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Introduction. Recently in [8] Vaught introduced the interesting
notion of a pair of cardinals (£(A4), k(R,)) for a model (A, R, -++> of a
given first-order theory with identity. He proved that if a theory (with
countably many nonlogical constants) has a model with a pair of cardi-
nals (a, B) where w < 8 < «, then it has a model with the pair of
cardinals (®,, ®,). In this paper we have obtained a number of results
along the same lines (they may be found in detail in §4); roughly
speaking, our results are concerned with increasing one or both of the
cardinals in the pair (a, 5).

It turns out that most of our results on pairs of cardinals of a
model are simple consequences of set-theoretical theorems concerning
ultraproducts, ultrapowers, and limit ultrapowers of pairs of cardinals.
We have isolated these set-theoretical theorems in §2 and §3, where
they are presented with no reference to model theory.

In the last section of the paper, we give some counterexamples to
certain plausible conjectures analogous to Vaught’s and our results. We
conclude the paper by stating a number of open problems. We wish
to make it clear here that we do not claim to have originated all of
these problems; in view of Vaught’s result, some of them arise quite
naturally and undoubtedly have been considered before.

1. Preliminaries. We employ the usual symbols ¢, &, N, U, N,
U, to denote the various familiar set-theoretical notions. The expression
{t| ()} shall denote the set of all elements ¢ such that ¢(¢) holds.
Ordinal numbers will be denoted by &, &, %, and natural numbers (finite
ordinal numbers) by m, n, p. The symbols 0,1, 2, ---, denote the first
natural numbers. We suppose the ordinals have been defined so that
each ordinal coincides with the set of all smaller ordinals. Thus in
particular 0 is the empty set. We identify cardinal numbers with the
corresponding initial ordinal numbers. The letters «, B, v, 6, denote
arbitrary cardinals; @ denotes the smallest infinite cardinal; at denotes
the smallest cardinal greater than a. For each ordinal & ®, denotes
the smallest infinite cardinal which exceeds w; for each ¢ < & The
cofinality of the cardinal « is denoted by c¢f(a). (See [6] for its definition
mNovember 6, 1961. The results of this paper have been previously announced
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and elementary properties.) The notion of the sum & + ¢ of two ordinals
&, ¢ is assumed to be known. Let «; be a cardinal for each teI; 3.«
and I1;c;; denote, respectively, their cardinal sum and eardinal product.
a® shall denote the cardinal @ to the power B; af shall denote the cardi-
nal « to the weak power B, i.e., >,.,a". Let X, I, and X; for each
1€ 1 be arbitrary sets. Z., X, denotes the cartesian product of the
sets X; with 4€l, and #(X) denotes the cardinal of X. We assume
the reader is familiar with the notions of a filter on I, and an ultrafilter
on I. Let D be an ultrafilter on I. For any functions f, gc Feq;,
we write f =, g (read f and g are equivalent modulo D) if {ie I|f(z) =
g(?)} € D. The statement f =, ¢ has the intuitive meaning that f and
g are equal almost everywhere. It is proved in [2] that =, is an
equivalence relation on . ,;. For each fe T, let fID={9|9=5f},
the equivalence class of f with respect to D. By the (cardinal) ultra-
product of the cardinals a; modulo D, in symbols, [1;c;®;/D, we mean
the cardinal «{f/D|fe FAe;}. By the (cardinal) ultrapower of the
cardinal a modulo D, we mean the cardinal a’/D = [];c;¢/D. B is said
to be a (cardinal) &limit ultrapower of « if there exist functions v,
J, E with domain & + 1 such that the following hold:

(i) a=;

(ii) B=1:;

(ili) for each ¢ < &, v, is a cardinal, J; is a set, and E; is an ultra-
filter on Jg

(iv) for each & <&, 7, = V(¢ E;; and

(v) whenever 0 < ¢ <& ve= Upcc Vst -

By the ultraproduct of pairs of cardinals («;, B;) with i€ I, in symbols,
ie: (@5, B)]D, we mean the pair of cardinals ([[;c; /D, Ilier B:/ D).
Similarly («, 8)'/D = (&’|D, /D). The pair of cardinals (8, 8') is said
to be a &-limit ultrapower of the pair of cardinals («, ') if there
exist functions v, v/, J, K, with domain & + 1 such that «, ~, J, E, 8
satisfy conditions (i) — (v) and o', ', J, E, 5 satisfy conditions (i) —
(v). Finally, S.(I) denotes the set of all nonempty finite subsets of I,
ie., S,(I) ={8E 1|0 < «(s) < w}.

To conclude this section, we shall prove a preliminary result con-
cerning the products of cardinals.

LEMMA 1.1. Let I+ 0 and let a; be infinite cardinals with ¢ I.
For each ic I, let J;={jella;=a}. Then [les,m Ilies @ = Iliesi"?.

Proof. Let A = {a;|ieI}and, foreachac A, let H, = {tel|a;,=a}
and S, = {se S,(I)|Ilic;@; = a}. It is easily seen that
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— x(Sg)
;= [ a5 |
SES,H(I) 1€s @€ A

On the other hand
[Mawo =T II a9 .

1€L @®€A LEH

Let «ac A and je H,. It is clear that H, & J; and J; = J;, for each
1€ H,. Thus

k(JT3) — k(T g\ (Hg) — kT H)
1l « (a<v9) «a .

i€Hy
To prove the lemma, it is sufficient to show that
aK(Sa.) — aK(J]) .
It is obvious that &(J;) < #(S,), and hence
a:c(]j) < a"(s"/) .
Since « is infinite and S, & S.(J,), we have
a:c(sw) < aK(Sm(Jj)) < an(.f]) .

The lemma is proved.

2. Cardinalities of ultraproducts. We first state a lemma which is
an easy consequence of [2, Th. 1.17], and whose proof shall be omitted
here.

Lemma 2.1. Let I+ 0 and let a;, be cardinals with 1€ I. Then
there exists an ultrafilter D on S,(I) such that

Ma;< I (ITa)D.

€I SESH(I) <1€s

LEMMA 2.2. Let I+ 0 and let a; be infinite cardinals with ie I.
Then there exists an ultrafilter D on S,S.(I) such that

0 (Le)= 1 (0Ha)/D.
SESLI) \i€s LESHS,{I) \sEL i€s

Proof. By Lemma 2.1 there exists an ultrafilter D on S,S.(I) such
that

(1) n (He)s, I (IHa)/D
SESL(I) \i€s t€5,S,(I) \s€Et i€s
It is clear that

2 S )P 0 (L),
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Since each «; is infinite and ¢ is finite, we have

(3) N (Ohe)= 0 (0 a).
t€ES Sy I SEt 1E€s tE€SpSepll) i€UL

Let J, = {t€ S,S.(I)|Ut = s}. By the general associative law for cardi-
nal products,

(4) M (Da)= 0 1 Ha.

tESKSe(I) \i€EUt SESEI) tETg i€s
Since each s is finite, J; is finite. Again, using the fact that each «;
is infinite, we have

(5) II I Ha,= 1T Tl

S€ES(I) tEJ g 1€s s€Sw(I) 1€s

Putting (1)-(5) together we obtain the conclusion of the lemma.

Lemma 2.3. Let a be infinite and let 8> 0. Then there exists
an wltrafilter D on B such that of = af|D.

Proof. If B is finite, then cleary af = af/D for every ultrafilter D
on 5. Suppose B is infinite. By Lemma 2.1 there exists an ultrafilter
E on S,(5) such that

af = I (@)K .

S€8,(B)

Since each s is finite, a*® = «, and hence
af < ase®|E

Since B is infinite, there is a one-to-one correspondence from S,.(8) onto
B, from which we can obtain an ultrafilter D on B such that af < a#f/D.

It is clear that af/D < af, and therefore the conclusion of the lemma
holds.

LemMMA 2.4. Let o be infinite. Then a= is a £-limit ultrapower

of «.

Proof. Let v,=a. For each ¢ < &, let v, = a%, J; = w;, and E;
be an ultrafilter on J; such that vj%/E; = v¢ = a*. Evidently, for
& <& v = at = a*¢ and hence v¢., = v{/E;. Suppose that 0 < ¢ < &.
Then v; = a® = >, ;a7 = Upee @7 = Uyee Yor1.  The proof is complete.

3. Classes of pairs of cardinals. Let M be a class of pairs of infi-
nite cardinals.
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THEOREM 3.1. Suppose M is closed under ultraproducts. If I+ 0
and{(Il;coet;, I1:csB:)ls € SIS M, then (ITsesum Iies I sesum HiesB:) € M.

Proof. We first show that

(1) for each te S,S.D), (I e, T I Bi)eM.

SEL 1Es s€EL 1€s

Since «;, B; are all infinite and ¢, s are finite, we have

Da;,= 11 «;,
iUt

SEt i€s

and

HIirs: =11 6.

8E€L 1€8 1€EUL

Since U te S.(I), (1) follows. Now, the conclusion of the theorem follows
from (1) and Lemma 2.2.

THEOREM 3.2. Suppose M is closed under ultraproducts. Suppose
Surther that I+ 0, {(a;, B;)|1elI} = M, and for every i,j€l, a; < «;
implies B, < B;. Then

(I Ta, I TA)eM.

€S, (I) i€s SES,(I) i€s
Proof. By Theorem 3.1 it is sufficient to prove that

(1) (11 a, I ;sg) e M for each seSyI).

i€s 1€s

Let se S(I). Let s, = {jes|[lies® = a;} and s, = {j€ 8| [lies B = Bj}.
Since s is finite, s, # 0 and s, + 0. We show that s, N s, # 0. Assume
$;Ns;=0. Let jes, and kes,. Since o, < a;, we have 8, =< 5;. On
the other hand, B; < 8., and this is a contradiction. Let jes, N sy
then

(e, T 6:) = (@ B M,

1€s i€s
and (1) holds. The theorem is proved.
COROLLARY 3.8. Suppose M 1is closed under wultraproducts. Let

ag, Be, & < E, be such that {(ae, By) | ¢ < & S M, and whenever 1) < ¢ < &,
a, < a; and B, < B;. Then

(11 as®, T1 ,egw) eM.
Z<s {<¢
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Proof. By Lemma 1.1 and Theorem 3.2.

COROLLARY 3.4, Suppose M is closed under ultraproducts. Let

gy Qyy Agy + vy Boy By By, + v+, be strictly imcreasing sequences such that
{(an! 181&) ’ ne w} g M‘ Th’en (]._.['n<w an; Hn<m 181;) € M'

Proof. By Corollary 3.3.

THEOREM 3.5. Suppose M is closed under ultrapowers. If (a,B)e M,
then (oY, B¥)e M.

Proof. By Lemma 2.3.

THEOREM 3.6. Suppose M 1is closed under E-limit ultrapowers. If
(a, BYe M then (ast, B2)e M.

Proof. By Lemma 2.4 and its proof.

The results obtained so far in this section in Corollary 3.8 and
Theorems ‘8.5 and 3.6 can be stated more simply if we assume the
Generalized Continuum Hypothesis. The reason for this is because the
operations of cardinal powers and cardinal products become more trans-
parent. For the remainder of this section, we assume the Generalized
Continuum Hypothesis.

THEOREM 3.7. Suppose M is closed under ultrapowers. Let(a,B) e M.
Then the following hold:

(i) If ef(@) = cf(B), then (a*, B*)e M.
(ii) If cf(@) > cf(B), then (a,B*)e M.
(i) If of(@) < cf(B), then (at, B)e M .

Proof. It is known that a < «v if and only if ¢f(a) <~v. By the
Generalized Continuum Hypothesis, we see that a*’® = a*. Hence the
conclusions of the theorem follow from Theorem 3.5.

ExAMPLES. Suppose M is closed under ultrapowers. If (0., w)e M
then (w,., @,) e M. If (w,, w)e M then (w,, w,)e M. If (®,, ®,) e M then
(ww-}-ly 0)1) € M°

THEOREM 3.8. Suppose M is closed wunder E-limit ultrapowers.
Let (o, 8)e M. Then the following hold:

(i) If a<vy and B <, then (v,v)e M.
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(i) If B< v = ¢ef(@), then (a,v)e M.
(i) If a <v = cf(B), then (v,R) e M.

Proof. By the Generalized Continuum Hypothesis, if v < ¢f(a) then
a =«, and if v > a«, then a¥ =+. The conclusions follow from
Theorem 3.6.

ExAmpPLES. Suppose M is closed under E&-limit ultrapowers. If
(v, w)e M then (w,,®,)e M. If (0,4, ©)c M then (®,.,, ®,) < M.

THEOREM 3.9. Suppose M is closed under ultraproducts. Then
the following hold:

(i) If ef(a) = ¢f(B) and for every v < «a, 0 < B, there exist v, o’
such that v <+ < a,6 <d' < B, and (v',8'Ye M, then (a*, BY)c M.

(i) If c¢f(a)y < B and for every v < «, theere exists v such that
vy<vy <aand (v,B8)e M, then (at, B)e M.

(i) If ¢f(B) < a and for every o < B there exists 0’ such that
0 <" < B and («,d'ye M, then (a, 8*)e M.

Proof. By the Generalized Continuum Hypothesis, the cardinal
product of any cf(a)-termed sequence of cardinals whose union is « is
at. The conclusions follow from applications of this remark and Corol-
lary 8.8.

ExampLES. Suppose M is closed wunder ultraproducts. If
{(a)m+n! wn) { ne (l)} g M7 then (wm+w+1y wa)+1) € M' If {(wn-l-li wl) l ne CU} g M7
then (w,4,, .)€ M.

4, Applications to model theory. We shall now give a brief intro-
duction to those portions of the theory of models which are pertinent
to this section.

By a similarity type, or briefly a type, we mean a function T whose
domain is a cardinal different from 0 and whose range is included in w.
Let T be a type such that 7(0) = 1 and let 0 be the domain for 7. A
system U = (4, B >..;s is said to be a structure of type T if A =+ 0, and,
for each £ < 0, R, is a T(&)-ary relation over A.

Let L(T) be the first-order predicate logic with identity symbol =,
an infinite sequence of individual variables v, vy, v, <++, a T(&)-placed
predicate symbol P, for each £ < 0, the usual symbols for propositional
connectives and quantifiers, and no predicate or functional variables or
individual constants. We assume the definitions of formula and sentence
are known, as well as the notion of a sentence of L(7) holding in a
structure of type T. A class K of structures of type T is said to be
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an elementary class if there exists a set I" of sentences of L(T) such
that a structure 2 belongs to K if and only if every sentence of I’
holds in A. A class K of structures of type T is said to be element-
arily closed if whenever e K and every sentence of L(T) holding in
A holds in B, then Be K (or, equivalently, K is a union of elementary
classes). Notice that every elementary class is elementarily closed.

By the pair of cardinals for a structure <A, R...; we mean the
pair (£(4), k&(R,)). We let M(K) = {(a, B)|a, 8 are infinite and there
exists 2 € K such that (o, 8) is the pair of cardinals for 2}. Notice
that if («, B) € M(K), then a = 5.

The following lemmas are easy consequences of known results in
the literature (see [2] and [4]).

LemMMA 4.1. If K 1is an elementary class, then M(K) s closed
under ultraproducts, ultrapowers, and E-limit ultrapowers.

LEMMA 4.2. If K is elementarily closed, then M(K) is closed under
ultrapowers and E-limit ultrapowers.

In view of these two lemmas, we have the following model-theoretic
applications of the results of §3:

(A) If K is an elementary class, then all results 3.1-3.9 of §3
apply to M(K).

(B) If K is an elementarily closed class, then the results 3.5-3.8
of §3 apply to M(K).

Lemmas 4.1 and 4.2, and thus the statements (A) and (B), can be
somewhat improved. This is done by substituting the notion of an
elementary class by the more general notion of a pseudo-elementary
class (i.e., PC,, see [2] and [7]) in Lemma 4.1, and substituting the
elementarily closed class by the more general union of pseudo-elementary
classes in Lemma 4.2. Moreover, for any structure 2, the class K of
all structures which are isomorphic to elementary extensions of 2 has
the property that M(K) is closed under both ultraproducts and &-limit
ultrapowers. Therefore both (A) and (B) are valid for such classes K.

We shall now state some earlier theorems formulated in terms of
pairs of cardinals which will give some idea of how our results (A) and
(B) stand with respect to what was previously known concerning M (K).
These earlier results differ from ours in that they depend on 9, the
domain of the similarity type 7.

(C) (Lowenheim-Skolem-Tarski) Let K be an elementarily closed
class. Let (a, B)e M(K) and let v be an infinite cardinal such that
0=~v. Then (v,v)e M(K). Furthermore, if B=v=«a, then (v, B) € M(K).

(D) (Vaught [8]) Let K be an elementarily closed class. Let 6 < w
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and let a = B. If (a, Be M(K) then (v, w,)ec M(K).
The following is a corollary of (A) and (C).

(E) Assume the Generalized Continuum Hypothesis. Let K be an
elementary class. If 6 < a, cf(@) < B, and for every v < « there exists
v such that v < < « and (v, B)e M(K), then (a, 8) e M(K).

Results similar to (E), but depending on (A) alone, follow from
Theorems 3.7-3.9.

The following is a corollary of (B) and (C).

(F) Assume the Gereralized Continuum Hypothesis. Let K be an
elementarily closed class, and let (a, B)e M(K). If B<v <v=a and
0 =<7, then (v,7')e M(K).

Proof. If 8=+, then (v,v)e M(K) by (C). On the other hand,
if 8 < ', then it follows from the Generalized Continuum Hypothesis
that 8% = ~'. Therefore by Theorem 3.6 and (B), (a¥, v')e M(K). Since
v £ v < a¥, we conclude from (C) that (v, v') e M(K).

5. Some negative results and open problems. In §4 we presented
some positive results on M(K) when K is an elementary class. In this
section we shall give some negative results stating that certain other
plausible conjectures about M(K) where K is elementary have counter-
examples. We conclude this section by stating some natural open
problems.

One can easily construct an example of an elementary class K such
that (a, 8)e M(K) if and only if w < 8 = a.

We shall now give an example of an elementary class K such that
(o, 8)e M(K) if and only if w < 8 <a < 2°. (This example is due to
R. M. Robinson and was privately communicated to R. L. Vaught, from
whom the authors learned of it.)

Let 6 =2, T(0) =1, and T(1) = 2. Let K be the elementary class
characterized by the sentence

v, Yz # y— 32{P(2) A 71 (P, 2) —— Py, 2))}] .

Thus, if {4, R,, B> € K, the mapping f(a) = {b| Ry(b) and R(a,bd)} is a
one-to-one mapping of A into the set of all subsets of R,. From this
we see that M(K) is the desired class of pairs of cardinals.

From this example we easily see that the following hold. Let
B, =F and, for each n < w, let B, = 2°». Then for each = there
exists an elementary class K such that (a, 8)e M(K) if and only if
w=Bsasp,.

We may also easily give an example, when w < 8 =< «a, of a type
T (with 0 = ) and elementary class K such that («/, 8) ¢ M(K) if and
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only if a <o, F, and § < «o'.

For the last collection of examples we need the following restatement
of a lemma in [4].

A cardinal B is said to be nonmeasurable if every countably complete
ultrafilter on @ is principal. A structure A = (4, R>..; of type T is
said to be complete (see [5]) if, for every finitary relation R on A, we
have Re{R,|& < 0}. Notice that if 2 if complete, then ¢ = 2«4,

LemmA 5.1. Suppose U is complete, K 1is the smallest elementary
class containing A, o = k(A) w = B = k(R,). Then the following hold:

(i) Suppose a is nonmeasurable and (', 8')e M(K). Then either
a=aand =08, or ¢’ =Za° and 5 = B°.

(ii) Suppose B is nonmeasuradble and (', B')e M(K). Then either
B =58, or ' =a° and B = B~

THEOREM 5.2. Suppose w = B =< a. Then the following hold:

(i) Suppose o is monmeasurable, and B < B8°. Then there exist
a type T and an elementary class K such that (o', 8)e M(K) if and
only if &' = a.

(ii) Suppose B is nonmeasurable and o < a®. Then there exists
a type T and an elementary class K such that (a, 8')ec M(K) if and
only if B = B.

(iii) Suppose a is nonmeasuradble, @ < a®, and B < (°. Then there
exist a type T and an elementary class K such that (o, 8')Ye M(K) if
and only if 8’ =B, and (&, B)e M(K) if and only if « = «.

Proof. By Lemma 5.1.

Open problems. Let K be an arbitrary elementary class and 0 < .
I. Does (Wii0ig, @) M(K) and w < 8 =< « imply (a, B)e M(K)?
II. Does (®;1,, ®,) e M(K) imply (w¢,, ®;) e M(K)?
III. Does (a, 8) € M(K) imply (2%, 2f)e M(K)?
IV. Does {(w,, w)|n < o} € M(K) imply (@, ®,)c M(K)?
I'. Does (w.,, ®,) € M(K) imply (@, ®,) € M(K)?
Does (@1, ) € M(K) imply (@,,, ®,) € M(K)?
II'. Does (w,, ®,) € M(K) imply (w,, w,)e M(K)?
Does (w,, w,) € M(K) imply (®,, ) e M(K)?
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