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1. Introduction. Let 2 be a o-algebra of subsets of X, and T a
gset. Let 2 = X%, and let & be the o-algebra of subsets of 2 generated
by the finite cylinder sets, i.e., sets of the form 4 ={we 2|w(t)c 4, -,
w(t,)eA,}, A,+--, A, € 2. Let P, be a probability measure on =~ Thus
the coordinate variables x,(®w) = w(t), t€ T, are the Kolmogorov version
[5] of the stochastic process with joint distributions F,, ..., (4, +--,
A,) = P{4}. For various purposes, it is appropriate to enlarge this o-
algebra and extend the measure. In the present paper two methods of
doing this will be mentioned, and one of the methods will be studied.

|4] Suppose X is a compact Hausdorff space and .#° the Borel
sets. Then 2 is a compact Hausdorff space in the product topology.
A straightforward application of the Stone-Weierstrass theorem and the
Riesz-Markov theorem shows that there is a unique regular measure
on the Borel subsets <z of £ which agrees with P, on &, provided
the finite-dimensional marginal measures are all regular. We call this
measure P. This idea is due to S. Kakutani [3], and was discussed in
detail by E. Nelson [8].

[B] By a condition is meant a set-valued function 2 from T to
27 For any condition £, we define

I'(k) ={w|w(@)ek) for all te T}, and
(S, k) = {w|w(t) € k(t) for all e S},

S being a subset of 7. It is possible to extend P, to a class of sets
of the form I'(k), as follows.

The following lemma is a straightforward generalization of the
separability lemma in [1], p. 56.

LemMA 1.1. For any condition %k 3 a countable set S T such
that PAL(S, k) — I'({t}, k)} = 0 for all te T.

The proof is a simple exhaustion argument. Such a countable subset
S will be called determining for A.

Let 2% be a family of sets with the properties

(i) Xe o
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(ii) any countable subfamily of .9~ with the finite intersection
property (F.I.P.) has nonnull intsrsection. Such a family will be called
countably compact. If (ii) holds without the countability restriction,
then .7 is called compact. If a condition % has values in .7 it will
be called a .27 -condition.

The set of positive integers will be written I. Unions and inter-
sections whose index set is I will be written simply |J;, ete. rather
than U,e;, ete. The following result can then be proven. It is stated
in [7].

LEMMA 1.2. Let S, be a determining set for the S -condition k,,
nel. Let 4=U.,{(S,, k) — ['(k,)}. Then 4 has inner P, — measure 0.

“ 2 is now defined to be those subsets I" of 2 such that 37" in &
with (I" = ') U (/™ —I') subset of a sat of the form of 4 in the above
lemma. These sets I" form a oc-algebra, and the assignment to I" of
the same measure as the Pj-measure of /™ determines unambiguously a
measure Py on %%, which is an extension of P,. This construction,
based on ideas of Doob and Khintchine [4] is done by A. Mayer in [§],
[71.

REMARK 1.1. Notice that & contains all sets of the form I'(%),
for any . -condition %, assigning to such a set the measure P{/'(S, &)},
S being any determining set for k.

REMARK 1.2. If X is compact Hausdorff, .2 the Borel sets, o
the compact sets, and P, satisfies the regularity condition of [4], then
&y C &, and P| &% = Px. This is a consequence of the following
(under the hypotheses of the last sentence):

LEMMA 1.8, If S is determining for the condition k, and k(t) is
compact for all t, then P{[(k)} = P{[(S, k)}.

Proof. By Theorem 2.2 of [8] there is some countable subset S
of T such that P{[°(S,, %)} = P{l"(k)}. Now, ['(S,k)DI(SUS, k) DIk),
so P{{'(SU S, k)} = P{{’(k)}. But

(S, k) =I(S U S,k N Mues{(S,, k) = ['({s}, &)}

Thus P{I"(S, k)} = P{I"(SU S, k)}.

We will deal mainly with the situation where T is a topolozical
space, and with a certain og-subalgebra <= of &%, where <z is
defined like = =z, except that the only conditions 2 ussd for <z will
be those of the form
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k) =K for te U
X for t¢ U,

U being an open set in T, and Ke . 27". For such a £, we write I'(%)
as 4(U, K). The restriction of P: to s will be called Qs.

If 27 consists of closed sets in a metric space, T is locally com-
pact, and 7 is a regular measure on 7, then (<=, Q:) has the con-
venient property that whenever the map ¢-— x, (where x,(®) = w(t))
is measurable in probability, i.e. is continuous in probability outside of
some 7-null set, then the map (w,t)— w(f) can be made measurable
the px7-completion of & x .7, where .7~ is the Borel sets of T and
(. ¢) some extension of (<7, Q%). (See |7], Theorem 2.) This
says, in a sense, that <rsr is “not too large.” On the other hand, it
is “not too small,” in the sense that it contains many natural subsets
which are not in «7; this will be shown.

In §2 are given some examples and general remarks concerning
compact and countably compact families.

In [8], with X and T compact metrizable spaces, various natural
subsets of 2 and 2 x T were shown to be in <%, 2, or product o-
algebras derived from them (the bar over a o¢-algebra signifies comple-
tion with respect to the measure being considered on it). In §3 and 4
we show (in a somewhat more general context) that these subsets are
in &re, <r%, or the corresponding product c-algebrans, where .7 is
a countably compact family of closed subsets of X which contains a
complete system of neighborhoods for each point of X (or, briefly, gen-
erates the topology of X).

2. Some topological considerations.

Lemma 2.1, Let X be a 1-st countable Hausdorff space. Then
any countable compact family 27 of subsets of X which generates the
topology of X consists of closed sets only.

Proof. Suppose Ke .9, and x¢ K. Choose a countable family
{K,|nelI} of neighborhoods of « in .%", with N.K, ={z}. If zec K,
then KN K, N --- N K, is never empty. Thus, K N N.K, is nonempty,
so z€ K.

REMARK 2.1. If we assume that X actually has a countable base
for its open sets, then clearly any intersection of sets of . can be
reduced to a countable intersection. In particular, it follows that .o
is actually a compact family, not just countably compact.

LEMMA 2.2. (Alexander). Let .57 be a compact family of subsets
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of a set X. Let .5 be the family of arbitrary intersections of finite
unions of sets of then % is closed under arbitrary intersections
and finite unions, and is again a compact family.

Proof. See [9], p. 139.

COROLLARY 2.1. The most general compact family of sets on a
set X arises by choosing o subfamily of the closed sets, for some com-
pact topology on X.

Proof. Given a compact family .5~ on a set X, use .% as the
family of closed sets for X ; this gives a compact space.

REMARK 2.2. The property of countable compactness does not per-
sist from .97 to .5%. For example, let A be all ordinals up to and
including the first uncountable ordinal «,. Let B be the rational numbers
{0;1,%,1/3,---}. Let X=A x B— {(a, 0)}. Let < consist of all
gets of the form K, , = {(a, x)|a* > a, x < 1/n}, where « is a countable
ordinal and ne€ I. Then no countable intersection of sets K, , is empty,
80 97" is countably compact. But let L, = Nu<ao Ks.n = {(a,, 1) |2 < 1/n}.
Then the L, have the F.I.P., but N. L., = ¢.

In §38 we shall be considering countably compact families .2~ on
separable metrizable spaces X, .9 generating the topology of X. Some
examples follow.

(a) X a Banach space which is separable and a dual, .2 the set
of all closed spheres. This is mentioned in [6].

In this connection, however, notice that the separable Banach space
C of all continuous functions on, say, the closed interval [— 1, 1], is not
a dual; and, in fact, the family of all closed spheres in this Banach
space is not a countably compact family. To see this, let

1if —1=x=0

£\ = 1—nxif0<x<%
0itL=n=1,
n

and let f'(x) = — fu(— ). Let K, be the closed sphere of radius 2
about f, — 2, and K/ the closed sphere of radius 2 about f, +2. Then

K.NK,={glfisg=fu+9¢.

Sinece fi=z fo= ++rand f1 =21 -+, we have KKNKIDK,NK|D---.
Thus, the spheres {K,, K.|n=1,2, ...} have the F.L.LP., but there is
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no continuous function in their intersection. The author does not know,
however, whether some .27 does not exist for C.

(b) An example where the metric space is not complete: let X
be the nondyadic numbers in the unit interval. .27 will be defined as
follows. Let S, be the set of dyadics of the form k/2*, k=0, ..., 2",
Then X =[0,1] — U. S.. Let . be the intersection with X of inter-
vals [a, b], where a = (k + 1/8)1/2", b = (k + 7/8)1/2", k = 0,1, «--, 2" — 1,
Let .7 = U, 9.

To see that .~ generates the topology of X, we must show that any
2z e X is an interior point of some interval in .9, for arbitrarily large n.
But a nondyadic number x is characterized by the property that a zero
followed by a one occurs arbitrarily far out in its dyadic expansion.
Thus, for arbitrarily large n, we can get k/2" + 1/2** < o < k/2" + 1/2"*1,
so that « is interior to an interval of o7,

To see that .9 is countably compact, suppose we have a sequence
K, K, --- with the F.I.LP. Assume repetitions have been eliminated.
Then no two can come from the same .7, since two members of .5
are either identical or disjoint. Consider now the closed intervals K,
in [0,1]. These have the F.I.P., and are closed in [0,1]. Thus their
intersection is nonempty. Further, let K,e .%; . Then K, ns:, =¢,
so (N K,) N (Un S;,) = ¢. Since i, does not repeat itself, and since
S,.cS,c -+, we have U, S;, =U.S,. Thus, (N, K,)N X+ 4. But
this is the same as N. K..

(¢) A metric space for which no countably compact family can
generate the topology: let X be the dyadic numbers in [0, 1]. Suppose,
in fact, we had such a family %7 Let z,, 2,, --- be an enumeration of
X. Then one could choose a sequence K7} of neighborhoods of x,, K€ 9%,
and with the length of K/ less than 1/n + j. Let U/ be the interior of
K;. Then z,€ U;. Consider now the set (), U; Ur. This is a G; in
the reals, and contains all the dyadies. Then it must contain some non-
dyadics, since the dyadics are not a Gs. On the other hand, if & is a
nondyadic in N,U; Uy, then & is in some N, U}. Thus {K} |nel}
has the F.I.LP. But ). K—fn = {£}, since the lengths of the K go to
zero as n— . Thus N, K7 =N, (K} N X) = ¢.

The question remains open whether, for example, every complete

separable metric space has a countably compact family which generates
its topology.

3. Maeasurability of various classes of functions. Throughout this
section, let X be a separable metric space; .2° the Borel sets, Let
2" be a collection of sets in 27 such that
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(a) . is a countably compact family,

(b) .2 generates the topology of X.

Let T be a compact metric space, and consider <z, Q=, as defined in
§ 1. For brevity, we write simply &7, Q. We remark that the results
of this section extend immediately to the case where T is locally com-
pact metrizable, and separable, since the classes of functions discussed
are defined by their local properties in 7.

Let .27 be a countable subset of .2#" which still contains a complete
system of neighborhoods at each point. Also, let K., be an enumeration
of the sets of .9 of diameter <e. Let A(¢, S) = N,es{®|E some open
neighborhood U of s and some % such that @ sends U into K. ,}. Finally,
let @(e, S) = {w]|3 some open UDS and » such that w sends U into
K. .}

LemmaA 3.1. 4(s, S) and @(, S) are in < for any closed set S
and any & > 0.

Proof. Let 2/ be a countable base for the open sets of 7. Let
2, 74, +++ be an enumeration of the finite coverings of S by sets in
?/- Then A(S, S) = UnUane%nd( Ur Ke,m)y and

O, S) = UalU. 4Noez, U, K..0) .

THEOREM 3.1. The set of all functions which are continuous at
all points of the closed set Sc T is in <.

Proof. This set is precigely N.4(1/m, S).

THEOREM 3.2. For any regular measure v on T, the set of v-
almost everywhere continuous functions is in <.

Proof. Let V,., n, mel, be an enumeration of those finite unions
of sets 2 such that »(V,,)<1/n. A function @ is v-almost everywhere
continuous if and only if for arbitrary small ¢ > 0 there is a closed set
S whose complement has arbitrarily small measure, such that w € Z(e, S).
But we 4(s, S)=> we (e, U) for some open set UD S. New, St is a
union of sets in %. Since SL > U+, and U*t is compact, U+ is covered
by a finite union of sets of 2 which does not intersect S, and thus
has v-measure no greater than that of S. Hence, the set of v-almost
everywhere continuous functions is contained in ,N.U.4Q/7, Vim)-
The converse inclusion is obvious.

THEOREM 3.3. The set of functions whose points of discontinuity
form a ﬁrst category set, 18 1
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Proof. Let OJw)={s|for every open U>s 3 r,te U with
d(w(r), w(t)) > ¢}. O w) is a closed set, and increases as ¢ decreases.
Thus, the set U..,O:(®w) is of first category if and only if each O.(w) is
nowhere dense. Let D be a countable densz subsst of 7, and let D, ,,
be an enumeration of the finite 1/m-dense subsets of D(i.e. every point
of T is within 1/m of some point of D, ,, for every =, m). Then fol-
lowing Nelson in Theorem 3.8 of [8], O.(w) is nowhere dense if and only

if, for every me I, O (w) Cc some D},. Thus, @ has a first category set
of discontinuities if and only if

e n:nmUn/(ﬁ-’ —Dnm) .

THEOREM 3.4. Let T be a compact interval. Then the set of all
@ with discontinuities of the first kind only, is in <.

Proof. If w has only discontinuities of the first kind, then for any
€ >0 one can choose, for each te T, an open interval R, such that
there are some fixed integers n. and 7. for which w(s)e K, ,, for all
sin (B, —{t). N T and w(s)e K., for all sin (R, —{t}) N T. (Note:

(R, — t).., denotes the (}g‘;\?jﬁ) of the two intervals into which R, — {t}
splits.)

Let S, be a rational open interval with teStCStCRt, and, for
given & > 0, let U, be another rational interval, of length <8, with
te U,US,. Then wed(, (S,— U).NT), and we@(, (S, — U)NT).
Since 7 can be covered by finitely many of the S,, we finally get the
following : let &4, 54, -+« be an enumeration of the finite coverings
of T by rational open intervals. For any rational open interval S, let
74(S) be the set of all open rational subintervals of S having length
< 1/k. Then if @w has only discontinuities of the first kind, we have
wEe nnUmn/cnse-?’mUUe?/k(m{@(1/"”, (S—=U)nT)neA/n,(S—U)-NT)}
And conversely, if @ has a discontinuity of the second kind at ¢, then
there is some integer » such that no matter what open rational inter-
val S one chooses about ¢, @ will oscillate by more that 1/n either in
S—-U),nTor (S—U)_-NT, provided U is a sufficiently short inter-
val. Thus, the inclusion is an equality.

THEOREM 3.5. The set O of pairs (w,t) in @ x T such that @ is
discontinuous at t, 1s im < x (<, being the Borel sets in T). The
Sunction (w, t) — w(t) 7 X Z,|0*-measurable, and a fortiort & X Zp-
measurable.

(Note: for a g-algebra o on a set Z, and a set Z,C Z, we denote
by &7 | Z, the o-algebra {AN Z,|Aec o7}, In case Z,€ . we get

XN Zy={Ae s |AC Z} )
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Proof of Theorem 3.5. <, is again a countable basis for the open
sets of 7. Then we have 0+ = N.UrezU.[4(U, K}, .) X U]. As for
measurability of the function (w,t) > w(t): let T, be a countable dense
subset of T. Let %4 be a finite covering of T by sets of diameter
< 1/k. Let {g.,| Ve 7} be a partititon of unity for 7. Let f be a
continuous function on X. Let Ful@, 1) = Sipez,9ir(t) SUD seryr F(@(S)).
Then f, is & x <Z,-measurable, and, for fixed w, f.(t, w) is continuous
in ¢t. Furthermore, at all points (w, t) in 6+, we have fi(w, t)— flw(t)).
Thus, flw(t)) is & X <&, |O+-measurable for each continuous f. Now:
for any closed set K in X there is a continuous function fr which is 1
only on that set. Then {(w, t)|w(t) e K} N O+ = {(w, t)| f(w(t)) = 1} N O,
which is in % x £&,|0+L. This completes the proof.

The generalization of Theorem 4.1 of [8] now goes through exactly
as done there, by applying Fubini’s theorem. Namely, if v is a regular
measure on 7, then {w]|w continuous at ¢} has @-measure 1 for v-almost
every t & {t| w continuous at ¢} has v-measure 1 for @-almost every
t &= 6 has Q x v-measure 0. Similarly, Theorem 4.2 of [8] generalizes
to the present context: if {®|® continuous at t} has Q-measure 0 for
each te T, then {w]|the discontinuities of @w form a cat I set in T}
has @Q-measure 1. The proof is gotten in the same way, but substitut-
ing f of Theorem 3.5 above for Nelson’s f*. The details will be omitted.
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