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1. Introduction. Basic definitions and some known results.

The Geometric Function Theory encounters serious difficulties when
dealing with multilply-connected domains, due to the fact that no domain
function is known in an explicit form for a domain of connectivity
greater than two. It is for this reason that one at least tries to find
properties of the domain functions in terms of geometric characteristics
of their domains.

In this paper we search for information on domain functions and
certain families of functions, defined for p-connected domains, that can
be deduced form properties of functions defined in symmetric domains
of connectivity 2(p-1). We also extend the results to infinitely-connected
domains.

Let 4 be a domain in the z-plane, and let L*(4) be the class of
functions which are regular and square integrable in 4. Let [*(4) be
its subclass consisting of those functions which have a single-valued
integral in 4. Both classes form separable Hilbert Spaces [L*(4)] and
[1*(4)] under the scalar multiplication

(1.1) #:0)= | 0@ o, do=dody,z= o + iy |

Let h*4) be the class of functions which belong to the orthogonal
complement of [[%(4)] with respect to [L*(4)]. The Hilbert space [A*(4)]
has a finite dimension p—1, if 4 is p-connected and none of its boundary
components reduces to a point. (See Bergman [3]). If 4 is infinitely-
connected, this space has in general an infinite dimension (See Virtanen [9]).

According to Virtanen [9] (See also Nevanlinna [7], one can construct
an orthogonal basis for A*(4) as follows: Let C,, C,, -++ be a homology
basis of cycles in 4, subject therefore to the following conditions:

(1) Any cycle in 4 is homologous to a finite chain of these cycles.

(2) No chain is homologous to zero, unless its coefficients are all zero.
We can also assume that each cycle C;, ( =1,2, --+) is an oriented
analytic Jordan curve. If K, (z, ¢) is the Bergman kernel function for
the class L*(4), then the functions

1.2) i ) =i §o, K& D&, P=1,2
Received July 19, 1961.

t Throughout this paper the notation 1,2, ... will mean a finite or infinite sequence,
as the case may be.
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span the space [#*(4)]; and if a subsequence F/, (z; 4) of them is obtained
by omitting those functions which depend on the previous ones, we can
orthonormalize its elements and thus obtain a basis @,.(z; ) (n=1,2,--+)
for [A*(4)]. The coeficients used in this process are real:

(1.3) P (2; 4) = i ¢V Fi(z; 4); c,real,bn=1,2, ...
k=1
We recall also that

(1.4) Fiz; 4) = 25""— oz, 22 =2 _4;08
74

0z ox oy’

where w;(z; 4) are the harmonic measures of that part of the boundary
of 4, which lies inside the cycle C;. (See Bergman [3], Virtanen [9]).

Clearly, the classes L*(4) and [*(4) decrease monotonically if the domain
4 increases, and this fact plays an important role in the development
of the theory of the kernel function. Unfortunately, a monotonic property
for the class A*(4) does not hold in general. It is therefore interesting
to notice that if B is a symmetric domain with respect to the real axis,
and the extended real axis is contained in B, then

(1.5) WD) < h¥(B)

where D is that part of B which lies in the upper part of the finite
plane. (Section 2). We study the connection between the bases for the
classes h*(B) and R*(D), and deduce various relations for the kernel
functions and the I-kernels for the corresponding classes. (Sections 2, 3).

2. Symmetric domains. Let D be a finitely or infinitely-connected
domain in the z-plane, the boundary of which consists of the real axis I
as well as other boundary components which shall be denoted by I". We
assume that I is an 4solated boundary component and we denote by D*
and I'* the reflections of D and I with respect to I, respectively. Let
B be the symmetric domain bounded by I" and I'*.

Let C; (=1,2, -++) be a basis for the homology group of D, as
described in §1. We choose the orientation on C; to be counter clockwise
and therefore I is not in the interior of C; ( = 1, 2, +++). We also assume
that C, encloses I'. Let Cf (j =1,2, -++) be the reflection of C; with
respect to I, oriented counter clockwise. Clearly, the C¥’s form a
homology basis for D*, and C,, C,, ---, C}, C#, - -+ form a homology basis
for B. We also denote by I';, I'f those parts of I" and I'* which are
enclosed by C; and C}¥, respectively (j = 1,2, «++). (I" =T).

The harmonic measures w;(z; D) of I";, with respect to D, vanish on
I and therefore can be continued into D*. They satisfy:
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(2'1) w](z; D) = —wj(z; D) ’ FAS Br j = 17 27 et

Thus, the funections

2.2) Fi(z D) = 2%@—@ i=1,2 -
V4

are single-valued and regular throughtout B, and satisfy
(2.3) Fl(z; D) = —F}(z; D), =12 ..., 2zeB.

Here and elsewhere we use the notation

(% — dFJ(:y D)
(2.4) F!(z; D) S

By (1.8) it now follows that

(2.5) P.(2; D) = —@,(z; D), zeB,n=1,2,-.

THEOREM 2.1. If B is a symmetric domain with respect to the real
axis, and contains the real axis, then

(2.6) WD) < K(B) .

D denotes that part of B which lies in the upper half plane.

Proof. The functions @,(z; D)/V'2 (j =1, 2, +++) belong to the class
R(B) and form an orthonormal system in B. Indeed, if g(2) € [*(B) then

a fortiori g(z) e I*(D) and g(z) € I*(D), z€ D; hence, by (2.5),

@1 || 2 DG do = || 2.6 D@ do — || 2. D@ do = 0.
Similarly,
28) || Dipae Dy do = || 2.6 D7l D) doo

+ || 7@ Dieutes D) do = 25,.,.

If f(z)eh¥(D), then f(z) = X,a,p.(2; D), where 2%, |a,]* < . Thus
3.1V 2a,? < o; hence f(z) = 2,1V 2a, (®.(2)/V"2) e h¥(B).

Consider again the symmetric domain B, and let w,(2; B), w}(z; B)
be the harmonic measures of I7;, I'¥, with respect to B, respectively.
We shall prove that

(2.9) w}(z; B) = w,(Z; B) , 2eB,j=1,2 ...
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Indeed, we exhaust B by a sequence of finitely-connected subdomains
Bly Bzy ttt

(2.10) B,cB,.,, UB, =B, m=1,2 .

We can assume that each domain is bounded by analytic Jordan curves
and is symmetric and contains the extended real axis. Clearly, for each 7,

(2.11) @} (2; Bn) = 0,(%; B,) ,

if m is large enough, since both sides are harmonic in B, and have the
same boundary values. By letting m go to infinity, we obtain (2.9).
(See Virtanen [9]).

In a similar fashion one obtains:

(2.12) wi(z; B) — w(z; B) = w(; D), ze B, j=1,2,---.

Applying the operation 2(8/6z) to both sides of (2.9) and (2.12), we obtain
the important relations:

(2.13) Fi*(z; B) = F(z; B)
(2'14) F;(Z;B)_F;(E;B)=F;(Z;D)’ zeB; j=1,2,""

Since WD) C h¥(B), it is of interest to have some information on
the orthogonal complement of [A*(D)] with respect to [R*(B)].

THEOREM 2.2. Let B be a symmetric domain with respect to the
real axis, which contains the real axis, and let D be that part of B
which lies in the upper half plane. Let?

(215) (2 B) = 2u@m D)V 2 = X iz D), (e real)

(2.16) 1ales B) = 3 cuFile B)

where @,(z; D) is an orthonormal basis for [W(D)], as constructed in §1.
Then, the functions

are orthogonal to the functions
Vu(z; B) n,m=1,2 .,

Proof. It is well known (see Bergman [3], Virtanen [9]) that the

2 We assume that Fj(z; D),k=1,2, -+, are already independent. Note also that
F(z; D) =2F\(z; B) (see Section 1).
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scalar product (over B) of any two functions from the closed system
{Fi(2; D), F/.,(2; B),7 = 1,2, ---} is real. The same holds true for the
scalar product of +,(2; B) and x,(2; B). Therefore, in view of (2.5) and
(2.14),

(2.18) %.(2; By o(z; B) dw

1.5 By B do — [| .5 Byva(@s Bido

(.2 B) + 1.0 B) ¥l B do — || 1.5 Byyales B) doo

D

V(2 Bin(e; B do = = O

I,
=1l
=]
=1L,

where 6,, =0 if n +=m, 0,, = 1.
On the other hand,

(2.19) [, 288 5 & do = o5
B 2 2
hence the result follows.

COROLLARY 2.1. It is eastly verified that
(2.20) r.(2; B) = 7,(%; B), r(2; B) =0

hence, by orthonormalizing the functions r,(z; B), n = 2, 8, «++ (with real
coefficients), a complete orthonormal basis r,(2; B), p.2; B), n = 1,2, «««,
18 constructed for [h*(B)], where

(2.21) ¥u(2; B) = —+.(z; B), 0.(2; B) = 0,(2;B), m=1,2, -
This result, which later will be of much use, implies:

THEOREM 2.3. Let B be a symmetric domain with respect to the
real axis, and contains the real axis, then, each function f(2) of the

class W(B) can be represented as a sum of two functions fi(z) and fi(2),
of the same class, which satisfy

(2.22) fi®) = —f(7), fir) = [A7).
In fact,
(2.23) 211(2) = f(2) — F(Z), 2f2) = f(2) + F(2) .

3. The space hi(4). Let hX(4) be a subeclass of h*(4), consisting of
those functions which have real Fourier coefficients with respect to the
base @,(2; 4) (n = 1,2, --+). This class forms a real Hilbert space [h}(4)],
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with respect to the metric (1.1).
In order to extend some results to the case of a general domain 4,

we exhaust 4 by a sequence of smoothly bounded, finitely-connected
subdomains {4,}, m =1, 2, --- which satisfy

(3'1) JmCAm—l—l; UAm:A’ m=1,2,---

LEMMA 8.1. If f(z)eh¥(4), there exists a sequence of functions
{F@)}, fu(®) €eh¥(4,), m = 1,2, -++, which converges in the mean to f(z),
and therefore converges uniformly to f(z) on each compact set in 4.

Proof. Given f(z), it follows that
(3.2) f2) = 2,a,0.(2; 4) , a,real, ¥,a, < oo,

The series converges in the mean. If m is large enough, 4, contains
a given cycle C; which encloses a part I'” of the boundary of 4,. It
is known (see Virtanen [9]) that F)(z; 4,) converges in the mean to
Fi(z, 4) if m —  (we define F(z; 4,,) to be zero outside 4,). One now
applies the Gram-Schmidt orthonormalization process to a subsequence
{F]. (2 4,)}, where k is chosen in such a way that each Fj (z; 4) is
independent on the functions Fj(z; 4),  =1,2,---,k — 1. One obtains
for each m an orthonormal system

k

N’”L
(3.3) P2, 4,) = S ™ F} (25 4,), c™real k=1,2,--+-,N, .
k=1

N,, is the number of cycles C; which are in 4,. It can be proved by
induction that @,(z; 4,,) converges in the mean to @,(z; 4), defined by
(1.3) and that ¢ —¢,, as m — . Consequently, the functions

(3.4 £u0) = 3 a2,z 4,)

converge to f(z) in the mean.
The space hi(4) can be characterized differently. To this effect we
apply the l-kernel defined (Bergman Schiffer [4], Schiffer [5]) as

: 1L 256D
(3.5) e ) = T e

where G,(?, ¢) is the Green function of the domain 4.

LEMMA 3.2. The kernels 1, (z,§) for a fixed ¢, converges in the
mean to 1,(z,8). 4, is the exhaustion (3.1).

Proof. We use the known relations (Bergman-Schiffer [4])



DERIVATIVES OF THE HARMONIC MEASURES 643

(3.6) | e i@ D do, = K60 ~ a6,
where

-1 dw,
(3.7 Ianlls §) = — Hzmlz e ted,.

4, is the complement of 4, with respect to the z-plane.

38 T, f= SSAMZ(z, OF@ dw, = % Sgdm(z—f_i{);—) do, te 4,

for f(z) e L*(4,). The improper integral on the right hand side of (3.8)
is to be understood in the sense of the limit of integrals over the
domains 4., which are obtained from 4, by removing circles around ¢
with radius ¢, ¢ — 0. Let p = m, then

@9 || 1,60 - 1,60k, = K60 - 160
K68 = 16,0 =2 Re || 1,6, 0.5 D) do, .

By (8.8), the last integral can be estimated:

(3.10) ng Lo, O Do, = L SSM%(—%T) do,

_ . 1 {{ Li,(2, 8)
=K, (&, 8 —1 , —_S 22" 51 g,
B A =L
By Schwarz inequality, the modulus of the last integral can be made
arbitrarily small, if m is large enough, and also K, (¢, ¢) tends to
K, (&, ¢) (See Virtanen [9]); hence the right hand side of (3.9) tends to
zero if m — oo,

The limit function is [,(z, £) as defined by 3.5, since G, _(z, ¢) converges
to Gu(z,¢).

THEOREM 3.1. (Bergman-Schiffer) The function f(2)< h*(4) belongs
to the class hi(4) if and only if

(8.11) 7.5 = || L 7@ do. = =1, ced.

This theorem was proved in [4] for the case of a sufficiently smooth
bounded, finitely-connected domain. If f(2) € h(4), where 4 is a general
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domain, it follows from Lemma 8.1 and Lemma 3.2 that T, _f.(2) = —fu(¢)
implies T,f(z) = —f(¢). Conversly, if f(z) € k’(4) then

(38.12) f(z) = Za,p,(z; 4) + 138,9.(2; 4), a,, B, real ;

hence T,f(z) = —f(z) can only happen if 3, = 0.
If is known [4] that [.(z, &) can be represented as a sumfof two
kernels:

(3.13) Lz, 0) =12, 8) + Pz, ©)
where® _
(3.14) 1P 8 = — X2z HPlE, 1),

and 1{(z, ¢) belongs to {*(4), for each fixed &. We therefore obtain:

COROLLARY. A mnecessary and sufficient condition that a function
f(2) of the class L*4) belongs to hi(d) s

(3.15) T = || W6 07 do, = 1), ted.

ReMARK. Clearly, K¥(z, &) — l{(z, £) € h¥(4) as a function of 2z, where

(8.16) KMz, ¢) = ; Pu(2; HP,(E; 4) .

In the case of a symmetric domain B, Theorem 2.1 can be slightly
improved to the effect that rX(D) C kX(B). Also, if f(z) € h}(D), it follows
from (2.5) that

(8.17) fz) = —f(@) .

Limiting ourselves to the spaces hi(B), h¥D), we can now construct
functions in the latter space from functions in the former one:

THEOREM 3.2. If B is a symmetric domain with respect to the real
axis, and contains the real axis, and if f(2) € hi(B) then f(z) — f(Z) € kYD),
where D is that part of B which lies in the upper half plane.

Proof. We exhaust B by the symmetric domains {B,} (See (2.10)),
and consider the functions f,(2), defined in (3.4), where f(z) has the
representation (3.2). The functions @,(z; B,,) are finite linear combinations,
with real coefficients, of F(z; B,) and F}/(z; B,); consequently, by (2.13)

and (2.14), ®.(2; B,) — ®,(z; B,) are finite linear combintations, with

real coefficients, of F (D,), which, in turn, are finite linear combintations,

k

3 The generalization to a general domain is obvious.
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with real coefficients, of ®,(2; D,). Since [hi(4,)] has finite dimensions,
it follows that

(3.18) Iu(2) — Ful®) = ga(2) € hXD,) .

Thus, by Lemma 3.1 if m — oo, the left hand side converges to the
function f(z) — f(Z) = 9(z). But g¢(z) e L*(B) — L¥D), hence g,(z) tends
to g(z) which is in h}(D).

This theorem could also be proved directly by the use of Corollary
2.1. We can also use this corollary and the series developments (3.14),
(8.16) in order to prove by direct calculation the following

THEOREM 3.8. If B is a symmetric domain with respect to the
real axis, and contains the real axis, then the following identities hold
for z,¢ € B.

(3.19) Kz, ¢) = KP(, ?) ,
(3.20) W0 =100,

(3.21) 52 Q) + 152, 8) = K32, 0),
(3.22) KPP0 =KP(C 2 =19@z70) .

Here D denotes that part of B, which lies in the upper half plane.

REMARK. From the symmerty of B, it follows that the Green function
satisfies the identity

(3.23) Gz, §) = Gu(7, 0) , 2,{eB,
therefore, by (8.5) and by the well known formula (See [4], [5])

_ _20G.0)
3.24) K, ) = —— oeor z,fed,

it follows also that
(8.25) Ky(z,§) = Ki(Z, 7)
(3-26) lB(zr §) = lB(E’ Z) .

Hence, similar identities hold also for the kernels Kj(z, &) and l4(z, ¢).
Making use of Corollary 2.1 (2.15), (8.14), (8.16), we also find that

@.27) Kz §) — 3K (2, 0) = $15°(, 0) — 15'(:, D) = X 0.(2)0.(€) 5
hence,

THEOREM 38.4. If B is a symmetric domain with respect to the real
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axis I, and contains the real axis, and if D is that part of B which lies
n the upper half plane, then

(3.28) K (z,2) = 1K¥(z, 2), zeB, z¢1I.

(3.29) (2, 2) = 319, ), zeB, z¢ 1.

4. Concluding remarks. A domain 4 is said to be of zero span (of
the class 0,,, in the terminology of the theory of Riemann Surfaces),
if the class 1*(4) reduces to the zero function. (See Ahlfors-Sario [2],
Nevanlinna [7], Schiffer [8]). This property is invariant under univalent
conformal mappings, and the boundary of 4 can be characterized by
the fact that it is a removable singularity for all the funections, defined
in a neighbourhood of the boundary and belong to the class [* in that
neighbourhood. (See Painlevé Problem, [7]).

Clearly, for such domains,

(4-1) KA(Z: g) = A(h)(z’ f) l(z’ é‘) = l(h)(z’ é‘) .

Therefore, if B is a symmetric domain of zero span, one can replace the
clagss #%(B) by L*B) in all our previous results. One may also deduce
properties of the class k*(D) from known properties of the class L*(B).

In Maschler [6], it was conjectured that if there exists a point in
a domain 4, at which all the functions of the class A% 4) vanish, then
R(4) consists of the zero function alone. (In the later case, the domain
is simply-connected except for punctures which are removable with respect
to the function of A*(4)). This conjecture was proved there under the
assumption that 4 has two boundary components which are not completely
point-like. An analogous statement is correct for the classes L*(4) (see
Nevanlinna [7]) and 1*(4) (see Ahlfors Beurling [1]).* The above mentioned
conjecture is trivially true if 4 has a zero span.

Using the representation (2.21), one derives easily, by (2.15), that
there exists a point t in D, at which all the functions of the class (D)
vanish, if and only if f(t) = f(t) for all the functions f(z) of the class
hi(B). Thus, if I" contains a boundary component which is not completely
point-like, then, for any point ¢ in D, there exists a function of the
class hi(B), which does not take a conjugate value at Z.

It would be of interest to study also the question whether it is
possible that all the functions f(z) of the class h3(B) satisfy at a particular
point ¢, te D, the relation f(t) = —f(¢). This is equivalent to equality
in (3.28) and (8.29), for z =¢. (See (3.27)).

¢ The situation in the general case of a Riemann surface is studied in Virtanen [10].
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