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ON CONFORMAL MAPPING OF NEARLY

CIRCULAR REGIONS

DIETER GAIER

Introduction* A Jordan curve C in the w-plane, starshaped with
respect to w — 0 and represented in polar coordinates by p(θ)eiΘ, will be
said to satisfy an ε-condition (ε ^ 0) if

( i ) p(θ) is absolutely continuous in <— π, + π)
(0.1) ,

(ii) J — (Θ) g ε for almost all θ in <— π, + π> .
I p

Sometimes the condition

(0.2) 1 ^ p(θ) ^ 1 + ε for all θ in < - π, + ττ>

will be added.
Let w = f(z) be the conformal mapping of \z\ < 1 to the interior

of C such that /(0) = 0, /'(0) > 0. Then one can ask : How " close " is
f(z) to the identity mapping zΊ This question has been studied by many
authors, notably Marchenko [3] and, more recently, by Warschawski
[9—14] and Specht [7]. For example, Marchenko stated :

THEOREM A. If C satisfies an ε-condition and also (0.2), then

(0.3) I f(z) — z\ < K ε (I # I < 1)

for a universal constant K.

Furthermore, estimates for Mp[f(z) — z] and Mp[f'(z) — 1] have been
given [9] where we write, for example,

11 f(z) -z\\p = Mp[f(z) - *] = j - M " I f{re*) - re* \ PdφV
lP

^ ΔΊZ Jo )

( p > 0 ; | s | = r < l ) .

In this connection, the theorem of M. Riesz [6] on conjugate harmonic
functions is of importance.

THEOREM B. Let f(z) = u(z) + iv(z) be regular in | z \ < 1 and
v(0) = 0, so that v(z) is a " normed conjugate" of u(z). Then for
every p > 1

(0.4) Mp[v(z)] ^ ApMp[u(z)] (I z \ = r < 1) ,

Received February 23, 1961. The preparation of this paper was supported in part by
the Office of Naval Research.

149



150 DIETER GAIER

where Ap is a constant that depends on p only one can take A2 = 1,
Ap ^2p(p ^ 2) and Ap> — Ap for p"1 + p'~λ = 1. / / £/̂ e right-hand
side of (0.4) is bounded in 0 ^ r < 1, ί/̂ ew f(reiφ) has radial boundary
values of class Lp almost everywhere and (0.4) holds for r — 1.

In this paper we would like to make a few remarks about March-
enko's theorem and about estimates for Mp[f\z) — 1]. First, we give
a new proof of Theorem A which we hope is slightly simpler than
Specht's [7] while giving only a slightly larger constant K. Next we
ask whether we could replace the condition (0.1.ii) by the assumption
of convexity of C and still get (0.3). A counter example is constructed
in 1.2. Then Specht's method of proof is used to give a localized version
of Theorem A, in which the ε-condition is fulfilled only for a part of C

In the second part of the paper we obtain new estimates for
Mp[f\z) — 1]. Their source is a sharp and best possible estimate for

[θ'(φ)]±pdφ where θ(φ) = arg f(eiφ). It avoids the restriction ε < 1 of
0

Warschawski [9] and gives all values of p for which Mp[θ'(φ)] < ω or
Mp[f'(z)] remains bounded for all r = | z \ < 1.

PART I

IΛ. New proof of Marchenko's theorem* While Specht's approach
to Theorem A depends on a suitable integral representation of θ(φ) — φ
([7], p. 187), and Warschawski's on an estimate of M2[f'(eίφ) — 1] ([9],
p. 566), our proof will depend on a sharp estimate of M2[θ'(φ) — 1].
We shall prove :

THEOREM 1. If the Jordan curve C satisfies an ε-condition and
also (0.2) for some ε ^ 0, then \f(z) — z | ^ K(ε) ε in | z \ <Ξ 1, where
K(ε) ^ 3.7 for all ε ^ 0 and lim K(ε) = i / l + π2β - 2.1.

e->o

Specht's proof yields another function K(ε) with K(ε) <£ 3.3 and
lim .K(ε) = y Ί + (2 log 2)2 — 1.7. The best possible bounds are not known.
€->0

In order to prove the theorem, we need the following

LEMMA. Let F(x) be absolutely continuous in <0, 2τr>, periodic
F(x) dx — 0, and assume F'(x) e L2(0, 2π). Then for

0

all x in <0,

(l.i)
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This lemma is also used in Friberg's thesis ([2], p. 14 ff). The

constant —^L cannot be improved as F(x) = — — — x + — (0 ^ x ^ 2π)
1/3 4 2 6

shows.

Proof. It suffices to estimate F(0). For that we expand F(x) in
its Fourier series F(x) = Σ ^ i (an cos wcc + δn sin nx) and get

I F(θ) I - I | χ I ̂  Σ K I " - ^ [
1 1 % 1

The first factor is at most [ Σ Γ ^ l + &1)]1/2 =
vaΓs equality, the second is ττ/i/6.

'(a) ||2, by Parse-

Proo/ o/ ίλe theorem. Putting /(β^) = ρ{θ) eίθ, θ = #(<?), we first
estimate | θ(φ) — >̂ | if β is assumed to be < 1. By the lemma, it is
sufficient to estimate \\θ'(φ) — 1||2. To do this, we note that log(/(z)/z) =
u(z) + iv(z) is regular in \z\ < ], continuous in \z\ ^ 1, and v(0) = 0
since /'(0) > 0, so that v is a normed conjugate of u : w = ίΓ[ι^]. On
I z I = 1 this gives

(1.2) θ(φ) ~φ = K[lθg p(θ(φ))l θ(φ + h) - (φ + h) - X[lθg p(θ(φ + h))]

and hence

h

By (0.1), for all φ and h > 0

I log p(Θ(φ + h)) — log p(θ(φ)) I =

and therefore

- h) - θ(φ) _ 1

- θ(ψ) I ,

(1.3)

(1.4)

Now we claim that

I 1 θ(φ + h)-~ θ{φ)

I! h
_ \\θ(φ

θ(φ + h)- θ(φ)

h

- θ(φ)

h

To show this,we write the left-hand side as

- Θ{Ψ) _ Ύ d J _ f»T
J 2π Jo L2π Jo L Λ. Λ.

T d

J

- 2
2πh Jo

- (φ + h)] - [θ(φ) h)dφ
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Since θ(φ) — φ is periodic with 2π, the last term is — 2, and (1.4) fol-
lows. Together with (1.3) we get || [θ(φ + h) - θ(φ)]lk - 1II2. ^ ε2/(l - ε2)
for all h > 0. But since C is rectifiable, θ(φ) is absolutely continuous
[5] and hence θ'(φ) exists almost everywhere, and Fatou's lemma yields
now for h -> 0

(1.5)
VI

This, incidentally, is a best possible estimate see Theorem 6.
Now we apply our lemma to F(φ) = θ(φ) — φ, the condition

F(φ)dφ — 0 following from (1.2), and we get for all φ
o

(1.6)

From this we obtain an estimate of | f(z) — z \. An elementary-
consideration gives

(1.7) \f(z) - z |2 g ε2 + (1 + ε)[θ(φ) - Ψγ on | z \ = 1

note that 1 ^ \f(eiψ)\ ^ 1 +e. Together with (1.6) we obtain

(1.8)

for I z I = 1 and hence, by the maximum principle, for \z\ ^ 1 this is
valid whenever ε < 1. For all ε ^ 20/27 the factor of ε is ^ 3.7 for
ε > 20/27 we have

\f(z)- | i

This proves K(e) ^ 3.7 for all ε ^ 0, and (1.8) gives lim€^oiί(ε) = τ/1 + π2/3.
Specht ([7], p. 188) obtains | θ(φ) - φ \ ^ ε(2 log 2 + ε). Combining

t h i s f o r ε ^ 0 . 9 w i t h \f(z) - z \ ^ ε + \ θ{φ) - φ \ ( \ z \ = l ) a n d t a k i n g
\f(z) - z\ ^2 + e ίov e> 0.9, one obtains K(ε) ^ 3.3 for all ε > 0 for
ε-+0 use (1.7).

1.2. Convex regions* Our next problem is to decide whether
Marchenko's theorem remains valid if the condition | ρfjp | ^ ε is replaced
by the convexity of C To study a suitable counter example, it will be
convenient to use the following localization theorem.

1 This also follows directly from | | θ ' | | 2 ^ (1 - ε 2 )- 1 / 2 ([8], p. 26) and \\θ' - l\\\ = | | θ ' | | 2 - 1,

but we wanted to give an independent proof of (1.5).
2 The application of Warschawski's inequality ([8], p. 18) would have given a slightly

larger bound for K in Theorem 1.
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THEOREM 2. Let C: p(θ)eiθ be a Jordan curve, starshaped with
respect to w = 0 and contained in 1 ^ | w | ^ 1 + ε, and let τv = f(z)
with /(0) = 0, /'(0) > 0 map \ z | < 1 conformally to the interior of C
pwfc 0(<p) = arg f(eίφ).

Then to every δ, 0 < δ < π, corresponds a constant D — D(S) such
that

(1.9) dί < D ε
2

for all φ, the integral being a Cauchy principal value.

Proof. Since θ(φ) — φ is a normed conjugate of log p{θ{φ)) (see
(1.2)), we have

θ(φ) — φ — log P(θ(t)) Ctg - dt = + +

In the last term | ctg [(φ — ί)/2] | is bounded by ctg [δ/2] while 0 ^ log
ρ(θ(t)) ^ ε. This proves (1.9) with D(S) = ctg [δ/2].

Furthermore, we shall use another theorem of Marchenko ([3], p.
289) which, in the generalization by Warschawski ([10], p. 343), reads
as follows. Let R be a simply connected region containing w = 0 whose
boundary is contained in 1 ^\w\ ^1 + ε. Let λ be such that any
two points in R with distance < ε may be connected in R by an arc
of diameter < λ. If f(z) is the normalized mapping of \ z j < 1 to Ry

then

(1.10) |/(2) - z I g Me I log ε | + MXX

for two absolute constants M and Mγ. Ferrand ([1], p. 133) states
without proof that one can take M = 1/π as the best possible con-
stant note that in her paper the boundary is assumed to be in
1 — ε ^ \w\ ^ 1 + ε.-Obviously λ ^ 3ε if R is starshaped with respect
to w = 0.

Now we shall study the following family of conformal maps. Let
the Jordan curve C = C(ε)(0 < ε < 1/2) be defined as follows :

\w\ = l if — π g arg w ^ 0 ,

w I = 1 + ε if 0 < θ2 ^ arg w ^ — + K, where 0 < fc < — and
Δi £A

sin tc — 1/(1 + ε) ,

and where these two circular arcs are connected by straight line seg-
ments. The angle θ2 will also depend on ε and is subject to
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(1.11) θ2 -» 0 and
ε I log ε

+ 00 (ε -* 0) .

Let w = /(z) map | z | < 1 to the interior of C with /(0) = 0, /(0) > 0
and let

By (1.10) we have for all φ and ε

(1.12) -?> I rg M ε | l o g ε | + O(ε) ,

in particular ^ -> 0, <p2 -> 0(ε -• 0). We therefore get from Theorem 2

0(6)

i = -±- Γ / log p(θ(t)) ctg ^ i dt + O(e) ,
2ττ J-ίτ/2 2

ctg dt + O(e)
Δ7Γ

note that p(θ(t)) = 1 for ί in < π/2, <px > . The last integral is equal
to

log(l + ε) = 2\ log(φ2 -φd O(ε) .

Here we have by (1.11) and (1.12)

Ψ% - <Pi = ft - ft + O(ε I log ε I) =

so that altogether we obtain

(1.13)

- ft)(l + o(l)) - ft(l + o(l)) ,

Before we specialize (1.13), we remark that for the regions consid-
ered here

(1.14) \Az)-z

We have namely on | z | = 1

(z = e«) .

{\f{z)\ -

By (1.12), I θ{φ) - φ\ = O(ε \logε |) and (1.14) follows.

We now make two special choices of θ2 = Θ2{ε), always subject to
(1.11). For our first choice Θ3(ε) = ε | log ε |2 we obtain from (1.13) and
(1.14)
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[/(*) - z I ̂  fe I l ϋ ^ fe I (l + o(l)) (s - β^ ε -> 0) .

77ms we proved that the best constant M in (1.10) m%sί satisfy M^ 1/π,
in agreement with Ferrand.

Next we choose θ2 such that 1 = (1 + ε) cos θ2, which makes C(ε)
convex. If we insert θ2 — τ/2ε + O(ε) in (1.13), we obtain

ε I logs I n ± Λ ί 1 ^ / _ e m . ε _ ^ 0 )

2ττ

THEOREM 3. // C(ε) is the family of convex curves defined by cos
Θ2{ε) = [1/1 + ε], we have

max |/(2) - z I ^ ε | I o g ε | (1 + o(l)) (ε - 0) .
M i 2 π

/^ particular, Theorem A does not hold if the condition \ p'{θ)lp{θ) \ ̂  ε
is replaced by the convexity of C.

L3 Localization of the theorem of Marchenko In I . I we have
seen that Theorem A can be proved with a quite satisfactory constant
K by a " global" method, a method involving means rather than the
function itself. Nevertheless, Specht's proof of Theorem A, directly
aiming at \θ{φ) — <p\, has besides giving a slightly better constant the
advantage of being useful to obtain a localization of Theorem A, where

[pΊp] I ^ ε is known only for a part of C.
We begin with the following localization of Specht's representation

theorem ([7], p. 187).

THEOREM 4. Let C : p(θ)eiθ be a Jordan curve, starshaped with
respect to w — 0 which satisfies :

( i ) 1 S p(θ) g 1 + ε for all θ and some ε > 0
(ii) p(θ) has bounded difference quotients for θ in (a, by.

Then to every δ > 0 corresponds an ε0 = εo(δ) > 0 and a constant N(S)
such that for ε < ε0 we have

(1.15)
7ϋ

,-„ w -sm
p'(θ)

p(θ)
dθ S N(8) ε ,

for all ψ in (a + S, b — 8} for which θ'{φ) and p'{θ{φ)) exist and
θ'(ψ) ψ 0, i.e. for almost all φ in <α + δ, b — δ)>.

Here t = t(θ) is the inverse function of θ(t), and the integral exists
as a Lebesgue integral.
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Proof. For our fixed δ > 0, choose εo(δ) such that a = θ~\a) and
β = θ-\b) satisfy | a ~ a | < δ/2, | β - b | < δ/2 this is asserted by
(1.10) or (1.12) as soon as ε < ε0. Then we can write

θ{φ) -φ = -±- \Ψ+[\0g P(θ(t)) - log P(θ(φ))] ctg ̂ = 1 * dt

^ dt + O(e);
Δ

compare Theorem 2. Now one applies partial integration to the inte-
gral as in Specht's proof, and (1.15) follows.

Now we can prove the following localization of Theorem A.

THEOREM 5. Let C : p(θ)eiθ be a rectifiable Jordan curve, star shaped
with respect to w — 0 which satisfies

( i ) 1 ^ ρ(θ) g 1 + ε for all θ and some ε ^ 0,
(ii) I ρ{θ + τ) - p(θ) I ̂  ρ(θ) \τ\ε for all θ in <α, 6> and all real τ.

Then to every δ > 0 corresponds a constant iΓ2(δ) such that

(1.16) \f(z)-z\^ Kλ(8) - ε for z = eiφ, φ in <a + δ, b - δ> .

Proof. It suffices to prove this for small ε. Condition (ii) implies
that we can estimate the integral term in (1.15) by

(1.17) •M'log Irin * < * > - *
π Ja \ 2

dθ
π

^ ε(2 log 2 + ε)

sin
t-φ θ\t)dt

(see [7], p. 188). Hence | θ(φ) - ψ \ g K2(8) . ε for almost all φ in
<α + δ, b — δ>. By continuity, this holds for all φ in <α + δ, 6 — δ>,
and (1.16) follows.

REMARK. By a simple approximation argument it is seen that the
rectifiability of C, needed for the last inequality in (1.17), is not neces-
sary for the validity of Theorem 5.

PART II

II* 1. Sharp estimates for the means of θ\φ). Our aim is now to
give an estimate for Mp[f'(z) — 1] if C satisfies an ε-condition. As a
first step we prove the following

THEOREM 6. Let C : p{θ)eiθ be a Jordan curve, starshaped with
respect to w = 0, which satisfies an ε-condition for some ε § 0, and
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let w = f(z) with /(0) = 0 map \ z | < 1 conformally to the interior of
C. Then θ(φ) = arg f(e%φ) satisfies

(2.1) \iK\θf(φ)]±pdφ < co if 0 rg p < o

 Γ\ .

Jo 2 arctg ε

More precisely, we have

(eos arctg ε)» i f χ ^ p < π[θ'(φ)]p dφ cos(p arctg ε) 2 arctg ε

/o q\ J~ \ i /V/_\I_~D Λ^ ^ -*

27Γ Jo (cos arctg ε)p cos(p arctg ε)

if Og
2 arctg ε

Moreover, the bounds in (2.2) omcί (2.3), as well as the upper bound
for p in (2.1), are best possible.

REMARKS, a. It easily follows from F. Riesz's theorem ([5], p. 95),
that not only θ = θ(φ) but also its inverse φ = φ{θ) is an absolutely
continuous and monotonically increasing function, whenever C satisfies
an ε-condition for some ε Ξ> 0. The substitution φ — φ(θ) in (2.1) is
therefore permissible3 and gives

if 0 ύ P πλ \[θ(φψ>dφ - -i- Γ [ 9 W ] ^ if 0 ύ P < 9 f ,
2π Jo 27Γ Jo 2 arctg ε

so that (2.2) and (2.3) contain also estimates for the means of φ\θ).
In particular, since π/(2 arctg ε) > 1, (2.3) is always applicable for p = l,
and we obtain that φ\θ) e L2 whenever C satisfies an ε-condition for
some ε ^ 0. (For θ'(φ)e L2 we need ε < 1.)

b. For p = 2 the bounds in (2.2) and (2.3) become (1 — ε2)"1 (see

18], p. 26) and (1 + ε2)7(l - ε2).

Proof. We begin with three preliminary remarks. First, we have
\p'{θ)lp(θ)\ ^ ε for all θ, for which p'{θ) exists. For by (0.1)

I log p(θ + h ) - log p(θ) i = i J β ^ d ί

for all 0 and h Φ 0 this implies our proposition.
4 See C. Caratheodory, Vorlesungen uber reelze Funktionen, Leipzig und Berlin, 1927,

pages 563 and 556.
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Next, since C is rectifiable, we know by F. Riesz's theorem ([5],
p. 95 see also [16], p. 157 ff.) that

( i ) f(eiφ) is absolutely continuous, so that [df(eiφ)ldeiφ] exists almost
everywhere and is integrable furthermore

(ii) ff(z)eHu i.e. ^*\f'(rei<p) \ dφ ^ A < oo for all r < 1.
Jo

We claim that

(2.4) / '(re*) -> M£H as r -> 1, for almost all φ .
deιφ

To prove this, let f\reiψ) -> h(eiφ)(r -> 1, almost all φ), so that by (ii)

h{eiφ) is integrable and P | f\rexφ) - h{eiφ) \ dφ -> 0(r -> 1). Therefore, for
Jo

any fixed φ0,

h{eiφ)ίeiφdφ = r [f'(retφ) - h(eiφ)]ieiφdφ -> 0 (r -> 1)

o Jo

that is

S <PO
h{eiφ)ieiφdφ .

o

Differentiation yields [df(eiφ)ldeτφ] = h(eίφ) almost everywhere, which is
(2.4). From now on we shall put [df(eίφ)ldeiφ] = f\eτφ) whenever this
exists.

Finally, since / ; e Hx and / ' ^ 0, one knows (see, e.g., [4], p. 56)
that f\eiφ) vanishes only on a null set.

To start the proof of theorem, let M be the set of all φ in <Ό, 2π>
for which (i) f'(eiφ) exists and is Φ 0 and (ii) \\mr^f\τeiφ) =f'(eiφ) by
our above remarks, M is of measure 2π.

We consider now the function g(z) = zf'(z)lf(z)9 regular and Φ 0
in I z I < 1, #(0) = 1, and put

F(z) = log g(z) = log I g{z) \ + i arg g(z) = u(z) + iv(z) ,

which is regular in | z \ < 1 and vanishes at 2 = 0. We study u(z), v(z)

foy \z I -> 1.

( a ) Since

(2.5) Z-ψ- = \l - i P^Ά} Θ\Ψ) (z = β* ?> 6 i f )
/(Z) I P(θ(φ)V

we have θ'(φ) Φ 0(φ e M) and furthermore

I g{rei<f)
COB
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where β{θ) denotes the angle between arg w — θ and the normal to C
at (ρ(θ), θ). Hence

u(re^) -> log Θ'&J = u(e*) (r -» 1, φ e M) .

COS β{θ(φ))

(b) On the other hand we have for v(z)

v(re
ίφ
) = arg g(re

tφ
) -> arg f'(e

iφ
) + φ - arg /(β*)

- β(θ(φ)) = v(e*) (r -> 1, 9> e M ) .

In particular, β(θ) exists for θ =θ(φ), φeM, and hence by our first
remark \β(θ(φ))\ ^ arctg ε(φeM).

( c ) This implies that \v(reίφ)\ ^ arctgε for r < 1. For v(reίφ) is
harmonic in r < 1 and clearly represents the angle between arg w = θ
and the normal to the level curve corresponding to | z \ = r, which is
again starshaped. Thus | v(reiφ) \ < π/2, and ^(rβίςί)) can therefore be
represented by its Poisson integral in r < 1. Since the boundary values
are ^ arctg ε, also | v(reίφ) | ^ arctg ε(r < 1).

For the main part of the proof, we apply a method of Zygmund
([15], p. 286). Let p > 0 and consider

1 f p±pF{z) 1 f

(2.6) 1 - e±1)Fi0) = — dz = —
2 7 r i Ji2i-» <i 2: 2τzτ J u ι = * <

By (c) and our assumption on p, we have | pv(z) \ ^ p arctg ε < π/2, so
that the integrand in the last integral is positive for all r < 1 and φ.
Recalling (a) and (b), an application of Fatou's lemma yields

J L \ e±pu{eiφ)cos[pv(eiφ)]dφ g 1

that is

(2.7) - L ί [θ>{φ)]±* ™s[pβ(θ(φ))] d

Now we note that | β(θ(φ)) \ ^ arctg e(φ G M), and the fact that

c o s ^ is monotonically d e c r e a s i n ^ i n ° ^ x < πl2P i f P > 1

( c o s χ)P increasing in 0 ^ x < π/2 if 0 < p < 1 .

This proves our estimates (2.2) and (2.3)
We now show that our bounds are best possible. More precisely :

For every ε ^ 0 and for every p with 0 ^ p < π[(2 arctg ε), there exists
a curve C such that Theorem 6 holds with equality in (2.2) and (2.3),
respectively.

F o r ε = 0, a n d for ε > 0, O g p ^ l i n (2.2), w e s i m p l y l e t C b e
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\w\ = l, θ\φ) Ξ= 1. For ε > 0 and the other two cases in (2.2) and (2.3)
we consider the curve C : p(θ) = βεlθ!(| θ |) ^ π), which is composed of two
pieces of logarithmic spirals that meet in w = 1 and w = —esπ. Let
f(z) be such that /(I) - 1 and / ( - 1) = - e2π.

We claim that for this mapping we have equality in (2.7) whenever
0 ^ p < πl(2 arctg ε). Since tg β(θ(φ)) = ± ε for all φ Φ 0, π, this would
immediately give equality in (2.2) and (2.3).

To prove equality in (2.7), we study the behaviour of f'(z) in | z \ < 1.
The curve C is composed of two analytic arcs meeting at angles aλπ
and a2π with aλ = 1 + [2/π] arctg ε and a2 = 1 — [2/π] arctg ε. By a
theorem of Warschawski ([13], p. 835), we have therefore

(2.8) f'(z)(z - l)-«/*>««tgβ ^ (7χ ̂  o(« -• 1)

and f'(z)(z +i)+w«*** -> Ca =̂ 0(z -> - 1) ,

for unrestricted approach within | z \ < 1. Thus,

f'(z)(z + i)«/«)^»« and L / ' ^ ) ] - 1 ^ -l)»/*>*rct«*

are continuous in | z • | g 1, and we have for re ί ί P, 0 ^ r < 1, 0 < | ^ | < 7 Γ ,

e*) I < —— and \f(rei(f>) h 1 < c o n s t

ι ι ( 2 / 7 r ) a r C t g ε

Therefore, if 2p arctg ε < π, exp {± pu(rei<p)} = | give*) \±p is bounded
by an integrable function, uniformly for all r in 0 ^ r < 1, so that
Lebesgue's convergence theorem can be applied to (2.6) for r -> 1, giv-
ing equality in (2.7).

Finally, also the bound on p is best possible. For this we simply
note that by (2.5) and (2.8)

[θ'iφ)]-1] φ |+»/*> arc* β ̂  Dτ > o near φ = 0

and θ\φ) *(π-\φ [)+»/*) amge ^ 2)a > 0

near <p = TΓ, SO that for p = π/(2 arctg ε) the functions
are not integrable.

COROLLARY. Under the assumptions of Theorem 6, we have for
0 S r < 1

(2.9) -±- Γ V ' ( r β ^ | * ^ <£ m X W l i P . / 0 ̂  p
2ττ J cos (p arctg ε)

Γ V ( r β ^ | ^ £ . / 0 ̂  p < .
2ττ Jo cos (p arctg ε) 2 arctg ε

For p — π/(2 arctg ε), the left-hand side need not be uniformly bounded
in 0 ^ r < 1.

4 See also a similar estimate for smooth curves ([11], p. 254).
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For the proof we note that by (2.6)

\±p cos [p v(z)] dφ .

Recalling | p v(z) | ^ p arctg ε and that \zjf(z)\±p assumes its minimum
for \z\ = 1, we arrive at (2.9).

II. 2. An estimate for Mp[f'(z) — 1]. Theorem 6 enables us to
derive an estimate for the mean of f\z) — 1, which is small for small ε.

THEOREM 7. Let C: ρ(θ)eiθ be a Jordan curve, star shaped with
respect to w = 0, which satisfies an ε-condition and which lies in the
ring 1 g | w | ^ 1 + ε for some ε ^ 0. Let w = f(z) with /(0) — 0,
/'(0) > 0 map I z | < 1 conformally to the interior of C. Then we have
for all r with 0 ^ r < l

(2.10) Mp[f'(re») - 1] S {(1 + ε) C^S a r c ^ g s + βε}(l + Ap) . ε
I [cos (p arctg ε)]1/2> J

2 arctg ε '

where Ap denotes the constant in Riesz's Theorem B. The upper bound
for p is best possible5.

This improves a theorem of Warschawski ([9], p. 566) with respect
to the restrictions on ε and p.

Proof. We first estimate Mp[{zf\z)lf(z)} - 1] (see [9], p. 565) and
write by (2.5)

_ l = (β\φ) - l ) - i Ά θ > { φ ) {z = β *) .l (β\φ) l ) i

Since the left-hand side vanishes at z = 0, Riesz's theorem gives

Mp[θ'(φ) - 1) <> APMP [ ^ ^ Θ\Ψ)\ ^ ApMp[θ'(φ)] β .

With (2.2) and Minkowski's inequality we obtain

(2.11) ^YΨiX? ~ A=

arctg ε
[cos (p arctg ε)]1/2ϊ

5 For 0<p^l an estimate can be obtained by an application of Holder's inequality.
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Next, we use the estimate

M,[f'(z) - 1] ^ (1 + e)M,\2ξ& - l l + MP\M. - l l (\z\ =
L /(z) J L z J

where the last term is ^ (1 + Ap)e2 e see [9], p. 564-566. Combining
this with (2.11) and using the monotonicity of Mp[{zf'(z)lf(z)} — 1] with
respect to r, we arrive at (2.10).

For p = 7r/(2 arctg ε), Mp[f\reiφ) — 1] need not be uniformly bound-
ed in 0 ^ r < 1. To see this, one has to modify our example in II. 1
slightly in an obvious way so that it satisfies also 1 ^ p{θ) ̂  1 + ε
note that only the angle πa2 is of importance.
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