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1. Introduction. Malcev algebras are a natural generalization of
Lie algebras suggested by introducing the commutator of two elements
as a new multiplicative operation in an alternative algebra [3]. The
defining identities obtained in this way for a Malcev algebra A are

(1.1) Yy = —Yx
1.2) xy -2z = (xy-2)x + (yz-0)x + (x+ 2)Y

for all z,y,z¢e A. Since Albert [1] has shown that every simple alter-
native ring which contains an idempotent not its unity quantity is either
associative or the split Cayley-Dickson algebra C, it is natural to see
if a simple Malcev algebra can be obtained from C. In [3] a seven
dimensional simple non-Lie Malcev algebra A* is obtained from C and
is discussed in detail. In this paper we shall prove the following

THEOREM. Let A be a finite dimensional stmple mnon-Lie Malcev
algebra over an algebraically closed field of characteristic zero. Fur-
thermore assume A contains an element w such that the right multi-
plication by u, R,, 1s mot a wilpotent linear transformation. Then
A is isomorphic to A*.

The necessary identities and notation from [3] for any algebra A
are repeated here for convenience:

(1.3) Commutator, (x,y) =[x, ¥] = 2y — yx
(1.4) Associator, (x,y,2)=2ay-2—2a-yz
(1.5) Jacobian, J@, Yy, ) =2y-2+yz-x+zex-y

for z,y,2 ¢ A. If h(x, ---,x,) is a function of » indeterminates such
that for any n subsets B; of A and b, € B;, the elements A(b, ---,b,)
are in A, then i(B,, -+, B,) will denote the linear subspace of A spanned
by all of the elements (b, ---, b,).

For a Malcev algebra A of characteristic not 2 or 8, we shall use
the following identities and theorems from {3]:

(1.6) J(@,y, w2) = J(, ¥, 2)x
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(L.7) J(x, y, w2) + J(w, y, v2) = J(x, y, D)w + J(w, y, )
(1'8) 2wJ(x, Y, Z) = J(wy r, yz) =+ J(w’ Y, zx) + J(w’ 2, wy)
(1'9) J(wx’ Y, Z) = ’M)J(x, Y, Z) + J(wy Y, Z).’,U - 2‘](?/27 w, x)

(1.10) xy - 2w = x(wy - 2) + wyz - ) + y@x - w) + 2(zw - y)

for all w,z,y,2e A. If N={x¢e A:J(x, A, A) = 0}, then it is shown
in [3] that N is an ideal of A which is a Lie subalgebra and further-
more for a,bec A

(1.11) J(a,b, A) =0 implies abe N .

It is also shown in [3] that J(A4, A4, 4) is an ideal of A. Thus if A is
a simple non-Lie Malcev algebra we have

(1.12) N=0 and A4=J(4, A4, A4).

We shall assume throughout this paper that A is a finite dimen-
sional simple non-Lie Malcev algebra over an algebraically closed field
F of characteristic not 2 or 3 containing an element # such that R, is
not a nilpotent linear tansformation. In §2 the basic multiplicative
identities are derived using methods analogous to those of Lie algebras.
Decomposing A=A, P A. D - P A, into weight spaces relative to
R, [2; page 132] we prove the block multiplication identities A,A4,; C
A, if a+pB, AL,C A_, and A} = 0. Further identities are derived in
§3 which lead to the important result that there exists a nonzero
weight a such that A = A, P A, P A_, where A,= A A_,.

In §4 we show that R(4,), the set of right multiplications R, by
elements x, € 4,, is a set of commuting linear transformations on the
subspaces A, A, and A_,. Analogous to Lie algebras we decompose
A=A PA, DA , into weight spaces relative to R(4,) [2; page 133]
and thus find a basis of A which simultaneously triangulates the matrices
of R(4,). We now infroduce the trace form, (x, y) = trace K,R,, in § 5
and assume for the remainder of the paper that the algebraically closed
field is of characteristic zero. With this and the results of §4 we
easily show that (x,%) is a nondegenerate invariant form on A4 =
APA, PA_, and A, = uF.

In §6 we show that R, has a diagonal matrix of the form

0 0
al
0 —al

Using this and a few more identities we show in §7 that the simple
Malcev algebra A = A, P A, P A_, is isomorphic to the seven dimen-
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sional algebra A*.

2. Basic multiplication identities. Let K, (¥ € A) be a fixed non-
nilpotent linear transformation and decompose the simple Malcev algebra
A into the weight space direct sum A=A, P A, D -+- P A, relative to
R, where the weight space of R,,

A, ={xe A: z(al — R,)* = 0 for some integer k > 0},

is a nonzero R, -invariant subspace of A corresponding to the weight a
of R,. Let z, e A,, xz € A, then using (1.6)

J(U, Toy )R, = J(U, Toy X)th = J (U, To, uxp) = —J (U, ,, TgR,,)
and therefore
J(u, 24y %e)(BI + R,) = J(U, 24, 2s(BI — R,)) .
Now letting y, = (8] — R,) € As we have
J(, %o, 2o(BI — R,)") = J (4, %a, Yo(BI — R,))
= J(u, %4, Yp)(BI + R,)

= J(u; Loy xﬁ(BI - R,,,))(BI + Ru)
= (uy xwy wﬂ)(BI + -Ru)2 .

Continuing by induction we obtain
(2'1) J(u’ Ly xﬁ)(BI + Ru)n = J(u; Luy xﬁ(lBI - Ru)n)

for every integer m. Since %, € Az there exists an integer N such
that 0 = J(u, 2,, 2(B] — R,)") = J(u, %4, 2:)(BI +R,)¥ and this shows
J(u, €, x5) € A_g. Now interchanging the roles of z; and z, in (2.1)
we also obtain J(u, x,, #z) € A_, and thus

(2.2) J(u, Ay, Ag)C A, NA,.
From (2.2) we have the following relations

(2.3) J(u, A,y A)) C A,

(2.4) J(u, Ayy Ag) =0 if a =8,

We shall now prove
(2.5) AAsC A,p if a#pB.
For if o« = B and =z, € A,, x5 € A; we have by (2.4),
0 = J(u, %4, ) = (X %) RU — T, R, < 5 — o * XpR, 5

that is, (®.%g)R, = ¥R, %z + %, + ¢gR, and so R, is a derivation of



1060 ARTHUR A. SAGLE

A,Ag into A,A45. This yields
(@ae By — (@ + B)) = 2B, — al) - @ + @4 - T(Bu — BI)

and in the usual was we prove the Lebnitz rule for derivations which
then yields that for some integer N, (x,%:}R, — (@ + B8)I) =0 and
therefore x,x; € A,ip. In particular we have

(2.6) AA,C A, ifa=+0.

We shall now investigate A, more closely. Let z, € A,, 25 € 4z and
%, € Ay, then by @Q.7) J(x, @ ux,) + J (U, x5, 242,) = J (2, T, T)U +
J(u, xg, )z, Therefore if 0 + a # B we have by (2.4) J (2, %, UZ,) =
J (%, g, ). This yields J (%, 25, xlal — R,)) = J (2, s, o)l + R,)
and as in the proof of (2.4) we obtain

.7 J(Ay Ay Ag) =0 £ 0£a#B8+0.

Next let =, y,€ 4, and z, ¢ A, where « =+ 0, then using (1.9),
(2.4) and (2.6) we have

J(xou, Y, xw) = on(u, Yo, 90,,,) + J(x(» Yo, ww)u - 2J(’IJ0.’L'M oy u)
= J(mo, Yo, ww)u

and in general we have J(x.R, Yo, %) = J (X, Yo, T)RBy which im-
plies J(x,, ¥, %) € A,. Now by (1.7), J(x,, Yo, U%s) + J (U, Yo, Xebs) =
I (&g, Yo, T + J (U, Yy, £,)%,; and using (2.4) and (2.6) we obtain
J (@, Yo, TuRy) = —J (%, Yo, )R, Which implies J(@,, Yo, Tu(R, — al)) =
—J (%, Yo, )R, + al). Thus, as usual, we have J(x,, ¥,, ©,) € A_, and
therefore J(x,, ¥y, %) € A, N A_, which proves

(2.8) J(Ay, Ay A) =0 if a 0.

We shall now show A:c 4, From our basic decomposition A =
A DA, D -+ DA, relative to R, we can find a basis {x(7), -« -, 2.(7)}
(m = m,) of A, such that

(2.9) 2R, = 3} a,0,0) + 7,(0)

where 7,a,;€ F and ¢ =1, .-+, m. In particular let {2,(0), ---, 2, (0)} =
{®,, -, x,} be the above type for A,. Then xR, =0 and

i—1 .
xiRuzza’ikxk (?/:2,"°,/)7/).
k=1
Furthermore,
J(u, ©;, ;) = (@2)R, + 2R, - 2 + ;- 2B,

i—1 i—1
= (x2;)R, + Iglajkwkxi + kZ{a'ika
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with the understanding that a,, = 0.
Using (1.6) and operating on both sides of the previous equation
with R”, we obtain

(=1 J(u, z;, x; Ry) = J(u, x;, ;)R
= (wx;) Ryt + iglajk(xkxi)Rf

i1
+ ;1 a2 Ry

Now by assuming ¢ < 7 and choosing % large enough, a simple induc-
tive argument yields x;x; € A, for all 4 and 5. Thus A} C A4,.
Using (1.8), A3 C A, and (2.8) we have

AwJ(AO! Ao; AO) C J(Aun AO: Ag) C J(Acw A07 AO) = O fOI' o+ 0 ¢

Thusv AJ(Am AO; AO) c Zw AmJ(AOy AO) AO) = AOJ(AO! Aor Ao) - J(Al)v AO, Ao)r
or J(A, A, A, is an ideal of A. But since J(4,, 4, 4,) < 4, # A and
A is simple we have

(2.10) J(4y A5, 4)) =0 .

Now using (2.8) and (2.10) we have J(A4,, A,, A) = >, J(4,, 4,, 4.) =
0 and by (1.11) and (1.12),

(2.11) AAcN=0.

In particular this means the kernel of R, is A,.
We shall now show A:c A_,. Let %,,y, € A, for a = 0, then by

(2'3) J(u” L) yw) = (xwyw)Ru + wau Xy T Yo * wau = W_y4 € A._,,, . There-
fore (£,Y.)R, = 2Ry * Yo + Yo » YuRy + w_, which yields
(Y )R, — 20]) = 2, (R, — al) + Yo + %o+ YR, — aI) + w¥), .

By induction we obtain
() (R, — 2aI)* = W + 3 C, Ry — Iy + yo( By — Iy
r=0

where w™ ¢ A_,. Therefore for large enough N, (2., ¥,) (R, — 2al)” € A_,.
Now let w9, = S,2, where 2z,€ A, then (®.¥,)(R,— 2al)" =
Sy 2AR, — 2al)¥ € A_,. Therefore by the R,-invariance of the A, and
the uniqueness of the decomposition A = A, P A, P -+ P 4\, 2AR, —
2¢I)Y =0 if vy# —a. Thus if v#* —a,z,€ A,,. Therefore z,y, =
2. T+ Z_, which proves

(2.12) AcCA. BDA..
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LEMMa 213, J(u, A, A4,,) = 0.

Proof. Using (2.12), (2.7) and (2.8) we have
J(u, 45, Ay) C J (U, Ay, Ase) + (U, Asyy As) C J (U, Ay Asa) C Aosa

Now for any z, ¥ € A,, 2z € 4,, we have by (1.7) J (2, u, 2y) + J(z, 4, 2y) =
J@,u, 9)x + J(x,u,y)2 and using (2.4), (2.5) and (2.3) this yields
Jz,u, 2y) = J(x, u, y)z e A_, + Ay, C A,. Combining these results we
have J(u, A%, A,,) C A, N A_,, = 0.

Now let we Ay, 2,y A, and oy = 2,5 + 2, Where 2, € A,
Z_, € A_,, then using Lemma 2.18 and the fact J(u, A_,, 4,,) =0 we
have

0 = J(u, zy, w) = J (U, 20, W) + J(U, 2_0, W) = J(U, 220, W) ;
that is,
J(u, Zows Azw) =0.

Now since 2, € A,, we also have by (2.4) J(u, 2., 4;) = 0 if 8+ 2a.
Combining these results, J(u, 2., A) = S J (U, 2y Ag) = 0 and there-
fore z,,u € N=10 by (1.11) and (1.12). Thus 0 = 2,,R, and therefore
2w € A, N A,, = 0 and this proves

(2.14) A2 A_, .
Also note that we now have
(2.15) J(A, A, A) C A, .
3. More identities. Let A = A, B A, D -+ P A, be the decomposi-
tion of A into a weight space direct sum relative to R, and suppose

that for weights «, 8, v of R,, 8+ v and B8+ v+ a. Then forz ¢ 4,,
y € Ag and z € 4, we have by (1.9) and (2.4)

J(wu, y, 2) = 2 (u, y, 2) + J(, ¥, 2)u — 2J (yz, x, u) = J (v, ¥, 2)u

and therefore J(x(R, — al),y,z) = J(x, ¥, 2)(R, — al). By induction
we have J(x(R, — al)*, y,2) = J(x, ¥, 2)(R, — aI)* and hence

3.1) J(Ay Ap, A)C A, if B#vand B+v+a.
By the symmetry of the a, 8 and v we may also conclude
(3.2) J(Ag, Ay, A,) C Ag if v # a and THa#pg
(3.3) J(Ay, Ay, Ag) C A, if a = B and a‘ +B#7.
Now assume a =8+ v+ a. Suppose S+v=a. Ifvy+a=25,
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then v = 0 and therefore a = £, a contradiction. Therefore v+ a + 8
and by (3.2) J(4s, 4y, A,) C Ap.  Similarly if « + 8=+, then =0
and « =+, a contradiction. Therefore o+ S8+~ and by (3.3)
J(Ay, Ay, Ag) © Ay, Thus we have J(4,, 45, A)C Ay N A =0 if a #
B+v+aand B+ v=a.

With the assumption a # 8 # v # «, suppose now that 8 + v # a.
Then by (38.1), J(A,, 4s, A)) C A,. We next note that it is impossible
to have y+a =8 and a + B8 =v. So using (3.2) or (3.3) together
with J(4,, 4, Ay) C A, we conclude J(4,, 4g, A,) = 0. Thus we can
conclude, using the preceding paragraph,

(3.4) J(A, A5, A) =0 if a+=B+v+ .

Now assume two weights are equal, that is, &« = 5. Suppose v #
0, o, —a or 2w, then

J(Aa, Ay, A) C A2A, + A A, - A, + AA, - A,
CA A + A, A,
c A—w+y @ A'y+2m .

However using (3.1) J(A,, A,, A)) C A, and therefore J(4,, 4., 4,) C
Ay, N (A_piy D A,r00) = 0. This proves

(3.5) J(A,, Ay A) =0 if y#0,a, or —a 2.

For the “exceptional” cases we have

(3.6) J(Aa, Agy A) C AL+ Ay C A_JA, C Ay .
3.7) J(Ag, Ay A) C A2A, + A A, Ay C A, .
(3.8) J(Ay Agy A_)C A2A_, + AA_,- A, C A,.
(3.9) J (A, Agy A3) =0 .

To prove (3.9) let z,y € A,, 2 € A,,, then by (1.9), (2.5) and (2.4)

J(QC’LL, Y, Z) = xJ(uy Y, Z) + J(x: Y, z)u - ZJ(yz’ v, u)
= J(x, ¥, 2)u

and as usual we have J(z(R, — al)", 4, 2) = J(%, ¥, 2)(R, — al)". There-
fore J(x,y,2) e A,. However by (1.7) J(z,y,uz)+ J(u,y, xz)=
J(z, ¥, 2)u + J(u, ¥, 2)x and using (2.4) we obtain J(x, y, uz) = J(x, ¥, 2)u.
This yields J(z,y, 2(2al — R,)") = J(x, ¥, 2)(2al + R,)" and therefore
J(x,y,2)e A_,,. Combining the above results we have J(z, ¥, 2) € A, N
A_,,=01if a=+0.

We shall now show A,4; =0 if ¢ =0 and 8+ 0, +a. Let a and
B be fixed weights of R, and assume S # ka, k=0, =1, =2, ..., with
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« # 0. Then for any other weight v we have by (3.4) J(4s, Ay 4,) =
0 if B#a+v+B. However a+ 8 and therefore J(A4; 4., 4,) =
if a#v+B. Suppose v =a, then by (8.5) and the choice of 25,
J(Ag, Asy As) = 0. Suppose v = B, then J(Ag, A,, Ap) = J(Ap, 44, A,) =
0if «+0,8, —8 or 28. We know a # 0,8 or —p8 soif a = 283, then
by (3.9) J(A4g, 4s, A,) = 0. Combining all these cases we have shown
J(Ap, A,, A) =0 for any weight v and therefore J(4g, 4., 4) =
dwd(4g A, A) = 0. By (1.11) and (1.12) A,A; < N = 0. This proves

(3.10) AA; =0 if a+0and B+ka, k=0, =1, +2,.--.

We now assume a + 0 and 8 = ka for k + 0, 1, then J(4,, 44, 4,) =
J(A, Aoy A)) =0 if o +ka+7#a, by (3.4). But since bk +1 we
have J(A4,, A, 4,) =0 if a #+ v = ka. Suppose ¥ = «, then using (3.5)

J(A,, Ag, A)) = J(A,, Avay 4,)
= J(Aw; Akwy Aw)
= J(Aas; Asy Ara)
=0

if ko +0,a, —a or 2. But by the choice of &k we need only consider
ka = 2a and in this case J(A,, 4., 4:x) =0 by (8.9). Now suppose
v = ka, then

J(A,, Ag, A)) = J (A4, Ara, A))

= J(As, Asas Arar)

= J(Akwy Akwy Aw)

=90
if a # 0, ka, —ka or 2ka, by (3.5). Again by the choice of k£ and «
we need only consider o = 2ka. In this case k& = 1/2 and therefore
v=08=ka =1/2a. This yields J(A4,, 45 A,) = J(As, A, As3) =0 by
(8.9). Combining all of these cases we have for any weight v,
J(Agy Aray 4,) =0 if @ =0,k =0, =1 and as before this gives

(8.11) AA, =0 if a+0,k+0, 1.
(8.10) and (3.11) yield
(8.12) AA; =0 if a+0,8+#0, xa.

Since R, is not nilpotent, there exists a weight a = 0. We shall
now show that —a« is also a weight of E,. For suppose —« is not a
weight, then by the usual convention A_, = 0 and noting that none of
the previously derived identities use the fact that A_, = 0 we have for
B+0 or a, that A,4, =0 by (3.12). For 8 =0, A,4; C A, and for
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B=a A,A; C A_, = 0 using (2.14). Therefore A, is a nonzero ideal of
Aand so A=A, ButueAand u¢ A, = A, a contradiction. There-
fore —a is a weight if a is a weight.

Now set &, = A, 4 . P A, P A_, where a is a nonzero weight.
Then &7 # 0 and for 8 = 0, =a we have fA;C . For B+ 0, +«
we have 4,4, = A_,A; =0 by (3.12). Now by (3.4) and (3.12) we have
for x e A,,ye A_,,z€ Az that 0 = J(x,y,2) =2y -2+ Yz -+ 20y =
2y-2 and so 0 = A,A_, - A,. Thus in all cases &ZA; C .94 and there-
fore o7 is a nonzero ideal of A and we have A = . This proves

ProrosITION 3.13. If A is a finite dimensional simple non-Lie Malcev
algebra over an algebraically closed field of characteristic not 2 or 3
and A contains an element % such that R, is not a nilpotent linear
transformation, then there exists an & = 0 such that A = A, P A. P A_,
where A, = {x ¢ A: 2(al — R,)* = 0 for some k > 0} and 4, = 4,A4_,.

4. A decomposition of A relative to 4,. Let us consider the de-
composition of A as given Proposition 3.13; that is,
A=A DA DA, .

For any ¥y, 2,€ A, and 2 € A (e =0, +a), we use (2.8) and (2.11) to
see that

0= J(xr Yo, zo) = x(RyoRzo - RzgRllg) .
Therefore,
R(A) = {R,: % € A}

is a commuting set of linear transformations acting on 4,. We can
find R(A4,)-invariant subspaces M,(a) [2; Chapter 4] such that

Au, = Z @ MA(G/) (a' = 0’ ia) ’

A

where on each M,(a) the transformation RE,, for any x,¢c A, has a

matrix of the form
[h(xo) 0 1.
* o Mw)]’

that is, M,(a) has a basis {x, @, +-+, z,} (m = m(\, @)) such that for
any x, € A, there exists a,;(x;) € F' for which

i-1
4.1) wino = znlaij(xo)xa‘ + Mz, ,

where \z,) € F' and, of course, 1 =1,2, .-+, m.
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Using the usual terminology we call the function A defined by
At 2o — Mi,) a weight of A, in A, or just a weight and the corresponding
M,(«) a weight space of A, corresponding to N or just a weight space
of A,. It is easily seen [2] that A, has finitely many weights and the
weights are linear functionals on 4, to F. Also

My(a) = {x € A,: for all , € A, »(R,, — Mx)I)* =0
for some integer k > 0}

and for this weight » we have Au) = a. For suppose Mu) =b, then
there exists an # # 0 in M,(a) such that bx = zR,. But M,(a) C 4, =
{x e A: (R, — al)" = 0}; therefore (b — a)r = x(R, — al) and by induc-
tion (b — a)x = x(R, — al)* so for some integer N, (b — a)z =
2(R, —al) =0 and thus a = b = Mu). We now combine the weight
space decompositions of the A, to form a weight space decomposition
of A in

ProPOSITION 4.2. Let A=A, P A, P A_, be a simple Malcev alge-
bra as determined by Proposition 3.13, then we can write 4 = A, P
S M(a) D Y. D M(—a) where all weights are distinct and any
nonzero weight o of A in A is a weight of 4, in A, or A_, but not
both.

Proof. The first part is clear noting that in the original weight
space decomposition 4, = >, P Ma) the weights of A, in 4, can be
taken to be distinct. Also if )\ is a weight of 4, in 4, and /¢ a weight
of A4, in A_,, then Mu) = a + —a = (u) and therefore N = p. Now
let 00 be any weight of A4, in A with weight space M, =
{re A: a(R,, — p(x)])* = 0} and let y =y, + ¥, + ¥_, € M, where y,€ A,
with ¢ = 0, =a. Then for some integer N > 0,

= Y(R,, — p)])”
= U(R, — p@)I)"
+ YulRoy — @ + YRy — @)Y

and by the uniqueness of the decomposition A = A, PA. P A_, we
have ¥ (R,, — o(x,)])¥ =0 for a =0, a. Now by using the binomial
theorem and Aj =0 we have 0 = y(R, — o(z,)[)" = y,0(x,)" and since
p+0,9 =0. Thus we have y, (R, — p(x,)])¥ =0, a = £a, for some
integer N and so p is a weight of A4, in 4, and A_,. Now suppose ¥,
and %_, are both nonzero, then since p is a weight of A, in A,, p(u) =
« and since 0 is a weight of A, in A4_,, p(u) = —«, a contradiction.
Thus p is a weight of A, in either 4, or A_, but not both.

We shall use the usual convention that if p is not a weight of A,
in 4, then M, =0. Let M,(a) and M, (a) be weight spaces of 4, in A4,
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and let », 9, € A, and x € My(a), y € M.(a), then using (2.8) and (1.7)
we have

J(@, %o, Yoy) = J Yo, To, Y) + I (2, o, Yol)
= J (Yo, To, Y= + J(, o, Y)Yo
= J(, %5 Y)Y, -
Thus J(x,, z, y(R,, — M(Y)])) = —J (2, =, Y)(R,, + #(y,)]) and by induction

J (@, 2, Y(Ry, — ((y)1)") = (=1)"J (%, @, Y)(R,, + (Y))" .

From this we obtain J(x, «, y) € M_.(—a) and interchanging the roles
of x and ¥y we see J (%, %, ¥) € M_,(—a); this proves

4.3) J(A4,, M\(a), M(a)) T M_\(—a) N M_.(—a) .
From (4.3) we obtain

(4.4) J(4,, My\(a), M\(a)) € M_\(—a)
(4.5) J(A4,, My(a), M(a)) =0 if N+ 2.

We shall next show
(4.6) M(a)M (a) =0 if » =+ 1.

For let z, € A,, € M,(a) and ¥ € M,(a), then by (4.5) 0 = J(z, ¥, x,) and
therefore zyR, = xR, -y + - yR, and hence xy(R,, — (14=,) + Mx,)I) =
o(R,, — Mx)I) -y + « - y(R,, — t(x,)]). In the usual way we can prove
there exists an integer N such that xy(R, — ((,) + M2))I)¥ = 0 and
since we know zy € A_, this shows zy € M, .(—a) if X + ¢ (defined by
O+ () = Ma) + Mx,)) is a weight of 4, in A, or 2y =0. If
2y #+ 0, then \ + ¢t is a weight of 4, in A_, where N\ and g are weights
of A, in A, and therefore —a =\ + )(u) = Mu) + Hu) =a +a, a
contradiction.
Next we have for any weight A of 4, in A4,

4.7 My(a)M(a) © M_\(—a)

if —\ is a weight of 4, in A_,. For let #, € A, and N = M(x,) € F and
let M,(a) have basis {x,, ---, #,} as in (4.1). Then using (1.2) we obtain
N2, = NNy + Gps)
= xR, - xR,
= (woxl * xz)xo + (x1x2 * wo)wo + (xzwo ¢ wo)xl
= —\C @, R, + 2.0, R + Na.w,
and thus

0 = w@(R: — AR, — 2\']) = v R, + M)E,, — 2M]) .
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Now sgince )\ is a weight of 4, in A4,, —2\ is not a weight of A4, in
A_: —a =@\ u) = 2Mu) = 2a. Thus the above equation implies
2R, +2) =0 and therefore xzx, ¢ M_,(—a). Next zz,- 2w, =
Ao, (AE; + @y, + an2,) = N2, + 8 where s € M_\(—a) and (2, - 2,)2, +
(125 o), + (X320 T, = — N2, R, + 2,2, B2+ N, +t where t € M_\(—a).
Therefore using (1.2) we obtain 0 = z&, (R, + M )R, — 2\I) + w where
we M_,(—a) and actually w = 3\a,z,x,. Therefore 0 = z,x(R, + )’
(R, — 2\I) and as before zxy(R,, + A)'=0 so that zx, € M _\(—a).
Continuing this process we obtain zx, e M_,(—a) for k=1,2, .+, m.
Next consider the produect ...

Xy » Loy = (ANTy + @) (NEy + Qoo + Asty)
= N%,®, + s

where s € M_,(—a) and
(woey + L3)%y + (x2x3 * wo)xo + (232 * X)2 = xzxa(RfO - )“Rxo - >‘*21) +1

where t € M_,(—a), therefore 0 = x.x(R,, + M)(R,, — 2\I) + w where

w € M_\(—a). Therefore for some integer £ > 0 such that w(R, + \)*=

0 we have 0 = x,2y(R,, + M) (R,, — 2\]) and as before z.x, € M_,(—a).

We continue this process showing 2, € M_,(—a) and in general

xx; € M_(—a) for 4,7 =1, ---, m. This completes the proof of (4.7).
We now show

(4.8) Ma) M(—a) =0 if M+ p2+£0.

By (2.7) we have for z e M\(a), y € M.(—a) and z,€ A, that 0 =
J(x,y, %) and as usual we obtain zy(R, — (M=) + t(x,))I)" =0 for
some integer N > 0. Now z = a2y ¢ A, and suppose 2z #* 0, then, since
M+ p#0,N+ ¢ is a nonzero weight of A, in 4, a contradiction to
Proposition 4.2.

Let x € M (a), y € M\(a) and z € M. (—a), then using (1.9), (2.7) and
(2.8) we have

J(xxm Y, Z) = xJ(xOr Y, Z) + J(x; Y, z)mo - 2J(yzy r, xo)
= J(2, ¥y, 2)2,
and therefore J(x(R, — p(x)I),¥,?) = J(,¥,2)(R,, — o(x)]) and as
usual we obtain J(x, y, 2) € M,(e¢). Interchanging x and y we also obtain
J(x,y,2) € My(e) and therefore J(z, ¥, z) € M\(a) N M(a) = 0 if X = p.
Now assume A # p and assume ¢ = —\ is a weight of 4, in A_,, then
O0=J(x,y,)=2y-2+yz-2+2c-9Yy=yz- -2,

using (4.6) and (4.8). This proves
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(4.9) My(@)M_\(—a) - M)(a) =0

if A # p are weights of 4, in 4, such that —X\ is a weight of 4, in
A_,.

We shall now show if )\ is a nonzero weight of A4, in A, with
weight space M,(a), then —\ is a nonzero weight of 4, in A_, with
weight space M_,(—a). The proof is similar to that following (8.12):
Suppose —N\ is not a weight of 4,in A_,, then M_,(—a)=0; M,(a)M\(a)=
0; Mya)Mya) =0 if p+#N; AM\(a) < My(a) and My(a)M,(—a) = 0 if
¢+ N+ 0. Thus M,(a) is a proper ideal of A, a contradiction.

Set M, = M\(a)M_\(—a)P M,(a) D M_,(—«) for some nonzero weight
» of A, in A,. Then analogous to Proposition 3.13, M, can be shown
to be a nonzero ideal of A and we have

ProrosiTION 4.10. If A=A, P A. D A_, is a simple Malcev alge-
bra as determined by Proposition 38.13, then there exists a nonzero
weight v of 4, in A with weight space M,(a) = A, and such that —\
is a weight of A, in A with weight space M_,(—a) = A_,.

We shall identify « with A\ as a weight, that is, use the notation
a(x,) for Nz, and also identify M,(a) = A,, M_,(—a) = A_,. Note
that Proposition 4.10 implies there exists a basis for A so that for every
x € A,, R, has a matrix of the form

0 0 0

a(x) 0
0 [ T } 0
* a(x)

—a(x) 0
e
. . — o)

—J

5. The trace form. Set (z,y) = trace R,R,, then it is shown [3]
that this is actually an invariant form; that is (x,y) is a bilinear form
on A such that for all z, ¥, z € A, (xy, 2) = (x, y2). Also a bilinear form
(x, y) is mondegenerate on A if (x,y) =0 for all y € A implies « = 0.

THEOREM 5.1. If A=A, P A, D A_, 1s a finite dimensional simple
non-Lie Malcev algebra over an algebraically closed field of character-
istic zero and if A contains an element w such that R, is mot nilpotent,
then (x,y) = trace R,R, is a nondegenerate invariant form on A and
dimension A, = dimension A_,,.

Proof. On A=A PA,D A_, R, has the matrix
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and since u € A = J(A4, A, A) (by 1.12) we have by [3; 2.12] that 0 =
trace R, = an, — n_,) where n, = dimension 4,, ¢ = *+a.

Now to show (z,y) is nondegenerate, let T = {x ¢ A: (x, 4) = 0}
where for subsets B,C of A we set (B, C)=/{(b,¢):be B,ce C} and
for x € A, (x,C) = {(x,c):c e C}. Since (z,¥y) is an invariant form on
A, T is an ideal of A and since A is simple, T=0or T=A. If T =
A, then (4, A) = 0 and from the matrix of B, we see that

0 = (u, u) = trace RZ = 2na?®

where n = dimension A4,. Since F is of characteristic zero, a« =0, a
contradiction. Thus 7 = 0 which implies («x, y) is nondegenerate on A.

COROLLARY 5.2. If A=A, P A, P A_, is a simple Malcev algedbra
as above then

(AU’ Aw) = (AOy A—w) = (Awy Aw) = (AAwy A—w) =0.

Proof. Since R, is nonsingular on A4,,a = 0, A, = A,R,. Therefore
(4,, A) = (A4, AR, = (AR,, A,) = 0, the second equality uses (x, y) is
an invariant form and the third uses (2.11). Also (4,, 4,) = (w4, 4,) =
(u, A,A,) < (u, A_,) = 0.

COROLLARY 5.8. If AF isthe dual space of A, consisting of linear
Functionals on A, and f e Af, then f = ca for some ¢ € F.

Proof. First, (z,y) is nondegenerate on 4,. For if x, ¢ A4, is such
that (x,, 4,) = 0, then

(0, A) = (20, A, D A, D A_L)
C (%0, Ay) + (20, As) + (20, A_0)
=0

by the preceding corollary and therefore z, = 0 by Theorem 5.1. Now
if fe AF, then there exists a unique element [2, page 141] a, € A,
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such that for all xe A, f(x) = (%, a;) = trace R,R,, =
Kt 0 0 j [0 0 0

a(x) 0 a(a,) 0
0 [ } 0 0 [ J 0
trace * o(x) * afa,)

—a(z) O —afa;) 0
0 0 l: " . :\ 0 0 [ " . :\
L * o —a() L ¥ —alay)]-

= 2na(a,)a(x); using the remarks at the end of §4 to obtain the form
of the matrices of R, and R,,. Thus f = ca where ¢ = 2na(a;,) € F.

COROLLARY 5.4. The dimension of A, is one.

Proof. 0 < dimension 4, = dimension A¥ = dimension uF = 1.

We shall frequently refer to a Malecev algebra A that satisfies
Theorem 5.1 as a “usual simple non-Lie Malcev algebra” and for the
remainder of this paper we shall assume the algebraically closed field F
is of characteristic zero.

6. The diagonalization of E,. Using Proposition 4.10 and Corollary
5.4 we are able to decompose A relative to R(4,) into the form
A=A DA DA,

where A, = wF. From this the matrix of R, on 4, a = *+a, has the

form
o 0
|:* - aj| .

We shall show in this section that R, can be diagonalized. Put R, into
its Jordan canonical form on A, that is, find R,-invariant subspaces
Ula) of A, such that A, = Ufa)@P :-- P U, (a) and each Uy(a) has a
basis {;, +++, ®;s,} s0o that the action of E, is given by
R, = ax;
(6.1) xR, = awy; + -,
§ =2 00, m; .

Thus on Uga), R, has an m x m matrix of the form

0
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where m = dimension Ufa). We shall now investigate the multiplicative
relations between the U’s and show that the dimension of all the Uya)
is one and therefore R, will have a diagonal matrix.

LEMMA 6.2. U(a)Ufa) = 0.
Proof. Let Ugfa) have basis {x,, -+, .} as given by (6.1). If m =
1, we are finished. Suppose m > 1, then using (1.6)

0= —J(u, 2z, x,)R,
= J(u, x,, 2,R,)
= aJ(u, 2, x,) + J (U, ©,, x;)
= J(u, 2,5, %)
= XLy e U+ Ty Ty + UL, By
= x,x(R, — 2al) .

But we know A,, = 0, therefore x,2, = 0. Now using (1.6) we have, in
general, for any ¢ =1, -+, m,

0 = J(u” Ly szu)
= J(’LL, Z;, xi*l) + G/J(u, Lsy -’I;;)
= J(u, i, €;_1)

and again using (1.6),

0 = J(u, x,,;, xi_lRu)
= J(u’? Ly xi—ﬂ) + aJ(ur xi; xi—l)
= J(ur Zs, wi‘z) .

Continuing this process we have
J(u, z;, ) =0
for all £k < 4. Now if 7 < k, then by the preceding sentence
0 = J(u, z, x;) = J(u, x;, ) .

Thus

Jwu, xz;,x,)=0 forall ., k=1,.---,m.
By linearity this implies

Ju,x,y) =0 for all z,y € Ufa) .
Thus
xyR, = 2B, -y + -yR,
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and
2y(R, — 2al) = (R, —al) -y + 2 - y(B, — al)

As usual we can find an N large enough so that ay(R, — 2al)¥ = 0.
But we know A,, = 0, therefore 2y = 0.

LEMMA 6.3. Let x € A, be such that xR, = ax and let U(—a)=
Wy, *++, Yn}, then 2y, =0 for 1=1,+c,m —1 and xy, =2Nu where
A= —¥Y,, 2)/2na.

Proof. Using the invariant form (x, y) we have (y,2, 4) = (Y., *u) =
(Y., x). Since xy, € A, = uF we may write xy,, = \u, then (y,x, u) =
(—wu, u) = —\u, ) = — A2na’(a = =a). Thus A= —(y,, ©)/2na.

Now since « € 4, and U(—a) C A_,, we have by (2.4) and (2.11) that
0=J(@, Y u) = Y * U + Yt » T + UT - Y = (—aY, + Y.)T — aTY, = Y.
Again 0 = J(x, ¥s, %) = @Yy« U + Ysu - & + UT Y5 = (—ay, + Y)r — axy, =
y,x. Continuing this process we eventually obtain 0 = J(x, Y., 4) =
CYm * U+ YU« &+ UL * Yy = Y%

THEOREM 6.4. Let x ¢ A, be such that xR, = ax and let U(—a) be
such that xU,(—a) # 0, then dimension U(—a) = 1.

Proof. Let B=uF@xF & U(—a), then using the preceding
lemmas and their notation we see that B is a subalgebra of A and
2Yn. = Mt where N %= 0. Now by (2.4) we have J(u, , ¥,) = 0, there-
fore by [3; Corollary 4.4] we see that «,x and ¥y, are contained in a
Lie subalgebra, L, of A. However this implies ¥, 4 = —a¥,, + Yu_r € L
and therefore y,_, € L; again ¥, %4 = —0Y,_1 + Y._, € L and therefore
Yms € L. Continuing this process we obtain B< L and so B is a Lie
subalgebra of A. Thus for any z € B,

0=J, %, ¥n)
=2R,R, — R, R, — R,, )
= z([Rm Rl/m] - X‘Ru) .
Thus on B we have MR, = [R,, B, ] and therefore the trace of R, on

B is zero. But calculating the trace of R, from its matrix on B, we
obtain that the trace is 0 + ¢ — am. Thus m = 1.

COROLLARY 6.5. The dimensional of all the U(—a),a = *+a, is
one.

Proof. Suppose there exists U (—a) = {yi, *++,%,} of dimension
m > 1. Then for every Uy(a), y,Uf(a) =0. For if there exists some
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Uia) such that y,Uy(a) # 0, then by Theorem 6.4, dimension Ufa) = 1.
But this means there exists ¢ A, such that xR, =ax and 0=+
2y, € U(—a); so again by Theorem 6.4, dimension U;(—a) = 1, a contra-
diction. Thus %, U;(a) = 0 for all ¢ and this implies ¥,4, = y,(U(a) P+ D
U.[(a)) = 0. Now from Corollary 5.2 we have, since y, € A_,, (4, ¥,) =
(A_,, ;) = 0 and using the preceding sentence

(Aay yl) = (AM ?/1“) = (Aayly u) = 0 .
Thus (4, ) = 0 and since (%, ¥) is nondegenerate on A4, ¥, = 0, a contra-

diction.

7. Proof of the theorem. Let A=A, A, P A_, be the usual
simple non-Lie Malcev algebra, then we have just seen that A, is the
null space of R, —al,a =0, +a. The choice of a # 0 is fixed but
arbitrary. In particular we want to consider the case a = —2, then all
we must do is consider ' = (—2/a)u and decompose A relative to R,.
(which is also not nilpotent) to obtain A = A, P A_,P A,. However we
shall work with a fixed & and normalize when necessary.

Let a,b € F be any characteristic roots (weights) of R,, that is,
a,b =0, +a with characteristic vectors z, y ¢ A; that is, ax = 2R,, by
=yR, or x € A,,y € A,, then we have

(7.1) J@,y,u) =2y +u — (@ + b)xy where x e A,,yc A4, .
Using (2.4) and (7.1) we also have
(7.2) 2y - u=(a + b)xy where yec A,,yc A, and a #b .
Since 2y € A_, if x,y € A,, we have
(7.8) xy - = —axy where x,yc A, .
Combining (7.3) and (7.1) yields
(7.4) J(z,y, w) = —8axy where x,y < A, .
Let z,y,2z € A,, then using (2.14), (2.4), (1.9) and (7.4) we have

0 = J(zy, 2, )
= xJ(yy 2, u) + J(xr 2, 'll/)y —2 J(zu; z, y)
= 2(—8ayz) + (—3axz)y — 2aJ (7, x, ¥) .
Therefore
2J(x,y,2) = —3(x - yz + xz - ¥)
=8y -2 +yz-x+z2x-y)— 32y -2
and thus
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(7.5) J(x,y,2) =3xy -2 where 2,9,2€ A, .

Now J(x, 2, y) = 32z - y and adding this to (7.5) yields 0 =2y -z + 22 - ¥
and with a slight change of notation we have

(7.6) xYy 2= —x Y2 where x,y,2¢€ A4, .
From (7.6) with z = # we obtain
7.7 2y - =) where x,yc A,.

Now let z,yc A,,2e A_,, then —aJ(x,¥,2)=J(x, ¥y, 2u) and
J(z, 9, 2u) =aJ (2, ¥, x) = —aJ(z, ¥, 2). So

—2aJ(x, y, ?2) = J (2,9, 2w) + J (%, ¥, 2u)
=J @z, 9y, wx + J(@, y, u)z = J(z,y, u)z,
using (1.7) for the second equality, (2.4) for the third. Thus we have
—2ad(z, y, 2) = J(x, ¥y, )z = (—8axy)z using (7.4) and hence
(7.8) 2J(x,y,2) =3xy -2 where x,yc A,,zc A_,.
This yields 32y - 2 =2(xy -2 + yz - ¢ + 22 - y) or
(7.9) 2y 2= —2@x=2-y +2-y2) where x,yc A,,zc A_,.

We now use (7.9) to prove the important identity (7.10). Thus let
w, %, Y,z be elements of A, and set v = J(x, ¥, ?), 2x' = yz, —2y' = az
and 22’ = x2y. Then

(7.10) w=6@"w -z+yw-y+2w-z2).

To prove this note that &', ¥, 2’ € A_, and using (7.9) we have 22’z - w =
2w’ —2wx' X, 20y w=yw-y — 2wy -y,22'z- w=z2w-2 — 2wz -2,
Adding these equations and multiplying by 2 yield

20w = 2w« &' +yw Yy + 2w )+ 4@w - +Yw-y +2Zw-2).
Now using (1.10),

2w - 2" + yw Y + 2w+ 2') = 0w - Yz + Yyw - 2 + 2w - Y
= 2(zw - ¥) + 2(wy - x) + wlyzx - 2) + y(xz - w) + y(xw - 2) + v(wz « yY)
+ w(zy - %) + 2(yz - w) + 2yw - x) + y(wz - 2) + w(rz - y) + 2(zy - w)
= w(yx - 2) + w(zy - ) + w(xz - y) + y(xz - w) + 2(yx - w) + 2(zy - w)
= —wv + y(—2y'w) + 2(—2='w) + x(—2x'w)
noting some cancellation to obtain the third equality. Thus 20w =

vw 4+ 20w +yw-y +2w-2) + 4a'w-x +yw-y+ 2w - 2)and this
proves (7.10).
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Since A is simple non-Lie Malcev algebra, we shall use the facts
A=A and A = J(4, A, A) to obtain more identities for A. First we
have

ABPA, DA . =A=J(4, 4, A4
cJ(, A, A) + J(A,, A, A) + J(A_,, A, A)
< J(4, A, Ay) + J(A4,, A_,, A_) + J(A,, A., AL)
+J(A L A, AL) + (A, Ay A + J(As, A, AL)
CA DA DA,
and therefore

Ay =J(A,, A A +J(AL, A, ALY,
A, =J(A, A_,, A_) + J(4,, A, A_,) ,
A, =J(4y, A, A)) + J(As, A, ALL)
We now use 4 = A to obtain
APA PA , =A=A
=AA, +AA _,+ AL+ AA , + A2,
and therefore
AO = AaA—w ?
Aw == AoAm + A2—w )
A, =AA_, + A%,
Since A, = wF' we have A4, = A (e = +a). Also
J(Ao’ Afa, A~a) - Aa. = AoAa
C AJ(A, A, A) + AJ (A, A, ALY
c J(4, Ay, AZ) + J(Ay, A, ALA) + J(A, A, AALL)
+ J(Ay, Ao, AA L) + J(4,, Ay, ALA) + J(4, A, A2)
cJ(4, A, A),

obtaining the second inclusion from A, = J(4, 4 ., A_) + J(4,, 4, A_,)
and the third inclusion from (1.8). Thus we have

A, =JA, A, A, a+0.
From this and remembering A, = uF' we obtain
A, =A_A,, a+0.
For A A, cA, =JA,A_,,A_)cC A_A_,. Also

AO = J(Aay Auy Aa) ’ a = ia M
For
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J(A, A, A)C A= AA,
= A.J (4, A,y Ao)
c J(4, A, AY) + J(A,, A, AA) + J(A,, A, AAY)
C J(A, A, A) .

We summarize these identities in

ProposiTioN 7.11. Let A = A, P A, P A_, be the usual simple non-
Lie Malcev algebra, then we have for a = *a,

A, =44, =4 A,
and
AO = AaA—a = J(Aur Aar Aa) M

THEOREM 7.12. Let A=A, P A, D A_, be the usual simple non-
Lie Malcev algebra, them A is isomorphic to the simple seven dimen-
stonal Malcev algebra A* discussed im the introduction.

Proof. Since uF = A, = A,A_,= A, A, A,, there exists x,y,zc A,
such that x-.yz = 2u. Define 2¢' = yz, —2y' = 2z and 22’ = ay and
form the subspace B generated by {u,x,y,z, «',¥’,2'}. First the z,y
and z are linearly independent over F. For if ax + by + cz = 0 with
a,b,ce F and, for example, a #= 0, then write = b'y + ¢’z and there-
fore using (7.7) 2u=x-yz =0y -yz + c'z-yz =0, a contradiction.
Similarly noting % = xx’ and assuming a relation of the type «' =
b’y + ¢'?’” and using the definitions of «',%' and 2’ we see that the
2', 9" and 2’ are also linearly independent. Since A =A4,PA, P A_,,
{w,x,y,2,2',y',2'} is a linearly independent set of vectors over F.
Using identities (1.2), (7.6) and (7.7) we obtain the following multiplica-
tion table for B.

U X Y b2 2’ Yy 2
U 0 —Qa —ay —az ax’ ay' az'
x ax 0 2z -2y u 0 0
Y ay —22' 0 2%’ 0 % 0
2 az 2y’ — 2’ 0 0 0
2 —ax' —u 0 0 0 az —ay
Yy —ay' 0 —U 0 —Qaz 0 ax
2 —az 0 0 —U ay —ax 0

By the remarks at the beginning of this section we can choose a¢ = —2
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and consequently obtain that B is isomorphic to A*. It remains to
show the dimension of A over F is seven. For this it suffices to show
dimension 4, = 3, since dimension A, = dimension A_,. Let 0 = w € 4,,
then by (7.5)

6u =3x-yz = —J(x, ¥, 2)
and therefore by (7.10),
baw = 6wu = & + YY + 2R

where x,, ¥, 2 € A, = uF. But by the action of v on =,y and z we

have 6aw = a@x + by + ¢z where ay, b, ¢, € F. Thus the dimension of
A, is three.
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