Pacific Journal of

Mathematics

A CONTINUITY PROPERTY FOR VECTOR VALUED
MEASURABLE FUNCTIONS




A CONTINUITY PROPERTY FOR VECTOR
VALUED MEASURABLE FUNCTIONS

R. B. DARST

1. Introduction. The principal purpose of this paper is to charac-
terize certain types of Banach spaces of vector valued and integrable
functions and their conjugate or adjoint spaces, and to apply these
characterizations to obtain an effective way of determining the adjoint
space of the Banach space R[a, b], where [a, b] is a real number interval,
Rla, b] is the space of Riemann integrable functions on [a, b], and for
feR[a,b],|If]l =sup[lf(x)];a =2 =<b]l. We use the term effective in
the sense that we want our determination of the adjoint space of R|a, b]
to enable us to probe deeper into its analytic structure in order to, say
for example, obtain a weak convergence and compactness theory.

We are interested in spaces of vector valued functions which arise
in the following manner. Let X be a set, B a Banach space, and f a
a vector valued function on X to B. We call f partitionable if for
each ¢ > 0, there exists a finite partition [E;4 <n] of X such that
max [0(f, E;); © = n] < &, where 0(f, E;) = sup [l|f(2) — F(W)[|; %, y € E}].
Hence, if S is an algebra of subsets of X and g is a bounded and
finitely additive set function on S, then the collection of bounded, B-
valued, partitionable, and g-measurable functions on X (defined in §2)
form a Banach space which we denote by m(X, S, g, B) (the norm of
the elements f of m(X, S, g, B) is sup|||f(x)|];x€ X]). The space
m(X, S, g, B) is the type of space we characterize and we do it by
isomorphically and isometrically embedding m(X, S, g, B) onto the space
C(X, T, B) of B-valued functions defined on X which are continuous
(Definition 2.4) with respect to an algebra T of subsets of X. The set
T is essentially the g-outer measure completion of S. Then we charac-
terize the adjoint space C*(X, T, B) of the space C(X, T, B) by embed-
ding C*(X, T, B) isomorphically and isometrically onto a space of bounded
B*-yalued finitely additive set functions on 7 (defined in § 3) and, con-
sequently, we can easily find the adjoint space m*(X, S, g, B). In the
case where B is the real number system (henceforth we shall denote by
% the real number system) we simply denote m(X, S, g, B) by m(X, S, g).
The space R[a, b] turns out to be a realization of this type of space
and it is by this method that we characterize R*|a, b].

The text of this paper consists of three sections. In § 2 we present
several definitions and introduce some notation and terminology. In §3
our principal results (Theorems 3.2, 3.3, and 3.4) give a characterization
of the spaces m(X, S, g, B), C*(X, S, B), and m*(X, S, g, B) respectively,
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and in §4 we treat the space R]a, b].
At this point we wish to remind the reader that if B is finite di-

mensional and f is a bounded B-valued function on X then f is par-
titionable.

2. Definitions, notation, and terminology. We shall use the no-
tation and terminology used in [1]. Hence, if (X, S) denotes a set
algebra, then H(X, S) denotes the Banach space of bounded and finitely
additive set functions on S, where the norm of the elements g of H(X, S)
is the total variation V(g, X) of g on X, i.e., if for the elements E of
S, we set g"(FE) = sup [g(F); FeS, FcC E] and g~ (E) = inf [¢g(F); Fe S,
Fc E], then V(g, E) =g"(E)— g (E) =sup [Zu. | 9(E) |; m = [E;; 1 = n]
is a partition of E and E;e S for 7 < n].

DerFINITION 2.1. If U is a set of subsets of X, then a partition =
of X is said to be a partition of X in U if each element of w© is an
element of U.

In this paper we use a definition of measurability which is for
bounded functions equivalent to the definition of measurability used in

[2].

DEFINITION 2.2. Suppose (X, S) is a set algebra, ge H(X, S), B is
a Banach space, and f is a function on X to B. Then f is said to be
a g-measurable function if for each P > 0 and ¢ > 0 there exists a finite
partition [E;;7 < n] of X in S such that

(1) max[0(f?, E);1 < n] < ¢ and

(2) Vg, E\) <¢, where f“(x) = f(z) if [|f(®)|| =P and f(z) =
P-f@)/|| f() | if || f(@)] > P.

DEFINITION 2.3. A function f on X to B is said to be a (X, S, B)-

simple function if (1) the range of f is a finite subset of B and (2) for
each be B, f~4(b)eS.

DEFINITION 2.4. A function f on X to B is said to be a (X, S, B)-
continuous function if for each e >0, there exists a finite partition
[E;; 1 =n] of X in S such that max [0(f, E); 1 < n] < ¢ (cf. [1]). We
shall denote by C(X, S, B) the Banach space of (X, S, B)-continucus
funections.

REMARK. We note (1) that C(X, S, B) is isomorphically isometric,
via the natural embedding, to the Banach space of topologically con-
tinuous B-valued functions defined on the Stone-Cech type compactifi-
cation of S, (2) that a function f on X to B is in C(X, S, B) if and
only if for each ¢ > 0, there exists a (X, S, B)-simple function & such
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that ||k — f|| =sup[|| kz) — f(@)|;xe X] < e:C(X, S, B) is the com-
pletion of the normed linear space of (X, S, B)-simple functions, (3) that
if a B-valued function f on X is not partitionable, then for no algebra
W of subsets of X is it possible to uniformly approximate f by (X, W, B)-
simple functions: if there exists an algebra W of subsets of X such
that fe C(X, W, B) then f is partitionable, and (4) that C(X, S, B) =
Nyerxr.sm(X, S, g, B) (cf. [1], Theorem 2.1).

3. The principal theorems. In this section we establish our prineci-
pal results (Theorems 8.2, 3.3, and 3.4). However, in order to relate

our definition of measurability to classical results we shall first digress
for a few moments.

LEMMA 3.1. Let f be a bounded B-valued function on X,g< H(X,S),
and f be Stieltjes integrable with respect to g (cf. [5]), i.e., S fdg ex-
ists, then f is Stieltjes integrable with respect to V(g, ).

Proof. 1t is sufficient to show that S fdg* exists. (This may be
pe
seen as follows. Suppose S fdg+ exists. Then, since g~ =(—g)", S fdg~
pe X

exists and, hence, since V{g, )=g" — g‘,g fdV{(g, ) exists.) Suppose
X

e > 0. Then there exists K € S such that ¢"(X) — g(E) < ¢/2 and, hence,
V(g —g/E, X) < ¢, where g/E(F)=g(EN F) for £E and FeS. We
shall denote by a g/E-refinement sum of a partition 7w, a sum of the
form Y,., f(x,)g/E(E;) where [E;;t < n] is a partition of X in S such
that for each 7 = n 1) x, € E;, and (2) there exists (uniquely) an element
F in 7 such that E; ¢ F. Since S fdg exists, S fd{g|E) = S fdg exists
and, hence, there exists a partition 7 of X in S such that any two g/E-
refinement sums of 7 differ by less than ¢. This implies that any two
g*-refinement sums of 7 differ by less than 22| f]|-¢) + . Hence
X fdg*t exists and, consequently, S fdVig, E) exists.

X P

THEOREM 3.1. If f 1is a partitionable (hence bounded) B-valued
function on X and ge H(X,S) then fem(X,S,g, B), t.e., f is also
g-measurable, if an only if [ is Stieltjes integrable with respect to g.

Proof. If fem(X,S, g, B) then g fdg exists. Hence it is sufficient
to show that if f is Stieltjes integrable with respect to ¢, then f is g-
measurable; moreover, in view of Lemma 3.1, it is sufficient to suppose
g = 0. Suppose f & m(X, S, g, B). Then there exists ¢ >0 such that
if © = [E;1 =< n] is a partition of X in S then g(U[E;; 0{f, E,) = ¢]) = .
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Since f is partitionable, there exists a partition [F;;j < m] of X such
that lub;.,, 0(f, F;) < ¢/8. Let 7 be a partition of X in S. Let [G.; k < p]
be an enumeration of the elements E; of @ such that 0(f, E,) =e.
Let H; =UIG;G. N F;+60,G, N F; + 0, and d(F;, F;) = inf [|| f(x) —
fWl;xe F;,ye F;] 23¢/4]. Then U H;; = U G, and, hence, there exists
H;; such that g(H;;) = ¢/[m(m — 1)(27")]. Let x,€ F;; let z;€ F;; and if
G, C H;; then let x,;€G, N F; and 2,;€G, N F,. Then

| 2ef (2:)9(Gr) — 20 f(@)9(G) |l
= | ZWl(f (@rs) — F (@) + (F(x:) — f()) + (F (@) — F(@e3)]9(G)
= || f(x) — f(@) || 209(Gi) — Zulll f(@ws) — F@) ] + || f ()
— f(@e) [[19(G) = 3¢/42,9(Gy) — 2ile/8 + ¢/8]g(Gr) = ¢/22.G,
= ¢/29(H;) = (e/2)(e/[m(m — 1)(27)] = &'[m(m — 1).

Thus there exist refinement sums of = which differ by at least &*/m(m — 1)
and, hence (7 was an arbitrary partition of X in S), f is not Stieltjes
integrable with respect to g¢.

Let us now see to what extent Theorem 3.1 goes through for bounded
vector valued functions which are not partitionable. If f is g-measurable

then the Stieltjes integral fdg exists; however, the converse is not,

in general, true. In fact, tﬁe following example shows that f may be
Stieltjes integrable with respect to a nontrivial bounded finitely additive
set function g even though f oscillates ‘“wildly’’ on every nonempty
element of S. Let X be the set of positive integers; let S be the algebra
of “periodic” subsets of X: EFe S if and only if there exists a positive
integer » and a finite set [i;;5 < k] of positive integers such that 1)
t;=<mnforj<kand2) E=U;,[t;, + m-n;m=0]; and let g(U;=. [¢; +
m-n;m = 0]) = k/n. (BEach element of S has invariant Banach measure
(cf. [7]); indeed, any Banach measure is an extension of g.) Let B be
the Banach space of bounded real valued functions on X (sup norm).
Let [E;; % = 1] be an enumeration of the nonempty elements of S (S
is a countable algebra of subsets of X). Let R=|[r;¢=1] be an
enumeration of the rational numbers in the half open interval (0, 1].
Since each nonempty element FE; of S is an infinite subset of X and
each of X, R, and S is countable, there exists a real valued function
y on X such that, for each nonempty element E; of S, y(E)) = [y(x);
x€ E] = R and, hence, 0(y, E;) =1 for + = 1. For each ze X, let f,
be the element of B such that f.(x) = y(x) and f.(z) = 0 if 2z = x. For
each z e X, let f(x) = f,. Hence f is a bounded B-valued function on

X, I fll =1, and S fdg exists and is the zero function. But, the oscil-
X

lation of f on each nonempty element E; of S is one.
The function ¥ defined in the preceding paragraph is a bounded
real valued function on X which has the property that if g e H(X, S)
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and g = 0, then S fdg does not exist.

In his 1927 p;per ([4]) on Riemann type integration of vector valued
functions defined on an interval [a, b], L. M. Graves gives an interesting
example of an everywhere discontinucus vector valued function which
is (Riemann type) integrable. Graves’ example can be translated into
the setting of our §4. In this setting Graves’ example yields another
example of a bounded non-measurable vector valued function which is
Stieltjes integrable.

We shall now turn our attention to proving our principal theorems.

DEFINITION 3.1. Let T =[E;Ec X;x(E)em(X, S, g)] where we
denote by x(E) the characteristic function of E.

Theorem 3.2 says, in effect, that T is an algebra of subsets of X,
m(X,S,9,B)=C(X, T, B) (for all B), and, hence, m*(X,S,9)=C*X,T)=
H(X, T). Hence we wish to characterize the elements of 7' in a way
which will enable us to show (1) 7 is an algebra of subsets of X and
(2) one can approximate the elements f of m(X, S, g, B) uniformly by
(X, T, B)-simple functions. In order to motivate our final characterization
of T, we shall first give an elementary characterization of 7 (Lemma
3.2) and then modify this orginal characterization in stages.

LemmA 8.2. If EC X, then Ec T if and only if for each ¢ >0
there exist elements H and K of S such that HC E, KC E’, and
Vig, (HU K)) <e. (We denote complement X — E of the subsets E of
X by E')

Proof. Necessity. If Ee T and ¢ > 0 then there exists a partition
7 of X in S such that if [F}; 7 < n] is a refinement of 7 in S and each
of #; and ¥, is an element of F; then | >, (X(EXx;) — x(EXy)9(F)| <
¢/2 and, hence, V(g, U[F; F; N E+ 0 and F; N K’ == 0]) £ ¢/2< e. Let
H= U |[F; F,c Elandlet K = U |F;; F;, C E']. Sufficiency. Lete > 0.
Then there exist elements H and K of S such that Hc E, K C £, and
Vig, HUK))<e. Letnm=][H K,(HUKY]. If [F;;i <n] is a re-
finement of 7 in S and x;¢ F,, then | ... x{(EXx)9(F,) — g(H)| =
Vig, (HU K)) < e.

LEMMA 3.3. If EC X, then Ec T if and only if there exists a
sequence {{E,, F})} of pairs of elements of S such that {E;}T in S, {F}]

Proof. Necessity. For each positive integer 4 there exist, by
Lemma 3.2, elements H; and K; of S such that H,C E, K, C E’, and
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Sufficiency follows from Lemma 3.2.
At this point we shall introduce some notation.

DEFINITION 38.2. Let

A=[{(E;, Fpl;{E}! in S,{F}] in S, (U E) N (UF)
=0,lim V(g, E! N F!) = 0],
Q= [U E; {(En Fi)}eA] y

and

The following lemma lists a few elementary properties of the sets A, Q,
and D which we shall have occasion to use.

LemMmA 3.4.

(1) (&, Fite A if and only of {(F;, E)}A,

(i) Sce@,

(iii) If each of E and FeQ then each of EU F and EN Fe@,

(iv) He D if and only tf there exists a sequence {H;}| in S such
that Hc (N H)) and lim; V(g, H;) = 0, and

(v) D is an tdeal in the algebra of all subsets of X.

Proof. (i) and (ii) are immediate consequences of Definition 3.2.
(iii) Suppose each of {(K;, L;)} and {(M;, N;)}e A. Then [U (K; U M))]N
[U(L; N Ny =0 and (K; U M) N(L; N N,) = [(K] N M) n (L U Ny)|c
[(K!n L) UMM N N)] and, hence, {(K;U M,),(L; N N))}eA. (iv)
Suppose {H;}| in S, lim,; V(g, H;) = 0 and H C (N H;). Then {(H/, )} € A.
(v) follows immediately from (iv) and the fact that if {H;}| in S, {K}]
in S, lim, V(g, H,) =0, lim, V(9, K;) =0, HC (N H,;), and K (N K)),
then {H; U K;}| in S, lim, V(g, H; U K;) =0, and (HU K)c (N (H; U K))).

Turning again to our characterizations of 7T, we have the following.

LemmA 8.5. If EcC X, then Ec¢T if and only if there ewxist
{(E;, F))}e A and Ke D such that E = (UE)) U K.

Proof. Necessity follows from Lemma 3.3.

Sufficiency. Since Ke D, there exists a sequence {G;}| in S such
that K € NG, and lim,; V(g,G;) = 0. Then {(E; N G}, F; N G)} € A, since
(ENG)UEFE NG =E UG)N (FI UG)=(EIN F/)U G, and,
hence by Lemma 3.3, Ee T.

LemmA 3.6. T is an algebra of subsets of X.
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Proof. It is sufficient to show that [HU K; Hec @, Ke D] is an
algebra of subsets of X. Suppose each of Hand H,eQ and K and K, e D.
Then HU H,eQ and KU K,eD and, hence, (HU K)U (H,U K)) =
(HU H)U(KUK,) is in T. In order to complete a proof of (vi), it is
sufficient to show that if He @ and Ke D, then (HU K) ¢ T. Suppose
{E;, F))}e A,{G;}] in S, lim, V(9,G,) =0, and K (NG,). Let L = K —
UE. Then E;N(F;NGY =[E! N (F; UG <(E! N F!)U G] which
implies {(E;, F; N G)}eA and, hence (UE)NK) =({(UE)U L) =
[UF: NGHUUEF:;NGYY N(UEY N L'eT.

At this point let us pause for a moment and survey the situation.
We know that 7T is the largest algebra W (with respect to inclusion)
of subsets of X such that C(X, W, B) c m(X, S, g, B). Hence, in order
to complete a proof of Theorem 3.2, it is sufficient to prove the following

Lemma 3.7. w(X, S, g, B) c C(X, T, B).

Proof. It is sufficient to show that if a function fem(X, S, g, B)
and ¢ > 0, then there exists a partition [E;; < P] of X in T such that
max [0(f, E;); 7 < P] < e. Suppose a function fe m(X, S, g, B) and ¢ > 0.
Then there exists a partition [E(1,%);¢t <n] of X in S such that
O(f, EQ,t)) < ¢/38 for 2+ < m, and V(g, E1, n)) < 27'. There exists a
partition [E(2,1);¢ < n,] of E(1,n,) in S such that 0(f, E(2, 1)) < /3
for 7 < m, and V(g, E(2, n,)) < 27%. If we repeat this process inductively,
we obtain a sequence {[E(%, t); t < n;]};2: such that

1) [EQ,t);t < n,] is a partition of X in S,

(2) [E(® +1,1);t = n,.] is a partition of E(¢,n;) in S,

3) O(f, E(1,t) <e¢/8if 1 =1 and t < n;, and

4) o(f, EG, n)) < 270

Since f is partitionable, there exists a finite partition [F;:j7 < P]
of X such that max[0(f, F,);s £ Pl < ¢/3. If ¢=1 and t< n,;, let
F(E(,t)) =min[j;7 = P, E(1,¢) N F; # 0]. Let V; = U: U.<., [E(3, t);
F(E@, t) =7], let W= NE({,n), and let W, = Wn F;. For each
positive integer j = P, V; € Q (if Vy, = Uizx Ui« [E(, t); F(E (3, ) = j]
and Fj, = X — (VU E(k, n)), then {(Viy, Fi)lzie Aand V; = U, Vi)
and W,eD. Hence, if we let E;=V,U W,, then [E;j<P] is a
partition of X in T (Lemma 3.4) and max [0(f, E,);j < P] < e.

We note that T is determined by ¢ and, hence, is independent of
B; in fact, T is the g-outer measure completion of S.

Therefore we now have the following

THEOREM 3.2. Let (X, S) be a set algebra, ge H(X, S), and B be
o Banach space. Then m(X, S, g, B) = C(X, T, B).

In the case of real valued functions (i.e. B = <#) we know (cf. [5])
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that C*(X, T') is isomorphic and isometric to H(X, T') and hence

COROLLARY 3.2.1. If ge H(X,S) then m*(X, S, g) 1s tsomorphic
and isometric to H(X, T) in the sense that 1f L e m*(X, S, g) then there

exists, uniquely, h ¢ H(X, T') such that L(f)zg Jdh for each fe m(X,S,g)
p.¢
and || L] = ||k = V(h, X).

Moreover, this identification enables us to apply P. Poreelli’s results
(cf. [6]) on weak convergence and sequential weak compactness in
H(X, T) to obtain results such as the following

COROLLARY 3.2.2. If{L,} s a sequence of elements of m*(X, S, g9),
then {L,} is weakly convergent if and only if lim, (s L.Y(E))) exists
for every sequence {E} of pairwise disjoint elements of T.

We shall conclude this section by presenting an analog of Corollary
3.2.1 for an arbitrary Banach space B. However, in order to motivate
our representation of m*(X, S, g, B) we shall first reinterpret Corollary
3.2.1 as follows. Corollary 3.2.1 says, in effect, that if LeC*(X, T)
then there exists, uniquely, he H(X, T) such that L(f) = S fdh =
lim, (3. ep,e- f(@)ME;)) for each fem(X, S, g) and || L|| = Ilhli,x where
the limit is taken (cf. [5]) in the Moore-Smith sense over the directed
set of partitions 7 of X in T. But, and this is the crux of the matter,
if FFe #* then F(r) = F(1)-r for each re¢ &#. We exploit this fact
as follows. Let G be a function on T to Z* such that if EeT and
re # then G(E)r) =1r-h(E). Then

lim, (X e5,e-G(E)f (%) = lim, (Xen,exS (@IUED))

DEFINITION 3.3. Let (X, S) be a set algebra and B be a Banach
space. Then we denote by H(X, S, B) the Banach space of functions
G on S to B* such that

(1) G(@) =0,

(2 If E,FeS and EN F =6, then G(E U F) = G(E) + G(F), and

() G|l = sup: (Xipe= || GEY) ) < oo .

Moreover, if f is a B-valued function on X,Ge H(X, S, B), and
lim, (3,,er,e-G(E;) f(x;)) exists then we denote this limit by Sx aGg - f.

The following two lemmas are immediate consequences of Definition
3.3.

LeMMA 3.8. If S dG - f exists, then
X
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[,46-7|= 1161 sup.ex 17 @)]
LEmmA 3.9. If fe(C(X,S,B) and G ¢ H(X, S, B) then S dG - f exists.

LeMMA 3.10. If Ge H(X, S, B) and L(f) = Sx dG - f for each fe
C(X, 8, B) then Le CHX, S, B) and || L] = ||G]|.

Proof. By Lemmas 3.8 and 3.9, Le C*X, S, B) and ||L|| = ||G]|.
Let € > 0. Then there exists a partition 7 = [E}; 4 =< n] of X in S such
that ||G || — 56 || G(E) || < ¢/2. For each E; € w there exists b; € B such
that || b;] =1 and ||G(E))]|] — GE)D,) < ¢/2n. Let f3l<.b:x(E;). Then
1Al =1 and L(f) =§ dG -+ f = 3ica GE)D;) > ||G|] — ¢ and, hence,

pe
LI =Gl
Now we are ready to establish the following.

THEOREM 3.8. If (X, S) is a set algebra and B is a Banach space,
then C*(X, S, B) is isomorphic and isometric to H(X, S, B). Moreover,
if LeC*(X, S, B) then there exists, uniquely, G € H(X, S, B) such that

I(f) :SXdG-f for each feC(X,S, B) and ||G| = || L]l

Proof. In view of Lemma 3.10 it is sufficient to prove the “moreover”
part of Theorem 3.3. Let LeC*(X, S, B). Let G be the function on
S to B* such that G(E)(b) = L(bx(E)) for each Ee€S and be B. Then
G(0) = 0. Moreover, if E,FeS,ENF =20, and be B, then G(EF U F)
() = Lby(E U F)) = L(by(F)) + L(bx(F)) = G(E)®b) + G(F)(b). Finally, if
[E;;© <mn] is a partition of X in S,b,e B for 4 =n, and ||b;]| =1 for
t=m, then 3, GE)D) = g, LO(E)) = L(Zis, bix(E) = || L]
Thus (we can conclude from the argument used in Lemma 3.10)
Sz |GE) | £ || L] and, hence, Ge H(X, S, B). Moreover, if k& is an

(X, S, B)-simple function, then L(k) = SX dG - k. Hence, since the (X,
S, B)-simple functions are dense in C(X, S, B), L(f) = SxdG . f for each
JfeC(X, 8, B) (if k is an (X, S, B)-simple function then
1), -]
=L =k + | _dG- =D ALI+1GIIF~ El
=2[|L{-[lf—El).

As an immediate consequence of Theorems 3.2 and 3.3, we have
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the following.

THEOREM 3.4. If (X, S) is a set algebra, g H(X, S), and B is a
Banach space, then m*(X,S,g,B) is isomorphic and isometric to H(X, T, B)
in the sense of Theorem 3.3 (i.e. of Lem™(X, S, g, B) then there exists,

uniquely, G ¢ H(X, T, B) such that L(f) = SX dG - f for each fem(X,S,
g9, B) and ||G|| = || L])).

4. A Banach space of Riemann integrable functions. In this
section we give a determination of the bounded linear functionals on
the Banach space R]a, b].

We denote [a,b] by [ and Rla,b] by R(I). Let S, denote the
algebra of subsets of I generated by segments (¢, d) where a < ¢ < d =b
(i.e. Ec S, if and only if there exists a finite subset /" of I and a finite
set [(c;, d:); a = ¢; < d; < b] of segments such that £ = F U (U;<. (¢, 45)).
Then we denote by s the element of H(I,S;) such that if a < ¢ < d =
b then s((c,d)) =d —c and if xel then s([x]) =0 (i.e. if K€ S; then
s(F) is the Jordan content of E). Finally, if f is a real valued function
on I and x€ I, let d(f, ) = lim_,+ O(f, (® — &, 2 + ¢) N I).

Let us recall that a real valued function fon I is in R(I) if and
only if (1) f is bounded and (2) if € > 0 then there exists a finite set
[(c;, d)); © < n] of segments such that [x; d(f, ) = ¢] C Ui<. (¢, d;) and
Sizn s((c;, d) N I) < e. Hence R(I) = m(I, S,,s) = C(I, T;) where T, is
determined as in Theorem 3.2. Moreover, R*(I) is isomorphic and
isometric to H(I, T;) in the sense of Theorem 3.4.

T. H. Hildebrandt informed the author that 0. Frink had shown
(cf. [3], in particular Theorem 10) that a real valued function f on I is
Riemann integrable if and only if there exists a sequence [f;;f; =
Dlizn, TiiX(Eij), 1i;€ A, Ey; is measurable Jordan: the boundary of E;
has Jordan content zero] of simple functions such that lim; (sup,e, | f(z) —
fi(x)]) = 0. From our characterizations of T,, we see that Eec T, if and
only if there exist sequences {E;}] in S and {F}}] in S such that UE; C E,
UF; C E' and lim; s((E; U F;)) = 0; moreover, since points have s-measure
zero we can require that the sets E; and F; be open. Thus Ee T, if
and only if E is measurable Jordan (the interior of E > UK, and the
interior of K’ D UJF;; the boundary of E is a closed set). Hence (cf.
[5)) every bounded linear functional L on R(I) is expressible in the
form SX Jdg where the integral is of the Stieltjes type, g is bounded
finitely additive set function on the algebra T, of subsets of I which
have Jordan content, and the total variation of ¢ on I is || L|].

We shall conclude by discussing (briefly) Riemann type integration
of partitionable vector valued functions defined on I. In the case of
partitionable functions f defined on I both the norm definition of Riemann
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integrability of f defined by Graves (cf. [4]) and the refinement definiton
of Riemann integrability of f are equivalent to the S-integrability of f
with respect to s. We shall not prove this statement; however, we
shall prove Lemma 4.1 which provides a tool with which to reduce a
proof of this statement to a standard argument.

LEMMA 4.1. Let f be a B valued function on X, g be a nonnegative
Jinitely additive set funmction on S,be B, and © be a partition of X
wm S. Then
sup ([|b— > f(y)e(F)I)

S yjeFJEX’

/2% in

ssu (b~ 5 F@)eE)).

Proof. 1t is sufficient to show that if we B, FFand GeS,FNG =
0, =FUG,ycF, and ze (G, then there exists € E such that ||w —
S@g(EN || = [|lw — (fW9(F) + f(z)9(G)) || (i.e. we can eliminate one set
at a time). It is sufficient to suppose that g(¥) #0 and || w — f(2)g(E) || =

lw — fg(E)[l. Then

lw — (g(F)f () + 9@G)f)
= lg(F)g(E)w — g(E)f(y)) + 9(G)g(E)w — g(E)f(2)) ||
= 9B g(E) || w — g(E)V @) || + 9(@/g(E) || w — g(E)f(2) ]|
Sllw—gE) W .

Thus we are in a position to assert that the most general linear
functional on the space of partitionable B-valued Riemann integrable
functions defined on I is determined by a bounded finitely additive B*
valued set function defined on the algebra T, of subsets of I which have
Jordan content.
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