A NOTE ON WEAK SEQUENTIAL CONVERGENCE

RALPH DAVID MCWILLIAMS
A NOTE ON WEAK SEQUENTIAL CONVERGENCE

R. D. McWilliams

Let X be a real Banach space, J_X the canonical mapping from X into X^{**}, and $K(X)$ the set of all elements F in X^{**} which are X^*-limits of sequences in $J_X X$. Thus $F \in K(X)$ if and only if there exists a sequence $\{x_n\}$ in X such that

\[(1.1) \quad F(f) = \lim_{n} f(x_n)\]

for all $f \in X^*$. While the closure of $J_X X$ in the X^*-topology is X^{**} [4, p. 229], it is not true in general that $K(X) = X^{**}$. By using properties of the space of continuous real functions defined on a real interval, we shall prove that the subspace $K(X)$ is norm-closed in X^{**}.

2. If x is a bounded real function defined on a closed interval $[a, b]$, let $\|x\| = \sup \{|x(s)| : a \leq s \leq b\}$. If x is a bounded Baire function of the first class, then there exists a sequence $\{x_n\} \subset C[a, b]$ such that $x(s) = \lim_{n} x_n(s)$ for all $s \in [a, b]$ and $\|x_n\| = \|x\|$ for all n [2, p. 138]. However, if a bounded function x is the pointwise limit of an unbounded sequence of elements of a subspace X of C, then it is not necessarily true that x is the pointwise limit of a bounded sequence in X.

Lemma 1. Let X be a subspace of C, and let x be a real function which is the pointwise limit of a bounded sequence in X. Then there exists a sequence $\{x_n\}$ in X such that x is the pointwise limit of $\{x_n\}$ and $\|x_n\| = \|x\|$ for all n.

Proof. If $\{y_n\}$ is a sequence in X which converges pointwise to x, with $\sup_n \|y_n\| = M < \infty$, let continuous functions $\varphi, \varphi_1, \varphi_2, \cdots$ be defined by

\[\varphi(s) = \|x\|, \quad \varphi_n(s) = \max(y_n(s), \|x\|)\]

for all $s \in [a, b]$. Then $\{\varphi_n\}$ converges to φ in the C^*-topology of C [1, p. 224], and hence [3, p. 36] for each positive integer n there exist nonnegative numbers a_{n1}, \cdots, a_{nk_n} such that

\[(2.2) \quad \sum_{k=1}^{k_n} a_{nk} = 1, \quad \left\| \sum_{k=1}^{k_n} a_{nk} \varphi_{n+k} - \varphi \right\| < n^{-1}.\]

Define $\{z_n\} \subset X$ by

\[(2.3) \quad z_n = \sum_{k=1}^{k_n} a_{nk} y_{n+k}.\]

Received February 2, 1961.
Then \(\{z_n\} \) converges pointwise to \(x \), and
\[-M \leq z_n(s) \leq \|x\| + n^{-1} \]
for each \(n \).

If a sequence \(\{\psi_n\} \) is now defined in \(\mathcal{C} \) by \(\psi_n = \min(z_n, -\varphi) \), an argument like that used with \(\{\varphi_n\} \) shows that there exist, for each \(n \), nonnegative numbers \(b_{n_1}, \ldots, b_{n_{j_n}} \) such that
\[
\sum_{j=1}^{j_n} b_{n_j} = 1, \quad \left\| \sum_{j=1}^{j_n} b_{n_j} \psi_{n + j} + \varphi \right\| < n^{-1}.
\]

If \(\{u_n\} \subset X \) is defined by
\[
u_n = \sum_{j=1}^{j_n} b_{n_j} z_{n+j},
\]
then \(x \) is the pointwise limit of \(\{u_n\} \), and \(\|u_n\| \to \|x\| \) as \(n \to \infty \). Since it may be assumed that \(\|u_n\| \neq 0 \) for each \(n \), the desired sequence \(\{x_n\} \) is obtained by defining \(x_n = (\|x\|/\|u_n\|) \) \(u_n \).

3. The conjugate space \(\mathcal{C}^* \) of \(\mathcal{C} \) is equivalent with the space of all finite regular signed Borel measures on \([a, b] \), under a mapping \(U \) such that if \(f \in \mathcal{C}^* \) and \(\mu_f = Uf \), then
\[
f(x) = \int_a^b xd\mu_f
\]
for all \(x \in \mathcal{C} \) [4, p. 397]. It follows that if \(X \) is a closed subspace of \(\mathcal{C} \) and \(F \in X^{**} \), then \(F \in K(X) \) if and only if there exists a bounded, pointwise-convergent sequence \(\{y_n\} \) in \(X \) with the property that
\[
F(f \mid X) = \int_a^b (\lim y_n) d\mu_f
\]
for all \(f \in \mathcal{C}^* \).

Lemma 2. If \(X \) is a real Banach space and \(F \in K(X) \), then there exists a sequence \(\{x_n\} \) in \(X \) such that \(F \) is the \(X^* \)-limit of \(\{J_x x_n\} \) and \(\|x_n\| = \|F\| \) for all \(n \).

Proof. Case 1. If \(X \) is a closed subspace of \(\mathcal{C} \) and \(F \in K(X) \), there must be a bounded, pointwise-convergent sequence \(\{y_n\} \subset X \) such that (3.2) holds for all \(f \in \mathcal{C}^* \). If \(x(s) = \lim y_n(s) \) for \(a \leq s \leq b \), then by Lemma 1 there exists a sequence \(\{x_n\} \) in \(X \) such that \(x \) is the pointwise limit of \(\{x_n\} \) and \(\|x_n\| = \|x\| \) for all \(n \). Thus \(F \) is the \(X^* \)-limit of \(\{J_x x_n\} \) and it is easily verified that \(\|F\| = \|x_n\| \) for each \(n \).

Case 2. If \(X \) is an arbitrary real Banach space and \(F \in K(X) \), then there is a sequence \(\{y_n\} \) in \(X \) such that \(F \) is the \(X^* \)-limit of \(\{J_x y_n\} \). If \(Y \) is the closed subspace of \(X \) generated by \(\{y_n\} \), we can define
\(G \in Y^{**} \) by

\[
(3.3) \quad G(f|Y) = F(f) \text{ for all } f \in X^*,
\]

and this definition is unambiguous since \(F \) is the \(X^* \)-limit of a sequence in \(J_X Y \). It is easy to verify that \(G \in K(Y) \) and \(||G|| = ||F|| \). Since \(Y \) is separable, \(Y \) is equivalent with a closed subspace of \(\mathcal{C} \) [1, p. 185], and hence by Case 1, there is a sequence \(\{x_n\} \) in \(Y \) such that \(G \) is the \(Y^* \)-limit of \(\{J_Y x_n\} \) and \(||x_n|| = ||G|| = ||F|| \) for all \(n \). Finally, if \(f \in X^* \), then

\[
(3.4) \quad F(f) = G(f|Y) = \lim_n f(x_n)
\]

so \(F \) is the \(X^* \)-limit of \(\{J_X x_n\} \), and the lemma is proved.

4. Theorem. If \(X \) is a real Banach space, then \(K(X) \) is norm-closed in \(X^{**} \).

Proof. If \(F \in \overline{K(X)} \), then there is a sequence \(\{F_n\} \) in \(K(X) \) such that \(F_n \to F \) in norm, and \(||F_n - F_{n-1}|| < 2^{-n} \) for each \(n > 1 \). If we let \(F_0 = 0 \), then by Lemma 2 there exists, for each \(n \geq 1 \), a sequence \(\{x_{nk}\} \) in \(X \) such that \(||x_{nk}|| = ||F_n - F_{n-1}|| \) for all \(k \) and such that \(F_n - F_{n-1} \) is the \(X^* \)-limit of \(\{J_X x_{nk}\} \).

For each \(k \) the series \(\sum_{n=1}^{\infty} x_{nk} \) converges to an element \(x_k \in X \) such that

\[
\left| x_k - \sum_{n=1}^{j} x_{nk} \right| < 2^{-j} \text{ for each } j.
\]

Given \(0 \neq f \in X^* \) and \(\varepsilon > 0 \), there exist positive integers \(J \) and \(K \) such that \(2^{-j} < \varepsilon/(3||f||) \) and \(|F_J(f) - f(\sum_{n=1}^{J} x_{nk})| < \varepsilon/3 \) for all \(k \geq K \). Hence for \(k \geq K \),

\[
(4.1) \quad |F(f) - f(x_k)| \leq |(F - F_J)(f)| + |F_J(f) - f(\sum_{n=1}^{J} x_{nk})| + |f(\sum_{n=1}^{J} x_{nk} - x_k)| < \varepsilon,
\]

so that \(F \) is the \(X^* \)-limit of \(\{J_X x_k\} \).

REFERENCES

1. S. Banach, Théorie des opérations linéaires, Warsaw, 1932
2. C. Goffman, Real functions, New York, Rinehart, 1953.