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1. Introduction. This paper contains some facts about the possible
actions of the rotation group SO(8) on the #n-sphere S”. For some of
the results the action is required to be differentiable, but for others
this is not necessary.

We recall for an action of a compact Lie group, that a principal
isotropy group is an isotropy group of the lowest possible dimension and
that among these it is one with the fewest possible components. An
orbit with such an isotropy group is called a principal orbit. For a
compact Lie group acting on a cohomology manifold over Z, principal
orbits form an open connected everywhere dense set. In fact the comple-
ment is a closed set of dimension at most n — 2 [1, Chapter IX].

Two of the results to be proved are the following, where B is the
set of points on orbits of dimension less than the highest dimension of
any orbit: If SO(8) acts differentiably on S® with three-dimensional
principal orbits and if dim B < n — 2 then the principal isotropy group
is the identity; if SO(8) acts differentiably on S, then some orbit has
dimension less than 3.

Part of the motivation for our work was the attempt to discover
whether the latter result is true for all n. If SO(3) does act differ-
entiably on S* with all orbits three-dimensional then, as far as rational
coefficients are concerned, the sheaf generated by the orbits is constant
and relative to these coefficients we obtain similar results to those for
a fibering by S°® (see [1, 3]); hence n = 4k — 1. There cannot be such
an action for » = 38 and the result above shows there is none for n = 7.
The general case remains open. It is known [1, p. 187; 3] that if a
compact connected Lie group G acts nontransitively on S* with all orbits
of the same dimension, then rank G = 1, and every isotropy group is
finite. There are only three such groups, the circle, SO(8), and SU(2),
the simply connected covering of SO(8). The circle and SU(2) can act
on S*' and S** respectively with orbits of constant dimension, but
no such example is known for SO(8). This suggests the question we
have mentioned of whether or not SO(3) can act on S" with every orbit
3-dimensional.

2. Cyclic isotropy groups. In this section no differentiability is
assumed; in fact the space on which SO(3) acts is only required to be
a generalized manifold; we assume all spaces to be strongly paracompact;
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i.e., all open sets are paracompact. We recall that prinecipal orbits are
everywhere dense and that a principal isotropy group has at least one
fixed point on every orbit.

THEOREM 1. Let G = SO(3) act on a space X which is a cohomology
n-manifold over Z and a cohomology m-sphere over Z. If the principal
isotropy group 1s o finite cyclic group then it must be the trivial group
containing only the identity.

Agsume the theorem false. Let A be one of the principal isotropy
group; it leaves at least one point fixed in every orbit. By assumption
A is cyclic and nontrivial. Let p be a prime factor of the order of A
and let A, be a cyclic subgroup of A where A, has order p.

We show first that » cannot be 2. Let a be an element of order
2 in G, and let H = {¢, a, b, ¢} be a subgroup of G isomorphic to Z, P Z,.
Let T be a circle group in G, such that A T and ae T; and let N =
T U bT be the normalizer of T.!

If p = 2, then, since all elements of order 2 of G are conjugate,
and since ¢ has a one-dimensional fixed point set in each three-dimen-
sional orbit, we have

dim Fi(g@) =n — 2.
It follows from a theorem of Borel [1, p. 175] that
dim Fi(H) =n — 3.

The subgroups of G, containing H, are:

(1) the icosahedral group I,

(2) the octahedral group C,

(3) the tetrahedral group S,

(4) the dihedral group D,, k > 1,

(5) D, = H,

(6) N,

(7 G.

In an orbit with any one of these as isotropy group, H has a finite
number of fixed points. One concludes from known dimension relations
for the singular set B [1, p. 118, 120] that H is contained in a principal
isotropy group, contradicting the assumption that A is cyclic; and so
p# 2. Since A, C A, we have F(A4) C F(A4); by Smith theory F(4,)
is a cohomology sphere over Z,.

Let ¢ F(A4,), and suppose G(x) is a principal orbit. Choose a slice
K at x. Then A leaves all of K fixed, and also leaves TK and NK

1 For any subset EcG we write F(IE) for the set of points in X left fixed by all ele-
ments of K.
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pointwise fixed. Now K is an (n — 3)-cohomology manifold over Z; and
TK, which is locally a product of K and T/A, is an (n — 2)-cohomology
manifold over Z. In a neighborhood of x the set TK coincides with
F(A), and also with F'(4,), as one sees by considering the action in
each orbit through K. It follows that F(A4,) is of dimension n — 2,
and, since principal orbits are dense, that

F(A) =F(4).

If x is a point of F'(A4), and the isotropy group G, is finite, then
A is a normal subgroup of G, [4]. Both F(A4) and F'(A) — F(G) are
invariant under N.

Suppose z and gz (for some g€ G) are in F(4A) — F(G), so that

g tAg C G, .

A Dbeing odd cyclic, one finds, by considering all possible finite subgroups
of G (those containing H, cf. above, the cyclic groups Z,, and the odd
dihedral groups D,,.,) that

glAg = A;

this means g€ N, Therefore X — F(G) is partitioned into sets g(FA) —
F(G)). If Ris a small 2-cell in G, transversal to T, then R:[F(A) —
F'(G)] is homeomorphic to R x [F(A) — F(G)]. Hence the partitioning
is a fibering (in the sense of local product) of X — F(G) with fiber
F(A) — F(G) and base G/N = P2, the real projective plane. By [1, p.
120] we have dim F(G) < n — 4, so that the fiber F(4) — F(G) is con-
nected. By [2, p. 230] we have (cohomology with closed supports on
the left, compact supports on the right)

H(X — F(G); Z,) = Hom (H! (X — F(G); Z), Z,) .

But H"'(X — F(G); Z,) = 0, from the exact sequence of (X, F'(G)). The
spectral sequence of the fibering is now in contradiction to the H'(P?, Z,)=
Z,, and the theorem follows.

3. Differentiable action with dim B < n — 2. Richardson has noted
[5] that the double suspension of SO(3)/I gives an example of SO(3)
acting on a cohomology manifold over Z which is a cohomology 5-sphere
over Z (and possibly is equal to S°), with dim B =1 and with each
principal orbit a Poincaré space. This example shows that differentia-
bility is needed for Theorem 2.

THEOREM 2. Let G = SO(3) act differentiably on the n-sphere S*
with principal orbits of dimension three. If the dimemsion of the
singular set B is < n — 2, then the principal isotropy group contains
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only the unit element.

It follows from Theorem 1, without the restriction on B, that the
principal isotropy group cannot be cyclic non-trivial. Assume Theorem
2 false. Then, since all finite subgroups of SO(3) of odd order are cyclic,
the principal isotropy group must contain an element of order two; and
as shown in the proof of Theorem 1, it must then contain a group iso-
morphic to H. It can therefore be only one of I, C, S, D,, k¥ >1 H.

For reference we list the one-dimensional integral homology of the
quotients of SO(3) by its finite subgroups:

H,(80@)/Z,) = Z, ;
H(SO(3)/ D) = 2, D Z ;
H(SO03)/Dyn11) = Zy, H(SOB)/S) = Zy ;
H(S03)/C) = Z; ;
H(SO@B)/I) = 0.

Case 1. The principal isotropy group is I.

In this case all orbits in 8™ — B are of type G/I, since I is a maximal
finite subgroup of G; and on each such orbit I has exactly one fixed
point. Therefore

S*— B=(F({I)— B) x G/I.

Since dimB <n — 8, we see that U= S" — B is simply connected.
(Because of differentiability B can be represented as a C'-complex in S*.
A singular 2-disc with boundary in S* — B can be deformed slightly,
by simplicial approximation and shift to general position, so that it does
not intersect B). Since G/I is not simply connected, this is a contra-
diction, and shows this case is impossible.

Case 2. The principal isotropy group is C.
The proof for this case is exactly the same as Case 1.

Case 3. The principal isotropy group is S.

The set F(H) is an (n — 3)-cohomology sphere mod 2, and F(S)C
F(H); we assume HcC Sc C. Since F(S) is a manifold (because of
differentiability) of dimension n — 3, it follows that

F(S)=F(H).
The set F(S) — B is invariant under C. Assume
xeF(S) — B,gxc F(S) — B.
Then



ON THE ACTION OF SO(3) ON S~ 653

Sgx = gx,97'SgC G, .

In this case every isotropy group in S® — B is isomorphic either to S
or to C. In either case we have

9'Sg=3S8

so ge C. Hence S* — B is fibered by the sets g[F(S) — B] with base
G/C. To see that this is a fibering in the sense of a local product, note
that if R is a small neighborhood of ¢ in G, then R x [F(S) — B] is
homeomorphic to R[F(S) — B]. All points of B are stationary under
@G, since all subgroups strictly between S and G are finite (of type C or
I). Using the linear orthogonal behavior of G at points of B (Bochner’s
theorem), one sees easily that dim B < n — 4; otherwise two-dimensional
orbits would occur. But then the fiber F'(S) — B of S — B is connected,
and we get a contradiction from the homotopy sequence: 0 = 7,(S* —
B) — n(G/C) — n(F(S) — B) = 0.

Case 4. The principal isotropy group is D,, k > 1.

Let Z,, be the cyclic subgroup of D,,. We know that Z, C Z,,, and
F(Z,) is an (n — 2)-cohomology sphere mod 2. Now F'(Z,,) is an (n — 2)-
manifold in F(Z,) so

F(Zy) = F(Z,)

and F(Z,,) is a connected manifold.
The set F(Z,) — B is invariant under N where N is the normalizer
of Z,,. Assume

%, gx € F(Zy) — B.
Then
Zyg% = g%, 97 Zygr = .

The isotropy group at x is either D,, or D,, and in either case we see
that

9729 = Zy, g€ N .

Hence S* — B is fibered by the sets g[F(Z,,) — B] with base G/N = P2,
The set B satisfies dim B < n — 4. This is easily seen by considering
the (linearized) action of the stability group Gy at a point ye B (cf.
case 3); one should separate the cases G, = G and G,~ T or N.

The fiber F'(Z,,) — B is again connected, and we arrive at a con-
tradiction as in case 3.

Case 5. The principal isotropy group is H.
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The normalizer of H is C; any finite isotropy group must contain
a normal subgroup isomorphic to H. Suppose

x,grc F(H)— B.

Then Hgx = gx and g*Hgx = x, so that ¢g7*Hg C G,. We use again the
linear orthogonal discription of G,. Since H and g'Hg are principal
isotropy groups, their fixed point sets are of dimension # — 3; and they
act trivially perpendicularly to the orbit at x. It follows that they
must coincide, since otherwise we would get too large a principal iso-
tropy group at x. Consequently g ¢ C, and therefore S* — B is fibered
by translates of F(H) — B, with G/C as base. (As in case 4, we have
dim B <n — 4.) S — B is connected. The operation of C on F(H) — B
must therefore permute the components of F(H) — B transitively, and
there are then at most 6 components (note that the subgroup H of C
operates trivially). The fundamental group of G/C is of order 48, and
the homotopy sequence of the fibering gives a contradiction.
This completes the proof of Theorem 2.

4. Relations between F'(a) and F(T). As before, T is a circle
group in SO(3), a the element of order 2in T, N = T U bT the normalizer
of T.

THEOREM 3. Let G =S03B) act on S". If F(a)+= F(T), then
F(H) + ¢ (the empty set).

Let k& be the greatest integer such that F(Zy) =+ F(T). By hy-
pothesis &k = 1. We shall assume F(H)= ¢ and show that this leads
to a contradiction.

Let a, be the generator of a cyclic group in T of order 2*. Then
F(a,)) is a sphere mod 2. The group N’ = N/Z, operates on F(a,), and
we shall consider this action of N’.

LEMMA. Let x<€ F(a) — F(T). Then N} is odd cyclic.

Assume that G, is cyclic. Then N! = G,/Zx and hence N, is odd
cyclic.

Assume next that G, = D,;,, which is the only other possibility
since F'(H) = ¢. In this case &k — 1. Hence the group Z,: is the group
{e, a}. In this case we see that N, = {¢,a} and that N, = {e}. This
proves the above lemma.

We now consider the mod 2 sphere F'(a,) with the action of N’ and
note that H = Z, P Z, (more precisely a group in N’ isomorphic to H)
acts freely on

F(a,) — F(T).
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There is then a spectral sequence for H*((F(a,) — F(T))/H; Z,) (coho-
mology with compact supports) whose E, term is

HYBg; H(F(a,) — F(T)); Z,) .

We see from this sequence that H cannot act freely and this contradiction
proves the theorem; note that F'(7') is also a sphere mod 2.

5. Action on S’.

THEOREM 4. Let G = SO(3) act differentiably on the T-sphere S’.
Then some orbit has dimension less than three.

Assume that we are given an action for which all orbits are three-
dimensional; we shall arrive at a contradiction.

As before we let H = {e, a, b, ¢} be a specific subgroup of G, iso-
morphic to Z,@® Z,; we write T for the one-parameter subgroup of G,
containing @, and N for the normalizer of T in G; here N=TUbT
and bT = ¢T.

We know (from §3) that the principal isotropy group is e. This
implies that dim F'(a) = 3 (if dim F'(a) = 5, then clearly a would have
a fixed point in every orbit), and so dim F'(H) = 1, by Borel’s theorem
[1, p. 175]; of course, F(H) is homeomorphic to the circle S'. We note
that F(H) = F{a) N F(b).

The normalizer of H is the octahedral group, C; by general principles
C maps F(H) into itself, with H acting trivially. We have to consider
separately the various ways in which the group C/H, isomorphic to the
symmetric group .54 on three letters, can act on a circle, and to show
that a contradiction arises in each case.

If x is any point of S?, then the stability group G, acts on the
tangent space at 2; we may assume this action to be orthogonal, and
write K or K, for a G, -invariant complement to the tangent space of
the orbit of x (this is the same as the tangent space to a differentiable
slice).

We shall need the irreducible representations of C. There are 5
of them (see e.g. [7]); they are all real: C, the trivial representation
of dimension 1; C®, 1-dimensional nontrivial action “as Z,”, i.e., with
the tetrahedral group S acting trivially; C'®, operation on the plane
“as dihedral group D,”, i.e., with H acting trivially; C®, the usual
operation of C on 8-space; C”, the conjugate operation (tensor product
with C™).

Case 1. Suppose C acts trivially on F(H). Since C is a maximal
finite subgroup, the stability group at all points of F(H) is exactly C.
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Let x € FF(H); then in K, there will be a one-dimensional subspace, on
which C operates trivially, namely the tangent line of F(H). Let L,
be a C-invariant complementary (three-dimensional) space in K,. Then
a must have a one-dimensional fixed space in L., since F'(a) has dimension
3 and a leaves already fixed a direction tangent to the orbit G(x) and
the direction tangent to F'(H). From the list of representations of C
it follows, that C must act on L, by C® or C*; however C* is im-
possible, since no element of G, can reverse the orientation of the
tangent space to S” at x, G being connected. Let now a, be one of
the two square roots of ¢ in G; it lies in C, and we observe that the
dimension of its fixed space in K, is 2, so that dim F'(a,) = 3. Since
F(a,) € F(a), and both sets are manifolds, it follows that F'(a,) = F(a).
On the other hand let d be an element of order 2 in C, not in H, and
let d, be a square root of d. Since d,-x = x, we have F(d,) # F(d).
But we can conjugate the pair (a, a,) into (d, d,) in G, and so we have
a contradiction.

Case 2. C acts on F'(H) with exactly two fixed points (“reflection
across a diameter”). Letting «# be one of the two fixed points, we see
that C operates by C on the tangent line to F'(H) at x, and that it
then must operate by C* in L,. It follows that a, has no nontrivial
fixed vector in K,, so that all fixed points of a, near G(x) are actually
in G(x) and form a circle. By the Smith theorem this is the full fixed
point set of @, on S”. But the second fixed point of C on F(H) lies
in another orbit (since C has only one fixed point in an orbit of type
G/C); since a,€ C, we have a contradiction.

Case 3. C acts on F'(H) in the way the dihedral group D,(~C/H)
acts on the unit circle in the plane, in the usual representation of D,.
This implies that the elements a, will map F'(H) into itself with exactly
two fixed points, # and ¥, and reversing the orientation of F(H).

We consider now the set T'- F/(H). Its structure is easily established;
it is a 2-manifold with self-intersections: At any point z of F(H) a
neighborhood of the orbit 7'(z) is homeomorphic to a fiber bundle over
T'(z), whose fiber is the finite set of lines obtained by letting the sta-
bility group T, operate on the tangent line to F(H) at z. Except at
a finite number of points z, there will be only one line in the set and
the neighborhood in question is just a eylinder; i.e., product of a circle
and a line. At the points x and y the element @, (which belongs to
the stability group there) reverses the tangent line to F(H), so that
the neighborhood of T'(x) or T(y) is a Mobius band with self-intersection
along the middle line. One concludes easily from this description of
the structure that 7. F'(H) carries a nonzero 2-cycle over Z,, but that
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its second homology group over the rationals is 0. But by Alexander
duality such a set cannot exist in F'(a) (recall that F'(a) is a sphere
over Z,, and therfore also over the rationals).

Case 4. C acts on F(H) without fixed points (as “reflection through
the center”). This implies that the stability group at any point of F'(H)
includes the tetrahedral group S (but not C), and so equals either S or
the icosahedral group I. The fixed point set F(I) or I, being a manifold
contained in F'(H), either coincides with F'(H) or consists of a finite
number of points. The first case is impossible, since in an orbit of type
G/I the group I has only one fixed point, whereas here the operation
of C produces for each fixed point another one in the same orbit. In
the second case we claim that there can be at most one point with
stability group I on F(H). Suppose « is such a point. Then in K,
the group I must operate in such a fashion that the subgroup S leaves
a straight line (the tangent to F'(H)) point wise fixed, but that I itself
has no fixed line. From the list of representations of I [6, 7] one sees
that I must operate by the irreducible 4-dimensional representation,
obtained by letting I operate on E° through all even permutations of
the axes and restricting to the subspace perpendicular to the main
diagonal of E°. The element a of order 5, which permutes the 5 axes
cyclically, has no nonzero fixed vector. This means that the fixed points
of a in S” in the neighborhood of the orbit G(x) consist of just the
fixed points in the orbit itself. which form a circle. By the Smith
theorem mod 5 this must be the complete fixed point set of a in S7,
and therefore I cannot have any fixed point outside G(z), i.e., different
from z,

LEMMA 1. The stability groups of points on F(a) — F(H) are of
type Dyyy 07 Zypyin.

Proof. The only other possibility is a cyclic group of order divisible
by 4 (since no subgroup isomorphic with H is allowed). The fixed point
set of a, is a proper subset of F'(a), since the points of F(H) are not
in F(a;). By the Smith theorems mod 2 the set F(a,) must be a single
circle; but in an orbit with Z,, as stability group the fixed point set of
Z, consists of two cireles.

We write 4 for G- F(a), and B for G- F(H).

LeMMA 2. The inclusion F(a) Cc A induces a homeomorphism
F(a)/N = A|G.

Proof. Clearly F(a) maps onto A/G = A’. Suppose y = g(z) with
with y,2e F(a). Then a-g2 =gz or glageG,. Now G, is one of
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Zyonrny Dus1, S, I. In all cases. there exists ¢’ € G, with (g¢')'agg’ =
a, since all elements of order two are conjugate. This implies gg’ € N,
and ¥y = gz = gg'z, q.e.d.

T operates on F'(a) with finite stability groups. It follows that
F(a)/T is a two-manifold; it is obviously orientable. Moreover, since
fundamental group and first homology group map onto from F(a) to
F(a)/T, and F'(a) is a Z,sphere, F'(a)/T is a 2-sphere. The element b
of G leaves the decomposition of F'(a) into T-orbits invariant, and induces
an involution in F'(a)/T; we obtain F'(a)/N by indentifying points under
b. The image of F(H) yields an S* in F'(a)/T, pointwise fixed under
b. It follows that A’ = F'(a)/N is a 2-disk, whose boundary is exactly
B/G = B’. (In other words, the N-orbits on F'(a) consist generally of
two circles which are interchanged by b, except on F(H), where the
N-orbits are single circles, which are reversed in themselves by b.)

Next we compute the Z,-cohomology of A. From the nature of the
orbits in A — B, as described in Lemma 1, it is clear that the sheaf
over A’ — B’, formed by the Z,cohomology of the orbits, is constant,
and that therefore (using the spectral sequence of the projection A —
B— A’ — B’) the Z,-cohomology (with compact supports) of A — B is
isomorphic to that of G/Z,, with dimensions raised by two.

The orbits, making up the set B, have the Z,cohomology of the
3-sphere S3, and the sheaf over B’ formed in this fashion is constant,
since it is clearly locally constant (even if there should be an orbit with
I as stability group). The Z,-cohomology of B is consequently isomorphic
with that of S* x S®. We determine the coboundary map d*: H*(B) —
H*(A — B) for the pair (4, B). We have H(B) ~ H*(A — B)(~Z,) under
d*, since these groups are obtained from the base spaces B’, resp.
A' — B’ under the projection. We claim that d* is 0 on H*B) and
HYB). The reason for this is that the orbits near, but not on, B (which
are of type G/Z,) are even coverings of the orbits on B (of type G/S
or G/I), so that the cohomology map in dimension 3 vanishes. In more
detail: We think of A’ as the unit circle in the plane. Let A be a
concentric circle of slightly smaller radius, with boundary Bj; let A,
B, be the inverse images under the projection. There is an obvious
retraction of B, the closure of A — A,, onto B, in fact a deformation
retraction. Its restriction f to B, is a fiber map over the radial pro-
jection of B] onto B’, with the map on the fiber being the natural
map from G/Z, to G/S, respectively to G/I. It follows from the spectral
sequence that f* is 0 in dimensions 3 and 4. The inclusions 4, — B, C
A — B,C A — B clearly give isomorphisms in cohomology. It follows
that d* can be factored through f*, which proves our claim. (Alter-
nately one could use here the Fary spectral sequence.) The exact sequence
of (A, B) shows now that the Poincaré polynomial over Z, of A is 1 +
2t* + 2t* 4+ t°. The complement S” — A has then Poincaré polynomial
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20t + 2t° + t° + t'. The group H acts freely on S” — A, but now the
spectral sequence of the covering leads at once to a contradiction: The
direct sum of the terms of total degree 7 in E. must be of rank 1.
But E}* has rank 8, whereas E}° and E?° (the only groups of E, which
can contribute boundaries to E?*) are together of rank 5.

The four cases considered clearly represent all possible actions of
2 on the circle (up to topological equivalence), and so the proof of
our theorem is finished.
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