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Introduction. In this paper we investigate an operation which is
a generalization of the Whitehead product for homotopy groups. Let
(R, S) denote the collection of homotopy classes of base point preserv-
ing maps of R into S, let YR denote the reduced suspension of R, and
let R%x S be the identification space R x S/RV S (see §1 for complete
definitions). Then this generalized Whitehead product (written GWP)
assigns to each aen(FA4, X) and Gexn(XB, X) an element [a, B]e
7(2(A % B), X), where A and B are polyhedra and X is a topological
space. In the case when A and B are spheres [«a, 5] is essentially the
Whitehead product. In this paper we generalize known results on
spheres and Whitehead products to polyhedra and GWPs.

The paper is divided into six parts. After the preliminaries of §1
we present two definitions of the GWP in §2. The first definition,
which was given by Hilton in [8; pp. 130-181], is closely related to a
commutator of group elements. The second definition is essentially a
generalization of the ordinary Whitehead product. It first appeared,
stated in the language of carrier theory, in a paper by D. E. Cohen
[3]. We prove in Theorem 2.4 that these two definitions coincide. This
generalizes a result of Samelson [11; p. 750].

In § 3 we establish some properties of the GWP such as anti-com-
mutativity and bi-additivity. With the exception of Proposition 3.1 the
results of this section have been obtained by Cohen [3]. However, the
proofs that we give are based on the first definition and facts about
commutators. Moreover, we believe that our proofs are quite elementary.

In the next section we show that YA x ¥B has the same homotopy
type as the space obtained by attaching a cone by means of the GWP
map. We then deduce a few simple consequences of this. In §5 we
congider the different ways that the GWP may be trivial. We study
the following situations: (i) [a,8]=0 (ii) the GWP map is null-
homotopic (iii) X is a space in which all GWPs vanish. With regard
to (iii)) we see that such spaces are not necessarily H-spaces.

The final section is devoted to a product which is dual (in the sense
of Eckmann and Hilton) to the GWP. Two definitions of the dual prod-
uct are given and they are shown to be equivalent. We also indicate
some properties of the dual product.
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A recent application of GWPs has been given by Barcus [1].

We would like to thank Peter Hilton and Paul Olum for help and
encouragement. We are also grateful to the referee for calling our
attention to the work of D. E. Cohen.

1. Preliminaries. In this section we recall some facts about homo-
topy theory. The general reference is [8] (see also [4]). Throughout
this paper we consider topological spaces with base points. The base
point is always denoted by * but will often not be explicitly mentioned.
By a polyhedron we shall mean the underlying space of a locally-finite,
connected CW-complex [13] with some vertex as base point. All maps
and homotopies are to preserve base points. If R and S are spaces
(with base points) then m(R, S) denotes the collection of homotopy clas-
ses of maps of R into S. If f,g: R— S are maps then f~ g signifies
that f and g are homotopic. The homotopy class of f: R— S is written
{flen(R, S). We denote by 0: R— S the constant map which is de-
fined by O(R) = =€ S.

If I denotes the closed interval [0,1], then cone on a space R, TR,
is the space obtained from R x I by “factoring out” the equivalence
relation (r,1) ~ (#', 1) for all r, 7" € R. The base point of TR is (*, 0).
(Note that a point in an identification (quotient) space is designated by
its pre-image under the identification map.) Clearly R is embedded in
TR by the map r— (r,0). We also consider CR, the reduced cone on
R. This is the space obtained from R x I by pinching R x 1U* x I
to *; briefly, CR=R x I[R x 1 U * x I. A third important identifica-
tion space is TR, the reduced suspension of R. This space is defined
by JR=R x I[Rx 0U R x 1U * x I or, equivalently, by ¥R = CR/R.
Notice that T, C, and X can be applied to maps. For example, if f:
R— S is any map, then 3f:YR— S is defined by Zf(r, t) = (f(7), {).
Thus we have a transformation 3, : 7(R, S)— n(ZR, ¥S). We also define
28, the loop space of S, as the collection of maps l:I— S with the
compact-open topology such that 1(0) = x = I(1). Of course we may
iterate suspensions and loop spaces and define, for any integer n > 1,
3"R =23(2""'R) and 2"S = 2(2*'S). We also set 3°R= R and 2°S = S.

In [8; p. 4] it is proved that m(ZR, S) has group structure. The

product (or sum) of two maps f,9g:3R—S is a map f-9:3R—> S
defined by

(f - 9)r, t) = f(r, 2t) for ogg%
=g(r,2t — 1) for%§t§1,

where re R and teI. The inverse of a map f:YR— S is a map f
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(or — f): XR— S defined by fr,t) =f(r,1—1t). This product and
inverse provide m(XR, S) with group structure.

ProrosiTION 1.1. For all spaces R and S, the group #(2R, S) is
abelian if

(i) R is a suspension
or

(ii) S is an H-space.

See [8; pp. 5-6] or |7 ; p. 377].

It is also not difficult to show that m(R, 2S) is a group, for all R
and S (see [8; p. 2]). Furthermore, there is a transformation which
assigns to a map f:2R— S, a map x(f) : R— 28 defined by &(f)(r)(£) =
J(r, 0).

ProPOSITION 1.2. The transformation x,:wn(2R, S)— n(R, 2S) de-
fined by £ {f} = {#(f)} is a natural isomorphism.

Next if n: S— S’ then for every space R there is an induced trans-
formation h, :#w(R, S)— (R, S’') defined by hJff}=1{hf}. If R is a
suspension then A, is a homomorphism. Dually, if k:R’'— R then for
every space S there is an induced transformation k* : z(R, S)— n(R’, S)
defined by k*{g} = {gk}. If S is a loop space then k* is a homomorphism.
Observe also that for #: R— R’ and any space S, (Zk)*:n(ZR', S) —
7(FR, S) is a homomorphism.

For any two spaces R and S we define RV S to be the subset
RxxUs*x S of RxS. We then define R xx S as the quotient space
R x SIRV S. We also define the join R*S of R and S to be the
space obtained from R x S x I by factoring out the relations (», s, 0) ~
{r,s,0) for all s,8’eS and (r,s,1) ~ (+',s,1) for all »,r € R. The
base point of R = S is (x, *, 1/2).

Let R be a subpolyhedron of S (i.e., the complex of R is a sub-
complex of the complex of S) and let F' be the space S/R. Let 7:R— S
be the inclusion map and let ¢ : S — F be the projection.

THEOREM 1.3. For any space X there is an exact sequence,
7 0k
v > 2(ER, X) > 23 F, X) 50 2378, X) Z 2(37R, X), where

n 1

1\%

0.
A proof appears in [8; §4] (see also [4]).

2. The definitions of the GWP and their equivalence. We now
turn to the two definitions of the generalized Whitehead product (GWP).
We are given ae (XA, X) represented by f:YA— X and Ben(2B, X)

1 When % = 0 exactness is in the sense of sets with distinguished elements and their
transformations.
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represented by g:Y¥B—> X where A and B are polyhedra and X is any
space. Letting p, and p; be the projections of A x B onto A and B respec-
tively, we define f' = fol¥p,: ¥(Ax B)—> Xand g’ =goZp;: ¥(Ax B)—» X
and then we define the commutator

K= "9"(f9):2(Ax B)—> X,

where the products and inverses come from the suspension structure of
Y(A x B) (see §1). Clearly k¥'|2(AV B) =0 since k',|2(A x x) =0
and k¥'|2(x x B)=0. By the homotopy extension property for the
polyhedral pair X(A x B), 2(AV B) [6; p. 97] there is a map k:
(A x B)— X such that k =~ k' and k| 2(AV B) =0. Thus k induces
k:3(A% B)=23(A x B)/Y(AV B)—» X with the property k = k3q,
where ¢ : A x B— A % B is the projection. We show that the homo-
topy class of % does not depend on the choice of the map k.

LemMMA 2.1. Given maps r,s:2(A X B)—> X with r|2(AV B) =0
and s|2(AV B) =0, where A and B are polyhedra ; r and s induce
7, 8§: (A% B)—> X with r =73q and s =5%q. If r =~ s then ¥ ~ 3.

Proof. If j: AV B— A x B is the injection then it is easily seen
that there is a map p:2(A x B)— 2(A V B) such that p 37 ~1. (We.
may set p = (Zp,) - (Zp,), where p,, p,: A x B—> AV B are defined by
»(a,d) = (a, *) and p(a,d) = (x,b).) Thus Zp3* =3(prj)=231=1
and so (2?9)*(Zp)* =1. This shows that, for any space X, (2%)*:
w(2*(A x B), X)— n(2*(A Vv B), X) is onto. By applying Theorem 1.3
to the inclusion j: AV B— A x B we obtain an exact sequence

(225)*
oo — T(3¥A x B), X)—5 n(2¥(A V B), X) —
7(3(A % B), X) 2 2(S(A x B), X)—> -
We infer from the fact that (2%))* is onto, that (Xq)* is one-to-one.
Since (Z¢)*{¥} = (Zq)*{8}, ¥ =~ §. This proves the lemma.

Thus the class of & is independent of the choice of map k and hence

independent of the choice of representative f of a and g of 8.

DEFINITION 2.2. The GWP of a ={f}en(ZA4,X) and B ={g}e
7(EB, X) is defined to be [a, 8] = {k} € n(Z(4 % B), X).

We consider next the second definition of the GWP. Here we
represent ac w(X¥A, X) and Ben(ZB, X) by maps f: T4, A— X, » and
g: TB, B— X, » respectively, where T denotes the cone (§1) and A and B
are polyhedra. In T'A x TB consider the subspace @ = TA x BUA x TB
and define % :Q — X by

M(a, t),b) = fla,?)
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ha, (b, w)) = 9(b, u)

where a€ A, be B and t,ucI. Now there is a map v from the join
A = B to @ defined by

v(a,b,t)=(a,(d,1—2t) 0=t=
— ((a, 2t — 1), b) %gtg

The map v is a homeomorphism, for the maps \,:A x TB— A *x B
and \,: TA x B— Ax B defined by \(a, (b, %)) = (a,d, 1 — u)/2) and
N(e, w), b) = (a, b, (1 + u)/2) determine a map Q@ — A x B which is, the
inverse of v (cf. [3; Theorem 2.4]). Consider next the subspace of A * B
consisting of all points (a, x,t) and all points (x,b,%). This is a contractible
space consisting of two cones with a cone generator in common. When it
is factored out we clearly obtain the space X(A %x B). Since A and B are
polyhedra the projection ' : A  B— 3(A % B) is a homotopy equivalence
[13; p. 238]. Let ¢:3(A % B)—> A = B denote the homotopy inverse of
', Thus the map & : @ — X gives rise to a map hvy : 3(A % B) > X.
It is easily seen that the homotopy class of hvy does not depend on the
representatives f and g of  and 8. Thus we have the second definition.

DEFINITION 2.3. The GWP of acn(JA, X) and Ben(2B, X) is
[a, B) = {hvpt} e m(Z(A % B), X). Except for minor modifications, this is
the absolute version of a definition given by D. E. Cohen [3].?

We remark that Definitions 2.2. and 2.8 can be extended to include
the case A and B are not polyhedra. To do this for 2.2 we consider the
mapping cylinder M of the inclusion map AV B—~ A x B. The GWP is
then given by a map % : 3(MJ/A\ B)— X. For Definition 2.3 we simply
regard the GWP to be represented by Av: A + B—X. We shall, how-
ever, only congider the case when A and B are polyhedra.

Next we show that Definitions 2.2 and 2.3 are identical.

THEOREM 2.4. For all acn(2A, X) and Ben(2B, X),
[, B8] = [a, 5]
Proof. We have the diagram

¢ That is, Cohen’s definition is stated for the more general carrier theory of Spanier
and Whitehead. We have given the absolute case in 2.3 in order to simplify the notation
and to emphasize the duality with the products of §6.
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where 6 is the projection obtained by squeezing all points of the form
(a,b,0), (a,b,1), or (x, x,t) in A = B to the base point. All other maps
are as before. We must show

hop=k: (A% B)—>X.
Since p#'¢t = 1 and 3q6 = ' it suffices to prove that
hy ~k2q0: A « B~ X .

But k¥q =k =~ k', where k' = (" - ¢ - (f' + ¢'), and so it suffices to
prove that the maps »r =hv and s=%'0 of A » B to X are homotopic.
To this end we first define a deformation of A = B by stretching
Ax Bx][1/4,3/4] in A = B to all of A * B. Thus we define
vo:Ax B> A = B by

vula, b, 1) = (@, b, (1 — wyt) 0st=
1 3

:a,b,ut——u— ) —=t<*=

( 5 TY TEt=7]

— (a,b, (1 — w)t + ) —i—gtg 1.

Now +, = 1, the identity map, and so r = v, where v, =71y, : A+ B—> X,
Explicitly,

7, b, £) = = 0st=3
1 1
—g0, 2—4t) Lcg<t
9( ) L =tE5
1 3
—fla, 44 —2) L=i=<3
fla ) g =t=7
= 3=,
1

Next we define a homotopy ¢,: A * B— X with ¢, =17, and ¢, =s. Let

$u(@, b, ) =fla, (1 — 4t)u) 0 été_i
1 1

=g(b, 2 — 4t —=stg=

g( ) LTEi=

1 3

=fla, 4t — 2 - =t=—

S ) 5 1

=g(b, (4¢ — 3)u) %été 1.
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Thus » =~ s as asserted and so [a, 8] = [«, B].

This theorem is a generalization of a result due to Samelson [11;
p. 750].

3. Properties of the GWP. In this section we derive some proper-
ties of the GWP from Definition 2.2. In all cases Lemma 2.1 and facts
about commutators will enter into the .proofs. We shall denote the
commutator (x'y*)(xy) of two group elements (or maps on suspensions)
2 and ¥y by (x,y). We shall, however, usually denote the group opera-
tion in w(YR, S) additively, for all spaces R and S. The notation of
§ 2 will be used throughout.

ProrosiTioN 38.1. If X is an H-space® then Ja, 8] =0 for all
acn(XA, X) and Bern(2B, X).

Proof. TFor then the group #(2(A x B), X) is abelian by Proposi-
tion 1.1 and so the commutator map k' = (f’, ¢') of Definition 2.2 is
nullhomotopic. Thus by Lemma 2.1 k& ~ 0, i.e., [a, B] = 0.

ProposITION 8.2, If Y, :7w(3(A % B), X)— n(2*(A % B), 2X) is the
suspension homomorphism (§ 1), then ¥, [a, 5] =0 for all aen(Z4, X)
and Be (2B, X).

Proof.* The group w(3*(A x B), YX) is abelian by Proposition
1.1 and so Sk ~ (3f, ¥¢') is nullhomotopic. Thus Ik3% ~ 0, where
q: A x B— A% B is the projection. By applying the transformation &
(see Proposition 1.2) we obtain #(Zk)o3q ~ 0:3(4A x B) > 2XX. From
Lemma 2.1 we infer that £#(3%) ~ 0 and so 3% ~ 0, i.e., I,[a, 8] = 0.

ProrosiTioN 3.3. (Anti-commutativity) For all ac (24, X) and
Ben(¥B, X),

18, a]l = — (30)*[a, 5]

where ¢ : Bk A— A % B ig induced by the map B x A— A x B which
sends (b, a) to (a, b).

This proof is an easy consequence of Lemma 2.1 and the commuta-
tor rule (x, ¥)™* = (¥, #) and ig thus left to the reader.

Next we prove that the GWP is additive in each variable. The
proof makes use of the following theorem of G.W. Whitehead (see [12;
Theorem 2.10] or [2; § 6] for a proof).

3 An H-space is a space with a continuous multiplication for which the base point is
a two-sided homotopy unit.

4 Cf. Cohen’s proof, [3; pp. 238-240].
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THEOREM (Whitehead). If P is a polyhedron which has Lusternik-
Schnirelmann category < n (briefly, cat P < n) and S is any space,
then all n-fold commutators in the group (P, 2S) reduce to the iden-
tity. (Recall that an n-fold commutator is defined inductively as fol-
lows. A 1-fold commutator is just an element. An m-fold commutator
is the commutator of an m-fold commutator with an n,-fold commuta-
tor, where n, + n, = n.)

Now we prove

ProprosiTioN 3.4. (Bi-additivity) If A and B are suspensions then
(i) [a+a 6] = a6 + a4l
(ii) [a, 8 + Bl = [o, B8] + [a, Bl

for all a,ac (A, X) and B, 8en(2B, X).

Proof. We only prove (i) since (i) and Proposition 3.3 imply (ii).
By a theorem of Bassi [5; Theorem 9]

cat (A x Bys=catA+catB—1.

Since A and B are suspensions, each is of category < 2. Thus
cat (A x B) < 3° and so by Whitehead’s theorem all 3-fold commutators
in (A x B, 2X) reduce to the identity. By applying the isomorphism
T(2(A x B), X)~ n(A x B, 2X) of Proposition 1.2 we see that this is
true of the group #(2(A x B), X). However, if © is any group in
which all 3-fold commutators are trivial then (ab, ¢) = (a, ¢) (b, ¢) for all
a,b, cem (by [14; p. 60] or direct verification). Thus the previous equal-
ity holds for the group #(Z(4 x B), X). Now (f + F) = (f + /)Ip, =
fEp, + fEp, = f + f', where f represents @cm(ZA, X), and so
(f+5,9)=("+7F"9) But we have just seen that (f' + f', 9') =
f",9) + (f',g). It then follows, without difficulty, that [a + @, B8] =
la, 8] + [a, B].

We remark that it is possible to prove an appropriate Jacobi ident-
ity for GWPs of elements aecn(FA, X), Ben(ZB, X) and v e =(2C, X),
when A, B and C are suspensions. The proof, like the preceding one,
is a generalization of G. W, Whitehead’s argument in [12]. It is based
on Whitehead’s theorem above and the following algebraic fact: if =
is a group in which all 4-fold commutators are trivial then (e, (b, ¢))
o, (c, a))c, (a,b)) =1, for all a,b,cex[14; pp. 63-64]. A proof of the
Jacobi identity from Definition 2.3 appears in [3; 5.8].

4. The product of two suspensions. In this section we derive
a formula which relates the homotopy type of the product of two

5 The standard reference on category is [5].
6 The fact that cat (A X B)=<3 when A and B are suspensions is proved in Corollary 4.5.
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reduced suspensions to the GWP map. We adopt the following notation.
For any space R, RS is the quotient space of R x I by the relations
{(r, 0)~(",0) and (r, 1) ~(#', 1) for all r, ' € B, The base point is (x, 0).
‘There are obvious maps t,: TR— SR and s;: SR— YR. We recall
from Definition 2.3 that @ = TA x BUA x TBC TA x TB and that
v: A+« B—>Qis the canonical homeomorphism. We let : Q—>2AV 2B
be the map of Definition 2.3 determined by the inclusion maps 4, :
JA—>2AV 2B and i,: ¥B— 3A Vv IB, i.e., h{a,t),b) = ((a, t), *) and
Ma, (b, u)) = (x, (b, u)). Throughout this section and the next we assume
that either the polyhedron A or the polyhedron B is compact. It is
possible, by complicating the argument, to get rid of this assumption.
However it enters only in the proof of the following

LEmMMA 4.1. There i1s a map F:CA x B), A = B—» YA x 2B,
AV 3B such that F induces isomorphisms of homology groups and
FIA* B=hv:A « B>3AV XYB.

Proof. Note that the map v can be extended to a map N: T(4 = B),
A« B— TA x TB, Q by setting

N((a, b, t), u) = (a, u), (6,1 — 2t(1 — u)) 0

IA
IA

t< 1
2
1 1.

=(a,1 —2(1 —t)(1 — u)), (b, u) =t

A

‘This definition is due to D. E. Cohen who showed [3; Theorem 2.4] that
N is a homeomorphism when A or B is compact. Next we observe that
t,Xtz: TAx TB,Q— SA x SB, SA\V SB is an identification map since
A or B is compact [3; Lemma 1.6]. This implies ¢, x t;|(TA x TB)— Q
i3 a homeomorphism onto (SA x SB) — (SA Vv SB). Hence ¢, X tg
induces isomorphisms of (relative) homology groups. Now the map
8, X 83:SAxSB, SAVSB—>J3Ax2XB, YAV Y¥B induces homology
homorphisms since s, and s, are homotopy equivalences [10; Hilfs. 5].
"Thus the composition of the maps

taXts

T(A*B)A*B—]\—]—»TAX TB, Q —
SA x SB,SAV SB™ ¥ sA x B, SAV 3B

induces isomorphisms of homology groups. Furthermore this composite
restricted to A * B is the map (s, V sp)o(t, X t5)| Qov = hy. Finally
we observe that N(( ., %) u> = ((+, ), (+,u))" for allwe I. Thus if
V:T(A*B), A* B>C(A* B), A* B is the identification map, there
exists a map F:C(A* B), A* B>3A x ¥B, YAV YB such that

7 Recall that (¥, * 1/2) is the base point of 4 * B.
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FV = (s, x sg)(ty x tz)N. F' is the desired map.

If f:R— S is any map then SU;CR or C, denotes the quotient
space of SV CR by the relation (x, (r, 0)) ~ (fr, x). This is called the
space obtained from S by attaching a cone on B by means of f. The
symbol “ =~ ”” ghall signify same homotopy type.

THEOREM 4.2. YA x 3B~ (JAV 2B)U,,C(4 = B)®

Proof. The map F: C(A » B)—> 3A x YB of Lemma 4.1 and the
inclusion j: YA v 3B— 3JA x 3B give rise to a map

G: Cp = (JAV SB)U,,C(A * B)— SA x 3B,

Let H: C(A « B)— C,, denote the composition of injection and projec-
tion, C(A = B)—> (JAV 2B)V C(A = By— C,,. Then there is a diagram

A+« B—""354\ 5B
hv 1

H
C(A + By—™/>(C,,

J
\\
JA x B

where the unmarked arrows denote inclusion maps. All squares and
triangles are commutative. We claim that G induces isomorphisms of
homology groups. By the exactness of the homology sequence of a
pair it suffices to prove that G: C,,, YAV ¥B—> YA x 2B, YA\ 3B
induces homology isomorphisms. However, the composition of this map
with H: C(A = B), A * B— C,,, YAV 3B is the map F. Hence by
Lemma 4.1 it suffices to prove that H induces homology isomorphisms.
But clearly there is a commutative diagram.

C4« B), A* B -2 ¢, YAV 3B

lo lo

C(AxB) 1 CA=x=B) _ Cun *
A=« B’ — " AxB SAV EB’

where @ and @' are the projections. Since A and B are polyhedra,
@ and Q' induce homology isomorphisms. Thus H, and consequently,
G: C,,— YA x YB induce homology isomorphisms. We complete the
proof by remarking that, since A and B are polyhedra (i.e., connected,

8 This formula appears on p. 200 of [8].
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locally-finite € W-complexes), ¥4 x ¥B and C,, are simply connected (the
latter, e.g., by van Kampen’s Theorem, [9; p. 666]). Thus a theorem
of J. H. C. Whitehead [6; p. 113] guarantees that G: C,, > 3A x B
is a homotopy equivalence.

We note for future use that G|ZAV ¥B=j: AV YB—~> YA x Y¥B,

Now denote by k: (A % B) »> SA \/ B the map of Definition 2.2
which represents the GWP of the class of %,: SJAc YAV YB and
i, SBC SAV XB. We call &k the GWP map. An immediate conse-
quence of Theorem 2.4, is

COROLLARY 4.3. YA x YB=(2AV YB)U ;CX(A % B) = C; .

COROLLARY 4.4. jk ~0:35(A % B)—3A x ZB.
By the first diagram of the preceding prgof, jhy factors through
C(A * B) and hence is nullhomotopic. Thus jk ~ 0.

COROLLARY 4.5. cat(FA x YB) £ 3.

Since attaching a cone increases category by at most one and cat
(XA v YB) £ 2, the corollary follows. It is of course, a very special
case of Bagsi’s Theorem (see the proof of Proposition 3.4).

COROLLARY 4.6. If p: YA x YB—> YA X% XB s the projection,
then, for any space X, the following sequence 1s exact,

~(ZA % 5B, X) 2 7(ZA x 5B, X)——
T(SA\ 3B, X)—s 2(3(A 2 B), X)) .

By Theorem 1.3 and Corollary 4.4 it suffices to show that for any
map l: SAV ¥B— X with Ik ~ 0, there is a map m: SA x SB— X
such that mj ~ 1. But Ik ~ 0 evidently implies that ! is extendible to
a map l: C;— X. The composition of 7 with the homotopy equivalence
YA x ¥YB— (C; i8 the desired map m.

This corollary suggests a close relationship between the maps 7 and
k. In the next section we shall see that this is so (Proposition 5.2).

5. The vanishing of the GWP and H-spaces. In this section we
investigate various ways in which the GWP may be trivial and obtain
equivalent conditions for each of them. We begin by considering a condi-
tion for the vanishing of the GWP of aen(FA, X) and B e (2B, X).

ProposITION 5.1. [a, 8] =0 if and only if there is a map
m: YA x ¥B— X such that {m|3A} =« and {m|ZB} = B.

Proof. Let the maps f and ¢ represent a« and B and let
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l: AV YB-— X Dbe the map determined by f and g. Then it is evident
that 1% represents [, B]. This observation, together with Corollary 4.6
establishes Proposition 5.1.

Next we consider conditions under which the GWP map is trivial.

PROPOSITION 5.2. £~ 0:3(A % B) > 3SA Vv B if and only if
J: AV XB—> YA x YB is a homotopy equivalence.

Proof. If k~0 then by Corollary 4.3 and the remark preceding it,
there is a homotopy equivalence K: (FAV IB) Vv (A< B)—> YA x ¥B
such that K|YAV 3B ~j. Thusif 7: YAV XB—>(JAV YB)V 3*(A % B)
is the inclusion, ¢: (JA Vv ZB) Vv 3(A %« B)— YA Vv YB the projection
and K’ the homotopy inverse of K we have ¢K'j ~ qK'Ki ~ g1 = 1.
Hence j has a left homotopy inverse. It follows that the induced map
on homotopy groups j,.: 7w (XAV 2B)— 7(XA x ¥B), is a monomorphism
for all ». But it is a standard result that j, is an epimorphism [6;
p. 43]. Thus j, is an isomorphism and hence j is a homotopy equiva-
lence [6; p. 107].

Conversely let j' be a homotopy inverse to j. Then since jk =~ 0
by Corollary 4.4, % ~ §jk ~0. We remark that the exact homology
sequence of the pair SA x B, YAV YB shows that j is an equivalence
precisely when H,(JA x ZB,YA Vv YB) =10 for all n. By means of
the Kinneth formula this condition may be stated purely in terms of
the homology groups of A and B. It is equivalent to asserting that
2A % XB is contractible,

Next we investigate spaces in which all GWPs vanish, i.e., spaces
X such that [a, 8] =0 for all &, 8 and all A, B. - By Proposition 3.1
we know that H-spaces are among such spaces but we shall see that
the converse is false. First we prove

LEMMA 5.3. If a,Ben(ZA, X) (t.e, A=B) and d: A— A% A 1s
the composition A— A x A— A% A of diagonal map and projection
then (Zd)*[a, B] = («, B), the commutator of a and .

The proof is a ready consequence of Definition 2.2.

PropPoSITION 5.4. All GWPs vanish in X if and only if =(2P, X)
(~ (P, QX)) is abelian for all polyhedra P.

Proof. If n(2P, X) is abelian for all P then 7(2(A x B), X) 18
abelian. Using the notation of Definition 2.2, we see that this implies
that the commutator of f' and ¢, ¥ =0:3(A4 x B)— X. Thus
[a, 8] = 0. The preceding lemma establishes the opposite implication.

In [2] Berstein and Ganea introduce a numerical invariant of homo-
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topy type, nil X, for any space X. In particular, nil 2X <1 is the
assertion that the commutator map 2X x X — QX is nullhomotopic.
It is easy to verify that nil 2X <1 implies m(P, 2X) is abelian for all
spaces P. Hence Proposition 5.4 shows that nil 2X <1 implies that all
GWPs in X vanish. However, on pp. 112-113 of [2] Berstein and Ganea
have constructed a space X with nil 2X <1 which is not an H-gpace.
'This shows the existence of spaces in which all GWPs vanish but which
.are not H-spaces. However, such spaces cannot be suspensions.

ProroSITION 5.5. Let ¢ denote the class of the identity map of Y A.
If the GWP [¢,¢] =0, then YA is an H-gpace. (This proposition is well-
known when A is a sphere.)

Proof. Let j, and j, denote respectively the inclusion of YA into
the first and second factors of 34 x YA. By definition YA is an H-space
if there exists a map m: YA x YA — YA such that mj, =~ 1 and my, =~ 1.
By Proposition 5.1 this occurs when [¢, ¢] = 0.

6. The dual product. In this section we use the Eckmann-Hilton
theory ([4] and [8]) to study a product which is dual to the GWP. Here,
as in §2, we present two definitions of the dual product. In prepara-
tion for this we introduce some notation and recall some facts.

We noted in §1 that m(R, 2S) has group structure for any spaces
R and S. Explicitly, if f, g : R— 28 then define

A
IA

(f-r)(t) =f(r)(2t) 0

— ol

=g(r)(2t — 1)

Do |+
A
A
fIA

aand  fUr)E) = f(r)(1 —t), where re R and tel. This product and
inverse induce group structure in z#(R, 2S). Also if h: R— S is any
map, 2h: QR— 028 is defined by (Qh)(I)=hel. If R and S are subspaces
of a space X, then E(X; R, S) shall denote the space of paths in X
which begin in B and end in S(i.e., maps 7,0,1— X, R, S) with the
compact open topology.

We say p: E— B is a fibre map, if for every space X and every
homotopy f,: X— B and every map ¢,: X— E such that pg, = f,
there exists a homotopy g¢,: X — E of g, such that pg, = f,. The space

F=p'(x)C E is called the fibre and F — EL B is called a fibre
sequence. Now we show how, for any spaces A and B, the inclusion
j: AV B— A x B gives rise to a fibre map. Let P(4, B) = E(A x B;
AV B, Ax B) and AbB = FE(A x B; AV B, =) and consider the diagram
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AyB— P4, B)-"> A x B
AN |1 /"
\po ‘ u’ l u ,7/
NV /
NavB”

where p,(l) = 1(0), p.(I) = I(1), w'(I) = [(0), 7 is the inclusion and w(x)(t) =«
for xe AV B and all tel. The following facts are well-known (e.g.,
[8; pp. 16-20]) and not difficult to establish :

(i) ApB—- P(4, B)-25 A x B is a fibre sequence

(ii) 't =p, and pu =7

(i) wu=1and un' ~1.

We now turn to the first definition of the dual product which
is a pairing from 7z(X, 2A) and n(X, 2B) to z(X, 2(A)B)). Let {f} =
aen(X, 2A) and {g} = Be (X, 2B) where A, B and X are any topological
spaces.” Letting ¢, A— AV B and 1,: B— A\/ B be the inclusion maps,
we define f' =(24,)f: X—> Q(AV B) and ¢ =(Qiz)g9: X— 2(AV B) and
then we define the commutator

=97 (f+9):X—2AV B).

Since 2(A x B) is homeomorphic to 24 x 2B it follows that (27)k’ =~ 0
X — 2(A x B), where j: AV B— A x B is the injection. Using the
notation of the preceding diagram, we obtain a commutative diagram

Qﬂﬂ&
ou/ |

24 v BY | am
v 1

x/ 95k 24 % B).

Since the loop functor 2 applied to a fibre sequence yields a fibre
sequence, 2p, is a fibre map with fibre 2(AhB). Since 25 k' = 0, there
is a map k: X— QP(A, B) such that &k ~ Quk’ and 2p, k = 0, the con-
stant map. Thus k induces a map k: X — (A} B) such that ik = F,
where i: AyBcC P(A, B). The following lemma shows that the class of
k is independent of choice of representative f and g of a and 8.

LEMMA 6.1. Given maps 7,s: X — QP(A, B) such that Qp,r =0
and Qp,s = 0; then r and s induce maps 7, 5. X — Q(AbB) such that
iF=rand 213 =s. If r~s then ¥ ~ §.

9 In this section A and B are not necessarily polyhedra.
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The proof is dual to the proof of Lemma 2.1 with the fibre map
;. P(4, B)—> A x B here playing the role of the polyhedral inclusion
AV Bc A x B of 2.1. The exact sequence which is associated to any
fibre sequence ([8; (4.5)] or [4; p. 2557]) takes the place of the exact
sequence in 2.1. We omit details.

DEFINITION 6.2. The dual product of @ ¢ n(X, 24) and B e n(X, 2B)
is |a, B] = {k} e n(X, (A} B)).

Next we prepare to give the second definition. For any spaceR, let
ER = E(R; R,*) and let ¢z: ER— R be defined by ¢z(l) = 1(0). Now
for any spaces A and B let Q be the subspace of (KA vV B) x (AV EB)
congisting of pairs (%, ¥), e EAV B and ye AV EB, such that
. Vv1D@)=1AV ey in AV B. We call the obvious projections
4 Q—> AV EB and 3: Q> EAV B. We also define the cojoin of A
and B, A% B, as F(AV B; A, B). Let p, and p, be the projections of
EA v B onto EA and B respectively and let ¢, and ¢, be the projec-
tions of AV EB onto A and EB respectively., Then there is a map
»:Q>A+B given by

Hx)(t) = (@a(®), (@)1 —2t) 0=t=4%
= (p1X2(x)(2t - 1), pz%z(x)) it =1

where € Q and te I

We are now able to give the second definition of the dual product.
Since RAc EA and QB c EB we represent a € n(X, 2A4) by f: X — EA
and BSen(X, 2B) by g: X— EB. The maps f and g determine maps
X FEA\ B and X — A V EB respectively. These last two maps de-
termine a map h: X — Q. Composing h with the map ¥ of the preced-
ing paragraph yields a map Yh: X — A % B, It is clear that the class
of Ph is independent of the representative f of a and g of B.

DEFINITION 6.3. The (second) dual product of acmn(X, 24) and
Ben(X, 2B) is [a, B) = {Ph}le n(X, A * B).

We make a few remarks regarding duality. We first observe that
Definition 6.2 is an approximate, not a precise, dual of Definition 2.2.
Thig is due to the fact that in Definition 2.2 we restricted our attention
to the case when A and B were polyhedra so that the pair A x B, AV B
would have the homotopy extension property. As we noted in the
remark following Definition 2.8, by using the mapping cylinder M of the
inclusion map AV B— A x B, a GWP in n(¥(M/A Vv B), X) is obtained
for any spaces A and B. This GWP is precisely dual to Definition 6.2.*
Regarding Definition 6.3, we note first of all that the cojoin and the

10 However, there are advantages to considering Y(AxxB) instead of Y(M/Av B). More-
ver, the restriction to polyhedra is necessary at various places in §§ 3-5.
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join are dual. Secondly, although Q is not dual to the space @ of
Definition 2.8, it is possible to give a definition of @ (in terms of u.i.
squares [8; §6]) which is dual to Q. The map 9:Q — A % B is of course
dual to v: A * B— Q. Thus if the second definition of the GWP is
taken to be the class {hv}lezw(4 * B, X) (see the remark following
Definition 2.3), then it would be the precise dual of 6.3.

Next we sgee that the two dual products are equivalent. Let
Po: AyB— AV B be defined by p(l) =1(0) and let r: AV B)-> A% B
be the inclusion map. We set » = rQ2p,: 2AyB) > A # B* Then, for
each space X, \ induces a map A, : (X, 2(4h B)) —> (X, A * B).

THEOREM 6.4. For all aen(X, QA) and Sen(X, 2B),
Mla, 8] = e, 8]

The proof is essentially dual to the proof of Theorem 2.4 and hence
is omitted.

Many results and proofs of the preceding sections can be dualized.
However, many cannot since the dual products are not precise duals of
the GWPs., It is left for the reader to determine which results of
§8§3-5 can be dualized and to supply the proofs. We shall close with
an interesting question about the relationship between the dual product
and the cup product.

Let A and B be Eilenberg-MacLane complexes of type (G, » + 1)
and (G,, ¢ + 1) respectively. Let X be a polyhedron and let H*(X; G)
denote the nth cohomology group of X with coefficients in G. Then it is
well-known that there are natural identifications (i.e., group isomophisms),
(X, A) = H*(X; G) and n(X, 2B) = HY(X; G,). Let C be an Eilenberg-
MacLane complex of type (Gi:QRG,, » + ¢q) and let “ U” denote cup prod-
uct. Then we conjecture that there is an element v € z(2(A} B), C) such
that vola, B] = v, la, Bl = a U B, for all acn(X, 24) = H*(X; G,) and
Ben(X, 2B) = H{(X; G,). A proof of this conjecture would enable one
to obtain information about cup products from facts about the dual
product and commutators.
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