NORMAL MATRICES AND THE NORMAL BASIS IN ABELIAN NUMBER FIELDS

ROBERT CHARLES THOMPSON
NORMAL MATRICES AND THE NORMAL BASIS
IN ABELIAN NUMBER FIELDS

R. C. THOMPSON

1. Introduction. Throughout this note F denotes a normal field of algebraic numbers of finite degree n over the rational number field. Let G_1, G_2, \ldots, G_n denote the elements of the Galois group G of F. It is known [2] that F may possess a "normal" basis for the integers consisting of the conjugates $\alpha^{g_1}, \alpha^{g_2}, \ldots, \alpha^{g_n}$ of an integer α. In [4] the question of the uniqueness of the normal basis was answered when G is cyclic. (See also [1, 6].) If $\beta_1, \beta_2, \ldots, \beta_n$ is any integral basis of F then the matrix $(\beta_i^j), 1 \leq i, j \leq n$, is called a discriminant matrix. It was shown in [4] that if G is abelian then the discriminant matrix of the normal basis $\beta_i = \alpha^{g_1}, \ldots, \beta_n = \alpha^{g_n}$ is a normal matrix and, if G is cyclic and F has a normal basis, then any integral basis β_1, \ldots, β_n for which the discriminant matrix is normal is of the form $\beta_{\sigma(i)} = \pm \alpha^{g_1}, \ldots, \beta_{\sigma(n)} = \pm \alpha^{g_n}$ for a suitable choice of the \pm signs, where σ is a permutation of $1, 2, \ldots, n$.

It is the purpose of this note to use the methods of [4] to extend these results for cyclic fields to abelian fields. In particular, in Theorem 1, we shall give a new proof of a result obtained by G. Higman in [1]. The author wishes to thank Dr. O. Taussky-Todd for drawing the problems considered here to his attention.

2. Preliminary material. We suppose throughout that

\[G = (S_1) \times (S_2) \times \cdots \times (S_k) \]

is the direct product of k cyclic groups (S_i) of order n_i. Of course, each $n_i > 1$ and $n = n_1 n_2 \cdots n_k$. If X and $Y = (y_{i,j})$ are two matrices with elements in a group or a ring then we define $X \times Y = (X y_{i,j})$. $X \times Y$ is the Kronecker product [3] of X and Y. Henceforth, in this paper, the symbol \times will always be used to denote the Kronecker product of vectors or matrices. A matrix A is said to be a circulant of type (n_i) if

\[A = [a_1, a_2, \ldots, a_{n_i}]_{n_i} = \begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_{n_i} \\ a_{n_i} & a_1 & a_2 & \cdots & a_{n_i-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{bmatrix}. \]

Here $a_1, a_2, \ldots, a_{n_i}$ may lie in a group or a ring. For $i > 1$ we define

Received June 15, 1961, and in revised form October 13, 1961.

1115
by induction \([A_1, A_2, \cdots, A_n]_{k}\) to be a circulant of type \((n_1, n_2, \cdots, n_k)\) if each of \(A_1, A_2, \cdots, A_n\) is a circulant of type \((n_1, n_2, \cdots, n_{i-1})\). For \(1 \leq i \leq k\) let \(H_i = (1, S_i, S_i^2, \cdots, S_i^{n_i-1})\) and \(D_i = [1, S_i^{-1}, S_i^{n_i-2}, \cdots, S_i]\). Henceforth we shall always let \(G_1, G_2, \cdots, G_n\) denote the elements of \(G\) in the order implied by the vector equality

\[
(G_1, G_2, \cdots, G_n) = H_1 \times H_2 \times \cdots \times H_k.
\]

Let \(y(G_1), y(G_2), \cdots, y(G_n)\) be commuting indeterminants and define the matrix \(Y = (y(G_i G_j^{-1})), 1 \leq i, j \leq n\). Then it can be proved by induction on \(k\) that \(D_1 \times D_2 \times \cdots \times D_k = (G_i G_j^{-1}), 1 \leq i, j \leq n\), and hence that \(Y\) is a circulant of type \((n_1, n_2, \cdots, n_k)\). Since any circulant of type \((n_1, n_2, \cdots, n_k)\) is determined by its first row, it follows that any circulant of type \((n_1, n_2, \cdots, n_k)\) may be obtained by assigning particular values to the indeterminants \(y(G_1), \cdots, y(G_n)\) in \(Y\).

Lemma 1. Circulants of type \((n_1, n_2, \cdots, n_k)\) with coefficients in a field \(K\) form a commutative matrix algebra containing the inverse of each of its invertible elements. For fixed \(m\), all matrices \(X = (X_{i,j}), 1 \leq i, j \leq m\), in which each \(X_{i,j}\) is a circulant of type \((n_1, n_2, \cdots, n_k)\) with coefficients in \(K\), form a matrix algebra containing the inverse of each of its invertible elements.

Proof. Let \(W = (W_{i,j} G_i G_j^{-1}), 1 \leq i, j \leq m\). Then \(W + Y\) and \(aW\) for \(a \in K\) are clearly circulants of type \((n_1, n_2, \cdots, n_k)\). The \((i, j)\) element of \(WY\) is

\[
\sum_{i=1}^{m} W_{i,j} (G_i G_i^{-1}) y(G_i G_j^{-1}) = \sum_{i=1}^{m} W_{i,j} (G_i G_i^{-1} G_i G_j^{-1}) y((G_i^{-1} G_j^{-1}) G_j^{-1})
\]

\[
= \sum_{i=1}^{m} W_{i,j} y(G_i^{-1}) w(G_j^{-1}).
\]

But this is the \((i, j)\) element of \(YW\). Hence \(WY = YW\). Define

\[
z(G_i G_j^{-1}) = \sum_{i=1}^{m} W_{i,j} y(G_i G_j^{-1}).
\]

Then a straightforward calculation shows that \(z(G_i G_j^{-1}) = z(G_j G_i^{-1})\) if \(G_i G_i^{-1} = G_j G_j^{-1}\). Hence the variables \(z(G_i G_j^{-1}), 1 \leq i, j \leq n\), are unambiguously defined, so that \(WY\) is a circulant of type \((n_1, n_2, \cdots, n_k)\). This proves the first half of the first assertion of the lemma. The rest of the first assertion follows from the fact that the inverse of a matrix is a polynomial in the matrix. The other assertion of the lemma is now clear.

We let \(B'\) and \(B^*\) denote, respectively, the transpose and the complex conjugate transpose of the matrix \(B\). The diagonal matrix
whose diagonal entries are \(\lambda_1, \lambda_2, \cdots, \lambda_n \) is denoted by \(\text{diag} (\lambda_1, \lambda_2, \cdots, \lambda_n) \). The zero and identity matrices with \(s \) rows and columns are denoted by \(0_s \) and \(I_s \), respectively, and for \(i = 1, 2, \cdots, k \), the companion matrix of the polynomial \(x^n - 1 \) is denoted by \(F_i = [0, 1, 0, \cdots, 0]_{s_k} \).

Let \(\zeta_{nu} \) be a primitive root of unity of order \(nu \) for \(1 \leq i \leq k \). Set \(\Omega_u = (\zeta_{u(i-1)(i-j)}^{-1}) \), \(1 \leq i, j \leq nu \), and set \(\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_k \). Define \(T_u = n_u^{-1/2} \Omega_u \) and \(T = n^{-1/2} \Omega \). It can be shown by direct computation that \(T_u \) is a unitary matrix. Hence, using the basic properties \((Z \times Y) = ZXYW \) and \((X \times Y)^* = X^* \times Y^* \) of the Kronecker product, it follows immediately that \(T \) is a unitary matrix.

Lemma 2. If \(A \) is a circulant of type \((n_1, n_2, \cdots, n_k) \) with first row \(a = (a_1, a_2, \cdots, a_n) \) and complex coefficients, then \(T^*AT = \text{diag} (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) \) where the vector \(\varepsilon = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) \) is linked to the vector \(a \) by \(\varepsilon' = \Omega a' \).

Proof. The proof is by induction on \(k \). For \(k = 1 \) it is well known (and straightforward to check) that \(AT_1 = T_1 \text{diag} (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) \). Suppose the result known for \(k - 1 \). If

\[
A = [A_1, A_2, \cdots, A_{n_k}]_{s_k} = \sum_{i=1}^{n_k} A_i \times F_i^{i-1}
\]

and if we set \(d = n_1n_2\cdots n_{k-1} \) and define \((\gamma_{(i-1)d+1}, \gamma_{(i-1)d+2}, \cdots, \gamma_{id}) \) by

\[
\gamma_i = (\gamma_{(i-1)d+1}, \gamma_{(i-1)d+2}, \cdots, \gamma_{id})',
\]

then, by the induction assumption,

\[
(T_1 \times \cdots \times T_{k-1})^*A_i(T_1 \times \cdots \times T_{k-1}) = \text{diag} (\gamma_{(i-1)d+1}, \gamma_{(i-1)d+2}, \cdots, \gamma_{id}),
\]

Then

\[
T^*AT = \sum_{i=1}^{n_k} (T_1 \times \cdots \times T_{k-1} \times T_k)^*(A_i \times F_k^{i-1})(T_1 \times \cdots \times T_{k-1} \times T_k)
\]

\[
= \sum_{i=1}^{n_k} \{(T_1 \times \cdots \times T_{k-1})^*A_i(T_1 \times \cdots \times T_{k-1})\} \times \{T_k^*F_kT_k\}^{i-1}
\]

\[
= \sum_{i=1}^{n_k} \{(\text{diag} (\gamma_{(i-1)d+1}, \gamma_{(i-1)d+2}, \cdots, \gamma_{id})\}
\]

\[
\times \{\text{diag} (1, \zeta_k^{i-1}, \zeta_k^{i+1-1}, \cdots, \zeta_k^{(n_i-1)(i-1)})\}.
\]

Thus \(T^*AT \) is diagonal. If \(r = (b - 1)d + c \) where \(1 \leq c \leq d \) and \(1 \leq b \leq n_k \), then the \((r, r)\) diagonal element of \(T^*AT \) is

\[
\varepsilon_r = \sum_{i=1}^{n_k} \gamma_{(i-1)d+c}(x_k^{b-1}(i-1)), \quad 1 \leq r \leq n.
\]
Setting \(\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n) \) and \(\gamma = (\gamma_1, \gamma_2, \ldots, \gamma_n) \), equations (3) are the same as the matrix equation \(\varepsilon' = (I \times \Omega_n) \gamma' \) and equations (2) are the same as \(((\Omega_1 \times \cdots \times \Omega_{k-1}) \times I_n) a' = \gamma' \). Combining these two facts, we obtain \(\varepsilon' = \Omega a' \), as required.

3. The uniqueness of the normal basis. If \(\beta_1, \ldots, \beta_n \) is another normal basis of \(F \) then \((\beta_1, \ldots, \beta_n)' = (a_{i,j})(\alpha^{\alpha_i \alpha_j^{-1}}) \), where \((\alpha^{\alpha_i \alpha_j^{-1}}) \) and \((\alpha^{\alpha_i \alpha_j^{-1}}) \) are both circulants of type \((n_1, n_2, \ldots, n_k) \) and \((a_{i,j}) \) is a unimodular matrix of rational integers. By Lemma 1, \((a_{i,j}) = (\beta_i \beta_j^{-1})^{-1} \) is also a circulant of type \((n_1, n_2, \ldots, n_k) \). Conversely, if \(\beta_1, \ldots, \beta_n \) is an integral basis such that \((\beta_1, \ldots, \beta_n)' = (a_{i,j})(\alpha^{\alpha_i \alpha_j^{-1}}) \), where \((a_{i,j}) \) is a unimodular circulant of rational integers of type \((n_1, n_2, \ldots, n_k) \), then \((\alpha^{\alpha_i \alpha_j^{-1}}) \) so that, by Lemma 1, \((\beta_i \beta_j^{-1})^{-1} \) is also a circulant. Then, in \((\beta_i \beta_j^{-1})^{-1} \), the elements in the first column are a permutation on those in the first row. Hence \(\beta_1, \ldots, \beta_n \) is a permutation of a normal basis. Following [4], we call a circulant trivial if it has just a single nonzero entry in each row. Thus \(\beta_1, \ldots, \beta_n \) is necessarily a permutation of \(\alpha^{\alpha_1}, \ldots, \alpha^{\alpha_n} \) or of \(-\alpha^{\alpha_1}, \ldots, -\alpha^{\alpha_n} \). Precisely when all unimodular circulants of rational integers of type \((n_1, n_2, \ldots, n_k) \) are trivial.

If \(G \) has a cyclic direct factor of order other than 2, 3, 4, or 6, we may choose the notation so that \((S_i) \) is this cyclic direct factor. By [4] there exists a nontrivial unimodular circulant \(B \) of rational integers of type \((n_i) \). Then \(B \times I_{n_1 \times \cdots \times n_k} \) is a nontrivial unimodular integral circulant of type \((n_1, n_2, \ldots, n_k) \) and so the normal basis is not unique. Hence only the following two cases remain to be considered:

(i) each \(n_i \) = 4 or 2;
(ii) each \(n_i \) = 3 or 2; \(1 \leq i \leq k \).

In either case (i) or case (ii) let \(A \) be a unimodular circulant of rational integers of type \((n_1, n_2, \ldots, n_k) \). Then, by Lemma 2, the determinant of \(A \) is \(\varepsilon_1 \varepsilon_2 \cdots \varepsilon_n \) where each \(\varepsilon_i \) is an integer and hence a unit in the field \(K \) generated by \(\xi_1, \ldots, \xi_k \). \(K \) is generated by the root of unity whose order is the least common multiple of \(n_1, n_2, \ldots, n_k \). Since this least common multiple is 2, 3, 4, or 6, by the fundamental theorem on units \(K \) contains no units of infinite order and hence each \(\varepsilon_i \) is a root of unity. By Lemma 2,

\[
T a' = n^{-1/2} \varepsilon' .
\]

Since the first row \(T \) consists of ones only, \(\varepsilon_1 \) is rational. In (4) we replace, if necessary, each \(a_i \) with \(-a_i \) and each \(\varepsilon_i \) with \(-\varepsilon_i \) to ensure that \(\varepsilon_1 = 1 \). Since \(T \) is unitary,

\[
a' = n^{-1/2} T^* \varepsilon' = n^{-1} \Omega^* \varepsilon' .
\]
Let \(\Omega = (\tau_{ij}), 1 \leq i, j \leq n \). Then, using (5), the triangle inequality, and the fact that each \(|\tau_{j,i}| \) and each \(|\varepsilon_j| \) is one, we find that

\[(6) \quad |a_i| \leq n^{-1} \sum_{j=1}^{n} |\tau_{j,i}\varepsilon_j| = 1, \quad 1 \leq i \leq n. \]

If we have \(a_q \neq 0 \) for some \(q \), then \(|a_q| \geq 1 \), so that in (6) for \(i = q \) we have equality. Since \(\tau_{1,q} = \varepsilon_1 = 1 \), the condition for equality in the triangle inequality forces \(\tau_{j,q}\varepsilon_j = 1 \) for each \(j \) so that \(\varepsilon_j = \tau_{j,q} \) for \(j = 1, 2, \ldots, n \). Then, for \(i \neq q \),

\[na_i = \sum_{j=1}^{n} \tau_{j,i}\tau_{j,q} = 0\]

since the columns of \(\Omega \) are pairwise orthogonal. Thus, in \(A \), there is but a single nonzero entry in each row.

Theorem 1. The normal basis for the integers of \(F \) is unique (up to permutation and change of sign) precisely when either (i) or (ii) below is satisfied:

(i) \(G \) is the direct product of cyclic groups of order 4 and/or order 2;

(ii) \(G \) is the direct product of cyclic groups of order 3 and/or order 2.

Another form of this theorem is given in [1, Theorem 6].

4. Normal discriminant matrices. Let \(\alpha^{a_1}, \ldots, \alpha^{a_n} \) be a normal integral basis of \(F \) and let \(A \) be any normal discriminant matrix. Permuting the row and columns of \(A \) in the same way (this preserves normality) we may assume \(A = (\beta_{ij}^{a_{ij}})1 \leq i, j \leq n \), where \(G_1, \ldots, G_n \) are given by (1). Now \(A = (a_{ij})D \) where \(D = (\alpha^{q(a_{ij})}1 \leq i, j \leq n \), and where \((a_{ij}) \) is a unimodular matrix of rational integers. From \(AD^* = D^*A \) we get \((a_{ij})DD^*(a_{ij})' = D^*(a_{ij})'(a_{ij})D \). As in [4], \(DD^* \) is rational so that \(D^*(a_{ij})'(a_{ij})D \) is left fixed by every element of \(G \). Let

\[P_s = I_{n_0n_1\cdots n_{k-1}} \times F_s \times I_{n_{s+1}n_{s+2}\cdots n_{k+1}}, \quad 1 \leq \varepsilon \leq k,\]

where, here and henceforth, \(n_0 = n_{k+1} = 1 \). The effect of replacing \(\alpha \) with \(\alpha^s \), in \(D \) may be determined by noting that

\[S_s(D_1 \times \cdots \times D_k) = D_1 \times \cdots \times (S_sD_s) \times \cdots \times D_k = D_1 \times \cdots \times (F_sD_s) \times \cdots \times D_k = I_{n_1} \times \cdots \times I_{n_{s-1}} \times F_s \times I_{n_{s+1}} \times \cdots \times I_{n_k}D_1 \times \cdots \times D_k = P_s(D_1 \times \cdots \times D_k).\]

Hence, replacing \(\alpha \) with \(\alpha^s \) in \(D \) changes \(D \) into \(P_sD \). Therefore \(D^*(a_{ij})'(a_{ij})D = (P_sD)^*(a_{ij})'(a_{ij})(P_sD) \) so that \(P_s(a_{ij})'(a_{ij})P_s = (a_{ij})'(a_{ij}), \)
for \(s = 1, 2, \ldots, k \). Following [4] we define a generalized permutation matrix to be a permutation matrix in which the nonzero entries are permitted to be \(\pm 1 \). Then Lemma 3 below shows that
\[
(a_{ij}) = QC
\]
where \(Q \) is a generalized permutation matrix and \(C \) is a circulant of type \((n_1, n_2, \ldots, n_k) \). Since \((\beta_1, \ldots, \beta_n)' = (a_{i,j})(\alpha^{n_1}, \ldots, \alpha^{n_k})' \), this implies (by remarks made in § 2) that \(\beta_1, \ldots, \beta_n \) is a generalized permutation of a normal basis.

THEOREM 2. Let \(F \) be a field with a normal integral basis. Then only generalized permutations of a normal basis can give rise to normal discriminant matrices.

THEOREM 3. If \(A \) is a unimodular matrix of rational integers such that \(AA' \) is a circulant of type \((n_1, n_2, \ldots, n_k) \), then \(A = CQ \) where \(C \) is a unimodular circulant of type \((n_1, n_2, \ldots, n_k) \) and \(Q \) is a generalized permutation matrix.

Proof. Since each \(P_i \) is a circulant of type \((n_1, n_2, \ldots, n_k) \), it follows from Lemma 1 that
\[
P_i AA' P_i' = AA'
\]
for \(i = 1, 2, \ldots, k \), so that Theorem 3 follows from Lemma 3.

LEMMA 3. If \(A \) is a unimodular matrix of rational integers such that
\[
P_i AA' P_i' = AA'
\]
for \(i = 1, 2, \ldots, k \), then \(A = CQ \) where \(C \) and \(Q \) are as in Theorem 3.

Proof. Let \(A_0 = A \) and \(Q_0 = I_n \). We shall prove by induction on \(i \) that, for \(1 \leq i \leq k \), \(A = A_i Q_i \) where \(Q_i \) is a generalized permutation matrix and \(A_i \) may be so partitioned that \(A_i = (X_{s,t}) \), \(1 \leq s, t \leq n_i \), \(n_i+1 \cdot n_{i+2} \cdot \ldots \cdot n_{k+1} \), where each \(X_{s,t} \) is a circulant of type \((n_1, n_2, \ldots, n_i) \). The case \(i = k \) is the statement of the lemma. To avoid having to give a special discussion of the case \(i = 1 \) we make the following definitions and changes in notation. Recall that \(n_0 = n_{k+1} = 1 \).

A one row, one column matrix is said to be a circulant of type \((n_0) \). A circulant of type \((n_1, \ldots, n_i) \) will now be called a circulant of type \((n_0, n_1, \ldots, n_i) \). We then know that \(A = A_0 Q_0 \) where \(A_0 \) is composed of one row, one column blocks which are circulants of type \((n_0) \) and where \(Q_0 \) is a generalized permutation matrix. Our induction assumption is that for a fixed value of \(i \) with \(1 \leq i \leq k \) we have \(A = A_i-1 Q_{i-1} \) where we may partition \(A_{i-1} = (A_{s,t}) \), \(1 \leq s, t \leq n_i \), \(n_{i+1} \cdot \ldots \cdot n_{k+1} \), so that each \(A_{s,t} \) is a circulant of type \((n_1, n_2, \ldots, n_{i-1}) \), and where \(Q_{i-1} \) is a generalized permutation matrix. We shall then deduce that \(A = A_i Q_i \). For notational simplicity we set \(f = n_0 n_1 \cdot \ldots n_{i-1}, g = n_i n_{i+1} \cdot \ldots n_k, h = n_{i+1} n_{i+2} \cdot \ldots n_{k+1}, m = n_1 n_2 \cdot \ldots n_i. \)
Now \(AA' = A_{i-1}A'_{i-1} \) so that from \(P_iAA'P_i' = AA' \) we deduce that \(M_iM_i' = I_n \), where \(M_i = A_{i-1}P_iA_{i-1} \). Since \(M_i \) is a matrix of rational integers it follows that \(M_i \) is a generalized permutation matrix. Since \(P_i \) and \(A_{i-1} \) may, after partitioning, be viewed as matrices with \(g \) rows and columns in elements which are circulants of type \((n_0, n_1, \ldots, n_{i-1}) \), it follows from Lemma 1 that \(M_i \) is also a matrix with \(g \) rows and columns in elements which are circulants of type \((n_0, n_i, \ldots, n_{i-1}) \). From this point of view \(M_i \) must be a “generalized permutation matrix” in that it has but a single nonzero entry in each of its \(g \) rows and columns. Each of these nonzero entries is of course both a circulant of type \((n_0, n_1, \ldots, n_{i-1}) \) and a generalized permutation matrix.

We now digress for a moment to note that if \(M \) is a permutation matrix whose coefficients lie in a ring with identity then a permutation matrix \(R \) exists with coefficients in the same ring such that \(R'MR \) is a direct sum of one row identity matrices and/or matrices like \([0, 1, 0, \ldots, 0]\) for \(t > 1 \). This assertion is a consequence of the fact that a permutation may be decomposed into disjoint cycles.

Applying this fact to the “generalized permutation matrix” \(M_i \), we find that a permutation matrix \(R_i \) exists with \(g \) rows and columns in elements which are either 0 or 1 such that \(R_i^N_i = N_i \) is a direct sum of \(r \) matrices of the following type:

\[
E_j = \begin{bmatrix}
0 & E_{j,1} & 0 & 0 & \cdots & 0 \\
0 & 0 & E_{j,2} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & E_{j,e_j-1} \\
E_{j,e_j} & 0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

if \(e_j > 1 \), and \(E_j = (E_{j,1}) \) if \(e_j = 1 \). Here each 0 = 0 and each \(E_{j,e} \) is both a circulant of type \((n_0, n_1, \ldots, n_{i-1}) \) (since \(R_i \) has circulants of this type as “elements”) and a generalized permutation matrix. Moreover, \(e_1 + e_2 + \cdots + e_r = g \). Since \(N_i \) is similar to \(P_i \) and \(P_i^{n_i} = I_n \), then \(N_i^{n_i} = I_n \). This implies that each \(e_j \leq n_i \). We shall prove that each \(e_j = n_i \). The proof is by contradiction. Suppose for at least one \(j \) that \(e_j < n_i \). We know that \(f(e_1 + e_2 + \cdots + e_r) = fg = n \). Hence \(fn_i.r > n \) and so \(r > h \). Now

\[
P_i = [0_f, I_f, 0_f, \ldots, 0_f]_{n_i} \times I_h
\]

and \(P_iA_{i-1} = A_{i-1}M_i \). Let \(H_i = \{A_{i,1}, A_{i,2}, \ldots, A_{i,e_i}\} \) for \(1 \leq s \leq g \). Then from \(P_iA_{i-1} = A_{i-1}M_i \) it follows that:

\[
H_3 = H_3M_i, H_3 = H_3M_i, \ldots, H_{n_i} = H_{n_i}M_i
\]

\(H_{n_i} = H_{n_i}M_i, H_{n_i+1} = H_{n_i+1}M_i, H_{n_i+2} = H_{n_i+2}M_i, \ldots, H_{2n_i} = H_{2n_i}M_i, \ldots; H_{(h-1)n_i+1} = H_{(h-1)n_i+1}M_i, \ldots, H_{hn_i} = H_{hn_i}M_i \). Hence, if \(B_j = H_{(j-1)n_i+1} \) for \(1 \leq j \leq h \), then \(H_{(j-1)n_i+q} = B_jM_i^{-1} \) for \(2 \leq q \leq n_i \).
Consequently,

\[
A_{i-1}R_i = \begin{bmatrix}
B_1 \\
B_1M_i \\
B_1M_i^2 \\
\vdots \\
B_1M_i^{s-1} \\
B_h \\
B_hM_i \\
\vdots \\
B_hM_i^{s-1}
\end{bmatrix}
R_i = \begin{bmatrix}
B_1R_i \\
B_1M_iR_i \\
B_1M_i^2R_i \\
\vdots \\
B_1M_i^{s-1}R_i \\
B_hR_i \\
B_hM_iR_i \\
\vdots \\
B_hM_i^{s-1}R_i
\end{bmatrix}
= \begin{bmatrix}
B_1R_i \\
B_1R_iN_i \\
B_1R_iN_i^2 \\
\vdots \\
B_1R_iN_i^{s-1} \\
B_hR_i \\
B_hR_iN_i \\
\vdots \\
B_hR_iN_i^{s-1}
\end{bmatrix}.
\]

Here each \(B_jR_i\), \(1 \leq j \leq h\), may also be regarded as a row vector with \(g\) coordinates in elements which are circulants of type \((n_0, n_1, \cdots, n_{i-1})\). This is so because both \(B_j\) and \(R_i\) have circulants of this type as "elements".

Let \(X = (X_1, X_2, \cdots, X_g)\) be a row vector in which the \(X_i\) are square matrices with \(f\) rows and columns. Then

\[
XN_i = (X_1E_{1,1}, X_1E_{1,2}, X_1E_{1,3}, \cdots, X_1E_{1,n-1},
X_2E_{2,0}, X_2E_{2,1}, X_2E_{2,2}, \cdots, X_2E_{2,n-1},
\cdots, X_gE_{g,0}, \cdots, X_gE_{g,n-1})
\]

Since each \(E_{j,s}\) is a generalized permutation matrix, it follows that the first \(fe_1\) columns of \(XN_i\) are, apart from order and possible change of sign, just the first \(fe_1\) columns of \(X\); the next \(fe_2\) columns of \(XN_i\) are, up to order and sign, just the next \(fe_2\) columns of \(X\); and, in general, columns

\[
f(e_0 + e_1 + \cdots + e_{s-1}) + 1, f(e_0 + e + \cdots + e_{s-1}) + 2, \cdots,
\]

of \(XN_i\) are, apart from order and sign, just these same columns in \(X\). Here \(e_0 = 0\). This holds for \(s = 1, 2, \cdots, r\).

Hence, in \(B_jR_iN_i\), for \(1 \leq v \leq n_i - 1\) and fixed \(j\), columns \((7)\) (for a fixed value of \(s\)) are just a generalized permutation of columns \((7)\) in \(B_jR_i\). Moreover, the elements appearing in columns \((7)\) and row \(q\) of \(B_jR_i\) for \(2 \leq q \leq f\) are just a permutation of the elements in columns \((7)\) and the first row of \(B_jR_i\), since \(B_jR_i\) is composed of blocks which are circulants of type \((n_0, n_1, \cdots, n_{i-1})\). All this means that the elements in columns \((7)\) (for a fixed value of \(s\)) and row \(q\) (for \(2 \leq q \leq m\)) of the matrix
are generalized permutations of the elements in columns (7) and the first row of this matrix. Hence the integers in row q (for $2 \leq q \leq m$) and columns (7) of the matrix (8) are congruent (modulo 2) to a permutation of the integers in column (7) and the first row of (8).

In the matrix $A_{i-1}R_i$, add columns $f(e_0 + e_1 + \cdots + e_{s-1}) + 1$, $f(e_0 + e_1 + \cdots + e_s) - 1$ to column $f(e_0 + e_1 + \cdots + e_s)$ for $s = 1, 2, \ldots, r$. The integers appearing in rows $mp + 2$, $mp + 3, \ldots, m(p + 1)$ of column $f(e_0 + e_1 + \cdots + e_s)$ are now congruent (modulo 2) to the integer in row $mp + 1$ and column $f(e_0 + e_1 + \cdots + e_s)$. This holds for $p = 0, 1, \ldots, h - 1$, and $s = 1, 2, \ldots, r$. Now add row $mp + 1$ to rows $mp + 2, mp + 3, \ldots, m(p + 1)$ for $p = 0, 1, \ldots, h - 1$. The integer in row $mp + q$ and column $f(e_1 + e_2 + \cdots + e_s)$ is now congruent to zero (modulo 2), for $2 \leq q \leq m; 0 \leq p \leq h - 1; 1 \leq s \leq r$. Hence columns $f(e_1 + e_2 + \cdots + e_s)$ for $1 \leq s \leq r$ may be regarded as lying in the same vector space of dimension h over the field of two elements. Since $r > h$, these vectors are dependent. Consequently the determinant of $A_{i-1}R_i$ is congruent to zero (modulo 2). This is a contradiction as the determinant of $A_{i-1}R_i$ is ± 1.

Hence each $e_j = n_i$. Let Z_i be the block diagonal matrix diag $(I_f, E_{j,1}, E_{j,2}, E_{j,3}, \cdots, E_{j,n_{i-1}})$. Since $E_{j,1}E_{j,2} \cdots E_{j,n_{i-1}}$ is a diagonal block in E_{j}^i and since $E_{j}^i = I_m$, it follows that $E_{j,1}E_{j,2} \cdots E_{j,n_{i-1}} = I_f$. From this fact and the fact that the $E_{j,1}$ are generalized permutation matrices we find that $Z_iE_iZ_i' = [0_f, I_f, 0_r, \cdots, 0_{l_{n_{i-1}}}]$. Hence, if $Z = \text{diag}(Z_1, Z_2, \cdots, Z_r)$, then $ZNZ' = P_i$. Moreover, Z is a matrix with g rows and columns in elements which are circulants of type $(n_0, n_1, \cdots, n_{i-1})$. We now have $M_i = U'_iP_iU_i$ where $U'_i = R_iZ'$ is a generalized permutation matrix and a matrix with g rows and columns in elements which are circulants of type $(n_0, n_1, \cdots, n_{i-1})$. Then

$$A_{i-1} = \begin{bmatrix} B_iU'_iU_i \\ B_iU'_iP_iU_i \\ \cdots \\ B_iU'_iP_{n_{i-1}}U_i \\ \cdots \\ B_hU'_iU_i \\ \cdots \\ B_hU'_iP_{n_{i-1}}U_i \end{bmatrix} = \begin{bmatrix} B_iU'_i \\ B_iU'_iP_i \\ \cdots \\ B_iU'_iP_{n_{i-1}} \\ \cdots \\ B_hU'_i \\ \cdots \\ B_hU'_iP_{n_{i-1}} \end{bmatrix} U_i = A_iU_i,$$
say. Here each $B_j U'_i$ is a vector with g coordinates in elements which are circulants of type $(n_0, n_1, \ldots, n_{i-1})$. From the form of A_{ij} it follows that A_i may be partitioned into blocks which are circulants of type (n_0, n_1, \ldots, n_i).

The proof is now complete.

REFERENCES

PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RALPH S. PHILLIPS
Stanford University
Stanford, California

A. L. WHITEMAN
University of Southern California
Los Angeles 7, California

M. G. ARSOVE
University of Washington
Seattle 5, Washington

LOWELL J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS
E. F. BECKENBACH
D. DERRY
H. L. ROYDEN
E. G. STRAUS
T. M. CHERRY
M. OHTSUKA
E. SPANIER
F. WOLF

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Pacific Journal of Mathematics
Vol. 12, No. 3 March, 1962

Alfred Aeppli, Some exact sequences in cohomology theory for Kähler manifolds ... 791
Paul Richard Beesack, On the Green’s function of an N-point boundary value problem ... 801
James Robert Boen, On p-automorphic p-groups ... 813
James Robert Boen, Oscar S. Rothaus and John Griggs Thompson, Further results on p-automorphic p-groups ... 817
James Henry Bramble and Lawrence Edward Payne, Bounds in the Neumann problem for second order uniformly elliptic operators ... 823
Chen Chung Chang and H. Jerome (Howard) Keisler, Applications of ultraproducts of pairs of cardinals to the theory of models ... 835
Stephen Urban Chase, On direct sums and products of modules ... 847
Paul Civin, Annihilators in the second conjugate algebra of a group algebra ... 855
J. H. Curtiss, Polynomial interpolation in points equidistributed on the unit circle ... 863
Marion K. Fort, Jr., Homogeneity of infinite products of manifolds with boundary ... 879
James G. Glimm, Families of induced representations ... 885
Daniel E. Gorenstein, Reuben Sandler and William H. Mills, On almost-commuting permutations ... 913
Vincent C. Harris and M. V. Subba Rao, Congruence properties of \(\sigma_r(N) \) ... 925
Harry Hochstadt, Fourier series with linearly dependent coefficients ... 929
Kenneth Myron Hoffman and John Wermer, A characterization of \(C(X) \) ... 941
Robert Weldon Hunt, The behavior of solutions of ordinary, self-adjoint differential equations of arbitrary even order ... 945
Edward Takashi Kobayashi, A remark on the Nijenhuis tensor ... 963
David London, On the zeros of the solutions of \(w^r(z) + p(z)w^s(z) = 0 \) ... 979
Gerald R. Mac Lane and Frank Beall Ryan, On the radial limits of Blaschke products ... 993
T. M. MacRobert, Evaluation of an \(E \)-function when three of its upper parameters differ by integral values ... 999
Robert W. McKevel, The spectra of minimal self-adjoint extensions of a symmetric operator ... 1003
Adegoke Olubummo, Operators of finite rank in a reflexive Banach space ... 1023
David Alexander Pope, On the approximation of function spaces in the calculus of variations ... 1029
Bernard W. Roos and Ward C. Sangren, Three spectral theorems for a pair of singular first-order differential equations ... 1047
Arthur Argyle Sagle, Simple Malcev algebras over fields of characteristic zero ... 1057
Leo Sario, Meromorphic functions and conformal metrics on Riemann surfaces ... 1079
Richard Gordon Swan, Factorization of polynomials over finite fields ... 1099
S. C. Tang, Some theorems on the ratio of empirical distribution to the theoretical distribution ... 1107
Robert Charles Thompson, Normal matrices and the normal basis in abelian number fields ... 1115
Howard Gregory Tucker, Absolute continuity of infinitely divisible distributions ... 1125
Elliot Carl Weinberg, Completely distributed lattice-ordered groups ... 1131
James Howard Wells, A note on the primes in a Banach algebra of measures ... 1139
Horace C. Wiser, Decomposition and homogeneity of continua on a 2-manifold ... 1145