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1. Introduction. It is often of interest to decide whether a given
function can be a characteristic function. Necessary and sufficient con-
ditions are known which a complex-valued function of a real variable
must satisfy in order to be a characteristic function (see e. g. [4], Chapter
IV), but these general conditions are not easily applied. Therefore,
various conditions have been derived which are restricted to certain
clagses of functions but which are applied more readily. One of the
most important of these results was obtained by J. Marcinkiewicz and
gives a necessary condition for an entire function of finite order to be
a characteristic function [7]. As a special case, Marcinkiewicz considered
entire functions of the form f(t) = exp [P,(t)], where P,(t) is a polynomial
of degree m, and obtained that if m > 2, then f(t) can not be a charac-
teristic function. This result, which is referred to as the Theorem of
Marcinkiewicz, has been extended by E. Lukacs ([4], p. 146) to functions
of the form f,(t) = k,e,[P.(t)], where k, is a constant determined by
the condition that £,(0) =1, and where ¢,(z) = exp(2), ¢,(z) = exple,(2)], -+ -,
e (2) = exp[e;_(2)]. In the present paper, the Theorem of Marcinkiewicz
is further extended to certain functions of the form

(L.1) Su(®) = E,g9(D)e.[Pu(t)]

where g¢g(t) is some specified characteristic function. In §3 we shall
consider certain entire functions of the form (1.1), while in § 4 we shall
turn our investigation to certain analytic functions of the form (1.1)
with n = 1 which are regular in a half-plane having the origin as an
interior point.

2. Some auxiliary results. We now congider briefly the class of
analytic characteristic functions and state some results which will be
needed in our investigation.

A characteristic function f(¢) is said to be an analytic characteristic
function if there exists a function A(z) of the complex variable z = ¢ +iy
(t and y real) which is regular in the circle 2| < R (R > 0) and a

constant 4 > 0 such that A(t) = f(¢) for |t| < 4. D. A. Raikov has
shown [8] that if a characteristic function f(¢) = S_ e*d F'(x) is regular

in a neighborhood of the origin, then it is also regular in the interior
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of a horizontal strip of the z-plane and can be represented in this strip
by the Fourier integral f(z) = r ¢**dF(x), where z =t + 1y; the hori-
zontal strip is either the whole ﬁlz.ne, in which case we have an entire
characteristic function, or it has one or two horizontal boundary lines.

One of the basic tools in our investigation will be the following

theorem ([4], p. 134) which follows from Raikov’s result quoted in the
previous paragraph.

THEOREM A. Let f(2) be an analytic characteristic function. Then
Sor any horizontal line located in the interior of the strip of regularity

of f(z), the modulus | f(z)| attains its absolute maximum on the im-
aginary axis.

The following theorem of Dugué [2] will also be useful.

THEOREM B. Let f(2) be an analytic characteristic function
which 1s regular in the strip —a < Im(z) < B. Then for any real
number 7 in the interval (—a, B), the function h(R) = f(z + i9) f(i0)
18 also ananalytic characteristic function and s regular in the strip
—a—7n<Im@)<B—1.

We shall also use the following result [5].

THEOREM C. Let f(2) be an analytic characteristic function which
18 regular wm the strip —a < Im(z) < B. Then

(2.1) [f(t+ 7+ 1Y) — f(E+ )] =2F 21 — Ref(7)]
for any real mumber t, provided that —af2 <y < B/2.

In order to state the next theorem due to E. Lukacs, it will be
necessary to introduce some notation. Let z = ¢ + 4y and consider the
functions f,(z) = ke,[P.(z)|(v =1, 2, --+, n) where P,(t) = 3.7, c;t’,
¢; = a; +18;,¢, + 0, a; and B, real, and where k, = [e,(c,)]'. Introduce
the functions ¢,2) = k;2[f, () — 1] (v = 2,8, -+, n) and write a,(t, ¥)
for the real part and B,(¢, ¥) for the imaginary part of #,(2). We define

(2.2) At ) = at, y) — a0, ) (v=1,2 -0

and are now prepared to state the theorem. (For a proof, see [6}]).
LEMMA A. Let m = 3. Consider the following two cases:

(i) etther m > 38, or m =3 and B, = 0;

(ii) m =3 and B, + 0.
Then there exists a &, = 0 and a value Y = Y (m) such that A, (yV'E,, y)— =
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provided that, in case (i), y = Y, while in case (ii) it is required that
(—sign 3,)y = Y.

We shall also need the following.

COROLLARY TO LEMMA A. Under the conditions of Lemma A, there
exist a £, =0 and an A, > 0 such that A(yV'E,, y) = A, |y |"[1 + o(1)],
where the estimate holds inm case (i) as y— o but in case (i) as
(—sign 3,)y — .

Furthermore, we shall need a result which we state as

LEMMA B. If g(2) = 2i-p,e7s’, (z =¢ + 1y, 0, = 0, 30, = 1,7,
real, S < o), then there exists a constant B (0 < B < o) such that

(2.3) 92w g
g'(vy)
Proof. The existence of such a finite positive constant B is assured

from the fact that g(2¢y)/¢g*(vy) is continuous on —co < y < o and con-
verges to finite positive limits as y — + oo,

3. Discussion of certain entire functions. We now give the results
obtained in the investigation of certain entire functions of the form

(1.1) where g(t) belongs to some specified discrete distributions. The
proofs follow.

THEOREM 3.1. Consider, for any integer m =1, the function
f.(t) =k, exp [g.(t) — 1]e,[P.(t)], where g,(t) is an entire characteristic
function belonging to a lattice distribution with the origin as a lattice
point. If m > 2, then f,(t) can not be a characteristic function.

As a special case of this theorem we let g,(t) = M(e% — 1) + Ny(e™* — 1) +1
and obtain a slight generalization of a result due to E. Lukacs ([6], p. 489);
if A\, =X\, =0 and » =1, we have the Theorem of Marcinkiewicz.

THEOREM 3.2. Consider, for any integer n =1, the function f,(t)=
k.g(t)e,[P.(t)], where g(t) is the characteristic function belonging to a
discrete distribution having a finite number of discontinuity points.
If m > 2, then f,(t) can mot be a characteristic function.

We give an indirect proof for each of these theorems and suppose
that f,(t) is a characteristic function. Then, by definition, f,(f) must
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be an entire characteristic function, and we consider f,(¢) also for complex
values of the argument z = ¢ + 4y. By means of Lemma A, it is then
possible to arrive at a contradiction of the fundamental maximum modulus
property of analytic characteristic functions which was stated in Theorem
A. Let us consider each theorem in turn.

In proving Theorem 3.1, where g,(t) = 37 . pe”", (A positive
and real, p; =0, 3;p; = 1), we find that

(8.1) R(ty) =

LUEW | exp (S [pre " (cos it — D] + Adt, 1)}
Sa(1y) 7
where A,(t, y) was defined by (2.2). We select an integer k& according
to the following rule, where Y and &, are the quantities determined by
Lemma A.
(@) If m >3, or if m =3 and B, = 0, then chooose k& > (A YV'E,)/(2x).
(b) If m =38 and B, # 0, then choose (—sign B,)k > (A YV'E,)/(2r).
Let now y* = 2rk)/(AV'E,) and t* = y*V'E, = (2xk)/ A. Then from (3.1),
R(@*, y*) = exp [4,(t*, y*)]. The conditions of Lemma A being satisfied,
it follows that R(t*, y*) > 1.

We turn now to the proof of Theorem 3.2 and will investigate the
function

(3.2) Raw—ﬂkﬂﬂwMAam

where g(t) = X\i-, p,e™s’ (9, real, p, =0, >3-, p, = 1,8 < ). First we
prove the followmg

LEMMA 3.1. Let g(z) = 33_.p,e"s%, (z =t + 1), and consider R(t,y)=
lg(t + 1y)/g(iy)|. Given any e > 0, there exists a real number M = M (e)
such that

(3.3) 1—ec< R(M,y)<1+e.

Let any € > 0 be given. We note that g¢g(f) is an almost periodic
function of the real variable ¢t. Then for every & > 0, there exists a
real number L = L(¢') such that every interval of length L contains at
least one translation number N = N(¢'), that is, a number N satisfying
the inequality |g(t + N) —g(t)| <€, —c0o <t < o ([1], p. 31). It is
easy to see that g(t) is also an almost periodic function. Since the sum
of two almost periodic functions is itself almost periodic, we have that
Re g(t) is an almost periodic function. Consider now Lemma B and take
& = &/(2B), where B refers to (2.3). It is possible to find a translation
number M = M(e") = M(e) for Re g(t) so that M satisfies one of the fol-
lowing conditions, where Y and &, are the quantities determined by
Lemma A.
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(@) If m >3, orif m =38 and B, =0, then M > YVE,.

(b) If m =3 and B, # 0, then (—sign B)M > YVE,.

We know that |Reg(t + M) — Reg(t)| < ¢” for all t. Set ¢t =0, and
we have

(3.4) |Reg(M) — 1| <¢”.

We now use Theorem C and consider (2.1) for 7 = M. Then we see
by (3.4) that |g(t + M + iy) — 9(t + iy)| < V'29(2ty)e”. From this ine-
quality and from (2.3) we obtain

|R(t + M, y) — Ryt,y)| =2 M+ %) — g(t + W)
’ 9(iy)

<]/ 29(2’1/?/) < 1/ZBE// =c.
9°(1y)

Setting ¢t = 0, (3.3) follows immediately so that Lemma 3.1 is proven.

We turn now to function (3.2). Set y* = M/V'E,, where M is se-
lected according to the rule in the proof of Lemma 3.1; it is then clear
that y* satisfies either condition (i) or (ii) of Lemma A. Set t* =y*VE, =
M, and by Lemma A and Lemma 3.1 we have that R(t*, y*) — o as
y* — o or as (—sign B;)y* — o, referring to (i) and (ii), respectively,
of Lemma A. This completes the proof of Theorem 3.2.

4, Discussion of certain analytic functions regular in a half-plane.
In this section we shall consider the class of infinitely divisible character-
istic functions. A characteristic function g¢(¢) is said to be infinitely
divisible if, for every positive integer n, it is the nth power of some
characteristic function ¢,(t) (which depends, of course, on #). Then g,(t)
is uniquely determined by g(¢) according to the formula g,(t) = [g(¢)]'"
provided that we select for the nth root the principal branch (see e. g.
[3], Chapter III).

Infinitely divisible characteristic functions admit canonical represen-
tations. We shall especially be interested in the well known result ([4],
p. 189) that if an analytic characteristic function g(z) is infinitely divisible
and belongs to a distribution having a finite second moment, then g(z)
has the following unique representation in the interior of its strip of
regularity:

(4.1) log g(z) = icz + S“’ (€ — 1 — izm) $E@) (“)

where ¢ i3 a real constant and K(x) is a nondecreasing and bounded
function such that K(— o) =0 and S dK(x) = K(+ o) < o; at x =0,
the integrand is defined by continuity to be —2?/2. This result is an
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extension of the Kolmogorov Canonical Form ([3], Ch. III) for represent-
ing an infinitely divisible characteristic function g(t).
The Theorem of Marcinkiewicz was extended to the following result.

THEOREM 4.1. Consider the function f(z) = g(2)exp [P,(2)], where
9(?) 1s an infinitely divisible characteristic function regular in a half-
plane Im(z) > —a(a > 0). If m >3, orif m = 3 and B, <0, then f(2)
can not be a characteristic function.

For the proof, we proceed as in the previous section. Let us then
assume that f(z) is a characteristic function. By (4.1) we find that

@2 Rl(t,y)=’g(t—g(—gy—§y—)':exp[ng(t,y,x)dK(x)],

where D(t, ¥, ) = e ¥*((cos tx — 1)/x*); D(t, y, 0) i8 defined by continuity
to be —¢*/2. Using definition (2.2), we have

_ |exp [Pt + ] | _
(*3) Rt v) = [SRLEL AL = exp (4, 00

We now investigate
(4.4) R(t,y) = Ri(t, yR(L, v) .

Let an ¢ be given such that 0 < ¢ < 1. By Lemma A and (4.3) we
know that there exist ¢ £, =0 and a Y = Y (m, ¢) such that

(4.5) BWVE.W) > for y=Y.

We consider (4.2) for such ¢ and y and have
(4.6) RVE,v) = exp| |”_Diw, K@),

where Dy(y, ©) = D(yV'En, ¥, ) = e **((cos yxV'E,, — 1)/a*). The proof of
Theorem 4.3 will be completed if we can show that there exists a value

y* > Y such that R(y*VE.,¥y*) >1—c¢c To do this, we first prove
the following.

LEMMA 4.1. Given any € > 0, there exists an A = A(e) > 0 such
that

[ Dw wyax) |< <

and
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‘S: Dy, x)dK(x)l s+

Jor all y.

The proof follows easily if we note that, for a > 0,

Hj Di(w, x)dK(w)‘ S sz(x)<_S‘: dK(x) < ic

where
c =§ dK(z) < oo .

Letting @ — o, IrDl(y, x)dK(w)l < 2C/A’. From this it is clear that,
A
given any ¢ > 0, there exists an A = A(e) such that 2C/A* < ¢/2. This
proves the first result in the lemma, and the second follows in a similar
manner.
For the fixed ¢(0 < ¢ < 1), we can then write

(4.7) | D, 99K @) =" Dy, 2)dK@) + o0,

where |0 =1, and where A = A(e) is determined by Lemma 4.1. By
the first mean value theorem we obtain from (4.7) that

(4.8) |” Dy, K (@) = MD(, =) + e0 ,

where |2*| < A and M = M(4) = g dK (z) < K() < o .

We must distinguish between two cases. Suppose first that z* + 0.
We know from (4.6) that

(4.9) Dy(y, z*) = e~ cos yx*V'E,, — 1
(x*)

Select an integer k such that k > (Yz*V'E,)/2r, where Y was introduced
in (4.5), and choose y* = 2kr/(x*V'E,) so that y* > Y. Then, by (4.9),
D(y*, «*) = 0. It follows from (4.8) and (4.6) that R.(y*V'E,, y*) =
exp (¢f), where |ef| <1, and hence, by Maclaurin’s series, that
R(y*VE,, y*) > 1+ €0 =1 —¢e. This result together with (4.5) and (4.4)
gives a contradiction of Theorem A, thus completing the proof when
z* =+ 0.

We now consider the case when «* = 0. Since D(y, 0) = —¥€,./2,
we have from (4.6), (4.8), (4.3) and (4.4) that

RWVE,,y)=exp[— &, M2 + 0 + A(yV'E,, )] .
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By the Corollary to Lemma A it follows immediately that R(yV'E,, y)—
as y — o. This completes the proof of Theorem 4.1.

It is to be noted that Lemma A cannot be applied for the case
m =3 and B, > 0. However, for this case, the following result was
obtained for two particular infinitely divisible characteristic functions,
namely for those belonging to a Gamma distribution and to a negative-
binomial distribution.

THEOREM 4.2. Consider the function f(z) = g(z) exp (¢.z + ¢2* + ¢;2°),
where ¢; = a; + 183;, in the following two cases:

Case I. g(z) =1 — (@z/a))™, (¢ > 0, x> 0).

Case II: g(z) = (p/1 — ge®)), (p >0,¢>0,p+qg=1,7r>0).
If f(2) i3 a characteristic function, and if B, > 0, then necessarily, in
Case I, 8, = |a,|/(8x), and in Case II, 8; < |a,/(81Ing)|.

In the proof, we first note that if f(¢) is a characteristic function,
then P,(t) takes on a special form. For, from some fundamental prop-
erties of characteristic functions, we must have a, = a, = 8, = 0; it is
no restriction to take B, = 0; and finally, since f(¢) is bounded, «, < 0.
Thus, letting v, = —a,, we have P,(z) = —v2* + 16:2% (v, > 0, B, > 0).

We now choose a real number 7 in the half-plane of regularity of
9(z) and construct the function A(z) = f(z + ©9)/f (7). By Theorem B,
h(z) is an analytic characteristic function regular in a certain half-plane.
But h(—=z) is also a characteristic function, and so, since the product
of two characteristic functions is a characteristic function, Ay(z) =h(z)h(—2)
is also a characteristic function.

Case 1. Choosing any real » > —a, we obtain

n@) =1+ | exp 120 + 882

z2
(@ + 79y
which is an analytic characteristic function regular in the strip |y| <a + 7.
Setting 7 = —af, where 0< 0 <1, we have

ho(z) = [1 + 2*|a’(1 — 0)']* exp [—2(7, — 3B,a0)2"] .

Consider h,(t) for real t and suppose A = v, — 38,20 < 0. Then exp(—24¢%)
— oo a8t — oo. Since [1 + t*/a’(1 — 0)]* = o[exp (—2At%)] as t — o, we
have that h(t) — < as ¢ — o. This contradicts the fundamental prop-
erty of boundedness for characteristic functions. We conclude tharefore
that v, — 38,20 = 0f or any 6. This completes the proof of Case I.

It is interesting to note that the bound obtained for B3; in no way
depends on the parameter ) of the Gamma distribution.

Case II. Choosing any real number » > Inq and letting 7 =601Ingq
(0 <g < 1), we obtain
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n@ = | 1 — g%y | exp[—20 + 3801 4)21,
1 _ ql-e(e@z + 67”) + qZ(l—G)

‘which is an analytic characteristic function regular in the strip

1—-0)Ing<y<(@—1)Inq. Again, consider At) for real t. We

-observe that

(Lg% - <1_*_‘1ii>2 >0
1—¢ %" +e) + ¢ 9 1+¢°

Therefore, if v, + 38,01nq < 0, then A(t) — o« as t— oo which is impos-
.sible. This completes the proof.

It may be pointed out that it would be interesting to know if the
necessary conditions given in Theorem 4.2 are also sufficient conditions.
It seems, however, to be not easy to arrive at a decision.

5. Acknowledgments. The results of this paper were submitted
to the Catholic University of America in partial fulfillment of the re-
quirements for the degree of Doctor of Philesophy. 1 would like to
express my gratitude and indebtedness to Professor Eugene Lukacs for
‘his invaluable help and suggestions.

BIBLIOGRAPHY

1. H. Bohr, Almost Periodic Functions, New York: Chelsea Publ. Co., 1951.

2. D Dugué,, Sur la théoréme de Livy-Cramdr, Publ. de l'Institut de Statistique de
I"Université de Paris, Vol. VI (1957), 213-225.

3. B. V. Gnedenko, and A. N. Kolmogorov, Limsit Distributions for Sums of Independent
Random Variables, Cambridge: Addison-Wesley Publ. Co., Inc., 1954.

4. E. Lukacs, Characteristic Functions, London: Charles Griffin & Co., 1960.

5. ———, To be published in the Proceedings of the Thirty-Second Session of the Inter-
national Statistical Institute held in Tokyo, May 30-June 10, 1960.

6. ————, Some extensions of a theorem of Marcinkiewicz, Pacific J. Math., 8 (1958),
487-501.

7. J. Marcinkiewicz, Sur une propriété de la loi de Gauss, Math. Zeitschrift, 44 (1938),
612-618.

8. D. A. Raikov, On the decomposition of Gauss and Poisson laws. Izvestija Akad. Nauk
SSSR., ser. mat., 2 (1938), 91-124,

THE CATHOLIC UNIVERSITY OF AMERICA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

Ravrpu S. PuiLuips

Stanford University
Stanford, California

M. G. ARSoOVE

University of Washington
Seattle 5, Washington

A. L. WHITEMAN

University of Southern California
Los Angeles 7, California

LoweLL J. PaGe

University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH D. DERRY
T. M. CHERRY M. OHTSUKA

H. L. ROYDEN E. G. STRAUS
E. SPANIER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 12, No. 1 January, 1962

Jonathan L. Alperin, Groups with finitely many automorphisms ........................ 1
Martin Arthur Arkowitz, The generalized Whitehead product . ......................... 7
John D. Baum, Instability and asymptoticity in toplogical dynamics .................... 25
William Aaron Beyer, Hausdorff dimension of level sets of some Rademacher series . . . .. 35
Frank Herbert Brownell, 111, A note on Cook’s wave-matrix theorem . ................... 47
Gulbank D. Chakerian, An inequality for closed space curves .......................... 53
Inge Futtrup Christensen, Some further extensions of a theorem of Marcinkiewicz . . ... ... 59
Charles Vernon Coffman, Linear differential equations on cones in Banach spaces . . ... .. 69
Eckford Cohen, Arithmetical notes. 1Il. Certain equally distributed sets of integers . .. .. .. 77
John Irving Derr and Angus E. Taylor, Operators of meromorphic type with multiple poles

Of the resOIVent . ... ... ..o e 85
Jacob Feldman, On measurability of stochastic processes in products space . ............ 113
Robert S. Freeman, Closed extensions of the Laplace operator determined by a general

class of boundary conditions, for unbounded regions ............................. 121
Robert E. Fullerton, Geometric structure of absolute basis systems in a linear topological

SPUCE .« oot et e e e 137
Dieter Gaier, On conformal mapping of nearly circular regions ........................ 149
Andrew Mattei Gleason and Hassler Whitney, The extension of linear functionals defined

On H 0 163
Seymour Goldberg, Closed linear operators and associated continuous linear

OPCALOTS . . . ettt e e e et e et e e e e e e e e e 183

Basil Gordon, Aviezri Siegmund Fraenkel and Ernst Gabor Straus, On the determination
of sets by the sets of sums of a certainorder .................
Branko Griinbaum, The dimension of intersections of convex sets . . .
Paul Daniel Hill, On the number of pure subgroups ...............
Robert Peter Holten, Generalized Goursat problem . ..............
Alfred Horn, Eigenvalues of sums of Hermitian matrices . .. .......
Henry C. Howard, Oscillation and nonoscillation criteria for
V') + FOE)PE) =0
Taqdir Husain, S-spaces and the open mapping theorem. . .........
Richard Eugene Isaac, Markov processes and unique stationary pro
John Rolfe Isbell, Supercomplete spaces .........................
John Rolfe Isbell, On finite-dimensional uniform spaces. Il . . . ... ..
N. Jacobson, A note on automorphisms of Lie algebras . . ..........
Antoni A. Kosinski, A theorem on families of acyclic sets and its ap
Marvin David Marcus and H. Minc, The invariance of symmetric fu
values . ...
Ralph David McWilliams, A note on weak sequential convergence. .
John W. Milnor, On axiomatic homology theory ..................
Victor Julius Mizel and Malempati Madhusudana Rao, Nonsymmetr
Hilbert space .......... .o i
Calvin Cooper Moore, On the Frobenius reciprocity theorem for loc
BEOUPS . .o ov et
Donald J. Newman, The Gibbs phenomenon for Hausdorff means . .
Jack Segal, Convergence of inverse systems ......................
J6zef Siciak, On function families with boundary .................
Hyman Joseph Zimmerberg, Two-point boundary conditions linear




	
	
	

