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1. Introduction. In a recent paper [3], D. V. V. Wend made use
of the Green’s functions g,(%, s), g.(x, s) for the boundary value problems

u” = 0; w(a) = u(a,) =0, (0, < ay),
u'"" = 0 u(a’l) = u(az) = u(as) =0, ((1,1 <a, < a) .

In particular, he showed that if @, = 0, then

lg:(x, )| < ay, |gs(x, 8)| < a3

for o, <w,s < a, or a, <%, s < a, respectively. He conjectured that if
9.(%, 8) is the Green’s function for the boundary value problem

(1.1) u™ =0; wa) =+ =u@,) =0, (@, <a,< ---<a,),
then
lgn(x9 S)] < a’z_ly al é x; S § a’n ’

(if @, = 0) and states in a footnote that this conjecture has been verified
for n < 6. Assuming this conjecture valid he uses the inequality to
obtain a lower bound for the mth positive zero of a solution of the
differential equation

(1.2) Yy + fle)y =0

where f(x) is continuous and complex-valued on 0 < # < o. In this proof,
all zeros of the solution are counted as though they were simple zeros.

In this paper, we consider a more general boundary value problem
allowing for multiple zeros of y(x). Let g.(z, s) now denote the Green’s
function of the differential system

) —
y™ =0,

O3 lya) = v@) = v"(@) = - = y* (@) = 0 . 1<is<r,

wherea, < a, < +++<a, 0=k, bk, +k,+ -+« +k,+r=n. In§2 we
shall prove that

fllr = a1 e
(14) lgn(x’ S)I = (’IL . 1)1 (ar — al) = ( n > n!

for a, < 2, s < a,. In the case r = n, Wend’s conjecture is thus verified,
Received September 28, 1961.
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and improved. In §3, we apply this inequality to differential equations
of the form (1.2), and more generally to nonlinear differential equations

(1'5) y(n) =+ f(xy Y, y” ] y(ngl)) =0 ’

to obtain lower bounds for the mth zero of solutions. The inequality
(1.4) also leads to an extension of an oscillation criterion of Liapounoff
for the case n = 2.

2. The Green’s function. If g,(x, s) denotes the Green’s function
of the system (1.3), then g, satisfies—and in fact, is defined by—the
three conditions:

1°. ¢., 9., -++, g»? are continuous functions of (x, s) on the square
a, <%, s <a, while g is a continuous function of (x, s) in each of
the two triangles o, = <s=<aq, and a, <s = 2 < a, with

g (54, 89) — g8 5=, 8) = 1, @, <s<aq,.

2°. g (x,s) = 0 in each of the two triangles above.

3°. For each s, with a, < s < a,, g.(x, s) satisfies the n boundary
conditions of the system (1.3).

In the above statements (and throughout this paper), all derivatives
are taken with respect to x. For a thorough discussion of Green’s
functions for much more general systems than (1.3), see Toyoda [2].
The existence of g, depends on the fact that the system (1.3) is incom-
patible. We need not verify this directly since the result will follow
from our method of proof which is by induction.

Although the conditions 1°-3° define g, on the square a, <z, s < a,,
we want to extend the domain of definition of g, to the entire plane.
We assert that this can be done in such a way that

(L) 9. 9. <+, 95? are continuous for all (x,s), while gi*™ is
continuous in each of the half-planes # < s and s < %, with g" (s+, s) —
g (s—,8) = —1, —oo <8< oo,

(II,) g (x,s) =0 in each of the above half-planes.

(ITI1,) For each s, (—» < s < =), g,(x, s) satisfies the » boundary
conditions of the system (1.3).

Iv.,) g.(z,s) =0 if s < min(a, x), or s = max (a,, x).

We proceed to prove these assertions by induction. Suppose they
are valid for any system of the form (1.3). If a; is any zero of a
boundary value problem of this form for the equation y™+" = 0, the
corresponding set of boundary conditions is either of the form (1.3) with
k; replaced by k; + 1 (in case a; is not a simple zero for the new system),
or is of the form

2.1) {y(“f) =9y(a)=" - =y*(a)=0,1=i=r 1+#7],

y(aj) =0 ’
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where now &k, + <+« + k;, + ks + -+ + k. +7r=n+ 1. Let g, (2, 8)
be the Green’s function for this new system. We assert that

22 (@, 9) = —{@ — 90., 9)

_ (a; —(Z)gj:?;l)"(a ) (*x —a )ch+1H (Zj:zi>ki+1}

ﬁéJ

in the first case noted above, while

1 € — a ki+1
(23) ol 8) = = {(@ — 90,0, 8) — (@ — 9)ga(a ) H( =)
in the second case. Note that (2.3) is formally included in (2.2) by setting
k; = —1 in (2.2). In the sequel we work with (2.2) only; (2.3) will follow
by making use of this formal identity. We remark that ¢, is defined
by the conditions 1°-3° in 2(r — 1) ‘‘pieces’’, an explicit determination
of any ‘‘piece’ requiring the solution of # nonhomogeneous linear
equations. For this reason, the recursion relations (2.2), (2.3) may be
of some interest in themselves.
For brevity, set

_ (a; — 8)gi*"(ay, 8) et T r —a; \Mt
Pz, 5) (k; + 1)! (@ — aj)® i:gaég ( a; — ai> ’

For each s, P(x, s) is a polynomial of degree n in z. If k; <n —2 it
follows from our induction assumptions that P, as well as all its derivatives
with respect to #, is a continuous function of (x, s) in the entire plane.
This also holds if %k; =% — 2 because of the factor (a; — s), provided
we define P(x, a;) = 0. We also note that

P(m)(ai,S)EO, Oémékuiij9
(2.4) P™(a;,s) =0, 0<m=<Fk,,
P®*it(a;, s) = (a; — 8)g.1 (ay, )

(In the case k; = —1, the second of the identities (2.4) does not appear.)
Differentiating (2.2) partially with respect to x, we obtain

G, 5) = ;1; (@ — 8)g4x, 8) + g.(, 5) — P'(&, 8},

ial, 5) = %{(m 89y, 5) + 20.(x, 5) — Pz, 8)} ,

9w, 5) = —}%— (@ — )9 (@, 5) + mgi—(z, 5) — P™(z, 5)} ,

l1=m=n+1.
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By our induction assumptions, together with the preceding remarks
concerning P(z, s), it follows that g,.., 9/41, *++, 9\%3% are continuous in
the entire plane. The same is true of g¢{7", because of the factor
(x — s). Finally, for x + s,

9@, 8) = = {(@ — $)g(x, 5) + ngr(z, 5) — POz, 3)}
n

so that

g8+, 8) — guti(s—, 8) = —i— cn {gV(s+, 8) — grV(s—, s)} = —1,

and condition (Z,.,) is thus satisfied. Condition (II,.,) is also satisfied
since ¢ =0 and P"" =0 in each of the two half-planes z < s and
s = «. For the boundary conditions we have

9@ 8) = L {(a; — )9 (@, 8) + Mg (as, 5) — P™(ay, 8)} = 0
n

for 1<¢=<rand 0 <m < k;, using the first two of (2.4). Using the
last of (2.4), we also see that ¢!/{"(a;,s) =0, and (III,,,) is satisfied.
Finally, suppose s < min (a,, ) so that g.(x,s) =0, and hence also
gt (a;, 8) = 0 since s = a, =< a;. Thus, by (2.2), the first of conditions

(IV,.,) is satisfied, and similarly, so is the second.
For n = 2, we have explicitly

xr — 8, wésy
——-OO<S_§a1,
0, s <z,
(x — a)(a;, — 35)
Uy — Oy ’ =5
2
(2.5) gy, s) = e, <s<a,,
(S —a'l) (a/z— %) <
’ :x9
a; — o,
0, r =< s,
a; =8 o,
s —«, =z,

from which one easily verifies that the conditions (I,)-(IV,) are satisfied,
thus completing the induction for all n = 2.

Our goal now is to obtain an upper bound for |g.(z,s)|. It will,
however, be easier to work with the related function G,(z, s) defined by

Ign(x, s) = G.(x, s) f[ (x — a;)** for © + a; .
i=1

gy ey, s) = (b, + D! TI (a; — @) G,(a;, s) for 2 = a,; .
m#L

(2.6)

\

We note that for each fixed s # a;, G.(%, s) is continuous for all x. If
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k,<n—2, Gy(x,a;) is also continuous for all z, while if k, =n — 2,
G.(x, a;) has a finite jump at # =a, and is otherwise continuous. (The

case k; = —1 is again included in (2.6), the factor (x — a;)*/*' becoming
unity in this case.) We now have

Goir(@, 8) = G, 8) (@ — @) [T (@ — @), @+ a, .
=1

Using (2.2) and (2.6), we also have

gnJrl(w, S)
— _1__ {(90 — 8) ﬁ (x — a,)"'G,(x, s) — (a; — 8) fI (@ — @) "G (a), s)}
/n =1 fot
= %I:[1 (® — a)"™{(x — 8)G.(%, 8) — (a; — 8)G.(a;, 8)},

so that
2.7 (= — a)Gu(z, ) = —71; {(@ — 8)Ga(z, 8) — (a; — 8)Gu(aj, 9)} -

We note that for all » = 2, (IV,) gives
(2.8) G,(x,s) = 0 for s < min (a,, ) and s = max (a,, x) .

We now prove by induction that

(nil)! a,lx’ =e<s<a,v=8,
1 1
(2.9) |G (=, 8)| = n =D o —a @, <s<a, —wo<lrl o,
1 1

=1 x—a, <SS ® s=.

For n = 2, (2.5) gives

(s — x) _ <
@-D@—n = ITmEED
(az—s) <s
(az_‘x)(az_a/l)’ =
|G2(x!s)|: (S—al) ssx a/1<s<a/2,
(x—a)(a,—a) =7
(ﬂC-—-S) <] <
G-a@—a)y “ ST

from which (2.9) is immediately verified for n = 2.
We will first prove (2.9) under the assumption that g,., has at
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least three distinct zeros. Taking j =1 in (2.2) and (2.7), we have for
—o <8< a, x=s,

Gun@,9) = {22 G0, 9) - =5 G (a, 9)}

x—a, x — a,

=12=% g@s),
n T —a,

by (2.8); hence

G )| = 2 221G, ) = = L.
n a4, — T n! a,—x

Similarly, taking 7 = 7 in (2.2) and (2.7) we obtain for a, < s < «, s < =,

G, )| =L 2= |Gz, 8= L L
n r—a, n! r — a,

Note that the above work is valid whether a, or a, are simple zeros of
0.+ OF not. Also, the first inequality is valid even when r = 2 provided
@, is not a simple zero of ¢,,,, and similarly for the second inequality
provided a, = @, is not a simple zero of g,.:.

In order to complete the induction on the middle inequality of (2.9),
we suppose first that a, < s < a, and s < «. Taking 7 =2 in (2.2) and
(2.7), we obtain

Gun(e, 91 = = {22 |Gy(a, 9)] + 221G, 9) ||
nle —a, L= Ay

< 1 1

“nl oa,—a,

If, however, a, < s < @, and s < z, we again take j = 1, whence

@10)  1Gun(e, 9| = 2 {E25 16w, 9)] + 220G,(0s) ]
n a, T —a,

<1 _1

,
n! a,— a,

if @, is not a simple zero of ¢,.,, oOr

|Guns(, 8)] = = 2= |G (g, 5) = 2 1
n 1 ni Cl"r - a’l
if a, is a simple zero of g,.;. (In this latter case, we used (2.8) and
the first of inequalities (2.9).)
Similarly, if @, < s< a,_, and z < s, we take j = —1 in (2.7) to obtain
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(Gune, ) = L {22216, 9)] + 2225 |Gy(a,, 9)])
n a — X

r—1 — X r—1

<1 1 |
n a,—a,

If a,.,<s<a, and z < s, we again take j = 7, whence

r

@1 (G, 9 5 3 {22216, )] + L= 16, 9]}

< 1 1
n! a,—a,

if a, is not a simple zero of g¢,,,, or

|G, 8)| = L
n

L8|G (a, 8)| = L1
n a,—a,

r

if a, is a simple zero of ¢,.;.

We now complete the induction in the case that g,., has only two
distinct zeros. For n = 2, at least one of a,, a, must be a multiple zero
of ¢,1.. Suppose a, is a multiple zero of g,,,. Let g,(x, s) denote the
Green’s function for the boundary conditions

Y(@,) =y'(a) =+ =y*(a) =0,
y@a) =9y'(a) = -+ =y*(a)) =0,

and g,..(x, s) the Green’s function for these boundary conditions with
k, replaced by k, + 1. For any a with a, < a < a,, let g,.,(%, s; ) denote
the Green’s function for the boundary conditions of g, together with
the condition y(a) =0. Let G,(x, s), G..(, 8) G,..(, s; @) denote the
related functions defined by (2.6). By (2.7)

G, 8)=i{ T3 G, 5) — 2T G (ay S)}, © + a,,
n x""az x—aZ
G, 550) = = {2=2 G0, 5) - L5 G(a,0)}, wra.
n \y —«a r—«Aa

For each s # a, and « +#+ a,, we have

lim G,.(z, s; @) = G,4.(2, s)
a—ag

since G,(a, s) is a continuous function of a for any s +# a,. Since we
have already established
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1 1

— , —oo<s<a,rt=s,
n a,—x
G . < 1 _1 0, <8<y —0 &L ®
ln+1(x!8ya)I: n! (1/2—(11’ 1 27 v ’
1 1
. ’ a/2<8<00,8§x,
n x—a,

the same result holds for |G,..(«, s)|. The proof of (2.9) is now complete.
From (2.6) and (2.9) it follows that, for each n = 2, we have

I & — a[m*
(2.12) |[g.(z,8)| = == , @, <s<@a, —wo<lrl o,
(n— D! (a, — a)

We now prove that

@13) Il |z — a5+ < (" — I)H (@ — @) for w=<zr=a,,
i=1 n n

which will complete the proof of (1.4). Here, r=2, 0=k, a,.<a,< -+ <a,,
and k&, + k,+ ++« + k., + r =n. We note that equality is attained in
2.13) for r =2,k =0,k, =n — 2,2 = [(n — Da, + a,]/n, or for r = 2,
kEk=mn—2,k =0, and =z = [(n — Da, + a]/n.

Instead of proving (2.13) in the form stated, we will prove

(2.13) if;[ (x — ai)l = <n — 1>ﬂ_1 @, — a)" fora, <z =<a,,
=1 n n

where a, < a, < -+« < qa,. As a first step, we prove

@19 |@- ai)' < max {(x S -0,
=1 (x - al)n_l (a’n - x’)’ o -

To this end, suppose a; < x < a@;.,. If x—a, =a, —x, then

=@ —a)(@,— 27 =@ —a) e, —2);

@H;(x - a;)

ifzx—a,=a,—2 (and a; < 2 < a;4,), then

= (@ —a)(a, — @) = (@ — a) (@, — @),

Il @ — a)

proving (2.14). Now, setting fi(x) = (x — a,) (@, — x)"*, we see that
fi(z) has an absolute maximum on ¢, < < a, when ¢ = [(r — 1)a, + a,]/n.
Similarly, fixz) = (# — a)* (@, — ) has an absolute maximum on
a, <% <a, when = [(n — la, + a,]/n. The inequalities (2.13,) and
(2.13) now follow by computation.
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There remains the question as to whether the above inequalities
are best possible. The inequality (2.9), or rather the restriction

1
n— 1! (a, —a)’

(2'15) [Gn(xr 8)[ = ( C7/1< s < a,, — << o y

is best possible. Indeed, equality holds in (2.15) for precisely the cases
in which equality was attained in (2.18), thatis, forr=2,k,=0,k,=n—1
and for r =2,k, =n — 2,k, = 0. For the first of these cases we shall
show that

. 1
2. l n 1 2. =
(2.16) Jm [Gu(@ @)l = O

which will prove that (2.15) is best possible. Indeed, taking j = 2 and
8 =a, in (2.7), we have

G2, ay) = % Gn(.’l?, a;), ¢ #a,,

so that (2.16) holds for (n + 1) if it holds for n. One easily verifies
that (2.16) is valid for n = 2. Similarly, for the second case noted above,
we have

) _ 1
z]ira?_ IGn(x; al)l - (n _ 1)! (a2 — al) .

It seems likely that equality is possible in (2.15) only in these two cases.

Nevertheless, the inequality (1.4) is not the best possible, even in
the simple case r =2,k = 0,k, =1, when (2.15) is best possible. We
leave it to the reader to verify that in this case

WMM§ﬂ§5£w—w,

with equality holding for s =1/2{8 — V' 5)a, + (V' 5 — 1)a} = s,, and
z = (a8, — ad)/(a, + s, — 2a,). This is an improvement over our estimate
(1.4) which, for this case, is

mmmg%@—w.

3. Applications. Consider the ordinary differential equation

(8.1) Y™ + f@, 9, Y, ey ) =0,

where we assume that f is a continuous, complex-valued function for
e, =% =a, and for all y,y’, +++, ¥, and
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(3.2) | f @, y, -+, ¥ )| = h(2) |y]

in this domain, where Z(x) is a nonnegative continuous function with
hz) =0 on a;, =% = a,. Suppose (3.1) has a nontrivial solution y(x)
satisfying the boundary conditions

3.3) ya) =y (@) =+ =y*a) =0, 1=i=7r,

where ¢, < a, < - <, 0=k, kb, + ks + <+« + k, + r=mn. Then y(x)
is a solution of the linear nonhomogeneous equation

y(n) = ——f[w’ y(x)i yl(x)r ] y(n—D(x)]

which satisfies the linear homogeneous boundary conditions (3.3). By
Theorem 1 of [2] it follows that y(x) satisfies the integral equation

@9 v = |70 9f1s, 96, -,y Els, w=w=a,,

where g,(x, s) is the Green’s function of the system (1.3). Taking « to
be the point—or one of the points—at which |y(x)| assumes its maximum
value on a, < ¢ < a,, we obtain

3.5) 1< |"1g.(0, 9)[ Ms)ds ,
a1
by (3.2). Hence, using the inequality (1.4),
(3.6) 1< (n — 1)"_1 (a, —a)" ™ S"'rh(s)ds .
n n! ag

The inequality (3.6) is thus a necessary condition for the existence
of a solution of the boundary value problem (3.1), (3.3). If the system
(1.3) is self-adjoint, we may improve this necessary condition. The system
(1.3) is self-adjoint if n = 2m, r = 2, and the boundary conditions are

{y(al) =y(@) =+ =y""(a) =0,

3.7 ,
Y(@) = y'(@) = - =y" P (a)) = 0.
The Green’s function is now symmetric, and by (2.12) we have

19,2, 9)| = 1g,(s, 2)| < 5= @) (@ — )"

= em =Dl —a)’ o <s<a,.
On substituting this in (3.5), we obtain

1 ay
3.8 1 S i om
ey < (@m — 1)' (@; — a;) a1(8 @) (a2 s) h/(S)ds

as a necessary condition for the existence of a solution of the boundary
value problem consisting of (3.1)—with n = 2m—and (3.7).
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We may adopt a different point of view and use (8.6) or (3.8) to
obtain an extension of the following oscillation criterion due originally
to Liapounoff (cf. [1]): If ¥"(x) and y"(x)y~(x) are continuous for
a, = x = a,, with y(a) = y(a,) = 0, then

4

2 — Uy

(3.9) |1y do >
L%

By taking f = — y™(z)y~'(x)y in (3.1), h(z) = [y (@)y~'(x)| in (3.2), (3.6)
leads to the following extension: If y™(x) and ¥y (x)y~'(x) are continuous
for a, £ x < a,, and y(x) has n zeros (counting multiplicity) including
a, and @, on a, =< x =< a,, then

n!
(@, —a) "

610 [Tlymenr@lde > (-2)7

This reduces to (3.9) when » = 2. Similarly, using (3.8) in the self-adjoint
case: If y°®™(x) and y®™(x)y~(x) are continuous for a, < x < a,, with
Y (a) =y (ay) =0 for 0 =<k <m — 1, then

@1 [ @ - a)y@— o |y Epe)] de > @m - Dl —a),

(3.12) [y d > Em = IE

The inequality (3.12) also reduces to (3.9) when m =1, but is better
than (3.10) for n = 2m = 4.

Next we turn to the question of obtaining a lower bound for the
mth zero of solutions of the linear equation

(3.13) Y™ + h(x)y =0

on an interval I , < x < oo. ef. [3, Theorem 5]. We suppose that h(x)
ts continuous, complex-valued, with h(x) =0 on I, and

(3.14) S”|h(m)| dr = K .

Ifa, <a,< -+ < a, are m consecutive zeros of any solution of (3.13)
on the interval I, then for m =n

N 1/ (m—n+ 1)[(n—1)]
(3.15) Ay > @, -+ p 7 .

To prove this, we first note that for the equation (8.13)—but not
necessarily for (8.1)—no solution can have a zero of multiplicity greater
than (n — 1) at any point of I. Hence, if 0, £ a;1; < +++ < @4;4,—, are
7 consecutive zeros of a solution of (3.13) on I then a; < a;;,_;, and (3.6)
applies to give
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Fi+n—1

(3.16) (n n - )““n! < (@isr — @) S ()| dz .

Suppose m =gqn + s, where ¢ =1,0<s<n-—1, so a,, = a,,. Taking
t=1,n+1,---,(¢q — 1)+ 1in (3.16) and adding these inequalities gives

n—1 q Lin
( L 1) an! < 1;1 [@in — Gl—iyna]™™ S i |h(x)| de ,

- -1 n+1

whence, since gn =m —s=m —n + 1,

(3.17) ( n 1)” m—n + 1) [ — D] < (@ — a) S“’”;h(x)l de .
_ o
The inequality (8.15) follows at once from (3.17). As in [3], (3.17) can
be used to obtain a lower bound for a, even when K = oo,

In case m > 2n — 1, these inequalities can be improved slightly, as
follows. If m =qn + s, withg = 1,0 < s < n — 1, there exists precisely
one integer r = 1 such that

m—r—1D=E=m<@+n—1r.
Now taking ¢ =1,%#, 2n — 1, -+, (r — 1)n — (r — 2) in (3.16), and
proceeding as above, we obtain
Arp—(r—1)

( L 1>n_lfrn! < [@rn--n — @:]* S |h(@)| de .

n — o

Since r(n — 1) + » > m and a,, = A,,_»—y, We have

n ”-lm'—n' . n—lgam .
(25) " B < @ — 0 | i) | o

this yields the estimate

3.18 " n__ i/ (m — nynl
(8.18) Gn >0t T Vom—DE

which is a slight improvement on (3.15) for m > 2n — 1.
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