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1. Introduction. In this paper we derive certain a priori in-
equalities which are useful for obtaining bounds in the interior- Neumann
problem for second order elliptic partial differential equations. In es-
tablishing these inequalities by our methods it is necessary to obtain
lower bounds for the inverse of the Poincaré constant (¢, of eq. 3.3)
and the first nonzero Steklov eigenvalue (p, of eq. 3.11). An optimal
Poincaré inequality for convex domains in n-dimensions was given by
Payne and Weinberger [5], and a method for obtaining lower bounds for
p, for m-dimensional star-shaped regions was indicated by Payne and
Weinberger [3]. However, to the authors’ knowledge, no explicit lower
bounds for p, and p, for general n-dimensional regions have previously
been given. Lower bounds for these constants which lead to the above
mentioned inequalities in the Neumann problem are of interest in them-
selves and should prove useful in other applications.

For the special case of the Laplace equation other methods for
deriving bounds for the Dirichlet integral in the Neumann problem
appear in the literature (see [2], [6]). For starshaped regions a method
similar to that proposed here was obtained in [3]. Bounds in exterior
Neumann problems were given in [4].

2. Preliminary inequalities. Let K be a simply connected bounded
region with boundary C in Euclidean n-space. In R we assume that
the operator L given by

2.1) Lu = (a¥u ;) ;

is a uniformly elliptic operator, defined for sufficiently smooth functions
#. In (2.1) ,2 denotes partial differentiation with respect to the coordi-
nate ; and the summation convention is assumed. The coefficient
matrix a* is symmetric and the condition of uniform ellipticity may be
stated as follows: There exist positive constants a, and a, such that
for every real vector (¢, ---, £,), the relation

(2.2) a3EE S GIEE S 0,5 EE

is valid uniformly in R.
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We consider now an arbitrary point of R which we choose to be
the origin. Let S, be the interior of a sphere of radius @, with center
at the origin and such that S, © R. The surface of the sphere will be
called X,. We denote by R, the region R — S,, where S, is the closure
of S,.

Let u be any sufficiently smooth function in R + C and let f° be
a sufficiently smooth vector field defined in B,. Then, by the divergence
theorem, we have

(2.3) § finuids = — f finuds + S fiutdy + ZS fluu,dv ,
g g R Rg

where 7, is the component of the unit normal directed outward on C.
An application of the arithmetic-geometric mean inequality applied to
the last term on the right of (2.3) yields

(2.4) faf"niu%ls = — ffﬂf"niuzds + S (f?i + zlr—f"fi>u2dv + SRaau,iu_idv

Rq

where « is some positive function in R,.
We assume now that f* and « have been chosen so that

t=fin;,=2K,>0o0n C
2.5) —fn; < K, on %,

fi+ %fif" <0in R,,

where K, and K, are constants. (We shall in a subsequent section
construct vectors f° satisfying (2.5) for certain domains.) Using con-
ditions (2.5) with (2.4) we have that

(2.6) §0tu2ds = K2§ wds + &S w40,
Zq Ry

where @ is an upper bound for @ in R,. Suppose that « is normalized
such that

2.7 f Eauds =0,

Then

(2.8) § uds < ng u, U ;A
Zq Sq

where p, is the first nonzero eigenvalue in the Steklov problem for the
sphere S,. That is
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X.iX.idv
(2.9) P, = min Ssa—_
Lids

Za

where the minimum is taken over all sufficiently smooth functions in
S, which satisfy (2.7). For the sphere of radius @, p, is explicitly
given by

(2.10) p, = 1/a .
Combining (2.6) and (2.8) it follows that

@2.11) f turds < K,D(u, u) = KS w.dv |

[ R
where K, = max (aK,, &), or using (2.5)
(2.12) § wds = (K,/K) D(w, w) .

4

Now from the divergence theorem
(2.13) § rnulds = fng widv + 28 riun dv .

[2) R R\
Using the arithmetric-geometric mean inequality it follows easily that

(2.14) S wdy < 2Tu § wids + 27X D(u, ) ,
R n [ n

where r, is the maximum distance from the origin to C. Inequality
(2.12) with (2.14) yields

(2.15) S wdv < K. D(u, ) ,
R
where
K, = -2"'—”[K3/K1 + E’fy_] )
n n

The preceding inequalities depended entirely on the existence of a
vector field f* satisfying (2.5). In certain cases, as will be shown in a
subsequent section, such a vector field can be explicitly constructed so
as to yield explicit, easily computable constants K, K, and K,.

In some cases it may be that for the region R the vector field f*
is quite difficult to construct. We can make use of an additional in-
equality to reduce the problem to that of obtaining an inequality of
the form (2.12) for a subregion of R.

Let us divide the region R into two disjoint subregions K, and R,.
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These regions are to be separated by a surface C’. The portion C
which is part of the boundary of R, will be denoted by C; 7=1,2.
Thus the boundary of R, will be C; + C'. We further assume that the
subdivision has been made in such a way that C, is star shaped with
respect to some point P not in R, + C’. We choose P to be the origin
and apply the divergence theorem is R, to obtain

(2.16) S oip~ g ulds = ——S rmyldy + 25 i~y do
01+G’

By By

for any function u sufficiently smooth in R. Defining — x;m;/r and
using the arithmetic-geometric mean inequality we obtain

Tm

m

(2.17) f ds = %M(IA) f wds + ;—:(%”LYDI(% ).

In (2.17) r, and 7, denote upper and lower bounds for » in R, and t.
a lower bound for ¢ on C,: D,(u,u) denotes the Dirichlet integral
over R,.

Now suppose that for R, we could find a vector field f* satisfying
(2.5) relative to R, and obtain the inequality

(2.18) f wds < KK, Dyu, u) .
Oq+0"
Then clearly (2.17), together with (2.18) would yield
(2.19) § wds < K,D(u, u)
()

where of course u is assumed normalized with respect to S, in R,, and
K is a constant.

It is now obvious that such a procedure could be repeated a finite
number of times, finally reducing the region to one for which the in-
equality (2.12) may be more easily obtained. In particular if we iterate
this procedure until the gth region R, is star shaped, then, as we shall
see in §4, a vector field /¢ for R, is easily constructed.

3. Lower bounds for eigenvalues. The first nonzero eigenvalue p,
in the free membrane problem for R satisfies

3.1) A7+ 5 =01in R

and

(3.2) o _ 0on C,
on

where ¥ is the corresponding eigenfunction. It is well known that g,
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may be characterized by the minimum principle

(3.3) 11, = min 2(2: )
P*dv
R

for sufficiently smooth functions ¢ satisfying
(3.4) g pdv=0,

R
and that ¥ is the minimizing function. That is

(3.5) y, = D@
S 7w

Now let w = ¥ + ¢; where

(3.6) 0= — 1 Svds
%

w,a"!

o, denoting the surface area of the n-dimensional unit sphere. Then
u satisfies

3.7) g uds =0,
le

and hence by (2.15)
(3.8) S wdv = K.D(u, u) = K.D(3, 7).

R
But
(3.9) S wdy = S Fdv + cgs v = S Py .

R R R R
Thus
(3.10) L Do),

K, S v
R

or 1/K, is a lower bound for g,.

A lower bound is also easily obtained for p,, the first nonzero
eigenvalue in the Steklov problem for R. Let w be the corresponding
eigenfunction. Then we have that

(3.11) p, = 2w, W)
f gw“‘ds
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and
(3.12) f wds =0 .

a

Now let w = w + ¢, where

(3.13) C, = — 1 }; wds .
w,a"' J 5

Then

(3.14) § wds =0

and we may apply (2.12) to . But by (3.14) we have that

(3.15) §0u2ds = _{ngds + c§§ods = §gw“’ds .

Thus from (2.12) and (3.15)

which gives the desired lower bound for p,.

4, Bounds in the Neumann problem for L. We assume now that
4 is any sufficiently smooth function in R + C. We shall obtain bounds
for the generalized Dirichlet integral, A(+, +»), given by

(1) A, ) = | @ o

in terms of Ly in R and

4.2) By _ angqp ; on C .
oy

We take u = + + ¢, where

1
. 3 — T d .
(4.3) c = Zar.y )
As before
(4.4) § s =0,

Now by Green’s identity
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(4.5) A(u, w) = § w2V gs —S uLapdv .
¢ oy R

We have used the fact that w and + differ only by a constant. By
Schwarz’s inequality we have that

w0 s (f (o2
+ ([ wa)"(] zwryar)”.

Because of (4.4) inequalities (2.11) and (2.15) are applicable and we
obtain that

@ arvn s (5§ (B Jao)” ()] eorie)

0

since

D(u, w) < aiA(u, u) = —i—Aw, V) .

The inequalities of this section and § 2 together with a mean value
inequality given in [1] give immediately interior pointwise bounds for
P + Cs.

As an application of the results of this section we note here that
(4.7) may be used in conjunction with the Rayleigh-Ritz procedure to
yield close bounds for the Dirichlet integral in a specific Neumann
problem c.f. [1].

5. Construction of the vector field. We shall show in some cases
how to construct a vector field satisfying (2.5).

(a) Star shaped regions.

We consider the case where C is star shaped with respect to some
point. We choose this point to be the origin. Then if we take

(5.1) Fi= gip-
and
(5.2) o = 1"—(”_1) .

We have that
(5.3) t = fin, = e'n,r="+ = h,rz"" on C

where n(P) is the distance from the origin to the tangent plane at a
point P on C and &, is the minimum of this function. The condition
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of star-shapedness insures that A, >0. Since n, = —zi/a on 3, it
follows that

(5.4) —fin;=a™ on 3,

and

fi+ %f"f" ~0in R,.

In this case, taking a = r,, we obtain

n
" G

m

and

2z i 2]

A different method for obtaining a lower bound for p, for star shaped
regions has been indicated by Payne and Weinberger [3]. For convex
region Payne and Weinberger [5] also obtained the optimal lower bound
t, = md~? where d is the diameter of R.

(b) Smooth boundaries.

Let R be a region whose boundary C has continuous curvature.
Call the largest principal curvature at a point P of C, K,(p). Let o(p)
be the radius of a sphere which is tangent to C at P and contained in
R. In addition we require o(p) to be less than K,(p)'. Denote by K
a bound for the maximum of p(p)™ for Pe C. We consider the family
of parallel surfaces

v

5.7 N(x) = N(«, ++-, ") = constant

with C given by

(5.8) N(z) =0
and
(5.9) 0< N@®=1K.

The outward normal vector =, is defined in this strip and satisfies
(5.10) n;, (%) = J (%)

where J(x) is the average curvature of the surface given by N (xz at
the point =z = (2% +++,2") c.f. [7, p. 83]. We assume also that K is
chosen so that
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(5.11) J@)= K.

The above conditions and definitions involve the smoothness of C and
essentially the thickness of R. We impose a further condition on the
shape of R.

We assume that there is a point, which we choose to be the origin,
such that

(5.12) ”T” > —p+B>-—p>—1

for some constants » and A > 0 in the strip 0 < N(x) < 1/K. In this
case f° may be chosen as

[pn(1 — KN(x)) + «i[r]r%,0 < N(x) < 1/K

(6.13) fi= _9::'_7,_(,’ otherwise

with ¢ to be determined. Condition (5.12) means that there is an open
subset 2 of R which has the property that no ray from the boundary
in the direction of the outward normal intersects 2.

Let a now be chosen so that S, does not intersect the boundary
strip.
Now on C

(5.14) fin; = [p + ﬂ]w > Bryt .
T
For 0 < N(z) = 1/K
(6.15)  fi = {p[J(l _RN@)+ Rlr+n—1—q
[pMa — RN(@)) + 1]}7'“‘”” ,
r

since n,0/0x;)N = —1. Because of (5.12) and the fact that 0 <1 —
KN(z) £ 1 we have that

(5.16) fii < 2Kry +n —1—q(1 — p)r-a+ |
Now if we choose

(5.17) 7= 2Kr, + n2+ 3
1—1p

it follows that
(5.18) fio < —4r=@t < gyl

in the boundary strip. In the remaining part of R, we have, since
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g=n-+3

(5.19) fii=n — (g + D]r-e < —dprze,

Now choose a = r'?, Then

(5.20) Fi %f"f" <0in R, .
On 2,
(5.21) —fin, = a™".

In this case we have

(5.22) taz =
e [3(%) 2]

and

(5.23) Py = 3(7“— Tfry

(c) Boundaries with star-shaped irregularities.

Suppose now that the boundary C consists of two parts C; and C,
where C] is smooth and C, is star-shaped with respect to the chosen origin.
We assume that the closure of the interior of C, contains C,. For
example, in two dimensions, the components of C, cannot be isolated
points. Let K now be defined relative to C,. Denote by R, the region
consisting of R minus the strip adjacent to C,. We suppose that K is
large enough (the strip small enough) to make R, connected.

We assume that S is such that on C,

(5.24) s
r

Then in place of (5.13) we have

[pn(l — EN(2)) + -’f;—]r in R— R,

(5.25) Si=

= e, in R, .
r

Since in the identity (2.3) it is only necessary that f¢ have a continuous
normal component on the boundaries of subregions of R, this definition

of f* has sufficient smoothness properties.

In this case we again have the inequalities (5.22) and (5.23).



BOUNDS IN THE NEUMANN PROBLEM 833

BIBLIOGRAPHY

1. J. H. Bramble and L. E. Payne, Bounds for solutions of second order elliptic partial
differential equations, Contributions to Diff. Eqtns. (to appear).

2. J. B. Diaz and A. Weinstein, Schwarz’ inequality and the methods of Rayleigh-Ritz
and Trefftz, J. Math. and Physics, 26 (1947), 133-136: see also J. B., Diaz, Upper and
lower bounds for quadratic integrals, Collectanea Mathematica, 4 (1951), 3-50.

3. L. E. Payne and H. F. Weinberger, New bounds in harmonic and biharmonic problems,
J. Math. Phys. (1955), 291-307.

4. ———— New bounds for solutions of second order elliptic partial differential equations,
Pacific. J. Math., 8 (1958), 551-573.
5. ————, An optimal Poincaré inequality for convex domains, Arch. Rat, Mech. Analy.,

5 (1960), 280-292.

6. J. L. Synge, The method of hypercircle in function-space for boundary value problems,
Proc. Roy. Soc. London, A 191 (1947), 447-467; se also J. L. Synge, The hypercircle in
mathematical physics, Cambridge Univ. Press (1957).

7. C. E. Weatherburn, Differential geometry in three dimensions, Cambridge Univ. Press,
vol. II (1930).

INSTITUTE FOR FLUID DYNAMICS AND APPLIED MATHEMATICS
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RavpH S. PHiLLies A. L. WHITEMAN
Stanford University University of Southern California
Stanford, California Los Angeles 7, California
M. G. ARrSOVE LowsLL J. PAIGE
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH D. DERRY H. L. ROYDEN E. G. STRAUS
T. M. CHERRY M. OHTSUKA E. SPANIER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY  UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY SPACE TECHNOLOGY LABORATORIES

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may
be sent to any one of the four editors. All other communications to the editors should be addressed
to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single 1ssues
$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics

Vol. 12, No. 3 March, 1962

Alfred Aeppli, Some exact sequences in cohomology theory for Kdiihler

manifolds . . ... .. 791
Paul Richard Beesack, On the Green’s function of an N -point boundary value

PrODLem . ... .o e 801
James Robert Boen, On p-automorphic p-groups.............c.ccooiueeeiiiienann. 813
James Robert Boen, Oscar S. Rothaus and John Griggs Thompson, Further results

ON P-QUIOMOTPRIC P-GFOUPS . . oo v oottt e e e ettt ettt e e 817
James Henry Bramble and Lawrence Edward Payne, Bounds in the Neumann

problem for second order uniformly elliptic operators ....................... 823
Chen Chung Chang and H. Jerome (Howard) Keisler, Applications of ultraproducts

of pairs of cardinals to the theory of models .......................c.co... 835
Stephen Urban Chase, On direct sums and products of modules . .................. 847
Paul Civin, Annihilators in the second conjugate algebra of a group algebra . . .. ... 855
J. H. Curtiss, Polynomial interpolation in points equidistributed on the unit

CITClE . o o 863
Marion K. Fort, Jr., Homogeneity of infinite products of manifolds with

boundary . ....... ... 879
James G. Glimm, Families of induced representations..................coooeeeen.. 885
Daniel E. Gorenstein, Reuben Sandler and William H. Mills, On almost-commuting

YL 771 e X PP 913
Vincent C. Harris and M. V. Subba Rao, Congruence properties of o,(N) .......... 925
Harry Hochstadt, Fourier series with linearly dependent coefficients............... 929
Kenneth Myron Hoffman and John Wermer, A characterization of C(X)........... 941

Robert Weldon Hunt, The behavior of solutions of ordinary, sel,
equations of arbitrary evenorder.......................
Edward Takashi Kobayashi, A remark on the Nijenhuis tensor . .
David London, On the zeros of the solutions of w"”(z) + p(z)w(
Gerald R. Mac Lane and Frank Beall Ryan, On the radial limits
PROAUCES . o oo e
T. M. MacRobert, Evaluation of an E-function when three of its
differ by integral values ................................
Robert W. McKelvey, The spectra of minimal self-adjoint exten
OPCFAIOT . . ottt
Adegoke Olubummo, Operators of finite rank in a reflexive Ban
David Alexander Pope, On the approximation of function space
VATIATIONS « . o o v v ettt et e e e e e e e e e e eeees
Bernard W. Roos and Ward C. Sangren, Three spectral theorem
singular first-order differential equations................
Arthur Argyle Sagle, Simple Malcev algebras over fields of cha
Leo Sario, Meromorphic functions and conformal metrics on Ri
Richard Gordon Swan, Factorization of polynomials over finite
S. C. Tang, Some theorems on the ratio of empirical distribution
AISIFIDULION .« ..o
Robert Charles Thompson, Normal matrices and the normal ba
number fields. ..... ... ...
Howard Gregory Tucker, Absolute continuity of infinitely divisi
Elliot Carl Weinberg, Completely distributed lattice-ordered gr
James Howard Wells, A note on the primes in a Banach algebra
Horace C. Wiser, Decomposition and homogeneity of continua



	
	
	

