ON MEASURABILITY OF STOCHASTIC PROCESSES IN PRODUCTS SPACE

JACOB FELDMAN
ON MEASURABILITY OF STOCHASTIC PROCESSES IN PRODUCTS SPACE

JACOB FELDMAN

1. Introduction. Let \mathcal{E} be a σ-algebra of subsets of X, and T a set. Let $\Omega = X^T$, and let \mathcal{C} be the σ-algebra of subsets of Ω generated by the finite cylinder sets, i.e., sets of the form $A = \{\omega \in \Omega : \omega(t_i) \in A_i, \ldots, \omega(t_n) \in A_n\}$, $A_i, \ldots, A_n \in \mathcal{E}$. Let P_0 be a probability measure on \mathcal{C}. Thus the coordinate variables $x_t(\omega) = \omega(t)$, $t \in T$, are the Kolmogorov version [5] of the stochastic process with joint distributions $F_1, \ldots, F_n(A_1, \ldots, A_n) = P_0(A)$. For various purposes, it is appropriate to enlarge this σ-algebra and extend the measure. In the present paper two methods of doing this will be mentioned, and one of the methods will be studied.

[A] Suppose X is a compact Hausdorff space and \mathcal{K} the Borel sets. Then Ω is a compact Hausdorff space in the product topology. A straightforward application of the Stone-Weierstrass theorem and the Riesz-Markov theorem shows that there is a unique regular measure on the Borel subsets \mathcal{B} of Ω which agrees with P_0 on \mathcal{C}, provided the finite-dimensional marginal measures are all regular. We call this measure P. This idea is due to S. Kakutani [3], and was discussed in detail by E. Nelson [8].

[B] By a condition is meant a set-valued function k from T to \mathcal{E}. For any condition k, we define

$$\Gamma(k) = \{\omega : \omega(t) \in k(t) \text{ for all } t \in T\},$$

and

$$\Gamma(S, k) = \{\omega : \omega(t) \in k(t) \text{ for all } t \in S\},$$

S being a subset of T. It is possible to extend P_0 to a class of sets of the form $\Gamma(k)$, as follows.

The following lemma is a straightforward generalization of the separability lemma in [1], p. 56.

Lemma 1.1. For any condition k there exists a countable set $S \subseteq T$ such that $P_0(\Gamma(S, k) - \Gamma(\{t\}, k)) = 0$ for all $t \in T$.

The proof is a simple exhaustion argument. Such a countable subset S will be called determining for k.

Let \mathcal{K} be a family of sets with the properties

(i) $X \in \mathcal{K}$

Received March 27, 1961. Written partly with support from Contract NONR 222 (60) and partly while an NSF fellow.
(ii) any countable subfamily of \mathcal{H} with the finite intersection property (F.I.P.) has nonnull intersection. Such a family will be called countably compact. If (ii) holds without the countability restriction, then \mathcal{H} is called compact. If a condition k has values in \mathcal{H}, it will be called a \mathcal{H}-condition.

The set of positive integers will be written I. Unions and intersections whose index set is I will be written simply \bigcup_j, etc. rather than $\bigcup_{j\in I}$, etc. The following result can then be proven. It is stated in [7].

Lemma 1.2. Let S_n be a determining set for the \mathcal{H}-condition k_n, $n \in I$. Let $\delta = \bigcup_n [\Gamma(S_n, k_n) - \Gamma(k_n)]$. Then δ has inner P_0-measure 0.

$\mathcal{C}_\mathcal{H}$ is now defined to be those subsets Γ of Ω such that $\exists \Gamma''$ in \mathcal{C} with $(\Gamma - \Gamma'') \cup (\Gamma'' - \Gamma)$ subset of a set of the form of δ in the above lemma. These sets Γ form a σ-algebra, and the assignment to Γ of the same measure as the P_σ-measure of Γ'' determines unambiguously a measure $P_\mathcal{H}$ on $\mathcal{C}_\mathcal{H}$, which is an extension of P_σ. This construction, based on ideas of Doob and Khintchine [4] is done by A. Mayer in [6], [7].

Remark 1.1. Notice that $\mathcal{C}_\mathcal{H}$ contains all sets of the form $\Gamma'(k)$, for any \mathcal{H}-condition k, assigning to such a set the measure $P_0(\Gamma(S, k))$, S being any determining set for k.

Remark 1.2. If X is compact Hausdorff, \mathcal{H} the Borel sets, \mathcal{K} the compact sets, and P_0 satisfies the regularity condition of [A], then $\mathcal{C}_\mathcal{H} \subset \mathcal{B}$, and $P|\mathcal{C}_\mathcal{H} = P_\mathcal{H}$. This is a consequence of the following (under the hypotheses of the last sentence):

Lemma 1.3. If S is determining for the condition k, and $k(t)$ is compact for all t, then $P(\Gamma(k)) = P(\Gamma(S, k))$.

Proof. By Theorem 2.2 of [8] there is some countable subset S_1 of T such that $P(\Gamma(S_1, k)) = P(\Gamma(k))$. Now, $\Gamma(S_1, k) \supset \Gamma(S \cup S_1, k) \supset \Gamma(k)$, so $P(\Gamma(S \cup S_1, k)) = P(\Gamma(k))$. But

$$\Gamma(S, k) = \Gamma(S \cup S_1, k) \cap \bigcap_{s \in S} \{\Gamma(S_1, k) = \Gamma([s], k)\}.$$

Thus $P(\Gamma(S, k)) = P(\Gamma(S \cup S_1, k))$.

We will deal mainly with the situation where T is a topological space, and with a certain σ-subalgebra $\mathcal{D}_\mathcal{H}$ of $\mathcal{C}_\mathcal{H}$, where $\mathcal{D}_\mathcal{H}$ is defined like $\mathcal{C}_\mathcal{H}$, except that the only conditions k used for $\mathcal{D}_\mathcal{H}$ will be those of the form
For such a k, we write $I(k)$ as $\mathcal{A}(U, K)$. The restriction of $P\mathcal{X}$ to $D\mathcal{X}$ will be called $Q\mathcal{X}$.

If \mathcal{K} consists of closed sets in a metric space, T is locally compact, and τ is a regular measure on T, then $(D\mathcal{X}, Q\mathcal{X})$ has the convenient property that whenever the map $t \to x_t$ (where $x_t(\omega) = \omega(t)$) is measurable in probability, i.e. is continuous in probability outside of some τ-null set, then the map $(\omega, t) \to \omega(t)$ can be made measurable the $\mu \times \tau$-completion of $\mathcal{K} \times T$, where T is the Borel sets of T and $($,$\mu)$ some extension of $(D,\mathcal{X} Q\mathcal{X})$. (See [7], Theorem 2.) This says, in a sense, that $D\mathcal{X}$ is “not too large.” On the other hand, it is “not too small,” in the sense that it contains many natural subsets which are not in \mathcal{E}; this will be shown.

In § 2 are given some examples and general remarks concerning compact and countably compact families.

In [8], with X and T compact metrizable spaces, various natural subsets of Ω and $\Omega \times T$ were shown to be in \mathcal{B}, \mathcal{D}, or product σ-algebras derived from them (the bar over a σ-algebra signifies completion with respect to the measure being considered on it). In § 3 and 4 we show (in a somewhat more general context) that these subsets are in $D\mathcal{X}$, $D\mathcal{X}$, or the corresponding product σ-algebras, where \mathcal{K} is a countably compact family of closed subsets of X which contains a complete system of neighborhoods for each point of X (or, briefly, generates the topology of X).

2. Some topological considerations.

Lemma 2.1. Let X be a 1-st countable Hausdorff space. Then any countable compact family \mathcal{K} of subsets of X which generates the topology of X consists of closed sets only.

Proof. Suppose $K \in \mathcal{K}$, and $x \notin K$. Choose a countable family $\{K_n | n \in I\}$ of neighborhoods of x in \mathcal{K}, with $\bigcap_n K_n = \{x\}$. If $x \in \bar{K}$, then $K \cap K_1 \cap \cdots \cap K_n$ is never empty. Thus, $K \cap \bigcap_n K_n$ is nonempty, so $x \in K$.

Remark 2.1. If we assume that X actually has a countable base for its open sets, then clearly any intersection of sets of \mathcal{K} can be reduced to a countable intersection. In particular, it follows that \mathcal{K} is actually a compact family, not just countably compact.

Lemma 2.2. (Alexander). Let \mathcal{K} be a compact family of subsets
of a set X. Let \mathcal{K} be the family of arbitrary intersections of finite unions of sets of then \mathcal{K} is closed under arbitrary intersections and finite unions, and is again a compact family.

Proof. See [9], p. 139.

Corollary 2.1. The most general compact family of sets on a set X arises by choosing a subfamily of the closed sets, for some compact topology on X.

Proof. Given a compact family \mathcal{K} on a set X, use \mathcal{K} as the family of closed sets for X; this gives a compact space.

Remark 2.2. The property of countable compactness does not persist from \mathcal{K} to \mathcal{K}. For example, let A be all ordinals up to and including the first uncountable ordinal α_0. Let B be the rational numbers $\{0, 1, \frac{1}{2}, \frac{1}{3}, \cdots \}$. Let $X = A \times B - \{(\alpha_0, 0)\}$. Let \mathcal{K} consist of all sets of the form $K_{\alpha, n} = \{(\alpha^i, x) | \alpha^i > \alpha, x < 1/n\}$, where α is a countable ordinal and $n \in I$. Then no countable intersection of sets $K_{\alpha, n}$ is empty, so \mathcal{K} is countably compact. But let $L_n = \bigcap_{\alpha < \alpha_0} K_{\alpha, n} = \{(\alpha_0, x) | x < 1/n\}$. Then the L_n have the F.I.P., but $\bigcap_n L_n = \emptyset$.

In § 3 we shall be considering countably compact families \mathcal{K} on separable metrizable spaces X, \mathcal{K} generating the topology of X. Some examples follow.

(a) X a Banach space which is separable and a dual, \mathcal{K} the set of all closed spheres. This is mentioned in [6].

In this connection, however, notice that the separable Banach space C of all continuous functions on, say, the closed interval $[-1, 1]$, is not a dual; and, in fact, the family of all closed spheres in this Banach space is not a countably compact family. To see this, let

$$f_n(\lambda) = \begin{cases} 1 & \text{if } -1 \leq \lambda \leq 0 \\ 1 - n\lambda & \text{if } 0 < \lambda < \frac{1}{n} \\ 0 & \text{if } \frac{1}{n} \leq \lambda \leq 1, \end{cases}$$

and let $f'_n(\lambda) = -f_n(-\lambda)$. Let K_n be the closed sphere of radius 2 about $f_n - 2$, and K'_n the closed sphere of radius 2 about $f'_n + 2$. Then

$$K_n \cap K'_n = \{g | f'_n \leq g \leq f_n\} = \emptyset.$$

Since $f_1 \geq f_2 \geq \cdots$ and $f'_1 \leq f'_2 \leq \cdots$, we have $K_1 \cap K'_1 \supset K_2 \cap K'_2 \supset \cdots$. Thus, the spheres $\{K_n, K'_n | n = 1, 2, \cdots\}$ have the F.I.P., but there is
no continuous function in their intersection. The author does not know, however, whether some \mathcal{H} does not exist for C.

(b) An example where the metric space is not complete: let X be the nondyadic numbers in the unit interval. \mathcal{H} will be defined as follows. Let S_n be the set of dyadics of the form $k/2^n$, $k = 0, \ldots, 2^n$. Then $X = [0, 1] - \bigcup_n S_n$. Let \mathcal{H}_n be the intersection with X of intervals $[a, b]$, where $a = (k + 1/8)1/2^n$, $b = (k + 7/8)1/2^n$, $k = 0, 1, \ldots, 2^n - 1$. Let $\mathcal{H} = \bigcup_n \mathcal{H}_n$.

To see that \mathcal{H} generates the topology of X, we must show that any $x \in X$ is an interior point of some interval in \mathcal{H}_n, for arbitrarily large n. But a nondyadic number x is characterized by the property that a zero followed by a one occurs arbitrarily far out in its dyadic expansion. Thus, for arbitrarily large n, we can get $k/2^n + 1/2^{n+2} < x < k/2^n + 1/2^{n+1}$, so that x is interior to an interval of \mathcal{H}_n.

To see that \mathcal{H} is countably compact, suppose we have a sequence K_1, K_2, \ldots with the F.I.P. Assume repetitions have been eliminated. Then no two can come from the same \mathcal{H}_n, since two members of \mathcal{H}_n are either identical or disjoint. Consider now the closed intervals \overline{K}_n in $[0, 1]$. These have the F.I.P., and are closed in $[0, 1]$. Thus their intersection is nonempty. Further, let $K_n \in \mathcal{H}_n$. Then $\overline{K}_n \cap S_{i_n} = \phi$, so $(\bigcap_n \overline{K}_n) \cap (\bigcup_n S_{i_n}) = \phi$. Since i_n does not repeat itself, and since $S_1 \subset S_2 \subset \cdots$, we have $\bigcup_m S_{i_m} = \bigcup_n S_n$. Thus, $(\bigcap_n \overline{K}_n) \cap X \neq \phi$. But this is the same as $\bigcap_n \overline{K}_n$.

(c) A metric space for which no countably compact family can generate the topology: let X be the dyadic numbers in $[0, 1]$. Suppose, in fact, we had such a family \mathcal{H}. Let x_1, x_2, \ldots be an enumeration of X. Then one could choose a sequence K^n_j of neighborhoods of $x_j, K^n_j \in \mathcal{H}$, and with the length of K^n_j less than $1/n + j$. Let U^n_j be the interior of \overline{K}_j^n. Then $x_j \in U^n_j$. Consider now the set $\bigcap_n \bigcup_j U^n_j$. This is a G_δ in the reals, and contains all the dyadics. Then it must contain some non-dyadics, since the dyadics are not a G_δ. On the other hand, if ξ is a non-dyadic in $\bigcap_n \bigcup_j U^n_j$, then ξ is in some $\bigcap_n U^n_j$. Thus $\{K^n_j \mid n \in I\}$ has the F.I.P. But $\bigcap_n \overline{K}_j^n = \{\xi\}$, since the lengths of the K^n_j go to zero as $n \to \infty$. Thus $\bigcap_n K^n_j = \bigcap_n (\overline{K}_j^n \cap X) = \phi$.

The question remains open whether, for example, every complete separable metric space has a countably compact family which generates its topology.

3. Measurability of various classes of functions. Throughout this section, let X be a separable metric space; \mathcal{B} the Borel sets. Let \mathcal{H} be a collection of sets in \mathcal{B} such that
Let T be a compact metric space, and consider \mathcal{D}_T, Q_T, as defined in § 1. For brevity, we write simply \mathcal{D}, Q. We remark that the results of this section extend immediately to the case where T is locally compact metrizable, and separable, since the classes of functions discussed are defined by their local properties in T.

Let \mathcal{K}_0 be a countable subset of \mathcal{K} which still contains a complete system of neighborhoods at each point. Also, let $K_{\epsilon, n}$ be an enumeration of the sets of \mathcal{K}_0 of diameter $\leq \epsilon$. Let $A(\epsilon, S) = \bigcap_{s \in S} \{ \omega \mid \exists$ some open neighborhood U of s and some n such that ω sends U into $K_{\epsilon, n}\}$. Finally, let $\Phi(\epsilon, S) = \{ \omega \mid \exists$ some open $U \subseteq S$ and n such that ω sends U into $K_{\epsilon, n}\}$.

Lemma 3.1. $A(\epsilon, S)$ and $\Phi(\epsilon, S)$ are in \mathcal{D} for any closed set S and any $\epsilon > 0$.

Proof. Let \mathcal{U} be a countable base for the open sets of T. Let $\mathcal{U}_1, \mathcal{U}_2, \cdots$ be an enumeration of the finite coverings of S by sets in \mathcal{U}. Then $A(\epsilon, S) = \bigcup_n \bigcup_m \bigcap_{U_n \in \mathcal{U}_n} A(U, K_{\epsilon, m})$, and $\Phi(\epsilon, S) = \bigcup_n \bigcup_m \bigcap_{U_n \in \mathcal{U}_n} \Phi(U, K_{\epsilon, m})$.

Theorem 3.1. The set of all functions which are continuous at all points of the closed set $S \subseteq T$ is in \mathcal{D}.

Proof. This set is precisely $\bigcap_n A(1/n, S)$.

Theorem 3.2. For any regular measure ν on T, the set of ν-almost everywhere continuous functions is in \mathcal{D}.

Proof. Let $V_{n, m}, n, m \in I$, be an enumeration of those finite unions of sets \mathcal{U} such that $\nu(V_{n, m}) < 1/n$. A function ω is ν-almost everywhere continuous if and only if for arbitrary small $\epsilon > 0$ there is a closed set S whose complement has arbitrarily small measure, such that $\omega \in A(\epsilon, S)$. But $\omega \in A(\epsilon, S) \Rightarrow \omega \in A(\epsilon, U)$ for some open set $U \supset S$. New, S^\perp is a union of sets in \mathcal{U}. Since $S^\perp \supset U^\perp$, and U^\perp is compact, U^\perp is covered by a finite union of sets of \mathcal{U} which does not intersect S, and thus has ν-measure no greater than that of S. Hence, the set of ν-almost everywhere continuous functions is contained in $\bigcap_j \bigcap_n \bigcup_m A(1/j, V_{n, m})$. The converse inclusion is obvious.

Theorem 3.3. The set of functions whose points of discontinuity form a first category set, is in \mathcal{D}.
Proof. Let \(O_\varepsilon(\omega) = \{ s \mid \text{for every open } U \ni s \exists r, t \in U \text{ with } d(\omega(r), \omega(t)) > \varepsilon \} \). \(O_\varepsilon(\omega) \) is a closed set, and increases as \(\varepsilon \) decreases. Thus, the set \(\bigcup_{\varepsilon} O_\varepsilon(\omega) \) is of first category if and only if each \(O_\varepsilon(\omega) \) is nowhere dense. Let \(D \) be a countable dense subset of \(T \), and let \(D_{n,m} \) be an enumeration of the finite \(1/m \)-dense subsets of \(D \) (i.e., every point of \(T \) is within \(1/m \) of some point of \(D_{n,m} \), for every \(n, m \)). Then following Nelson in Theorem 3.3 of [8], \(O_\varepsilon(\omega) \) is nowhere dense if and only if, for every \(m \in I \), \(O_\varepsilon(\omega) \subset \text{some } D_{n,m} \). Thus, \(\omega \) has a first category set of discontinuities if and only if

\[
\omega \in \bigcap_{\varepsilon} \bigcap_{m} \bigcup_{s} O_\varepsilon(s, D_{n,m}).
\]

Theorem 3.4. Let \(T \) be a compact interval. Then the set of all \(\omega \) with discontinuities of the first kind only, is in \(\mathcal{B} \).

Proof. If \(\omega \) has only discontinuities of the first kind, then for any \(\varepsilon > 0 \) one can choose, for each \(t \in T \), an open interval \(R_t \) such that there are some fixed integers \(n_+ \) and \(n_- \) for which \(\omega(s) \in K_{n_+} \) for all \(s \in (R_t - \{t\})_+ \cap T \) and \(\omega(s) \in K_{n_-} \) for all \(s \in (R_t - \{t\})_- \cap T \). (Note: \((R_t - \{t\})_\pm \) denotes the \(\pm \) of the two intervals into which \(R_t - \{t\} \) splits.)

Let \(S_t \) be a rational open interval with \(t \in S_t \subseteq \bar{S}_t \subset R_t \), and, for given \(\delta > 0 \), let \(U_t \) be another rational interval, of length \(< \delta \), with \(t \in U_t \cup S_t \). Then \(\omega \in \Theta(\varepsilon, (\bar{S}_t - U_t)_+ \cap T) \), and \(\omega \in \Theta(\varepsilon, (\bar{S}_t - U_t)_- \cap T) \). Since \(T \) can be covered by finitely many of the \(S_t \), we finally get the following: let \(\mathcal{F}_1, \mathcal{F}_2, \ldots \) be an enumeration of the finite coverings of \(T \) by rational open intervals. For any rational open interval \(S \), let \(\mathcal{F}(S) \) be the set of all open rational subintervals of \(S \) having length \(< 1/k \). Then if \(\omega \) has only discontinuities of the first kind, we have

\[
\omega \in \bigcap_{S} \bigcup_{r \in \mathcal{F}(S)} \bigcap_{s} \cap \bigcup_{m} \bigcup_{U \in \mathcal{B}} \bigcap_{\varepsilon} \{ \Theta(1/m, (\bar{S} - U)_+ \cap T) \cap \Theta(1/n, (\bar{S} - U)_- \cap T) \}.
\]

And conversely, if \(\omega \) has a discontinuity of the second kind at \(t_0 \), then there is some integer \(n \) such that no matter what open rational interval \(S \) one chooses about \(t_0 \), \(\omega \) will oscillate by more than \(1/n \) either in \((\bar{S} - U)_+ \cap T \) or \((\bar{S} - U)_- \cap T \), provided \(U \) is a sufficiently short interval. Thus, the inclusion is an equality.

Theorem 3.5. The set \(\theta \) of pairs \((\omega, t)\) in \(\Omega \times T \) such that \(\omega \) is discontinuous at \(t \), is in \(\mathcal{B} \times \mathcal{B} \) (\(\mathcal{B} \) being the Borel sets in \(T \)). The function \((\omega, t) \mapsto \omega(t) \in \mathcal{B} \) is \(\Theta^1 \)-measurable, and a fortiori \(\mathcal{B} \times \mathcal{B} \)-measurable.

(Note: for a \(\sigma \)-algebra \(\mathcal{A} \) on a set \(Z \), and a set \(Z_0 \subseteq Z \), we denote by \(\mathcal{A} \mid Z_0 \) the \(\sigma \)-algebra \(\{ A \cap Z_0 \mid A \in \mathcal{A} \} \). In case \(Z_0 \in \mathcal{A} \), we get

\[
\mathcal{A} \mid Z_0 = \{ A \in \mathcal{A} \mid A \subset Z_0 \}.
\]
Proof of Theorem 3.5. \(\mathcal{U} \) is again a countable basis for the open sets of \(T \). Then we have \(\Theta^\perp = \bigcap_n \bigcup_{U \in \mathcal{U}} \bigcup_{m} [A(U, K_{1/n,m}) \times U] \). As for measurability of the function \((\omega, t) \rightarrow \omega(t) \): let \(T_0 \) be a countable dense subset of \(T \). Let \(\mathcal{Y}_k \) be a finite covering of \(T \) by sets of diameter \(< 1/k \). Let \(\{g_{k,r} \mid V \in \mathcal{Y}_k\} \) be a partition of unity for \(\mathcal{Y}_k \). Let \(f \) be a continuous function on \(X \). Let \(f_k = \sum_{r} g_{k,r}(t) \sup_{s \in x \cap V} f(\omega(s)) \). Then \(f_k \) is \(\mathcal{C} \times \mathcal{B}_\tau \)-measurable, and, for fixed \(\omega \), \(f_k(t, \omega) \) is continuous in \(t \). Furthermore, at all points \((\omega, t) \) in \(\Theta^\perp \), we have \(f_k(\omega, t) \rightarrow f(\omega(t)) \). Thus, \(f(\omega(t)) \) is \(\mathcal{C} \times \mathcal{B}_\tau \mid \Theta^\perp \)-measurable for each continuous \(f \). Now: for any closed set \(K \) in \(X \) there is a continuous function \(f_K \) which is 1 only on that set. Then \(\{(\omega, t) \mid \omega(t) \in K \} \cap \Theta^\perp = \{(\omega, t) \mid f_K(\omega(t)) = 1 \} \cap \Theta^\perp \), which is in \(\mathcal{C} \times \mathcal{B}_\tau \mid \Theta^\perp \). This completes the proof.

The generalization of Theorem 4.1 of [8] now goes through exactly as done there, by applying Fubini’s theorem. Namely, if \(\nu \) is a regular measure on \(T \), then \(\{\omega \mid \omega \text{ continuous at } t\} \) has \(Q \)-measure 1 for \(\nu \)-almost every \(t \). \(\{t \mid \omega \text{ continuous at } \omega \} \) has \(\nu \)-measure 1 for \(Q \)-almost every \(t \). \(\Theta \) has \(Q \times \nu \)-measure 0. Similarly, Theorem 4.2 of [8] generalizes to the present context: if \(\{\omega \mid \omega \text{ continuous at } t\} \) has \(Q \)-measure 0 for each \(t \in T \), then \(\{\omega \mid \text{the discontinuities of } \omega \text{ form a cat I set in } T\} \) has \(Q \)-measure 1. The proof is gotten in the same way, but substituting \(f^\perp \) of Theorem 3.5 above for Nelson’s \(f^+ \). The details will be omitted.

REFERENCES
