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1. Introduction. Let G be a finite group, K a subgroup, and let
M and L be finite dimensional representations (over the complex numbers).
Then the Frobenius reciprocity theorem (abbreviated as FRT) can be
stated in two forms which are readily seen to be equivalent.

(1.) Let U* denote the induced representation of L on G and (M),
the restriction of M to K; then there is an isomorphism

v :Homg (L, (M)g) =~ Hom, (U*, M)

(2.) If L and M are irreducible, then U* contains M exactly as
many times as (M), contains L.

The first version is of course formally stronger if one specifies, as
is natural, that the isomorphism + be functoral.

It is natural to ask how this theorem can be generalized to the context
of locally compact groups. Both Mackey and Mautner have defined and
discussed the notion of induced representation in this context. Each
has formulated a version of the FRT for locally compact groups which
generalizes the theorem as stated in form (2) above; [3], [4], [5]. These
formulations, however, which use the direct integral decomposition theory,
no longer embody the FRT in form (1.) above. It is the purpose of this
note to show how one can obtain a version of the FRT which generalizes
the theorem in form (1.). The difference between the two versions can
conveniently be thought of as a distinction between a global formulation
as in (1.) and a local formulation as in (2.).

Concerning our notations, we shall follow a practice throughout and
use locally compact to abbreviate locally compact and separable and
unitary representation to abbreviate strongly continuous unitary repre-
sentation on a separable Hilbert space. The notation Homg (L, M) for
representations L and M of G will naturally denote the space of bounded
operators A from the space H(L) on which L acts to H(M) so that
AL, = M,A for all sin G. Concerning induced representations, we adopt
the notation of [2].

2. Statement of the theorem. Let G be a locally compact group
and K a closed subgroup. We shall assume throughout that G/K (right
cosets) possesses a measure £ invariant under the operation of G by
right translations on G/K. Such a measure exists if for instance G and
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K are unimodular, [7] §9; moreover, if ¢ exists then it is unique to
within a multiplicative constant, [7] §9. We shall now introduce a
notion of induced representation which is a slight modification of that
used by Mackey [2].

If L is a unitary representation of K on H(L), define a Banach
space H(V*) as the set of (classes of) weakly measurable functions from
G to H(L) so that

(1.) flw)=L,f(x) for zeG, ke K
(2) |, 7@ e = | < eo .

(The integral has sense since | f(kx)| = | f(x)] for k€ K). Then we define
(VHt = f(ts) for fe H(V?). It is evident that s — V¥ is a strongly
continuous representation of G by isometric operators on H(V*); moreover,
V% is determined up to isometric equivalence by L. The representation
V% is closely related to the unitary induced representation U? of Mackey.
In fact one can define U* using ¢ (in place of a finite quasi-invariant
measure on G/K); then H(U*) N H(V?) is dense in both of these spaces
and Uf = V} on this intersection. Thus U” and V* have a dense alge-
braic subrepresentation in common.

We come now to the statement of the theorem. Let M and L be
unitary representations of G and K respectively and B an operator in
Homy (L, (M)g). Then we define an operator y(B) from H(V*) to H(M)
by the formula

W(B)f = SGIK M Bf(s)dy  for fe H(VY.

The integral has sense since the integrand depends only on the coset of
s: MiBf(ks) = MM, .,BL,f(s) = M, M,_ M,Bf(s) = M,;Bf(s) for ke K.
The vector valued integral exists in the strong sense in virtue of [1],
Theorem 22, p. 117, and Theorem 11, p. 149, since the integrand is
clearly weakly measurable, and | M*Bf(s)| < | Bl f(s)| which is an L,
function on G/K. The last inequality shows that |(B)f| < | Bl f| so
that (B) is bounded of norm <= |B|. Finally it is evident that

J(B) € Hom, (VZ, M); for
MoB)f = Mi-Bf)p.

Putting v=st"! and using the invariance of g under right trans-
lations, we see that this integral becomes

SG/K MFBf(vt)dy = y(B)VEf .
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The version of the FRT then reads as follows.

THEOREM. The map + is an isomorphism of Homy (L, (M)g) onto
Hom, (V*, M). Moreover + is an isometry between these two Banach
spaces in their natural norms.

It is easy to see that a similar theorem with U* in place of V* is
false; that V% is the natural representation to consider here is further
enforced by the fact that the two spaces of commuting homomorphisms
are isomorphic in the strongest possible way, namely isometric.

3. Proof of the theorem. We fix a Borel cross section S of K in
G (cf. [2], Lemma 1.1). Then G/K ~ S and we view £ as a measure
on S. By restricting functions f € H(V*) to S, we obtain an isomorphism
of H(V*) with the Lebesgue space L.(S, ¢, H(L)). Then the operator
W(B) is represented as

VB = | C.r@dus); C. = MIB.

First if 4(B) = 0, then for v e H(L), g(s) e L\(S, ), g(s) - x € H(V*),
and we have

S 9(s)(C,xe, y)dp(s) = 0 for all ye H(M) .

Thus (C,x, y) =0 a.e. on S. By letting « and y range through countable
dense sets {x;} and {y,} in H(L) and H(M) respectively, we can find a
common # null set N in S so that (C,x;,y;) =0 for all4,7and s¢ N. It
follows from the continuity of (C.x,¥) in x and y that (C,x,y) = 0 if
s¢ N for all x and y. Now (C,—,2,y) = (M;*M,Bx, y) = (M,*BL,x, y) =
(C,L,x,y) =0 for ke K,s ¢ N. Then the complement K- N of K(S — N)
is a Haar null set in G([2], p. 103 ff.) and so (M,*Bz,y) =0 a.e. on G;
by continuity, it is zero everywhere on G. Therefore B=0 and + is
injective.

Suppose now that Ce Hom, (V% M); we show that C may be repre-
sented in the form +(B) with |B| = |C|. If xe H(L), define a linear
map C, from LS, p) to H(M) by C.(g) = C(9x). C, is bounded since
IC9)| =|Cllg-x|=|Cllwlgl, and its norm is <|C|lx|. We may
now apply Theorem 10, p. 507 of [1] to conclude the existence of an
essentially unique Borel function D(s, 2) on S to H(M) so that

C) = | F@D(s, 2)du(s)

and with ess sup|D(s,2)| = |Cllz|.
Let A be a subset of H(M) which is countable and dense and a
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vector space over the field Q1 —1) of complex numbers of the form
a + b with ¢ and b rational. Since each of the countable number of
relations D(s, ax) + D(s, By) = D(s,ax + By) and | D(s, xz)| = |z|| C| for
z,yc A and a,BeQ(V —1) fails to hold only on a g null set, it is
possible to find a null set N so that they all simultaneously subtend
for s¢ N. Then the mapx — D(x,s) uniquely extends to a bounded
linear map C(s) of H(L) to H(M) of norm less than or equal to | C| for
s¢é N. Now if we define C(s) =0 for se N, C(s)x = D(s, x) a.e. for
each x so that

C.(0) = | o&CERdus)
Finally, if ge Ly(S, ¢, H(M)),
Co) = | CEeE)dss)

since both sides represent bounded linear transformations into H(M)
which agree on the dense subspace of L.(S, ¢t, H(M)) consisting of sums
of functions of the form gx for xe H(L) and ge L(S, ¢). Moreover
the argument has shown that C(s) is essentially unique and that ess
sup|C(s)| = [ C|.

In virtue of the Borel isomorphism G ~ K x S we may write for
seS,teG,s -t = k(s, t)l(s, t) where k(s,t)e K, l(s, t) e L. Moreover both
k and [ are Borel functions on S x G. We shall also make use of the
fact that Haar measure on G is equivalent to v x ¢ where v is Harr
measure on K (cf. [2], p. 103 ff.). Now let us write C(s) = M,*B(s);
then

MCq = LM:B(sm(s)dy(s)

= | (7M. B&)g0)dp(o)
Also
(VErg)s = Ly .—n9(Us, t7))
so that
CVisg = | MIBELy, U, )i

In the second integral let v = I(s, t™); since vt = k(s, t™')"'s, we see that
k(s, t™) = k(v, )", and that s = l(v, t). Making these substitutions, and
using the invariance of ¢ under the transformation s— (s, ¢™*) of S
into S, we may write the second integral as
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S(Mzn,wBa(v, ) L. )9 .

We now equate the expressions for M,~Cg and VZE.Cg since
C e Hom, (VZ M) and use the uniqueness of such integral representations
as stated above to conclude that for almost all s

Mo B((s, £))Li,..y = M o M, ., B(s) .
Thus for each ¢
(%) B(l(s, t))Lis.y = M. B(s)

holds for almost all s. Now since k¥ and ! are Borel functions on S x
G, both sides of (*) are Borel functions on S x G with values in the
space of operators from H(L) to H(M) in the sense of the weak Borel
structure on the later space.

We may use the Fubini theorem to conclude that for almost all s
in S (in particular for some s,) (*) holds for almost all ¢ in G. Now
let us write t = s;'(k-v)ke€ K, v e S; then

k(so, si'(k-v) =k, U(sy, S5 (K- v)) = v .

Then by use of the equivalence of Haar measure on G with v x ¢ as
mentioned above and these substitutions,
(%) BW)Lf = M}B

So

holds for almost all pairs (k, )€ K x S. In particular, for some k, (%)
holds for almost all v, and we see immediately that B(v) is equal to a
constant, let us say B = M; B, L,, for almost all v in S. An argument
similar to the one just given shows that BL} = M/;}B for almost all

ke K, and since L, is weakly continuous in %, this holds for all ke K.
Then

Cg = | M:By)iu(s)

for some Be Homy (L, (M)H); ¥ is thus surjective. Finally, [y(B)| =
|C| = esssup | C(s)| = esssup | B(s)| = | B|. Since we have already provd
that [4(B)| | B], 4 is isometric and the proof of the theorem is complete.

REMARK. Formation of the representation VZ of G of course re-
moves one from the cozy abode of unitary representations. It would
be more natural if L and V* could be taken to be the same generic
type. In fact if L is only a representation of G by isometries on a
separable Banach space H(L), then representations V* (and UZ*) may be
defined analogously and these are representations of G by isometries on
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separable Banach spaces. If M is also such a representation, then it is
nearly immediate that our theorem remains valid provided only that we
assume that H(M) is reflexive or more generally is the dual of (separable)
Banach space. Such a condition is necessary to ensure the applicability
of the representation theorem (VI 8, 6. ff. [1]) which we have used.
The proof remains unchanged except to replace M,* and L; by M,-: and
L,-: respectively; also in case H(M) is the dual of X then the vector

valued integrals with values in H(M) which we have used must be taken
in the weak-(*) sense.

4. Relation to UZ. We may use this theorem to obtain information
about the unitary induced representation U* [2] in some special cases.
We shall assume that G/K admits a finite invariant measure £¢. Observe
that this condition need not imply that G/K is compact (cf., p. 27 [6];
the space G/I” considered here is not compact). In this case H(U*) S
H(V?*), and the embedding map is norm decreasing (assuming as we
may that @(G/K)=1). Therefore Hom, (V% M) may be viewed as a
subspace of Hom, (U*, M) consisting of these commuting transformations
which extend continuously to H(V*). If in addition the representation
M is finite dimensional, it is known, [2], Theorem 8.2 that an exact
generalization of form (2) of the FRT holds. This result may be easily
deduced with the help of the following.

PropPOSITION. If G/K has a finite invariant measure ( and M s
finite dimensional then Hom, (VE M) = Hom, (U%, M).

Proof. In virtue of the foregoing remarks, it is enough to show
that any CecHom,(U*, M) may be extended continuously to H(V?Z).
Since M is finite dimensional, this is possible if the linear functional
F—(Cf,y) can be extended continuously to H(VZ%) for each ye H(M).
The map C* € Homy(M, U*) has a finite dimensional range invariant under
Ut If f, «-+, f. is an orthonormal basis, then UZf; = D%, a;;(t) f; where
the a,;;(f) are bounded continuous functions on G. Thus for fixed ¢,

(*) fi(st) = 351 ;i) fi(s)

holds for almost all s. Using the Fubini theorem as before, we see that
there is some s, so that (*) holds for almost all t. It follows immediately
that each f; is equal almost everywhere to a bounded continuous function
on G, and thus f; is essentially bounded. Now if ye H(M), (Cf,y) =
(f, C*y) = (f, X b:f)) = SG/E(f(S), i1 bifi(s))de where >V, b.f; is es-
sentially bounded. It is then immediate that this formula defines the
desired continuous extension of (Cf, y) to H(V?).

Thus under the conditions of the Proposition, there is an isomorphism
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between Homg (L, (M),) and Hom, (U? M); this result immediately
implies the first part of Theorem 8.2 of [2]; namely, if L and M are
irreducible, and the hypotheses of the proposition are satisfied, then U*
contains M as many times as (M), contains L.
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