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Dickson [1, Ch. V, Th, 38] has given an interesting necessary con-
dition for a polynomial over a finite field of odd characteristic to be
irreducible. In Theorem 1 below, I will give a generalization of this result
which can also be applied to fields of characteristic 2. It also applies to
reducible polynomials and gives the number of irreducible factors mod 2.

Applying the theorem to the polynomial #? — 1 gives a simple proof
of the quadratic reciprocity theorem. Since there is some interest in
trinomial equations over finite fields, e.g. [2], [4], I will also apply the
theorem to trinomials and so determine the parity of the number of
irreducible factors.

1. The discriminant. If f(x) is a polynomial over a field F', the
discriminant of f(x) is defined to be D(f) == 8(f)* with

o) = (e — @)

where «,, +++, @, are the roots of f(x) (counted with multiplicity) in
some extension field of F. Clearly D(f) =0 if f has any repeated
root. Since D(f) is a symmetric function in the roots of f, D(f)e F.

An alternative formula for D(f) which is sometimes useful may be
obtained as follows:

D(f) = I(e: — ) = (=1 P I — ay) = (=1 P L ()

where 7 is the degree of f(x) and f'(x) the derivative of f(x). In §4,
I will give still another way to calculate D(f).

If f(x) is monic with integral coefficients in some p-adic or alge-
braic number field, all «; are integral and so D(f) is integral. Consider
the expression

8 = H(CY,, + aj) .

i<j
This is integral and lies in F', being a symmetric function of the roots.
Clearly o(f) = 8, + 28, where 8, is integral. Thus D(f) = 8(f)* = ¢! mod
4, so D(f) is congruent to a square in F mod 4. This is a special case
of a well-known theorem of Stickelberger [3, Ch. 10, Sec. 3].

Received November 15, 1961. The author is an Alfred P. Sloan Fellow.

Added in Proof. 1 have recently discovered that Theorem 1 of this paper is due to
L. Stickelberger, Uber eine neue Eigenschaft der Diskriminanten algebraischer Zahlkirper,
Verh. 1 Internat. Math. Kongresses, Zurich 1897, Leipzig 1898, 182-193. A simplified proof,
essentially the same as mine, was given by K. Dalen, On a theorem of Stickelberger, Math.
Scand. 3 (1955), 124-126.

The applications of the theorem, however, seem to be new.
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Suppose f(x) is monic with integral coefficients in a p-adic field F'.
I will denote by f(x) the polynomial over the residue class field obtained
by reducing all coefficients of F' mod' p. In some extension field of F~
we have f(x) =(x —a,) -++ (* — a,). Therefore f(x) = (x —a&) -+ (®
— a,) where &, is «; reduced modulo the (unique) extension of p. It
follows that D(f) is D(f) reduced mod p. In particular, if f(x) has.
no repeated root, D(f) # 0 and so D(f) is prime to p.

2. The main theorem. If f(x) is a monic polynor_nial with integral
coefficients in a p-adic field, I will again denote by f(x) the result of
reducing the coefficients of f(x) mod p.

THEOREM 1. Let f(x) be a monic polynomial of degree n with.
integral coefficients in a p-adic field F. Assume that f(x) has mo
repeated roots. Let r be the number of irreducible factors of f(x) over
the residue class field. Then r =n mod 2 if and only if D(f) s a
square in F.

Proof. Over the residue class field K we can factor f(x) = fu(x)y
«++ f(x). Since the fi(x) are relatively prime, Hensel’s lemma shows
that there is a corresponding factorization f(x) = fi(x) -« f.(r) over F"
where fi(x) is fi(w) mod p. Since fi(x) is irreducible over K, fi(x) is
irreducible over F. Since f;(x) has no repeated root, D(f;) is prime to
%/. Therefore the field E; obtained by adjoining a root of fi(x) to F"
is unramified over F. Since there is only one unramified extension of
F of any given degree and that extension is cyclic, E; is cyclic over F"
and thus is the splitting field of f;. The splitting field E of f(x) is the
composite of all the E; and therefore is unramified over F. Thus E/F
is a cyclic extension. (A more elementary proof of this was pointed
out by W. Feit. Let m be the least common multiple of the degrees
of the fi(x). It is easy to construct a cyclic unramified extension E,/F'
of degree m by adjoining a root of unity to F. Now f(x) splits com-
pletely over the residue class field K, of E, since the degree n; of every
irreducible factor of f(x) divides m = [E;: F']. By Hensel’s lemma, f(x)
splits completely over E, so E C E..)

Let o generate the galois group of E/F. Let 8; be a root of fi(x).
Then the roots to f;(x) are given by 0%(8;) for 0 < ¢ = n; — 1 where n;
is the degree of f;(x). Thus the roots of f(x) are oi(8;) forj =1, .-,
N, 1 =20, +++,m; — 1. These can be ordered by defining (¢, j,) < (¢, Jo)
if j, <jg,or if 7, =7, and 4, < %,. For any ¢, the symbol (¢,7) will be
interpreted to mean (¢, ) where ¢ =14 mod n;, 0 < ¢ < n; — 1.

Now D(f) = 6(f)* where

a(f) = )Uilﬂjl — 0%6;).

(i1.41) <ig.da
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If we apply o to 4(f), we get
oo(f)= II (o""B; — o™"B;).

(41 310 <(ig.dg)

The terms occurring in this product are the same as those in d(f)
except for sign. The term o¢“+'B; — o8, occurs in 4(f) and gd(f)
with the same sign if and only if (4, +1,5) < (%, + 1, 7). This is cer-
tainly the case if j, < j, or if 5, =4,=7 and %, < n; — 1. However, if
ji=4,=7 and i, =n; — 1, then (4, + 1,7) = (0,7) < (¢4, + 1, 7). There-
fore the total number of terms which occur with different signs in 6(f)
and dd(f) is equal to the number of pairs ((4, ), (n; — 1,5)) where
0=<1% =n; —2. There are n; — 1 such pairs for each j. The total
number is given by

>n;—1)=n—r.

This shows that gd(f) = (—1)*"6(f). Now D(f) is a square in F' if
and only if 6(f)e F, which is the case if and only if ¢d(f) = o(f).
Therefore D(f) is a square in F if and only if % = 7 mod 2.

COROLLARY 1. Let K be a finite field of odd characteristic. Let
g(x) be a polynomial over K of degree n with no repeated root. Let
r be the number of irreducible factors of g(x) over K. Then r=n
mod 2 if and only if D(g) ts a square in K.

Proof. We can assume that g(x) is monic. Let F' be a p-adic field
with residue class field K. Let f(x) be a monic polynomial over F' with
integral coefficients such that f(x) = g(x). Then D(g) is D(f) reduced
mod p. Since D(g) +0, D(f) is a square in F if and only if D(g) is
a square in K. This follows immediately from Hensel’s lemma applied
to the polynomial 2* — D(f).

A more elementary proof of Corollory 1 can be obtained by repea-
ting the proof of Theorem 1 using K in place of F.

If f(%) is irreducible over K, =1 and so n is odd if and only if
D(f) is a square in K. This is the theorem of Dickson mentioned
above.

If K has characteristic 2, the proof of Corollary 1 breaks down
because D(g) may be a square mod p even though D(f) is not a square.
For example, 3 is a square mod 2 but not mod 8. In this case we
need the following well-known result.

LEMMA 1. Let a be a p-adic integer prime to p. Then a is a
p-adic square if and only if a is a square mod 4p.

Proof. Suppose a = b? mod 4p'. Then a = b2+ 4¢; wherec; =0
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mod pt. Let d; =b7%;. Then d; =0 mod P since b; is prime to p,
and a = (b; + 2d,)* — 4d%. Let b;,, = b, +2d,., Then a =b%, mod 4
pitt (in fact mod 4p*). The b, form a Cauchy sequence and a = b®
where b = lim b;.

COROLLARY 2. Let f(x) be a monic polynomial of degree m with
integral coefficients over a p-adic field F. Assume that f(x) has no
repeated root. Let r be the number of irreducible factors of f(x) over
the residue class field K of F. Then r =n mod 2 if and only if
D(f) is a square mod 4p.

This follows immediately from Theorem 1 alnd Lemma 1. In apply-
ing Corollary 2 we are usually given K and f(x) and choose any con-
venient F’ and f(x). For example, in case K = GF(2), we get

COROLLARY 8. Let g(x) be a polynomial of degree m over GF(2)
with mo repeated root. Let v be the number of irreducible factors of
g(x) over GF(2). Let f(x) be any monic polynomial over the 2-adic
integers such that f(x) = g(x). Then r=mn mod 2 if and only if
D(f) =1 mod 8.

This follows immediately from Corollary 2 and the fact that 1 is
the only odd square mod 8. Note that D(f) =1 or 5 mod 8 by Stickel-
berger’s theorem.

ExAMPLE. Let f(x) be a polynomial of degree k over a finite field
of characteristic 2 such that f(0) #+ 0. Let g(x) = f(x)* + 2™ where m
is odd. Then #» = deg ¢g(x) = max (8k, m). Choose an appropriate p-
adic field and a polynomial F(x) of degree k such that f(z) = F(x).
Then g¢(x) = G(x) where G(z) = F(x)* + 2. Now G'(x) = maz™* mod
8 so

D(@G) = (= )" [mar~ (mod 8) .
Since Ha; = (—1)"G(0) = f(0)* =0 mod p, D(G) #= 0 mod p so g(x) has
no repeated root. Since m is odd, Ta* is a square. Thus D(G) differs
by a square factor from

DI — (_1)n(n—1)/2mn .

If n =8k, D’ is a square. Thus » = n = 0 mod 2. Therefore g(x) has
an even number of factors and so is reducible. If » = m, D' differs
by a square factor from (—1)™ V2, If m= +8 mod 8, (—1)" iy =5
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mod 8 and so » 7 =1 mod 2. Therefore g(x) is reducible if m = +3
mod 8.

In particular, 2% + %™ + 1 is reducible mod 2 if m < 8k. If m > 8k
it is reducible if m = +3 mod 8.

3. Quadratic reciprocity. The diseriminant of the polynomial 2" + @
over any field is given by

D(xn + CL) — (__1)%(%41)/2 H%a?——l — (_1)n(n—1)/2nnan—l

because la, = (—1)a.

Congider in particular the polynomial x? — 1 = (x — 1)@,(x) where
p is an odd prime. Its discriminant differs by a square factor from
(—1)p, Therefore 2 — 1 has an odd number of factors over GF'(2)
if and only if »p = =1 mod 8. If ¢+ p is an odd prime, 2? — 1 has
an odd number of factors over GF'(q) if and only if (—1)*™p is a
square mod q.

Now, if a is any root of @,(x) over GF'(q), ¢ + p, « is a primitive
pth root of unity. Therefore awe GF'(¢") if and only if p|¢* — 1. Thus
the degree of a (and hence of any irreducible factor of @,(x)) over
GF(q) is the order n of ¢ mod p. It follows that ¥ — 1 has 1 + @(p)/n
factors over GF(q),

Since the multiplicative group Z* of integers mod p is cyclic, Z*
has a unique subgroup of index 2 which consists of all squares. Thus
g is a square mod p if and only if it generates a subgroup of Z; of
even index. This index, however, is just ®(p)/n, so ¢ is a square mod
p if and only if 2* —1 has an odd number of factors over GF'(q).
Comparing this with the results obtained from Theorem 1, we get

<%) = (_____._(—1):_1”21) ) if ¢ is odd

<%>:1 if and only if p= +1 mod 8.

These equations, together with the trivial formula
( —1> = (—1)-Dr
D

constitute the quadratic reciprocity theorem.

4. Calculations. For the calculations made above, the discriminant
could easily be found using the formula given in §1. However, for
more complicated polynomials this method of finding the discriminant is
very inefficient. In this section I will give a simpler method based on



1104 RICHARD G. SWAN

the Euclidean algorithm and use it to calculate the discriminant of any
trinomial.

Let f and g be any polynomials over any field . Let g have roots
B+, Bm, (counted with multiplicity), and leading coefficient b. Let
n be the degree of f(x). Then the resultant of f and g is defined
to be

R(f,0) = 0TI/ (8) .

Clearly R(f, g)€ F since it is a symmetric function in the roots of g.
Comparing this definition with the formula for D(f) given in § 1 shows
that if f is monic

D(f) = (=1)"*ER(f", f) .

The following properties of R(f, g) are presumably well known, but.
I will include them for completeness.

LEMMA 2. (1) R(g, f) — (__1)degf-deg0R(f’ g)
@) If f=99+r,

R(f, 9) = b*s=""R(r, g)

where b is the leading coefficient of g.
B) If a and b are constants not both 0, R(a, d) = 1.
4) R(fif»9) = R(f;, 9R(f» 9) .

The proof is trivial.

CoROLLARY 4. (5) R(f, 9.9:) = R(f, 9)R(f, 92)

(6) If a is contant, R(f,a) = a**’ = R(a, f)

(1) R(f,z") = R(f, )" = f(O0)".

It follows from properties (1), (2), and (3) of Lemma 2 that we
can compute R(f, g) by applying the Euclidean algorithm to f and g.
This method of computation seems much easier in practice than the
rather cumbersome determinant formula [5, Ch. 11, §71, 72.].

In order to compute the discriminant of a trinomial, it is first
necessary to compute the resultant of two binomials.

LeEMMA 3. Let d = (r, s) be the greatest common divisor of r and
s. Let r=dr, s=ds,. Then R — a,x° — B) = (—1)[ar — B1]%

Proof. We first observe that if the result holds for a given pair
(r, s) it holds for (s,r). This follows easily from Lemma 2 (1) using
the fact rs + s +d = r mod 2.
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Since the result is trivial for s = 0, we can prove it by induction
on r + s, assuming also r = s by the previous remark.

Now, dividing 2" — « by «* — B gives the remainder Bz — «.
Thus we can apply Lemma 2 (2) and the result follows easily by in-
duction.

It is now easy to find the discriminant of a trinomial over any
field.

THEOREM 2. Let n >k >0. Let d = (n,k) and n =nd, k= kd.
Then

D(xn + axk + b) — (___1)n(n—1)/2bk—1[nn1bn1—k1 + (_1)n1+1(n — k)nl——klkklanl]d .

Proof. Consider the generic polynomial f of degree », multiply out
D(f) = [I(at; — ;)

and express the resulting symmetric functions as integral polynomials
in the coefficients of f. This gives an expression for D(f) as a specific
integral polynomial in the coefficients of f and this expression is in-
dependent of the characteristic. In order to find the form of this
polynomial, it is sufficient to do it in characteristic 0. For any poly-
nomial f of degree =,

D(f) = (=1)""""R(f", f) .

Therefore

D(z" + ax* + b) = (—1D)"* V2R (nx"* + kax*?, " + ax® + b)
= (=1 VxR (x” + ax® + b, 2" % + n'ka)

using Lemma 2 (1), (4) and Corollary 4 (7)

Now, dividing 2" + ax* + b by 2" * + n'ka leaves the remainder
a(l — n'k)x* + b. Therefore the result follows from Lemma 2 (2) and
Lemma 3.

As an application of Theorem 3, I will determine the parity of the
number of factors of x" + x* + 1 over GF'(2).

COROLLARY 5. Letn >k > 0. Assume exactly one of n, k is odd.
Then x* + x* + 1 has an even number of factors (and hence is re-
ducible) over GF(2) in the following cases.

(a) m 1is even, k is odd, n # 2k and nk/2 =0 or 1 mod 4

(b) m is odd, k is even, k}t2n, and n = + 3 mod 8

(¢) m s odd, k is even, k|2n, and n = =1 mod 8
In all other cases x* + x + 1 has an odd number of factors over GF(2).
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The case where » and k are both odd can be reduced to the case
k even by considering 2" 4+ z"* 4+ 1 which has the same number of ir-
reducible factors as a* + «* + 1.

To prove Corollary 5 we regard 2" + z* + 1 as a polynomial over
the 2-adic integers, compute its discriminant by Theorem 2, and apply
Corollary 3.

Note that the fact that some trinomial #* + %* + 1 has an odd
number of factors does not imply that it is irreducible. For example,
we may consider the trinomial #* + #* + 1 with £ odd. In a number
of cases, including this one, the reducibility or irreducibility of x” + x*
+ 1 can be decided by using the results of {1, Ch. V, §9]. Recall that
an irreducible polynomial f(x) over a finite field is said to belong to the
exponent e if e is the least integer such that f(x)|z* — 1. In other
words, e is the order of a root of f(x).

If f(x) is irreducible of degree m and exponent e over GF(q), it
follows from [1, Ch. V, Th. 18] that f(z*) is irreducible over GF'(q) if
and only if every prime p dividing s also divides ¢ but does not divide
(g — 1)/e and, in addition, 4 /s if ¢* = —1 mod 4.

In particular x* + %* + 1 is irreducible over GF'(2) if and only if
k is a power of 8 and x** + a* + 1 is irreducible over GF'(2) if and
only if &k = 375°.

Some other cases can be disposed of by observing that if " + «* + 1
divides #¢ + 1 then 2" 4 #* + 1 divides " + &* + 1 if n = », k = s mod
e¢. For emample, 2> + 2 + 1 divides 2" +2* +1if n=2, k=1 mod 3
orif n=1, k=2 mod 3.

ReEMARK. I. Kaplansky points out that Theorem 1 can be refor-
mulated so as to avoid the use of p-adic numbers by considering the
positive and negative terms in II(a; — «;). These are polynomials in
the «, which also make sense in characteristic 2. This yields an ele-
mentary form of the theorem but one which is hard to apply because
of the difficulty in computation.
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