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1. Introduction. A special case of a vesult of Kaczmarz and
Steinhaus [4] (Theorem 2 with @ = b) shows that if {a;} (:=1,2, :-+)
is a sequence of real numbers with 3\2,]/a;| = +c and a;— 0, then the
Rademacher series >, a,R,(x) assumes every preassigned real value ¢
(cardinal number of the continuum) times for x in (0,1]. One object

.of this paper is to refine this result in certain directions. We shall prove

THEOREM 1. If the sequence {a; 1is in [, but mot in I, then
Sz aRi(x) assumes every preassigned real value on a set of Hausdorff
dimension 1.

We shall also prove

THEOREM 2. If {a;} 18 a sequence of bounded wvariation
e la; —a; | < ) which is not in 1, but a;,— 0, then 3.2, a;R,(x)
assumes each preassigned real value on a set of Hausdorff dimension
at least 1/2.

In § 6, we apply the method of proof to a problem on the distribution
of digits in decimal expansions of numbers.

In §7 through 11, we develop a theory of dimension of level sets
for series of the type >, 7R, (x) where » is a fixed number in the
interval [1/2, 1).

2. Preliminary definitions and lemmas.

DEFINITION 1. The 4" (1 = 1, 2, ---) Rademacher function is defined
to be Ri(x) =1 — 2¢(x) (0 <z =1), where ¢(x) is the 2™ digit of the
(unique) nonterminating binary expansion of x.

DEFINITION 2. Let X be a subset of Euclidean n-space. Let J(X)
be a finite or countably infinite set of open spheres {J;} (1 =1,2, -..)
with finite diameters |J;| whose union covers X and whose diameters
do not exceed ¢ where ¢ > 0. The Hausdorff outer measure of order s,
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where s is a positive number, is defined as

A X = lim inf 3| J[5,
g0 Jg(X)
where the summation is extended over the members of J(X) and inf; .,
is with respect to all admissible J(X). The Hausdorff dimension of X
is defined as dim X = inf,., {s| 4°X = 0}.

DEFINITION 8. Suppose 2 € (0, 1]. T,(x) shall be the point in Euclidean
n-space whose jth coordinate is given by Ti(x) = D2, €inei(x) 274
(j = 1’2! "'7n)'

LemMMmA 1. If x ts @ binary irrational (not of the form p/2* with
p and k integers), then R, ...;(x) = R(Ti(x)) for 1 =1,2,+-+ and
j: 1’2’ cee, M.

LEMMA 2. If A is a subset of (0,1], then n dim A = dim T,(A).
Proof. A binary cube (or binary interval in the case of the line)

is defined as a closed cube in n-dimensional space whose 2" vertices are
of the form

(kl;—n&, k22—|;82’ “',kn;:nSn),

where the 8,(1 =1, 2, ---, n) assume independently the values 0 or 1,
the k, are nonnegative integers less than 2™, and m is a positive integer.
The cube is denoted by W, 4, ....sm Or W. For m =1, I is written in
place of W. It can be shown that an equivalent definition of dimension
is obtained (for a subset of the unit cube [0 =%, <1(:=1,2, .., n)}
in m-space) if one replaces in Definition 2 the spheres by binary cubes.
and uses the cube edge (1/2™) in place of the sphere diameter.

Let k;/2™ = 37, ¢i277, where ¢; is 0 or 1. With the cube W, ., ... ¢ in
we associate the closed interval I:

moon oom n i
[Z{ Z 6‘7; 2—[(]—1)%4.—1]’ Z{ zll 8;- 2—[(]—1)n+1] + zﬁmn]
i=11i=1 j=1i=

and write I = s(W). Let {I"} denote the set of all binary intervals on
[0,1] of length of the form 2-*"(k =0, 1, 2, --+). s is a one-to-one mapping
between {I*} and the set of all binary cubes in n-space, and hence has
an inverse s7'. We note that I(s(W)) = (e((W))* where [ denotes the
length of the interval and e denotes length of the cube edge

We show first that dim 7,(4) < n dim A. It suffices to assume that
A contains no points of the form p/2* (p and k are integers), for if it
did, they could be deleted without changing the dimension of A or 7,.(4).
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Suppose positive § and € are given arbitrarily. There exists a covering
of A by binary intervals I, (t =1, 2, ---) such that >z, (I(1;))"™4+® < e,
Here we make use of analogue of Theorem 16.1 of [8] for Hausdorff
measures defined using binary cube coverings. Replace the covering
I, (1=1,2,.--) by a covering of intervals from {I"} by replacing each
interval of I; of length 27%: by 2?i~?: intervals of length 2-?i where p; is
the smallest integer greater than p; which is a multiple of n. Denote
the resulting covering intervals by I? (+=1,2, --+). The cubes s*(I7%)
will cover T,(A) and

o

S5 e(s I = 5 UL < 2
Since this holds for each pair of positive ¢ and 8, dim 7,(A4) =< n dim A.

We now show that dim A < 1/n dim T,(A). Suppose that positive
¢ and & are given arbitrarily. There exists a covering of T,(A4) by binary
cubes W' (1 =1,2,.-:) such that 37, (e( W))"™» W+ < e, Let W:
(JG=1,2 -+, k() (k(7) = 3") be the binary cubes of edge e(W?) which
intersect the cube W¢, including W°® itself. The closed binary intervals
s(Wiy (43=1,2,+--,k(t);2=1,2, -++) cover A and

i 131:: (l(s( W;)))(l/n)(dian(A)-i"B) é 3n i (e( Wi))dian(AH& < 37»6 .
=1 j=1 =1
Thus dim 4 < (1/n) dim T,(4). This completes the proof of Lemma 2.
We remark that Lemma 2 has an analogue for the well-known Peano
curve (see [3], pages 457-8) which maps the unit interval into an

n-dimensional cube.

LEMMA 3. If {a;} s in 1, then >.7.,a;Ri(x) converges almost
everywhere.

This lemma is due to Rademacher. See Theorem 3 in [4].

LEMMA 4. If 32, |a;| = o« and a; — 0, then given any real number
«, there exists a binary irrational x,€ (0,1) such that >3, aR(x,) = a.

See Theorem 2 in [4]. The proof of this lemma is similar to that
of Riemann’s theorem that any conditionally convergent series of real

numbers can be rearranged to converge to any preassigned real number.

LEMMA 5. If So,a; and >7.b; are convergent series of real
numbers, then 3=, a; + b; is convergent with value >a; + >.b;.

This is Theorem 3, page 78, of [6].
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DEeFINITION 4. A subset A of (0,1] ¢s of type G(n, K, M) (n, K, M
nonnegative integers) if it has the following property. Suppose &l x
G=MM+1,.-:) is an arbitrarily given sequence of 0’s and 1’s.
Then there exists x€ A such that e, (%) = ehiyxe G=M, M+ 1, --+).

Lemma 6. If A < (0,1] is of type G(n, K, M), then dim A = 1/n.

LEmmA 6A. If A < (0,1] is simultaneously of types G(2n + 1,1,0),
G@2n +1,3,0), -++,G2n + 1,2n — 1,0) where n is a positive integer,
then dim A = n/(2n + 1).

Lemmas 6 and 6A follow from Lemma 2.

3. Proof of Theorem 1. Let a be a real number. Let n be an
integer > 1. Let

E={@, o, )| 5 5 R@)aonss = af

where 0 < x; £1. Let E’ be the subset of E whose points have only
binary irrational coordinates. Let «' = (x], }, --+, x}) be in E’ and let
2 be the (unique) inverse image of &' under T,; i.e., 2" = T,(x). Observe
that x is a binary irrational number. We have

= 30 5 gumss Bi(@) = 3 3, s BT i)
1) ; Z -vnti Binnrs(®) = ;gau vati Bl (%)
= S\ a.R(®) .

Lemmas 1 and 5 justify the third and fourth equalities, respectively.
Let B(a, {a;}) be the set of all # in (0,1] such that a = >}, a;R(x). It
follows from (1) that the x defined above is in B(«, {a;}) and hence that
T.8) D E'. We now show that dimE’' =% — 1. For some integer
jl =75 =n), wemust have 3.2, |@;_1y.r;] = . Without loss of generality,
wetakej=mn. Let 4;(j=1,2, ---,n — 1) be the subset of the interval
(0 < z; 1] where 332, @10y ; RBi(x;) converges and A; be the subset
of A; whose points are binary irrational. Let A* = X,_;.,, A} be the
Cartesian product of the A}. Suppose z* € A* and z* = (xf, =], -+-, /).
Suppose 33121 312 Ri(%)) @;—1ynr; = . By Lemma 4, there exists a binary
irrational number «} such that >\, Gi-ynis Bi®r) = a —a,. Thus
Dt Dt Gy Bi(®}) = o, + @ — @, = a.  Hence (xf, 25, -+, x7) € E'.
By Lemma 3, the measure of A; and A} is 1. Thus dimA* =u — 1.
But since the projection of E’ on the X, ;<,.%; hyperplane includes
A* dimE'=n — 1.
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Using Lemma 2, we have dim B(«, {a,;})) = (1/n) dim T,(8(«, {a.})) =
(I/n)dim E' = (1/n)(n — 1) =1 — (1/n). Since this holds for every
integer » > 1, the theorem follows.

4. Proof of Theorem 2. Let n be an integer > 1. We can assume,
without loss of generality, that the a, are positive. Since {a;} is not in
I,, at least one of the 2n + 1 sequences {@untnism}r {Fenini—@n-1nts ***»
{@mrni} (2 =1,2, --+)is not in [,, We suppose, without loss of generality,
that {@u.i1:) 18 not in [,. We take s, = =1. Choose Spuiniwn—pn (I =
0,2,4,-++,2n— 2;1=1,2, .-+) as an arbitrary sequence of +1’s and
—1’s except that an infinity are —1. Put Suinie@nin = —Sentni-ea—i-
The series 3321 Suuini-en—s) Fenini-en—9 T Senini-ea-i- Genini-ea—j— CON-
verges since >, (a; — a,_,) converges absolutely and hence any subseries
SV (@; — a;—;) converges absolutely. Call its value a,,_;.

Now let @ be the preassigned value and let « =a — Sl ay,—;-
Choose, by Lemma 4, su,.:; = 1 80 that 3} Suniyi Caniy: = &'. With
these choices for s;, 3.2, 5,0, = a. Remembering that ¢,(x) = (1 — Ri(z))/2,
from Lemma 6A, we have that the set on which > a,R;(x) = a has
dimension at least »/(2n + 1). Since 7» is an arbitrary integer > 1, the
theorem follows.

5. Remarks.

1. Theorem 1 could be slightly improved as follows. We could

consider the sets 8(v,6, {a;}) of © where for preassigned numbers

v and § (—w0 =7 =8 < +), lm,.. 32, aR(x) =8 and

lim, .. >, a;B(x) = v. If a, is in I, but not in [, then

dim £8(7,8, {a;}) = 1.

It might be interesting to investigate the measure of B(«, {a:})

under the hypothesis of Theorem 1. It might also be interesting

to determine, if possible, the dimension function (dimension in

sense of [2]) of B(a, {a.}).

3. The conclusion of Theorem 2 is not as precise as that of
Theorem 1. However, it may be the best possible conclusion.

4. The function sequence {a;R;(x)} is a probablistically independent
function sequence. No explicit use of this property is made,
but we believe that this property is implicitly used. We hope
later to consider extensions to other probablistically independent
function sequences; also extensions to certain lacunary trigono-
metric series should be considered. We note that E,(x) = sign
{sin 2F ac},

o

6. Application. Using the method of proof of Theorem 1, we prove

THEOREM 3. Let L(z) = lim,.. (1/n) 3¢, efx) and L(x) =
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lim,-.. (1/n) S, &%), where x€(0,1]. Let B = {w|Lx > La}. Then
dim B=1.

Proof. We shall show that dim {x | L(z) — L(x) = (1/k)} = (k — 1)/k,
where k is an integer > 1. Let B; = {x;| L(x;) = L(z;) = 1/2; 0 < z; < 1}
(1=<j=<k-—1)and E* be the Cartesian product of all the B;. The
linear measure of B; is 1. Now fix an (%, @, +--, %) in E*. Let E*'
be the subset of E* whose points have binary irrational coordinates.
Choose z, in (0,1) such that L(z,) = 1 and L(z,) = 0. For example, z,
could be the decimal (base 2) '

110000-++11+++100eec0---

— S———— N—r——

2 2 2" 2"
Let E be the subset of the unit cube (x,, x,, -+, 2,) (0 =2, =1, 1 <5k —1)
such that (x, @, +++,2,0)€E* and =z, as chosen above. Obviously,
dim EF =k — 1. We have, for xe A = {x| T,(x) e E},

1 nk
Téez(x)
—_ 1 k1 1 ot ) l n 4
Tk {p=17z_f=oejk+p(x) + n ;E:"i e“‘(x)}
— 1 k= 1 i ] 1 n .
Tk {psl n JZ,{ &i(%,) + n JZ{ El(xk)} .
Thus,
Tm L 3 _1 { S _
lim - 2@ = 4 (Z L(wp)) + L(x,,)}
L[5 1 } L 1 1, 1
k{z§12+ k{( )2+} 2_‘_2]5
Similarly,

Since Bo{x| L(x) — L(x) = 1/k}, we have, using Lemma 2, dim B = dim 4 =
1/k dim E = (1/k)(k — 1) = 1 — 1/k for every integer k > 1. The theorem
follows.

7. Geometric series. In § 7-11, we investigate the Hausdorff di-
mension of the set

Bla, r) = (£ S rR(@) = ;0 <o <1},
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where r is a fixed number in (1/2,1), and —3 2, r" < a < 32, r". The
sets B are closed, but not necessarily perfect. Since >, 7*R,(x) converges
absolutely, it is sufficient to consider the sets B,(a,r) = {x| > 2, rie(x) =
a; 0 <z <1} with 0 < a < 3.7, 7. Since the dimension of a set is not
changed by adding to it a countable set, we add to B,(a,r) those binary
rationals p/2* (p,k are nonnegative integers) for which >\, rici(p/2%) =
a (0 < p/2¥ <1), where &i(p/2%) is the <™ digit of the finite binary
expansion of p/2¥. For the remainder of this paper we take a € (0, 3.2, 7).

We take log = log,.
8. Preliminary lemmas.

DEFINITION 5. For 2¢€(0,1] and 279/®Y < » < 27U* with n a fixed
integer > 1, we define T, ,(x) as the point in n-space whose jth coordinate
is given by

@ D) = (1= 7,) 3 cinrs(a) ((=12-n.

If z is of the form p/2* (p,k integers), T': .(x) shall be two valued;
one value is given by (2) and the other value is given by (2) with
&inrj(2) replaced by e),.;(x) arising from the finite binary expansion. In
addition, T (0)=0 ( =1,2, «++, n).

LEMMA 7. If A is a subset of [0,1], then dim A = |log r|dim T, .(A).
The proof is similar to that of Lemma 2.

DEFINITION 6. Suppose r < 27'", () is the Cantor set of constant
dissection constructed as follows. Divide the closed interval [0,1] into
three intervals by the points 7*,1 — " and remove the open middle
interval of length 1 — 2r". Repeat this process on the remaining left
and right intervals, removing middle intervals of length (1 — 2r")r".
The process is continued indefinitely. The set remaining is C!: C" is
the Cartesian product of C. with itself n times.

DEFINITION 7. If 27Y&Y < ¢ < 27U [, is the n-space hyperplane:
Swarie; =al —r).

Lemma 8. T, .(0,1]) = Cx.

Proof. Suppose z€ T, ,(]0,1]). The coordinates of z are given by
expressions of type (1 — r") 3, ¢ and hence are in C7 (see [9]). Thus,
T, ([0,1]) € C*. Now suppose z€ Cr and z = (2,, &, **+, ¥,). There exist
¢, =0 or 1 such that #; = (1 — ") D0, &ir (1 =1,2,+-++,n). Let 2 =

e S, el 2= At least one of the values of 7,.(x) is z. Thus,
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ze T, (]0,1]) and hence C* c T, ([0,1]).

LEMMA 9. Euxcept possibly for a countable set, T, (B(a,r)) =
l.o N Cr.

Proof. Let zel,, N C; and z = (X1, Xy, **+, T,).

Since zel.,, >Sor.rx, =al —r"). Since zeCrz,= (1 — 1"
Seaeirt (1=1,2,---,n) with ¢ =0 or 1. Possibly only a finite
number of the & are different from zero (see [9]). Choose x =
25 Diin &5 (1[2)r0r,

If all the ¢’s but a finite number are zero, then (a) & = &, ;) ().
Otherwise, we have (b) € = ¢,;_1,+(%). In case (b),

oo - n oo n
S ef@)rt = 5, 3 ey gy = 5 5o

Jj=11=1 j=113=1

n o n oo n . 3
= 33 e = le pi Z{eﬁ'wu_l) — Z{ i i
7= j= =

i 1—r

rig, = ol —rm) =«
1~fr”z‘z:f 1—r ( )

A similar computation holds in case (a) with e,(x) replaced by ¢j(x). Hence
ze By(a,r). Also for this x, one of the values of T,,(x) is z. At most
a countable number of x can have two values for T, ,(x). Hence, except
for a countable number, z = T, ,(x) e T, (5.(v,r)). Therefore, except for a
countable set, I, N Cr & T,.(B(a,r)). Similar work shows that except for
at most a countable number of values of T, .(3), T..Blar)sl. ., nCr.

LEMMA 10. dim C* = 1/|log r|.
This follows from Theorem 5 of [2].

9. Case where 7 is a root of 2. We consider the case » = 2°»
with » an integer > 1 and obtain

THEOREM 4. dim B,(«,27"") =1 — 1/n.

Proof. Suppose 7 > 1. In this case, C? is the unit cube and
dim (l,-1/n,, N C?) = n — 1. Using Lemmas 7 and 9, we have
dim By(a,2-") = |log 27/ | dim T, (8) = L dim (Ly/n » N C?)
n
=1—-1/n.

If n=1, 3 e(x)r = S e(x)2”" assumes every value on (0,1] exactly
once.
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10. Bounds on dimension of 3.

THEOREM 5. For 1> r = 1/2 and for almost every «, dim B,(a,r) <
log 27,
If 270 z ¢ = 27000 for n>1, then dimB(a,r)=<1—1/n for
every «.

Proof. From Lemma 7, dim T,.([0,1]) =1/|log~|. Marstrand’s
theorem [7], when generalized to » dimensions, states that, for almost
every «, the hyperplane [,, intersects the set T7,,([0,1]) in a set of
dimension < 1/|log | — 1. Thus, from Lemmas 7 and 9, dim (8(«,r)) =
tlog 7| dim T, ,(B(e,r)) = |log r|dim (I, ., N C?) = [log | A/|logr| — 1) =
log 2r.

We now prove the second part. We need to show that the dimension
of 1,, N C" is less than or equal to the dimension of C»'. Roughly,
we proceed as follows. Cn'is a perfect set constructed in Cantor fashion
from nested cubes which we call W2 (j=1,2,.--). These are the
cubes of edge r"™s (m; a positive integer) which are the (n — 1)-dimensional
Cartesian products of the closed non-middle intervals used in constructing
C: We denote by W" the corresponding n-dimensional cube whose
base is W72™'. We show that it requires at most 2" ‘‘translates’ of each
W72 to cover I, N C7.

For arbitrary positive ¢ and ¢, there exists a subsequence of the
W' such that

ZI[ W?—l ldimOZ."_l-;E < 8 ,

where Y’ indicates summation over a subsequence of 7=1,2, .-, and
| W77| denotes cube edge. Consider one of the cubes W2 (7 =1, 2, --+),
say W71, Let

(i 4 8)rme, (s + 8)rmty oo, (B + 8, )7 ™)

be the 2" vertices of W,»-1. Here the 6, assume independently the values
0 or 1, and the k! are certain integers.

The 2, coordinates of the intersections of the lines in n-space z; =
(kL + &)y (1t =1,2, «--, n — 1) with the hyperplane [, , are given by

n—1
%, = [a(l — ) — S ik, + 8)yrm ]/r .
=1
The extreme values of these intersections are
x) = [a(l — ) — El rikfr"”‘f]/r”

and
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i

@,

[a(l — ) — S itk + 1)7"””1]/7'” :
We have

n—1
#— o) = L5 remn < gL — ) Sl — 27
=1

Let g(n) be three more than the largest integer in 2/(1 — 27/).

Since | W77 = ", to each W7} there corresponds a set of at
most g(n) n-dimensional cubes of side »*™, say W7, W+t,, -+, Wr,. such
that U, U™ W2, covers [, N C” and

o g(n) . n—1 hd . n—1
lz{pg{ I W’rl:,’p,dxm()r R g(n) LZI{ ] W’;‘L-—l‘dllﬂcr +€ § g(,n)g .

Hence, dim!l,, N C* < dim C?' = (n — 1)/| log *].
Thus, using Lemma 7, we have

dim B,(a,r) = |log r|dim(l,, N CH <1 —1/n.

We shall show that there are members of the exceptional set of «
in Theorem 5. Take r = (V5 — 1)/2 and a = 32, 7% = /(1 — 7°).
Note that for this »,» = »* + 7°. Now let A be all those z in (0,1] for
which either &,,,(%) = 0, &;4:(%) = &:s(®) =1 or &;u(®) = 1, &4.(%) =
&15(®) = 0 independently for ¢ = 1,2, ---. Then A is of type G(8,1,0)
in the sense of Definition 4. For any € A, Y2, &) (V5 — 1)/2) =«
and dim A = 1/3. But log,(1/5 — 1) = .31. We remark that if r =
(V5 —1)/2 and a = >, r***, then it can be shown that dim B(a,r) =
(1/4) log, (3 + v/ 5)/2 = .85.

11. Additional theorem.

THEOREM 6. Let (V5 — 1)/2 <r < 1. Then dimpB(a,r) = 1/n where
n 1s the least integer m, such that m, > [log(2r — 1) — log(»* + r — 1)}/
{—log 7).

Note that as r— (15 — 1)/24+, n— oo,

To prove the theorem, we need two lemmas.

LEMMA 11. If a monotone decreasing sequence {a;} of positive
terms has the property that a;, < >\ a; < +oo for all 1, then every
a0 < a <332, a;) can be expressed as o = >, a;, where X' indicates
some of the terms possibly are omitted from the sum. Further, X’ can
be required to have an infinite number of terms.

The first sentence of the lemma is stated essentially in [5, page 547},
except that there the case of 3 (*)a; is discussed. But one can write
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2¥()a; = Za; + 2(F)a;. The second sentence of the lemma should be
obvious.

LEMMA 12. If (V5 — 1)/2 < r < 1 and n is a positive integer such
that r» < (r* +r — 1)/(2r — 1), then 3"z, r; [where 2" indicates that

the terms of the form v, (1 = 0,1, 2, --.) are omitted] has the property
that r* < 3’51,

Proof. V5 v = 35 v — 2, v where Y, is over all v such
that nv +1 =144+ 1. Let v, be the smallest v allowed. Then
S i+t ool - pitl pitl
ri = — > —
EErR 1—7r 1—7r " 1—7r 1 -7

:ri<1ir ~1—rw)‘

Therefore ', 7/ > vt if /1 —7r)— 7/l —7r")>1, and hence if
r/(1 — r") < (2r — 1)/(1 — r) which reduces to " < (»* + r — 1)/(2r — 1).
We now prove Theorem 6. Let

a1:T1+Tn+1+7.2n+1+ cee

a227'2+7'3+ “ea +7,m+,r.n+z+ e _{_7.2n_+_/’.2n—,»2+ e
Case 1. Suppose 0 < a < a,. Let

| ORI CATE
Then
SUDy<z 51 fl)=r)=a.

Let o = {x,| f(x) < @}. Since lim, ., f(#;) =0, ® contains an open
binary interval w* = (0,(1/2?)) where ¢ is an integer. Choose xf € w*
and let a* = f(xf). Note that a — a* < a < a,, By Lemma 12 and
then Lemma 11, there exist ¢, =0,1 (k=2,8, «++, n,n + 2, +--,
2n, 2n + 2, -+ ) (for infinitely many Fk, ¢, = 1) such that

St e gt el e gl s = — at

Choose « = 33, ¢27% where ¢, = &) (1=1,2,8,.-), and ¢&f =
g (1=2,8,+,n,m+2, ---,2n,2n+ 2, -++). Then >, &r'=a*+
a —a* = . Thus, it is possible to choose &f_;),+; (¢ > q) independently
(except that infinitely many are 1) so that >\, &fr* = a. Hence B,(a, 7)
includes a set A of type G(n, 1, q) which, by Lemma 6, has dimension
= 1/n.

Case 1I. Suppose a, < «a. Let



46 WILLIAM A. BEYER

@ = {xlla —a, < f(x,)} .

Since @ < a, + a,,a — @, < @, Also lim, .- f(2,) = a;. Therefore,
contains an open binary interval @ = ((2¢ — 1)/2%,1). Choose xz € @ and
let a* = f(z}). Then a —a* < a — (@ — &,) = a,. The proof is then
completed as in Case I with w; in place in w*.

We remark that Theorem 6 can be generalized to other absolutely
convergent Rademacher series >\~ a;R,(x); namely, those which satisfy
conditions of the form 0 < a./%;.;a; < (V5 — 4/n — 1)/2 for a fixed
integer n > 1 and {a;} (: =1, 2, --+) a positive monotone sequence.

THEOREM 7. If r = 27Y", then dim By, r) = 1 — 1/n.

The details of the proof will not be given since it is similar to that
of Theorem 6. Since " = 1/2, given «, there exists M such that ¢;,,; =
0,1 1 =7=mn-—1,%> M) can be chosen independently and then
Cp A2t =EM1Zj=n—1Dand =n,1=1,2, --+)] determined so
that a = 32, S 87,

Added in Proof. A sequel to this paper will appear in Proc. Amer.
Math. Soc.
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