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1. Introduction. Let {sn} (n Ξg 0) (sn = α0 + + an) be a sequence
of real or complex numbers. Denote by t(x) a linear transform T

n — 0

of {sj supposed convergent for all sufficiently large values of x. In
addition to classical Abelian and Tauberian theorems which give infor-
mation about one of lim^oo t(x) and lim^oo sn when the other exists, it
is possible to find estimates of

lim sup I t(xn) - sn

when neither lim t(x) nor lim sn is supposed to exist but {αn} is assumed
to satisfy the condition

(1.1) lim sup I nαn | < + oo .
n-*oo

Such estimates were obtained first by H. Hadwiger [4] for the Abel
transform t(x). Delange [3] developed a general theory for such esti-
mates when xn — qn, where q is some fixed positive number. Usualy
the estimates proved have the form

lim sup I t(xn) — sn | ^ C. lim sup | nαn | .
n—*o°,x n—»cχ

We call the constant C a Tauberian constant associated with the trans-
formation T.

In this paper we shall prove some Hadwiger-type inequalities for
a class of [/, f(x)] transformations (see §2). In these results the con-
nection between n and xn will be more general than the relation xn = qn.

As a consequence of the main result of this paper we shall obtain
the interesting result that for any sequence {sn} satisfying (1.1) the set
of limit points of {sn} and the set of limit points of the Borel transform
of {sn} are the same set

2, The [J, f(x)] transformations. The class of [J, f(x)] transfor-
mations was defined in [5], where it was shown that the [/, f(x)] transfor-
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mations are the sequence-to-function analogues to the Hausdorff transfor-
mations. The definition of the [J, f(x)] transformations is the following.

DEFINITION. Suppose f(x) is a real or complex function defined for
all x > x0 ̂  0. Let f{n)(x) exists for all x > xQ and n = 1, 2, . For
a given sequence {sn} (n ^ 0) we define the [J, f(x)] transform t(x) of
{«.} by

l)-^rf(x)sn

n\

supposed convergent for all sufficiently large x. We say that {sn} is
summable [J, f(x)] to s if lima._>oo t(x) = s.

We shall denote in the rest of this paper by dn(x), n = 0,1, , # > 0,
the function (-l)n(xnlnl)f{n)(x).

EXAMPLES. The [J, f(x) = (x + I)-1] transformation is the Abel
transformation. The [J, f(x) = e~x] transformation is the Borel transfor-
mation. The [J, f(x) = (x + l)~a](a > — 1) transformation is known as
the A{oύ) transformation.

The following necessary and sufficient conditions for the regularity
(that is that for each convergent sequence the T transform of the
sequence is also convergent to the same limit) of the [J, f(x)] transfor-
mations were obtained in [5].

THEOREM (2.A). The [J, f(x)] transformation is regular if, and
only if, there exists a function

(2.1) β(t) of bounded variation in 0 ̂  t ^ 1

such that

(2.2) /3(0) = /S(0 + ) = 0f /3(1) = /9(1 - 0) = 1

and

(2.3) f(x) = [txdβ(t) for x > x0 .
Jo

3. Tauberian constants. One of the main results of this section
is finding the best (in a certain sense) Tauberian constant associated
with a certain class of [J,f(x)] transformations.

THEOREM (3.1). Suppose the [J, f(x)] transformation is regular,
that is (by Theorem (2.A)) there exists a function β(t) satisfying (2.1),
(2.2) and (2.3). Let q > 0 be a constant. If β(t) is a nondecreasing
function and the integrals
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lO.xi \ U/Uf \ au = nm \ -

Jo t log 1/ί J t(t + 1) *t~ J ί(t + 1)

exist, then for any sequence {sn} satisfying (1.1) we

(3.2) lim sup sn — Σ ^m(^)sm ^ L̂g lim sup

(3.3) A, - 7(Euler's constant) + log? - ί°° l
Jo

t log 1/ί

t + 1)

dt.

Moreover, the constant Aq is the best in the following sense. There
is a real sequence {sn} such that 0 < lim sup^co | nan | < + oo and the
members of the inequality (3.2) are equal.

In the proof of Theorem (3.1) we shall use the following two theo-
rems. The first is proved by R. P. Agnew in [1], and the second is
proved in [6], Theorem 7d, page 295.

THEOREM (3.A). Suppose {sn} is any bounded (real or complex)
sequence. Let {cn(x)} be a sequence of functions defined for 0 < x < co
and satisfying

(3.4) lim cn(x) = 0 for n = 0,1, .
ίC-»oo

(3.5) lim sup Σ | cn(x) \ = M < +™ .
x->oo n,=o

Then we have

oo

(3.6) l i m s u p | Σ cn(%)Sn I ^ M l im s u p \sn\ .
χ->oo n=Q

Moreover, M is the best constant in the following sense. There exists
a bounded sequence {sn}, lim sup | sn \ > 0, such that the members of
inequality (3.6) are equal.

THEOREM (3.B). If β(t) is a normalized function of bounded varia-
tion in 0 ^ t ^ R for every R > 0 (that is β(0) == 0, β(t) = i{β(t - 0) +
β(t + 0)}) and if the integral

(3.7) f(x) = \~~e-*'dβ(t)
Jo

converges for some x, then
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(3.8) lim Σ dn(x) = β(t) , for 0 < t < co .

Proof of Theorem (3.1). We have formally, for x > 0,

(3.9) sn - Σ dja?)8m - Σ αfc - Σ d ja) Σ α4

= Σ «* - Σ α* Σ <*»(»)

We have (see [5])

(3.10) Σ djx) = 1 , 0 < x < co .

Therefore, at least formally, for x > 0, n = 1, 2, ,

(3.11) sw - Σ dm(x)sm = Σ (^α^fc-1!! - Σ dm(x)\
m = 0 k=--l I m=k )

From the fact that β(t) is nondecreasing it follows that

(3.12) dk(x) ^ 0 for x > 0 and fc = 0, 1, .

In order to justify our computations for sequences {sn} satisfying (1.1)
it is enough, by (3.12), to show that the two expressions

Σ fc^l - Σ dj.χ)\

Σ Ίr^
k=n+l

converge for x > 0. The convergence of the last two expressions will
follow from (3.15), (3.20) and (3.22). Suppose the convergence of the
last two expressions was proved then in order to complete the proof it
is enough to show, by (3.11) and Theorem (3.A), that we have

(3.13) lim k-Ul - Σ djxλ = 0 for k = 1, 2, . . . .

(3.14) lim \± fc-fl - £ djx)] + ± k~λ ± dm(x)\ = Aq .
n->oo,x-*oo>nx~'i—+q l.k=l L m=k J k=n+l m—k )

Now, by (3.10),

oo k-1

From
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djp) = —f\t* (\og±-Ydβ(t) , for w = 0, lf •
m!Jo V t I

we get lim^oo djx) = 0 for m = 0,1, , which proves (3.13). The ex-
pression in brackets on the left-hand side of (3.14) might be written in
the form

(3.15) Σ fc-fl - Σ dJxΛ + Σ Ar1 Σ
k—1 L m = A; J k = n+l m=k

k=l

Now, by (3.10), for k = 1, 2,

(3.16) A £ dm(x) - -f-ίl - Σ dm(x)\
ax ™=k ax I ™=o J

We have also

(3.17)

By the Helly-Bray theorem (see [6], Theorem 16.4, page 31) we have
from (3.17)

(3.18) lim Σ djx) = 0 , for fc = 1, 2, .
a; I 0 m=k

From (3.16) and (3.18) we have

Σ dm(x) = Γ(- l) f c **"'\Λ.f
{k)(t)dt , k = 1, 2, . . . .

m=k Jo (& — 1 ) !

Therefore

(3.19) S1(x) =

(and, by Fubini's theorem and (3.1), if the last integral exists)
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(and by (3.10))

_t i
JO

~f(t) dt .
t

The last integral exists by Fubini's theorem, because

Ί ~f(t)dt = ("t-iji _ [u'dβiujldt
o t Jo I Jo J

and the last integral exists, as is easy to see. Therefore

(3.20) Sι(x) = hg(x + 1) + Γ -
J t(t + 1)

Hence

(3.21) lim I t Ar1 ~ &(s)| = 7 + log q -

In the same way that we obtained (3.20) we get

(3.22) S2,n(x) = ( V 1 Σ dn(t)dt
JO m = n+l

= \'t-1{l-±dm(t)\dt
Jo L w=o J

S xfn ( n }

0 I ra=0 J

Now we get from Theorem (3.B) (with x = nu, t = w1, 0 < u ^ 1) and
Lebesque's theorem on the integration of boundedly convergent series,
since

f(x) = ί V
Jo

that

(3.23) lim S2,n(x) = [ V 1 β{e~u~ι)du
l J

= Γ-
Jo i;

β(v) -dv .
log 1/v

(3.21) and (3.23) show that (3.14) is true. This completes the proof. Q.E.D.
Using the following expression for Euler's constant
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7 =

Jo ί(t + 1)

(see Bromwich [2], page 507) we obtain for Aa of Theorem (3.1) the ex-
pression

(3.24) Λ, = logg + V JV)-e~tdt+2-\'~ ,f{t],dt
Jo t Jo tlOgllt

and we may state Theorem (3.1) in the equivalent form

THEOREM (3.2). If the suppositions of Theorem (3.1) are satisfied
then the number Aq of Theorem (3.1) has the representation (3.24).

4. Some consequences. We shall indicate here some consequences
of the results of § 3.

EXAMPLE (4.1). If we choose in Theorem (3.2) /3(t) = 0, for 0 ^
t < e~\ β(t) — 1, for e~λ ̂  t g 1, and q > 0 is a fixed number than for
each sequence {sn} satisfying (1.1) we have

lim sup
0 0 η*m

^ I log Q I lim sup | nan | .

Moreover the constant | log q \ is the best possible in the sense of Theorem
(3.1).

Example (4.1) is an immediate consequence of Theorem (3.2).
If we choose in Example (4.1) q = 1 we get

THEOREM (4.1). For a sequence {sn} satisfying (1.1) we have

lim
n-* oo, x—* <χ>, n x ~

= 0 ;

and therefore the set of limit points of {sn} and the set of limit points
of the Borel transform of {sn} are the same set.

Theorem (4.1) raises the following problem: It is known that Borel
summability of a sequence and the condition V n an = 0(1) imply the
convergence of the sequence; now by Theorem (4.1) the stronger condition
nan — 0(1) implies that the set of limit points of the Borel transform
and the set of limit points of the sequence are the same set. We may
ask therefore if it is true in general, or for which transformations it
is true, that if a Tauberian condition stronger than the appropriate
Tauberian condition for the transformation is satisfied then the set of
limit points of the transform and the set of limit points of the sequence
are the same set.
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EXAMPLE (4.2). If we choose in Theorem (3.1) β(t) = t we obtain

for the Abel transformation Aq = 7 + logg + 21 v~λe~vdv .

The last consequence was obtained by R. P. Agnew in [1],

EXAMPLE (4.3). If we choose in Theorem (3.1)

Γ(a + 1)

then

Aq = 7 + hgq - Γ 1 ~ ( 1 ~
Jo ί

a > -

dt
t [ v e l o g U v .

Γ(a + 1)J« g

(3.2) assumes, in this particular case, the form, for y = x/(x + 1),

(4.1) lim sup
> oo, y->l, n (1—y) ->q

^ ^ lim sup

Example (4.2) is the particular case a = 0 of Example (4.2).
c{n](oί > — 1) the Cesaro transform of order a of {sn} (in short the

(C, α) transform) is defined by

ί + r v M=° i -
If in Example (4.3) we replace {sn} by the sequence {c{n]}, the (C, α)

transform of a sequence {cw}, we obtain from (4.1) the following result.

EXAMPLE (4.4). Suppose a > — 1, q > 0. For a sequence {sn} denote
by {c[n]} and {a{"]}, respectively, the sequences of the (C, a) transform
of {sn} and {nan}. Then for each sequence {sn} with a bounded sequence
{a^} we have

(4.3) lim sup
w (1 — y) -+q

ŵ 2-1 ^m lim sup I a{*]

where Bq is the constant Aq of Example (4.3). Moreover the constant
Bq is the best in the following sense. There is a real sequence {sn}
such that 0 < lim such | a^ \ < oo and the members of inequality (4.3)
are equal.

5 The minimum of the function Aq. Now we investigate the
behaviour of Aq of Theorem (3.1) as a function of q > 0.

THEOREM (5.1). Suppose β(t) is a function satisfying (2.1) and
(2.2). Define f(x) by (2.3). If β(t) is nondecreasing and the integrals
(3.1) exist then for Aq(q > 0) defined by (3.3), as a function of q we
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have
(5.1) Aq ^ 0 for q > 0.
(5.2) Aq is a continuous function for q > 0.
(5.3) limAq= + cχ>.

(5.4) \imAq = +oo.
QlO

(5.5) Aq has an absolute minimum for q > 0.
(5.6) // β(t) is a continuous function the value of the absolute minimum
of Aq is obtained at the point (or points) q0 satisfying β(e~q°) = 1/2.

Proof. (5.1) follows from the inequality (3.2). (5.2) follows from
the fact that log q is a continuous function and that an integral is a
continuous function of its limits. (5.3) follows from the fact that

limlogg = +oo;limΓ — Ά - d t = 0 .
<7->°° g— Jo t log I/1

We prove (5.4) in the following way: By (2.2) β(l) = β(l - 0) = 1 and
β(t) ^ 0, therefore for sufficiently small δ, 0 < δ < 1, if 1 - δ ̂  ί ^ 1
then β(t) > 2/3. Therefore for all sufficiently small q > 0 we have

o ίlogl/ί ~ 3Ji-«ίlogl/t

4log + | l o g
3 1 — § 3 tf

—> oo as g I 0.

This proves (5.4). (5.5) follows immediately from (5.1)-(5.4). If β(f)
is continuous then Aa has a continuous derivative

dq~9~H l i

and the absolute minimum of Aq, for q > 0, is given by (d/dq)Aq = 0
or by /3(<rQ) = 1/2. This proves (5.6).

Thus we see that for the transformation of Example (5.2)

min Aq = Alog2 = 7 + log log 2 + 2 \ v~λe~vdv .
?>0 Jlog2

This result was obtained by R. P. Agnew in [1],
For the transformation of Example (4.3) and for the Bq of Example

(4.4) we see that

min Aq — Aq = min Bq
<?>0 q>0

where qQ is given by equation
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ύ t.Jj. 1

{Πα + 1)}-1

Jo 2

6, Conclusion* We saw in § 5 that the function Aq (of q) obtained
in Theorem (3.1) has an absolute minimum for some q0 > 0. We shall
denote this minimum by B = B(f(x)). That is B = ^4go.

Denote by z' a limit point of a sequence {sj. We denote by z" a
limit point of a linear transform of {sn}. Then we obtain from Theorem
(3.1) the following result concerning limit points z' and zn.

THEOREM (6.1). If the suppositions of Theorem (3.1) are satisfied
then for any sequence {sn} satistying (1.1) and its [J,f(x)] transform
we have: (i) To each z' corresponds at least one z" such that

(6.1) I z' — z" I tS- B lim sup | nan \ .

(ii) To each z" corresponds at least one zf such that

(6.2) I z" - z'\ ^ B lim sup | naJ .

We do not know if the constant B in (6.1) and in (6.2) is the best
possible (the smallest).
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