suppose that the system

T = filt)r + gu®)x + g.(t)y
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Y = fi(H)y + ga()x + gty

satisfies the following hypotheses:

(1) The coefficients fi, g5, T <t < o, are continuous real-valued
Sfunctions of the real variable t.

@ £O 2 50, | G0 — Aot = o, {1050 14t < o for i+
d STI gu(t) - gzz(t) ! dt < oo,
Then there exists a solution (x,(t), y,(t)) satisfying lim,..x,(t)/%(t)
=0 and, for any other solution (x(t), y(t)) which is not proportional
to (x,(t), y.(t)), we have lim,_..y(t)/x(t) = O.

Proof. The existence of a solution (z,(t), ¥.(t)) with the required
property follows from Theorem II-2.

Without loss of generality we may assume g, = g,, = 0. Choose
t,> T so large that i (9] + g Dt < T[4 Let (26), (t) be the
solution which satlsﬁes 2(t) = 1, y.(t,) = 0. Setting 6(t) = arg (x.t),
%.(t)), we claim, in the first place, that | 0(t) | < m/4 for ¢ = ¢t,. Assume
that this were not the case. It then follows that there exists an interval
(@, t),t, = t,, such that 6(¢,) =0,]0(t,) | = w/4,0 < |6(t) | < z/4 for t, <
t<t, say, 6(t,) = w/4,0 < 0(t) < w/4 for t, <t < t,, whence x,(t)- ¥,(t)
>0 in (¢, t;). Since

6 = Yoy — Tyl — 9225 — Go¥s + (fs — )Y,
@ + Y w; + v

we arrive to the contradiction 7/4 = 0(t,) — 0(t,) = gwﬂ'dt < 7/,

t
We next prove that lim,_.y.(t)/z.(f) =0, or equlivalently lim,_..0(t)
= 0. There exsists a sequence ¢, — c with 0(t,) > 0, otherwise 6(z) >
6, > 0, say, which leads to the contradiction

0t) — 0(t) = — || (£i(t) — £(0) sin (@) cos O(t)d

¢
+St(lgni+|g21{)dt—>-—oo .
0

Now, given ¢ > 0, choose ¢, such that [6(t,) | < €/2, S (gl + |9, dt <
¢/2. An argument similar to the one used to prove |60(t)| < z/4 then
shows that | 6(¢) | < e for t = &,.

Assume ¢, large enough so that | (@) 1/ @) | < 1, [yut) || 2oft) | < 1
for t = t, and, say, w.(t) > 0, 2,(t) > 0; then

%:(t) = (50 + [ 92() - 9:(0) ,
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£0) 2 (£ — 1 90 ). w0t)
whence
(t) = 3t exp (| (70) + 90 Dt )
2.6) = a,(t). exp (|| (A0 — 1.0 Dat)

and

(AQ) A ¢ . .
0 é’—%(%)'exp(gt}f*t) @) + | 9ty | + | gult) I)dt> 0.

Finally, any solution (x(t), ¥(t)) which is not proportional to (x.(t),
y.(t)) satisfies, for a certain constant value £k,

y@) _ ) + k() _ (@@)[@) + EpOleLl)
a(t) ey (t) + kys(t) 1+ k@) @)y (B)],(t))

PaArT III

Consider the linear differential systems
(I1I) z = A(t)xr + B(t)x
() i = Aty

where A(t), B(f), T <t < o, are continuous complex matrix functions.

Conti [2, Theorem I, p. 589] proved that: if g | B(t) | dt < o where
B(t) = (bi(t)) and | BE) | = > 1bi@) | and if (III') is uniformly stable,
then the system (III) and (III') are asymptotically equivalent®,

The theorem of Wintner [7, 7-1, p. 423] stating that:

If Bt) =0it), T=t < o,%,5=1, -+, n, 18 @ matrixz of n* con-
tinuous functions satisfying \ | B(t) |dt < o, them every solution of
& = B(t)xr tends to a finite limit as t — =, is a particular case of
Conti’s result (A() =0) .

Our Theorem III-3, is also a generalization of Wintner’s theorem
but different from that of Conti.

Theorems III-1 and III-2, which are preliminary to Theorem III-3,
give us some information, though less than asymptotic equivalence,
concerning the behavior of two systems, one of which not necessarily
linear.

THEOREM III-1. Suppose that the systems

8 The theorem of Conti is actually more general. We have considered the theorem
applied to linear systems only.
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(I1I-1) z; = fil)x: + 9., ») ,
(I1I-2) ¥ = [0 »
t=1,--0,m, gt )= (g, x))

satisfy the following hypotheses:

1) fi(®), T =t < oo, are continuous functions (in general complex-
valued) of the real variable t; g.(t, x) are functions (in general complex-
valued) continuous in

2={t»|t>T o] = e < o}

and satisfy some condition which implies the existence of only one
integral passing through each point of £.

@ 1ot x)| =[2|F({) on L.
(8) There exists a negative constant K such that
K = | R(f(0)dz
t
forall v=1t > T and
oo 13
g F(t) exp [STR( fi(s))ds]dt < oo

SJorall e =1, «+-, m.
Then for every solution y(t) of III-2 there ts a solution x(t) of
III-1 such that lim,_.[x(t) — y(t)] = 0.

Proof. We define w = {Pe Q]| |z, — y(t)| < @:(t), t > t, = T} where
the ¢,(t) and ¢, will be adequately chosen so that for allt=t¢,i=1, .-+, n,
we have: @,(f) > 0, ¢, differentiable, lim,...»;(f) = 0 and @ a generalized
regular polyfacial set.

If we put

H(P) = |z, —y:(t) [} — #i@) , 1=1,¢4,0
Hn+1(P) = to - t

it follows that w = {P|H(P) < 0,1 =1, -, n + 1}.
For all 7,1 <7 < n,

Fi={Pellle; —y®) | =20, |2, —yO) [ = P(1), T =1, -+, m, T =8} .

An easy computation shows that
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%[Dun-nmp)]Pe I, = QORIAO] — 2OP:()

—POFO[ 2~ v | + ]

As we want @,(t) > 0 and lim,..®,(t) = 0, we can take t, such that
@) <1 for all t = ¢,. Then,

L Do HU(P) [Pe I 2 9ORLA®)] = 9.07it) — PLOF O

— 9 OF (1) 331 ex | exp || RIS = PORLAD] — 2OP()

— pOF(®) 3,1 d, | exp || RIAG)ds = PAORIAO] — 2,050
— POk

where we can assume Smh(t)dt < o and, without loss of generality,

h(t) > 0 for all t = ¢,
In order to have, for all ¢+ =1, ---, n, [Dyu_H(P)IPc ", >0 it is
sufficient to choose @(f) such that

— @dt) + R[fi(®]e.(t) — k() > 0.
The problem is then to look for a solution z(tf) of Z < a(t)z — ¥(t)
satisfying 2(f) > 0 for all ¢ = ¢, lim,...2({) = 0, knowing that ¥(t) > 0
for all t = ¢, g v(t)dt < « and | o(s)ds = K for some constant K and

all v=zt=t¢. If WE) is a sotlution of W = o)W — ¥(t) it follows

that 2(f) = 2W(¢) is a solution of 2 < o(t)z — ¥(f). It is then sufficient

to find a solution W (t) satisfying W(t) > 0 for all £ = ¢, and lim,... W(¢)
t oo L}

=0. The solution W(t) = exp (S a(s)ds). S v(v) exp(—g o(s)ds>dv ex-
¢ tg

ists and indeed W(t)— 0 as t — o because

W) = ijy(v) exp <— Sja(s)ds)dv Ze® Sjv(v)dv .

Since [Dui—nH,(P)] = —1 it follows that w is a generalized regular
polyfacial set and S = S* = Url"; — 0.

If we choose

Z={tx)t=1t>t, |0 —y(r)| = pi7), ] =1, cee, n}
it follows that SN Z=U, "N Z—-T, 1,
Fi n Z:{tix)ltzrilxt_y‘b(r),
=), |2; —y;(D) | = Pi(0), 5 =1, -+, n}.
Then Z = []?_,B?
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Zn S=0B§>< eoe X B X S X Biyy X 00 X B
i=1

and, modulo homomorphisms, Z= B*, Z N S= 8" so that ZN S is
not a retract of Z. However, it is easily seen that ¢:S— SN Z given
by ¢(P) = P*, with t* =7, 2} = y:(7) + [2: — v:()]P:(0)/2i(t), is a re-
traction.

Using the theorem of Wazewski we can conclude the existence of
at least one point P,:(r, %) € Z — S such that (¢, x(t, P)) = I(t, P) C ®
for all t = ¢,.

Since «(t, P,) is defined in the future, i.e., B(P) = « (because
B(P) < « implies {I(t, P) |t, =t < B(P,)} bounded, which is not possi-
ble), it follows that lim,..[xz(t, P) — y(t)] = 0.

COROLLARY 1. Suppose that the systems

(IT1-1') £ = Fi(t)m: + 35 0,00;
(I11-2)) 4 = Fityus

t=1,-,m, g@)=(9:0)

satisfy the following hypotheses:

(1) The coefficients fi, 9:5, T=t < o, are continuous functions
(in gemeral complex-valued) of the real variable t.

(2) There exists a constant K such that
K< S"R[fi(s)]ds forall v=t= T and
t
oo t
{9 1exo {[ Bl @Ms}dt < =, i=1m.
Then for every solution y(t) of (III-2') there exists a solution
2(t) of (III-1') such that lim,..[2(t) — y(t)] = 0.
The theorem of Wintner mentioned before follows a once from

Corollary 1.

THEOREM III-2. Suppose that the systems

(ITI-A) i = 3 Fislt)ms + 0.6, 2)
(ITI-B) ¥ = glfu(t)yj

,5=1,,m, gt 2) = (9 x)
satisfy the following hypotheses:
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1) fii(), T =t < oo, are continuous functions (in general complex-
valued) of real wvariable t; g.(t, x) are functions (in gemeral complex-
valued) continuous in

Q={ta)|[t< T x| < o}

and satisfy some condition which implies the existence of only one
integral passing through each point of 2.

() lgt,x)] =|z|F(E) in 2.
(3) There eists a constant K such that
K< SjR[fﬁ(s)]ds for all v=t= T and
S”F(t) exp {S;R[ fﬁ(s)]ds}dt < o, i=1,--0,m
[17.0 exp {[ Rlfu@ds)at < o, k=1, mizj.

Then for every solution y(t) of (III-B) there is a solution x(t)
of (III-A) such that lim,_ .[z(t) — y()] =0

Proof. Consider the systems
(I1-A) &; = fu(t)x; + g:(t, ©) where §;(t, ) = g:(t, x) + ;fii(t)xj
(III'C) 2"1- = f‘”(t)zz .

These systems satisfy the condition of Theorem III-1. Hence for
every solution z(t) of (I1II-C) there is a solution «(f) of

(1I1-A) such that lim, .[2(f) — 2()] =0

Consider now the systems

(II1-B) ¥ = Z F:i)y;
(II1I-C) z; = fu(t)z; .

It is easy to see that they also satisfy the hypotheses of Theorem
III-1. Hence for every solution z(¢) of (III-C) there is a solution #(t)
of (III-B) such that lim, .[y() — 2(¢)] = 0. But we can also prove that
for every solution y(¢) of (III-B) there is a solution 2(t) of (III-C) such
that y(t) —2(t) >0 as t— c. For that purpose it is enough to show
that there is a fundamental set 2'(t), ---,2"(t) of solutions of (III-C)
such that the solutions y'(t), ---,y"(t) satisfying ¥%'(t) —zi(t)>0 as
t— o, foralli=1, ..., n, are a fundamental set of solutions of (III B).
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#(t)
- | such that zi(t) = 0 for all j i and 2i(¢)
2:(8)
= exp (Stfii(s)ds> forallei=1, -, n.
T
The corresponding ¥%i(t),? =1, -+, n, satisfy lim,..yit) =0 if 7 # <
and lim,_. | yi(t) — exp [S fi(s)ds | = 0. Hence, there exists ¢, such that
r

t = t, implies

Let us take zi(t) = (

uit) — exp | futwyas |1 < Lox.

Whence

90| > exp{| RIfu@lds} — Lo = Lo

Therefore, for any ¢ > 0 there is a #(¢) such that ¢ = t(¢) implies
|yit)| > 1/2e5,¢ =1, -+, m, and |yi(t)| < e for all ¢ # 5. This implies
the existence of a == T with det(y'(7), -+-, ¥*(7)) #+ 0 and (¥'(¢), ---,
y*(t)) is a fundamental set of solutions of (III-B).

From the results concerning the systems (III-A), (III-C) and (III-B),
(ITI-C) we conclude that for every solution y(¢f) of (III-B) there is a
solution z(¢) of (III-A) such that lim, .[z(!) — y(¢)] = 0.

THEOREM III-3. Suppose that the systems

(Ill-) & = 31 fO)z 00 + 3 0:5(0)a;
(IIL-6) 5= 3 FisO)ws Li=1-m

satisfy the following hypotheses:

(1) The coefficients fij;, 9.5, T =t < o, are continuous functions
(in general complex-valued) of the real variable t.

(2) There exists constant K such that K =< SDR[f“(s)]ds for all
v=2t=T,1=1,---,n, and t
= t
| 1900 1 exp {]] RLA(o)Mds}at < w0, B4, k=1, 0x0m
oo t
{1750 Lexp {| RUfw@Ms}at < o0, 4,5,k =1, m i g

Then the systems (IlI-x) and (III-8) are asymptotically equivalent,
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Proof. By Theorem III-2 for every solution y(t) of (III-8) there
is a solution #(¢t) of (III-a) such that lim,_..[x(t) — y(t)] = 0.

Let us show that given a fundamental set (¥'(¢), «--, y"(t)) of so-
lutions of (III-B) the corresponding solutions (2'(t), «--, "(t)) of (III-w)
satisfying lim,..[z'¢) — ¥'(¢)]= 0,7t =1, -+, n, also form a fundamental
set of solutions.

Consider the auxiliary system

(I11-) &= fuld)e i=1m.

Applying the argument used in Theorem III-2 to the systems (III-B),
(III-y) we conclude that there exists a fundamental set (y'(¢), ---, y*(t))
of solutions of (III-B) and a %, such that ¢ = ¢, implies

| yit) | ;%e“ and yi(t) >0 as t — o for all ¢ 75 .

Let (2'(t), -+, 2"(t)) be the solutions of (III-) such that lim,...
[2%(t) — ¥'(t)] = 0 (the existence of which follows from Theorem III-2).
Then lim, ..x}(t) = 0 for all © # j and there exists T = ¢, such that¢t = 7
implies | zi(t) | > 1/4e~.

For sufficiently large ¢t we have therefore

det (x'(t), -+, 2"(t)) +# 0

and this means that (x'(t), ---, 2*(t)) is a fundamental set of solutions
of (Ill-a).

The systems (III-a) and (III-B) being linear this implies that they
are asymptotically equivalent.
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A THEOREM ON REGULAR MATRICES

PETER PERKINS

In this paper it will be proved that if any nonnegative, square
matrix P of order 7 is such that P™ > 0 for some positive integer m,
then P77+ > (0. This result has already appeared in the literature,
[2], but the following is a complete and elementary proof given in detail
except for one theorem of I. Schur in [1] which is stated without proof.
The term regular is taken from Markov chain theory' in which a regular
chain is one whose transition matrix has the above property.

A graph Gp associated with any nonnegative, square matrix P of
order r is a collection of 7 distinet points S = {s;, s;, *+ -, S,}, some or all
of which are connected by directed lines. There is a directed line (indi-
cated pictorially by an arrow) from s; to s; in the graph G, if and only
if p;; >0 in the matrix P = (p;;). A path sequence or path in G, is
any finite sequence of points of S (not necessarily distinet) such that
there is a directed line in G, from every point in the sequence to its
immediate successor. The length of a path is one less than the number
of occurrences of points in its sequence. A cycle is any path that begins
and ends with the same point and a simple cycle is a cycle in which no
point occurs twice except, of course, for the first (and last). Two cycles
are distinct if their sequences are not cyclic permutations of each other.
A nonnegative, square matrix P is regular if P™ > 0 for some positive
integer m. Likewise, a graph G, associated with a nonnegative square
matrix P is regular if there exists a positive integer m such that an
infinite set of paths 4,, 4;, -+, 4,, --- can be found, the length of each
path being L, =m +n, n =0,1,2, ---. The usual notation p{’ is used
to denote the i7th entry of the matrix P™. In all that follows we shall
consider only regular matrices P and their associated graphs G;.

Some Immediate consequences of these definitions and the definition
of matrix multiplication are the following:

(1) There is a path s, +++ s, ., in Gy if and only if pi} . > 0in P™.
(2) P is regular if and only if G, is regular.
(8) There exists some path from any point in G» to any point in G».
(4) For any given % and J there exists some m such that pJ’ > 0.
) If P> 0 then P~ >0, n=0,1,2, -,

Let C ={C,, C,, -+, C,} be all the distinct simple cycles of G, and
{es, €5 +++, ¢} be the corresponding lengths.

Received November 21, 1960. I wish to thank Professor R. Z. Norman for his sugges-
tions in the writing of this paper.
L This is as treated by Kemeny and Snell in [3].
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LEMMA 1. The length of any cycle C* is always of the form c* =
t_a.c;, where a; is some monnegative integer.

Proof. Let any cycle C* = s,, 8, **+, s;, be given (k, =k,). Let
C* = Cf and form C7,, in the following manner from C}: Wherever
simple cycle C; occurs in cycle C; delete it except for its last point,
thus forming the new cycle Cf,,. It is clear that after the tth step
there will remain only a single point of the original C*, which has of
course zero length. If we let a; be the number of times simple cycle
C; occurred in cycle C} then the lemma follows.

THEOREM 1. If G, is any regular graph then it must contain a
set of simple cycles whose lengths are relatively prime.

Proof. By the regularity assumption and (1) there exists a positive
integer m such that cycles of lengths L, =m +n, n =0,1,2, .-+ can
be found in Gp. Also, from Lemma 1, L, = > ,a,c; for n =0,1,2, «--,
and suitable a;. Let d be the common factor of the simple cycle lengths
¢;. Then

t t
>iac; =d Y ac;
1=1 1=1

which could never equal m +n, n =0,1,2, -+ unless d =1,

We would like to find a least integer M such that for arbitrary
points s; and s, there are paths beginning at s; and ending at s; and
whose lengths are L, =M +n,n=0,1,2, ---. If we can do this, then,
by (1), we shall have also found a least integer M such that P¥% >0
where P is the regular matrix associated with G,.

Let us say that a path touches a given set of points if there is
some point belonging to both the path and the set. Then we have

LEMMA 2. Let G, be a regular graph with r points, let S be a
subset containing r, distinct points of the graph, and let g be any point
of Gp. Then there always exists a path from g which touches S whose
length is less than or equal to r — r,.

Proof. 1If geS then the lemma is trivial. Suppose g¢S. By (3)
there is at least one path which starts at g and touches the set S. Let
D =Gy 91, +++, s be such a path of shortest length. Obviously no point of S
can precede the final point s in this path sequence p. Furthermore,
there can be no repeated points in p, for the deletion of any cycle
(except for its last point) would produce a path from g to S shorter
than path p, contrary to the choice of p. Therefore, » can have at
most r — 7, points.
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We shall say that a minimal set of relatively prime integers is a
set of relatively prime integers such that if one of the integers is de-
leted the remaining integers are no longer relatively prime. A step
along a path in G is a pair of consecutive points of the path sequence.

THEOREM 2. If R={R, R,, ---, R} is a set of simple cycles of
graph G, whose lengths {1y, s +++, 1.} form a minimal set of relatively
prime integers and if s; and s; are arbitrary points of G,, then there
is always a path which starts at s;, ends at s;, touches each cycle of
R and whose length L < (k + 1)r — Sk v, — 1.

Proof. Note that the set of distinct points belonging to a simple
cycle contains a number of points exactly equal to the length of the
cycle. Hence, by Lemma 2 there is a path from an arbitrary point s;
which touches a particular cycle R, and whose length is less than or
equal to » — r,. Thus, we have the following:

from to greatest number of steps meeded
arb. pt. s; cycle R, r—r
cycle R, " R, =T,
cycle R,_, cycle R, r— 7,
” R, arb. pt. s; r—1

TOTAL L=+ Dr—>kr —1.

We shall now state without proof I. Schur’s theorem cited above
and use it in our final theorem.

THEOREM 3. (Schur) If {a,, @, +++, a,} is a set of relatively prime
integers with a, the least and a, the greatest, then B = 3! x.a, has
solutions in nonnegative integers x; for any B = (a, — 1)(a, — 1). This
is a best bound for n = 2.

THEOREM 4. If M is the least integer such that paths between any
two points of Gp can be found whose lengths are L, =M +n, n =
0,1,2 ---, then M < r* — 2r + 2.

Proof. Given any two points s; and s; of G, we know by Theo-
rem 2 that there is a path from s; to s; touching each of the cycles
{R, R,, ---, R,} and whose length is

L<G+lr—3r—1.

i=1
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We can, then, interject into this path the simple cycles {R, R,, ---, R,}
at the touching points, interjecting cycle R; say x; times. The length
L of the original path has now been increased to L + X% x., = L + B,
the second part of which, by Schur’s theorem, can be made to take on
any integral value B where B = (r, —1)(r, — 1), and 7, = min (r,, 7, + +, 7s),
r, = max (7, 1y, +++, 7). Therefore, we have:

k
(7) M§L+B=(k+1)r—§_‘,'ri—rs—ra+7'sra

Case 1. Suppose k =2. Then M=3r —(r,+ 7)) —r,—r, +ror, =
8r—2r,—2r, +r,r,=3r+ (r, — 2)(r, — 2) — 4. The right side of this
inequality is obviously maximum when 7, and 7, are as large as possible.
Recall that r, < r and 7, < r — 1. Therefore we have:

(8) MZ3r+(r—2)(r—8)—4=7r"—2r +2.

Case 1I. Suppose k = 3. The reader may wish to skip the following
formidable looking, though straightforward calculations. They result in
a proof that the integer M with the desired property is in fact smaller
when the arbitrary graph contains a larger set of these cycles.

Since the lengths of these cycles are a minimal set of relatively
prime integers, it is certainly true that

SRz e b+ 2+ Al e 20— D] 4 7,
=k —1r,+Gk—1FE—-2) +7,.

Thus, with (7) we have:

Mcsk+Y)r—[k—-—Dr,+E&—-DE—-2)+7r]—1r,—7,+7rr,
=k +Vr—Fkr,—2r,+ r,r,—(k — 1)k —2)
=k + r + (r, — 2)(r, — k) — 2k — (k — 1)(k — 2) .

Since 7, must be larger than k, the right side again is maximum when
r, and r, are as large as possible. But r, < and r, <r—k+2. So

MsE+Dr+@—k(r—k—kK+kE—2
=r+Q—-kr+k—2.

This is easily seen to be less than 77 — 2r + 2 of Case I, if »r > 1. So
in any case M < r* — 2r + 2.

To see that r* — 2r + 2 is the least value for an arbitrary graph
of r points and thus for an arbitrary matrix of order r, we need only
consider the following example in which » = 3 and M = 5.
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S, S 8 8 8 8 83 8 8 8
/\ Sy 0 X X 8, X 0 X 8y
// \\ s, {0 0 x| s,|{x 0 O} s,lx 0
s ya N, S \x 0 0/ s \0 S5 X
) e I
Gr P pP? p

As a matter of fact it can be shown for any regular matrix P of
order » whose graph G, contains only two cycles, one of length » and
one of length » — 1, that P **' is not positive. We have, therefore,
established the claim of the paper as stated in the opening paragraph.
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CENTROID SURFACES
C. M. PETTY

1. Introduction. Let M, ---, M,_, denote (n — 1) bounded closed
sets in E,. Busemann [1] has established the expression

L1y [ M|--- | M| =

(7’1/_——_12_!_ g (S oo X Tz, D1y + =+ D) Vp’;*l N de’;‘_ﬂ)dwz
2 25, \J ¥4 () My 1w

where |M;| is the #n-dimensional Lebesgue measure or volume of M.
On the righthand side M;(u) is the cross-section of M; with the hyper-
plane through z normal to the unit vector w, the point p, varies in M;(u)
and the differential d V. is the (n — 1)-dimensional volume element of
M(u) at p,. The final integration is extended over the surface 2, of
the solid-unit sphere U, and dw; is the area element of 2, at point u.
By T(z, p,, -+-, »,) we will denote the r-dimensional volume of the simplex
(possibly degenerate) with vertices z, p,, -+ -, p,.

Let

_ i
(1.2) T, = ———-—-—F(Nz T

For n = 3, Busemann also shows by Steiner’s symmetrization that

(L8) (Mo [ Myl 2 2B ) 10 | M) o
for nondegenerate convex bodies M; where the equality sign holds only
when the M; are homothetic solid ellipsoids with center z. Here | M(u) |,
of course, denotes the (n — 1)-dimensional volume of M,(u). In this
regard we will also, as a matter of convenience, not index lower di-
mensional mixed discriminates and mixed volumes since the dimension
will be evident from the number of components.

The primary purpose of this note is to reinterpret (1.1) as an inte-
gration of the type (1.3) retaining the equality sign. This is given in
§3 by (3.20). In addition other integral expressions and inequalities are
derived which are geometrically of the same type as those considered
above.

2. Fenchel’s momental ellipsoid. Let M be a bounded closed set
with positive volume. The centroid s of M is defined by its rectangular
coordinates

Received January 3, 1961.
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1
2.1 c=— wdve.
@D 5= TM Su“

If L, is a v-flat through the origin 2, then the second moment of M
with respect to L,(0 < vy < n — 1) is defined by
2.2) (M, L,) :S 7 sin? pd V7

where the distance zx is r and @ is the angle between the ray zx and
L, (forv = 0, we define ¢ = 7/2). By the same type of integration tech-
nique in [1, pp. 5-6], the reader may verify that

2. yLv:n—y n
(2.3) I(U,, L) s N

where U, has center z; a calculation which will be used later.
The matrix A, given by

2.4) A, = [L S vd V:]
M

is positive definite since

vAw = | Crardve,

where y is a column vector and y” is its transpose. The ellipsoid with
surface 27A,x =1 will be called Fenchel’s momental ellipsoid and its
polar reciprocal with respect to 2, given by 27A4x'x =1 will be called
simply Fenchel’s ellipsoid. This name is chosen since W. Fenchel first
observed the affine character of this polar reciprocal (unpublished):

(2.5) Let M be transformed into M by a central affinity with matrix
B. If F and F are the Fenchel ellipsoids of M and M respectively,
then this central affinity also carries F into F.

To see this, it may be observed from (2.4) that Ay = BA,BT or
Az = (B™)TAR'B~* which completes the proof.

If |F| is the volume of the Fenchel ellipsoid F' of M, then

(2.6) |F|?=7det (Ay) .
The result (2.5) enables one to prove readily that
2.7 T FP=det(Ay) = (n + 2) ™7, | M

with equality only if, except for a set of measure zero, M is a solid
ellipsoid with center z. _For if we transform M into M by a unimodular
central affinity so that F' is a sphere, then
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det (4,) = [n—llM_l Siwd V] .

Comparison of S_r"’d V2> with that for a sphere with center z and volume
M

| M| proves (2.7).

We will adopt the same notation for mixed discriminates as in [2,
pp. 51-b7] where the reader will find an exposition of their properties.
Consider the 7 quadratic forms ¢, = x"Ax, 1 =1, -+, r, where 4, =
[a¥] is a real symmetric matrix. For any real A, «++, A, set ¢ = \g; +

eee + Nq, = 2"Ax where A = ;,Z‘ MA,.  The discriminant D(q) = det (4)
can be written

r

D(q) —__2 ....leil °cc )’i”D(Qily °t qin)

=1 in=

where D(g;, --+, ¢;,) is independent of the order of the g¢; and is called
the mixed discriminant of ¢;, --+, ¢; . For n forms ¢; we have

(i1) (ip)
anl cee am"

1
(2-8) D(qv ] Qn) = S

n!l 6w | .

ay -+ agiy
where (i, «-- %,) is a permutation of (1 ... n).
Now consider # closed and bounded sets M; with positive volume and

let ¢; = x"A,,x be the quadratic form associated with the Fenchel momen-
tal ellipsoid of M;. By (2.4) and (2.8) we have

1
(2.9) D(qn R Qn) =
nl| M|+ | M,|
AU L
by S S ARURERI AL I < AV e dV
(ig..oe) J My My (iy) i) e °
n L e in
x;l) PP xl(") 2
T el
_ D ave, e ave
N . ) (n)
”ILHMI"‘IM"' 1 Hn (1) (n) ’ ’
L' see )

Since T'(z, xV, -++, x™) = & (1/n!) det (z{’) we then have

(2.10)  D(gy +++,qa) =
n!

S —— R N OO TR VA A (A
lle'“anISMx SM,. & » b.) n

The fundamental inequality for mixed discriminants (see [2, p. 53]) is:
(2.11) If the forms q,, ---, ¢,_, are positive definite and @ is any sym-



1538 C. M. PETTY

metric form, then

Dz(Qv oy lpn—y Q) = D(Qn ccy Qu1y qn—lD(ql’ 0y Qg Qy Q)
where the equality sign holds only if @ = \g,_,.

If we set
(2'12) Dp(Qy Q) = D((Iu ) qnvpy Qr R Q) ’
D

then for n positive definite forms gq;, (2.11) generalizes to
r—1
(2'13) Dr(qu ctey qn) g I!:;[O D'r(q! qn*k)! r= 2: 37 R (2

with equality only if ¢q,_, = N9, for k=0, «++, r — 1.

The proof of (2.13) and the condition for equality proceed by indue-
tion from the case » = 2. The proof is analogous to Alexandrov’s gener-
alization [2, p. 50] of a corresponding inequality for mixed volumes and
consequently will be omitted here.

If we now set

@) WM, M) = e | TCpa - IV eV,

My
and

(2-15) Wp(M! Mky Z) = W(Mv ) Mn*p: Mkr e Mk: Z) 5
D

then by (2.13) and (2.10) we have
(2‘16) WT(MD Tt Mn! Z) g ﬁ Wr(Mr Mn—kr z)y r = 2y R (2
k=0

with the equality sign only if the Fenchel ellipsoids of M,_, are homo-
thetic for k=0, .-, r — 1. Applying (2.16) to the case » = n and using
(2.10) and (2.7), we have

(2.17) LIM] e M, ] < nlmi(n + 2" WM, ---, M, 2)

with equality only if (except for a set of measure zero) the M, are
homothetic ellipsoids with center z.

The reader will find other inequalities of the above type in [3, pp.
70-71].

3. Centroid surfaces. As before, M is a bounded closed set with
positive volume. An oriented hyperplane L(u) through 2z normal to the
direction u (u # 0) bounds a closed half-space lying on its positive side.
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The intersection of this halfspace with M will be denoted by C(u).
Consider the function

3.1) H(u):l—ﬂlﬂSulu-xldV;‘,u-nguixi.

Since

@ HO) =0,
(b) H(pu) = pH) for 2> 0,
(© H(u+v) = H@) + H@) ,

H(u) is the supporting function (s.f.) of a convex body K* (see [4, D.
26]), which is nondegenerate and has center z. Let P, be the supporting
plane (s.p.) to K* in the direction #'”, the supporting function of K* N P,
is given by the directional derivative

(3.2) H' (u; u) = 1lim 20 + hw) — Hu®)

B0+ h

1

— 1 . no__ - n
a | M| SO(M(O))u zdV: I M| So(—uw))u wd Ve .

Since H'(u; u) is a linear function of the u;, P, touches K* in a single
point and thus every s.p. of K* is regular and K* is strictly convex.
(See [4, pp. 25-26].) The derivatives 8H/0ou,; are continuous, homogeneous
of degree 0, and if ¥ is the point of contact of the s.p. to K* in the
direction %, then

(3.3) vr— 1 g( 2 dVr .
O(—u)

0= G = T3 VeV 1

We will call K* the centroid body of M (with respect to z) and the
surface of K™ will be called the centroid surface of M. One may observe
that if M happens to have center z, then the centroid surface of M is
precisely the set of all controids of C(u) for wec £,. In general, let s®
and s® be the centroids of C(u) and C(—u) respectively, the y is the
center of mass of the two points s® and —s® provided with mass
|Cw)!/|M]|and | C(—u) ||| M| respectively. If |C(u)| = 0, we will define
the centroid of C(u) to be the point z.

It is evident that if M is transformed into M by a central affinity,
then this transformation also carries the centroid surface of I into the
centroid surface of 1.

We now wish to impose additional restrictions on M such that H(u)
has continuous second partial derivatives and the surface of K* has
positive Gauss curvature. The following two conditions are sufficient for
this purpose:
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(@) The set M(u) has positive (n — 1)-dimensional measure for all
ue,.

(b) Foranyu® e 2, and any sequence u¥ — ', the lim,_ o M(«")
coincides with M(u'”) except for a possible set of zero (n — 1)-dimensional
measure.

To simplify the calculation of the second partial derivatives at a
point 4, we introduce what Busemann [2, p. 57] calls “standard coordi-
nates.” With the same origin and orientation, the x, axis is chosen
such that %" = «+« =u{”, =0 and %" > 0. It then follows from (3.3)
that

CHu®) _ 0Hu®) _

(3.4) =
ou,0u,, ou,,0u,,

Although standard coordinates vary from point to point, the end result
(3.9) is expressed geometrically and therefore independent of the coordi-
nate system.

For j <m,letu =(0,---,0,%u;,0, ---,0, %) and set

N, = C(w) N C"), N = C(—u) N C(—u®), N, = C(u) — N,
Nf = C(—u) — N, N; = C(u) — N,, Ny = C(—u®) — Ny.

Except for a set of zero m-dimensional measure, N, = N;* and N, = N,*.
By (8.3) we have for 7,7 <mn

<6H> _ <6H>
ou,/,, ou/o _ 2 /g dV"—g AV
3.5) - a2V = | :).
We will calculate the limit of (3.5) as either u; —> 0+ or u;—>0—. In

either case for we N, x;u; =0, 2, =0 and for xe N,, z;u; =0, 2, = 0.
For — 7/2 < v, < /2, let the hyperplane «, = (tanv,)x; intersect M
in M*(v,) for x, =0 and in M~(v,) for , < 0. Also the volume element
dVr of this hyperplane is

(3.6) dVrt=dx, ---dx,_,secv, .

We introduce new coordinates v, «++, v, by ®; =v, for 1 =1, -+, n — 1
and z, = v; tan v, which uniquely define the v, with —z/2 < v, < 7/2
for all  for which x; 0. The Jacobian J of this transformation is
J =v,sec’ v,. Also define a,0=a<x/2, by u tana = |u;|. Then
|J||u; = +v;sec’v,/u) tan @ with the plus sign for x € IV, and the minus
sign for x € N,. The difference quotient (3.5) is, consequently, given by

2 [Swsec v,,(S V0,4 V:'I)dvn
uy | M|tan a Lo M (o)
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+ Swsec v,,(& v,0,d V:“)dvn]
0 Mt (vy)

and since the integrands are continuous functions of v, by assumption
(b) we have
*H(u®) _ 2

(@) — — . =1 (7
@.7) Hiyu®) ou;0u; ud | M| Sum(onxzx]d Vi g <m).

Now let H”(u) be the supporting function (8.1) for the set M,
i=1+,mn—1 Set H=MH" + +++ +N\H"", then D, (H) is de-
fined as the sum of all principal (n — 1) rowed minors of the matrix H;;
(with components evaluated for a unit vector) and is a homogeneous
polynomial of degree (n — 1) in the ;. (See [4, p. 59] or [2, pp. 45-46].)
The quantity D(H®Y, ---, H*") denotes the factor of )\ ..., in

D, (H) divided by (n — 1)!. If we calculate (8.7) for each of the H®
using the same standard coordinates we have, because of (3.4),

. .
1 Hiw e Hifpy)

(3.8 DH®Y, e H®™ V) = . =
(3.8) ( ) (n — D! 6.5

Hgvyy «+ v Hing)
In the same way as we derived (2.10), we find for any ueQ,,
3.9) DH®Y, -.., H®)

_ (n— 1)l g S T R R
[ M| eee [ M,y ] Jaye My N AV

By comparison with (2.10) we observe that

2 M) | - - | Moa(u) |
| M| e [ M, |

(3.10) DHY, .-+, H*) = D(gyy +++, q.y)
where ¢; is the quadratic from associated with the Fenchel momental
ellipsoid of M;(u) in the (n — 1)-dimensional space L(u).

From (8.9), we may give an integral interpretation of an elementary
symmetric function {R, --- R,} of the principal radii of curvature of the
centroid surface of M. With H given by (3.1) we have form =1, - -+,
n — 1 (see [4, p. 63]),

3.11) {Rln-Rm}:(n;l)D(lul, ces,jul, H, «++, H) = D,(H) .
n—m—1 m

Set M=M,=-+:-+=M, and U, =M,,, = «-- = M,_,. Since

1 _ 2m,
(3.12) JU,”Svniu 214V, = o= ful,
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we obtain
27, ]"—""1 B (n — 1> (n — 1)12~1
i Tt W D,.(H) = B
[(n + 1)71'” ( ) m |Mlm7rz—m—1
oL T by e pa )V e Y
M(uy ) M w) )T, (0) U, (%)

m n—m—1

By integrating successively over the U,(w) and using (2.3) applied to
the appropriate dimensions we obtain
ml2m

(13 (B R}= T2 [ T py e p)A Ve a V)
| M|™ ) Mu) m

form=1, ---,n — 1.

We may also give an interpretation of each individual principal radius
of curvature. First we show:

(8.14) The Dupin indicatrix of the centroid surface of M(wrtz) at
the point of contact y of the tangent plane in the direction % is homo-
thetic to the Fenchel ellipsoid (wrt z) of M(u) in the space L(u).

A central affinity sends homothetic figures in parallel hyperplanes.
into homothetic figures. Due to the affine nature of Fenchel ellipsoids
and centroid surfaces, we need only show that if the Fenchel ellipsoid
of M(u) is a sphere, then the Dupin indicatrix at ¥ is a sphere. However,
this follows at once from (2.4) and the representation (3.7) in standard
coordinates since the principal radii of curvature E; must satisfy

H-R-.-- H,
T =0
Hnl "'Hnn—R

where H,;; are evaluated for a unit vector. (See [4, p. 61].)

Now, let the line through z, parallel to the 4th principal direction
of the centroid surface at y, be normal to the (n — 2) space L,_, through
z in L(u). Then R, is given by

2
(3.14) R; = — I(M(u), L, )
| M|
where I(M(w), L,—,) is the second moment, in L(u), of M(u) with respect.
to L,_,.
Returning to the (n — 1) bodies M, -+, M,_, for which we obtained
(8.9), let H™(u) be the supporting function (8.1) corresponding to any
bounded closed set M, with positive volume. Then (see [2, p. 46]),

(315) V(Kl*: ] Kn*) = %_ISQ H(")—D(H(l)$ ° H(n—l))dw:, |'U/| =1 ’
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where V(K*, -+, KF) is the mixed volume of K/*, --+, K}. Using (3.9),
(3.15), (3.1) and the integration technique of Busemann in [1] where it
is shown that

AVyE oo dVy = (0 — TR, Dy -+, Pu)d Vit oo AVE dawr

Pp—1 Pp-—-1
we obtain
(3.16) VK, ---, K)
:__ln___s S T e, DAV eed Y
[ M ' ce ‘ Mn ‘ My My, (z’ P ’ p") & Vpn )

Since both sides of (3.16) vary continuously with the M;, we may extend
this result to any 7 bounded and closed sets M; with | M;| > 0. Briefly,
we may assume z € M; and lete; > 0 be a sequence such that ¢; — 0,
A covering of open spheres of radius e&; with centers in M, may be
reduced to a finite covering since M, is compact. Conditions (a) and (b)
are then satisfied for the closure of such a finite covering and the ex-
tention of (3.16) follows.

There is an alternate proof of (3.16) which proceeds directly from
(38.1). We did not resort to this at the outset since the intervening
results are of interest in themselves. Briefly, the alternate proof is as
follows: We approximate the H'”(u) of (3.1) by

1
| M. |

k
E@®(y) = St lu - x| 4V
i=1

such that %% — H" as k —+ 0. Now |u - x| is the supporting function
of the segment ¥ with end-points # and —«. Also, by induction, one
shows that

VE®, «--, TM™) = 2" T(z, £V, «++, &™) .

The function E“*® is the supporting function of the linear combination

_ 1 5 n
E;, = ] %x 4Vi.

For \; > 0 the linear combination F, = MFE + <<+ + N\, B, ,, may also
be expressed as a linear combination of the nk segments Y9, Expres-
sing the volume of E, as a polynomial in the \; in two ways we have
by comparing the coefficient of N, ++<« 2\,

V(E(l,k)’ M) E(n,k))

2" k k 1 o ) n
:mjél...JZ T(z, 390, « oo, IR)4VE v 4V

n=1

and (3.16) follows in the limit as k —+ oo.
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The formula (3.16) may be substituted into inequalities of mixed
volumes to yield inequalities of the integrals. Since the number of times
a component appears on each side of a mixed volume inequality is always
the same, the coefficient on the righthand side of (3.16) cancels leaving,
as in (2.16), inequalities among the integrals only. However, in this
case when the uniqueness theorem (4.1) applies, the condition for equality
may be passed through the K* to the M,.

In [1, p. 11], Busemann shows that if M is a nondegenerate convex
body, then

(3.17) SM e SMT(Z’ Dy ooy DAV, - dV, = (Ti?ﬂ%lﬂﬂm
with equality only if M is an ellipsoid with center z. We define the
expanded centroid body K of M to be the dilation of K* about z by
the factor (» + 1)x,/27,_,. By (8.12), we see that this is the factor
which dilates the centroid body of an ellipsoid with center z into coin-
cidence with the ellipsoid.

From (3.16) we obtain a reinterpretation of (3.17) by observing the
identity n!w,7,_, = 2"z

(3.18) If K is the expanded centroid body of a nondegenerate convex
body M, then | K| = | M| with equality only if M is an ellipsoid with
center z.

The convexity of M is not an essential feature in (3.18) and the
Steiner symmetrization used to prove (3.17) may be extended to include
nonconvex sets.

Using the expanded centroid bodies K; of M;, we may write (3.16)
as

3.19) [ M| --- | M,| V(K -+, K,)
— MSM SM T(@, Py, -+, DIAVE -+ AV

2
and if we define K; to be the point z if | M;| = 0 then (3.19) holds for
any bounded closed sets M;.
Substituting (3.19) into (1.1) we have
(8.20) THEOREM. If Ki(uw) is the expanded centroid body of M;(u)
in the (n — 1)-dimenstonal space L(u), then

RUSARERRPUASY

_1 nf-zg | Myuw)| -+~ | M,_(w)]| V(K,(«), +++, K,_(u)do? .
N Ty_1 I8

The inequality V™ '(Ky(u), -+, K, ,(w)) = | Ky\(u)| -+ | K, ,(u)]| (see
[2, p. 50]) and (3.18) reproduces (1.3).
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There are two special cases of (3.20) of particular geometric interest.
First, set M =M, = .-+ = M,_,, then

(3.21) M= LEZ ) 1| K | dot

N
n—1

Next, for n =8, set M =M, = +-- = M,_,, M, , = U,, then

(3.22) | M = n(—n—~1_1) B M SKa)do:

where S(K(u)) is the surface area of K(u) in the space L(u).

4, Uniqueness theorems. In order for K* to determine M, additional
restrictions on M are necessary as may be seen by consideration of a
set M bounded by two concentric spheres.

(4.1) THEOREM. Suppose M; (i =1, 2) can be represented im polar
coordinates by 0 < r < p,(w), w € 2, where p,(u) is an even, i.e., p;(u) =
o—w), continuous function on 2,. If the centroid surface of M(wrt 2)
18 identical to the centroid surface of My (wrtz), then M, and M, are
identical.

(4.2) THEOREM. Suppose M; (1 = 1, 2) have the same representation
as i (4.1). If | M(u)| =|Myu)| for all wef,, then M, and M, are
identical.

The latter theorem is a result, for n = 3, of P. Funk [6].

We first prove (4.1). From (3.1) and the assumption on the represen-
tation of M; we have

1

") = T

Sg lu - 7] or(0)der, | 7| = 1.
Consequently, (4.1) follows from the uniqueness of the solution of an
integral equation of the first kind. Namely:

(4.3) THEOREM. Let h(7) be an even, continuous function on £2,.
If for unit vectors w and T

Sg lu - | h(z)dw® = 0

Jor all weQ,, then h(t) vanishes identically.

The result (4.3) is well known for » = 2, 3 and the recent extension
of surface harmonics to %-dimensions, in particular the Funk-Hecke
theorem, enables one to prove (4.3) for all n. There are two steps in
the following proof (which applies for » = 8). First, from the com-
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pleteness [5, p. 241] it suffices to show that

S S, (Dh(c)dw? = 0
gn

for all the linearly independent surface harmonics S, (7) of degree m and
for m=0,1,2, ---. Since k(7) is an even function we need only to
consider, now, even m. Next, from the Funk-Hecke theorem [5, pp.
247-248] we have

[, -7l Suwdor = aSa(e)
where

_ @aym!l’(v) (* v vy
(4.4) xm_mg 17| C@)(L — ) da

and v = (n — 2)/2 = 1/2. Thus, we need only to verify that ), # 0 for
m=0,2,4,---. For m =0,Cy(x) =1 and N, #+#0. For m >0,

Cfn(x) = am,v(l — xz)—v+1/2_dj_[(l _ x?)m+y—1/2]
dx™

where a,, #+ 0. See [5, p. 236] for the explicit expression of the coef-
ficient @,,,. Thus the integral in (4.4) is

Im,v = 2G/m,vg1x_.dm-[(]_ _ x2)m+v41/2]dx
o dx™

and using integration by parts

m_1

m—2 m -+ y — 1/2
I,,=2a,.,(—1) % (m — 2)! m )i 0
2

for m = 2, 4, 6, --- which completes the proof.

The result (4.2) is clearly a consequence of the following spherical
integration theorem.

(4.5) Let f(r) be a continuous even function defined on 2,. If

g f@)dwr =0
2 (w)

for all e 2,, then f(r) vanishes identically.

A proof of (4.5) for » = 3 can be found in [4, pp. 136-138]. How-
ever, a proof for all n = 3 is easily obtained from (4.1). To see this,
set g9(z) = () — [min f ()] + 1 > 0. Let p(z) = [g(t)]“**" and let M be
the set whose polar coordinates satisfy 0 < » < p(7), 7€ 2,. Using (3.13)
for m = 1, the sum of the principal radii of curvature of the centroid
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surface of M wrt z may be expressed, in this case, by

2

R+++R.,=— =
i (n + 1) | M|

g g(@)dar
2 (%)

and, by hypothesis, this is a positive constant for w e 2,. However,
this implies (see [4, pp. 117-118]) that the centroid surface is a sphere
and by (4.1), M is a solid sphere and g(z) is a constant which completes
the proof.
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ASYMPTOTIC ESTIMATES FOR LIMIT
CIRCLE PROBLEMS

C. A. SWANSON

1. Preliminaries. Characteristic value problems will be considered

for the second order, ordinary, linear differential operator L defined by
1 d dx

(L.1) Lo = W{ %[p(s) ds] + q(s)x}
on the open interval w_ < s < w,, where k, p, ¢ are real-valued functions
on this interval with the properties that

(i) p is differentiable;

(ii) £ and g are piecewise continuous; and

(iii) k& and p are positive-valued. The points w_ and ®, are in gen-
eral singularities of L; the possibility that they are 4+ o is not excluded.
It will be convenient to use the notations

(1.2) @, 0 = | swikde, @ =s<ts o,
1.3) [25](s) = p()[a(©)F(s) — '(S)F(s)] -

Then Green’s symmetric formula for L has the form

(1.4) (La, y), — (@, Ly}t = [zy](t) — [2y](s) .

The symbols [¢y](+) will be used as abbreviations for the limits of [xy](s)
as s— w,, and (x,y) will be used for the left member of (1.2) when
s, t have been replaced by w_, .. Let 9, ., denote the Hilbert spaces
which are the Lebesgue spaces with respective inner products (x, y),
(«, ). and norms |[|z|| = (z, )'?, [[z|[; = [(z, )], - = a <b L 0..

Let a, and b, be fixed numbers satisfying w_. < a, < b, < w, and
let R, be the rectangle in the a — b-plane described by the inequalities
w.<a=a, b=b<w,. Every closed, bounded subinterval [a,d] of
the basic interval (w_, w,) can be associated in a one-to-one manner with
a point in R,. For every such [a, b] we shall consider the regular Sturm-
Liouville problem

(1.5) Ly = pny, Uy=Uy=0
on [a, b], where U,, U, are the linear boundary operators
(1.6) Uy = aa)y(a) + aa)y'(a)

Uy = By(b)y(d) + B:.(D)y'(b) ,
with a,, a, real-valued functions not both 0 for any value of @ on (w_, a,],
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and with B, 8, real-valued and not both 0 on [b, ®.]. Our problem is
to obtain estimates for each characteristic value ¢ = g, of (1.5) for a, b
near @_, ®, under hypotheses that will ensure that the limits of (¢, as
a,b—> w_, w, will exist. Also, we shall obtain estimates for the corre-
sponding characteristic functions ¥ = ¥., = ¥.,(s) on @ < s <b. Results
like this for differential operators having a singularity at one endpoint
were obtained previously by an integral equations approach [8], [9]. The
present paper contains extensions of some of these results to operators
(1.1) which have singularities at both endpoints. Furthermore, the present
approach to the problem will be different; the estimates will now be
obtained by means of projection mappings on suitable Hilbert spaces.
The method arises from an idea communicated by Professor H. F.
Bohnenblust, and affords an elegant and abstract approach to the type
of perturbation problem at hand [1]. Also, the present method is powerful
enough to handle a variety of domain-perturbed problems that arise in the
study of elliptic partial differential equations. Some of these have been
considered already [10] and the author has several others in preparation.
Here the method will be illustrated in the case that both of the
singularities w. of the operator (1.1) are limit circle singularities in the
well-known classification of H. Weyl [2, p. 225]. In another paper we
shall consider the limit point cases (and mixed cases) in which some
additional hypotheses are needed on the growth of the coefficient func-
tions in (1.1) as s — w. to ensure the existence of isolated characteristic val-
ues ) of L on (w_, ,); however, very general boundary operators U,, U,
will then permit convergence of ,, to A. For additional details, see [8].
In the limit circle case herein under consideration, no special assumptions will
be imposed on the nature of L at w., but the generality of the boundary
operators must be sacrificed in order to ensure the convergence of (...
Our purpose here is to obtain asymptotic estimates rather than asymptotic
expansions for the characteristic values and functions as a,b— w_, @,.
Asymptotic formulae and expansions will be published elsewhere.

2. Basic and perturbed problems. Rather than general spectral
theory, we are interested in cases that the limits of p,, as a,b—> w_, 0,
exist in the elementary sense. Thus, characteristic values of suitable
singular boundary value problems for L on (w_, w,) are supposed to
exist. These singular problems are described differently according as
the points @. are in the limit point or limit circle categories. The
description is made as follows when both are limit circle singularities [2],
[6]: choose a complex number I, with Im [, #+ 0, and let L, be the differ-
ential operator L — l,. A theorem of Weyl [6] states that there exist
linearly independent solutions @. €  of L,» = 0 such that

(2.1) [p-p-1(—) = [P+p:l(+) =0,  [P:P-1(5) =1.
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Let © denote the domain consisting of all x € © which have the
following properties:

(a) =z is differentiable on (w_, ®.) and ' is absolutely continuous
on every closed subinterval of this interval:

b) Lred

(c) « satisfies the end conditions

(2.2) [zp-1(—) = [P, (+) = 0.

Then L on D is real and essentially self-adjoint [6]. The basic charac-
teristic problem

(2.3) Lx = \x, zeD

is known to have a denumerable set of characteristic values ), and
corresponding characteristic functions «, which are orthonormal and
complete in & (n =1,2, ---).

Two classes of perturbation problems (1.5) will be considered. The
limiting behaviour of class 1 boundary operators U,, U, as a,b— w_, 0.
is rather arbitrary (see §5) while the limiting behaviour of class 2 oper-
ators (8§82, 3, 4) is restricted as follows:

Uy = [yp-1(@)1 + o(1)] as a— w_

@4 Uy = [y )L + o] as b— w.

for every differentiable function y. A perturbed domain D, is defined
for each [a, b] € R, to be the set of all ¥ in the subspace §,, of § which
satisfy the following conditions:

(a) w is differentiable and ¥’ is absolutely continuous on [a, b];

(b Ly e Fu

(¢) y satisfies the homogeneous boundary conditions (1.5) where the
boundary operators U,, U, have the limiting behaviour (2.4).
The perturbed characteristic value problem that corresponds to this
domain is the regular Sturm-Liouville problem

(2.5) Ly=try, yed,.

In addition, we define a domain ©, for each a on (w_, ;] to be the
set of all z € F.. . which satisfy the following:

(a) =z is differentiable and 2’ is absolutely continuous on every closed
subinterval of [a, w,);

(b Lz € Fou,
(c) =z satisfies the conditions

(2.6) Uz=0, [2¢:](+)=0.

The characteristic value problem
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2.7) Lz = vz, z2eD,

on the half-open interval [a, ®,) may be regarded as intermediate between
(2.3) and (2.5), and will be called a semi-perturbed problem.

In order to obtain estimates for the difference between the character-
istic values and functions of (2.5) and (2.3), we shall proceed in two
steps: (i) the comparison of (2.5) with (2.7), and (ii) the comparison of
(2.7) with (2.3). The details of (i) and (ii) are included in §§3 and 4
respectively. Each comparison has independent interest because it is
typical for a boundary variational problem when only one endpoint is
varied and the unchanged endpoint is (i) an ordinary point; (ii) a singular
point of the differential operator. Type (ii) variational problems arise
for example in the theory of enclosed quantum mechanical systems| 4], [5].

3. Comparison of the ¥ and 2z problems. The characteristic value
problems (2.5) and (2.7) will be compared, with (2.7) regarded as basic
and (2.5) regarded as a perturbation on (2.7). In this case, the singular
boundary condition [z®¢.](4+) = 0 is replaced by the regular condition
Uz =0 at the point b. We are going to estimate the variation of
characteristic values and functions under this perturbation, and show
that this variation has the limit 0 as & - w,. The ordinary endpoint
a remains fixed in this section.

Let G,u(s, t) be the Green’s function for the operator kL, associated
with the boundary conditions (1.5), and let G,, be the linear transfor-
mation on §,, defined by the equation

(3. Gt = || Guls, ORI, ye B

Let v = vy, be a characteristic value for (2.7) and let 2, be the corresponding
characteristic function. Define a function f on [a, b] by’

(3.2) =2, — Y.Gup2a where v, = v, — [, .

It is easily verified because of the linearity of all the operators involved
that f is a solution of the boundary value problem

(3.3) Lf=0, UJSf=0, Uf=Ug,.
The solution +r, of Ly = 0 that is given by
(3.4) Vu(8) = P_(S) U P — P () Up-

satisfies the boundary condition U,y = 0. Hence the unique solution of
3.3) is

t The function on [a, b] which coincides with z, on this interval will also be denoted
by z4.
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(3.5) S(8) = (Uoza] Ustra)ira(s), ass=<b.

In fact, if g is any solution of (8.3), then the function 2 = g — f satisfies
L =0, Uh = Uh =0. This implies that % is the zero function, or
g=1

It follows from (2.1) that [¢.®.](b) > 0 as b —» @, and [p_p_|@) —0
as a > w_. The identity

[P:2:1¢) — [P:2:15) = (o — L)l P+ 119"

is a consequence of (1.4), and since @, € , the limit [p.p,](—) exists.
Similarly [p_@_](+) exists. From (2.1) and the identity [6]

He:2-1@) [ = [P-p_l@)lP.P:1@) + |[PrP-1@)[*

we deduce that |[p.p-](a)] >1 as a - w_. Similarly |[¢,9_](b)| —> 1 as
b—> w,. It has then been established that

(3 6) Ua@—_—) Or I Ua¢+] e 1 as a —> w_ H
‘ Up.—0, |Up_|—>1 asb—>w,

where (2.4) has been used. Since @, € O, it follows from (3.4) that
4.1t is uniformly bounded for [a, b] € R,. We obtain from (3.4) that

Ub’w\a = Ub¢— Uag)-i— - Ub@—\‘— an)—

and hence there are numbers a,, b, (we may suppose that they coincide
with the original choices of a,, b,) such that Uy, is bounded away from
zero on a = a,, b, < b. These considerations enable us to deduce from
{3.2), (8.5) that there exists a constant®* C on R, such that

(3.7) 12 — YGaelle = Cl Unzal ll2a1ls, [0, b] € By .

Let ¢* = pi, denote the ith characteristic value of the regular problem
2.5), B < p* < ..., and let y* denote the corresponding characteristic
function, chosen so that {y‘} is an orthonormal basis in F,;. The following
fundamental lemma was obtained by H. F. Bohnenblust in [1] by applying
the Parseval completeness relation to the set {y’}. An outline of the
proof is reproduced below.

LEMMA. Let P(8) be the projection mapping from the Hilbert space
B Onto its subspace F.,(8) (8 > 0) spanned by all characteristic func-
tions y* of (2.5) such that their corresponding p* satisfy |y —y,| < 8.
Then for any w € F.o,

lw — P@Ewlls = 1 + [7.1/8) llw — Y.Gowll .

2 The letter C will be used throughout as a generic notation for the image of a constant
function from R, into the positive numbers.
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Proof. The subscripts a,b will be omitted in this proof. Let
a; = (Gw, y*). It is easily verified that (w — vGw, ¥’) = (#* — v)«;, and
hence by the Parseval identity,

llw = 9Gw| = 3 = vl ol = & 5 el
where the * denotes summation over only those indices 7 such that
|t —v| > 8. Then

IGw — PO)Gw]|* = 2 |a;[* = 67 [Jw — 7Gw]]*,

and the conclusion of the lemma follows easily from the Minkowski
inequality.

The notation o, = C|v,Uyz,| will be used. It follows from (2.4) and
(2.6) that 0, > 0 as b — @, for each fixed «. With the choice & = 2p,,
we apply the lemma to w =z, (see footnote 1) and use (3.7) to obtain

Iz, — P(20)z.1e = (C| Uze| + 3) llzala -

We may suppose that b, has been selected so that C|Uyz,| <1/4 on
b, < b < w,. Hence P(20,)2, = 0 implies that z, = 0 on [a, b], and there-
fore ¥.,(20,) has dimension = 1. Hence there exists at least one
characteristic value ¢ = y,, of (2.5) which satisfies

(3.8) | Lo — Vol = 200, [a,bl e R, .

To prove that there is exactly one, we conclude from the maximum-
minimum principle for characteristic values [3], [7] that the absolute
value of the 4th characteristic value vi of (2.7) cannot decrease when a
boundary condition at b is adjoined, and hence |vi| = |pé|(E=1,2, ---).
Since the numbers v; do not accumulate and since p,—0 as b - w,,
there is a constant b, such that 2p, is less than the minimum of all the
differences |vi — vi|, (1,7 =1,2,+-+;%1 +j) whenever b=b,. If 0<
vy < vi, it follows from (3.8) that exactly one characteristic value g,
of (2.5) lies in the interval [v}, v} + 20,]. A similar statement applies
to the case that one or both of vi, v? are negative.

In order to prove by induction that there is exactly one pi, which
satisfies |y, — vi| <20, 1 =1,2, -.+), assume that this is true for each
integer 1 = n. In the case that |vi*| < |vi™?| there are at most n + 1
characteristic values yi, which satisfy |ui,| < |vit!| + 20, since |u¢é| =
|vi| for each ¢. It then follows from the induction assumption that
there is at most one characteristic value g satisfying | g — vitt| < 20,,
and hence exactly one by (3.8). In the other case v*? = —p+', it follows
similarly that there are at most two yf, satisfying |vi+] <|pi,| < |vitt] +
20,, and again by (3.8) there is exactly one u!, near each of v;*%, vit?,



ASYMPTOTIC ESTIMATES FOR LIMIT CIRCLE PROBLEMS 1555

THEOREM 1. If the singularity @, of (1.1) is the limit circle type,
then for every characteristic value v, of (2.7) there exists a rectangle
R, and a constant C on R, such that® a unique characteristic value ft,,
of the perturbed problem (2.5) lies in the interval |, — v,| < C|Uyz,|
whenever [a, b] € R,.

This shows in particular that for each fixed @, there is a unique f,,
of (2.5) such that g, — v, as b —> »,. In addition, the estimate of the
theorem is valid uniformly on @w_ <a < a, One also finds for the
characteristic functions ¥,, and z, associated with f,, and v, respectively
that the estimate

[Yer — 2alls = ClU2al, Ywlle = [|2a]]e = 1
i1s valid on R,.

4, Comparison of the z and z problems. The characteristic value
problems (2.7) and (2.3) will now be compared, with (2.7) regarded as a
perturbation of the basic problem (2.3). The perturbation arises from
the singular end condition |z@_](—) = 0 being replaced by a homogenecus
boundary condition at the point a. The novelty of this section is due to
the singular nature of the unchanged endpoint w,.

Let A be a characteristic value of (2.3) and let « be the corresponding
normalized characteristic function. Let G, be the linear integral operator
on F,.., whose kernel is the Green’s function for kL, associated with
the boundary conditions (2.6). This operator is defined similarly to the
operator G,, in (3.1) [6]. Let a function ¢ on {a, @.) be defined by*

(4.1) g = — YG.x where v =x — [, .
The analogue of (3.5) is
4.2) g(s) = (Ul Upy) Pi(s), a=s<o,.

It follows from the postulated boundary conditions (2.2) at w_ that
[#p_](a@) — 0 as @ — w_, and hence by (2.4) that Uz -0 as a »w_. It
was proved above (3.6) that |[U,p,|— 1 as a - w_, and since ¢, € 9,
we obtain the inequality

(4.3) |z —7G.xlle = Cl U] || 2]l

for some constant C. The analogue of the lemma in §3 with §,, replaced
by B, leads to
[ — P@)r]l. = 1 + [7[/8) |l — vGa.x ]l
=@+ 78 Cl Uzl il ,

3 See footnote 2.
4+ The function on [a, w;) Which coincides with x on this interval will also be denoted by z.
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and the following theorem is obtained.

THEOREM 2. If the singularities w. of (1.1) are both of the limit
circle type, then for every characteristic value )\ of the basic problem
(2.3) there exist comstants a, and C such that a unique characteristic
value v, of (2.7) lies in the nterval |v, — A = C|Ux| whenever a
satisfies w_ < a < a,. If x, 2z, are characteristic functions corresponding
to N, v, respectively with norms ||z|| = ||z,|l. = 1, then

(4.4) llz. —2ll. = C|Ux|, w-<a=a,

and in particular ||z, — z|l,— 0 as a —> w_.
We shall next prove the following consequence of (4.4):

(4.5) Uz, = U + (U] + | Ul)o(1) ,

the order symbol being valid as b — w, uniformly on w_ < a <q, We
use formula (1.4) to obtain

[2.241(4) — [2.2:1(0) = (v, - Zo)(zar Pi)s
[zp:](+) — [2@.J(0) = (N — L)@, P1)s -

Since [x@.](+) = [z.2:](+) =0 by (2.2), (2.6), we deduce from the
Schwarz inequality on F. . that

l[za¢+](b) - [x¢+](b)’ é l(va ——Z—O)(za — X, ?-i‘)bl + ,(va - x’)(x! q)-i-)b]
= v — Lol llze — 2o Il P+l
+ [ve = MUzl @+l -

The desired conclusion (4.5) then follows from Theorem 2 and (2.4). The
following abbreviation will be used:

(4.6) Oy = | U] + | U] .

THEOREM 3. If both singularities w. are of the limit circle type,
then for every characteristic value  of (2.3) there exists a rectangle
R, and a constant C on R, such that exactly ome characteristic value
ey Of the perturbed problem (2.5) lies in the interval |, —\| < Cp,,
for every [a,b] € R,. For the characteristic functions x,y,, associated
with N, M., respectively, normalized by ||x|| = [|Ywlle = 1, the estimate
Yo — xlle = Cpo, s valid.

Proof. 1t follows from Theorems 1 and 2 that

]/’eub - A’I = [#ab - 1)a| + ]va - 7\’1
= C(|Up.| + | Ux]) .
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The first statement of the theorem is then a consequence of (4.5) and
(4.6). The proof of the second statement is similar and will be omitted.

Finally, we shall obtain uniform estimates for the difference y,,(s) —
2(s) on a =< s <b. We remark in passing that the asymptotic result
Yau(8) = 2(s)[1 + o(1)] as a,b—> w_, ®. cannot be valid for s near the
boundaries @,b nor can it be valid near any zeros of x(s). Uniform
estimates will now be derived by the same technique that proves useful
in certain domain-perturbed problems concerning elliptic partial differential
equations [1], when @.(s) are bounded on (w_, w.).

First it will be shown that (A — [)G.,x(s) gives a uniform estimate
for y,(s)on a < s <b. Let v,(s) be the function (3.4) and let +(s) be
defined by

"Az"b(s) = @—(8) Ub§D+ - ¢+(3) Up_ .
Then

Gun(s, ) = 07Y,(t) ¥o(s) ifa=t=s=
=07, (8)Vvu(t) fa=s=t=

where
g = Ua?—- Ub¢+ - Ua@—# qu)—— .

Then |6|{— 1 as a,b— w_, w,, and the function defined by
b
(16l = | 1Gunts, 0 eyt
is a bounded function of s,a, and b. Hence the inequality

1Y00(8) — (W — 1)Gop(8)| = | Gaol (Lar — lo)Yar(8) — O — lo)x(s)]l
= IGalle (1 tas — Ll 1Yar — e + | 2o — M |[2]]) 5

and Theorem 3 show that there exists a constant C such that
(4.6) [Yan(8) — (M — 1)G2(s)| = C,Oab a=s=<bH.

Let i be the uniquely determined solution of the boundary value
problem

Lh =0, Uh=Ugx, Uh=Uzx ona<s=<b.
Let the function f on [a, b] be defined by
f(8) = (v — 1)Gop(s) — (s) + h(s) .

Since f satisfies L, f=0, U, f= U, f=0, f is identically zero. The
following uniform estimate is then a direct consequence of (4.6):

(4.7) Yar(8) = @(s) — h(s) + O(0.,), a =s=b.
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It can be verified without much difficulty that i(s) = O(p,,) on a fixed
closed subinterval I, of [a, b], valid for [a, b] € R,. The following uniform
result on I, is therefore a special case of (4.7):

Yar(8) = a(s) + O0(0,,) la,b] € R, .

5. Class 1 boundary operators. Instead of the restrictive limiting
behaviour (2.4) of the boundary operators U,, U,, the limiting behaviour
of class 1 boundary operators is essentially arbitrary. In regard to the
perturbation @ — @w_, a class 1 boundary operator U, is defined as follows.
Let @, be the function defined in §2 and let # be a characteristic function
of the basic problem (2.3) corresponding to the characteristic value .
Class 1 perturbation problems are possible when the singularity w_ is
not an accumulation point of the zeros of @, and

(5.1) z(s)/p4(s) = o(1) as s> w_ .

In this event, U, is said to be a class 1 boundary operator on (w_, a)
whenever the ratio ¢.(a) U,x/2(a) U,», is bounded on this interval. This
rather mild restriction on U, implies that

(5.2) e, = | U/ Upr| = 0o(1) as a— w_ .

An example is given in [8, pages 838-840] when w_ =0 is a regular
singularity of L, with p(s) = 1. In this event, a sufficient condition
that the boundedness requirement above (5.2) be satisfied is that the
limit ¢ = lim,_, [aa,(a)/a;(a)] exists (finite or o) and ¢ # —p, where p
denotes the smaller of two real, distinct exponents at the singularity 0.

Let g be defined by (4.1). Then (4.2) is valid but under the as-
sumptions of this section, (4.3) is replaced by

(5.3) [ — 7G|l = Ce, |||,
where ¢, is defined by (5.2). In the notation of §§2, 3,
lle — P@)x|l, = A + [7]/8) Ce, || 2]l .

Since ¢, = o(1) as @ — w_, Theorems 2 and 3 are valid with the replacement
¢, instead of |U,x|. A similar statement is appropriate in the event
that U, is a class 1 boundary operator.

In the example of a regular singularity @_- = 0 with real exponents
01, 05 it turns out that e, = O(a™™) if p, > 0, and ¢, = O1/lna) if o, =
0,00 <a = ay).
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ON ESSENTIAL ABSOLUTE CONTINUITY

ROBERT J. THOMPSON

Throughout this paper D will denote a bounded domain in Euclidean
n-space R*, and T will be a bounded, continuous, single-valued transfor-
mation from D into R®. For such transformations, concepts of essential
bounded variation and essential absolute continuity have been defined
and studied by Rado and Reichelderfer ([3], IV. 4). In this paper a
characterization of essential absolute continuity will be given. The
characterization suggests a definition of uniform essential absolute con-
tinuity and some of the consequences of this definition will be investigated.

1. For every point ¢ in R" a multiplicity function K(x, T, D) is
defined ([3], II. 8.2). T is said to be essentially of bounded variation
(briefly eBV) in D provided K(z, T, D) is Lebesgue summable in £*
(3], IV. 4.1, Definition 1). Let X. = X. (T, D) denote the set of
points « in R* for which K(x, T, D) is infinite. Thus if T is eBVin D,
then &?X. = 0 (if A is a subset of R", then ¢“A denotes its exterior
Lebesgue measure). Since K(x, T, D) is a lower semicontinuous function
of =z ([3], II. 8.2, Remark 10), X., is a Borel set and, by Theorem 1
of [3], IV. 1.1, the set T X. is also a Borel set.

2. If z is a point in R" and C is a component of T-'x which is
closed relative to R*, then C is termed a maximal model continuum (z,
T, D) (3], 1I. 3.1, Definition 1). Denote by € = €(T, D) the class com-
posed of all sets C for which TC is a point in R* and C is a maximal
model continuum for (7°C, T, D). Let € = &(T, D) be the subset of €
consisting of those elements C each of which is an essential maximal
model continuum (briefly e.m.m.c.) for (TC, T, D) ([3], II. 3.3, Defini-
tion 1); the set E=E(T,D)= UC,Cec€ ([3], 1. 8.6). Let €, =
C(T, D) be the subset of & consisting of those elements C each of which
is an essentially isolated e.m.m.c. (briefly e.i. e.m.m.c.) for (TC, T, D)
(3], II. 3.3, Definition 2); the set E; = E(T,D) = UC, CeG, ([3], 11
3.6.). Finally, let & = G?(T, D) be the subset of &, consisting of those
elements of &, which consist of single points; the set E? = EXT, D) =
UC, Ce@? ([3], II. 38.6). The sets E, E; and E? are Borel sets ([3],
II. 8.6, Theorem 1).

If T is eBV in D, then a necessary and sufficient condition that T
be essentially absolutely continuous (briefly eAC) in D (]3], IV. 4.2) is
mDecember 15, 1960. The results reported here were included in a dissertation
presented in partial fulfillment of the requirements for the degree Doctor of Philosophy
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that T satisfies the condition (N) on the set E(T, D) ([3], IV. 4.2,
Theorem 3) i.e., if S= EF and ¢S =0, then ¢2TS = 0.

DerFINITION 1. T will be said to satisfy the (¢, 8) condition on a
subset A of D if for every & > 0 there exists a & > 0 such that if
SEA and &S <38, then &£TS <e. Clearly if T satisfies the (, §)
condition on each of a finite number of subsets of D, then T satisfies
the (¢, 8) condition on any subset of their union. Also, if A is a Borel
subset of D, then T satisfies the (¢, 6) condition on A if and only if
for every ¢ > 0 there is a & > 0 such that if S is a Borel subset of A
and &¥S < 8, then &°TS < e.

THEOREM 1. Suppose T is eBV in D. Then a necessary and suf-
ficient condition that T be eAC in D 1s that T satisfies the (g, 8)
condition on the set E(T, D).

Proof. Since T is assumed to be eBV in D it suffices to prove
that a necessary and sufficient condition that T satisfies the condition
(N) on the set E is that T satisfies the (¢, 8) condition on E. Since
the proof of the sufficiency is immediate, we proceed to a proof of the
necessity. If T satisfles the condition (N) on E, then, by Lemma 4 of
[3], IV. 4.2, &#T(E — E?) = 0 and so T clearly satisfies the (¢, §) con-
dition on E — E?. Since T is eBV in D, &¥X.. =0 and so T satisfies
the (¢, §) condition on T'X.. Since E is a subset of the union of the
sets B — E?, T*X.., and E? — T7'X., in view of the remarks following
Definition 1 it remains only to be shown that T satisfies the (¢, §) con-
dition on E? — T'X.. whenever T satisfies the condition (N) on E.
Assume then that T does not satisfy the (¢, 8) condition on E? — 71X,
The proof will be completed by showing that 7' does not satisfy the
condition (N) on FE. Since E? and T X. are Borel sets, their difference
is a Borel set. Thus the assumption that 7 fails to satisfy the (g, )
condition on Ef — T7'X. implies, in view of the remarks following
Definition 1, that there is an ¢, > 0 such that for every positive integer
k there is a Borel set S, & E! — T'X. such that &S, < 1/2* and
TS, =¢. Let S* =1lim sup S, (= N1 U=, Si). S* is a subset of
E? — T7'X., and so

(1) S*Z E.
For every positive integer n, S* & U=, S; and so .&#S* Z 1/2'. Hence
(2) #S* = 0.

Let & be a positive integer and suppose z € T'S,. Since S, = E? —
T7'X., K(x, T, D) < o and there is a point % in E? such that Tu = =,
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Since K(x, T, D) < o there are at most a finite number of e.m.m.c.s.
for (x, T, D) ([3], II. 3.3, Definition 1 and II. 3.4, Theorem 38). But
for every point % in E? such that T« = x the set consisting of the point
% is an e.m.m.c. for (x, T, D). Thus there are at most a finite number
of points w in Ef — T'X.. for which Tuw = x. Thus it has been shown
that

(8) For every integer k, if x is in TS, then (E? — T X)N T 'z is
a finite set.

Since U S, & E? — T'X.. it is easy to show that (3) implies that lim
sup TS, = T(lim sup S;) and so

(4) FL(limsup TS,) = L TS*.

By Theorem 4 of [3], IV. 1. 1, the sets TS, are measurable. Since T
is a bounded transformation, <2 (U TS,) is finite. Thus (5], p. 17)

(5) “(limsup TS;) = lim sup < TS,.
But TS, = ¢, > 0 for all k and so

(6) lim sup &< TS, > 0

By (4), (5) and (6),

(7) ZTS* >0

Now (1), (2) and (7) imply that T does not satisfy condition (N) on E.

3. DEFINITION 2. For every positive integer j let D; be a bounded
domain in R"™ and let 7; be a bounded, continuous, single-valued trans-
formation from D; into R". The transformations T; will be termed
uniformly essentially absolutely continuous (briefly UEAC) provided:

(i) For each 7, T;eBV in D; and

(i) Given any € > 0, there is a § > 0, depending only on ¢, such
that for all j the following is true: if S is a subset of E(T;, D;) and
S < 6, then &#T;S <.

Note that if the transformations 7'; are UEAC, then, by Theorem 1,
for each 7, T; is ¢eAC in D;.

Each point 4 in D is contained in a unique component of T *Tu
denoted by C,. A subset U of D is termed a T set if u € U implies
C.Z U (4], 1.

THEOREM 2. Let D be a bounded domain in Fuclidean n-space R*
and let T be a bounded, continuous, single-valued transformation from
D into R*. For every positive integer j let D; be a bounded domain
i R™ and let T; be a bounded, continuous, single-valued transformation
from D; into R",
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If

(1) The mappings T; are UEAC

(ii) The mappings T; converge to T uniformly on compact subsets
of D (I3], 1I. 3. 2, Remark 9) and

(iii) A is a T set contained in E(T, D) and <£A =0,
then &#TA = 0.

Proof Let ¢ > 0 be given and let & be the corresponding positive
number in (ii) of Definition 2. Since A is a subset of the open set D
and <A = 0, there is an open set O, containing A and contained in D,
such that <90 < 8. Let ©x € TA. Since A Z E(T, D), there is a set
C, eem.m.c. for (x, T, D), such that C meets A. CZ A since A is a
T set and so C & O. By Definition 1 in [3], II. 3.3 there is a set D,
which contains C and whose closure "D is contained in O, such that
D is an indicator domain for (x, T, D) ([3], II. 3.2). By definition
¥ DE D,z is not in T<# D (where <% D denotes the boundary of D)
and the topological index gz, T, D) ([3], II. 2) is not zero. Since T<# D
is compact, the ecart of « from T2z D, e(x, T<# D), is positive ([3],
1.1.4, Exercise 3). Since 2D Z D, by (ii) there is a positive integer
7. such that, for j > j,, 9D & D; and o(T, T;, 57" D) the deviation of
T; from T on 27D ([3], 1. 1.5, Definition 5) is less than e(x, T<# D).
Clearly (T, T;, <# D) < o(T, T;, 2¢ D). Thus, forj > j,, %> DEDn D;
and (T, T;, <% D) < e(x, T<7 D). By Theorem 6 of [3], II. 2.3, p(z, T;, D)
is defined and equals p(x, T, D). Thus D is an indicator domain for
(x, T;, D;) and, by Lemma 4 of [3], II. 3.3, there is a set C,, e.m.m.c.
for (x, T;, D), such that C; Z D. Now C; € O n E(T;, D;) and T,C; = x.
Thus ¢ € T;[{0O N E(T;, D;)] for all 5 > 7, and hence x € lim inf 7;[O N
E(T,, D;)]. Since x was any point in TA, it has been shown that 74
& liminf 7;]{0 N E(T;, D;)] and so

(1) <TA = liminf T,[0 N E(T;, D,)].

Since E(T;, D;) is a Borel set, O N E(T;, D;) is also a Borel set and so
T;10 N E(T;, D;)] is Lebesgue measurable. Thus ([5], p. 17)

(2) liminf T;[0 0 E(T,, D))] < liminf <2 T;[0 N E(T;, Dy)].

Now

(3) Zl0 N E(T;, D)] = & 0 <.

By the choice of 8, (3) implies that << T;[ON E(T;, D;)] < ¢ and hence
(4) liminf <2 T;[0 N E(T;, D;)] < e.

By (1), (2) and (4)
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(5) FTA <L ..
Since (5) has been proved for an arbitrary € > 0, it follows that <#TA = 0.

4. Theorem 2 suggests the question: under the hypotheses of
Theorem 2 does T satisfy the condition (N) on E(T, D)? Note that T
does satisfy the condition (N) on EXT, D). In the remainder of the
paper some results pertinent to this question will be presented.

Reichelderfer introduced the concept of the T magnification ([4], 6).
It will be useful to have the definition repeated here.

Let ©* = ©*(T, D) be the class composed of all domains D for each
of which .27°D is contained in D and there exists an open oriented n-cube
@ in R™ such that D is a component of T7'Q. If Cisa maximal model
continuum for (x, T, D) for some point « in R*, for every positive number
¢ define

d(C, #T,e) =lub. #TD|.<¥D,CEZ D e D*8TD <¢
and
d(C, #T,e) =glb. #TD/<¥D,CE De D*8TD<¢
(If A is a subset of R*, 8A denotes the diameter of A).
d(C, &T) = E’{ig(c’ T, e)

and

d(C, T) = lim d(C, T, ¢).
g0+

If d(C, <#T) and d(C, <#T) are finite and equal, their common value
is denoted by M(C, T) and is termed the T magnification at C.

Lemma 1. Let p be a positive number and let A be a T set with
the following properties:

(i) If w € A, then there is a set C € €T, D) such that v € C and
d(C, &<T) > p.

(i) If C e G(T, D) and C E A, then for every domain G in R"
which contains TC and has a sufficiently small diameter it is true
that TG possesses exactly one component D which meets A. Note that
D must contain C and (provided only that the diameter of G is suf-
ficiently small) be @ m.i.d. T ([4], 4 and 5, Lemma 2).

Then A < 1/p < TA.

Proof, Let 1 be any positive number, The proof will be completed
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by showing that <£A < 1/p ¥ TA + 7.

Let © ¢ TA (the inequality is trivial if A is empty) and let v ¢ 4
such the Tu = . By (i) there is a set C € €(7, D) such that w € C
and d(C, <#T) > p. Thus there is an ¢ > 0 such that d(C, <#T,¢) > p
and so

(1) It CEDe D and 8 TD=<¢, then TD| <D > p

Since A is a T set, C & A and, by (ii), there exists a positive number
r such that for every domain G in R" which contains T'C(= x) and for
which 8G < r it is true that T 'G possesses exactly one component
which meets A and, moreover, this component is a m.i.d. T containing
C. For every positive integer ¢ let @, be the open oriented n-cube
with center at x and diameter equal to the smaller of ¢, » and 1/.
Then T'Q; possesses exactly one component D; which meets 4 and D,
is a m.i.d. T containing C. By the Lemma in [4], 4, TD,=Q, and
2D, D. By definition, D; ¢ ®* and so, with the aid of (1),
D, < 1/p <#TD,. Thus

(2) For every point # in TA there is associated a sequence of open
oriented n-cubes @, with centers at = and a corresponding sequence of
domains D, such that, for all ¢, 8Q, < 1/i, &¥D;, < 1/p <¥Q,, D, is a
component of 7T-'Q; and the only component of 7'Q,; which meets A.

Let £ be the class of all n-cubes associated with points of TA4 in this
manner. < TA is finite since T is bounded, and by a theorem of
Rademacher ([2], p. 190) there is a %, countable subclass of 2, such
that

(3) TAZ UQ*Q* ¢ O*
and
(4) >#Q* < 2 TA + np.

(Rademacher’s theorem is stated in terms of a covering made up of
open n-spheres, but the corresponding theorem for a covering of open
n-cubes is readily obtained from it). Let @* be an element of Q*. By
(2) there is a corresponding domain D*, D* a component T-Q* such
that ¥ D* < 1/p &¥Q* and D* is the only component of 7-'Q* which
meets A. In this way exactly one domain D* is associated with each
Q* ¢ L*. The class of domains D* is countable and

(5) ¥ D" =1/p3IFQr.

Let w e A. Then Tu ¢ TA and by (3) there is a Q* € Q* such that
Tu € Q*, Since the corresponding D* is the only component of 7'Q*
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which meets 4 it must contain 4. Thus A Z U D* and
(6) FALIFDE,

By (4), (6) and (6), <A <1/p ¥ TA + 7. Since 7 is any positive
number, the conclusion of the lemma is established.

LEMMA 2. Let  be a subclass of G (T, D) such that if Ce 9 then
d(C, #T)>0. Put H= UC,Ce®. If &TH=0, then &¥H =0,

Proof. If H is not empty (the equality is trivial otherwise) then
C.(T, D) is not empty and hence, by the Lemma in [4], 14, the set &,
can be expressed as the union of a countably infinite sequence of T sets
U, with the following property:

(1) If Ce@; and U,> C, then for every domain G in R" which
contains 7C and has a sufficiently small diameter it is true that T-'G
possesses exactly one component D which meets U,.

For every positive integer n let $, be the subclass of © consisting of
those elements C for which d(C, < T) > 1/n. Put H,= UC,Cec D,
and let H,, = H, N U,. Then H = UH, and, for each », H, = UH,,.
The proof will be completed by showing that < H,, = 0 for arbitrary
n and k. Since H, and U, are T sets,

(2) H,, is a T set.
Clearly

(3) If weH,, then there is a set Ce€, such that weC and
d(C, & T) > 1/n.

By (1) and the definition of H,,,

(4) If Ce€; and C E H,,, then for every domain G in R" which
contains TC and has a sufficiently small diameter it is true that T'G
possesses exactly one component D) which meets H,,.

(2), (3), (4) and Lemma 1 imply that ¥ H,, <n<?TH,,. Since TH,, & TH
and <TH =0, <¥*TH,, = 0 and consequently < H,, = 0. Since n and
k are arbitrary, it follows that < H = 0.

5. THEOREM 3. Let D be a bounded domain in Euclidean n-space
R and let T be a bounded, continuous, single-valued transformation
from D into R". For every positive integer j let D; be a bounded
domain in R™ and let T; be a bounded, coumtinuous, single-valued
transformation from D; into R™. Let B be the subclass of G(T, D)
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consisting of those elements C for each of which C M(C, T) exists and
18 positive and C contains more than a single point. Put B= UC,
Ce®B., If

(i) The mappings T; are UEAC.

(ii) The mappings T; converge to T uniformly on compact subsets
D and

(iii) T 4s eBV in D
then the following statements are equivalent:

(iv) T satisfies the condition (N) on B,

(iv)) &TB =0 and

(ivy! <B=0
and (i), (ii) and (iii) together with (iv) or (iv)’ or (iv)” tmply that T s
eAC in D.

Proof. First it will be shown that (i), (ii), (ili) and (iv) imply that
T is eAC in D. By the Theorem in [4], 16, there exist T sets V' and
V" contained in D such that &2 V' =0, L TV" = 0and if CeC(T, D)
and C does not meet V' U V", then M(C, T') exists and is positive. In
view of (iii), in order to conclude that 7' is eAC in D it is sufficient to
prove that T satisfies the condition (N) on E = E(T, D). Clearly it is
sufficient to show that 7T satisfies the condition (N) on each of the
following sets whose union is E: S, =E—E, S,=E? S, =(FE;—
EHXnV', S,;=(EF;,—EHN V" and S;,=(E; — E?) —(V'U V"). Since
Tis eBV in D, &¥ TS, = 0 (this is proved in the first step in the proof
of the theorem in [4], 18) and so T satisfies the condition (N) on 8.
Any subset of S, is a T set contained in £ and it follows by Theorem
2 that T satisfies the condition (N) on S,. Again by Theorem 2,
TS, = 0 and so T satisfies the condition (N)on S,. TS, < #TV'"' =0
and so T satisfies the condition (N) on S,. S; is a subset of B and so
(iv) implies that T satisfies condition (N) on S,.

If (@), (i), (iii) and (iv) are satisfied, then it has just been shown
that T satisfies the condition (N) on E(T, D). Hence, by Lemma 4 of
[3], IV. 4.2, & T(E — E?) = 0. Since B is a subset of K — E?, (iv)
must be satisfied. On the other hand, (iv)’ clearly implies (iv). Thus
if (i), (ii) and (iii) are satisfied, (iv) and (iv)’ are equivalent.

By Lemma 2, B =0 if <TB = 0. On the other hand, since B
is a T set contained in E(T, D), (i) and (ii) imply, by Theorem 2, that
ZTB=0if &“B=0. Hence if (i) and (ii) are satisfied, then (iv)’ and
(iv)" are equivalent.

6. It is reasonable to inquire whether (i), (ii) and (iii) in Theorem
3 are sufficient to conclude that T is eAC in D. After all, each of the
sets C in B is a non-point continuum for which the T magnification is



ON ESSENTIAL ABSOLUTE CONTINUITY 1569

positive and yet whose image under T is a single point in R* Might
not (i), (ii) and (iii) imply, say, (iv)’ (or equivalently (iv) or (iv)")?
Since the class B is clearly countable when T is a transformation into
R', TB is then a countable set. Thus (iv)’ is always satisfied when T
is a transformation into R'. However, the author has constructed an
example in R? for which (i), (ii) and (iii) are satisfied and for which the
limit transformation is not eAC ([6]). In the example the limit trans-
formation 7' is modeled on an example by Cesari ([1], IV. 13.1, Example
A). The transformation that Cesari defined provides an example of a
plane mapping that is eBV but not eAC. The example in [6] is some-
what more complicated by the need for (i) and (ii) to be satisfied.
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Correction to

“ON TERMINATING PROLONGATION PROCEDURES”

By H. H. JOHNSON
This Journal, Vol. 10 (1960), 577-583
(Received June 8, 1961)

M. Kuranishi has kindly brought to our attention an error in
Theorem 1 on page 579. Condition (2) of that theorem should be
corrected to read:

“2) dBy.ju,..., = 0 modulo (@, 6%) for all t.”

The above equation does not follow from the original hypotheses as the
author indicated.

Since the interest in Theorem 1 is in its applicability as a criterion
for involutiveness, it may be helpful to mention the following conditions
under which (2) holds, assuming condition (1).

Condition 1. The 6% and @ span dz', ---, dx™.

Condition 2. @' =dy',i=1, ---,p and dB,;; = 0 modulo ().

Under Condition 1, there are no #*, hence no additional variables
are introduced by the prolongation process.

Under Condition 2, B,.;; is a function of ¥', -+, y* alone. Conse-
quently dB,.;; = (0B,.;;/0y*)w*, hence B, ., = (0B,.;;/0y") is also a function
of ¥, -+- y* alone. In the same way every B,j,..., i8 a function of
y', =+, y® alone.

Condition 1 is satisfied in Theorem 2 on page 581. Condition 2 is
satisfied in the system (S’) on page 220 studied in the paper, H. H.
Johnson: ‘““‘On the pseudo-group structure of analytic functions on an
algebra,”’ Proc. Amer. Math. Soc. 12 (1961), 218-224. Princeton University.
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