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Introduction. Diaz [2] has established some global existence theorems
concerning the partial differential equation u,, = f(z,y, «, u,, %,) by an
analogue of the Euler-Cauchy polygon method, requiring that u(x, y,) =
o(x) and u(x,, y¥) = 7(y) where o and = are of class C’ on the ranges
considered and a(x,) = ©(¥,), f(%, ¥, 2, D, q) is a real valued function defined
for all (x,y,2,p,9) for which2, S v =2, +a; Y =Y=Y,+ b, — 0 <2,p,g <o,
is continuous and bounded over that set, and satisfies a Lipschitz condi-
tion in the last two variables.

A local existence theorem is given here in which the boundary fune-
tions have a Lipschitz condition imposed rather than being of class C’,
and f(x,9,2,0,9) = 9(x,y,2)p + h(z,y,2)q + j(x,y,2) is required to be
continuous over a more restricted set than that used by Diaz resulting
in the convergence of the approximating functions over a subset of the
original set rather than over the entire set defined by z, <z < %, + a;
Y=y =19y, +b. The fact that the boundary functions need not have
first derivatives defined over their entire domains of definition results
in the limit function not necessarily having first partial derivatives, nor
a cross derivative defined over its entire domain of definition. The notion
of an ordinary derivative [7] for an interval function is used to replace
the cross derivative.

This is a correction of a stronger result announced earlier by the
author (Abs. 550-15, Notices, AMS No. 1958).

Most of the material in § 1 can be pieced together from the literature
[3], [4], [5], [6]. The definitions and theorems needed will be stated here
for convenience and in some cases proofs will be outlined as details in
the method of proof are needed later in the paper and in some cases
notation to be used later is established.

1. Preliminary definitions and theorems. By line interval will be
meant a closed interval a < x <b. By plane interval will be meant a
rectangular disk ¢ <2 <b; ¢ <y < d. These will be denoted by [a, b]
and [a,b;c,d]. Suppose g(x,y) is a function defined over [A4, B;C, D].
We define an interval function G from g as follows. Suppose [ =
[a,b;¢,d] C[A, B;C, D], then G(I)=gl:|¢ = g(a,c) — g(b,c) — 9(a,d) + g(b,d)
(with a similar notation G(I)|,-, = g(a, c) — g(a, d) ete., for a function of
a single variable). G is an additive function. In what follows it is
assumed that all points and intervals considered are in [4, B;C, D]. It is
easily seen that adding to g functions of the single variable x or ¥ does
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not change G. It will be convenient to do this at times.

We shall say ¢g is nondecreasing if G(I) = 0 for all I and of bounded
variation if G is of bounded variation. It is not difficult to show that
if g is of bounded variation then it is the difference of two nondecreasing
functions and conversely. We will say that g is anchored if on some pair
of lines x=a, y=0, g=0. If g is nondecreasing and anchored then
for each point P(x,y) the eight limits g(x+, ), g(x+,y+), 9+, y—),
g(x—,y), 9(x—,y+), 9(x—,y—), 9(x,y—), and g(z,y+) exist and the
set of all points for which any of these limits differ from g(x,y) can be
covered by a countable collection of line intervals each of which is parallel
to one of the axes. If g is of bounded variation and for * = @ and y = b,
g(a,y) and g(x, b) are of bounded variation then g(a,y) and g(x, 8) are
of bounded variation for each « and each B. G is said to satisfy a
Lipschitz condition if there exists a number M such that |G(I)/4I| = M
for all I. ¢ is absolutely continuous means G is absolutely continuous.
A Lipschitz condition implies absolute continuity which implies bounded
variation.

From McShane: A sequence of measurable sets E,, E,, -+ converges
regularly to a point x, if there exists a set {Q,} of cubes (squares in our
case) with centers at «, and possessing the following properties. For each
n, the cube @, contains the set E,. As 7n tends to o, the side of Q,
tends to zero. There is a positive number « such that mE, = am@, for
each n. « is called the modulus of regularity. We will be concerned
of course with the case in which E,, E,, --- are plane intervals. A Vitali
covering theorem follows.

We now define the ordinary derivative of an interval function which
we can apply to G and associate with g,, in a certain way. Let ¢(&)
be a function of sets which is defined for all closed intervals contained
in an interval I,. Let x, be a point of I,, The ordinary upper derivate
Dg¢(z,) and the ordinary lower derivate Dg¢(x,) of ¢ at x, are respective-
ly the greatest and the least of all numbers I for which there exists a
sequence {I,} of closed subintervals of I, containing x,, converging regular-
ly to #, and having limit [¢(I,)/4L,] = 1. If Dgé(x,) = Dg(x,) then this
number is denoted Dg¢(x,) and is called the ordinary derivative of ¢ at
%,. By the ordinary derivative of ¢ at the point (x,, ¥,) will be meant
DG(x,, y,) and will be denoted Dg(x,, ¥,). If g possesses a cross deriva-
tive g¢,, in some open neighborhood of (x,, ¥,) which is continuous at (x,, ¥,)
then Dg(xy, ¥o) = 9uy(%o, ¥0).

THEOREM 1.1. If g is of bounded variation over the plane interval
I the Dg exists almost everywhere on I.

THEOREM 1.2. If g satisfies a Lipschitz condition with constant M
over I =[a,b;c,d] then Dg is Lebesque integrable over I and if g 1is
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z(y
also continuous over I, then g(x,y) = g(x, ¢) + g(a,y) — 9(a,c) + S S Dag.
An outline of a proof will be given since the method of proof here
motivates the procedure of §2.
It is sufficient to show that there exists a sequence {h"} of step

functions which converge to Dg a.e. on I and are such that {gzgyh’”}

aJce

forms an equi-absolutely continuous collection over I, [7, p. 171] since
Dg < M on I. For each positive integer n subdivide each of [a,b] and
[e, d] into n subintervals of equal length. We now have n’ congruent
subintervals {I"} for each n which are similar for all n. Define

h(x, y) = G(I%)] 41} if (x,y) is interior to I
= 0 elsewhere.

It follows at once that Sx e gatisfy a uniform Lipschitz constant

(namely M) and hence are eqlilic-absolutely continuous and that A" — Dg
a.e. on I. In order to get the formula of the theorem we adjoin boundary
terms to A" in the following way.

F(@,y) = 9(@i-1, Yia) + [GUD) o=, [ AYI (Y — Yi-1)
+ (G y=y,_ | 42] (@ — :-)) + h*(@, Y) (@ — 2;-)Y — Yi-1)
S"(®,y) = Py, c) + Py(a,y) — 9(a,c) + Hyh

where Pyg(x, c) = ([9(%;, ¢) — g(w;_y, )]/ dw) (@ — @;-y) + 9(®i-1, ©)
Tig =T =,

Py(a,y) = ([9(a, ¥;) — 9(a, y;-)/ 49}y — y5-2) + 9(a, Y;-2)
Yia =YY, .

f™ converges uniformly to g and Pyg(x,c) and P,g(a,y) converge uniform-
ly to g(z,c) and g(a,y).

In order to treat the problem at hand some consideration must be
given to first partial derivatives. The following theorem will prove
useful.

THEOREM 1.3. Suppose I = [a,b;c,d] is an interval, g satisfies a
Lipschitz condition over I, g(a,y) and g(x,c) are of bounded variation
n y and x respectively. g, and g, exist a.e. on I

Inasmuch ag the author knows of no reference to this theorem an
outline of a proof is given. Taking into account the remarks in the first
paragraph of this section, one need consider only an anchored nondecreas-
ing function over I which satisfies a Lipschitz condition. There is no
loss in supposing I in the first quadrant. For each rational » in [¢,d]g.(x,7)
exists a.e. on [a,b]. Denote the union of the exceptional sets on [a, b]
for these rationals by S. S has length zero. It follows now that for
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each t in [a, blg,.(t, y) is nondecreasing over the set of [¢,d] for which it
is defined. Suppose now ¢ is in [a,b] — S, then g,(¢,y) exists for all
rational y. Suppose % is not rational, then from the quasi-continuity of
9.(t, y) for each ¢t and the Lipschitz condition on g it follows that g.(¢, %)
exists. Hence, there are no further exceptional points and the set of
all exceptional points is of plane measure zero.

2. An existence theorem. Suppose o and b are functions defined
over 0 =2 <X, 0 <y =< Y respectively, not both the zero function,
a(0) = b(0) = ¢ and each of a and b satisfy a Lipschitz condition with
constant K > 0. Denote by %k the max absolute value of a and b on
their ranges. Suppose there exists a number o >\ > 1 such that
9z, ¥, 2), h(z, ¥y, 2) and j(x, ¥, ) are continuous over the interval
[0, X;0, Y; —\k,\k]. For convenience write

f@,9,2,0,9 =9, y,2)p + Mz, y,2)q + 5(%,¥,2) .
Denote by R the interval

[0, X;0, Y; —\k,\e; —(K + L), (K + L); —(K + L), (K + L)]

for some 0 < L < o, and by M the max|f| over R. Consider the planes
P:(K+Lx+k=2 P:(K+Lx+k=—2 P:(K+Ly-+k=
2, P,:(K+ L)y + k= —z and their intersections x = (A — 1)k/(K + L);
¥y = A\ — 1)k/(K + L) with the planes 2 = M and z = —\k over the first
quadrant. Now choose A so that A < min{X, (A — 1)k/(K + L)} and
AM < L; and B so that B < min{Y,(» — 1)k/(K + L)} and BM = L.

THEOREM 2.1. There exists a function u defined on [0,A;0, B]
which is continuous and satisfies a Lipschitz condition on [0,A;0, B]
and such that u(0,y) = b(y); u(x, 0) = a(x) and

Du(z,y) = 9(x,y, wu, + b, y, wu, + j,y,u) a.e. on [0,4;0,B].

Proof. The proof is by construction. A sequence of functions will
be constructed, much like the procedure in Theorem 1.2, the sequence
being uniformly bounded, equi-continuous and satisfying a uniform
Lipschitz condition. Ascoli’s theorem asserts the existence of a uniform-
ly convergent subsequence and then it will be shown that the limit of
such a subsequence is indeed a solution. N

For each positive integer n consider the sequences {jA/n}/—, = {7}/
and {kB/n}_, = {k}i_, which subdivide [0, 40, B] into n* congruent sub-
intervals {I},} for each n which are similar for all n. Now for each 7
a function u* is defined by recurrence relations in the following way.
First u" is defined along the axes in such a way that u"(x,0) is a poly-
gonal graph of chords joining consecutive points (7, a(j)) of the graph
of a and a similar definition holds for u*(0,%) with respect to b. u" is
next defined over I as a ruled surface
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W@, y) = ¢ + mu@ — 0) + my(y — 0) + £, 0, ¢, my, ma)@ — O)(y — 0)

where m, is the slope of the chord joining (0, ¢) and (1, a(1)) and similarly
for m,. The procedure continues as follows. Suppose for a given interval

I u" has been defined along the ‘“‘aft’’ sides, z = j/}/l y =k — 1, then
over I

A~ 1 ~~ L
u(x, y):u”(j-l /c—l)+m1(x—3—1)+mz(y—k—1)

a —
+f(3 —1,k—1,u (.7 —1,k—1),m,m)x —j—1)(@y—k—1)
where m, and m, are the slopes (already determined from previous com-

putations) along the ‘“aft’” x and y sides of I7, respectively.

For each %, the graph of " consists of n® ruled surfaces, each of
which is ruled in both the x and ¥ directions, the adjacent ruled surfaces
having common line intervals on their boundaries. These surfaces can-
not have extremum except on their boundary sets, hence if it can be
shown that the boundary sets are uniformly bounded it will follow that
{u"} is uniformly bounded.

Denote by D the domain bounded by the planes P, P, P, P, y =0,
=0, x=A and y = B. Suppose 7 is a posmve integer and consuder
the boundary pieces of u" on I}, for x = () Y = 0 ¢ =1 and Yy = 1 re-
spectively we have for the slopes

ma| = 1B(D) — b(O)/1| < K < K + L

m.| = llad) — a(@)1] < K< K + L

imy + £©, 0, ¢, my, m)z| < K + M-1< K+ MA<K + L

imy + £®,0, ¢, my, m)y| < K+ M-1< K+ MB< K + L
hence, since the pieces start in D, they must remain in D. It is easily
seen that the boundary pieces along the axes are in D since all have

slopes bounded by K, therefore it is sufficient new to investigate only
the ‘‘fore’’ boundaries of each interval. Consider the interval I} and

denote by my(7, k) and m,(J, k) the slopes of the boundaries along Y= k
and z =J. Suppose that the relationship |m.(p,q)| < K + Mq holds
for p=20,1,....,5; ¢ =0,1,....,k — 1 and |m«p, q)| < K + Mp holds for
»p=01,..,7—1,9¢=0,1,..., k. We have just shown that these do
for p = ¢ =1 and along the axes it was observed that K would suffice
for a bound.

mld, )= mi, k=)
AL E T w1, B 1), ma(d, b — 1), ma(i — 1, K) (y — E—1)

and

=
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my(J, k) = my(j — 1, k)
S [ S R N
-1 k-1u(G—1,k—1), m(, k — 1) my(s —1, k))(x—5—1)

hence

€L | 1
Imz(j,k)lélml(j,k—l)l+M-1§K+M(k—1)+M-i=K+Mk<K+L

and

. . ~ o~ ~ ~
[my(7, k)| < |my(5 —1,E) |+ M 1<K+ M(j—1)+ M-1=K+Mj< K+1L,

thus the induction is complete, the slopes of the boundary pieces are
bounded by K + L and hence since u" starts in D it must remain there
for each n and therefore {u"} is uniformly bounded.

It follows easily from this argument that %" cannot have a slope in
either the z or y directions as great as K+ L, and this gives the equi-
continuous property at once. Suppose % is an integer, ¢ >0 and d =
e/2(K + L), (a, b) and (p, ¢) are in [0, A;0, B]; |a —p|<d and |b—q|<d.
Then

[u(a, b) —u"(p, @)| = |[u"(a, b) — u"(a, ¢)I(b —q)/(b — q)|
+|[u™a, @) — u"(p, ¢)(@ — p)a —p)| <2AK+ L)d =e,

which establishes the property.
Let V[I};, w*] denote the total variation of u" over I:. It is easily
seen that

—_ AN

o~~~ :
Vi, v =f—-1,k—-1Lu(j—1,k—-1),

m(7, k—1), my(5—1, k))[-i-i = M~i-i so that V][0, A4;0, B],u"] < MAB
for all n, hence {u"} is uniformly of bounded variation. A closer look at
the preceding statement shows that for any subinterval I=[a,b;c, d] of
[0,4;0,B]V][a,b;ec,d],u"] = M(®b—a)c—d) and hence |U™I)/4I|=M
and {u"} satisfies a uniform Lipschitz condition with constant M.

Now making use of Ascoli’s theorem [1] there is an infinite sub-
sequence {u""} of {#"} which converges uniformly to a limit function on
[0,A4;0, B]. Denote one such subsequence by {#™} and its limit by wu.
Since each u* is continuous so is #. Furthermore w satisfies a Lipschitz
condition with constant M, u(x, 0) = a(x) and u(0, y) = b(y). From Theorem
1.2 we have

w(@, y) = a(@) + by) — ¢ + g:gjpu .

We have yet to show that Du = g(z, ¥, wu, + h(x, y, wu, + j(x, y, u)
a.e. From Theorem 1.8 we know that u, and u, exist a.e. on [0, 4;0, B].
Now recall that in the sequence {u"} and therefore in {u™} it was observed
that no slope in the « or y directions could exceed K + L, therefore
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lu, | =K+ L, |u | <K+ L, |lur| <K+ L and |u"| < K + L where u? and
uy are the slopes in the usual sense at points where the derivatives
exist and are the average of the left and right limits elsewhere.

We first show that u, and u, are Lebesque integrable with respect
to x and y respectively. It will suffice to show one, say u,. Recall the
technique of Theorem 1.3. Here the function was first anchored and
then decomposed into nondecreasing functions. « can be anchored on
the axes by considering Mz, y) = w(x, ¥) — a(x) — b(y) +c. The only effect
of this on u, is the removal of a’(x) which is Lebesque integrable since
a is absolutely continuous. Recall that u satisfies a Lipschitz condition,
hence \ satisfies the same condition (i.e., same Lipschitz constant) and
is anchored, hence )\ is absolutely continuous in « for each y and y for

each x, therefore u is also. Therefore u(x,y) — u(0, y) = qux(t, y)dt for
0

each y and similarly for u,. Since g and & are continuous, gu, and hu,
are integrable with respect to # and ¥ respectively. It is eagily seen that
U, i8 the limit a.e. of a sequence of measurable functions on [0,4;0, B]
and hence is measurable and therefore since it is bounded it is integrable
and gu, is also integrable and by Fubini’s theorem

S S gtt== S U 9(t, 2, .t z)dt]dz .

Similarly for u, and hence hu,

S”S”huy - S[Sh(t 2, wyuy(t, z)dz]dt .

0Jo 0 0
Define, for fixed (x,y), a functional 7'(v) such that

Tw) = S [g g(t, z, wyv,(t, z)dt]dz + S [Syh(t,z, u)vy(t,z)dz]dt
0
+ S S 7, z, u)dtdz
0Jo

and, again ag in Theorem 1.2 write the functions {#™} in integral form,

u™x, ¥) = Pra(x) + P"b(y) — ¢ + S S f(y -1, k 1, um(j -1, k & —1),
my(J, b —1), m(5 — 1, k))dtdz

where Pa(x) and P;"b(y) are the mth polygonal approximations to a and
b respectively. Recalling that f = gu, + hu, + 7 we have,

um(x’ y) = lea(x) + szb(y) —C+ ngyg(.;:t/ly kT]:y um(j - 1’ m))
m, k — 1)dtdz + S S WG ~1, F=1, un(j =1, F=T))m(j — 1, k)dtdz

4 S Soj(j =1, =1, wn(F 1, F—1))dtdz .
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Now define
(@, ¥) = @) + bly) — ¢ + g S o(t, 2, u(t, 2)ur(E, 2)
+ R(t, 2, u(t, 2))uy (¢, 2) + j(¢, 2, u(t, 2))dzdt .
Now consider
un — 0" < | Pra—a|+ P —b] + | |'lg]-|mis, b — 1)
—uzt, )ldtdz + | ' 0G=1, B, w1 F=D)
—9(t, 2, u(t, 2) |- lur(t, 2)|dtdz + ny [h|-|my(5 —1, k) — up(t, 2)|dtdz
I A A ~ 1
+ [ 010G T L e, B0 — it 2, 2) st 9)ldtd
0J0

Sfy N L o~ .
{161 T, w1 B0 — it 2wt 2) ldtdz

Taking into account that Pra—a, PP b—b, u™—u uniformly and that
g, h, 7 and w are uniformly continuous and %™ and %™ are uniformly
bounded we can restrict our attention to the terms involving

[my(7, k — 1) — u(t, 2)| and [m(5—1, k) —uy(,2)| .
Recalling the definition of w™(t,2) we have at once that each of these

~ L
is uniformly less than M-1 and M-1 respectively and hence converge uni-
formly to zero. Hence we have that |u™—v™—0 and hence v™(x,y)—>u(x,y),

and hence that T(um)—>g S Dwu, for each (¢, y) in [0, 4,0, B].

We shall now show that T'(u™) — T'(u) and hence obtain g(x, y, w)u, +
r(zx, y, wyu, + j(x, ¥y, w) = Du a.e. Suppose ¢ > 0. Since g and  are con-
tinuous over [0, 4;0, B] they can be approximated by funcions g, and 4,
which are C’ (and hence absolutely continuous in 2 and in y) and are
zero on the boundary of [0, 4;0, B] and such that

S:S:lg — g, < ¢/12(K + L)AB and SOS”M — b, * < ¢/12(K + LyAB.
Denote by E a common bound on |g,| and |k,|]. Now consider
| T — T)| < | T~ w) ~ Ty~ w) +| Ty —w) — | |41
where T, is T with g and % replaced by g, and h, respectively.

7@~ 7| = || 0 - gz — )t Jae|
| [TV = naws —wpaz]ae| + [ (][ oot — wie |oe|

+ [ S[Sh(um — )iz it !



AN EXISTENCE THEOREM FOR A GOURSAT PROBLEM 727

the terms in j(x, v, w) adding to zero. In the first two terms on the right,
apply the Schwartz inequality, recall that |u"—wu,|<2(K+ L) and
|uy —u,| < 2(K+ L) and obtain ¢/3 in each case for an upper bound.
In each of the second two terms, (since g, and %, are absolutely con-
tinuous in z and y respectively) an integration by parts is carried out

and we have
([~ o]+ [T - ]

now since u™—u uniformly, choose N large enough that SVYI U™ —u|< e/6E
0J0

for m > N and obtain | T'(u™) — T'(u)| < e for m > N. This establishes the
theorem.

= 2¢/3 +

REMARKS. The argument here depends heavily on the fact that,
except for the term in j(x,y, %), T is a linear functional. For example
if f(x,y,z2,p,q) = 9(x,y, 2)p*, the argument fails. It also depends upon
the fact that u?, u,, 4} and u, all have a common bound and that the
convergence of u™ to # is uniform. This indicates that there is little,
if any, hope of using this technique to obtain global solutions for the
quasi-linear equation. It is of interest to note, however, that the method
can be extended to equations of higher order if the linearity conditions
in f are maintained and no derivatives of order greater than one occur

in f.
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