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1. Introduction. In [1] certain closed operators in L*G) were de-
fined in terms of the Laplacian operator, and a class of generalized
boundary conditions. There G was a bounded domain in E* with C*'?
boundary and the boundary conditions were of the form ou/on — Lu =
0, where L was an arbitrary bounded operator on L*6G). The operator
so defined was denoted by T, and it was shown that T, was a cloged
linear operator with compact resolvent. Its adjoint (7.)* was shown to
be T,, and its spectrum was shown to lie inside a parabola of the form

¥ = ax + b where a,b >0 .

It is the purpose of this paper to extend the results of |1] by re-
moving the restriction that G be bounded. The previous history of the
problem is adequately covered in [1]. It is worth noting here that the
underlying idea of [1] derives from a theorem of Calkin [4] and relies
on the compactness of the resolvent of an operator S on LXG) P L*0G).
For certain of the results of [1] it is only necessary to assume the
closedness of the range of S but many of the results explicitly used
the compactness of the resolvent. If G is unbounded, the resolvent of
S is no longer compact and the methods of [1] can no longer be used.

The approach taken here is to use localization methods to reduce
the problem for unbounded regions to one for bounded regions. We
observe that the Laplacian is an operator of local type in the sense of
Hormander [7]. However in applying these methods we must distinguish
between two cases. If 4G is bounded we can separate the behavior of
functions near the boundary from their behavior near infinity by multi-
plying them by functions which vanish in a neighborhood of infinity
and are identically one near the boundary. When 8G is unbounded this
can no longer be done and any such attempt at localization must affect
the behavior of the function on portions of the boundary. It turns out
to be necessary to require that any localization function, regarded as
an operator on L*0G), must commute with the boundary operator L.
For this reason when 8G is unbounded we restrict our attention to
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122 ROBERT S. FREEMAN

multiplication operators on the boundary. ‘

It is our hope for the future to extend these results to uniformly
elliptic, second-order operators on LZ?(G) where 1 < p < oo,

In §1 we list some geometric preliminaries. In §2 we list results
centering about the Lax-Milgram theorem [8] and preliminary localization
results. The main results are contained in §§3 and 4. In § 3 we treat
operators for unbounded regions with bounded boundaries and in §4 we
treat the situation where the boundary is unbounded.

1. Preliminaries. In what follows G will be a possibly unbounded
open connected set in E”. Its boundary will be denoted by 8G. Points
in G will be denoted by %, y, --- and points in 6G will be denoted by
0,¢,+-. We will denote by dz, dy, +-+ and by dé, d¢, - -+ n-dimensional
and » — 1 dimensional Lebesgue measures on G and 8G, respectively.
The exterior unit normal to 8G at 0 will be denoted by n,. As in [1]
we will always assume that G is an #n — 1 dimensional C!'! manifold.
A detailed treatment of such manifolds may be found in Lucas [9].
For convenience we will state the fundamental

1.1. THEOREM. Let I' be a C*“* manifold, then there exists a
positive number, r,, called the minimal radius of I" such that:

(i) All segments of length r, centered at points of I and normal
to I' are mutually disjoint and exhaust a neighborhood of I, called an
r, neighborhood of I'.

(ii) At each point 8 in I', spheres interior and exterior to I' of
radius r, may be drawn tangent to I at 0 and containing no other
points of I,

(iii) The mormals to I' satisfy a wuniform Lipschitz condition
with Lipschitz constant v;*, t.e.,

| g — Mg | < 7500 — ¢ |

for ¢,0¢€0G.

(iv) The set I'y=1{0 — pn,:0€'} is a C** manifold for p <1,
with minimal radius r, satisfying v, — |p| = r, < v, + | o|. Such sur-
Jaces will be called parallel surfaces to I' and are denoted by I,.

(v) The surface measures on I' and I", are mutually absolutely
continuous with uniformly bounded Radon-Nikodym derivatives for
o] < 7of2.

We impose further restrictions on 8G. We require that there exists
a covering of every 7 neighborhood of 8G, for r < 7, by a possibly
finite sequence of open sets {V,} such that

(a) For each k there exists a homeomorphism, T, of V, into E"
such that T.(V, N G) =7 x {0 <z, < r} where I" is an n» — 1 dimensional
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gsphere with center at the origin and diameter ».

(b) T., T;* and their derivatives up to order j satisfy a uniform
Lipschitz condition.

(¢) There exists an integer N such that at most N of the sets {V,}
have a nonempty intersection.

(d) U.T{1/272[0 < x, < »/2]} covers an /2 neighborhood of 6G.

1.2. DeriNITION. If 8G satisfies conditions (a) — (d) above we say
that G is a uniformly C’* domain.

Usually 7 can be 1, however later in § 4 we shall need 7 to be two.
If the derivatives up to order 5 of T,, Tv' are merely continuous and
bounded, we speak of a uniformly C’ domain.

In addition to the function space L*G) we refer to certain other
function spaces which are by now quite familiar. The space C(G) is
the set of all infinitely differentiable functions with compact support in
G. We shall always consider complex valued functions unless stated to
the contrary. In the notation of Browder [2], W7/ (@) is the set of all
functions in L?(G) whose distribution valued derivatives up to order j
are functions in L?(G). Using the familiar notation

1
44 :<a,1’ ""an> and lal = lea’z
=
where the «; are nonnegative integers, we write
o™ 8n

D® =
oxp oxye

for the generic differential operator of order la|. For we WI(G) we
write
e, = (

S IDulk)”,  1<p<e

IJEY
where || + ||, is the L®” norm. Here we shall mainly be concerned with
the L’ norm which we shall write as ||+ ||. The following well known
facts we state as a

1.3. LemMA. W?%G) is a Banach space in the norm ||« ||;,, and
a Hilbert space for p = 2. Cg(E™) is dense in W'(G) im the ||« ll;,
norm.

Let I" be a subset of 8G. For 0 < p < 7, and for ¢ € I' define the
set G, to be {xreG:2x=¢ — pny}. For fixed p< 1y let I'y={zreG:2=
¢ — ong, ¢’} If w is a function in W*%(G,) we write u,(¢) = u(¢ —
omy), p€'. Thus u, is the restriction of u to I",. We now make the
following definition
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1.4. DEFINITION. wu, has an LP-boundary value on I' if
(i) wu,eL™l",) for p < r,.
(i) There exists a function # € L?(I") such that

lim | |(5) — Ue) P ds =0 .

We now introduce the class of functions with which we shall be dealing
throughout the remainder of this paper.

1.5. DEFINITION. <,(G) is the set of all functions u in W'¥G)
such that

(i) we WG, for each open set G, whose closure is compact and
lies in G,

(ii) gue LX(G),

(ili) w« has an L? boundary value # on 8G, and 6u/én has an L?
boundary value on every compact subset I' of 0G.

It is well known [5] that every function in W?'? has an L? boundary
value and an examination of harmonic functions on the unit circle shows
that the inclusion W**G) & D(G) & W*'X@G) is proper.

Recall that the “minimal operator” associated with the Laplacian is
the closure of the Laplacian restricted to C;°(G) and the “maximal
operator” ig its adjoint. Its domain is the set of functions in W*'*G)
satisfying conditions (i) and (ii) of Definition 1.5.

2. Lax-Milgram theorem. We here present the Lax-Milgram theorem
in a form suitable for our purposes. It is the generalization of the
Friedrichs’ extension theorem [6] to the nonsymmetric case.

Let 27 and 57, be two Hilbert spaces with norms || - || and || -],
respectively. We suppose

(i) &7 is densely contained in 57

(ii) There exists a number k& > 0 such that for all u in v,

kEllwll = llwll .

Let B be a not necessarily Hermitian symmetric bilinear form whose
domain is all of 27, and suppose

(a) | Bu, v)| = K||ull||v], for u,ve 574
(b) Re B(u, w) = C||u|? for ue o7 .

Lax and Milgram dealt with real Hilbert spaces whereas here and
throughout this paper we deal with complex Hilbert spaces. Condition
(b) is the obvious modification of their condition, and the necessary
changes to their proof resulting from (b) are of a trivial nature.



CLOSED EXTENSIONS 125

2.1. THEOREM (Lax-Milgram). For any bounded linear functional
I on 57 there exist two vectors v, v* in 27, such that

(i) Uu) = B(u, v) = B(w*, u) for uwe 4.

(ii) If wesz and I = (-, w), and v = Pw, then P, 18 a linear
homeomorphism of 57, onto ;.

(iii) If U is a proper closed subspace of 57, then there exists a
ve 97, such that for every we U, B(u, v) = 0.

2.2. THEOREM. There exists a closed densely defined linear trans-
formation T of o7 imto itself such that T and its adjoint T* have
domains contained in .57, and have bounded everywhere defined inverses
wm 27 Moreover

B(Qtr Q)) = (uy T/U) flO’r' ue %, ve (/7(T)
and
B(u, vy (T*u,v) for ue «(T*),ve 57 .

The fact the T is densely defined in 7 and closed as a map of 37
into 2 was not explicitly stated in Lax-Milgram. The density follows
from the fact that T is everywhere defined in ..»” and bounded. In
fact if z is orthogonal to <Z(T) then for ue <Z(T), (u,2) = 0 and since
(., 2) is a bounded linear functional on %% and < (T) < 27 it follows
that (u, 2)=Bu, T'2)=0 for ue 2(T)= “#Z(TY. Thus B(T'u, T '2)=
0 and in particular B(7'2)' = 0 and thus 7 'z =0. Hence z=10. To
show that 7 is closed as a map of 57 into 277, let {v,} be a sequence
in <7(T) and suppose v,—>ve 5 and Twv,-—->we . Now for each
n and all uwe 2 B(u,v,) = (u, Tv,) and thus B(v,) = (v, Tv,) = (v, w).
But then v, converges in 7", to say 2 and thus in 5#°. Hence v = z.
Since T is closed as a map of &~ into 5, Tz = w = T.

The facts about 7* follow easily if one recalls that T~ is every-
where defined and bounded.

We shall now apply Theorem 2.2 to a study of the Laplacian oper-
ator, considered as an operator on L*G). With the aid of Theorem 2.2
we shall prove the existence of a closed densely defined operator with
domain in W**G) and satisfying certain boundary conditions in a gener-
alized sense. Since the domaing lie in W**G) we know that the functions
have L* boundary values. It will then be the task of the remainder of
this paper to show in what sense the boundary conditions are satisfied.
To begin we require the following

2.3. LEMMA. Let G be a uniformly C*' manifold. Then for any
e WG), w has an L? boundary value @& and for each ¢ >0, there
exists @ C(e) > 0 such that ||# |3 < Kle||Full® + Ce) || w ]

1 We write B(z) for Bz, ©).
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Here 7 represents the gradient of u and || - |}; is the norm on L*5G).

This lemma appears widely in the literature, see for example Ehrl-
ing |5] and Nirenberg [10] where G is assumed to be bounded. When
G is unbounded the proof can be suitably modified without too much
difficulty with the aid of a partition of unity. For an outline of this
proof see Poulsen [11].

Suppose # is a smooth function and that L is a bounded linear
operator on L*0G) and that #, — L& = 0. Let

S Vu-%dng 3 ou 0v 4,
e @ =1 0x; 0%;

and apply Green’s formula to obtain

(——Auy u) = H Vu’Hz - (Lﬁy ﬁ)a .

2.4. DEFINITION. For uwe W¥G) let

By(uw) = |[Full* — (L, @)
By(u) = Be(u) + 7 [P’

where v is any complex number. Let L be any bounded operator on a
Hilbert space £#°. Form L, = 1/2(L + L*) and L, = 1/2(L — L*) so that
LY=L, Ly =—L, and L =L, + L,. Moreover, R,(Lu,u)= (Lu,u)
and Im(Lu, w) = 1/t(Lyu, w). L, and L, are respectively the symmetric
and antisymmetric parts of L.

2.5. LEMMA. If the real part of v is sufficiently large, then for
all we W*¥Q)

R, g(u)z—;—num,z.

Proof. Let Ry =a. Then

RB)(w) = [[Full’ + allu|f — (L&, %),
z [ Full + alluwll® — [ LI .

Now by Lemma 2.3

R.Bi(u) z [[Pull* + el — [[ Ly || Kle [[Fu [} 4 C(e) [ w[[]
=1 =LK IFull* + (@ — [| L[| KCE) [ u P .

Choose ¢ so small that 1 — || L,|| K¢ > 1/2 and «a so large that
a — || L, || KC(e) > 4 .

Note that when L is the zero operator v may be taken to be real,
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for the form B, is symmeatric.

2.6. LEMMA. There exists a positive real number C such that for
every u and ve W (@)

(2.6.1) | BY(u, v) | = Cllull llv]l; .
Proof.

| Bitw, )| = || Pue Foda| + 1v(u, 0) | + | (L, o)

s rullitrell + 1y Twllloll + Ll w2l
s rull 7ol + [y Hlwll{lvll + LI [KE[ 7wl
+ CE) tu[DIFE [ Pull + Ce) (v )]

for any ¢ >0. Choose ¢ >0 and let & =max(e Cle)). Let »=
max(|v],1) and C=27+ 6{|L]||l. Then a simple computation yields
(2.6.1).

Let 27 = LX(G) and 27 = W*¥G) and apply the Lax-Milgram theo-
rem to the form BJ. The result is the following:

2.7. THEOREM. Let L be any bounded linear operator on LY8G).
Then there exists a closed, densely defined, linear operator M, in LXG)
with domain in WHHG) such that for every ve <o (M;) and ue WH¥G),
By(u, v) = (u, Mw). Its adjoint M; enjoys the relation Bg(u,v) =
(Miu,v) for ue (M) and ve W*¥G). Moreover, if v 18 any com-
plew number such that Ry = —(8 + || L, || KC(e)) where 0 < 8 <1 and
C(e) ts the number of Lemma 2.3 with ¢ < (1 — 8)/|| L, ||, then v lies in
the resolvent set of M;.

Proof. When v is as above, Theorem 2.2 shows that M, + I is
closed and densely defined in L*G) with domain in W'*(G). Moreover,
zero i in its resolvent sat.

We shall now give a characterization of < (M,).

2.8, THEOREM. Let ve W'YG), thzn a necessary and sufficient
condition that ve o (M <= (M5%)) is that —4v is a distribution in
LXG), and for we W'¥G), (u, —4v) = B(u, v)((—4v, u) = B(v, w)).

Proof. We give the proof for M,, the proof for M} being virtually
identical.

Let ve &2r(M,). Then for every ue W**(G), and hence for every w
in C(G), (w, M,v) = B(u,v). Recalling the definition of the derivative
of a distribution, we have (u, M,v) = B(u, v) = ggVu «Vodr = (u, —Fv)
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for # in C;°(G). Since C;(G) is dense in L*G) it follows that Mo =
—4v. Now suppose v is in W**G) and —4v is a distribution in L¥G)
such that for ue W**G), (u, 4v) = By(u, v). Then for a suitable com-
plex number v the form B defined by (u, — 4v + vv) = BZ(u, v) is bounded
in W*¥G) and R,Bj is bounded from below. It then follows from the
proof of Theorem 2.2 that ve < (M;) and Mv = —dv.

We now present a series of localization lemmas which will be used
in what follows. These results are by now quite common in the litera-
ture and we follow for the most part the presentation given in Poulsen
[11].

2.9. LEMMA. Let @ be in CYG) and suppose K is an upper bound
Jor @ and |[Vw|. Then for every ue W*G), wu is also in W'¥G).

Proof. W'¥G) is the closure of C{(E™) in the W2 norm. If {w'}
is a sequence in C;(E£") such that |4’ — u||,, — 0. Then the inequalities
low —wu|l = K||w — x|l and |[[F(ew’) —F(ow) |l = K(|u’ — %] +
| 7w — Pul]) show that ||ow — wull,,— 0.

2.10. LEMMA. Let we C}(E™) be real valued and suppose that K
18 an upper bound for |w|, |Fw|, and |—4dw| in G. If we W*¥G)
and —4u is a distribution in LYG) then wue W'H(G) and — A(wu) is
a distribution in LA(G).

Proof. Let S(u,w) = (—dw)u — 2Vw+Fu — wiu, and observe that
[1S(u, o) || = K(llwll + 2[[Full + || du]) .

Thus S(u, w) is clearly a distribution in L*G) and by the definition
of derivative of a distribution S(w, u) = — Hwu).

3. Regions with bounded boundaries. In the preceding section we
have given a characterization of the operator M, in terms of the Laplacian
and the form By(:, :). Hereafter the symbol M, will always stand for
this operator. Essentially these results concern themselves with regularity
in the interior of G. It is the purpose of this section to study the
boundary behavior of functions in & (M;). Explicitly let < (T;) be the
set of ue &,(G) (cf. Definition 1.5) for which %, — L& = 0 and let 7,
be —4 with domain < (T)), then we shall show T, = M,.

3.1. DEFINITION. Let ¢ be a function in C;*(E*) satisfying

1 lz] =1

o@) =1, PRp
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and 0 < ¢(x) < 1. Let " (x) = ¢(x/N) and let K be an upper bound
for |F¢| and | 44 |.

3.2, LEMMA.
(Fo¥| < KIN
|dow¥ | < K|N*.

3.3. LEMMA. Let we W'G) and suppose —du is a distribution
wm LAG). Then as N— o
foYu —ull,—0
|| —d(w"u) — (—4u)|| - 0.

Proof. For each N, w ue W'* and —Hw"w) is a distribution in
L¥G) by Lemma 2.10. The results follow from an obvious computation,
Lemma 3.2, and the dominated convergence theorem.

3.4. THEOREM (Green’s Formulas). Letuw and v be in Z{G). Then

(3.4.1) Sg(—m)wx - Lm T — Sgaaﬁde

(3.4.2) S (— du)oda — S w(— To)das = Sa (%, — ,5)d0 .
a G G
Proof. Let B, be the sphere with center at the origin and radius
N and let o be the function of Lemma 3.2. Define vV to be @w¥v so
that v vanishes outside of B,y. Then

(adu)ﬁ_“?dcczg V- ToVda

B3N G

SG(—Au)ﬂNdx = S

By NG

_ S 750
3B,y UG

- S Fu-Fovds — S w,57do .
G Glel
The last of the equalities follows from the fact that ®” vanishes on

and near 8B,;." Let N— « and apply Lemma 3.3 to obtain Eq. (3.4.1).
Formula (3.4.2) can be obtained in a similar manner.

3.5, THEOREM (Localization). Let @ be as n 3.1, If
ve I (MNz (M), then o“ve 7 (MN 2 (M])).

Proof. We give the proof for M,. By Theorem 2.8 and Lemmas
2.10 it suffices to show that for ue W'¥G) or even for uc CY®)

2 Observe that ¥ = 7 on 8G.
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(3.5.1) (u, —d(@"v)) = B(u, ®"v) .

Here of course N is assumed to be sufficiently large that 6G = B,. We
note that C}(E") is dense in W'¥G) and, moreover, that if {u’} is a
sequence in C{(E") such that [|w — u]|,,— 0 and if %’ is the corre-
sponding boundary value, then |[4’ — %], > 0. Hence it suffices to
prove (3.5.1) for ue CXE"). Now by Lemma 2.10, for all ue W"(G)

(1, — A@v)) = (1, O(— 40)) + (u, v(— dw)) — 2 LuVmozx
since @ is real valued. Now
(4, @(— dv)) = Sguw(—d_v)dac — By(uo, v) .
Moreover,
(u, v(— 4w)) = Sguﬁ(—dw)dx = gguﬁ(-—dw)dx = LV(uﬁ) Twdr .
Here 2 = G N B,y and we note that ® vanishes on and near 6B,,. Thus

(u, — A(@v)) = By(uw, v) + g Fup) - Fode — 2§ W - Tode .
G G
Since Bj(uw, v) = S V(uw) -« Vode — Sa uwLvdx and ® =1 on 8G and
Q [ed

S 7 (uw) - Poda +S V(u®) « Fwdx — 28 ww - Voda
G q G
= S @V - Tode + S Fu-Vovde = S Fu-V(wv)de ,
Q aq (3

we have finally

(w, — d(wv)) = B(u, wv) for uwe CE™) .

3.6. DEFINITION. Let 2 (T )<= (T,,)) be the set of those u e Z(G)
for which #, — L# =0 (&, — L*% = 0) and for u in (TN =2(T..)),
let Tou(T,,u) = — 4du.

When G was bounded it was shown in [1] that T, was closed and
densely defined and that (T,)* = T,,. In the remainder of this section
we shall identify M, with T, and M} with T;,, thus proving that for
G unbounded, but with 8G bounded, we again have (T,)* = T,,.

It is immediately clear by Green’s formula that T, & M, and T,, S
M. The reverse inclusions will be obtained by localization. Consider
a sphere B;, with N so large that 0G < B,, and let 2 =G N B;y, S0
that 82 = 6G U 0B,y. We define an operator, L, on L*22) by
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(L iie LH3G)

Li =
"o ii e LX0B,y)

and the operator T, analogously as in Definition 8.6 with L, replacing
L and 2 replacing G.

In what follows N will be chosen so large that B, contains 9G in
its interior. The corresponding @ will be denoted by ®. Moreover,
we define M, , (M) aralogously as M (M;) with 2 = G N B,y replacing
G and L, replacing L. We need the following

3.7. LEMMA. Let G be a bounded domain with a C*' boundary.
Thenw M, = T, and M} = T,,.

Proof. By Green’s formulas it is clear that M, 2 T, and M; 2 T},.
But since all the operators in question are closed and T,, = (T)*
M7 2 T and as a consequence T,, = M,,, it also follows that T}
(TLnk)}( = M/* = M,.

We return now to unbounded regions.

iy

3.8. LEMMA. Let ve (M X< (M])), then wv restricted to 2 1is
wm (M) (= (M)).

Proof. By Theorem 3.5, wve W'*(G) and —4(wv) is a distribution
in LXG). The same is algo true therefore if G is replaced by Q. It
suffices to show therefore that for uwe Cy(E™)

(n, —d(wv)), = Bo(u, v) .

The proof of this is similar to that of the corresponding statement of
Theorem 3.5 and will be omitted.

3.9. THEOREM. M, =T, and M} = T;,. Thus (T))* = T;,.

Proof. By Lemma 8.8, wve o7(M,) whenever ve & (M;). Thus
by Lemma 3.7, wwe < (T,). It then follows that ve &(G) and ¥, —
LY =0, since w =1 c¢cn By N G. Thus ve¢ & (T,) and Mv = T,» and
the result follows. The proof that M, = T,, is similar and will be
omitted. It is clear from Theorem 2.7 that the spectrum of 7, lies in

a half plane. We can sharpen this estimate considerably to obtain the
results of [1].

3.10. THEOREM. The spectrum of T, lies inside the the parabolic
region T° = ao + b with a,b > 0 where a complex number N = ¢ + ir.

Proof. We follow very closely the proof of Theorem 4.14 of [1]
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first recalling the definition of the operators S, L and PN, «2(S) =
{[u, #] : we Z(G)} and Slu, #] = [—4u, @#,] for [u, #]e F(S). L and
P(\) have all of LA(G)PL6G) as domains and E[ f, 91=10, Lg), PO)|.f, 9]=
[ f, 0]. It was shown in [1] that when A is such that

(3.10.1) (LS — POIIlw, al, [u, @l) | > [[ L[|l {u, @] |I*,

then zero is in the resolvent set of S — L — P(\), and, moreover, for
[u, @] e Z(S)

(3.10.2) (IS — L — P(Iw, @, lu, @) | = KOVl Lw, @],

where K(\) is a positive number.
But for [u, #]e = (S)

(IS — L — PO, @, [w, @) = | 7| — N w (P — (L, @),
and for we o2 (T),)

(T, — Nu, w) = [[Fu (P — Mlwlf — (LK, @), .
Thus if (3.10.2) holds for some K()\), then for the same K(\)
(T, = Du, w) | =z KW ulf, wez(T).

It only remains to determine conditions on X\ such that (8.10.1) is
valid. At this point we may proceed exactly as was done in [1} and we
arrive at the same conclusions,

4. Regions with unbounded boundaries. As wasg remarked in the
introduction we shall restrict L to be multiplication by a bounded
measurable function. We shall then use a result of Poulsen [11] to obtain
most of the results of the preceding section.

4.1. DEFINITION. The operator M,, when L is the zero operator,
will be denoted by N. N is the operator corresponding to the Neumann
boundary condition.

4.2 THEOREM. Suppose @< CyY (E™) 1s real valued and such that
(o], |[Fwl, and |dw| are all uniformly bounded on G by say K. Then
tf we 2(N) and ve (M) (M.,)), if follows that wv also in
G (MNZ (M,)).

Proof. Let B, be a sphere with center at the origin and radius
N so large that it containg the support of ® in the interior. 2 = G N By
and observe that as in the proof of Theorem 3.5, it suffices to show that
for all we C}(E™)
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(4.2.1) (u, 4(wv)) = B(u, wv)

The proof is almost identical to that of Theorem 3.5. We observe
first that if the support of w is contained in G we may simply apply
Green’s formulas. If the support of w N @G is not empty we follow
the arguments of Theorem 3.5. Note that since w € & (N) and u € CHE™)
we find that (u, v(—4w)) = g V(uv)«VFodx .

a

Following the computations in the proof of Theorem 3.5 yields (4.2.1).
The proof for M;* is almost identical.

4.3. LEMMA. (Poulsen [11]). Let G be a wuniformly C° domain
and let 0 be any point in 0G. There exist neighborhoods A, and A, of
"0 with compact closures such that A, S A, Moreover, there exists a
real valued function we CHE™) such that » is identically 1 in G N A,
and vanishes in G N A;. Moreover, we <7 (N) and |w|, |Vw|, and
[ dw | are uniformly bounded on G.

4.4. DEFINITION. Let <7 (T;) be the set of those functions in Z|(G)

for which %, — L% = 0 on every compact subset of 8G. For ue & (T,)
let T)u = — du.

4,5, LEMMA. T, M, and T,, S M,,.

Proof. As usual we note that it suffices to show that for every
we CHE™), (u, —4v) = Byu, v).

We give the proof for T,, the proof for 7T,, being similar. We
note that G need only be a C'! manifold for this proof. As usual let
B, be a sphere with center at the origin and with radius N sufficiently
large that for a fixed ue C}(E™), support of u is contained in B,. Let
Q2 =By N G. Then

gau(—ﬁ)dx = Sgu(—zﬁ)dx = SQVu-Wdac — S AT, d0

oI

:S P~ Fods — S av.de

20NdG
:S Vu-V—vdx—S w5.de .
G
Since w was arbitrary in C;'(E™) the result follows.

Referring to Definition 1.2, let V, be one of the covering neigh-

borhoods so that TV, N G) =1 x {0 <z, < r}. Now let S, S,, and S,
be three C*® manifolds such that

S, 240 x {0 <z, <72}
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S, 28,
S, 28,
F><{0<xn<r}g§3.

Let A, = T7%(S;) for + =1,2,3 and observe that [J,A;. contains
an 7/2 neighborhood of 8G. Now let w be the function of Lemma 4.3
with A,, and A,, playing the roles of A, and A,.

Let 04,, N 0G =TI, and I', = 0A,, ~ I,.

We define an operator on 94,, by

JLf(Q) for 0e ",

L (6) = [0 for 0erl’, .

Let M, T, be the operator corresponding to L, and A, as M, and T,
correspond to L and G. Then

4.6. LEMMA. Letve (M) =2 (M,,)), then wve o (M) = (M,*))

Proof. The proof is almost identical to that of Theorem 4.2. By
wv we mean of course wv restricted to A,,.

Now A, is a bounded C° manifold and thus by Lemma 3.8, M, =
T,, and Mz = Tpx. Thus wv is in < (T;). Hence on [, (®v), —
L(wv) = 0. Thus in particular on 8G N 04,,, ¥, — L¥ = 0, since here ®
is identically one. Since UA,, covers an 7/2 neighborhood of 0G, it
follows that ¥, — L% = 0 on every compact subset of 8G. Combining
these facts with Lemma 4.5, we finally obtain

4,7. THEOREM. If G is a uniformly C*® manifold then T, = M, and
T,.,.=M,,. Thus (T)* = T,,.

The fact that T,, = M,, follows by using almost the same argument
as the above.
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