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ON FUNDAMENTAL PROPERTIES OF A

BANACH SPACE WITH A CONE

T. ANDO

1Φ Introduction* Normed vector lattices have been investigated
from various angles (see [1] Chap. 15 and [7] Chap. 6). On the contrary,
it seems that there remain several problems unsolved in the theory of
general normed spaces with a cone since the pioneer works of Riesz and
Krein, though recently Namioka [8], Schaefer [9] and others made many
efforts in analysing and extending the results of Riesz and Krein. In
this paper we shall discuss two among them. Let E be a Banach space
with a closed cone K (for the terminologies see § 2);

(A) What condition on the dual E* is necessary and sufficient for
that E= K- KΊ

(B) What condition on the dual is necessary and sufficient for the
interpolation property of El

Grosberg and Krein [3] dealt with (A) in a reversed form;
(A') What condition on E is necessary and sufficient for that E* —

K* - K* where K* is the dual cone?
Schaefer ([9], Th. 1.6) obtained a complete answer to (A') within a

scope of locally convex spaces. A result of Riesz gives a half of an
answer to (B), while Krein [6] obtained a complete answer only under
the assumption that the cone has an inner point.

The purpose of this paper is to give answers to both (A) and (B)
in natural settings. Our starting assumptions consist of the complete-
ness of E and of the closedness of the cone K.

After several comments on order properties in § 2, Lemmas in § 3
present algebraic forms to both the property named normality by Krein
[5] and that named (l?ϋΓ)-property by Schaefer [9], supported by Banach's
open mapping theorem. Then Theorem 1 will produce an answer to (A)
via these Lemmas. §4 is devoted to an answer to (B) under the con-
dition that E is an ordered Banach space. It should be remarked that
our main theorems are also valid for (F) spaces, that is, metrisable
complete locally convex spaces.

2. Definitions and consequences* Let E1 be a real normed space and
let K be a cone, that is, a subset of E with the following properties:

(1) K+KczK,
(2) aKcK for all a ^ 0, and

Received February 8, 1962.
1 Elements of E are denoted by xf y, α, •••, e, and those of the dual E* by /, g, h.

Scalars are denoted by Greek letters, 0 is reserved for the zero element.
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1164 T. ANDO

(3) KΠ (—K) = {θ}. Then the natural partial ordering ^ is as-
sociated with the cone K, i.e. a ^ b in case a — be K. A subset of the
form {x; a ^ x ^ 6} will be called an interval. The dual 2£* of ΐ7 is
also partially ordered by the dual cone K* = {feE*;f(x) ^ 0 for all
x e K}, though K* does not always satisfy the condition (3).2

The cone K is said to generate E or to be a generating cone in
case every element in E can be written as difference of two in Ky that
is, E — K — K. E is said to have the interpolation property with res-
pect to ^ in case a,b ^ c, d implies the existence of x such that
α, b ^ x ^ c, d. This property is equivalent to the following one named
the decomposition property: whenever a,b, xe K and a + b Ξg x, there
exist c, de K such that x — c -\- d, a ^ c and b ^ d. When for any pair
a, be E there exists the supremum a V ί>, i? is called a vector lattice.
A vector lattice has the interpolation property and its cone is generating.

There are several notions connected with the so-called order topology.
E is said to be (o)-complete in case any upward directed subset with an
upper bound (with respect to ^ ) has the supremum. When the directed
subset in question is restricted to that consisting of countable members,
E is said to be σ-(o)-complete. As a less restrictive completeness, E is
said to be quasi-(o)-complete in case any sequence {αj, such that θ ^
αx 5Ξ; α2 5Ξ; <L a and ai+ί — ai ^ ε{a with ε̂  \ 0, has the supremum. In
many cases (o)-completeness can be derived from tf-(o)-completeness. It
is clear that if E with the generating cone is (o)-complete and has the
interpolation property, it is a vector lattice (cf. [9] Th. 13.2).

Usually a complete normed vector lattice is called a Banach lattice
in case its norm satisfies the following condition: | a \ < \ b \ implies
|| a || ^ | | b || where | α | = αV(—α). The cone in a Banach lattice is
obviously closed. In general, order topology is connected with the norm
topology through the closedness of the cone in the following way: if
α i ^ α i = l,2, and lim^ai = x then x f^ a, in particular, if aλ ^
α2 ^ and lim ĉoC^ = a then a is the supremum of {α*}. Thus a Banach
lattice is quasi-(o)-complete. In this connection a quasi-(o)-complete
Banach space with a closed generating cone will be called an ordered
Banach space.

3Φ Generating cone. In this section E is a Banach space with a
closed cone K. First on the ground of Klee's theorem [4] it will be
proved that the generating property is equivalent to the stronger one
named strict (BZ)-property in Schaefer [9] ((3) in Lemma 1 below).

LEMMA 1. The following conditions are mutually equivalent, where
a, β and p are positive constants and U denotes the unit ball of E:

2 iΓ* satisfies the condition (3), if and only if K — K is dense in E.
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( 1 ) K generates E,
( 2 ) (if Π U — KΠ U)~ZDaΐl where ( )~ denotes the closure,
(3) (ϊn u-κn u) Dβu,
( 4 ) any x e E admits a decomposition x == a — b such that a,b e K

and || α ||, || δ || ^ p || » | |.

Proof. (1) ==> (2) follows from the second category of E, because
E =K~ K= \Jn^n(K nU-KΠ U)". In order to see ( 2 ) « (3), let
V=Kp[ U — Kf\ U and let F be the subspace generated by V. Then
on the basis of completeness of K, Klee ([4] and [8] Th. 5.5) shows that
F is complete under the norm defined by || x \\v = inf {| λ |; x e XV}.
Then (2) shows that under the natural injection of F into E the closure
of the image of the unit ball V is a neighborhood of the origin in E.
A modification of Banach's open mapping theorem (see [2] Chap. I, § 3)
yields (3). (3) => (4) and (4) => (1) are trivial.

In the next place quasi-(o)-completeness will be connected with the
property named normality in Krein [5] ((3) in Lemma 2 below).

LEMMA 2. The following conditions are mutually equivalent, where
p is a positive constant:

( 1 ) E is quasi-{o)-complete,
( 2 ) every interval is bounded in norm,
(3) a S% ^b implies \\ x \\ g p-max (|| a ||, || b | |),

( 4 ) (U+K)n(U-K)c:pU.

Proof. In order to see (1) => (2), for each a e K let

α = {x: —a ^ x ^ a}

and let Fa be the subspace generated by Va. Fa is complete under the
norm defined by || x \\a = inf {λ: — λα ^ x ̂  λα}. In fact, if

II * ί + i - » < II. < 1/2* ( i - 1 , 2 , . . . ) ,

by the definition of the norm θ ̂  yi ^ α/2 ί - 1 where j/ 4 = a?i+1 — ^ + α / 2 \
Then quasi-(o)-completeness implies the existence of the supremum # of
the sequence {ΣΓ=i2/;}w. Put a? = 2/ + #i — α, then a? — «?< is the supre-
mum of the sequence {xn — xt — α/2w~1}?ι^ί hence a? — ̂  ^ a/2 i -1, and
similarly » — xt ̂  — a/2 i - 1. This means that

hence lim^co^i = x. Since i ί is closed, as remarked in §2, the natural
injection of Fa into E is a closed linear mapping, hence on account of
Banach's closed graph theorem (see [2] Chap. I, §3) it is bounded, i.e.
Va is bounded in E. Now every interval is readily proved to be bounded.
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(3) follows from (2) via a standard argument (see [8] p. 32). (3) ==> (4)
is trivial. (4) => (1) follows from the closedness of an interval and the
completeness of K.

Before going into the first theorem, let us recall the definition of
polar sets. The polar set A0 of Ac£7(resp. czE*) is defined by A0 =
{feE*;f(x)^l for all cceA}(resp. - {x e E; f(x) S 1 f or all/eA}).
For example, U° is the unit ball of E* and K° = - K*. The bipolar
theorem (see [2] Chap. IV, § 1) asserts that (1) Γ(A, B)° = A0 n B°
where Γ(A, B) denotes the convex hull of A\JB, and (2) if ABΘ and
BBΘ are closed convex sets in E (resp. weakly3, i.e. σ(E*,E), closed
convex sets in E*)(A Π B)° = Γ{A\ Bύ)w~(resp. = Γ(A°, Bo)~) where ( )w~
denotes the weak closure, and (3) if A contains θ and is a closed convex
set in E (resp. weakly closed convex set in E*), A00 — A. By the way,
remark that the weak compactness of Z7° and the weak closedness of
imply that both U° + if* and U° — K* are weakly closed.

THEOREM 1. (1) K generates E if andjmly if E* is quasi-(o)-com-
plete.

(2) K* generates E* if and only if E is quasi-(o)-complete.

Proof. (1) First remark the formula: 4 + B D Γ(A, B)z>iA + iB
for any convex sets ABΘ and BBΘ. NOW the following chain of
equivalences is valid, where a, β, y and p are positive constants:

K generates E
<=> (Uf]K- Un Ky ΏctU by Lemma 1
<=> Γ(Un K, -UΓ\ K)- ZDβU by the above remark
<=> Γ(U\ - K*)w~ n Γ(U°, Kηw~ ajU° by the bipolar theorem
<=- (U° - K*)w~ n (J7° + K*)w- (zpU° by the above remark
<=* (U°- K*)Γi(U° + K*)(ZpU° by the weak closedness of

u°±κ*
<==> £7* is quasi-(o)-complete by Lemma 2. A proof of (2) is similar

and is omitted.
The "only if" part of (1) is essentially known (see [8] p. 46), while

(2) is a restatement of Grosberg-Krein's theorem [3] in terms of order
properties4.

If 1?* is quasi-(o)-complete, in view of Lemma 2 every interval of
£7* is bounded in norm and weakly closed, hence weakly compact.
Therefore it is readily shown that all the three notions of completeness
are the same thing on E*.

4 Interpolation property* In this section E is an ordered Banach
space. Then Theorem 1 guarantees that E* is also an ordered Banach

3 The weak topology always refers to the topology σ(E*, E).
4 Grosberg-Krein's proof differs essentially from ours.
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space. A result of Riesz can be stated as follows (see [8] Th. 6.1): if
E is an ordered Banach space with the interpolation property, the dual
has the same property, hence by the remark at the end of § 3 it is a
vector lattice. In this section the converse will be proved.

LEMMA 3. Let E be an ordered Banach space. Then the interpo-
lation property can be derived from the following less restrictive one:
for any ε > 0 and α; ̂  bό in E (i, j — 1, 2, , n) there exist xe E and
yeK such that a^x — y and x ^ 6<(i = 1, 2, , n) and \\y\\<L ε.

Proof. Let α, b ̂  c, d. We can successively find x{ e E and y{e K
(x0 and y0 being disregarded) such that α, 6, x^x ^ Xi—yi and x^c, d,
x^x — y^ and \\Vi\\ ^ 1/2*. Then —y^ ^ x{ — x{-x ^ yi9 hence by
Lemma 2 \\Xi — Xi-X || ^ ρ/21 (i — 1, 2, •). The completeness of E im-
plies that lim^oo î = x exists. Since l i m ^ ^ = θ and K is closed, we
can conclude that α, b Ξ> x ^ c, d.

Before going into the second theorem, in order to simplify the no-
tations, for each A c # ( r e s p . aE*) define A* = {feK*\f{x) ^ 1 for
all x 6 A}(resp. = {x e K: f(x) ^ 1 for all/6 A}). Since K is closed con-
vex, on account of the separation theorem (see [2] Chap. II § 3), for
ae K {x\ x ^ a) = a + K = {a}u.

THEOREM 2. An ordered Banach space E has the interpolation
property, if (and only if) the dual E* has the same property.

Proof. Suppose that E* has the interpolation property. It suffices
to prove the less restrictive form of the interpolation property for E
in Lemma 3. Let a{ ^ bj (i, j = 1, 2, , n). All b5 may be assumed to
be in K because K generates E. For any ε > 0 and 7 > 0

is disjoint from

B = ma, - Kγ Π ΎU°; i - 1, 2, , n) .
Otherwise, since E* is an ordered Banach space with the interpolation
property, in view of Riesz result stated above the second dual i?** has
the same property, therefore there exists Xei?** such that a^X^bi
(i = 1, 2, , n) where E is imbedded into i?** in the natural, linear-
order preserving way, then X(f) ^ 1 and X(f) ^ 1 + ε for / e A f] B,
because, for example, / can be represented as / — Σ?=iα:<flri s u c ^
g{ e {biY and a{ ^ 0, Σt^ai = 1 + ε, hence

t g: ±ai9iψi) ^ Σα, = 1 + e ,
i l i l
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This contradiction proves the expected disjointness. Next we shall prove
that A is weakly closed and B is weakly compact. Take, for example,
the former and suppose n = 2 for the simplicity sake. On account of
Banach's theorem (see [2] Chap. IV, §2) it suffices to prove that

is weakly closed for all p > 0. Suppose that a net {cxλfλ + (1 — aλ)gλ}λ

converges weakly to some h in E* where / λ e {b^}*, gλe {62}*, 0 ̂  ocλ ^ 1
and || aλfλ + (1 — aλ)gk || g p. Since E* is quasi-(0)-complete, by Lem-
ma 2 || aλfλ || and || (1 — aλ)gκ || are uniformly bounded. We may assume
that {aλ}λ converges to some α. If 0 < a < 1, | | / λ || and \\gλ\\ are uni-
formly bounded, hence we may even assume that {/λ}λ and {gλ}λ con-
verge weakly to some / and to some g respectively because of the weak
compactness of U°. Since both {6J* and {62}

# are weakly closed, it fol-
lows that h = af + (1 — a)g is in Γ{{b^y {&2}

#) If OL — 1, say, we may
assume that {/λ}λ converges weakly to some / in {b^\ therefore h ^ /,
hence h e {bxγ by the definition of {6J*. Thus the proof of the weak
closedness is over.

Now since A is convex, weakly closed and is disjoint from the con-
vex weakly compact set B, by the separation theorem (see [2] Chap. II,
§ 3) there exists ceE such that f(c) ^ 1 > g(c) for all fe A and geB.
From the remark preceding the theorem and by the bipolar theorem it
follows that (1 + e)c ^ b^i = 1, 2, , n) and c e ΠΓ(^ — K + 1/y U)~.
Therefore there exist {cJΓ such that c + ct ^ α< and || c{ || ^ 2/7 (ί —
1,2, « ,w). Since the cone of E is generating, by Lemma 1 each ct

admits a decomposition c{ = di — e% with d{, e{ e K such that

where px is a positive constant. Finally let x = (1 + ε)c and

2/ = εc + ]>>; ,

then x — y <£ α̂  and a; ̂  6< (i = 1, 2, w) and, for some ft > 0,

II V II ̂  e II c II + Σ II et \\ g ε(ft || α, || + 4/7) + 2ftn/7.

Since ε > 0 and 7 > 0 are arbitrary, the expected conclusion has been
obtained.
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A NOTE ON HYPONORMAL OPERATORS

STERLING K. BERBERIAN

The last exercise in reference [4] is a question to which I did not
know the answer: does there exist a hyponormal (TT* ^ T*T) com-
pletely continuous operator which is not normal? Recently Tsuyoshi
Andδ has answered this question in the negative, by proving that every
hyponormal completely continuous operator is necessarily normal ([1]).
The key to Andδ's solution is a direct calculation with vectors, show-
ing that a hyponormal operator T satisfies the relation || Tn\\ — || T\\n

for every positive integer n (for "subnormal" operators, this was ob-
served by P. R. Halmos on page 196 of [6]). It then follows, from
Gelfand's formula for spectral radius, that the spectrum of T contains
a scalar μ such that \μ\ = || T\\ (see [9], Theorem 1.6.3.).

The purpose of the present note is to obtain this result from ano-
ther direction, via the technique of approximate proper vectors ([3]);
1n this approach, the nonemptiness of the spectrum of a hyponormal
operator T is made to depend on the elementary case of a self-adjoint
operator, and a simple calculation with proper vectors leads to a scalar
μ in the spectrum of T such that \μ\ = || T\\. This is the Theorem
below, and its Corollaries 1 and 2 are due also to Andδ. In the remain-
ing corollaries, we note several applications to completely continuous
operators.

We consider operators ( = continuous linear mappings) defined in a
Hubert space. As in [3], the spectrum of an operator T is denoted
s(T), and the approximate point spectrum is a(T). We note for future
use that every boundary point of s(T) belongs to a(T); see, for example,
([4], hint to Exercise VIII. 3.4).

LEMMA 1. Suppose T is a hyponormal operator, with \\ T\\ ̂  1,
and let ^ he the set of all vectors which are fixed under the operator
TT*. Then,

( i ) ^ is a closed linear subspace,
(ii) the vectors in ^f are fixed under T*T,
(iii) ^ is invariant under T, and
(iv) the restriction of T to ^€ is an isometric operator in

Proof. Since ^t = {x: TT*x = x} is the null space of I - TT*, it
is a closed linear subspace. The relation TT*^T*T^I implies
0 ^ 7 - T*T ^ I - TT*, and from this it is clear that the null space
of I - TT* is contained in the null space of / - T* T. That is, TT*x = x

Received February 27, 1962.
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implies T*Tx = x. This proves (ii). (Alternatively, given TT*x = x,
one can calculate directly that || T*Tx — x ||2 ^ 0.) If x e ,//, that is if
TT*x = xy then the calculation TΓ*(Tίc) = T(T*Tx) = Tx shows that
Txe^f; moreover, || Tx ||2 =(T*Tx\x) = \\ x ||2.

LEMMA 2. Every isometric operator has an approximate proper
value of absolute value 1.

Proof. Let U be an isometric operator in a nonzero Hubert space.
Suppose first that the spectrum of U contains 1; since || Z7|| = 1, it
follows that 1 is a boundary point of s(U) (see [4], part (ix) of Exer-
cise VII. 3. 12), hence 1 is an approximate proper value for U.

If the spectrum of U does not contain 1, that is if I — U is in-
vertible, we may form the Cayley transform A of U; thus,

A = i(I+ U)(I- U)-1 = i(J- U)-\I+ U) .

Using the hypothesis U*U =1, let us show that A is self-adjoint. Left-
multiplying the relation (I — U)A = i(I + U) by Z7*, we have (U* — I)
A = i(U* + I), thus ( I - 17)*A = - i(I + U)*. Since ( I - £7)* is in-
vertible, with inverse [(I— Ϊ7)"1]*, we have

A = - i[(I- U)-ψ(I+ U)* = - i[(I+ U)(I- U)~ψ = A* .

It follows that the operators A + ii and A — ii are invertible, and
solving the relation (I — U)A = i(I + U) for [/, we have

U = (A - U)(A + ii)-1 = (A + U)-\A - ii) .

Incidentally, since U is the product of invertible operators, we conclude
that U is unitary.

Since A is self-adjoint, we know from an elementary argument
that the approximate point spectrum of A is non empty ([7], Theorem
34.2). Let a e a{A), and let xn be a sequence of unit vectors such that
|| Axn — axn 11 —̂  0. Define μ = (a + i)-\a — i); since a is real, μ has
absolute value 1. It will suffice to show that μ is an approximate pro-
per value for U; indeed, | |(Ϊ7— μl)xn\\—»0 results from the calculation

U- μl = (A + U)-\A - ii) - (a + i)-\a - i)I

= (a + i)~\A + il)-\{a + i)(A - ii) -(a- i)(A + ii)]

= 2i(a + ϊ)-\A + U)-\A - al) ,

the fact that || (A — al)xn \\ —•(), and the continuity of the operator
2i(a + i)~\A + U)-\

Incidentally, if U is an isometric operator such that the spectrum
of U excludes some complex number μ of absolute value 1, then μ^U
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is an isometric operator whose spectrum excludes 1. The proof of
Lemma 2 then shows that μ~ιU is unitary, hence so is U. In other
words: the spectrum of a nonnormal isometry must include the unit
circle \μ\ = 1; indeed, Putnam has shown that the spectrum is the unit
disc \μ\ ̂ 1 ([8|, Corollary 1). The latter result is also an immediate
consequence of ([5], Lemma 2.1), and the fact that the spectrum of
any unilateral shift operator is the unit disc.

THEOREM. (Andδ) Every hyponormal operator T has an approxi-
mate proper value μ such that \ μ | = 11 T \ | .

Proof. We may assume || T\\ = 1 without loss of generality. Since
TT* ^ 0 and || TT* || = 1, we know that 1 is an approximate proper
value for TT*. Since the property of hyponormality is preserved under
^-isomorphism, we may assume, after a change of Hubert space, that
1 is a proper value for TT* ([3], Theorem 1). Form the nonzero clo-
sed linear subspace ^£ — {x : TT*x = x}; according to Lemma 1, ̂ fί is
invariant under T, and the restriction of T to ̂ /ί is an isometric opera-
tor U in the Hubert space ^/έ'. By Lemma 2, U has an approximate
proper value μ of absolute value 1. Let xn be any sequence of unit
vectors in ^ such that || Uxn — μxn || —* 0. Since Uxn = Txn, obviously
μ is an approximate proper value for T, and | μ | = l = | | T | | .

COROLLARY 1. A generalized nilpotent hyponormal operator is
necessarily zero.

Proof. If T is hyponormal, then s(T) contains a scalar μ such
that \μ\ = || T\\ . For every positive integer n, it follows that s(Tn)
contains μn (see [7], Theorem 33.1); then || T\\n = \μ\n = \μn\ ̂  | |Γn | | ^ ||T||W,
and so || Tn \\ = || T | | \ If moreover T is a generalized nilpotent, that
is if lim || Tn\\lln = 0, then || Γ|| - 0.

COROLLARY 2. If T is a completely continuous hyponormal opera-
tor9 then T is normal.

Proof. The proof to be given is essentially the same as Andό's.
The proper subspaces of T are mutually orthogonal, and reduce T ([4],
Exercise VII. 2.5). Let ̂ £ be the smallest closed linear subspace which
contains every proper subspace of T, and let ̂ ^* = ̂ C 1 ; clearly ^yV" reduces
T, and the restriction T\Λ~ is a completely continuous hyponormal opera-
tor in .xT ([4], Exercise VI. 9.18). If the spectrum of Tj^V were dif-
ferent from {0}, it would have a nonzero boundary point μ, hence μ
would be a proper value for Tj^yK (see [4], Theorem VIII. 3.2); this is
impossible since yK1 = ̂ £ already contains every proper vector for T.
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We conclude from the Theorem that TjΛ" = 0, and this forces Λ^ = {0}
(recall that ^V*L contains the null space of T). Thus, the proper sub-
spaces of T are a total family, hence T is normal by ([4], Exercise
VII. 2.5).

Suppose T is a normal operator whose spectrum (a) has empty
interior, and (b) does not separate the complex plane. Wermer has
shown that the invariant subspaces of T reduce T ([10], Theorem 7).
It is well known that the conditions (a) and (b) are fulfilled by the
spectrum of any completely continuous operator. In particular: if T
is a completely continuous normal operator, then every invariant sub-
space of T reduces T. A more elementary proof of this may be based
on Corollary 2:

COROLLARY 3. If T is a completely continuous normal operator,
and ^Γ is a closed linear subspace invariant under T, then Λ" reduces T.

Proof. Indeed, it suffices to assume that T is hyponormal and ^A^
is an invariant subspace such that T\Λr is completely continuous. Since
Tj^V^ is hyponormal ([4], Exercise VI. 9.10), it follows from Corollary 2
that T\^r is normal, hence Λ^ reduces T by ([4], Exercise VI. 9.9).

Quoting ([4], Theorem VII. 3.1), we have:

COROLLARY 4. If T is a hyponormal operator, then

\\T\\ = LUB{\(Tx\x)\:\\x\\^l}.

Incidentally, if T is hyponormal, it is clear from Corollary 4 that

|| Γ* || = Lire{ |(Γ * I s) I :||aj H ^ l } .

COROLLARY 5. If the completely continuous operator T is semi-
normal in the sense of [8], then T is normal.

Proof. The definition of semi-normality is that either TT* ̂  T*T
or TT* ̂  T*T, in other words, either T or T* is hyponormal; since
both are completely continuous (see [4], Exercise VIII. 1.6), our as-
sertion follows from Corollary 2.

Let us say that an operator T is nearly normal in case T com-
mutes with T*T. The structure of nearly normal operators has been
determined by Brown, and it is a consequence of his results that a
completely continuous nearly normal operator is in fact normal (see the
concluding remarks in [5]). This may also be proved as follows. An
elementary calculation with square roots shows that a nearly normal
operator is hyponormal (see [2], proof of Corollary 1 of Theorem 8); as-
suming also complete continuity and citing Corollary 2, we have;
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COROLLARY 6. If T is a completely continuous nearly normal opera-
tor, then T is normal.

Finally,

COROLLARY 7. If S — T + λl, where T is a completely continuous
operator, and if S is hyponormal, then S is normal.

Proof. Since S is hyponormal, so is T ([4], hint to Exercise VII.
1.6), hence T is normal by Corollary 2; therefore S is normal. So to
speak, the C*-algebra of all operators of the from T + λ/, with T
completely continuous, is of "finite class " .

We close with an elementary remark about the adjoint of a hypo-
normal operator: if T is hyponormal, then s(T*) = a(T*). For, suppose
λ does not belong to α(Γ*), and let μ = λ*. Then, (T - μl)* = Γ* - λJ
is bounded below ([4], Exercise VII. 3.8), and since T — μl is also hypo-
normal, the relation (T - μI)(T - μl)* ^ (T - μl)*(T - μl) shows that
T — μl is also bounded below. Then T — μl is invertible ([4], Exercise
VI. 8.11), hence so is Γ* - λJ, thus λ does not belong to s(T*).
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ANALYTIC FUNCTIONS WITH VALUES

IN A FRECHET SPACE

ERRETT BISHOP

We wish to extend certain results in the theory of analytic functions
of several complex variables to the case of analytic functions with values
in a Frechet space F. To do this, we prove (Theorem 1 below) that
such a function φ has an expansion of the form

where {Pn} is a sequence of continuous mutually annihilating projections
on F whose ranges are all one-dimensional subspaces of F. This repre-
sentation reduces the study of φ, for many purposes, to the study of
the functions Pn°φ, which are essentially scalar-valued analytic functions.
We actually prove the stronger (and more useful) result that if {φk} is
a sequence of analytic functions with values in F then a single sequence
{Pn} can be found to give an expansion (*) for every φk. Expansions
of vector-valued functions of a different type have been considered by
Grothendick [6],

Theorem 1 is applied to generalize Theorem B of H. Cartan [3].
We consider a coherent analytic sheaf S on a Stein manifold M and
introduce the notion of the vectorίzation SF of S (relative to a given
Frechet space F).

If 0 denotes the sheaf of locally-defined analytic functions and 0^
denotes the sheaf of locally-defined analytic functions with values in
F, then SF is defined to be the tensor product S (g) 0F of the 0-modules
S and 0 .̂ For the important case of a coherent analytic subsheaf S
of the sheaf 0* of locally-defined fc-tuples of analytic functions, SF turns
out to be canonically isomorphic to the sheaf SF determined by assigning
to each open set U the module of all fc-tuples (flf , fk) of analytic
functions from U to F which have the property that for each u in i*7*
the fc-tuple (uofl9 . . . , uofk) is a cross-section of S over [7. For instance,
if S is the sheaf of all locally-defined analytic functions which vanish
on a given analytic set A then it is evident that SF is the sheaf of
all locally-defined analytic functions with values in F which vanish on A.

One of the main results, an extension of Theorem B of [3], will be
that the cohomology groups HN{M, SF) vanish in all dimensions N it 1,
where SF is the vectorization of a coherent analytic sheaf S on a Stein
manifold M. Using this theorem and the isomorphism of SF to the
sheaf SF defined above one could show, for instance, that the usual
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sheaf—theoretic solutions to Cousin's problems carry over to the case of
analytic functions with values in a Frechet space. Special cases were
treated by totally different methods in [2], but the techniques of that
paper seem to be inadequate to obtain general results.

The proofs are all Banach-space theoretic. That is, only Banach
space theory is necessary to obtain the above extension of Theorem B
and to prove the necessary facts about vectorizations. We begin with
a theorem which is given without proof on p. 278 of Banach [1], who
attributes it to H. Auerbach. A proof can be found in Taylor [7], Since
complex Banach spaces are considered here, we give the proof.

THEOREM (Auerbach). An n-dimensional Banach space B has a
basis of unit vectors whose dual basis also consists of unit vectors.

Proof. Choose a basis (δ1, , bn) of B and for any x in B let
(x19 •••,#») be the coordinates of x relative to the chosen basis. Let
T be the set of all w-tuples (x1, , xn) of unit vectors in B. For each
(x\ ---,xn) in T let a(x\ ---,xn) be the absolute value of the determi-
nant det(aφ. Thus a is a continuous function on the compact space
T. Now a(x\ , xn) Φ 0 if and only if (x1, •••,&*) is a basis. Thus
a attains its maximum for T at some point (y1, , yn) in T which is
a basis of unit vectors. Let (u1, — ,un) be the dual basis in ΰ * . Now
H ^ l l ^ l because <j/% uιy = 1. Assume | | ^ | | > 1 for some i. Thus
there exists t in B with | | ί | | = 1 and <ί,u l} = c> 1. Thus <t — cy\u1} =
0, so that t — cyi is a linear combination of the vectors of the basis
(y\ --,yn) other than y\ If we let (z\ , zn) be the basis (y\ - ,yn)
with yι replaced by t it follows that a{z1

9 , zn) = ca(yτ, , yn). Since
the basis (z\ , zn) consists of unit vectors this contradicts the choice
of (y\ ---,yn). Thus || uι || = 1 for all i, and the theorem is proved.

COROLLARY. If Bo is a finite-dimensional subspace of dimension
n of a Banach space B there exist n mutually annihilating projections
(idempotent continuous linear operators) on B, each of norm 1, whose
ranges are one-dimensional subspaces of Bo and whose sum is a projec-
tion of B onto Bo of norm at most n.

Proof. Let {y1, , yn) be a basis of unit vectors of Bo such that
the dual basis {u1, , un) of B* also consists of unit vectors. Let vι

be an extension of uι to a linear functional on B of norm 1. The
operators Plf , Pn on B defined by

are the desired projections.
We recall that a Frechet space is a locally convex topological linear
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space F which admits a countable family {|| ||A} of continuous semi-
norms such that a basis for the neighborhoods of 0 in F is given by
the sets

{xzF:\\x\\k<l}.

If || II is any continuous semi-norm on F it follows that for some k
II x || ^ 11 # Ik for all x in F. If necessary it may be assumed that
{|| \\k) is a monotonely nondecreasing sequence of semi-norms, in which
case we shall call it a defining sequence of semi-norms for F.

LEMMA 1. Let F be a Frechet space with a defining sequence
ill life} °f semi-norms. Let {an} be a sequence of vectors in F, {δk} a
sequence of nonnegative real numbers, and {k3) a strictly increasing
sequence of positive integers. Then there exists a sequence {Pn} of
mutually annihilating continuous projections on F, whose ranges are
subspaces of F of dimensions at most 1, and a sequence {εk}, with
0 < εk < δk for all k, with the following properties. For each positive
integer j the operator

Q, = Σ*Pn

is a projection on the subspace B3 of F spanned by the vectors alf , akj.
For each positive integer n the sum

is finite for α = α%. For each positive integer j and all n^ k3 we
have || Pn ||0 ^ (1 + ft?) (1 + Jή), where

II JP llo = s u p {|| J P » 6 | | o : 6 e F, | | 6 | l o = l } .

Proof. We may assume the 8k to be so small that Σ~=i Sk \\ an \\k < CΌ
for all n. By induction we construct a sequence {Pn} of mutually anni-
hilating continuous projections, a sequence {εk} of positive real numbers,
and an increasing sequence {Nd} of positive integers such that

(a) 0 < εk < δk,
(b) For each j the operator Q3 is a projection onto Bj}

(c) || Pn \\j < (1 + fcj) . . . (l + ft?) for 1 ^ n ^ h and all i ^ j .
We explain what is meant by (c). First of all, || | | j is the continuous
semi-norm on F defined by

Secondly, \\Pn\\3 is defined by
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Assuming that P19 , Pkj and iVί , N3, and elf , ε ^ have been
found with the relevant properties, we show how to continue to the
next stage j + 1. First choose N3+1 > N3 so large that || \\NJ+1 is a
norm (and not merely a semi-norm) on Bj+1. Choose then εi9 N3 < i ^
Nj+1, so small that 0 < e< < δ< and || Pn \\3+1 < (1 + fc?) •••(! + fc2) for
w ^ k3 and all i ^ j . To see that this can be done, notice that be-
cause || \\Nj is a norm on Bj there exists r > 0 so that r || α |p' > || a \\m

for all α in B3 and all m ^ iVi+1. Thus

Now use (c).
Now let Qj be the restriction of Q3- to Bj+1 and let / i + 1 be the

identity operator on Bj+1. Thus Ij+1 — Q'3 is a projection of J5y+1 onto
a subspace SJ+1. Clearly 5 y and S3 +1 are complementary subspaces of
B3+1, so that dim S3+1 g fci+1 — fc^. By the above corollary there exists
a projection E3+1 with \\E3+1\\j+1 ^ kj+1 of i*7 onto # i + 1 . Also by the
above corollary there exist mutually annihilating projections Rn, k3 <n^
k3+1, of S3+1 onto subspaces of dimensions at most 1 such that || Rn \\j+1 ^ 1
for all n and such that ΣRn is the identity projection of S3+1 onto itself.
For k3 <n S k3+1 we define

Pn = Rn(Ij+1 — Qj)Ej+1 .

Thus the Pn are mutually annihilating projections for 1 ^ n gΞ &i+1.
Also Q i + 1 is a projection onto Bj+1. Finally for k3 < n ^ fci+1 we have

II P . i r g II Rn l l i + 1 II /y+1 - Q} ||j+1

< [1 + fc^l + kl) . . . (1 + fc})]fci+1

^ (1 + kί)... ( l + fc;+1).

The same is true for n ^ kjf by the above construction. Thus the con-
struction has been continued another step. By induction it follows
that sequences {PJ, {Nj}, and {εj can be chosen satisfying properties
(a), (b), and (c). It is immediate that the sequences {Pn} and {εk} satisfy
the requirements of the lemma.

LEMMA 2. Let {an} be a sequence of elements of a Frechet space
F, {\\ \\k} a defining sequence of semi-norms on F, and {δk} a sequence
of positive real numbers. Then there exist a sequence {εk} of positive
real numbers and a sequence {Pn} of mutually annihilating projections
on F whose ranges are subspaces of F of dimensions at most 1 having
the following properties.
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( i ) 0<εk<dk for all k,
(ii) For a = an the norm \\a ||0 — ΣΓ=iS* II a \U ^s finite for all n,

(iii) Rman — an for all positive integers m and n with m ^ 2n,

where Rm = Σ U P*>
( v i ) For a l l t>l a n d ε > 0 ί Λ e s w m Σ « = i I l - P n l l o * " * 8 converges,

where | | P W | | O is defined as above.

Proof. Define the sequence {k3) by k3 = 2j. Choose the sequences
{Pn} and {εk} as in lemma 1. Clearly (i) and (ii) are satisfied. Now for
each positive integer n there is a positive integer j with 2j~1 tί n < 2j.
It follows that an e B3. Thus R2Jan — Qόan = αΛ, so that Rman = <xw for
all m ^ 2J and therefore for all m ^ 2w. This proves (iii).

Now for each n choose j with 23"1 ^ n < 23. Thus

where a — 1 + log2 w. From this it follows from elementary calculus
that (iv) holds, thereby proving the lemma.

LEMMA 3. Let

where a — a{ and 1 fg i < oo, 6e α sequence of formal power series
with coefficients in a Frechet space F. Let {dk} be a sequence of positive
real numbers. Then there exists a sequence {ek} with 0 < ek < δk for
all k and a sequence {Pn} of mutually annihilating continuous pro-
jections of F onto subspaces of dimensions at most 1 such that

(a) Rjiiin^ , nΛ) = a^n^ , na) whenever m ^ 2< +V, where
a = aif n = nλ+ + nΛ, and Rm = ΣJU Λ>

(b) Pma{{nλ, - ,na) — 0 whenever m > 2 < + a ^ Λ ,
(c) Σ~=i \\Pn Wo t~n* < oo for all ί > l α ^ ώ ε > 0, wfcerβ || ||0 i s

defined as above.

Proof. For each^ΐ order the coefficients a^n^ , nΛ) into a sequence
{̂ ?}Γ=i according to the size of n. We now define a sequence {αj of
elements of F which is an ordering of the totality of the a,i(nu , n*).
For k given let 2* be the largest power of 2 dividing fc and let j =
Il2(k2~i + 1). Let αfe = α|. Now choose the sequences {εj and {Pn} as
in Lemma 2. Clearly (c) holds. Since (b) is a consequence of (a) we
need only check (a). To this end consider a fixed a{(nly "-9na). Now
there exists j ^ n* with a^n^ , na) = αj. In turn αj = αfc for some
k ^ 2ί+1wα. By (iii) of Lemma 2 it follows that Rmak = αfc for m ^ 2k
and therefore for m ^ 2 ί + V, as was to be proved.
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We are now prepared to prove a series representation for analytic
functions with values in a Frechet space which will be the principal
tool in subsequent proofs.

THEOREM 1. Let F be a Frechet space and let {M{} be a sequence
of complex analytic manifolds. For each i let ψi be an analytic function
on Mi with values in F. Then there exists a sequence of vectors {bn}
in F and a sequence {Pn} of continuous mutually annihilating pro-
jections of F onto one-dimensional subspaces having the following pro-
perties. For each i the series ^Z=iPn°Ψi converges to φ{ on Mi9 For
each n we have Pnbn = bn, so that Pnoφi — φ"bn, for some analytic
function φ? on M{. For each i the series Σ?=iP? converges absolutely
and uniformly on all compact subsets of M{. For each continuous
semi-norm || || on F the sequence {||δΛ||} is bounded.

Proof. For each i let dim Mt = a — ai9 so that M* is coverable by
a countable family of analytic homeomorphs Γ of the unit polycylinder

U* = {z = (zlf , zΛ): I zj | < 1, 1 ^ j ^ a} .

Thus in the proof of the theorem we may replace the sequence {M^
by the totality of all such Γ. There is therefore no loss of generality
in assuming that each Mi is a polycylinder U* of dimension a = a{.
Let {|| life} be a defining sequence of semi-norms on F. Now for each
i the analytic function ψi has a power series expansion

Ψi- Σ a>i(n19 , nω)zp zl»

on the polycylinder Mi = U*. This expansion converges absolutely and
uniformly on each compact subset of Mi in each semi-norm || 1̂ . By
the diagonal process there therefore exist constants δk > 0 such that
the power series for each φζ converges absolutely and uniformly on each
compact subset of M{ in the norm ΣΓ=i<?/J| ||*, so that in particular
this norm is finite for each coefficient a^n^ •• ,wα). Now choose the
sequences {εj and {Pn} as in Lemma 3 relative to the power series
expansions of the φ{ and to the δk just obtained. Thus the power
series for φt converges absolutely and uniformly on compact subsets
of Mi in the norm || ||0 defined above. If some of the projections Pn

are zero, these may be omitted from the sequence. Thus for each n
there is a vector bn in F with | | 6 Λ | | 0 = 1 spanning the range of Pn.
To show that the sequences {Pn} and {bn} have the desired properties^
consider a fixed compact subset T of a fixed M{. For each n write

Ίn = Σ max {|| a,i(nlf , na)zV- zy | | 0 : z e T} .
+
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By the usual convergence criteria we see that there exist r > 1 and
e > 0 such that rn7n < c for all n.

If j is any positive integer let k be the largest integer such that
2i+2k« < j . Thus for each z in T we have

P3 Σ ai(ni> > ^ K 1 zla

Thus

A = m&x\Σ\\Pjφi(z)\\0:zeT.

Now by the definition of k we see that k is the integral part of (j2~l~2ylou,
so that k ^ j l l 2 a for all i sufficiently large. Thus Δ is finite if the sum
ΣΓ=ir~~JΊl-Pillo converges, where ε = (2a)"1. By the choice of the
sequence {P3) this series converges so that Δ is finite. Now since || bn ||0 = l,

max {| φ:(z) \:zeT} = max {|| P^(z) | | 0 : z e T} .

Therefore the series ΣϊU^ΓOs) converges absolutely and uniformly on
T. If |] II is a continuous semi-norm on F then || || ^ JK"|| ||0 for
some K > 0, so that {l|6n||} is bounded by K. Finally, we must show
that *Σi»=iP»o(Pi actually converges to φt (and not to something else).
To see this, note by (a) and (b) of Lemma 3 that Rmoφi and φi have
power series expansions in the coordinates z19 , zΛ which agree up to
terms of total order n, whenever m ^ 2i+2n*. This completes the proof
of Theorem 1.

Before giving the definition of the vectorization of an analytic
sheaf, we indicate the terminology to be used, following Godement [5].
A presheaf S on a topological space X assigns to each open ! 7 c l a
set S(U) and to each open set Va Ua X a map τvu : S(U)—> S(V)
satisfying rwv o rru — rwu for W c. V a U. In particular the same
terminology will be used if S is a sheaf, that is, a presheaf satisfying
axioms (Fl) and (F2) on page 109 of [5]. To any presheaf S is canoni-
cally associated a sheaf Sr, and each element / in S(U) gives rise to
a unique element in S'(U) which will also be denoted by /. If X is
a complex analytic manifold a sheaf S on X is called analytic if it is
a module over the sheaf 0 of locally defined analytic functions, that is,
if for each U the set S(U) is an 0(£/)-module, and if the usual com-
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mutation relations between module multiplicationjand the restriction
maps S( U) — S( V) and 0( U) — 0( V) hold.

DEFINITION 1. Let S be an analytic sheaf on a complex analytic
manifold M and let F be a Frechet space. Let 0 be the sheaf of
locally-defined analytic functions on M and let 0̂  be the sheaf of locally-
defined analytic functions on M with values in F, where by definition
a continuous function / from an open set U c M to F is called analytic
if uof is analytic for all u in F*. Clearly 0̂  is an 0-module, i.e., an
analytic sheaf. The vectorization SF of S (relative to F) is defined to
be the sheaf S®0F, the tensor product of the 0-modules S and 0 .̂
This is defined in [5] as the sheaf determined by the presheaf data

u->S(U)<8>oF{U),

where S(U) and 0F(U) are considered as 0(t/)-modules, together with
the obvious restriction maps.

Note that if T is a continuous linear operator from a Frechet space
F into a Frechet space G then the natural homomorphism TQ of 0̂  into
0s induced by T gives rise to a homomorphism T" = 1 (g) To of SF into
SΘ. In particular, if u is an element of F* (and so a continuous linear
operator from F into C) then u induces a homomorphism of SF into
So. But So is canonically isomorphic to S, in virtue of the canonical
isomorphism between the 0(Z7)-modules S(U) ® 0(i7) and S(U). (See
[5] p. 8.) If we identify So with S it follows that each u in F* induces
a homomorphism v/ of SF onto S.

DEFINITION 2. If S is an analytic subsheaf of the Cartesian product
0n we define

SF(U) = {fe(QF(U)T:uofeS(U) for all u in F*} .

Clearly SF so defined is an analytic subsheaf of the Cartesian product

(0,)\

THEOREM 2. If S is a coherent analytic subsheaf of 0n then to each
p in Uc M and each f in SF(U) there exists a neighborhood V of p,
functions Hu , Hk in S(V) and functions Gly , Gk in 0F(V) such
that

rvuf = Σ GmHm .

Proof. Since S is coherent, there exists a neighborhood Vo c U of
p and functions Hx, -*-,Hk in S(V0) which generate S at each point of
Vo. We may assume that Vo is a compact subset of £7. Let 7 0 D 7 I D 7 2 D
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be a basis for the neighborhoods of p. Let Ω be the subset of S(V0)
consisting of all elements in S(V0) which as elements of (0(V0))n are
bounded on Vo. Thus to each h in Ω there exists G — (Glf , Gk) in
(0(Vi))k for some i such that the restriction of h to F* has the form

h = Σ Gtfi.
ί = l

By choosing % large enough we may assume that

\\G\U = mvUGjiq)] :qe Vifl t ί j ^ k}

is finite. Thus if for each pair (i, N) of positive integers we let ΩiN

be the family of all h in Ω such that G can be chosen in (0( Vi))k with
|| G \\i g N, we see that Ω — \J ΩiN and that each ΩiN is a closed subset
of Ω, where Ω has the norm defined by

II h Ho - sup {| fe<(?) \:l^ί^n,qeV0}

for each h = (feu , hn) e Ω c (0( V0))n. By the Baire category theorem
there exists (i, N) such that ΩiN has a nonvoid interior. From this it
follows as usual that there exists a constant K > 0 such that for each
h in Ω there exists G in (0(V<))* as above with | |G| | , ^ -K"||fe||0. Now
consider / as in the statement of the theorem, so t h a t / e S^(U)c(0F(U))n.
By Theorem 1 there exists a sequence of vectors {bj} in F which is
bounded in each continuous semi-norm on F and a sequence {Pj} of
continuous projections on F having one-dimensional ranges such that
ΣΓ=i Pi °f converges uniformly to / on all compact subsets of U and
such that for each j we have P j ° / = / A with fj£(0(U))n, where
ΣΓ=ilΛI converges uniformly on all compact subsets of U. Thus
ΣΓ=ill/illo is finite, since Voc. U.

Now for each j there exists % in ί7* with <6y, u} = 1. Thus

Λ - w°(/A) = uo(PiOf) = (uoPd)of

is in S(Z7) because feS^(U) and ^oP, e F * . Thus fjeS(U) for all j .
By the above for each j there exists Gj = (G{, , GO in (0( 7ί))fc such
that on F< we have

k

fi — Σ G3

mHm ,

with IIG^Ii ^ if 11 Λ Ho. It follows that the series ΣΓ=iGj6, converges
uniformly and absolutely on Vi in each continuous semi-norm on F.
Thus the sum of this series is an element G = (Glf , Gk) in (0^(7*))*.
Thus in the topology of uniform and absolute convergence on compact
subsets of Vi in each continuous semi-norm on F we have
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= Km Σ Σ GLHJb,

- Σ (lim Σ GLbi)Hm
m — \ \ ί->oo j = ± /

A;

— Σ GmHm ,
m = l

as was to be proved.
The following consequence of Theorem 2 will be useful later.

LEMMA 4. If ίfce element f of SF(U) has the property that u'f is
the zero element of S(U) for all u in F* then / = 0.

Proof. By taking a covering of U by small open sets we reduce
to the case in which / has a representation

/ = Σ ^ (g) 9i ,
ΐ = l

with /̂  in S(ί7) and g{ in (̂ (CΓ). Let R be the sheaf on £/Όf relations
of hlf , hk. Thus for each u in F* we see that

o = u'f = Σ λ< ® <?*, ̂ >
t = l

A;

= Σ <Λ, ^>λi.

Thus by Definition 2 we see that g = (#!, , ̂ fc) 6 Rf

F{U). By Theorem
2 it follows that each p in U has a neighborhood F c ί J such that
there exist Hl9 , Ht in R(V) and Gx, , Gt in 0^(F) with

= Σ G.iϊy .
3 = 1

Thus for each i with 1 ^ i ^ k we have

r F ^ = Σ Gyfl"/ ,

where iΓ5 = (iίj, , Jϊ*). Therefore on V we have

Σ
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since H3 GR(V) for all j . This proves Lemma 4.
We next give an important characterization of SF in case S is a

coherent analytic subsheaf of 0n for some positive integer n.

THEOREM 3. Let M be a Stein manifold and S a coherent analytic
subsheaf of 0n. Let F be a Frechet space. For each open U c M there
is a mapping τ(U) from S(U)(g)0F(U) into (0F(U))n which for each
h = (hl9 - -,hn) in S(U) and g in 0F(U) maps h§§g onto gh = (ghl9 ,ghn)
in (0F(U))n. For each such g and h the image gh of h®g actually
lies in the subset SF(U) of (0F(U))n. The family of such mappings
r(U) induces an isomorphism τ of the sheaf SF (which was defined
above to be the sheaf determined by the presheaf data U—> S(U) (x) 0F(U))
onto the sheaf SF. Thus SF and SF are isomorphic.

Proof. Clearly the map of the Cartesian product S(U) x
into (0F(U))n defined by (h,g)-+gh induces a group homomorphism of
(S(U),0F(U))—the free abelian group generated by the elements of the
Cartesian product S(U) x 0F(U)—into (O^(Ϊ7))\ It is trivial to check
that N(S(U),0F(U)): belongs to the kernel of this map, where
N(S(U), 0F(U)) is defined as in [5] p. 8 to be the subgroup of (S(U), 0F(U))
generated by elements of the forms

( i ) (xx + x2, y) - (xlf y) - (x2, y)
(ii) (x, yλ + y2) - (x, yλ) - (x, y2)
(iii) (ax, y) - (x, ay)

where x, xl9 and x2 are in S(U), y> ylf and y2 are in O*(Ϊ7), and a e 0(U).
Thus this map induces a homomorphism τ(U) of the quotient
(S(U), 0F(U))IN(S(U), 0F(U)) = S(U)<g> 0F(U) into (0^(U))\ It is trivial
to check that τ(U) is an 0(ί7)-homomorphism. Now with g and h as
above and % in ί7* we have

uoτ(U)(hζ&g) = uo(gh) = (u og)heS(U) .

Thus τ(U)(h ®g)e SF(U). It follows that the range of τ(U) is a subset
of SF(U). It is now clear that the family of mappings τ(U) induces
an 0-homomorphism τ of SF into SF. To show that τ is one-to-one we
must prove

(a) If τ (Z7)(Σ£=i^<Θί7i) = 0 then each p in U has a neighborhood
V such that rvu(YJ=1 h{ (g) g%) = 0.
To show that τ is onto we must prove

(b) If / G SF( U) then each p in U has a neighborhood V such that
rvuf = r(F)(Σ£i ^ (g) gτ) for some elements h in S(V) and gt in 0F(V).
We first prove (a). If we let R be the sheaf of relations on U of
hlf , hN by the coherence of R there exists a neighborhood Vo of p
and elements r± = (r\, , rf), , rn = (r\, , rξ) of R(V0) which
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generate R at each point of Vo. Now

Thus for each u in F* we have

so that (uog19 , uogN) G jR(C7) for all % in i*7*. By definition thi&
means that (gl9 , gN)e R'F{U). Therefore by Theorem 2 we see that
there exists a neighborhood V of p and G = (6rlf , Gn) in ( 0 ^
such that (gl9 , fl^) = G1r1 + + Gwr%. Thus on V we have

Σ Λi ® ffi = Σ fe< ® ( Σ Gάr)

since r^-eiί ίF) for each j . This proves (a).
To prove (b) notice by Theorem 2 that there exists a neighborhood

V of p, elements hl9 - -,hN in S(V), and elements ^, , gN in
such that on V we have

This completes the proof of Theorem 3.
We state for future reference a version of a theorem of Banach^

first giving a definition.

DEFINITION 3. If {gn} is a sequence of vectors in a Frechet space
Foo the series Σ*=if/» *s called absolutely convergent if the series
Σn=illί7*ll converges for each continuous semi-norm || || on F.

Notice that a continuous linear transformation from a Frechet space
F to a Frechet space G takes absolutely convergent sequences into
absolutely convergent sequences.

LEMMA 5. Let σ be a continuous linear map of a Frechet space
F onto a Frechet space G. Let {g{} be an absolutely convergent sequence
from G. Then there exists an absolutely convergent sequence {/J in
F such that σ{fi) = gt for all i.

Proof. Let {|| ||A} be a defining sequence of semi-norms on F.
Since the map σ is continuous, we see ([1] p. 40) that for each k the
set σ{f: \\f\\k ^ 1} contains a neighborhood {g : ||flr||ί ^ 1} of 0 in G,
where || ||ί is some continuous semi-norm on G. Thus for each g in
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G and each k there exists f in F with σ(f) = g and \\f\\k ^ || g \\f

k- Now
for each k choose j — j(k) such t h a t

so t h a t

Σ v-i it 11/ ^

Σ II #» II* < °°
We may assume that i(l) < j(2) < . For each n with j(k) £ίn< j{k + 1)
choose / . in F with σ(f.) = gn and ||/.||» ^ ||flr.||ί. If for each n we
let k{n) be the smallest value of k for which n < j(k + 1), it follows
that

Σl
n — l

Since for each t we have ||/»|| t ^ ||/«||fc for all k i> t it follows that

Σ I I Λ I I ,

is finite for all t. This proves the lemma.

THEOREM 4. If S is a coherent analytic sheaf on a Stein manifold
M and if F is a Frechet space then HN{M, SF) — 0 for all iV Ξ> 1.

Proof. Let / be an element of HN(M, SF). Consider a locally finite
covering {Z7J of M by holomorphically convex open sets Ui9 so fine that
/ is represented by an element of HN({Ui}, SF). For each finite sequence
K = (ilf , ik) of positive integers let Uκ = Uh Π Π UijB. The
element / of HN(M, SF) can be considered to belong to i P ^ Ϊ / J , SF) and
therefore can be represented by a cocycle / = {fz} of ZN({Ui}, SF). Here
I is any sequence of JV + 1 positive integers, and, for each J, fz is an
element of SF(Ur). Also δf = 0, where δ is the coboundary operator
from CN({Ui}fSF) into C*+1({Ui}, SF) and -Z'̂ Cί?/*}, Ŝ ) is the kernel of
δ. By choosing the covering {Ui} fine enough we may assume that for
each K there exist elements hlκ, , haKf with a depending on K, in
S(UK) which generate S at each point of Uκ. This implies ([3], expose
XVIII, p. 9) that every h in S(UK) has a representation of the form
h = Σ?=iflfA ̂ » w i t h 9i^0(Uκ). We may also choose the covering {Ϊ7J
so fine that, for each I, / 7 can be represented in the form

a

J i — 2-Λ '"ii y_y tfii

with hu as above and with gu in (
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By Theorem 1 there exists a sequence {Pn} of continuous mutually
annihilating projections on F whose ranges are one dimensional and a
sequence {bn} of vectors in F bounded in each continuous semi-norm on
Fhaving the following properties. For each /and i the series Σn=i Pn°Λ/
converges to gu on UΣ. For each land i we have Pnogiz — g^bnf where
^ e θ ( ί 7 z ) . For each I and i the series Σn=i0?/ converges absolutely
in the Frechet space 0(Z7j). Now since for each n the projection Pn

induces a homomorphism of the sheaf SF onto itself, the element {Pnfi}
of (^({0,}, SF) is in ZN{{U%), SF). Also

iVΊ - Σ hu ® P^z

= Σ Λi, <g> ff«6.

If for each n and / we let f? be the element Σ?=i0?Ai of £(£/,) it
follows that for each n the element /» = {f?}i=1 of C (̂{C/i}, S) belongs
to Z^dUi}, S). It is also clear that fnbn = Pnf.

Now there exists a natural Frechet space topology on each S(U),
described in [4], expose XVII. This topology has the property that
for each h in S(U) the map g —> gh of O(Ϊ7) into S(U) is continuous.
We therefore see that for each I the series

2-ιJi - 2J I2i yu

converges absolutely in S(Z7Γ) because for each J and i the series
Σn=i&Λi converges absolutely in 0([7j). Now the space CN({TJ^, S) is
the Cartesian product of the Frechet spaces S(UX), and therefore
possesses a Frechet space structure. Moreover ZN({U-\, S) is closed in
CN{{Uτ), S) and is therefore also a Frechet space. Since for each I the
series Σ«=i/ί converges absolutely in S(Z7j) it follows that ΣΓ=i/w

converges absolutely in ZN({U,), S). By Theorem B of [3] and Leray's
theorem (see [5] p. 213) we see that the coboundary map δ of the Frechet
space CN-\{Uτ), S) into ^({£7,}, S) is onto. From [4] we also see that
δ is continuous.

Let J stand for an arbitrary iV-tuple of positive integers. Thus
for each J, by the above, there is a continuous homomorphism.

of the Frechet space (0(Uj))" onto the Frechet space S(Uj). These
maps induce a continuous homomorphism τ of the Frechet space Φ onto
the Frechet space C^"1^^}, S), where 0 is defined to be the product
Π J ΦiUj))*, with a depending as above on J, of the Frechet spaces (0(Z7j))Λ.
Thus
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σ =

is a continuous homomorphism of Φ onto ZN{{U%), S). Since ΣΓ=i/w

converges absolutely in ZN{{Ui}, S) it follows from Lemma 5 that there
exists an absolutely convergent sequence {Gn} in Φ with σ(Gn) = fn for
all w. For each n write Gw = {G*}, where

Thus for each J" we see that the series Σί=i Φ? converges absolutely
and uniformly on every compact subset of UJf so that the series
Σ»=iGjδΛ converges absolutely in (0F(Uj))" to an element

GJ = (G1Jf , GaJ)

in (0 (̂Z7j))Λ. Thus for each i and J we have Gu = ΣΓ=iG?j6w.
For each J let βj be the element

ej = Σ Λ*J ® G^
i

of Spίϋ",). Thus β = {βJeC'-^ϋi}, &). We shall^finish the proof by
showing that δe = f. To this end it is sufficient by^Lemma 4 to show
u'(δe) = u'(f) for all % in F*. We compute:

w = l

absolutely in S(Uj). Thus

absolutely in C'-^Ui), S). Thus

ϊ(βe) = δ{u'(e)) = Σ (δoτ)(G"X&»,
n = l

Also for each I we have

U'ifj) = Σ <Λi>
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= ΣΣ
\

= Σ K, u> = ΣΛ"<δ», u> .
l

Therefore u'(f) - Σϊ=if*<h, u>. It follows that u'(f) = u'(8e) for all
u in ί7*, so that / = δe. This completes the proof of Theorem 4.
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EQUICONTINUITY OF SOLUTIONS OF A
QUASI-LINEAR EQUATION

S. E. BOHN

On a bounded domain Ω of the cπ/-plane the equicontinuity of a
family of solutions of a linear elliptic partial differential equation is
usually demonstrated by showing that the first partial derivatives of
solutions are uniformly bounded on compact interior subsets of Ω. Finn
,[2] uses this same method in showing the equicontinuity for a class of
quasi-linear elliptic equations referred to by him as "equations of mini-
mal surface type." However, Finn cites an example which demonstrates
that in general bounded collections of solutions of elliptic equations do
not have uniformly bounded first partial derivatives on compact interior
.subsets.

Here we shall consider the question of the equicontinuity of a
family of solutions of the quasi-linear equation

( 1) L[z] = A(x, y, p, Q)r + 2B(x, y, p, q)s + C(x, y, p, q)t = 0

where, as usual, p = zx, q = zy, r = zxx, s = zxy, and t — zyy and where
A, B and C satisfy a growth condition.

Suppose D to be a domain in the ίπ/-plane for which
(i) A > 0, AC — B2 = 1, and A, B, and C are continuous and

have continuous first partial derivatives with respect to p and q on T
defined by T = {(x, y, p, q): (x, y)eD and — oo < p, q < + oo}, and

(i i) (A + CfS (1/125) l o g l o g (p2 + q2 + e) + h ( x , y) f o r a l l (x, y , p , q ) e T
where h(x, y) is positive and continuous on D.

Henceforth, we shall assume that conditions (i) and (ii) are satisfied
whenever reference is made to the equation (1).

THEOREM 1. Let Ω be a bounded sub-domain of D with boundary
ω such that Ω — Ω + ω c D. If {fv(x, y):ve J^} is any collection of
functions which are continuous and uniformly bounded on co and if
corresponding to each /v there exists a function z(x, y; fv) which is of
class C2 on Ω, is continuous on Ω, is a solution of (1) on Ω, and is
such that z{x, y; /v) = fv(x, y) on ω,then the collection {z(x, y; / v ) : v e S/\
is equicontinuous on Ω.

In proving Theorem 1 we shall employ a modification of the method
used by Serrin [5] and in so doing depend heavily on the following

Received December 20, 1961. This result is contained in the author's doctoral dis-
sertation presented to the University of Nebraska. Sincerest appreciation is expressed to
Professor Lloyd K. Jackson for his direction.

1193



1194 S. E. BOHN

principle:

Maximum Principle [3]. Let D be any plane domain and consider
the function F(x, y, z, p, q, r, s, t) with the following assumptions:

( i ) F is continuous in all 8 variables in the region T defined by
T = {(x, y, z, p, q, r, s, t): (x, y)eD and - c o < z, p, q, r, s, t < + co} and

(ii) Fa, Fp, Fq, Fr, Fs, and Ft are continuous on Γ, F? - 4FrFt < 0,
Fr > 0, and Fz ^ 0 on T.
Let Zχ(x, y) and z2(xf y) be continuous in a bounded and closed subdomain
^ c D and of class C2 in the interior of Jΐf. Furthermore, suppose
3i(#, y) S z2(xf y) on the boundary of <%f and suppose that in the interior
of

.r \Xj y, zlf zlx, zly, zlxx9 Zιxy, zlyy) ^ 0

and

r [Xj y, Z
2
, Z

2X
, Z

2
y

f
 Z

2χχ
y Z

2χ
yy Z

2
yy) ̂  0 .

Then, either zλ(x, y) < z2{x, y) in the interior of <%f or

zλ(x, y) = z2(x, y) on

Suppose M > 1 to be a uniform bound of | / v | , veszf on ω. Since
constants are solutions of (1) it follows from the Maximum Principle
that \zv(x,y)\ = \z(x,y;fv)\ < M for (x,y)eΩ and all v e j / . Also,
suppose {z^(x, y): v e ^} = {zv(x, y): v e s%? and zv{x, y) > 0 on Ω).

LEMMA 1. Let P0(x0, y0) be any point of Ω and suppose {Kn}lz~ is
a sequence of closed circular disks each having P0(x0, y0) as its center
and Rn — {ljl)nRQ as its radius where RQ ^1 and Ko c Ω. Then when-
ever zy{x, y) is a positive solution of (1) there exists a constant H,
0 < H < 1, depending only on Ro, 8 = max h(x, y) where (x, y) e Ω, and
M such that for all v e &

zv(x, y) > H[δ, M, RoMxo, y0) on 0 ^ | P - Po |

and

zv(x, y) > H[δ, M, (1I7)»R0]Z,(X0, y0) ^ H[δ, M, (l/7)i?0](l/^K(^0, yQ)

on 0 S I P - Pol ^ (l/7)w+1i?o, n = 1, 2, 3, - -,1

Proof. Let £7 denote the component of the set

{(x, y)eKQ: z,(x, y) > (1/2) zv{xQ, y0)}

1 See Bers and Nirenberg [1] for a proof of a Harnack inequality for solutions of the
uniformly elliptic equation (1).
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which contains PQ(x0, y0). We can apply the Maximum Principle to
conclude that E must contain an arc of the circumference of Ko. Hence,
there is a Jordan arc Γ contained in E with one end at (a?0, y0) and the
other end at a point (xu yx) on the circumference of Ko which is such
that with the exception of (xu yλ) Γ is contained in the interior of E.
Let K2 and K* be the two closed disks each of which has radius Ί / 5 / 2 RO

and each of which has the points (xOy yQ) and (xl9 yj on its circumfer-
ence. Each point (x, y) e K2 Γ) K* satisfies at least one of the following
conditions:

(a) (a?, y)eΓU bdry(K2 n K3),
(b) (x, y) is in a subdomain of K2 the boundary of which consists

of arcs of Γ and arcs of the circumference of K2,
(c) (a?, y) is in a subdomain of K* the boundary of which consists

of arcs of Γ and arcs of the circumference of K3.
Let KA be the closed disk with center at

*, Vύ Ξ Vl

and radius (3/4) Ro and let (x2, y2) and (x3, y3) be the respective centers
of K2 and if3. It is clear that

{(x, y):(x- x2f + {y- y*Y ύ εa(τ/5/2 R0)
2} c comp if0,

{(a?, j / ) : ( a ? - ^ 3 ) 2 + (1/ - ^/3)
2 ^ 6»(i/5/2 ̂ 0)

2} c comp Ko ,

and

{(a?, y): (a? - ^ 4 ) 2 + (» - τ/4)
2 ̂  ε2(3/4 i?0)

2} c interior (K2 f] K*)

where ε = 1/10.
Consider the function

defined on the region

S(ξ, η; r) = {(a?, y): eV £ σ2 - (x - | ) 2 + (y - )?)2 g r2} Π Ko

where a > 0 and JV= l/2^v(α?0, ̂ /0). In this region

x " (1 - e-Λr2)2 " σ2 "" εV

Furthermore, t; < JV on S(f, 57; r), v = 0 where σ = r, and v > 0 where
σ < r. If A, S, and C are evaluated at (a?, y, jvx, jvy), the following
succession of inequalities are valid in S(ξ, τj; r) where 7, 0 < 7 < 1, is
any fixed real number.
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L[yv](l - e-ar<t) = 2ayNe-aσl{2a[A(x - ξf + 2B{x - ξ)(y - η)

+ C(y - Vf] -(A + C)}

4a(AC - B*)σ* - (A + C)\
(A + C) + V{A + CY - A(AC - B%) V 'ί

(A + C)
2a-fNe-°ύσ2

l o g l o g M v l + v l ) + e ] ~ h { x >

where δ = max h(x, y) for (x, y) e Ω. Now Z/[ry]!^ 0 on S(ξ, y]\ r) if one
chooses

a >̂ \ log log h e + 1255 \ .

250εV2 I L ε2r2 J i

Let

v2(x, y) = v(x, y; x2, y2; τ/5/2 RQ)

and

Let

and assume that (x9 y) is in the interior of K2 Π K3 and either {x, y)e Γ
or (xf y) satisfies condition (b), then we can apply the Maximum Princi-
ple to conclude that zy(x, y) > v2(x, y). Similarly, if (x, y) is in the
interior of K2 Π K3 and either (x, y)e Γ or (x, y) satisfies (c), we can
conclude that zv(x, y) > vz(x, y). Thus, for all (x,y)e interior (K2 Π K3)
it follows that

z»(x, y) > min [v2(x, y), vB(x, y)] .

Now on the circle (x - x4)
2 + (y - y,)2 = ε2(3/4 RQ)2

( 5 \ / 5
exp ( — — X2aR2 ) — exp ( aR2

V 4 / V 4
70 = min [v2(x, y), vz(x, y)] = N

1 — exp ( — —
\ 4

-λ2)exp(-A;
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where λ = [(VΊ7 + 3s)VTΓ]/10 < 1. Another application of the Maxi-
mum Principle yields zv(x, y) > (τ0/JV)tf4(ίB, y) on S(x4, y4, 3/4 Ro) where

v4(x, y) = v(x, y; x49 y4; 3/4 Ro) .

Now the annulus S(x4, y4; 3/4 Ro) contains the disk with center at (x0, y0)
and radius 1/7 Ro. On this disk

vA(x, y) ^ 7i ΞΞ iV

exp ( - -^ p2aRή - exp ( - A-

± e x p i ——-
1b

16

where p = 11/21.
Therefore, on the disk with center (xo,yQ) and radius 1/7 i?0.

- p>)exp[- (-|λ2 + A

> -1 (1 - λ2)(l - p>) exp ( - i | aRήzχx0, y0)

> i - (1 - λ2)(l - ^ ) exp (-1255)

• exp {-log log [(4M/3εi?0)
2 + β]}«v(a?0, l/o)

> H[δ, My R0]z,(x0, y0)

on 0 ^ I P - PoI ^ (1/7) -β0 for all v

where

«, M, Ro] = Y (1 - ^2)(1 - ^2) exp (-125δ) {log

Now by an inductive argument one concludes that

H[δ, M, (l/7) Λ0] = - ί (1 - λ2)(l - />2) exp (-1253)

and

z»(x, y)>- H[δ, M, 1/7 iZoKfe y0) on 0 ^ I P - Po I ^
n

= 1, 2, 3, for all y e ^ , thus proving the lemma.

LEMMA 2. £7sm# ί/tβ assumptions of Lemma 1
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for 0 ^ I P - Po I ̂  1/8 Ro for all v e &.

Proof. Follows directly from Lemma 1.

It is of interest to note that if z(x, y) is a positive solution of
A(x, y, p, q)r + 2B(x, y, p, q)s + C{x, y, p, q)t = 0 in a domain T, then
for any compact U a T and compact S properly contained in U there
is an H > 0 depending only on the bound of z(x, y) on U and the
distance from S to the boundary of U such that

~ : Φ 2 , 2/2) ̂  «(»i, l/i) ^ # Φ 2 , 2/2)

for any two points (xl9 yλ) and (x2, y2) in S.

LEMMA 3. / / zv(x, y) ve^ is a solution of (1) on the interior of
a closed circular disk Ko of radius Ro ^ 1 with center P0(x0, y0), then
there exists a continuous decreasing function gPo(r), 0 ^ r < Ro, gPo(O) =
1, αm£ α continuous increasing function / P o (r), 0 ^ r < i?0, /po(O) = 1

that

gPQ(r)z,(xQ, y0) ^ js;v(αj, y) ^ fPo(r)z,(xOf

ryo)

for 0 ^ I P — Po I ̂  r where g and f are independent of v.

Proof. Define

ffPo(r) EE inf inf J i ί ^ L

and

/ ( ) sup z»jP>V) .
^ )

By Lemma 1, Lemma 2, and an argument similar to that used in
Kellogg [4] (page 263) /P o(r) and gPo(r) exist for each 0 ^ r < Ro.
Using standard arguments it is clear that

( 2 ) lim inf inf * v ( x ' v ) = inf inf z^X v)

- 6 l P P | ^ ^ ( α ; 7/) € | P P ! ^

for 0 < r0 < Ro and

( 3 ) lim sup sup z^Xf y) = sup sup
€ \P-P0\Sτ ZV(X0, y0) V€^ |P-Pol^
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for 0 < r 0 < Ro. Also,

( 4 ) lira inf inf Z v ( x > v > ) = 1 .
+ e ^ | P ι s 2 v ( χ 0 , y0)

This follows by observing that whenever z.,(x, y) > 0 for 0 g | P — Po\ £Ξ Ro

zv(x, y) > H[δ, M, R0]zv(x0, y0) for 0 S I P - P o I ^ 1/7 # 0

and all ve^P*. This latter inequality implies

zv(a;, y) — H[δ, M, R0]z^(x0, y0)

> H[δ, M, 1/7 R,]{zy(xa, y0) - H[δ, M, R0Mxa, y0)}

for 0 ^ I P - Po I ^ (l/7)2i?0 and all y e j * . Thus, for 0 ^ | P - Po | <
<l/7)2i?0 and all v e ^

Zvfo 2/) > [1 - (1 - fl-[5, AT, Λ0])(l - H[δ, M, 1/7 i2 0])]^

By induction

«v(«, 1/) > Γl - Π (1 - H[δ, M, (ll7){RΛ])\φt, y0)
<5) L t=° J

> [ l - (1 - H[δ, M, Ro]) Π ( l - H[δ, M, 1/7 22O] j

for 0 ^ I P - Po I ̂  (Il7)n+1RO and all v e < f . Hence,

1 - inf inf ' y)

v[Xm y0)

< exp (-H[δ, M, Ro] - H[δ, M, 1/7 Ro] Σ 4 ) .

<4) then follows by the usual argument.
Suppose P is any point in the circle 0 S I P - Po I ̂  (l/7)nβ0/[l +

and let K be the interior of a closed circular disk of radius 1/[1 + (l/7)w]i?0

about P. Since sv(α, j/) > 0 on 0 ^ | P - Po | ^ Ro we have ^(ajf, 2/') > 0
on 0 ^ I P - P'\ ^ Λ0/[l + (l/7)%] for all v e &. Also

2V(OJ', yf) - [ l - (1 - H[δ, M, 7/8 jβ,])1

• Π (1 - iί[S, Jlf, 1/8 Bo] 4 ) 1 3vO», 1/) > 0

on

0 < I P - P Ί < ( l / 7 ) w + 1 Ro for all
~ 1 + (l/7)w

N o w P o (^ o , y0) is s u c h a p o i n t P'(x', y')\ t h e r e f o r e , for al l ve^ a n d
0 ^ I P - Po I ^ ( l / 7 r + 1 [ l / ( l +
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(Xo, Vo) > [ l - (1 - H[δ, M, 7/8 Ro])

• Π ( l - H[δ, M, 1/8 RAj)\ *Φ>, v),

sup sup z^x>v) - 1
+ R 0 Zy,(xOf y 0 )

< exp ( - # [ § , M, 7/8 Ro] - H[δ, M, 1/8 i?0] g 4

and we may conclude that

(6) lim sup sup z^Xf y) = 1 .
r-»0+ v e ^ \ Z(X y)

We will now show that

(7) lim sup sup *v(a?' y )

x = sup sup

for 0 ^ r0 < Ro.
Suppose the contrary, then since fPo(r) is increasing limr_r+/P()(r)>

fPo(r). Hence, there exists an ε > 0 and a decreasing sequence {rj
converging to r0 such that for all positive integers n fPo(rn) — fPQ(r0) > ε.
By the definition of supremum there exists for the above ε and each
n a function zn(x, y) such that

/y (/y» 01 \ Φ ίSY* ilΛ ,C

sup sup v v '"' — sup rn zn(x0, y0) 2

and thus,

sup z*}x' y\ — sup sup z^Xf y' > —

By the Maximum Principle

s»0», 1/)
sup

is assumed at some point Pn(xn9 yn) on \P — PQ\ — rn. Hence, there
exists a sequence of points {Pn(xn, yn)} which contains a convergent
subsequence which converges to a point P&x[9 y'0)e\P — Po\ = rQ. Sup-
pose our sequence is such without relabeling. Let

sup
(x0, y0)

Therefore,
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g»(S», Vn) _ Z n « Vo) ^ Zn(Xnf Vn) _ s u p s u p gy(g, V)

Zn(Xθf l/o) «n(«0, 2/θ) «»(»<>, 2/0)
 V 6 ^ l*-*ol£*O ZV(#0, VO)

> f L s u p s u p g(^y)
2 v e ^ | p p !

Let us center our attention on the point P0'(a?ί, 2/ί) Then, using (6),
there exists a δλ > 0 such that

sup sup * f r y> - 1 ̂  *L if r < δx.
€ J ^v(a?;, y'o) 2

Also, by (4) there exists a δ2 > 0 such that if r < <52

1-inf inf *»foy> ^ ^ ,

Thus, if I P - Pi\ ^ min [ί lf δJ

- 1
4 y'o)

It then follows that if \Pn- Po' | g min [δu δ2]

for all y e

i i S Up sup
2 € ^ | P P l ^SUp sup <
2 v€^. |P-P0l^r0 ^v(^0 , y 0 ) ί2;n(ajo> yQ)

zn(x'Q, x'o) zn(xOf y0)

zn(xn, y n ) - zn(x'o, y'p) zv(x, y)
—— — b u y bUp —

Zn(Xθf Vo)

iL S Up SUP
2 ve& \

a contradiction. By a similar argument we may conclude

(8) Limίnf inf **<*'»> = inf inf z ^ y

r-*r+ V€^ IP-Pol^r ^ Q , yQ) v 6 ^ |P-P 0 |^r 0 «v(j/0 , ^

Hence, by (2), (3), (7), and (8) our lemma is true.

Proof of Theorem 1. Recall that for vessf | / v | < M on ω and
I zv(x, y) I < M on β. _ Also, for all y e j / , zv(α, ̂ /) + M satisfies (1) and
tax, V) + M > 0 on Ω.

Let P0(x0, y0) be any point of Ω and assume K is a closed circular
disk whose center is P0(x0, Vo) and such that KcΩ. Hence, by Lemma
3 there exists positive continuous functions /Po(r) and gPo(r) (independent
of v) such that limr_0/p0(r) = 1, \imr_>0 gPo(r) = 1, and on the interior of K

9P$X)[zv(x0, y0) + M] g z*(x, y) + M^ fPir)[zv{xQ, y0) + M]
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and

- 1 SVOBO, yo) + M\ |flfpo(r) - 11 ^ zv(x, y) - zv(x0, y0)

£\*v(Xo,Vo) + M\\fPQ(r) - 1\

for all v e sf. It then follows that since {zv(x, y): v e sf) is uniformly
bounded on Ω that {zv{x, y) : v e Ssf) is equicontinuous on Ω thus proving
Theorem 1.
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SOME FUNCTION CLASSES RELATED TO THE

CLASS OF CONVEX FUNCTIONS

A. M. BRUCKNER AND E. OSTROW

l Introduction* A real-valued function / defined on the positive
real line [0, oo) is said to be convex if for every x ̂  0, y Ξ> 0, and
<x, 0 ̂  a ^ 1,/ satisfies the inequality

(1) f[ax + (1 - a)y] £ af(x) + (1 - a)f(y) .

Such functions are important in many parts of analysis and ge-
ometry and their properties have been studied in detail (see e.g.
the expository article Beckenbach [1] which contains an extensive
bibliography).

A related class of functions is the class of superadditive functions
which satisfy the defining inequality

(2) f(χ + y)^f(χ)+f(y).

These functions, more precisely their negatives which are subadditive,
have been studied by Hille and Phillips [5] and R. A. Rosenbaum [7]
among others.

In the paper we shall be concerned, in large part, with classes of
functions that properly lie between these two classes and which are
defined by inequalities which are weaker than (1) but stronger than
(2). We obtain a strict hierarchy of classes and various characterizing
properties of these classes and study a simple averaging operation that
transforms each class into a smaller class.

2 Definitions and elementary properties of the classeŝ  We shall
restrict our attention generally to functions which are continuous, non-
negative, and for which /(0) = 0 unless the contrary is explicitly stated.
The requirement of being nonnegative simplifies many proofs which
could be given without this assumption by considering the sum of /
with a suitably chosen linear function.

DEFINITION 1. Let / be defined on [0, oo). The average function
F of / is the function defined for all x > 0 by

X Jo

DEFINITION 2. The function / is said to be starshaped if for each

Received January 10, 1962.
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a, 0 ^ a ^ 1, and all x

f(ax) ^ af{x) .

It is easy to see that the set of points lying above the graph of
a starshaped function is starshaped with respect to the origin in the
usual sense. A function can, of course, be starshaped with respect to
any other point on its graph, the definition of this phenomenon being
made in an obvious way. The characterization of Lemma 3 below then
applies mutatis mutandis. It is not hard to verify that a continuous
function is convex if and only if it is starshaped with respect to a set
of points dense in its graph.

DEFINITION 3. The function / is said to be convex on the average,
starshaped on the average, or superadditive on the average if F i&
respectively convex, starshaped, or superadditive.

In the sequel we shall use the abbreviation COA for convex on
the average. We shall also use the following notation for derivatives;

h^o h h_>0+ h

and

lim
I^F- h

Simple characterizations of the classes are recorded in the following
series of lemmas.

LEMMA 1. A continuous convex function f is left and right differ-
entiable at each point, the one-sided derivatives being increasing func-
tions. Conversely, if any one of the Dini derivatives of a continuous
function f is increasing, the function is convex.

Proof. For a proof of the first part see Hardy, Littlewood, and
Polya [4]. To prove the converse, let Of denote an increasing Dini
derivative of / and let G be an indefinite integral of Of. Then G is
convex. If x0 is a point of continuity of Of, then both / and G are
differentiate at x0 and Df(x0) = G'(x0) =f'(x0). Since Df is increasing,
it is continuous except on at most a countable set of points. It follows
(see Hobson [6]) that / and G differ by at most a constant. Thus /
is convex.

The proofs of the next three Lemmas are straightforward and will
be omitted.
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LEMMA 2. The function f is COA if and only if / ' ^ 2F'.

LEMMA 3. The function f is starshaped if and only if either one
the two following conditions is satisfied:

(i) f(x)lx is increasing,
(ii) f\x) ^ f(x)lx for all x.

LEMMA 4. The function f is starshaped on the average if and
only if / ^ 2F.

The inequality / ^ 2F has the following simple geometric interpre-
tation: Since

xF(x) = (*/(*) dt ^ — f(χ) ,
Jo 2

the area under the graph of / is at each point dominated by the area
of the triangle with vertices (0,0), (x,0) and (xtf(x)).

The inequality f(x0) ^ 2F(x0) can be cast in the form

F(xQ) 1 f(x0)

Xo 2 xQ

Since F(x)/x is increasing, we actually obtain the slightly more
general result,

F(a) ^ F(x0) ^ 1 f(x0)

a x0 2 x0

for all a ^ x0. This means geometrically that for a < x09 the area of
the triangle cut off from the above mentioned triangle by the line
x = a is no smaller than the area under the graph of / from 0 to α.

LEMMA 5. If f is respectively convex, convex on the average,
starshaped, or superadditive, then f is a nondecreasing function.

Proof. We have restricted ourselves to nonnegative functions for
which /(0) = 0. If / is superadditive, then f(y) = f[x + (y — x)]

^ f(χ) + f(v - χ) ^ f(χ) f or y ^ x .

As we show in Theorem 5, / satisfying any of the other conditions
implies that / is superadditive.

If / is merely starshaped on the average, it is clear from the
geometric interpretation of / ^ 2F that / need not be increasing.

Since / is an increasing function provided / belongs to one of the
function classes of Lemma 5, / has a finite derivative almost every-
where. For all these classes, F has a continuous derivative for x > 0
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since xF'{x) = f(x) — F{x). We consider the behavior of Ff at the
origin in Theorem 7 below.

We now investigate various operations under which our function
classes are closed. We have first of all

THEOREM 1. Let f and g be respectively convex, COA, starshaped,
starshaped on the average, super additive, superadditive on the average;
then for a ^ 0, b ̂  0, af + bg belongs to the same class.

The proof involves a trivial computation.
The next two theorems consider the behavior of our classes under

the operation of pointwise limits.

THEOREM 2. Let {fn} be a sequence of convex, starshaped, or sup-
eradditive functions converging pointwise to a limit function f. Then
f is respectively convex, starshaped, or superadditive. Moreover, the
average functions Fn converge to the average function F.

Proof. It is clear that the defining inequalities of these classes
are preserved in the limit. The proof of the second statement parallels
the proof of the corresponding part of Theorem 3.

THEOREM 3. Let {fn} be a sequence of COA functions converging
pointwise to a continuous limit f. The limit function is then COA
and the average functions Fn converge to the average function F.

Proof. Let b > 0. The sequence {fn} is uniformly bounded on
[0, b] by sup {fn(fy} = M. M is finite for fn(b) —*/(&) and M is a uniform
bound because each fn is an increasing function. By the Lebesgue
bounded convergence theorem,

for each x e [0, b], that is Fn(x) —> F(x). Since b was arbitrary, this
last relation holds for all x. The convexity of F follows from the
convexity of Fn.

In general, however, it is not true that the limit of the average
functions is equal to the average of the limit function. If fn —•/ and
the averages Fn —> G, an easy calculation shows that F tί G. For
functions which are starshaped on the average, we do have the follow-
ing theorem.

THEOREM 4. //{/»} is starshaped on the average and fn—>f, then
f is starshaped on the average.
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Proof. For each x > 0, let Tx

n and Tx be the linear functions
determined by the origin and the points {x,fn{x)) and (xff(x)). Since
/„->/, Tζ-> Tx. Moreover, the inequality 2Fn <Lfn is equivalent to

[f»(t)dt ^ \XTx

n(t)dt
Jo Jo

by Fatou's theorem,

[fit) dt ^ lim ί >n(ί) dί ^ lim ί V;(ί) dί - ί V(ί) dt .
Jo l^Z Jo - ^ r ^ Jo Jo

Thus,

— [f(t) dt£±- [τxit) dt - ±.f(x) ,
X Jo x Jo 2

i.e.

F(x) < —/(a?) ,

so / is starshaped on the average.

3 The hierarchy. We now consider the inclusion relationships
among the six classes.

THEOREM 5. Let f be a nonnegative continuous function which
vanishes at the origin.

Consider the following six conditions on f:
( i ) f is convex,
(ii) f is CO A,
(iii) / is starshaped,
(iv) / is super additive,
(v) f is starshaped on the average,
(vi) / is superadditive on the average.
Then the following chain of implications is valid but none of the

reverse implications holds: (i) —• (ii) —> (iii) —> (iv) —> (v) —> (vi).

Proof, (i) —> (ii). This will be a consequence of Theorem 10.

Since F is convex, both F' and F(x)jx are increasing. Thus f(x)/x is
increasing. It follows from Lemma 3, condition (i), that / i s starshaped.

(iii) —> (iv). For as > 0 and y > 0, we have
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and

f(χ) < f(χ + y)
x ~ x + y

f(y) <r

y x + y

These inequalities are equivalent to

(x + y)f{χ) ^ χf(χ + y)

and

(# + y)f(y) ^ yf(χ + y)

which on addition yield f(x) +f(y) Sf(x + y)-
(iv) —> (v). We first consider the case in which / is a polygonal

superadditive function. The general case then follows by a limit
argument.

Let x > 0 and let / be polygonal of n segments with vertices over
the equidistantly spaced points 0, v,2v, , nv = x. Let T be the
linear function determined by the origin and the point (x,f(x)), i.e.
T(t) = (f(x)lx)t for all t. Furthermore, let q(t) = f(t) - T(t). The
function q is polygonal and superadditive, having its vertices over the

S x
q(t) dt ^ 0

0

which suffices for F to be star shaped. Using the linearity of / on the
intervals [kv, (k + l)v], we obtain

\*q(t)dt = v
Jo

(Λ—1Λ 1 ) / 2

Σ [Q(kv) + q(n — fc)^)] if n is odd ,
fc=l

%/2 — 1

vq{{nj2)v) + v^ [q(kv) + ^((^ — fe)'?;)] if w is even .
k=l

Now g(fct ) + g((w — k)v) ^ g(τî ) = q(x) = 0 for q is superadditive. In

either case 1 q(t) dt ^ 0.
Jo

In the general case let {pn} be a sequence of polygonal functions
over equidistantly spaced points such that pn—>f. Let T be the linear
function defined as above related to / . Since {pn} is superadditive for
each n (see Bruckner [2, THEOREM 8] and pn(x) ^ f{b) for all n and
all x ^ 6, where δ is arbitrary, it follows for each x that

Since
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the limit result

[*f(t)dt ̂  \"τ(t)dt
Jo Jo

follows.
(v) —» (vi). This is just the case (iii) —> (iv) for F.
That none of the reverse implications hold is shown by the follow-

ing examples:
(ii) — (i): f(x) = x2 - x* is COA on [0, 4/9] but convex only on

[0,1/3].
(iii)-(ii):

0 ^ x =g 1

is starshaped on [0, oo) but COA only on [0,1].
(iv) -> (iii): f(x) = n + (x - rif for n ^ x < n + 1, (n = 0,1, 2, •)

is superadditive on [0, oo) but starshaped only on [0,1].
(v) —• (iv): Let / be any function that is starshaped on the average

without being increasing.
(vi) —> (v): Let F be any superadditive function which is not star-

shaped such that Fr is continuous. Then xF(x) has a continuous
derivative f(x) and F is the average function of /.

4* Behavior for large and small x. Our first theorem in this
section shows that superadditive functions are differentiate at the
origin. Actually, a weaker hypothesis suffices to give this result.

THEOREM 6. Let f be a continuous nonnegative function on [0, c],
./(0) = 0, such that f((llri)x) g (l/n)f(x) for all n = 1, 2, 3, , and for
all x e [0, c]. Then f is differentiate at x — 0.

Proof. The hypothesis f{{ljn)x) ^ (l/w)/(cc) implies that

Suppose / is not differentiable at the origin. Then there exists an
ε > 0 such that /'(0) -/ '(0) = 3ε. Choose xQ so that f(x0) < (/'(0) + ε)cc0

and let {yk} be a sequence such that yk—>0 and f(yk) > (/'(0) — ε)^
(k = 1, 2, 3, •)• Since / is continuous at xQ, there is a 3 > 0 such
that if I a? — xQ I < δ, then f(x) < (/'(0) + ε)ίc. Let y* be a member of
the sequence {yk} such that y* < 3. There is then an integer N such
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that

I Ny* - x01< δ; hence f(Ny*) < (/'(0) + e)Ny* .

However

/(»*) ίk jjfiNy*) < (/'(0) + e)y* < (/'(0) - %*

which contradicts the fact y* is a member of the sequence {yk}. Thus
/ is differentiate at the origin.

COROLLARY. If f is superadditive, in particular if f is star-
shaped, COA, or convex, then /'(0) exists.

THEOREM 7. Let f be superadditive on the average, and let F be
its average function. If /'(0) exists, then Fr is continuous at x = 0
and /'(0) = 2F'(0).

Proof.

( ) ,
£C X

The right member of this equality approaches /'(0) — F'(0) for
JP'(O) exists by Theorem 6; hence \imx-0F'(x) exists, and because Fr

is a derivative, this limit must be .F'(O). Thus, Ff is continuous at
x = 0 and 22^(0) = /'(0).

Theorem 7 indicates that 2F{x)fx is approximately the same as
f(x)lx for x near 0, provided / behaves sufficiently well near the origin.
The next theorem shows that under suitable hypotheses the same
behavior holds for large x.

THEOREM 8. Let f be increasing and starshaped on the average
and let F be its average function. Then lim^βo/(#)/# exists and is
equal to 2\imx^00F(x)lx.

Proof. Since F is starshaped, the lim^oo F{x)jx exists.

Let a be such that 0 < a < 1 and let M = lim^oo (f(x)lx). Then

X
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X

It follows that

a(l - a)M

This last inequality holds for all a, 0 < a < 1 so

i i m έ s u p .
a; o<«<i 1 + a 2

On the other hand, since F is starshaped, f(x) ^ 2F(#) for all x so
that

It follows that lim^^ (f(x)lx) exists and equals 2 lim^oo (F(x)lx).

COROLLARY. Let f be increasing and starshaped on the average
with average function F. Then the three functions f(x)lx, F'(x), and
F{x)jx simultaneously are bounded or unbounded.

Proof. This follows directly from the identity

X X

and the preceding theorem.

5. Minimal extensions* We suppose in this section that / is defined
initially on an interval [0, c]. We shall consider in this section the
problem of extending/in a minimal way to [0, oo) while staying within
the same class. We start with

DEFINITION 4. Let / be convex (COA, starshaped, superadditive)
on [0, c]. Suppose / is a function defined on [0, oo) with the following
properties:

( i ) / = / o n [0,c],
(ii) / i s convex (COA, starshaped, superadditive) on [0, oo),
(iii) if g is any function on [0, oo) satisfying (i) and (ii), then

g(x) S f(x) for all x;
then / is said to be the minimal convex (COA, starshaped, superad-
ditive) extension of /.

We restrict our definition to functions which are at least superad-
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ditive for minimal extensions of functions in the larger two classes are
not, in general, continuous.

It is well known that if / is convex on [0, c], there exists a convex
extension of / to [0, oo) precisely when f-(c) < oo. In this case, the
minimal convex extension of/ is linear on [c, oo) with slope f-(c). When
/ is star shaped, it is clear that the minimal starshaped extension of /
to [0, oo) is the linear function with slope /(c)/c. For superadditive
functions the situation is much more complicated and has been studied
in detail in Bruckner [2], where it is shown that the minimal extension
does exist and, roughly speaking, behaves about as well as / .

The following theorem states the corresponding result for functions
that are CO A on [0, c\.

THEOREM 9. Suppose f is CO A on [0, c] with average function F.
Define f by the equations

2F'_(c)x -\-f(e) - 2FL(c)x
0 ^ X I

x > c

then f is the minimal COA extension of f to [0, oo). If F is the
average function of f, then F is the minimal convex extension of F
to [0, oo).

Proof. For x ^ c, we have

F(x) = — (/(t) dt + 1- \X[2FL(c)t + /'(c) - 2FL(c)c] dt .
X Jo X Jc

It is easy to check that F(c) = F(c) and that for x > c, F"(x) = 0 and
F\x) = Fr_(c) so that # i s the minimal convex extension of F to [0, oo).
Thus / is a COA extension of / to [0, oo). Let now g, with average
function G, be any COA extension of / to [0, oo) and let x > c. Since
G is convex, G' is increasing so

G\x) ^ G'4c) = F'_(c) = F\x) .

Thus

g'(x) ^ 2G\x) ^ 2F'(x) = f\x) .

Since / and g agree at c and #' ^f',g(x) ^f(x) so / is indeed the
minimal COA extension of / .

If a function is convex on [0, c], then it has extensions of each of
the four types mentioned above. It is interesting to compare these
various extensions. As an example, consider the function f(x) = x2 on
[0,1]. Its minimal convex extension is linear with slope 2, the minimal
COA extension is linear with slope 4/3, and the minimal starshaped
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extension is linear with slope 1. In contrast, the minimal superadditive
extension is not linear. It is given by the function f(x) = n + (x — nf
for n ^ x < n + 1, n = 1, 2, 3, (see Bruckner [2], p 1155).

6* Tests for convexity on the average* In this section we shall
consider conditions that are necessary and/or sufficient that a function
be COA. Similar tests concerning superadditive functions are found in
Bruckner [3]. We begin with the following lemma.

LEMMA 6. Let fc be the function such that

__ JO O^x^c
fc{X) = I/O* - c) x > o .

// / is COA, then fc is COA.

Proof. Let Fc be the average function of fc. We shall show that
f'e(x) ^ 2F'e(x), x ^ c . Since f'e(x) = f'{x - c) for x ^ c, it suffices to

show that/'(# — c) ̂  22^(ί£). This last inequality will be a consequence
of the inequality F\x - c) ̂  Fί(ίc).

Defining

we have that

F(x - c) = ( / ( )
X — C Jo CC — C

and

= - 1 Vc(*) dt = - [fit - c) dt
X Jo X Jo

a? Jo x

It thus suffices to show that

I ^cx\»Λ/II tΛ/ "~~ 1/ I I ^—- I xα.1 tA/ItΛ/ I ,

the " f " denoting differentiation with respect to x. This last inequality
is equivalent to

A'{x) ^ 2x ~ c A(x) ,
x(x — c)

S x-c
f(t) dt and simplifying, equivalent to

0
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the relation

f(x - c) ^ 2x ~ c F(x - c) .
X

Since / is starshaped, / is superadditive; hence / is starshaped on the
average. Thus, by Lemma 4,

f(x - c) ^ 2F(x - c) ^ 2x ~~ c F(x - c)
x

which proves the lemma.

DEFINITION 5. Let / be defined on [0, a]. The functions/;,/;,
fn defined on [0, α j , [0, α2], , [0, an] respectively form a decomposition
of / provided

( i )

(ϋ)

(iii)

/<(0) = 0

«! + α2 •

/(*) =

•f •••

Λ(χ)

Mx

+ an

- α θ -

— «i -

= α

+ /l<

- α 2

and o

_ . . .

h >

-a

0

i t -

for i = 1, ••

0

α

i = 1,
,n

0 ^x t

Ί < X ^ dl J

• +Λ-i(<V
— α < x <

α2

In this case we write / = /ΊΛ/2Λ Λ/r.

THEOREM 10. Let fx and f2 be COA on [0, αj απd [0, a2] respectively
and let f — fx Λ f2 on [0, α : + a2]. Let ft be the minimal COA extens-
ion of /;. A necessary and sufficient condition that f be COA is that
f^Λ on [0, a, + a2].

Proof. The necessity is obvious. As to the sufficiency let Fx be
the average function of flm For x e [0, ax + α2], write

F(x) = Fx{x) + [F(x) - Fλ(x)] = Fλ(x) + 1-
X Jo

Consider gf(ί) = f(t) — / (ί). flr(ί) = 0 on [0, aλ] so there is an h
defined on [0, α2] such that g(t) — hai(t) for t e [0, aλ + a2]. On [a19 aγ + α2],
—/i is linear. Since f2 is COA on [0, α2], /̂  is COA on [0, α2] being
the sum of COA functions. It follows from Lemma 6 that g is COA
on [0, aλ + α2]. Its average function is therefore convex and so F is
the sum of convex functions; hence convex.

THEOREM 11. Let f, - ,fn be COA on [0, αt], , [0, an] respectively
and let f = f A f2 A Λ fn. Furthermore let fk be the mimimal
COA extension of fk, (k = 1, , ri). Then f is COA on [0, ax + + an]
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if fu Λfk+1 Λ ••• Λ Λ ^ Λ for each k = 1, 2, . , n.

Proof. The proof is an induction argument using the sufficiency
part of Theorem 10.

We now return to the proof of the first part of Theorem 5, namely
the proof of the statement: if / is convex, then / is COA.

Proof. Let us assume first that / is a polygonal function on [0, c].
If / has only one segment, then / is linear so the theorem is trivially
true.

Supposing, by induction, that the theorem holds for polygonal
functions with n segments, let / be polygonal with (n + 1) segments.
Let fn be the polygonal function which agrees with / on the first n
segments of / and let fn be the minimal convex extension of fn to
[0, c\. Thus fn is convex and polygonal with n segments and so is
COA. On the last segment / is linear and / ^ fn. By Theorem 10,
/ is COA on [0, c].

The general situation follows immediately by Theorem 3. Let {pn}
be a sequence of convex polygonal functions approximating /. The
{pn} are thus COA and so their limit function / is COA on [0, c\. Since
c is arbitrary, this concludes the proof.
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LIMITS AND BOUNDS FOR DIVIDED DIFFERENCES

ON A JORDAN CURVE IN THE

COMPLEX DOMAIN

J. H. CURTISS

l Introduction. Let Sn+1 — {zu z29 , zn+1} be a set of n + 1 com-
plex numbers and let / be a function on a set containing Sn+1 to the
complex numbers. The divided difference dn — dn(f\z19 z2, , zn+1) of
order n formed for the function / in the points1 Sn+1 is defined in a
recursive manner as follows:

zx- z2

d2 = d2(f\zu z2y z3) =

dn = d n ( / | ^ , z29 •••, zw+1)

= ^»-i(/1 z19 z2J - - , gw) - dn^(f 1 gn+1, ga, - -, zn)

The definition requires further discussion when the points in Sn+1 are
not all distinct. We shall suppose that they are distinct unless provi-
sion is explicitly made for coincidences.

It can be proved by induction [7, p. 15] that if

ωn+1(z) = (z - zx){z - z2) (z - zn+1) ,

then

*=i ω'n+1(zk)

where the prime denotes differentiation of con+1(z) with respect to z.
This formula shows that dn is a symmetric function of zlf z2, , zn+1.

The divided differences of a function given on the real line play a
prominent role in the mathematics of computation. Their counterparts
in the complex plane have appeared in various classical studies of ap-
proximation by complex polynomials. The formal algebra of complex

Received January 10, 1962. This research was supported by the United States Air Force
through the Air Force Office of Scientific Research of the Air Research and Development
Command, under Contract No. AF 49 (638)-862.

1 We use the words ' 'points" and "numbers" interchangeably in referring to the argu-
ments in divided differences. This follows the practice in interpolation theory. It is con-
sistent within this terminology to speak of "coincident points" zk.
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divided differences is of course much the same as for the real case, but
the analytical properties of complex divided differences, such as asympto-
tic behavior and representability by integrals, are in some cases quite
different. It would appear that these analytical properties have not
received much attention in the literature, although some of them seem
interesting.

A primary motivation for the present paper was the need to estab-
lish that under certain smoothness hypotheses on a function / given on
a Jordan curve C, the divided difference of / of a fixed order formed
in points on C is uniformly bounded in modulus for all choices of the
points. This property was required in a study of complex interpolation
in random points [1]. The existence of the bound is proved in § 2 be-
low for the case in which C is the unit circle. The extension to more
general Jordan curves appears in § 3. In § 4, the asymptotic behavior
of successive divided differences of order n formed in n + 1 points on
a Jordan curve, n = 1, 2, , which in their totality become everywhere
dense in a certain way on the curve, is investigated. It is found that
the behavior to be expected in cases important in the theory of complex
interpolation is that the nth divided difference multiplied by the (n + l)th
power of the transfinite diameter, or capacity, of the curve C in ques-
tion approaches the limit \ fdzj{2πϊ). Section 4 is essentially self-con-

JG

tained and can be read separately.
As was mentioned above, the impetus for this study came from a

particular application. It is hoped that the results may turn out to be
useful in other directions. However, the general spirit in which this
paper is written is that of interest in the subject for itself alone, and
the possible applications will not be considered further.

2 An upper bound for the modulus of a divided difference formed
on the unit circle* If the numbers zk are all real numbers, and if / is
continuous on a closed interval I of the real line containing Sn+1 and
possesses an nth derivative f{n) at each point of the corresponding open
interval /, then by elementary calculus [7, p. 24] it can be shown that
there exists a number x0 in / such that dn = f{n)(x0)lnl. Thus if \f{n) \
is uniformly bounded everywhere on 1, so also is \dn\ for all choices of
Sn+ί on J. Again, with real points Sn+1, if f{n~ι) is absolutely continuous
[8, pp. 364 ff.] on J, then the iterated integral on the right side of the
following formula (in which we define zni2 as meaning zj,

( 2 . 1 ) dn(f\zl9z2, - • - , z n + 1 )

+ Σ Vs(zs+2 - Z;+i)W dy2 dyn ,
5=1 J

has meaning for all choices of SnΛ1 in which the points z, are distinct,



LIMITS AND BOUNDS FOR DIVIDED DIFFERENCES ON A JORDAN CURVE 1219

and indeed can be used to extend the definition of dn to cases involving
confluent points. It is easily shown by induction that the formula is
true [7, pp. 17-18]. Thus it follows with / ( n - υ absolutely continuous
and \f{n) I, where it exists, uniformly bounded on 7, that \dn\ is also
uniformly bounded for all choices of Sn+1 on I such that completion of
the definition of dn through (2.1) is possible. If M is the least upper
bound of \f{%) I on I, then | dn | ^ M\n\.

The formula (2.1) is no longer generally valid when the numbers
Sn+1 are not all real, and the derivation of a bound for \dn\ in terms
of a given bound for \fln) | is not so readily accomplished. In the re-
mainder of the section we shall consider this problem in the case in
which Sn+1 lies on the unit circle in the complex plane.

In the development, we shall use a complex-variable type of inter-
pretation of the derivatives of a function g given on the circle C:\z\-1.
The symbol g{1\z^ will mean

lim d^glz, zd = lim g{z)

provided of course that the limit exists. Higher derivatives g{k) are to
be defined recursively. The circle C can be parametrized in a one-to-
one manner by the equation z — eiθ, with a g θ < a + 2τr, where a is
chosen arbitrarily. If this is done, then

Qw(z\ = <ki . dθ _ dg 1

dθ deiθ dθ " ieίθ '

The chief result is this:

THEOREM 2.1 Let the function f be given on C: \ z \ = 1 together
with its first n — 1 derivatives/(1),/(2), •• ,/ ( π " 1 ) . Let the points Sn+1

lie on C and be distinct. Then if f{n~ι) satisfies the Lipschitz condi-
tion:

for all z and t on C, it follows that

(2.2) I dn(f\zu z2, , zn+1) I ^
/n + l
\ 2

uniformly for all such Sn+1, where Xn is the least upper bound of

|/ ( }(*)U*l = i .

The symbol Γ in (2.2) refers to the Gamma Function.
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The hypothesis on f[n~λ) has the implication that / ( n~1 } be absolutely
continuous on | z \ = 1, and that it therefore be the indefinite integral
of a derivative f[n) existing everywhere on | z \ = 1 with the possible
exception of a set of Lebesgue measure zero. Moreover the implication
is that \f{n) I, on the set where it exists, is bounded and its least upper
bound λn does not exceed λ.

Our proof involves integral representations, and it is important to
be explicit about the integral calculus to be used.

Consider two points ei0Cl2 and eioύl on the unit circle. The complex
line integral of a function g given on the unit circle extended over either
one of the two arcs of the circle joining these points, directed from

eΐ<*2 %0 eί<*i9 j s to be defined as a Lebesgue integral with respect to the
parameter θ in the parametrization z = eiθ. That is, if A is the chosen
directed arc, then

(2.3) ( g(z)dz = \aig(eiθ)ieiθdθ .
JA )oύ2

If g is continuous in a neighborhood of eίoύl, then

(2.4) d e x o ύ ι

The notation for the integral on the right side of (2.3) is ambiguous

in that it does not indicate which one of the two possible directed arcs

A is being integrated over. However in the sequel we shall be dealing

only with complex line integrals on | z | = 1 which are independent of

the path of integration. Such an integral extended over either arc

directed from z2 to zl9 \ zγ \ = \ z2| = 1, will be denoted by

g(z)dz .

If the two arcs joining z2 to zx are are of equal length, then a2 = ax±π9

so the variation of θ in (2.3) is over a closed interval of length π of
which one endpoint is α2. If the two paths are not of equal length,
then the shorter one corresponds under z = eίθ to an interval of values
of θ of which one endpoint is a2 and the other one, say α\ is such that
zx — eioύl = eioύ' and | a2 — a' \ < π. (For example, if ax and a2 are rest-
ricted to the interval [0, 2π] and if a2 > au a2 — aλ> π, then we take
a' = 2π + a,.)

We shall now drop the parentheses around superscripts indicating
derivatives of functions, but it is to be understood that superscripts
can also be exponents when the context requires, as in (z — z2)

k. In
the case of divided differences, a derivative superscript will always in-
dicate a partial derivative with respect to the first argument when the
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notation in the first paragraph of the Introduction is being used. That
is

. z

To prove Theorem 2.1 we need two lemmas, of which the first is
as follows.

LEMMA 2.1 Let the function f given on C: \ z | = 1 be such that its
(n — l)st derivative exists everywhere on C and is absolutely continu-
ous. Then

[\ - z2f~f\t)dt
(2.5) ^

I Si I = 1, I z21 = 1, zλ Φ z2, h = 1, 2, , n .

TΛe integral is independent of the path of integration on C.

The absolute continuity of fn~λ implies the absolute continuity of
ffP> m"ffn~2y and so implies that each of these functions including fn~λ

is the indefinite integral of its derivative.
In the case h = 1, with z1 = e1*1, z2 = eί(*2,

\Zlf'(t)dt \"lf'{eiΘ)ieiθdθ
J z2 J a>2

Z2

&l±2τc

f'(eiβ)iei

O>2

(>dθ

zλ z2

The second and fourth members of the equation show that whether
ax > a2 or ax < a2, the integral is independent of the path. Thus the
Lemma is true for h = 1.

Suppose now that (2.5) gives a valid representation of dt"1,1 ^ k<h,
with the integral independent of the path and zx Φ z2. Then using (2.4),
we have after a brief computation

(2.6) di -
zλ) - k \'\t - z2)

k-ψ{t)dt

Because of the absolute continuity of fk, integration by parts is valid



1222 J. H. CURTISS

in the integral in (2.6), with fk to be differentiated and (t — z^'1 to
be integrated with respect to t. We thereby immediately obtain (2.5)
with h — ft + 1, and the integral is again independent of the path. The
premises of the induction are true for ft = 1, so this establishes the
Lemma.

LEMMA 2.2 Let the function g be given at all points on \ z \ — 1
with the possible exception of a set of Lebesgue measure zero; let
I g(z) I ̂  M where defined on | z | = 1, and let g be such that

- z2)
kg(t) dt, = 1, ft ^ 0 ,

is independent of the path of integration. Then

(k + 1
(2.7) VΈ Γ

Γ k
M, k = 0, 1, 2,

/or all zλ and z2, zxΦ z2, on \ z \ = 1.

When ft = 0, the right side of (2.7) reduces to πM/2.
For the proof, we make the shorter arc joining z2 = eia>2 and zλ —

ei»i ( o r either of the two arcs if they are equal in length) correspond
under z = eίθ to a ό'-interval \a2y a'] or [af', α2], where α f is such that
2i = e ία' and I a2 — a' \ ̂  π. Thus

/*(«i, «>) = \"'(eiθ - eic*ήkg(eiθ)ieiΘdθ .

For the case ft = 0, we use the inequality | sin θ \ ̂  | 2θ/π |, — ττ/2 ^ θ^
π/2, which is merely an expression of the fact that sin θ is convex on
[0, π/2]. We also use the identity eiΛ - eiβ = 2ieί{oύ+β)l2 sin [(a - β)/Z\.
Then since | ar—a21/2 ^ τr/2, it follows that \z1 — z2\ = 2 sin [(α' — α 2)/2]|^
(2/τr) I 2(α' - α2)/2 |. Now | Jofe, z2) \ ̂  M | a1 - a21, so the inequality (2.7)
follows at once for ft = 0.

For ft ^ 1 we have (recalling the restriction on | af — a21),

(2.8)
i, s 2 ) I Γ

J(X9

2k+1

sin
4+1

„, \ 'sin*

2 s in^ 1

2
α' — α2

2
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We make the substitution β = | θ — a21/2 in the integral and let 7 =
\ar ~a21/2 ^ 7r/2. By examination of the various cases corresponding to
k even or odd and a! < a2, α' > a2 we find that the righthand member
of (2.8) is always equal to

M * H H = MS(y) .
Jo sin&+17

Inspection of its derivative shows that S(y) increases steadily with 7 on
the interval 0 ^ 7 ^ ττ/2. The value of S(π/2) is given by the well known
formula

S τr/2

si
0

sinfc θdθ = '

Thus

(k
Γ

as was to be proved.
Now let g in Lemma 2.2 be fn and M be Xn, where / is the func-

tion appearing in the Theorem. The two lemmas establish that

•(I)
(2.9) dΓ" "' o n

As a function of zl9 &\ ι is continuous for z1 ψ z2 and uniformly bounded
in modulus. Consider next dΐ~2(fzl9z2)a.&a, function of z1% This func-
tion has a continuous derivative for zx φ z2, which is moreover uniform-
ly bounded in modulus. Therefore this function is absolutely continuous
in zλ for zλ on any closed arc of the unit circle not containing z2. But
the uniform boundedness of | d\~x \ implies that dl~2{f \ zl9 z2) is of uni-
formly bounded variation in zλ on the entire unit circle with the point
z2 deleted. By a well-known theorem [8, p. 372, Ex. 61 it follows that
as zλ approaches z2 from either side, ώf~2 approaches a limit; and if the
limit is the same for approach from either side, then when the defini-
tion of dΐ~2 is completed by this limit at zx = z2 the function df~2 will
be an absolutely continuous function for all zx on | zx \ — 1. To investi-
gate the limit, we write (2.5) in the form
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[a\eiβ _

(sin

The limit as zλ —> z2, ax —> α2, of the expression in square brackets can
be evaluated by FHospital's rule used with (2.4) and with the fact that
fn~x is continuous. We find that for zx approaching z2 on either side,
there is the unique limit

lim dr*(f\zuzl £%&
n — 1

Thus with proper completion of the definition of cZ?~2 at zλ — z2, this
function is an absolutely continuous function of zλ on | z1 | = 1. Similarly
we can complete the definition of d\{f \ zl9 z2) for h = n — 3, n — 4, ,
1,0, so that the resulting function is in each case an absolutely conti-
nuous function of zλ on | z1 \ = 1. We assume henceforth without change
in notation that for each relevant value of h, the proper extension of
the definition of d} at z1 — z2 has been made.

What this establishes is that the completed first order divided dif-
ference dx(f\ zlf z2), as a function of zlf together with its first n — 2
partial derivatives with respect to zu have the same smoothness and
integrability properties as does / and its first n — 1 derivatives. That
is to say, dlf d\, , dΐ~2 are absolutely continuous functions of zx and
moreover the derivative of dΓ~2, where it exists, is uniformly bounded
in modulus.

The absolute continuity of the derivatives permits the inductive
argument which we used to establish (2.5) to be used again to prove
that

| S , *2) I zlf z3)

1^1 = 1, I z21 = 1, zx Φ z3, h = 1, 2, , n — 1 .

By (2.9) and Lemma 2.2, d%~2 as a function of zx is uniformly bounded
in modulus. (It is not important at the moment to know how the
bound depends on z2 and zz.) The definitions of d2

w"3, dl~\ , d2 can
now be completed by continuity at z1 = z3 so that in each case the re-
sulting function of zx is absolutely continuous on | zλ \ — 1. Again we
assume without change of notation that the proper extensions have been
made.
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Proceeding in this way, we establish the chain of equations

t,z2, , zk) dt

(2.10)

= l,2, ,n,

in which d°n = dn, d" — / " . Theorem 2.1 now can be proved by back
substitution into (2.10), beginning with (2.9) and using Lemma 2.2 at
each stage. Thus to start with, at least for zx Φ z2 and zx Φ z3,

VΈ
Γ(τ)

Similarly,

_
λ.l/ π

'•(f)

and so forth. We finally find that

as stated in the conclusion of the Theorem.
It is clear from the proof that under the hypotheses of Theorem

2.1 on /, it is possible to extend the definition of dn by continuity so
as to admit point sets Sn+1 in which coincidences occur, and then (2.2)
will still be valid. However we shall not study this question in detail
under the hypotheses of Theorem 2.1 on /, which were chosen as being
natural to achieve boundedness of \dn\ in the case of distinct points.
(The boundedness of dλ = \f(z^ — f(z2) | /1 zx — z2 \ is equivalent to a
Lipschitz condition on /.)

The method of proof with only slight modifications can be used to
establish the following result:

THEOREM 2.2 Under the hypothesis of Theorem 2.1 concerning / ,
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and with the added hypothesis that f{n) is continuous on some open arc
of I z I = 1 containing the point zu the following equation completes the
definition of dn by continuity for the case in which all the points Sn+1

coincide at zx;

(2.11) d # ( / | ^ ^ . . . f ^ /ί!!fei
n\

If f{n) is everywhere continuous on | z | = 1, then (2.2) is valid after
proper completion of the definition of dn for all choices of Sn+1 without
restrictions as to coincidences.

We conclude this section with two comments. In the first place it
is clear that by repeated back-substitution into (2.10), a single formula
for dn in terms of f{n) involving repeated integration can be written
out. It would be somewhat similar in appearance to a variant of (2.1)
which appears in [5, p. 18, ex. 7].

In the second place, it may be that for n Ξ> 2 the bound in (2.2)
can be improved. For n ~ 1 it is the best bound possible, as can be
seen from this trivial example: Let / be real and let its graph over a
period in the (#, /(βiθ))-plane be a line segment joining (0, 0) to (π, π)
and another line segment joining (π, π) to (2τr, 0). For this function the
maximum of d1 is π/2, the least upper bound of \f'\ is one, and the
right side of (2.2) is (ττ/2) l, which is as small as it can be. However
the general bound was derived through Lemma 2.2 in which the two
points z1 and z2 were placed at opposite ends of a diameter to obtain
the numerical appraisal. Such wide-apart spacing is of course not pos-
sible for the case of three or more points on the unit circle. The bound
given by (2.1) in the real case under the hypothesis of Theorem 2.1 is
Xjnl, which is much smaller than that in (2.2).

3. Boundedness of the modulus of a divided difference formed on
a general Jordan curve. A generalization of Theorem 2.1 to the case
in which the unit circle is replaced by a more general Jordan curve is
not hard to derive. In doing so, for simplicity we shall not try to keep
track of the structure of the upper bound, and shall suppress various
details in the proof.

A Jordan curve is homeomorphic to a circle. It can be represented
by a parametric equation z = φ{Θ), where φ is continuous in the real
variable θ with period 2τr, and where for each given point z on the
curve, any two solutions of z = φ(θ) differ by an integral multiple of
2π. Our considerations here will be restricted to Jordan curves such
that the first derivative dφjbθ = f(θ) exists for all θ and is continuous,
and ψ{θ) Φ 0 for all θ. Such a Jordan curve will be said to be "ad-
missible". (Presumably in what follows the definition of admissibility
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can be slightly relaxed.)

LEMMA 3.1. If z — φ{θ) is a parametric equation of an admissible
Jordan curve, then there exist numbers m and M, 0 < m < M, such
that

for all θ1 and θ2.
The divided difference appearing in the above inequality is to be

interpreted as meaning ψ(θ2)/ieίθ2 when θ1 = θ2.
The existence of an upper bound M follows from Lemma 2.2 with

k = 0 and g(eίθ) = ψ(θ)lieίθ. The existence of the lower bound can be
established by an elementary indirect argument which we omit2.

As in the unit circle case, it is convenient to interpret the deriva-
tives of a function on a Jordan curve to the complex numbers as limits
of complex-variable difference quotients. Specifically for any function
g given on a Jordan curve C, the symbol gf{z^) means lim^^ dλ (g \ z, zλ)f

z and z1 on C, and higher derivatives are to be defined recursively. If
C is admissible, then

gr(z) = d(g(φ(θ))) . J _
dθ

Integrals are to be defined as in (2.3) with ieiθ in that formula replaced
by ψ{θ). With this replacement and with eίωι replaced by φ{a^), (2.4) is
is valid. An integral over C with limits of integration zx and z2 which
is independent of the path will be written as

g(z) dz .
*2

The notation implies of course that the arc over which the integration
takes place is directed from z2 to zlt The derivatives of divided differ-
ences are always partials with respect to the first apparent argument.

The generalization of Theorem 2.1 is as follows:
THEOREM 3.1. Let the function f be given on an admissible Jordan

curve C, together with/ 1,/ 2, •• ,/ίl~1. Let fn~x satisfy the Lipschitz
condition

\f-\z) - f«-\t) | ^ λ | s - ί | , λ > O f

for all z and t on C. Let the points Sn+1 = {zu z2J , zn+1} lie on C and
be distinct. Then there exists a constant M depending only on n, λ,
and C, and independent of Sn+1, such that \ dn(f \ zl9 z2y , zn+1) \ ̂  M.

2 Various related but deeper results may be found in [6, Section 2.5].
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The proof starts with a generalization of Lemma 2.1.

LEMMA 3.2. Let the function f, given on an admissible Jordan
curve C, be such that its (n — l)th derivative exists everywhere on C
and is absolutely continuous as a function of Θ, z = φ(θ). Then

for zλ and z2 on C, zx Φ z2y h = 1, 2, , n, and the integral is indepen-
dent of the path of integration on C.

The argument used to establish Lemma 2.1 carries over to Lemma
3.2 with only minor changes, and will not be restated here.

LEMMA 3.3. Let the function G be given on the admissible Jordan
curve C with the possible exception of a set of Lebesgue measure zero;
let \G\ be bounded on C and be such that

= \'\t - z2)*G(t) dt
Jz2

is independent of the path of integration on C for all zx and z2 on C.
Then for each k, k — 0,1, , there exists a constant Mk, depending
only on G and C, and such that

for all zx and z2 on C, zλ Φ z2.

The Lebesgue measure in the theorem means measure on the 0-line
after the transformation φ'1: z—>θ.

To prove this lemma, we let zx = φ{a^y z2 = φ(a2), t = φ{θ), and
write

(3.1)

\ e \ I*

- L ψ(aj - φ{a2)\

where

By Lemma 3.1, the quantities in the square brackets in (3.1) and (3.2)
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are both uniformly bounded in modulus for all Θ, au and a2, θΦa2, axΦa2.
For any fixed a2, g(eίθ) as given by (3.2) is integrable, and its modulus
is uniformly bounded for all θ and a2. The integral in (3.1), considered
as an integral over an arc of the unit circle, is independent of the path
of integration. Thus the hypotheses of Lemma 2.2 are satisfied by g
as given by (3.2). The truth of Lemma 3.3 now follows immediately.

Theorem 3.1 can now be proved by the use of Lemmas 3.2 and 3.3
in the same way that Theorem 2.1 was proved. The hypotheses on /
and C imply that fn~ι(eiθ) is an absolutely continuous function of eίθ and
of θ, and that its derivative with respect to <ρ(θ), where it exists, is
uniformly bounded in modulus. The same is true for its derivative with
respect to θ. (These facts follow from the existence of numbers λx and
λ2 such that with z = eiθ, t = eiotf,

\fn-\z) - fn-\t) I ^ λ I φ(θ) - φ(a) I g \ I eiθ - eίω | ^ λ21 θ - a | .

(Here we used Lemma 3.1 in passing from the second member to the
third member of the chain.) The functions/, / \ •• ,/ ί l~2 are also abso-
lutely continuous and have uniformly bounded derivatives.

We can now re-establish the recursion formulas (2.10), which look
exactly the same as before and so will not be repeated here. The in-
tegrals in (2.10) are of course now complex line integrals over C. There-
after by back-substitution, using Lemma 3.3 at each stage, we establish
the existence of the bound for \dn\.

The analogous generalization of Theorem 2.2 is also valid. The
proper definition of dn for confluent points is again given by (2.11). It
is worth noting that what gives simplicity to our results and minimizes
the restrictions on C is the complex-variable type of definition which
we are using for derivatives of functions given on C.

4 Some asymptotic properties of divided differences formed on a
Jordan curve. In this section we shall be considering an infinite sequence
of divided differences

di{j I %iif %i2)t d2{j z2U z22} z23), , dn\f I znl, zn2J , zn9 zu+1)f ,

formed for a function / given on a Jordan curve C in the z-plane. Do
there exist sequences of point sets Sn+1 = {znl, zn21 , zn9 n+1}, n — lf 2, •
such that l im,^ dn exists for all functions / belonging to an interest-
ingly wide class; and if so, what is this limit?

Let D be the region interior to the curve C, let K be the unlimited
region exterior to C, and let D be D U C. There exists an analytic
function

(4.1) z = χ(w) - cw + cQ + —ι + ϋi + - , 0 0 ,
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univalent for | w | > 1, which maps | w | > 1 conformally onto K so that
the points at infinity in the 2-plane and w-plane correspond. According
to the Osgood-Taylor-Caratheodory Theorem, χ(w) can be extended in a
continuous and one-to-one manner onto | w | — 1, and χ(eίθ) = Φ(θ) then
gives a parametric equation for C of the type considered above in § 3.
The number c is called the transfinite diameter (Robin's constant, capa-
city) of C.

If a function / is analytic on C, it is also analytic in a region (per-
haps multiply connected) which contains C in its interior. Let w = Reίθ

in (4.1). There is a largest value of R, say p > 1, such that / is analy-
tic at every point of the intersection of C U K with the region interior
to the Jordan curve CR: z = χ(Reίθ), 0 ^ θ ^ 2π. (See [9, p. 79].) A curve
such as CR is called a level curve of the map given by (4.1).

With znk = χ(eiθ»k), 0 ^ θnk < 2τr, let ΛΓ%(6>) be the number of elements
of the set {θnl, θn2J , θn>n+1} falling into the closed interval [0, θ]. The
numbers θnk, k = 1, , n + 1, n — 1, 2, are said to be equidistributed
on [0, 2π] if Um^^N^Kn + 1) = θ/2π; and when this happens, the
corresponding sequence of point sets Sn+L, n — 1, 2, •••, is said to be
equidistributed on C.

Our first result is as follows:

THEOREM 4.1. Let f be analytic on D and let the sequence {Sn+1}
be equidistributed on C. Let p be the largest value of \w\ in the map
(4.1) such that f is analytic interior to the level curve Clw{. Then for
any R, 1 < R < p, there exists a constant M depending on /, R, and
C, but not on n, such that

I dn(f\znU •• , s w , n + i) I ^
' — ' = (cR)^

Thus λim^^ cnλldn = 0.
To prove this, we use the formula [5, p. 11]

(4.2) d* = 4^\ ^7ΓΛdt^ 0<R<p,
2πι )oRωn+1(t)

where ωn+1(z) = (z — znl)(z — zn2) (z — zn,n+1). This formula can be

used to complete the definition of dn by continuity for the case of con-
fluent points znk. We then refer to a classical result of L. Fejer [4],
[9, pp. 167 ff]: // {Sn+1} is equidistributed on a Jordan curve C, then

lim I ωn+1(z) |1 / ( % f l ) - c \ w \, z = χ(w) ,
n—>oo

uniformly for z on any closed subset of K. This implies that if z lies
on CE and Rλ is such that 1 < Rλ < R, then for all n sufficiently large,
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ΛJI + 1 1
\J ^ X

I o) n + 1 (z) I = Rf+1 '

Letting MB be the maximum of | f{z) \ on CB, and La be the length of
CB, we appraise (4.2) as follows:

(4.3) c + 1 | d , £

and the theorem follows from this.

THEOREM 4.2. Let C be rectifiable, let f be analytic on C, and let
Sn+1 be the transform under (4.1) of n + 1 distinct points equally
spaced on \ w | = 1. Then

(4.4) M

This is consistent with Theorem 4.1, because the sequence {Sn+1} in
Theorem 4.2 is equidistributed and the integral in (4.4) would be zero
if / were analytic on D.

To prove the theorem we use a generalization of (4.2),

(4.5) d.= 1 (ί + ί
ωn+1(t)

which is easily established by the calculus of residues. Here CRf R>1,
is a level curve of (4.1) and C" is a suitably chosen rectifiable curve
lying in D. The curves CR and C are chosen so that / is analytic on
the closed annular region bounded by CB and C". Integration on C is
in the opposite sense to that on GR.

The appraisal given by (4.3) is valid for the first integral in (4.5),
and it shows that this integral vanishes in the limit. The following
result of the author [2] is available for the second integral: From the
hypotheses of Theorem 4.2 on C and Sn+ί it follows that

uniformly for z on any closed subset of D. This implies that

a)n+1(t)

o'n^oo o)n+1(t)

dt = — ( fit) dt
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which completes the proof.
Generalizations of the above theorems to the case in which D is

replaced by a finite number of mutually exterior Jordan regions can be
developed by the methods to be found in Walsh's book [9, Chap. VII].

The results from which the above two theorems are derived were
originally established in studying the convergence of sequences of poly-
nomials found by interpolation to the function / on C. Let Ln+1(z) =
Ln+1(f; z I Sn+1) be the (unique) polynomial in z of degree at most n
which is determined by the condition that it shall coincide with f(z) at
each of the points Sn+1, assumed to be distinct. Then from the standard
formula

Ln+1(a) = a W / < >
*=i ω'n+1(znk)(a - znk)

it is seen by comparison with (1.1) that

(4.6) Ln+1 (g;a\ Sn+1) = ωn+1(a)dn(f\ znl, , zn>n+ι)

where f(z) = g{z)\{a — z). The following result of the author [2], [3] is
relevant: Let the curve C be such that χr{w) is nonvanishing and of
bounded variation for \ w | = 1. Let g be bounded and integrable in
the sense of Riemann on C. Let the points Snil be the transforms un-
der (4.1) of distinct points equally spaced on the unit circle. Then

lim Ln+1(g; a\S.) = - U / ^ - dt
rc->«> 2πι Jot — a

uniformly for a on any closed subset of D.
We now write (4.6) in the form

(4.7) c^dn = Γ - - ^ - r - l [ - Ln+1(g; a \ Sn+1)] .
L ωn+1(a) J

If a is a fixed point of D and / is bounded and Riemann integrable on
C, then so is g and conversely. We recall that — ωnH(a)lcn+1 tends to
unity at each point of D as n becomes infinite. It follows from these
facts that the limiting value of (4.7) is

lim ^ 4 = =1\ Jί*Ldί =_L( f(t)dt .

We summarize formally:

THEOREM 4.3. If the points Sn+1 are transforms under (4.1) of
distinct points equally spaced on the unit circle, and if C is such that
χ' is nonvanishing and of bounded variation for \ w \ = 1, and if f is
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bounded and ίntegrable in the sense of Riemann on C, then

eZ^-U f(t)dt.
n->o° 2πιio
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DIMENSIONAL INVERTIBILITY

P. H. DOYLE AND J. G. HOCKING

We report here upon another aspect of our continuing investiga-
tion of invertibility (see [5, 6]) and its applications in the theory of
manifolds.

All spaces considered here are separable and metric.
A separable metric space X will be said to be k-invertible, 0 ^ k ^

dim X, if for each nonempty open set U and each compact proper
subset C of dimension ^k, there is a homeomorphism h of X onto
itself such that h(C) lies in U. Then we say that X is strongly k-
ίnvertible if for each nonempty open set U and each closed proper
subset C of dimension rgfc, there is a homeomorphism h of X onto
itself such that h(C) lies in U.

Clearly, "strongly /c-invertible " implies " /c-invertible" and the
two properties coincide in compact spaces. If dim X — n, then "in-
vertible " and " strongly %-invertible " are equivalent but, for instance,
En is w-invertible and not invertible. We remark that fc-invertibility
is a strong form of near-homogeneity and says that compact fc-dimen-
sional subsets are "small under homeomorphisms." In the case of
an w-manifold, fc-invertibility is equivalent to the condition that eve-
ry compact set of dimension k lie in an open w-cell.

We first collect some results on O-invertible spaces, most of these
results being simple generalizations of theorems to be found in [5].
The first of these requires no proof here.

THEOREM 1. The orbit of any point in a O-invertible space is
dense in the space.

THEOREM 2. Each orbit in a O-invertible space is itself O-in-
vertible.

Proof. Let 0 be the orbit of any point in a O-invertible space
X. Let U be an open subset of 0 and C be a compact O-dimensional
proper subset of 0. Then there is an open set V in X such that
V Π 0 = U and, by O-invertibility, there is a space homeomorphism
h such that h(C) lies in V. But by definition of 0 as an orbit, h(C)
also lies in 0, hence h(C) lies in V Π 0 = U.

COROLLARY. Each O-invertible space is a union of disjoint, dense
homogeneous, O-invertible subspaces.
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THEOREM 3. If X is O-invertible and contains a nondegenerate
connected open set, then X is connected.

Proof. If U is a nondegenerate open connected set in X, let p
be any point in U.

For each point x in X, there is a space homeomorphism hx such
that hx(x U p) = hx(x) U hx(p) lies in U. Thus X is a union U h~\ U)
of connected sets, each containing the point p.

COROLLARY. If X is O-invertible and is locally connected at any
point, then X is connected or X is the 0-sphere.

THEOREM 4. If X is O-invertible and is locally Euclidean at any
point, then X is a manifold.

Proof. If X contains an open cell U as an open set, then X is
connected by Theorem 3 and, as in the proof of Theorem 3, h~\U)
is an open cell neighborhood of the point x for each point x in X.

THEOREM 5. If X is strongly O-invertible and contains an open
set with compact closure, then X is compact.

Proof. Let U be an open set in X with compact closure U.
Given any infinite set A in X such that A has no limit point, the
set A contains an infinite sequence {an} having no limit point in X.
But then the sequence {an} can be carried into U by a space homeomor-
phism h in view of strong O-invertibility. In U, the sequence {h(an)}
has a limit point. This contradiction shows that X is compact.

COROLLARY. A locally compact, strongly O-invertible space is
compact.

Every 2-manifold is O-invertible and every compact 2-manifold is
strongly O-invertible because any compact O-dimensional set in a 2-
manifold lies in an arc in the manifold. In higher dimensions, howe-
ver, O-invertibility has more force. The following result is an inte-
resting characterization of the 3-sphere.

THEOREM 6. A strongly O-invertible 3-manifold is S3.

Proof. We employ the characterization of R. H. Bing [1] and
show that every polygonal simple closed curve in such a 3-manifold
lies in an open 3-cell. Let M3 be a strongly O-invertible 3-manifold



DIMENSIONAL INVERTIBILITY 1237

and let J be a polygonal simple closed curve in M\ A sufficiently
thin tubular neighborhood of J may be chosen to be a polyhedral
solid torus T in M\ Since every longitudinal simple closed curve in
T is isotopic to J, if we can show that there is such a curve which
lies in an open 3-cell, the proof will be complete.

Using the solid torus T as the Oth stage, we construct a "neck-
lace of Antoine " N in M*. By the assumption of O-invertibility, the
compact 0-dimensional set N lies in an open 3-cell in M3. Hence
there is a standard decomposition M3 — P 3 (J C, where P 3 is an open
3-cell and C is a nonseparating continuum of dimension 5̂ 2 (see [7]),
such that JV Π C is empty. Since N and C are compact, there is a
positive distance between N and C. Thus there is some stage, say
the fcth, in the construction of N such that the residual set C fails
to meet each solid torus in the fcth stage.

Now we add a 2-disk spanning the hole in each solid torus in
the kth stage of the construction of N. This results in a connected
set consisting of alternately " orthogonal" disks with disjoint solid
toroidal rims in the interior of each solid torus in the (k — l)st stage.
Call these sets L^, ί = 1, 2, , n*~\ where n ^ 3. There are two
cases to consider: (1) In each of the sets L^~λ) we can find a simple
closed curve passing longitudinally around the hole in the correspond-
ing solid torus in the (k — l)st stage and not meeting the residual
set C or (2) for some set I/J

 (fc~1), C meets every longitudinal simple
closed curve on L/*-1*.

In case (2), the residual set C does not meet the solid toridal
rims of the disks in Li

(fc~1) but C must meet at least one of the
spanning disks in such a way that no arc from one solid torus of a
linking pair to the other can be drawn in the spanning disk without
meeting C. Thus C must separate some spanning disk D into com-
ponents, one of which meets the solid torus spanned by D and ano-
ther of which meets one of the solid tori linked with that spanned
by D. This is impossible. For, in such a case, any longitudinal sim-
ple closed curve in the linking solid torus would be linked with C
while lying in the complement of C which contradicts the assumption
that M3 - C = P 3 is an open 3-cell.

Case (1) reduces to the following situation: Each solid torus in
the (k — l)st stage of the construction of the necklace JV contains
a longitudinal simple closed curve lying in the open 3-cell P 3 and
these curves are linked just as are the solid tori in the (k — l)st
stage. We can now replace the solid tori in the (k — l)st stage by
thinner ones where necessary so that the entire (k — l)st stage lies
in the open 3-cell P3. The spanning disks are now added to these
tori to obtain the sets Li{k~2), i = 1, 2, •••, wfc~2, and the argument
above can be repeated. The finite regression is now obvious. The



1238 P. H. DOYLE AND J. G. HOCKING

contradiction in case (2) at each step forces us back to the first
stage in the construction of the necklace JV. But then the same
argument produces a longitudinal simple closed curve Jr in the
original solid torus T such that J' Γ\ C is empty. By our remark
above J and J' are isotopic and since Jr lies in an open 3-cell, so
does J.

COROLLARY. Every polygonal simple closed curve in a 0-inver-
tible 3-manifold lies in an open 3-cell.

Proof. The argument for Theorem 6 goes through in this case,
too, because the residual set C is closed and there is still a positive
distance between C and a necklace JV in the complement of C.

Imposing a natural restriction upon the manifold permits us to
generalize, not Theorem 6, but its corollary.

THEOREM 7. In a O-invertible, combinatorial n-manifold, every
polygonal simple closed curve lies in an open n-cell. (Hence such
manifords are simply connected.)

Proof. Let Mn be a O-invertible, combinatorial ^-manifold and
let J be a polygonal simple closed curve in Mn. In the combinatorial
^-manifold, a sufficiently thin tubular neighborhood of J will be a
polyhedral solid w-torus T (a homeomorph of the product of an (n — 1)
disk and the unit circle). In the interior of T we construct a Cantor
set JV by the method of Blankenship [2]. Then, with the appropriate
changes in dimension, the remainder of the proof is identical to that
of Theorem 6.

A natural conjecture at this point concerns fc-invertibility and
the vanishing of the homotopy group πk+1(Mn). Such a conjecture is
fruitless, however, in view of the following result.

THEOREM 8. Let An+1 = Sn x E\ n^ 2. Then An+1 is an (n - 1)-
invertible manifold (and clearly πn(An+1) is not trivial).

Proof. Assume that An+1 is imbedded in En+1 as the region be-
tween two concentric spheres. Then An+1 is a closed annulus and
there is a map h from An+1 onto Sn+1 such that h | An+1 is a home-
omorphism and h carries the two components of An+1 — An+1 into a
pair of points a and b.

If JV is any compact (n — l)-dimensional set in An+1, then Ẑ (JV)
is a compact (n — l)-dimensional set in Sn+1 — (a U b). Since Ẑ (JV)
does not separate Sn+1, there is a polygonal arc J in Sn+1 — h(N)
from a to b and Sn+1 - J is an (n + l)-cell. Whence /^-1(Sn+1 - J)
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is an (n + l)-cell in An+1 containing N and therefore An+1 is (n — 1)-
invertible.

The next result is a slight generalization of our characterization
theorem [4].

THEOREM 9. The only strongly (n — lyinvertible n-manifold is
S\

Proof. If Mn is strongly (n — l)-invertible, then Mn is compact.
Choose any standard decomposition Mn = Pn (J C Since C is a con-
tinuum of dimension ^n — 1 and Pn is an open w-cell, there is a
space homeomorphism carrying C into P \ Then Corollary 1 of Theo-
rem 2 in [7] applies to show that Mn is an ^-sphere.

THEOREM 10. The only (n — l)-invertible, noncompact n-mani-
fold is En.

Proof. Let Mn be an (n — l)-invertible, noncompact w-manifold.

Since Mn is locally compact, it is a union U A3 where we may cho-

ose A1 to be a closed ^-cell and where A5 is compact and lies in the
interior of Aj+1 for each j (Theorem 2.60 of [8]). Let U be an open
w-cell in Aλ with bi-collored boundary. Each set BdAά has dimension
^n — 1 and hence there is a homeomorphism hό of Mn onto itself
such that hjiBdAj) lies in U.

We claim that h3{A3) also lies in U. For BdA3 separates Mn

and if hn(An) does not lie in U, then hn{Mn — An) must lie in U.
But then hj(Mn-Aj) - hj(Mn~Aj) is compact whence M" = (Mn - A3) U A3

is the union of two compact sets and is compact. This contradiction
proves that h3{A3) lies in U.

From here we see that {hj^U)} is a sequence of open w-cells.
We may select a monotone increasing subsequence inductively (or else
all A3 lie in some hj^U) which completes the proof). Therefore Mn

is the union of a monotone increasing sequence of %-cells and, in
view of [3], Mn = En.

To finish this report, we collect some immediate consequences of
the Poincare duality and the Hurewicz theorem.

THEOREM 11. Let Mn be a compact, triangulated, orientable, k-
invertible n-mainfold. Then the homotopy groups πp(Mn) are trivial
for 1 g p ^ k.

COROLLARY 1. If Mn is as in Theorem 11, then Mn has trivial
integral homology groups in dimensions 1, 2, , k and n — k, ,
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n- 1.

COROLLARY 2. If Mn is as in Theorem 11, and if k^ [nj2] {the
largest integer in n\2), then Mn is a homotopy sphere.

Recent results of Stallings [9] and Zeeman [10] provide immediate
proofs of the following result.

THEOREM 12. A strongly [n/2]-invertible polyhedral n-manifold,
n Ξg 5, is an n-sphere.
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BLOCK DIAGONALLY DOMINANT MATRICES AND

GENERALIZATIONS OF THE GERSCHGORIN

CIRCLE THEOREM

DAVID G. FEINGOLD AND RICHARD S. VARGA

l Introduction, The main purpose of this paper is to give gener-
alizations of the well known theorem of Gerschgorin on inclusion or
exclusion regions for the eigenvalues of an arbitrary square matrix A.
Basically, such exclusion regions arise naturally from results which
establish the nonsingularity of A. For example, if A = D + C where
D is a nonsingular diagonal matrix, then Householder [7] shows that
II-D^CH < 1 in some matrix norm is sufficient to conclude that A is
nonsingular. Hence, the set of all complex numbers z for which

\\(zI-D)-*C\\<l

evidently contains no eigenvalues of A. In a like manner, Fiedler [4]
obtains exclusion regions for the eigenvalues of A by establishing the
nonsingularity of A through comparisons with M-matrices.1 Our approach,
though not fundamentally different, establishes the nonsingularity of the
matrix A by the generalization of the simple concept of a diagonally
dominant matrix. But one of our major results (§3) is that these new
exclusion regions can give significant improvements over the usual
Gerschgorin circles in providing bounds for the eigenvalues of A.

2. Block diagonally dominant matrices* Let A be any n x n matrix
with complex entries, which is partitioned in the following manner:

Aχι2 * AltN

(2.1) A =

where the diagonal submatrices AiΛ are square of order nif 1 ̂  i ^ N.
For reasons to appear in § 3, the particular choice N = 1 of

(2.Γ) A - [A1Λ]

will be useful. Viewing the square matrix AiΛ as a linear transformation
of the ̂ -dimensional vector subspace Ω{ into itself, we associate with
this subspace the vector norm ||jc||flt, i.e., if JC and y are elements of

Received April 11, 1962.
1 For the definition of an M-matrix, see §4 or [8].
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Ωi9 then

(Ί|Λ;||fl< > 0 unless x = O

(2.2) j l l α j c IU t = \a\ \\x\\oi for any scalar a

The point here is that we can associate different vector norms with
different subspaces Ωi% Now, similarly considering the rectangular matrix
Aitj for any 1 g i, j g N as a linear transformation from Ω3 to 42;, the
norm ||A i f i | | is defined as usual by

(2.3) 11̂ 11= sup H^lk
\x\

Note that if the partitioning in (2.1) is such that all the matrices Aitj

are l x l matrices and ||jc||Oί = \x\, then the norms ||Ai><7 || are just the
moduli of the single entries of these matrices. As no confusion arises,
we shall drop the subscripts on the different vector norms.2

DEFINITION 1. Let the n x n matrix A be partitioned as in (2.1).
If the diagonal submatrices Ajtj are nonsingular, and if

(2.4) ( \ \ A j ) \ \ ) - ^ Σ \ \ A j t k \ \ f o r a l l l ^ j ^ N ,
k = l

then A is block diagonally dominant, relative to the partitioning (2.1).
If strict inequality in (2.4) is valid for all 1 S j ^ N, then A is block
strictly diagonally dominant, relative to the partitioning of (2.1).

It is useful to point out that the quantity appearing on the lefthand
side of (2.4) can also be characterized form (2.3) by

(2.5) (IIAjill)-^ inf
j \\X\\

whenever Ajtj is nonsingular. With (2.5), we can then define (|| A ^ H ) " 1

by continuity to be zero whenever Ajtj is singular.
In the special case t h a t all the matrices Aitj are l x l matrices and

11 $ | | = I a? I, then (2.4) can be wr i t ten as

(2.4') I Au I ^ Σ I AiΛ I for all 1 g j £ N,
k=l

kΦi

which is the usual definition of diagonal dominance.
As an example of a matrix which is block strictly diagonally dominant,

consider the case n — 4, N = 2 of
2 L a t e r , w e shal l u s e t h e n o t a t i o n | | x | | i , to d e n o t e t h e i p - n o r m | | J C | | P = ( Σ * \xi\p)ίlp.
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(2.6) A =

0

2/3

0

0

1

0

1/3

0

0

1/3

0

1

0

0

2/3

0

w h e r e w e c h o o s e t h e v e c t o r n o r m s | | ί » | U Ξ m a x , \Xj\. I n t h i s c a s e ,

(IIAi ϊ l l ) - 1 - ( I I A - I I ) - 1 = * , a n d \\Alι2\\ = | | Λ . i l l = *

Obviously, A is not diagonally dominant in the sense of (2.4').

DEFINITION 2. The n x n partitioned matrix A of (2.1) is block
irreducible if the N x N matrix B = (bu = HΛJII), 1 ^ i, j ^ N, is
irreducible, i.e., the directed graph of B is strongly connected.3

THEOREM 1. If the partitioned matrix A of (2.1) is block strictly
diagonally dominant, or if A is block irreducible and block diagonally
dominant with inequality holding in (2.4) for at least one j , then A
is nonsingular.

Proof. The extension to the case where A is block irreducible and
block diagonally dominant with strict inequality for at least one j is
easy, so we consider for simplicity only the case when A is block strictly
diagonally dominant. Suppose that A is singular, i.e., there exists a
nonzero vector W with

(2.7) = O;

here, we have partitioned W conf ormally with respect to the partitioning
of (2.1). But this is equivalent to

(2.8)

Since W is a nonzero vector, normalize W so that || Wj\\ ^ 1 for all 1 ^
j ^ N, and assume that equality is valid for some r, i.e., || Wr\\ = 1
where 1 ^ r ^ N. Thus, from (2.3)

3 Equivalently, there exists no N x N permutation matrix P such that PBPT = [£§],
where C and E are square nonvoid submatrices. For strongly connected directed graphs,
see for example [6],
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(2.8') \\Ar,rwr\\ = IIΣ ArJWA\ £ tllAA -1| Wό\\ ^ Σ IIA .,11.

3=1 3=1 3=1

But as Ar>r is nonsingular by hypothesis, then p u t t i n g Ar>rWr — Zr,

\\ Λ W II — H A . r ^ ll — ll^rll > (\\ Λ-l ||\-1
\\S±r>r VVr\\ ^ ^ W^-r.r \\) >

\\Wr\\ 11^-^11
using (2.3). This combined with (2.8') gives a contradiction to the
assumption (2.4) that A is block strictly diagonally dominant, which
completes the proof for the block strictly diagonally dominant case.

Actually, we can regard Theorem 1 as the block analogue of the
well known Hadamard theorem on determinants, since Theorem 1 reduces
to this result in the case that all the matrices Aίtj of (2.1) are l x l
matrices and | | $ | | = \x\. It should be pointed out that the result of
Theorem 1 itself is a special case of a more general result by Ostrowski
[10, Theorem 3, p. 185], and Fiedler [4].

As stated in the introduction, the above theorem leads naturally to
a block analogue of the Gerschgorin Circle Theorem. If / is the n x n
identity matrix which is partitioned as in (2.1), and Z, is the nά x n5

identity matrix, suppose that
(2.9) (\\(AU - Xlj)-1]])-1 > Σ II4*.*II for all 1 ^ j £ N.

Thus, we have from Theorem 1 that A — λ l is nonsingular. Hence, if
λ is an eigenvalue of A, then A — XI cannot be block strictly diagonally
dominant, which gives us

THEOREM 2. For the partitioned matrix A of (2.1), each eigenvalue
X of A satisfies

(2.10) (\\(Ajtj - λ/,-)"1!!)"1 ^ Σ ll^i.JI
k=i

for at least one j , 1 fg j ^ N.

We again remark that if the partitioning of (2.1) is such that all
the diagonal submatrices are l x l matrices and \\x\\ == \x\, then Theorem 2
reduces to the well known Gerschgorin Circle Theorem.

3 Inclusion regions for eigenvalues. In Theorem 2, we saw that
each eigenvalue λ of an arbitrary n x n complex matrix A necessarily
satisfied (2.10) for at least one j , 1 ^ j ^ N.

DEFINITION 3. For the partitioned n x n matrix A of (2.1), let the
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Gerschgorin set Gj be the set of all complex numbers z such that

(3.1) (|| (A^ - zIΠI)- 1 ^ Σ ||Ailfc|| , l^j^N.
k^j

Thus, from (2.5), we conclude that the Gerschgorin set G3- always
contains the eigenvalues of Ajtjy independent to the magnitude of the
right side of (3.1) and independent of the vector norms used. Next, it
is clear that each Gerschgorin set Gj is closed and bounded. Hence, so
is their union

(3.2) G = U Gj .
3=1

Thus, we can speak of the boundary of G, as well as the boundary of
each Gj. By Theorem 2, all the eigenvalues of A lie in G. Can any
eigenvalue λ of A lie on the boundary of G? This can be answered
trivially for the particular partitioning of (2.1'). In this case, the right-
hand side of (3.1) is vacuously zero, and from (3.1), we see that the set
G is a finite point set consisting only of the eigenvalues of A. In this
case, Theorem 2 gives exact information about the eigenvalues of A.

It is interesting that Theorem 2 can be strengthened by the assumption
that A is block irreducible, which is the analogue of a well known
result of Taussky [11].

THEOREM 3. Let the partitioned matrix A of (2.1) be block irreducible,
and let λ be an eigenvalue of A. If X is a boundary point of G, then
it is a boundary point of each set G3 , 1 ^ j ^ N.

Proof. Since λ is an eigenvalue of A, then ΣJ=i Ai,3 Wj = λW<, and
if || T^ll ^ || Wr\\ = 1, then as before

(3.3) (\\(Ar,r - λ/Λ-ii)-1 rg Σ il^UI II w,\\ s Σ WAΛ .
3=1 3=1

But as λ is a boundary point of G, equality must hold throughout (3.3),
showing that λ is a boundary point of Gr. Moreover, if || AriJ || ψ 0, then
|| Wj || = 1, and we can repeat the argument with r replaced by j . In
this way, we conclude that λ is a boundary point of Gj9 From the
irreducibility of A, the argument can be extended to every index j ,
1 ^ j ^ N, which completes the proof. A similar argument can be applied
to complete the proof of Theorem 1.

Another familiar result of Gerschgorin can also be generalized. The
proof, depending on a continuity argument, follows that given in [13, p. 287].

THEOREM 4. If the union H= \J?=iGPj, l^Pj^ N, of m Gerschgorin
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sets is disjoint from the remaining N — m Gerschgorin sets for the
partitioned matrix A of (2.1), then H contains precisely Σ?=iWPj

eigenvalues of A.

The previous example of the matrix of (2.1') indicated that sharper
inclusion regions for the eigenvalues of a matrix A may be obtained
from the generalized form of Gerschgorin's Theorem 2. To give another
illustration, consider the partitioned matrix

(3.4) A =

4

- 2

-^

0

2

4

0

- 1

0

4

2

0

- 1

2

4

2,2

Employing now the vector norm | |JC| | 2 = Qj* I χ% P)1/2> it is apparent
that || A1>2|| = || A2 i l | | = 1. On the other hand, direct computation shows
that

{\\{AiΛ - sJQ-ΊI-1 = min{|6 - z\, |2 - z\} , i = 1, 2 .

By definition, the set Gλ then consists of the points z for which

| 6 - z\ ^ 1 , \2-z\ ^ 1 ,

so that Gx is itself the union of two disjoint circles. The same is true for G2,
since G2 = Glt as shown in the figure below. The usual Gerschgorin circles
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for the matrix A of (3.4) are all given by the single circle |4 — λ| ^ 3,
which is a circle of radius 3, with center at 2 = 4, as shown above.
From this figure, we conclude that the block Gerschgorin result can give
significant improvements over the usual Gerschgorin circles in providing
bounds for eigenvalues. For the matrix A of (3.4), its eigenvalues are

ΛJ! = 1 , λ>2 — o , X 3 = 5 , λ/4 = 7 .

Note, again from the figure above, that Theorem 3 applies in this case.
At this point, we remark that the previous example was such that

each Gerschgorin set G3 consisted of the union of circles. This is a
special case of

THEOREM 5. Let the partitioned matrix A of (2.1) be such that its
diagonal submatrices A3ij are all normal. If the Euclidean vector norms
|| JC||2 are used for each subspace Ω3, 1 ̂  j 5Ξ N, then each Gerschgorin
set Gj is the union of n3 circles.

Proof. Let the eigenvalues of A3>3 be σl9 l ^ i ^ n3. Since A3t3 is
normal, we can write (||(A, ( i — zI^W)"1 = min^ \σt — z\, which, combined
with Definition 3, completes the proof.

It is quite simple to obtain the block analogues of well known results
on inclusion regions for eigenvalues of n x n complex matrices. As a
first example, the result of A. Brauer [2] on ovals of Cassini easily
carries over.

THEOREM 6. Let the n x n complex matrix A be partitioned as in
(2.1). Then, all the eigenvalues of A lie in the union of the [N(N — l)]/2
point sets Ci>3 defined by

(3.5) (IK4.* - sϋΠI IKΛ.i - si,)-1!!)"1 ̂  [ΣII^.JlΊ fΣ
2V

ι=i

where 1 ̂  i, j ^ N and i Φ j . Moreover, if A is block irreducible, and
λ is an eigenvalue of A not in the interior of \Ji^3Ciι3 , then λ is a
boundary point of each of the point sets Cί>3.

Other obvious remarks can be made. Clearly, replacing A by Aτ

leaves the eigenvalues of A invariant. Thus, rows sums can be replaced by
column sums in the definition (2.4) of diagonal dominance, and many
results using both row and column sums admit easy generalizations. As
an illustration, we include the following known [4] generalization of a
result by Ostrowski [9].

THEOREM. 7. Let the n x n complex matrix A be partitioned as in,
(2.1), and define,
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(3.6) Rs = ί,\\ΛiΛ\\', C^S| |A,. | | , lί*3£N.
k=l k=l

Then, for any a with 0 ^ α ^ 1, each eigenvalue X of A satisfies

(3.7) (IKAy.y-λJ^ID-^Λ Q -

for at least one j, 1 g j ^ N.
Also, the important result of Fan and Hoffman [3] carries over with

ease.

THEOREM 8. Let the n x n complex matrix A be partitioned as in
(2.1). Let p > 1, and 1/p + 1/(7 = 1. If a > 0 satisfies

(3.8) - ί (Σ

(whenever 0/0 occurs on the left-hand side, we agree to put 0/0 = 0),
then every eigenvalue λ of A satisfies at least one of the following
relations:

(3.9) (\\(AU - λ/,)-1!!)-1 <£ ait
US

We wish to emphasize that, unlike the cases previously treated where
all the matrices Aitj of (2.1) are l x l matrices, these new inclusion
regions now depend on the vector norms used. It seems reasonable, at
least theoretically, to minimize these inclusion regions by considering
all possible vector norms to produce optimum results. Similarly, there
is a great deal of flexibility in the manner in which the matrix A is
partitioned, and this perhaps can be used to advantage.

4* Another generalization* Another result, due again to Taussky
[12], states that if an n x n matrix A — (aίtj) is strictly diagonally
dominant in the usual sense of (2.4') with positive real diagonal entries
di,i 1 ̂  i ίk n, then the eigenvalues λ5- of A satisfy

(4.1) ReXj > 0 , l ^ j ^ n .

Based on our previous results, we now give a generalization of this result
which depends upon the use of absolute norms [l]. By this, we mean
the following. First, if x is a column vector with complex components
xif let |JC| denote the vector with components | ^ | . If

(4.2) 11*11 = 111*111

for all vectors Λ;, then the norm is an absolute norm.4 This is equivalent
4 Clearly, the ίp-norms of footnote 2 are absolute norms.
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[1] to the property t h a t if \y\ ^ | x | , i.e., each component of \y\ — | x |

is a nonnegative real number, then

( 4 . 2 ' ) I l i r l l ^ 11*

Next, if B = (bitj) is a real m x m matrix with bitj ^ 0 for all i Φ j,
and if B is nonsingular with B~λ = (ritj) such that ritj ^ 0 for all 1 ^ i,
0 ^ m, then B is said to be an M-matrix [8],

THEOREM 9. Let the n x n complex matrix A be partitioned as in
(2.1), and let A be block strictly diagonally dominant (or block irreducible
and block diagonally dominant with strict inequality in (2.4) for at
least one j). Further, assume that each submatrix Ajtj is an M-matrix,
1 ^ 3 ^ N, and the vector norms for each subspace Ωό are absolute norms.
If X is any eigenvalue of A, then

(4.3) ReX > 0 .

Proof. For simplicity, we shall consider again only the case where
A is block strictly diagonally dominant. Let z be any complex number
with Rez ^ 0. If Aj] = (rA>ι), and (Au - z!3)~λ = (sktl(z)), it follows [8]
from the assumption that Ajtj is an M-matrix that

(4.4) \skM\^n,ι, l^kj^nj.

Next, with (4.4) and the assumption of absolute norms, it follows from
(4.2) and (4.2') that

\\(AU - zI^xU ^ \\Aj]-\x\

11*11 "" 111*111
so that from (2.3),

In other words, for any z with Rez g 0, then the matrix A — zl continues
to be block strictly diagonally dominant, and hence nonsingular. Thus,
if λ is an eigenvalue of A, then ReX > 0, which completes the proof.
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A GENERALIZED SOLUTION OF THE BOUNDARY

VALUE PROBLEM FOR y" - f(χ, y, y').

LEONARD FOUNTAIN AND LLOYD JACKSON

1. Introduction* In a paper in 1922 Perron [16] presented a new
method of attacking the boundary value problem for Laplace's equation.
This method consisted of employing the existence of solutions of the
boundary value problem for small circles and the existence in the large
of subharmonic and superharmonic functions to demonstrate the existence
of a solution of the boundary value problem in the large. Since then
Perron's methods have been generalized and applied to more general
elliptic partial differential equations, for example, Tautz [17], Becken-
bach and Jackson [2], Inoue [11], Jackson [12].

Subharmonic functions bear the same relationship to harmonic
functions that convex functions bear to solutions of y"(x) = 0. In a
paper in 1937 Beckenbach [3] introduced the idea of generalized convex
functions. Since then a number of other mathematicians, for example,
Bonsall [4], Green [7, 8], and Peixoto [15], have studied subf unctions
with respect to solutions of second order ordinary differential equations.
These subf unctions are special cases of Beckenbach's generalized convex
functions and, if they have sufficient smoothness, are solutions of second
order differential inequalities. Solutions of second order differential
inequalities appear in many papers concerned with the existence of a
solution of the boundary value problem for the equation

( l ) y"=f(χ,y,v'),

for example, Nagumo [14], Babkin [1]. However, the Perron method
of systematically exploiting the properties of subfunctions and super-
functions in studying the boundary value problem does not appear to
have been applied to equation (1). This paper consists of such a study.

In § 2 we list some properties of solutions of (1) most of which are
known. In § 3 we define subfunctions and superfunctions and give some
of the properties of these functions that will be needed in the subse-
quent sections. Most of these properties are analogues of classical
properties of convex functions as given for example in [9; Chapt. Ill],
In §4 the Perron method is used to obtain a "generalized" solution of
the boundary value problem. Finally, in § 5 some conditions are given
which are sufficient to guarantee that the "generalized" solution of §4
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supported by the United States Air Force through the Air Force Office of Scientific Research
of the Air Research and Development Command, under Contract No. AF49 (638)-506. Repro-
duction in whole or in part is permitted for any purpose of the United States Government.

1251



1252 LEONARD FOUNTAIN AND LLOYD JACKSON

is the solution of the boundary value problem in the usual sense.

2. Some basic lemmas* In this section we shall list the basic
results concerning equation (1) which will be required in the subsequent
sections.

Let R be the region in three dimensional Euclidean space defined
by

R = [ ( x , y , z ) : a ^ x ^ b , \ y \ + \ z \ < + < * > ]

where a and b are finite. We shall assume throughout this paper that
f(x, y, z) is continuous on R. Various other assumptions will be made
from time to time concerning f(x, y, z). The first of these are as follows:

ΛL" f{x, y, z) is a nondecreasing function of y for each fixed x
and z.

A2: f(x, y, z) satisfies a Lipschitz condition with respect to y and
z on each compact subset of R.

However, unless we specifically state these or other assumptions we
will be assuming only the continuity of f(x, y, z).

By a solution of the boundary value problem,

y" = /(a, y, v')

v(χi) = Vi, y(χ2) = V2

where a ^ xx < x2 ^ 6, we shall mean a function y(x) which is of class
C(2) and is a solution of (1) on (xlf x2), which is continuous on [xl9 x2],
and which assumes the given boundary values at xx and x2.

We shall also be interested in the special case of equation (1) when
y' is not present, that is, equation

(2) V"=f(x,V).

We shall always assume f(x, y) is continuous on

12* = [(x,y):a^x^b,\y\ < +™] .

LEMMA 1. Given any M > 0 and N > 0 there is a δ(M, N) > 0
such that the boundary value problem

y"=f(χ,y,y')

has a solution of class C(2) on [xlf x2] for any points (xlf yλ) and (x29 y2)
with xl9x2e[a,b],\x1—x2\^δ, \yλ\^M, \y2\^Mand \(y1—y2)l(x1—x2)\^N.

LEMMA 2. Given any M > 0 there is a δ(M) > 0 such that the
boundary value problem



A GENERALIZED SOLUTION 1253

α solution of class C{2) on [xlf x2] for any points (xl9 y^) and (x2, y2)
with xu x2e [α, 6], | xx — x2| ^ δ, \y±| ^ M, and \y2\ ^ M.

LEMMA 3. Let M > 0, N > 0 be fixed and let δ(M, N) be as in
Lemma 1. Then given any ε > 0 there is an η, 0 < ΎJ ^ <5(M, iV), swcfc
ίftαί, / o r α^i/ points (xlf y±) and (α?a, τ/2) wiίft a?i, ^ 2 € [α, b], \x1 — x2\ ^7]f

\Vi\ ^ M, \y3\ ^ M, and | (y± — i/a)/(a?i — x2) \ ^ AT, ί/?,βre is a solution

y(x) of (1) of class C(2) ow [xu x2] with y(xλ) = ^ 7/(αj2) = τ/2, α?ιcί with

— ω(aj) I ^ ε

I y\x) - ωf(aj) I ^ ε

on [xu x2] where ω(x) is the linear function with ω(xx) = y1 and ω(x2) =
ί/2. An analogous statement with N and \ {yx — y2)l{x1 — x2) \ S N omitted
is valid with respect to solutions of (2).

Proof. Lemmas 1 and 2 can be proved by using the Schauder-
Tychonoff fixed point theorem [6; p. 456]. Let

(x

— t
χ2

χ2

){x2 —

xx

X)

t)
on xx S: x s, £ ^ x2 .

Let I? be the Banach space C(1)[&i, &3] with norm \\y\\ = max\y(x)\ +
max I y\x) |. For a function which satisfies a Holder condition with
exponent 0 < a < 1 on [α ,̂ #2] let

't'Λlyj = sup — — . rl9 r21 ιxlf x2\, rx ψ- r2 .

Let K be the set of all functions u(x) in B which are such that u'(x)
satisfies a Holder condition with exponent a on [xl9 x2], u{x^) = %(a?2) — 0,
and ll^ll + hju') ^ max [M, N], Then K is a compact convex subset
of B. It can be shown that there is a δ(M, N) > 0 such that the
mapping F(u) = w defined by

w(#) = \ G(x, ί)/(ί, te(ί) + ω(t), u\t) + ω\t))dt
jxl

is a continuous mapping of K into itself provided | xx — x2 \ ^ δ(M, N),

\Vi\ ^ Mf Iy21 ^ M, I (̂ /i — 2/2)/(#i ~ ^2) I = ^> a n d ω (^) is the linear
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function with a){x^) — y1 and o)(x2) = y2. If uo(x) is the fixed point of
the mapping, y(x) = uo(x) + ω(x) is a solution of the boundary value
problem. Lemma 3 is an immediate consequence of the boundedness of
f(t, u(t) + ω ( ί ) , u\t) + ω'(t)) for a^t^b, ueK, \ ω(t) | ^ M, a n d
I ω'(t) I g N.

LEMMA 4. // yo(x) is a solution of (1) of class C(2) on [xlf x2] c [α, b]
and if a < x2 < 6, £/̂ ew ίfeerβ is α <5 > 0 such that x2 + δ rg δ omcί α
solution y(x) of (1) o/ ciαss C(2) ow [α ,̂ $2 + έ] ^iίfe ί/(α;) Ξ ?/O(^) on [xly x2],
A similar statement applies at xλ in case a < xlΛ

Proof. This is an immediate consequence of well known results
[5; p. 15] concerning continuation of solutions.

LEMMA 5. If f(x, y, z) satisfies condition A2 and if yo(x) is a
solution of (1) of class C(2) on [xlf x2] c [a, b], then for all sufficiently
small I m \ there are solutions y(x) of (1) of class C(2) on [xlf x2] satisfying
y(®i) = 2/ofai), V'ψi) = V'o(%i) + m, and I y(x) - yo(x) \ ^ | m | e

2k^~9ύ on
[xlf x2] where k is a constant independent of m. A similar statement
applies if the change in slope is made at x2 instead of xλ.

Proof. This lemma is an immediate consequence of well known
results [5; p. 22] concerning the continuity of solutions with respect to
initial conditions.

3, Subfunctions and superfunctions In this section we define and
develop some of the properties of subfunctions and superfunctions with
respect to the solutions of an arbitrary but fixed equation (1). These
definitions and properties will of course apply also to equation (2),
however, Theorem 2 will apply only to equation (2).

We shall use a capital letter I to represent a subinterval of the
basic interval [α, 6], / may be open, closed, or half-open. / is the
closure of /, P the interior of /, and P the complement of I.

DEFINITION 1. A real valued function s defined on I is said to be
a subfunction on I in case s(x) ̂  y(x) on [xu x2] for any \xu x2] c / and
any solution y of (1) on [xl9 x2] with s(xx) ̂  y(xL) and s(x2) ̂  y(x2).

DEFINITION 2. A real valued function S defined on / is said to be
a super function on I in case S(x) ̂  y(x) on [xl9 x2] for any [xl9 x2] c /
and any solution y of (1) on [xu x2] with S(&i) ;> y{xλ) and S(x2) ^ y(x2).

We shall state our results in terms of subfunctions with obvious
analogous results, which we shall not bother to state, holding for super-
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functions. When we wish to refer to a result concerning superfunctions
we shall simply refer to the corresponding statement concerning sub-
functions.

THEOREM 1. If s is a subfunction on I, then the right-hand and
left-hand limits, s(xQ + 0) and s(x0 — 0), exist at every x0 e 1° and the
appropriate one-sided limits exist at the endpoints of I. These limits
may be infinite.

Proof. It will suffice to consider one case. Assume that s(x0 — 0)
does not exist at x0 £ P. Then there exist finite real numbers c and d
such that

lim inf s(x) £Ξ c < d ?g lim sup s(x)
x-+xQ- &-»x0-

We can pick two sequences {αn}~=1 c / and {bn}^λ c / with the following
properties:

(i) lim an = lim bn = xQ,

(ii) an < bn < an+1 for each n^l,

and

(iii) lim s(an) = lim sup s(x)

and

lim s(bn) = lim inf s(x).
x~>x0-

Let ε = {d — c)/4 and pick iVi > 0 such that

s(αΛ) > c? - ε ,

and

s(K)]< c + ε

for n ^ JVi.

By Lemmas 1, 2, and 3 there is an n0 ^ iN̂  such that the boundary
value problem

has a solution y(x) with | y(x) — (c + d)/2 | < ε on [bnQi bnQ+1], Then since
s is a subfunction,
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ΦnQ) <C + ε< t±— = y(bn) ,

and

s(KQ+1) < c + e < £ - ± — =>y(bnQ+1) ,

it follows that we must have s(αWo+1) ^ y(anQ+1). However,

s(anQ+1) > d- ε = ^ - ± — + ε > 3/(αno+1) .

From this contradiction we conclude that s(x0 — 0) exists.

COROLLARY 1. If s is a subfunction on 7, then s(x0) :g max [s(#0 + 0),
s(#0 — 0)] at every xQ e P.

Proof. If either s(x0 + 0) = + oo or s(xQ — 0) = + oo, the given
inequality obviously holds. If s(x0 + 0) < + oo and s(xQ — 0) < + oo, the
same type of argument as was used in proving the Theorem can be
employed to show that s(x0) > max [s(x0 + 0), s(x0 — 0)] is not possible.
Since s(x) has a finite real value at every point of 7, this shows that
we cannot have simultaneously s(xQ + 0) = — oo and s(#0 — 0) = — oo at
any x0 e P.

COROLLARY 2. If s is a bounded subfunction on 7, then s has at
most a countable number of discontinuities on 7.

Proof. This is a known consequence of the existence of onesided
limits everywhere on 7, for example, see [10; p. 300].

THEOREM 2. If s is bounded function on I and is a subfunction
with respect to the solutions of a differential equation (2), then s is
continuous on P.

Proof. By Theorem 1 s(xQ — 0) and s(x0 + 0) exist at every x0 e 7°
and s(x0) ̂  max [s(xQ + 0), s(x0 — 0)]. To be specific assume s(x0 — 0) ^
s(x0 + 0). First assume s(x0) < s(xQ — 0) and let | s(x) \ g M on 7. Then
by Lemma 2 for [xl9 x0] c 7 and | xλ — x01 ̂  δ(M) the boundary value
problem

y(xλ) = six,) , y(x0) = s(x0)

has a solution y(x). Then, since s(x) ̂  y(x) on [xu x0], s(xQ—0) ^ y(x0—0) =
y(χ0) — s(x0). Thus we have a contradiction and we conclude that s(xQ) =
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s(x0 - 0).
Now assume s(x0 — 0) — s(x0 + 0) = k > 0. By Lemma 3 there is

an η > 0 such that [x0 — η9 x0 + η\ c 7, )? ̂  <5(ΛO, and such that, for
any [xl9 x2] c 7 with | xx — x2 \ = η, the boundary value problem

V"=f(x,V)
y(x±) = sfo) , y(x2) = s(α2)

has a solution ?/(#; a?!, a?2) with

I y(x; xl9 x2) - ω(x; xu x2) | < fc/4

on [x ly α?2] where ω(x; xlf x2) is the linear function with ω(xλ) = s (^) and
ω(x2) = s(ίr2). Now take [xl9 x2] c I such t h a t | ^ — x2 \ = ^, ^ < a?0 < a?2,
I s(aj2) - s(α;0 + 0) | < A /4, and (2M/^) | £2 - a;01 < fc/4. Then, since
I ω'(α;; a?lf a?2) | ^ 2Λf/̂ , it follows t h a t

I ω(x0; xl9 x2) - s(x0 + 0) | < fc/2.

Consequently,

I y(χ0; χ» Xi) - s(x0 + 0) |

which means that

s(x0) = s(aj0 - 0)

This contradicts the fact that s is a subfunction and we conclude that
s is continuous on 7°.

We shall see a little later that Theorem 2 is not true for equation
(1) even if conditions Aλ and A2 are assumed in addition to the conti-
nuity of f(x9 y9 z).

For the following theorems the proofs are the same as the corre-
sponding theorems for convex functions.

THEOREM 3. If {sa: aeA} is any collection of subfunctions on I
bounded above at each point of 7, then s0 defined by

80(x) = sup sa(x)

is a subfunction on 7.

THEOREM 4. Let sx be a subfunction on I and s2 a subfunction on
[xu x2] c 7. Assume further that s2(Xi) ̂  s^Xi) for i = 1, 2 in case
Xi e 7°. Then s defined on I by

ίs^x) for xί[x19 x2]

(max [s^x), s2(x)] for x e [xl9 x2]
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is a subfunction on I.
For a function g and a point x0 at which g(x0 — 0) or g(x0 + 0)

exist we define

d~g(x0) = lim sup #W ~ 9\χo ——L

= lim inf 0)
X-*XQ- X — Xo

= lim sup —

d+g(x0) Ξ lim inf

X — Xo

- (K«. + 0)

THEOREM 5. If s is a bounded subfunction on la [α, 6] wίίΛ J =
[a?i, a?J, ίfcβ^ d~s(α?0) = d_s(α?0) / o r αZZ ^ < αj0 ̂  ^ 2 ^ticί d + s (^ 0 ) = d+s(xQ)

for all xx ^ xQ < OJ2.

Proof. It suffices to consider one case. Assume that ĉ  ̂  α50 < #2

and that d+s(x0) Φ d+s(xQ). Then there is a finite number c such that

d+s(tf0) < c < d+s(x0) .

There is a <5 > 0 such that [x0, xQ + δ] c [a?!, OJ2] and such that the initial
value problem

V"=f(p,V,V')
y(x0) = s(α?o + 0) , y'(x0) = c

has a solution 2/(cc) of class C(2) on [x0, xQ + δ]. It is clear that this
leads to a contradiction of the fact that s is a subfunction on /. We
conclude that d+s(x0) = eZ+s(#0).

COROLLARY. If s is a bounded subfunction on 7, £/&e% s Λαs a
finite derivative almost everywhere on I.

For a function g defined on I and x0 e 1° we will employ the notation:

) ^ lim sup
δ 2δ

Dg(x0) Ξ lim inf * * + g> "

THEOREM 6. If s is a subfunction of class C(1) o^ /, then Ds'(x) ^
J, 8(x), 8'(x)) on Γ.

Proof. Let x0e Γ and choose a δ0 > 0 such that [#0 — δ0, x0 + δo]al.
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Let I s(x) I ̂  M and | s'(x) | ^ N on [a?0 - δ0, x0 + δ0].
Given ε > 0 there is a p > 0 such that

/(», 2/, z) ̂  /(a?0, φ 0 ) , s'(&0)) - ε

for I x — xQ I < /?, 11/ — s(a?0) I < /°, Is — sf(x0) \ < p. Now choose a δx > 0
such that I ω(#; δ) - s(x0) | < ρ\2 and | ω'(tf; δ) - s'(x0) \ < p/2 on [xQ - δ, α;0 +δ]
for all 0 < δ ̂  δx where ω(ίc; δ) is the linear function with ω(xQ — δ) —
s(xQ — δ) and ω(x0 + δ) = s(x0 + <5).

By Lemmas 1 and 3 there is a δ2 > 0 with 2<52 ̂  min [230, 2δx, δ(M, N)]
such that for any 0 < δ ̂  δ2 the boundary value problem

7/(x0 — δ) = s(#0 — δ) , (̂α?0 + δ) = s(x0 + δ)

has a solution ?/(α;; δ) with

\y(x;δ)-ω(x;δ)\<pl2

and

on [̂ 0 — δ, x0 + δ]. Hence, for 0 < δ <£ δ2, | ?/(a;; δ) — s(ί»0) | < p, and
I y'(x; δ) — s'(x0) \ < p on [x0 — δ, x0 + δ]. Then, since s is a subfunction
on / we have for any 0 < δ ̂  δ2

8'(x0 + δ) - 8 ^ - δ) yy(a?0 + δ; δ) - y'Qg0 - δ; δ) _ ,,(βm ^
2δ = 2δ y (ξy }

where x0 — δ < ξ < x0 + δ. Hence,

^ / ( | f y ( | g)f y ( ξ ; 8)) ^ f(χof s(χo)y s(χo)) e

for all 0 < δ ̂  δ2. From which we conclude

D8'(XO) ^ f(X0, 8(XO), S'(XO)) .

Under more stringent conditions on the function f(x, y, z), Peixoto
[15; p. 564] gives s"(x) ^ f(x, s(x), s'(x)) as a necessary and sufficient
condition for a function of class C(2) to be a subfunction. Theorem 6
generalizes the necessity part of this result. The condition s" ̂  f{x, s, s')
is not sufficient to guarantee that a function of class C(2) be a subfunction
without having more than just continuity of f(x, y, z). As a matter
of fact continuity of f(x, y, z) and condition Ax are still not enough.
To see this we observe that, if s" ̂  f(x, s, s') is a sufficient condition
for a function of class C(2) to be a subfunction, then a solution of the
boundary value problem when it exists is unique. The boundary value
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problem y" = | y' |1/3, y(-l) = y( + l) = 4i/~6 /45 has both y(a?) Ξ= 4 I / 6 / 4 5

and 2/(α?) = 4i/ 6 /45 | α? |δ/2 as solutions.
The following Theorem gives conditions on / which are adequate

to insure that a function satisfying s" Ξ> /(#, S, S') is a subfunction. It
embodies a maximum principle which must be known; however, since
we are not aware of a reference for it in this form, we will include a
proof.

THEOREM 7. Assume that f(x, y, z) satisfies conditions Ax and A2

and that the functions u(x) and v(x) satisfy the following conditions:
( i ) u and v are both continuous on ϊ and of class Ca) on 7°,
(ii) Du'{x) ^ f(x, u(x), u\x)) and Dvr{x) ^ f(x, v(x), v'{x)) on Γ,

and
(iii) u(x) — v(x) ̂  M, where M ̂  0, at the endpoints of I .

Then either u(x) — v(x) < M on 1° or u(x) — v(x) = M on I.

Proof. We will assume Λf = 0 since the case where M > 0 can be
reduced to this one by replacing v(x) by v(x) + M.

Now assume that the statement of the Theorem is false. Then
there are functions u and v satisfying the hypotheses of the Theorem
with u(x) — v(x) ΐ θ on J but with u(x) — v(x) ̂  0 at some points of
1°. Let N = max [u(x) — v(x)] on J. Because of the continuity of
u{x) — v(x) there is an x0 e Γ and an interval [xlf x2] c 1° such that
Xi< xo< x2, u(x0) — v(x0) = N, and u(x) — v(x) < N either on xo< x ̂ x2

or on xx ̂  x < a?0. Assume that u(x) — v(x) < N on OJ0 < a? ̂  a72 to be
specific.

Let Mx > 0 be such that | %(») | + | u'(x) \ ̂  Mλ and | v(a?) | + | v'(x) \ ̂  Mx

o n [ a ? ! , α? 2 ] a n d l e t F b e t h e s e t [(x, y , z ) : x x ̂  x ̂  x 2 y \ y \ + \ z \ ^
By hypothesis there is a & > 0 such that

\f{x, yl9 zλ) - f(x, y2, z2) \ ̂  k[\ yx - y2 \ + | zλ - z21]

for all (x, yl9 zλ) and (x, y2, z2) in F.
Define the functions wx(x) and w2(x) as follows:

(f{x,u{x\u'{x))-f{x,u{x),v'{x)) f o r M,(χ) φ v,{χ)

wax) = j u'{x) — v'(x)
v 0 for u'(x) = vf(a?) ,

and

(f(xu(x)v'(x))f(xφ)*(x)) ί0τu(x)Φv(x)

for iφ) = v{x) .
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Then it is clear that | wx(x) | ^ k and | w2(x) | g k on [xu x2]. Because
of the assumed condition A1 on /, w2(x) ̂ 0 on [xl9 x2].

Choose α?3 e P such that x2 < #3 and define h(x; a) by

Λ(aj; a) = β-*<*-*8>a _ β-^uo-^)2

where α > 0 fixed is chosen large enough that

L[h] == Λ"(α) - nφJΛ'ίaO - w%(x)h(x) > 0

on [ajlf α?J.
Since u(x2) — v(β2) < N we can choose ^ > 0 such that t*(a?2) —

v(»a) + ^Λ(aj2) < iV. Then, if flf(aj) Ξ U(X) — v(a ) + f̂e(aί), we have gfaXN,
g(x0) = iV, and flf(aj2) < ΛΓ. It follows that g(x) has a maximum JVί ^
JV^O at a point x± with ^ < x4 < a?2. It follows that Dg\x^ g 0.
However,

Dg'(x4) ^ ΰ[^ ;(α;4) + ^ f(a? 4)] - Dv'(x4)

4) - Dv'(x4) + ηh"{xA) > w2{x,)Nx ^ 0 .

We have arrived at a contradiction and the Theorem is established.

COROLLARY 1. Let f{x, y, yf) satisfy conditions A± and A2. Then
the solution of the boundary value problem

/or [#j, α?2] c: [α, δ], if it exists, will be unique.

COROLLARY 2. If in the statement of Theorem 7 we assume only
that f(x, y, y') satisfies condition Aλ but strengthen the assumptions
concerning u and v by assuming that at least one of the differential
inequalities is a strict inequality for xλ < x < x29 then u(x) — v(x) < M
for xx<x< x2.

COROLLARY 3. If in Theorem 7 I = [c, d], u(c) = v{c), and u(d) > v(d),
then u(x) — v(x) is nondecreasing on [c,d]. If u(c) > v(c) and u(d) =
v(d), then u(x) — v(x) is nonincreasing on [c, d\.

THEOREM 8. Let s(x) be continuous on I and of class C(1) on P.
Then, if f(x, y, z) satisfies Ax and A2 and if Ds'(x) ̂  f(x, s(x)f s'(x)) on
1°, it follows that s(x) is a subfunction on I. If f(x, yf z) satisfies
condition Aλ and Ds'(x) > f(xt s(x), s'(x)) on Pf s(x) is a subfunction
on I.
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Proof. Let [xl9 x2] c I and let y(x) be a solution of (1) on [xl9 x2]
with s(Xi) ^ y(Xi) for i = 1, 2. Then that s(#) ^ 2/(cc) on [a?!, #2] follows
from Theorem 7 or Corollary 2 of Theorem 7.

THEOREM 9. Let s(x) be a continuous subfunction and S(x) a con-
tinuous superfunction on [xlf x2] with s(Xi) ^ S(Xi), i = 1, 2. Assume
that at least one of s(x) and S(x), say Six), is of class C(1) on xx < x < x2.
Then, if f(x, y, z) satisfies A1 and A2, s(x) ̂  S(x) on [xu x2]. If f(x, y, z)
satisfies A1 and DS'(x) < fix, Six), S'(x)) on xx < x < x2f then again
s(x) ^ S(x) on [xu x2].

Proof. Assume that the statement of the Theorem is false. Then
s(x) > S(x) for some points x with xλ < x < x2. Let M — max [s(#) —
S(x)] on [a?!, x2] and let x0 be such that xt < x0 < x2f s(x0) — S(x0) = Λί,
and s(^) — S(x) < M for x0 < ^ ^ #2. By Lemma 1 there is a δ > 0
such that xx < xQ — δ < xQ + 3 < x2 and such that the boundary value
problem

2/(a?0 - δ) = S(^o - δ) + M, y(x0 + δ) = S(x0 + δ) + M

has a solution yx{x) of class C(2) on [xQ — δ, x0 + <?]. If /(a?, /̂, 2) satisfies
Aj and DS'(x) < fix, Six), S'(x)) on xx < a; < a?2, it follows from Corollary
2 of Theorem 7 that ^(XQ) < S(xQ) + Af. Furthermore, since s(x) is a
subfunction and s(x0 ± δ) ̂  2/1(̂ 0 ± δ), we have s(x0) ̂  Vi(x0) < S(x0) + M.
From this contradiction we conclude that s(x) ̂  S(x) on [xl9 x2].

Now assume that f(x, y, z) satisfies Ax and A2 and that we know
only that S(x) is of class C(1) on xx < x < #2 which implies DS'(x) ^
/(a?, S(aj), S'(x)) on ^ < a? < x2. Then, if ^(x) is again the solution of
the above boundary value problem, we have yλ{xQ) ^ S(x0) + M. By
Lemma 5 and Theorem 7 there is an m > 0 such that the initial value
problem

y" = f(χ, v, yf)

y(x0 - δ) = yx{x, - δ)

y'(x0 - δ) = y[(x0 - δ) - m

has a solution y2(x) of class C(2) on [x0 — δ, x0 + δ] with τ/2(α?) < ^(x) on

(a?0 — δ, xQ + <5] and

2/i(a?0 + δ) > y2(x0 + δ) > s(x0 + δ) .

Then we have s(x0) ?g i/2(aj0) < 1/1(̂ 0) ̂  S(x0) + M which is again a con-
tradiction. Thus we have s(x) ̂  S(x) on [xlf x2].

COROLLARY. Let M > 0 be a constant and assume that fix, y, z)
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satisfies A± and A2. Then, if S(x) is a continuous super function on
I, S(x) + M is also, and, if s(x) is a continuous subfunction on I,
s(x) — M is also.

THEOREM 10. Assume that f(x, y, z) satisfies conditions A1 and A2,
that y(x) is a solution of (1) of class C(2) on [xu x2] c [a, b], and that
s(x) is a subfunction on [xl9 x2]. Assume further that there is an x0,
Xί < x0 < x2, at which either s(x0) = y(x0), s(x0 + 0) = y(x0), or s(x0 — 0) =
y(x0). Then, if six,) g y{xt), s{x) ^ y(x) on x0 < x ^ x2. If s(x2) ^ y(x2),
s(x) ^ y(x) on x±Sx < x0.

Proof. Follows immediately from Lemma 5, Theorem 7, and the
definition of subfunctions.

COROLLARY. If f(x, y, z) satisfies conditions Aλ and A2, if y(x) is
a solution of (1) of class C(2) on [xl9 x2] c [a, b], and if s(x) is a sub-
function on [xl9 x2] with sfa) ^ y(Xi), i = 1,2, then either
max [s(x), s(x + 0), s(x — 0)] < y(x) on xx < x < x2 or s(x) = y(x) on
[Xl9 X2\.

In the papers mentioned in the introduction which deal with gener-
alized convex functions it is assumed that for any two points (xu yj,
(x2, y2), xλ Φ x2 in the strip a ^ x tίb, \y\ < + O T the boundary value
problem has a unique solution which is defined throughout a 5g x <Ξ b.
This leads to the conclusion that subfunctions and superfunctions are
continuous in the interiors of their intervals of definition. With the
assumptions we make this conclusion cannot be drawn. Consider the
equation

( 3 ) y"= -18x(y'Y

which is such that f(x, y, z) is continuous everywhere and satisfies A±

and A2. The function g defined by g(x) = x1" + 1 for 0 < x S 1, g(%) = %1Γά

for — 1 ^ x < 0, and g(0) = g0 where 0 ^ g0 ^ 1 is simultaneously a
subfunction and superfunction on [—1, +1] with respect to solutions
of (3).

4* A generalized solution of the boundary value problem* In the
previous Section the existence "in the small" of solutions for the initial
value problem and the boundary value problem for (1) was used in
discussing some of the properties of subfunctions and superfunctions
with respect to solutions of (1). In this section we use the Perron
method of using subfunctions and superfunctions to deal with the
boundary value problem "in the large" for equation (1). Throughout
this section we shall be dealing with the boundary value problem:
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v" =f(χ,v,vt)
y(a) = a , y(b) = β .

DEFINITION 3. The function φ(x) is said to be an under-function
with respect to the boundary value problem (4) in case φ(x) is a sub-
function on [α, δ] with <p(a) fg a and φ(b) ^ β.

DEFINITION 4. The function ψ(x) is said to be an over-function
with respect to the boundary value problem (4) in case ψ(x) is a super-
function on [α, b] with ψ(a) ^ a and ψ(b) ^ β.

In most of the results obtained in this section we shall require the
following additional hypothesis:

A3: f(x, y, z) is such that with respect to the boundary value
problem (4) there is an under-function which is continuous on [α, δ] and
there is an over-function which is continuous on [a, b] and is of class
C(1) on (α, 6).

DEFINITION 5. Let {φ} represent the collection of all under-f unctions
with respect to boundary value problem (4) which are continuous on
[α, δ]. Then we define H(x) by

H(x) = SUP [φ(x): φ G {φ}]

for each x e [α, b].

THEOREM 11. If f(x, y, yf) satisfies conditions Au A2, and A3, H(x)
is a bounded subfunction on [α, 6],

Proof. By A3, {φ} is nonnull and there is an over-function ψ0 con-
tinuous on [α, b] and of class C(1) on {a, b). By Theorem 9 φ(x) ^ ψo(x)
on [a, b] for each φe{φ}, consequently, H(x) ^ ψo(x) on [a, δ]. By
Theorem 3 H(x) is a subfunction and, if φQ e {φ}, φo(x) S H(x) g ψo(^)
so that H is bounded on [α, δ].

THEOREM 12. // f(x, y, yr) satisfies Alf A2, and A8, ί^e^ H(x) is a
superfunction on [α, 6],

Proof. Assume that H is not a superfunction. Then there exists
[xίf x2] c [a, b] and a solution y(x) of (1) on [xlf x2] such that iϊί^i) ^
•!/(»<), i = 1, 2, but ίί(^) < y(a?) for some x with a?x < x < x2. Let xQf

X!< xo< x3, be such that y(x0) — iϊ(x0) = ε > 0. By the definition of
H there are continuous under-functions φλ and ^ 2 such that H(x^) —
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ε/4 and H(x2) — φ2(x2) g ε/4. Now define φ3 on [α, 6] as follows:

(max [^(fl?), 9>a(a?)] for x £ [xl9 x2]φ3(X) = J
(max [?>!(»), φ2(#), y(x) - ε/2] for a? e [^, α?J .

Then by Theorems 3 and 4 and the Corollary of Theorem 9 φs is a con-
tinuous under-f unction. However, 9>3(αj0) ^ y(x0) — ε/2 = ίf(#0) + ε/2 which
is impossible. It follows that H is a superfunction on [α, 6].

COROLLARY. For each x e (α, b) H(x) = min [iJ(# + 0), i ϊ ( ^ — 0)].

Proof. Since if is a superfunction, it follows from Corollary 1 of
Theorem 1 that H(x) ^ min [H(x + 0), H(x - 0)]. Since H is lower
semicontinuous on [α, 6], if(#) ̂  min [H(x + 0), iϊ(α? — 0)].

Theorem 13. If f(x, y, yf) satisfies Au A2, and A3, then H is a
solution of (1) on an open subset of [a, b] the complement of which is
of measure 0.

Proof. Let xQ e (a, b) be a point at which H'(xQ) exists. Then there
is a δQ > 0 such that [x0 — δ0, x0 + δ0] c [α, b] and such that for all δ
with 0 < δ <Ξ <50 we have

+ 8) - iffa - 3) < i H,( x I ,

Let δ(M, N) > 0 be as in Lemma 1 with M = sup | H(x) | on [α, b] and
N = I jff'(αo) 1 + 1. Then for 23 = min [230, δ(M, N)] the boundary value
problem

y" = f(χ, y, y')

y(x0 - 3) = H(x0 - 3), y(x0 + 3) = ff(a?0 + 3)

has a solution y(x) of class C(2) on [xQ — δ,xo + δ]. Since i ϊ is simul-
taneously a subf unction and superfunction, H(x) = y(x) on [x0 — δ, xo + δ].
The result then follows as a consequence of the Corollary of Theorem 5.

In Theorem 5 we proved that, if s is a bounded subf unction on
[α, 6], then d+s(x) = cί+s(x) on a ^ a? < 6 and d~s(x) = d_s(α;) on α < a? g δ.
In view of these equalities we introduce the additional notation:

Ds(x0 + 0) = lim

and

Ds(x0 - 0) = lim Φ ) - s(fto - 0)
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THEOREM 14. Iff(x, y, y') satisfies Au A2, and A3, then DH(x+0) =
DH(x — 0) for all x e {a, b). Let E be the set of points in (α, b) at
which H does not have a finite derivative. If xeE is a point of
continuity of H, either DH(x + 0) = DH(x - 0) = + oo or DH(x + 0) =
DH(x - 0) = - o o . IfH(x + 0) > H(x - 0), DH(x + 0) = DH(x - 0) =
+ oo. If H(x + 0 ) < H(x - 0), DH(x + 0) = 2λff(a - 0) - - o o .

Proof. Since for aj 6 (α, b) zndxZE DH(x + 0) = DH(x - 0) = ff'(a ),
we need consider only the points of E.

First we observe that it follows from the argument used in the
proof of Theorem 13 that, if xoeE is a point of continuity of H,
DH(x0 + 0) and DH(xQ — 0) cannot both be finite. Assume that x0 e E
is a point of continuity of H, that DH(xQ+0)= + oo, but that DH(xo—O)φ
+ oo. It follows that there is an N > 0 and a <50 > 0 such that ω(x) ==
iί(α;0) + JV(a? — x0) < H(x) for 0 < x0 — # ̂  δ0. By Lemmas 1 and 4
there is a δ l f 0 < δx ̂  30, a ^2 > 0, and a solution y(x) of (1) of class
C(2) on [a?0-*i, ^0+^2] with y(xo) = H(xo) and »(ajo-δ1)=α)(α?o-δi)<flr(a?o-ίi).
Applying Theorem 10 we conclude that H(x) ^ y(x) on [α?0, x0 + δ2]. This
implies that DH(x0 + 0) ̂  y'(x0) which contradicts the assumption that
DH(x0 + 0) = +00. We conclude that DH(x0 - 0) = +00. The other
possibilities at a point of continuity can be dealt with in a similar way.

Now assume that H(x0 + 0) > H(x0 - 0) and that DH(x0 + 0) φ + 00.
Then by the same type of argument as was used above we can conclude
that there exist dx > 0, d2 > 0, and a solution y(x) of (1) of class C{2)

on [x0 — δlf x0 + δ2] satisfying y(x0) = H(x0 + 0) and y(xQ + δ2) > H(x0 + δ2).

We can then again apply Theorem 10 to conclude that H(x) Ξ> y(x) on
x0 — δ1 ^ x < a?0 from which it follows that H(x0 — 0) ̂  y(x0) = H(^ o + 0).
This contradicts the assumption that H(x0 — 0) < £Γ(α?0 + 0) and we
conclude that DH(x0 + 0) = + co.

The remainder of the proof concerning the points of discontinuity
is similar to this and will be omitted.

Next we consider the behavior of H at the endpoints of the interval
[α, 6].

THEOREM 15. Assume that f(x, y, y') satisfies Alf A2, and A3. Then,
if DH(a + 0) Φ + 00, H(a + 0) = H(a). If H(a + 0 ) < a, DH(a + 0) =
— 00. If DH(a + 0) is finite, H(a + 0) = H(a) = a. Similar statements
apply at x = b.

Proof. The proof will be omitted since the methods used in it are
very similar to those used in the proofs of Theorems 12 and 14.

If f(%f y> yf) satisfies conditions Au A2, and Ai9 and if the boundary
value problem (4) has a solution, H(x) is that solution. On the basis
of the properties of the function H(x) it seems reasonable to refer to
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H(x) as a "generalized solution" of the boundary value problem. Usually
by a generalized solution of a second order differential equation on an
interval one means a function which has an absolutely continuous first
derivative and which satisfies the differential equation almost everywhere
on the interval. The function H(x) may not even be continuous on
[α, 6]. Consider the boundary value problem y" — — 18x(y')\ y(—ΐ)~
— 1, y( + l) — + 2 . Here conditions Aλ and A2 are obviously fulfilled and,
since ψ(x) Ξ + 2 is an over-function and φ{x) = —1 is an under-function,
condition A3 is satisfied. In this case H(x) = x113 for — 1 ^ x <£ 0 and
H(x) = x1" + 1 for 0 < x ^ + 1.

We terminate this Section by considering the function H(x) with
respect to the boundary value problem:

, 5 v v" = /(%> v)

y(a) = a, y(b) = β .

THEOREM 16. Assume that f(x, y) satisfies Aλ and A3 with the
additional assumption that there is an over-function ψ with respect
to the boundary value problem (5) such that ψ is continuous on [a, δ],
is of class C(1) on (α, 6), and satisfies Dψ'(x) < f(x, ψ{x)) on (α, b). Then
the function H(x), defined in the same manner as above, is again
bounded on [α, b] and is simultaneously a subfunction and a super-
function with respect to solutions of (2). In this case H(x) is of class
C(2) and is a solution of (2) on [a, b].

Proof. The proof that H(x) is bounded and is simultaneously a
subfunction and a super function on [a, b] is exactly as given in Theorems
11 and 12 with one exception. Since we do not now have the Corollary
of Theorem 9 available, we must give a separate proof that, if y(x) is
a solution of (2) on [xu x2] c [α, b] and M ^ 0, then y(x) — M is a sub-
function with respect to (2) on [xu x2]. To see that this is the case
assume that yλ{x) is a solution of (2) on [x3, x4] c [xl9 x2] with

y(x3) - M= yγ(xz) ,

y(x4) - M= yλ(x,) ,

and y(x) — M > yλ(x) on #3 < x < x± .

Because of condition Ax we then have

y"(x) - y['(x) = f(x, y(x)) - f(x, Vl(x)) ^ 0

on (xBf x4). This implies that y(x) — yx(x) is convex on [α?3, x4] which in
turn implies that y(x) — yx(x) ^ l o n [x^ x±\. Thus it is not possible
that y(x) — yλ{x) > M on (x3, a?4). It follows that y(x) — M is a subfunction
on [xlt x2].
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Since H(x) is bounded and is simultaneously a subfunction and a
superfunction, we can apply Lemma 2 to conclude that H(x) is of class
C(2) and a solution of (2) on [α, 6].

5Φ Existence theorems for a solution of the boundary value problem*
In this concluding Section we consider the question of determining
additional conditions on f{x, y, y') which will suffice to guarantee that
H(x) be a solution of the boundary value problem (4). Some of the
results are known and we are merely giving new proofs of them, others
appear to be new.

THEOREM 17. Assume that f(x, y, y') satisfies Au A2, and A3, that
ψ(x) is an over-function continuous on [α, b] and of class C(1) on {a, b),
and that φ(x) is a continuous underfunction. Assume that there is a
function h(t) positive and continuous for t ^ 0 such that \f{x, y, yf) \ S
Ml Vf I) for a ^ x ^bf φ(x) ̂  y ^ ψ(x), \yr\< + °° o/nd such that

Jo h(t)

Then H(x) is the solution of boundary value problem (4). Nagumo [14].

Proof. Let x0 e (α, 6) be a point at which H'(x0) exists. By Theorem
13 there is an open interval containing xQ in which H is a solution of
(1). Let (c, d) c [a, b] be the maximal such interval. Then, if N is
chosen so that

(* KΓ I _7.#

= max ψ(x) — min φ{x) ,
J|jsr'(ίβo)i h(t)

we will have | H'{x) \ ^ N on (c, d). It follows from Theorems 14 and
15 that c = α, d — b and that H is the solution of the boundary value
problem.

THEOREM 18. If f(xfy) is continuous for a^x^b, \y\< + c o ,

and satisfies Au then the boundary value problem (5) has a unique

solution for each a and β. Babkin [1].

Proof. Let ω(x) be the linear function with ω(a) = a and ω(b) =
β. Define the functions u(x) and v(x) on [α, b] by

u(a) = %(δ) = 0

and
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v"(x) = -\f(x,ω(x))\-l

v(a) = v(b) = 0 .

Tnen it is not difficult to verify that ψo(x) = v(x) + ω(x) is an over-
function of class C(2) satisfying ψ"(x) <f(x, ψo(x)) on [α, 6], and φo(x) =
u(x) + ω(x) is an under-function of class C(2) satisfying φ'0'(x) > f{x, φQ(x))
on [α, &]. The hypotheses of Theorem 16 are satisfied so that we can
conclude that H(x) is of class C(2) and is a solution of (2) on [α, &].
Since φo(x) ^ H{x) ^ ψo(x) on [α, 6], H(a) = α: and iϊ(&) = /3 so that
H(x) is a solution of boundary value problem (5). It follows from the
proof of Theorem 16 that it is unique.

THEOREM 19. Let f{x, y, y') satisfy Alf A2, and Ad, and assume
that there is a continuous function g(x, y) such that g(x, y) ^ f{x, y, y')
for all (x, y, yf) e R. Then H(x) is of class C{2) for all a < x < b. If
in addition g(x, y) is nondecreasing as a function of y for each fixed
x, H(x) is continuous on [α, 6].

Proof. Let [xu x2] c [a, b] and let S(x) be a solution of

( 6 ) y" = 9(x,V)

on [xl9 x2] with H{xx) ^ S(xλ) and H(x2) ^ S(x2). Then S"(x) = g(x, S(x)) g
f{x, S(x), S'(x)) on (xl9 x2), hence by Theorem 8 S(x) is a superfunction
on [xlf x2]. Then from Theorem 9 and the fact that φfa) ^ S(a?i) and
φ(x2) ^ S(x2) we conclude that φ(x) ^ S(x) on [xl9 x2] for each continuous
under-function φ. From this we conclude that H(x) ^ S(x) on [xlt x2]
and that i Π s a subf unction with respect to solutions of (6). By Theorem
2 H(x) is continuous on (α, 6).

Assume that H does not have a finite derivative at x0, a < x0 < b.
Assume that DH(xQ + 0) = + oo. By Lemma 2 there is a δ > 0 such
that the boundary value problem

y" = g(χ, y)

y(x0) = H(xQ) , y(xQ + δ) = H(xQ + δ)

has a solution 7/(cc) of class C(2) on [α;0, x0 + δ]. Since ίί(ίi?) ^ τ/(̂ ) on
[xOf x0 + δ], J3ϋf(^0 + 0) ^ ί/'(a?0) which contradicts the assumption that
DH(x0 + 0) = +oo. Similarly J5ίί(^0 - 0) = — oo is not possible. It
follows from Theorem 14 that H(x) has a finite derivative at each point
of (α, δ), therefore, by Theorem 13 iϊ(^) is of class C(2) and is a solution
of (1) on a < x < b.

If g{x, y) is nondecreasing in y, it follows from Theorem 18 that
the boundary value problem

y" = g{x, y)
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y(a) = a , y(b) = β

has a solution ψ(x) of class C(2) on [α, 6]. i/r(#) is an over-function with
respect to the boundary value problem (4). It suffices to consider the
endpoint x = a. Since H(x) ^ ψ(x), H(a + 0) ^ f(a) = α. If £Γ(α + 0) =
α, Diϊ(α + 0) ^ α/r'(α) so that DH(a + 0) φ + co. It follows from Theorem
15 that H(a + 0) = fί(α). If £Γ(α + 0) < a, we again apply Theorem
15 to obtain H(a + 0) = H(a). We conclude that H(x) is continuous
on [α, 6],

COROLLARY // /(a?, y, yr) satisfies conditions Aλ and A2, if there
is a continuous function g(x, y) nondecreasing in y for each fixed x
and satisfying g(x, y) ^ f(x, y, yf) on R, and if there exists a continuous
under-function φix) with φ{a) — a and φ(b) — β, then the boundary
value problem (4) has a unique solution.

If f{x, y, y') satisfies the hypotheses of Theorem 19 including the
assumption that g(x, y) is nondecreasing in y for each fixed x, then H(x)
is continuous on [a,b] and of class C(2) on (α,6). Furthermore, DH(a + 0)Φ
+ co and DH(b — 0) Φ — co. As a consequence of Theorem 15 we could
conclude that H(x) is the solution of the boundary value problem if it
could be shown that DH(a + 0) Φ - ^ and DHφ - 0) φ + co. This
would be the case, for example, if for some N > 0 and some δ > 0
H"ix) <N on a < x ^ a + δ and on b - δ ^ x < b.

As an illustration of these remarks consider the boundary value
problem:

y" = (1 + x2)y3 + ey'2*lnx

y(-π/2) = a , y{Zπβ) = β .

The hypotheses of Theorem 19 are satisfied. φ(x) = min [ — 1, α, b] is
an under-function and ψ(x) = max [1, α, β] is an over-function. In the
intervals — τr/2 < x ^ 0 and π ^ x < 3τr/2 H"(x) is bounded above,
consequently, this boundary value problem always has a unique solution.

We conclude the paper with a final result in this direction.

THEOREM 20. Assume that f(x, y, yf) satisfies Aτ and A2, and that
there is a continuous function g{x, y) which is nondecreasing in y and
is such that g(x, y) ^ f(x, y, y') for all (x, y, yr) e R. Assume further
that there exist functions ψ, φ, and h such that

( i ) ψ{x) is continuous on [α, 6], is of class C(1) on (a, 6), and is
an over-function with respect to boundary value problem (4),

(ii) φ(x) is a continuous under-function with respect to the boundary
value problem,
and (iii) h(t) is positive and continuous for t Ξ> 0, |/(cc, y, y') \ ̂  h{\y'\)
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for a ^ x ίg 6, φ(x) ^ y ^ ^(x), | ?/' ] < + °°, α^cϊ

1 > max ψ(x) — min <p(#) ,
JC h(t)

where

c = max
b — a b — a

Then H(x) is a solution of boundary value problem (4).

Proof. By Theorem 19, H(x) continuous on [α, b] and is of class

C(2) on (α, b). Since φ(α ) ^ #(&) ^ ψ(a?) on [α, 6], | (JEZ"(6) - H(a))/(b - a) | =

tdtjh(t) =

max ψ(a?) — min £>(#) then | iί '(^) | ^ ΛΓon (α, 6). It follows from Theorem
15 that H(x) is a solution of the boundary value problem.

As an illustration of this Theorem consider the boundary value
problem

y" = xψ + (yj

y(0) = a ,

If \a\ < M and | /3 | < M, the hypotheses of Theorem 20 are satisfied
with g(x, y) — xY, ψ(x) = max [\oc\, \β | ] , φ{x) = min [— | a |, — | β |] and

/ (̂ί) — ί4 + M3. Hence, by Theorem 20 the boundary value problem has
a solution for | a \ < M and | β | < M if

Mi

The largest M > 0 for which this inequality is satisfied is the positive
root of τr/2 - Arctan 4M1/2 = 4M5/2.

There are few existence theorems for the boundary value problem
that do not impose more stringent conditions than Theorem 20 does on
the rate of growth of f(x9 y, y') with respect to yf. In the cases in
which it is applicable Theorem 20 seems to give stronger results than
other known theorems.

A different method of obtaining existence theorems for the boundary
value problem (4) via existence theorems "in the smalΓ was recently
given by Kamenskii [13].
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RINGS IN WHICH SEMI-PRIMARY IDEALS ARE PRIMARY

ROBERT W. GILMER

Every ring considered in this paper will be assumed to be com-
mutative and to have a unit element. An ideal A of a ring R will be
called semi-primary if its radical V A is prime. That a semi-primary
ideal need not be primary is shown by an example in [3; p. 154], This
paper is a study of rings R satisfying the following condition: (*) Every
semi-primary ideal of R is primary. The ring Z of integers clearly
satisfies (*). More generally, if A is a semi-primary ideal of a ring R
such that V A is a maximal ideal of R, then A is primary. [3; p. 153].
Hence, every ring having only maximal nonzero prime ideals satisfies (*).

An ideal A of a ring R is called P-primary if A is primary and
P = V A. If ring R satisfies (*), then A is V A-primary if and only if
l/A is prime. Some well-known properties of a ring R satisfying (*)
are listed below.

Property 1. If R satisfies (*) and A is an ideal of R, then R\A
satisfies (*). [3; p. 148].

Property 2. If R satisfies (*), if A and B are ideals of R such that
A g B g V A, and if A is V A-primary then B is V A-primary. [3; p.
147].

THEOREM 1. If ring R satisfies (*) and P, A, and Q are ideals of
R such that P is prime, Pa A, and Q is P-primary, then QA — Q.

Proof. Since V~QA = P, QA is P-primary. Thus Q ASQA and
A g P imply that Q S QA g Q. Hence QA = Q as asserted.

THEOREM 2. If P is a nonmaximal prime ideal in a ring R satisfy-
ing (*) ami ΐ/ Q is P-primary, then Q = P.

Proo/. We let Px be a proper maximal ideal properly containing
P. If px G Px such that ^ φ P and if p e P, then Q S Q + ( m ) £ P. By
property 2, Q + ( m ) is P-primary. Since ppx e Q + {ppλ) and px $ P,
peQ + (PPI). Then for some qeQ,reR,p(l — rpλ) == g. Now 1 - rpx 0 Px

since P1 c 22 so that 1 - m 0 P. Thus p e Q and P £ Q £ P. Hence
P — Q and our proof is complete.

Received December 28, 1961.
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COROLLARY 2.1. If ring R satisfies (*), if P1 and P2 are prime
ideals of R with P1aP2, and if Q is P-primary, then PxcQ.

Proof. Since VQPX = Pu QPX is Pi-primary. By Theorem 2, Px =
QPi S Q. Now Q is P2-primary so that Pλ Φ Q. Hence P1czQ.

COROLLARY 2.2. // ring R satisfies (*) and P is a nonmaximal
prime ideal of R, then P is idempotent.

Proof. The ideal P 2 has radical P and is therefore P-primary. By
Theorem 2, P 2 = P.

THEOREM 3. If R is a ring satisfying (*), if d is not a zero divisor
or unit of R, and if P is a minimal prime ideal of (d), then P is
maximal in R.

Proof. Suppose that P is not maximal in R. Let M denote the
complement of P in R. We define A to be the set of all those elements
x of R such that there exists me M such that xme (d). Since P is
prime, A is an ideal and A <Ξ P. We wish to show that P = A. Thus
if p e P and if N is the set of all elements of R of the form pkm where
k is a nonnegative integer and me M, then Nis a multiplicatively closed
set containing M and p and hence properly containing M. Because P
is a minimal prime ideal of (d), M is a maximal multiplicatively closed
subset of R not meeting (d). [2; p. 106]. Therefore N Π (d) Φ φ so
that there exists an integer k > 0 and an element m of M such that
pkm e (d). That is, pk_e A so that p e V~A. Hence P S V~A S V T = P
which implies P = l/ A. This means that A is P-primary. Under the
assumption that P is nonmaximal, we conclude that P = A by Theorem
2. Now P is also a minimal prime ideal of (d2) so that if B is the set
of elements y of R such that yme (d2) for some me M, we likewise
have P = B. Since d e P, there exist me M and r e i? such that dm —
rd2. The element d is not a zero divisor so that m = rde{d) S P which
is a contradiction to our choice of m. Therefore P is maximal as the
theorem asserts.

COROLLARY 3.1. // ring R satisfies (*) and if P is a proper prime
ideal of R containing a nonzero divisor d, then P is maximal in R.

Proof. There is a minimal prime ideal Px of (d) contained in P.
[1; p. 9]. By Theorem 3, Px is maximal. Hence P is also maximal.

COROLLARY 3.2. // J is an integral domain satisfying (*), then
nonzero proper prime ideals of J are maximal.
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COROLLARY 3.3. If ring R satisfies (*) and if P is a proper prim,e
ideal of R, then P is either maximal or minimal.

Proof. Suppose that P is not minimal and let Px be a prime ideal
properly contained in P. Now i?/Pi is an integral domain satisfying (*)
by property 1. By Corollary 3.2, PjPλ is maximal in RjPλ. Thus P is
maximal in R. [3; p. 151].

THEOREM 4. If ring R satisfies (*) and P is a finitely generated
nonmaximal prime ideal of R then P is a direct summand of R. If
Px is a prime ideal not containing P, then P and Px are relatively prime.

PROOF. By Corollary 2.2, P = P2. Since P is finitely generated,
there exists an element eeP such that (1 — e)P = (0). [3; p. 215],
Evidently e2 = e, P = (e) and R = P 0 (1 - e). Now β(l - e)ePx and
e 0 Px so that 1 - β e Px. Therefore 1 = e + (1 - e) e P + Px so that P
and Pi are relatively prime.

THEOREM 5. If the Noetherian ring S satisfies (*), S is a finite
direct sum of Noetherian primary rings and Noetherian integral do-
mains in which nonzero proper prime ideals are maximal. Conversely
if T is a finite direct sum of Noetherian primary rings and Noetherian
integral domains in which nonzero proper prime ideals are maximal,
then T is a Noetherian ring satisfying (*).

Proof. Since S is Noetherian, every ideal of S is finitely generated.
Let (0) = Qx Π ΠQs be an irredundant representation of (0) as an
intersection of greatest primary components where Pi = VQ{. If Pl9

P21 * *, Pjc are the nonmaximal prime ideals of S in this collection, P { =
Qi for 1 ̂  i ^ k by Theorem 2. If 1 S i < j ύ s, P< + Ps = S. This
follows from Theorem 4 if P{ and P3 are nonmaximal. If Pjf say, is
maximal, then P3 =2 P4 by Corollary 2.1, for Q3 =2 Pi from the irredundance
of the representation. Therefore, P{ + Pό = S. Thus the P/s, and
hence the Q/s, are pairwise relatively prime. [3; p. 177]. This means
that S ~ SIPX 0 © S/P* 0 S/Q4+1 0 . © S/Qs. [3; p. 178]. Each
SI Pi in this representation is a Noetherian integral domain in which
nonzero prime ideals are maximal. Since Q3 for k + 1 ̂  j fj s is P Γ

primary with P, maximal, S/Q, is a Noetherian primary ring. [3; p. 204],

The converse follows from elementary facts concerning the ideal
theory in a finite direct sum since it is apparent that each summand
satisfies (*).

We give the following example of ring which is not a finite direct
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sum of indecomposable summands and which satisfies (*).

Let S = ΣΓ4 Zi, where each Zt is the ring of integers and J^ΓJi
designates the weak direct sum. Let R = S + Z be the usual extension
of S to a ring with unit element. [2; p. 87]. Clearly S is a prime
ideal of R, as is Ip = S + pZ for every prime p of Z. In fact, each Ip

is a maximal ideal of R. It is easy to show that there is no prime ideal
P between S and Ip.

Next, assume that P is a prime ideal of R that does not contain
all of S. Then some ek$P> where ek is the unity of Zk. However
since e3 ek — 0 for every j Φ k, evidently Zka P for every j Φ k. By
the same reasoning, (1 — ek)R £ P. As before, it is easily shown that
either P = (1 — ek)R or P — (1 — efc)J? + pekR for some prime p.

Knowing precisely what the prime ideals of R are, it is just a
routine matter to check that R satisfies (*).

The author is not able to give necessary and sufficient conditions
which he feels are adequate that an arbitrary ring satisfy (*). The
condition of Corollary 3.3, while necessary, is not sufficient to imply that
a ring satisfy (*) as is shown by the following example.

If S is the ring of polynomials in two indeterminates X and Y over
a field K, then every nonzero proper prime ideal of S has height 1 or
2. [4; p. 193]. Therefore if A = (XY) and if R = SI A, J? is a Noetherian
ring in which every prime ideal is maximal as minimal. The nonmaximal
prime ideal (X)IA of R, however, is not idempotent so that R does not
satisfy (*).
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if-POLAR POLYNOMIALS

RUTH GOODMAN

1# Introduction* The complex polynomials

(i) f(z) = Σ ft V , ϋ{z) = Σ ft V
j=o\3/ j=o\3/

are called apolar if their coefficients satisfy the condition

Σ(-D'ftW-A = o.

A well known property of apolar polynomials is given [1] by

GRACE'S THEOREM. If the polynomials f(z) and g(z) are apolar,
then every circular domain containing all the zeros of one polynomial
also contains at least one zero of the other.

The term "circular domain" is used here to denote any region into
which the circle | z | ̂  1 can be transformed by a nonsingular linear
fractional transformation

w = (ax + b)/(cx + d)

that is, a circular domain is a closed interior of a circle, a closed
exterior of a circle, or a closed half plane.

It is natural to ask whether similar but more stringent conditions
on the coefficients of (1) will insure that every circular domain contain-
ing all the zeros of one polynomial also contains at least k zeros of the
other when k is integer greater than unity. We show here that this
is the case. Our results can be stated more easily if we first make
the

DEFINITION. The polynomials (1) are called Λ-polar (1 g k <Ξ n, k
an integer) if their coefficients satisfy the k2 conditions

( 2 ) *Σ+ 1 (- ! ) ' (* ~ ϊ + XWy&m = 0
3=0 \ 3 /

(h — 0, , k — 1; 8 = n, , n — k + 1).

We shall show that fc-polarity of the polynomials (1) is sufficient
to insure that the desired relation between their zeros does hold.

It is apparent that when k is relatively large in comparison with

Received February 7, 1962.

1277



1278 RUTH GOODMAN

n there is only a restricted class of polynomials f(z) for which fc-polar
polynomials g(z) can exist. We shall show that when 2k + 1 ^ n the
fc-polarity of the polynomials (1) is both necessary and sufficient for
them to have a common, repeated zero such that the multiplicities, p
and q, with which this zero occurs in the two polynomials satisfy the
inequalities p ^ k, q^k, p + q ^ n + k.

2. The polar derivative* To prove our principal results, we shall
need a lemma concerning the (n — l)st degree polynomial

fζ(z) = nf(z) + (ζ- z)f'{z) = n Σ

This polynomial is called the "polar derivative of f(z)" or the "deriva-
tive of f(z) with respect to ζ". It can be obtain [2] from f(z) as
follows:

By the linear transformation

( 3) z = L(w) = (aw + b)j(cw + d) (be - ad = 1)

transform f(z) into the polynomial

(4) F(w) = (cw + dff(L(w))

then to the derivative F'(w) apply the inverse transformation w —
L~\z)y obtaining fζ(z). If c Φ 0, then f = a/c = L(oo); if c = 0, then
ξ- = co = L(co).

We shall refer to the polynomial F(w) defined by (4) as the trans-
form by (3) of the polynomial f(z). It is important to observe [2] that
the zeros of the transform F(w) are the transforms by w = L~\z) of
those of f(z).

LEMMA 1. Let the nth degree polynomial f(z) have n — k zeros in
I z I < 1 and k zeros in \ z \ > r, where r > 1. Then there is a point ζ
(not unique) such that fζ(z) has exactly k — 1 zeros in \ z \ > r.

Proof. Form F(w) by applying to f(z) the transformation

z = L(w) = (ζw - l)l(w -ζ) (1< ζ < r) ,

which takes | z \ < 1 into | w \ < 1 and takes | z \ > r into the circle

Now F(w) has k zeros in iΓ2 and n — k zeros in | w \ < 1. Since the
maximum modulus of these latter n — k zeros is less than unity, we
can choose μ < 1 such that these zeros also lie in | w | < μ. Let p =
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(1 + μ)/2. The circle

•Ki: \w-{p-l)\<p

contains the circle | w | < μ; for the line segment connecting w = — μ
and w — μ is a diameter of | w | < μ and is contained in the line
segment connecting w = — 1 and w = μ, which is a diameter of Kx.
Thus ίΓx contains n — k zeros of F O ) . Applying the Walsh two circle
theorem [5] to Kλ and K2, we find that the zeros of F'(w) lie in Klf K2,
and the third circle

K:\w-C\<R, C={n~ k)C> + k{p ~
n n

Furthermore, it is an immediate consequence of the two circle theorem
that if the boundaries of K and K2 do not intersect then there are
exactly ft — 1 zeros of F'(w) in K2. The condition for the non-inter-
section of these two circles is

C2- C> R2 + R .

This condition is equivalent to

n(C2 - C - R2- R) = kC2- R2(2n - k) - k(2ρ - 1) > 0 ,

and this last inequality is equivalent to

φ(ζ) = ft(r2 - l)ζ - (2n - k)r(ζ2 - 1) - k(2p - l)(r2 - ζ2) > 0 .

Now

φ(l) = 2k(r* - 1)(1 - p) > 0 ,

since r > 1 and /? < 1. Since φ(ξ) is a real, continuous function of f,
it follows that (̂ξ ) > 0 in an interval 1 g f ^ 1 + ε, where e > 0. For
any value of f in this interval, K and iί2 do not intersect and F\w)
has exactly k ~ 1 zeros in iί2. Now the zeros of fζ{z) are the trans-
forms by z = L(w) of those of F'(w). Hence exactly ft — 1 of them lie
in the transform of K2J that is, in \z\> r.

3. Properties of the fc-polarity conditions* To prove our principal
results, we shall need to establish first some properties of the ft-polarity
conditions.

LEMMA 2. For ft = 1, , n + 1, the polynomials (1) can be writ-
ten in the form
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where

~ + ^ α ^ (i = o , k -

The functions fkj satisfy the relation

%fk+l,j+l T" Jk+l,j ==Jk,i

Proof. We show first the property of the functions fkJ which is
stated last in the lemma. Using the definition of / t,, and a well known
property of the binomial coefficients, we write

Σ

Σ ^ _ ̂ α ^ + Σ (

= fk.j

The proof of the first part of the lemma is by induction. It is
true when k = 1, since f1Λ reduces at once to f(z). For any k > 1 we
have

IK? =ϊ

If the first part of the lemma is true when A; is replaced by fc — 1,
then the last expression above is equal to f(z). It follows that the
lemma is true for all values of k.

LEMMA 3. The polynomials (1) are k-polar if and only if the
polynomials fk>j and gkti are apolar for all i = 0, , k — 1 and
j = 0, ••-,&- 1.

Proof. The proof is immediate, since applying the apolarity con-
dition to all fkιj and gkti yields conditions (2) at once.
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LEMMA 4. The k-polarity conditions (2) are invariant under non-
singular linear transformations of the polynomials (1).

Proof. Since any non-singular linear transformation is equivalent
to a succession of transformations of the forms z = jw(y ΦO), z = Ijw,
z — w + 7, the lemma can be established by showing the invariance of
(2) for each of these special forms.

Each sum in (2) is invariant under magnifications and rotations.
For applying z = ΊW to both f(z) and g(z) replaces αs_y by Ίs~jas-3

and bj+h by jj+hbj+h, whence each term of the sum is multiplied by
ys-jyj+h _ ys+h^ ΓJI^ g u m ^ therefore, remains equal to zero.

Under the transformation z — 1/w, the polynomials (1) are carried
into

F(w) = tCfjAjw' and F(w) = t
j = 0\J/ 3 = 0

where A3 = αw_y and JŜ  = bn-3 (j = 0, , n). The entire set of con-
ditions (2) is invariant under this transformation. For we have

v ( Λ
3=0 \ J /

3=0

/ ΊΛ i 1 v

)a2v ^..jt+i-.it-i-i

— / I\»-Λ+I n v + V
— \ ±) 2-1

3=0

where sr — 2n ~ s — ft + 1 and h' = k — h — 1, so that s' takes on the
values n — k + 1, , n and h' takes on the values k — 1, , 0. Hence
satisfaction of (2) by f(z) and #(2) insures satisfaction of (2) by F(w)
and G(w).

To prove the invariance of (2) under translations, we first make
use of Lemma 2 and show that if f(z) is transformed into F(w) by
z — w + 7, then each polynomial Fktj(w) is a linear combination of the
polynomials fh,3 {w + c)(j = 0 , , ft — 1). Precisely, we show that the
equations

( 5 ) FkJ(u>) ^ * ! f ( f c " ^ ~ ^^Λ.i+ftίw + 7) ( i = 0, , ft - 1)

hold for every k = 1, , n + 1. The proof is by induction on ft. We
show first that the desired relations hold for the highest value of ft,
that is, ft = n + 1. When ft = n + 1, the equations defining fkJ and
Fjfc.j reduce to fn+1>3 = a,- and F w + l i i = Λ, , so that (5) becomes
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α ^ (j - 0, , k - 1).

To see that this holds, we find As by collecting the coefficients of the
powers of w in the polynomial f(w + 7). We have

F(w) =f(w + 7) = Σ ( J W + 7)'

Σ (5)

so that

Thus equations (5) hold when k = n + 1. Next, we assume that they
hold for general index k + 1 and show that they also hold for index
k. For convenience, we shall temporarily let φkJ denote fkj(w + 7).
(FkJ will denote FkJ(w) as usual.) Using the property of Fktj and fk)j

established in Lemma 2 and assuming that equations (5) hold for k + 1,
we can write

Fk,j = wFk+ltj+1 + Fk+ljj

g
Σ ( f c J

fc - i - lλ (k - j - 1

+
h\\ h i ) + { h )Γ

<Pk+i,3+h+ι
/

k-j-l /L. _ A _

+ Σ

Σ
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Thus equations (5) hold for k = n + 1, , 1.
We have now established that each polynomial FkJ(w) is a linear

combination of the polynomials fkj(w + 7). To finish the proof of the
invariance of (2) under translations, we recall the known facts (i) that
apolarity is invariant under translations of the polynomials [1] and (ii)
that if Ex and E2 are two sets of polynomials such that every polynomial
of JEΊ is apolar to every polynomial of E2J then any linear combination
of polynomials from Eλ is apolar to any linear combination of polynomials
[1] from E2. By Lemma 3, the fc-polarity of f(z) and g(z) implies the
apolarity of each polynomial in the set Ex\ {fk,k-i(w), ,Λ,oW} to each
polynomial in the set E2: {f7*.*-i(w)> *' •> 9kΛw)} Property (i) therefore
implies that all polynomials of E[: {fk,k-i(w + 7), -,fkAw + 7) are apolar
to all polynomials of E'2: {gk.k-i(w + 7), , gk,o(w + ?)}. We have just
shown that each polynomial FkJ(w) is a linear combination of polynomials
from E[ and each GkJ(w) is a linear combination of polynomials from
El. Thus property (ii) implies the apolarity of all the Fktj(w) to all
the Gktj(w). Lemma 3 now gives the fc-polarity of F(w) and G(w).

For convenience, we shall denote the repeated polar derivative

LEMMA 5. Let k ^ 2 and 1 ^ s ^ k — 1. The k-polarίty of f(z)
and g(z) is necessary and sufficient for the (k — s)-polarity of the
repeated polar derivatives f(z; ζ, s) and g(z; η, s) for arbitrary points
ζu ...,f. and ηl9 •••,%.

Proof. It suffices to make the proof for 8 = 1, since re-application
of this proof will then establish the lemma for all values of s con-
cerned. Letting φ(z) = f(z; ζ, 1) and ψ(z) = g(z; η, 1), we have

whence

1>J i = o V ^

- ζjk,i+1(z) + fk>j(z) (j = 0, . . . , k - 2) .

Similarly,

Ψk-u(z) — Vi9k,j+i(z) + 9kj(z) (j — 0, , k — 2) .

The fc-polarity of f(z) and r̂(̂ ) implies the apolarity of both fkJ+1(z)
and fk)j(z) to both gk+1>j(z) and gktj(z). Thus ^-^-(z) and ψk-ltj{z), which
are linear combinations of these polynomials, are apolar. The (k — 1)-
polarity of φ(z) and ψ(z) now follows at once from Lemma 3.
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If, on the other hand, f(z; ζ, 1) = fζl(z) and g(z; η, 1) = gVι(z) are
(k — l)-polar for arbitrary values of ξλ and ηu then, in particular, both
fo(z) and foo(z) are (k — l)-polar to both gQ(z) and f/oo(s). For convenience,
denote f(z; ζ, 1) by φ{z; ξΊ) and g(z; η, 1) by ψ(z; ηx). We have

Po\ 3

Φ(z; « ) = /„(«,) = nnt(n 7 ^αy+xz' ,
3=0 \ J /

whence

Σ
n—k+ln—k+l (M 1 \

Φk-U*, « ) = n Σ ( A )ai+j+1z
{ =Λ. ί + 1 (2)

( i = 0f . . . f f c - 2 ) .

Similarly,

Ϋk-iA*', 0) = 9k,A^) ,

f *-i.i(«; °°) = 9kj+i(z) U = 0, , k - 2) .

The (fc — l)-polarity of φ(z; 0) and ^(2; c») to ^(2; 0) and ψ(z; 00) implies
the apolarity of all the 0fc_lti(3; 0) and φk^ltj(z; cχ>) to all the ψk-ltj(z; 0)
and ψk-ltj{z) 00) for i = 0, , fc — 2. The apolarity of all the fkιj(z) to
all the gklj(z) for y = 0, , k — 1 now follows at once. This, in turn,
implies the fc-polarity of f(z) and g(z).

LEMMA 6. Let the nth degree polynomials f(z) and g(z) be k-polar.
Let ξlf , ξV-/b+i be the zeros of any one of the polynomials gkιk-i(z), ,
9k,o(z)> and let all these zeros be finite. Then f(z; ζ,n — k + 1) vanishes
identically.

Proof. If ζlf , ζn-k+i are the zeros of

then their elementary symmetric functions can be expressed in terms
of the coefficients. Let S{

o

m) = 1 and for i = 1, , m let S[m) denote
the sum of all possible products of ξlf , ζm taken i at a time. (Note
that bn-k+1+h Φ 0 since it is the leading coefficient of gkth(z) and all the
zeros of this polynomial are finite.) We have

(—*+i> = (-iy(n ~Jϊ + 1) bn-k+i+n-i (i == 0, , n - fc + 1).
V % I b^-uΛ-^,



tf-POLAR POLYNOMIALS 1285

Thus we can write

n-k+l+
υn-k+l+h 2-1 Uj+idih V
υn-k+l+h 2-1

n-k+l /M J~ i -|

Σ (-I)'! J + 1J + 1 ) α ί + 1 δ . _ t + 1 + ( k _ < ( i = 0, , k - 1 ) .

Now for each value of j , the last expression above is the left side of
one of the conditions (2). Consequently the fc-polarity of f{z) and g{z)
gives

W Σ + 1 α i + i S r Λ + 1 ) - 0 (j = 0, -, fc - 1) .

Now it is known [3] that f(z; ξ, t) can be written in the form

/(*; r, t) = τ-~zr Σ (Λ 7 *) Σ αy+iSi«^ .
(n — £)! i=o \ J / *=o

For ί = % — fc + 1, we have just shown that the sum which appears
in the coefficient of each zj vanishes. Consequently, we have
f(z; ξ, n — k + 1) ΞΞ 0, as we wanted to show.

4. iΓ-polar polynomials* We are now ready to prove our principal
results.

THEOREM 1. If the polynomials f(z) and g{z) are k-polar, then
every circular domain containing all the zeros of one polynomial
also contains at least k zeros of the other.

Proof. The proof will be by induction on k. For k = 1, this
theorem is simply Grace's theorem.

Assume that the theorem holds for k — m, and let f(z) and g(z)
be (m + l)-polar. Let C be a closed circular domain containing all the
zeros of g(z) and exactly s zeros of f(z). Then C is contained in an
open circular domain C" whose closure also contains exactly s zeros of
f(z). Since fc-polarity is invariant under linear transformations, we
can take | z \ > 1 as C". Then for a suitable r > 1, all the zeros of
g(z) and exactly s zeros of f(z) lie in | z | > r, while n — s zeros of
f(z) lie in \z\ < 1. By Lemma 1, therefore, there is a point ζ such
that exactly s — 1 zeros of fζ{z) lie in \z\> r. Also, by Laguerre's
theorem [2], all the zeros of gη(z) lie in \z\ > r whenever η lies in
I z I ^ r. By Lemma 5, the (m + l)-polarity of f(z) and g(z) implies the
m-polarity of fζ(z) and gv(z) for all values of ζ and rj. Consequently,
the assumption that the theorem holds for k — m implies that the
circular domain \z\ > r, which contains all the zeros of gη(z), must
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contain at least m zeros of fζ(z). Since we know that this domain
contains exactly s — 1 zeros of fζ(z), we have s — 1 Ξg m. That is,
s :> m + 1, so that the theorem holds for k — m + 1.

THEOREM 2. For (π + l)/2 ^k ^n, the k-polarity of the nth degree
polynomials f{z) and g(z) is necessary and sufficient for them to have
a common, repeated zero whose multiplicities, p and q, satisfy the
inequalities p ^ k, q ^ k, p + q ^ n + k.

Proof. Suppose that two polynomials have a common repeated root
whose multiplicities satisfy the given inequalities. A linear transfor-
mation will take the polynomials into

and

where a0 — = ap-x — 0 and 60= = δβ-i = 0. Now every product
afij which occurs in the fc-polarity conditions (2) vanishes. For if afij
is to be nonzero, we must have i ^ p and j ^ q, so that i + j ^ p + q
whence i + j ^ n + k. The maximum value which i + j can assume
for any afij in (2), however, is n + k — 1. Thus conditions (2) are
satisfied and the polynomials are fc-polar.

Suppose now that f(z) and g(z) are fc-polar, with k ^ (n + l)/2.
We can, if necessary, perform a linear transformation on the poly-
nomials to make bn φ 0 and b0 = 0; that is, we can make all the zeros
SΊ> •> ?n-fc+i of gk,k-i(z) finite and put one of these zeros at the origin.
By Lemma 6, f(z; ξ, n - k + 1) = 0. Thus [4] either f(z; ζ, n - k) = 0 or
f(z; ζj n ~ k) = c(z — r]n^k+1)

k. In either event, there is an fc in the
range k ^ h ^ n such that f(z; ζ, n — h + 1) = 0 and /(«; ξ", n — h) =
c(« - ?Λ- f t+1)\ (Note that /(s; f, 0) =f(z).) We can assume that ?n_Λ+1 is
at the origin, so that / ( ^ ζ,n — h) — czh. By Lemma 5, the fc-polarity
of f(z) and (̂2;) guarantees the (k + h — w)-polarity of f(z; ζ,n — h)
and g(z; η,n — h) for arbitrary ηx, , ^W_Λ. Let

Then we have Ao = = Ah^ = 0, Ah Φ 0; and the (k + h — w)-polariy
conditions which involve Ah reduce to



Z-POLAR POLYNOMIALS 1287

ΆftA>o = • • • = = AhBk+h-n-1 = 0 ,

whence

( 6 ) BQ = = β^+ft.^j = 0 .

We know [3] that

where μ = (n\)l(hl). Now equations (6) hold for arbitrary values of
î> '> Vn-h- Hence they hold in particular for η1 — = rjn_n = 0.

For these values, we have Sίn~h) = = S£;Λ ) = 0, so that Bo = μδ0,
whence J50 = 0 implies 60 = 0. We can now use ηx = 1, % = = )^_Λ = 0,
so that Sίn~h) = 1, S{

2

n-h) = . . . = SirΛ

Λ) = 0, BQ = μ^, whence 6X = 0.
Using ^ = % = 1, % = . . . = % _ f t - 0 gives $-*> = 2, S<-*> - 1, S{-*> =
• = SftL~iA) = 0, β 0 = /jeδ2, whence b2 = 0. It is clear that we can
proceed in this way to establish b3 — = bn-h = 0. We now have
Bi = /^δn-Λ+iSi-^, whence we can conclude that δw_Λ+i = 0. It then
follows that JS2 = μbn-h+2S

{

n

nSh], whence 6%-Λ+2 = 0. We can proceed in
this way to show that successive values of bj vanish until we arrive
at I^+Λ-w-i = t&k-^n-^ = 0, whence bk-λ = 0. Thus g(z) has at least
a fe-fold zero at the origin. Let q be the multiplicity of this zero, so
that b0 = = &,_! = 0, bqΦ 0. Since q^k = 2k-k^n + l-k, it
follows that 6,, appears as the b, of highest index in k of the fc-polarity
conditions. Since it is the only nonvanishing bj in any of these k
conditions, they reduce to

bqa0 = . . = 69afc_! = 0 ,

whence

a0 = = a .̂-! = 0 .

Thus f(z) has a p-fold zero at the origin with p ^ k. To finish the
proof, we have left only to show that p + q ^ n + k. Now the product
α^δ^ is nonvanishing. If it were to appear in any of the fc-polarity
equations (2), then the indices of every product afij appearing in the
same equation would have to satisfy i + j — p + q. But this means
that if i > p so that a{ Φ 0, then j < q so that b3- = 0. Thus, if apbq

did appear in any equation of (2), it would be the only non-vanishing
product in this equation, whence the equation would not hold. Hence
the product apbq cannot appear in any of the equations (2). But every
product a{bj does appear for which

n — k + l ^ i + j ^ n + k — 1 .
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T h e r e f o r e , e i t h e r p + q <n — k + 1 o r p+q>n+k— 1. B u t
p + q^k + k^n + l>n + l — k. C o n s e q u e n t l y , w e m u s t h a v e
p + q>n + k — 1, that is, p + q ^ n + k.
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ON THE ADDITIVITY OF LATTICE COMPLETENESS

to the memory of Maurice Audin

ISRAEL HALPERIN AND MARIA WONENBURGER

1. Introduction* It was shown in [1, Theorem 4.3] that upper fc$-
continuity1 is additive in the following sense:

(1.1) Suppose that [0, a], [0, b] are upper ^-continuous in a relatively
complemented modular lattice. Then [0, a U b] is upper ^-continuous
provided that [0, a U b] is upper ^-complete.

But it may happen that [0, a], [0, b] are both upper ^-complete
(both may even be von Neumann geometries with a perspective to 6)
and yet [0, a U b] is not upper ^-complete. In fact there are von
Neumann rings & for which the lattice R^, with £f = ^ 2 , is not even
upper ^0-complete (see the Remark preceding Definition 3.1)

With a modest supplementary condition however, additivity of upper
^-completeness does hold, as we show in this paper.

2. Terminology and notation* We shall use the notation of [1],
[2], and [4].

I will denote a set of indices a and I will denote the cardinal
power of /.

^ will denote an infinite cardinal, Ω will denote the least ordinal
number whose corresponding cardinal power is ^ .

A lattice is called upper ^-complete if the union a = U (α Λ |αe I)
exists whenever I ^ ^ , and is called upper ^-continuous if for every b:
b Π a = U ((& Π U (a* I a e F)) I a 1 1 finite F c Of w i t h d u a l definitions for
lower ^-completeness and lower ^-continuity. The lattice is called ^~
complete, respectively ^-continuous if it is both upper and lower
^-continuous.

A complemented modular lattice L is called an #-von Neumann-
geometry if it is ^-complete and ^-continuous (irreducibility is not
assumed).

If we omit the fc$ i n anY of these designations, this implies that
the lattice L has the corresponding ^-property for all ^ .

If & is an associative regular ring (not necessarily with unit element)
then RM denotes the relatively complemented modular lattice of its principal
right ideals, ordered by inclusion. & is called an ^-von Neumann-
ring, respectively a von Neumann ring, according as R^> is an

Received December 28, 1961. Dr. Wonenburger is a postdoctorate Fellow (of the
National Research Council of Canada) at Queen's University.

1 Terminology and notation are explained in section 2 below.
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Neumann-geometry, respectively a von Neumann geometry.
In any relatively complemented modular lattice, if a ^ b then [a — b]

will denote an arbitrary (but fixed) element such that [a — b] (j b = a
(the dot indicates that the summands in the union are independent). We
write a ~ b to denote: a is perspective to 6, and a < b to denote: a ~ 6X

for some bx ^ b. Elements α, b are called completely disjoint, (notation:
(α, b)P) if: ax ~ bu ax ^ α, 6X <̂  6 together imply αx = 0.

3* The additivity of completeness theorem*
In this section α, 6, c, a?*, will denote elements in a given relatively
complemented modular lattice L.

If [0, a U c] is upper ^-complete W e shall write u(a, c, ^ ) to mean:

(3.1) Whenever xa ^ a U c for all ael (with / ^ K

a Π (U(%l/3eF)) = 0

/or αZi j^mίe F cz I, then a Π ( U f e l α e ^ ) ) = 0.

It is important to note: if u(a, c, ^ ) holds then u(ar, c', ^ ) holds
for all a' ^ a, c' <L c.

Clearly, if [0, a (J c] is upper ^-complete and upper ^-continuous then
u(a> Cf #) does hold.

Similarly, if [0, a U c] is lower ^-complete we shall write ϊ(α, c, #)
to denote:

(3.1) Whenever xa ^ a (J c /or αii α e l (wΐ£/& /

α U (Γi(xβ\βeF)) = a U c

/or all finite F c /, £ftew α U

It is important to note: if l(a, c, ^ ) holds then ί(α', c', y^) holds
for all af ^ α, c' ^ c.

Clearly, if [0, a U c] is lower ^-complete α^d lower ^-continuous then
i(α, c, fc$) does hold.

LEMMA 3.1. Suppose that each of [0, a u 6], [0, 6 U c], [0, α U c] is
upper ^-complete and suppose that u(a, c, ^ ) holds. Then [0, a U b U c]
is upper ^-complete.

Proof. We may suppose that {α, 6, c} is an independent set, for if
c, b are replaced by [c - (α Π c)] and [6 — (6 Π (α U c))] respectively the
hypotheses of Lemma 3.1 continue to hold and the conclusion is not
changed.

Using transίinite induction, we may suppose that Lemma 3.1 holds
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for all fc$' < ^ . We may therefore assume that xa is given, ^ α U δ U c
for all 0 < a < Ω, that U f e \ a ^ β) exists for all β < Ω and we need only
show that \J(xω\a < Ω) exists.

We may suppose xΛ ^ xβ for a <£ β < Ω (by replacing the original
v» by \J(xβ\β S oc) for all {a < Ω).

Set xo=\J((xΛ f](aΓ\b))\a<Ω) (this union exists since, by hypothesis,
[0, a U δ] is upper ^-complete). Set xa — xQ U %a for 0 < α: < Ω and
observe that xβ^xa for all 0 ^ β g α: < £.

Set y0 = ά0 and ya = [άΛ - UfelO ^ /9 < α)] for 0 < a < Ω. Then
U(2/β|0 ^ iδ < α) = U(^β|0 ^ /S < a) for all 0 < a < fl, as may be verified
easily by transfinite induction.

Clearly, we need only show that \J(ya\0 ^ a < Ω) exists. Hence it
is sufficient to show that \JΛyΛ exists, where (for the rest of this proof)
we write LL to mean \J0<a<Ω (note: 0 ^ a < Ω has been replaced by
0 < a < Ω).

Set u = (a\J (U«((α U V») Π (δ U c)))) Π (b U (U ((δ U yΛ) Π (α U c))))
(this union exists since, by hypothesis, [0, b U c] and [0, a [j c] are upper
^-complete). We observe that u ^ yβ for all 0 < β < β since each factor
of t& has this property: for fixed ft α U (\J»((a U 2/Λ) Π (6 U c))) ^
α U ( N 2/β) n ( ί ) U c ) ) = ( α U % ) n ( α U δ U c ) = α U | / β ^ %.

We shall show that u is the desired union \Jaya. It is clearly suf-
ficient to show for every w: if u ^ w ^ j / Λ for all 0 < α < Ω then ί ί ^ w .

Since a U 2/* ^ α U w and 6 U ya ^ 6 U ^ for all 0 < a < Ω,

u ^ (α U ((a U w) Π (6 U c))) Π (6 U ((6 U w) f) (a U c)))

= (α U w) Π (δ U w) = w U (α Π (6 U w)) .

It is therefore sufficient to show that a Π (δ U w) ^ w. We shall show
that a Π (δ U u) = 0; this will imply:

Now 6 U ^ = (αUδU(U»(αU2/*)Π(δUc))j)Π(δU(U«((δU2/*)Π(αUc)))),

α (Ί (δ U w) = a Π (δ U (U«((δ U yΛ) Π ( α U c))))

= a Π ((δ Π (α U c)) U (U«((δ U yω) Π (a U c))))

= α Π (U«((δ U yΛ) Π (a U c))) .

Since u (a, c, )&) is assumed to hold we need only show:

α Π (U(((δ U yΛ) Π (α U c))\a = alf , am)) = 0

for every finite set of indices 0 < ax < a2 < < am < Ω.
Hence it is sufficient to show that

α Π (δ U (U(l/«|α - «!, •-,«*))) - 0 ,
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and so it is sufficient to show that

(3.2) ( α U δ ) Π (U(V.|α = «i, , O ) = 0 .

For this purpose, we note: ya Π (\J(Vβ10 ̂  β < a) = 0 for all 0 < a < β.
This implies that {t/α | a = 0, α ,̂ , am} is an independent set and hence
Vo Π (U(l/«lα = αi> '•"> #«)) = 0. This implies (3.2) since the left side
of (3.2) is ^ y0. Thus Lemma 3.1 is proved.

COROLLARY 1. Suppose that [0, a{ U α/| ΐs upper ^-complete for
i, j = 1, , m for some finite integer m and suppose that u(aif ah ^ )
holds whenever i < j . Then [0, a1 U U αm] is upper ^-complete.

Proof. If m rg 2 the conclusion is part of the hypotheses. Suppose
that m > 2 and that the Corollary is known to hold with m — 1 in place
of m; then Lemma 3.1 can be applied (with a = al9 b = α3 U U« f f l

and c = α2) to show that the Corollary holds for m itself. By induction
on m, the Corollary is established.

COROLLARY 2. Suppose that [0, a{ U αy] is upper ^-complete and
upper ^-continuous for i, j = 1, , m for some finite integer m. Then
[0, ax U * U am] is upper ^-complete and upper ^-continuous.

Proof. Since upper ^-continuity of [0, a{ U ad] implies that u(aif ah \&)
holds, Corollary 1 shows that [0, aτ U U am] is upper ^-complete. The
upper ^-continuity then follows from [1, Theorem 4.3].

LEMMA 3.2. Suppose that α = α 1 U α 2 U U am and ai<a1 (J U a>i-i
for 1 < i ^ m. Then a can be expressed in the form:

(3.3) ax U a2 (j U ΰn for some n ^ m and elements α2, , dn such
that άi < ax for all 1 < i ^ n.

Moreover a2 may be taken to coincide with a2 if ax Π a2 = 0.

Proof. Lemma 3.2 holds trivially if m = 1 and also if m = 2 and
αj fl α2 = 0. We may therefore suppose (by induction) that m > 1 and
that b = a1U U αm-i has the form (3.3).

We can replace am by [am — (am Π b)] since the hypotheses of Lemma
3.2 continue to hold and the conclusion is not changed. After this change,

am Π b = am Π (a, (j a2 \J . . . \j an) = 0 .

Since αm < αx lj ά2 LJ U an there is a perspectivity mapping <£> of
[0, am] with 9>(αm) ̂  6. Then
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where

<P(a>m.i) = <P(<*>m) Γl ax ,

and for 1 < i <; n,

ψiflm.i) = [(?>(« J Π (a, (j a2 \J ύ ά<))

- (9>(α«) Π (αx ύ α2 u 0 α ^ ) ] .

Obviously, αW i l < aτ. If i > 1 then αW t i ~ 9>(α*,<); ?>(»».*) ^ α»; ά< < αx;
and αw > ί Π (?>(««,») U α» U αx) = 0; these facts imply that amΛ < a± (use
(2.2) of [1]). The conclusion of Lemma 3.2 now follows at once.

LEMMA 3.3, Suppose that

(i) a = G&! U α2 U U am for some finite m Ξ> 2,
(ii) α 2 ~ α 2 ,
(iii) α̂  < αi U U α*-i /or 2 < i ^ m,
(iv) [0, αx U α2] is upper ^-complete,
( v ) ^(αx, α2, 5rt) holds.

Then [0, α] is upper ^-complete.

Proof. Applying Lemma 3.2, and using a new m and new elements
&3, # ,^m we may suppose that (i), (iii) hold in the strengthened form:
a — ax 0 a2 0 LJ m̂ and a{ < «! for 2 < i ^ m.

Suppose that l ^ ΐ < i ^ m . If i =̂ 2 then ad < α2 (because of (ii))
and there is a perspectivity mapping φ of [0, a{ U αy] with 9?(α<) ^ di
and 9>(αy) ^ a2. Hence [0, a{ U dj] is upper ^-complete and u(aif ajf ^ )
holds in this case.

If i = 2 there is a perspectivity mapping <ρ of [0, α2 U a,j] with ^(α2) —
^i, φ(p>ύ) — ao'y the result for [0, ax U α̂  ] obtained previously now implies:
[0, α2 U cίj] is upper ^-complete and u(a2, ajf ^ ) holds.

Corollary 1 to Lemma 3.1 now applies to these elements alf •• , α w

and this completes the proof of Lemma 3.3.

COROLLARY. Suppose that the hypotheses (i), (ii), (iii), of Lemma 3.3
hold and suppose also that

(vi) [0, aλ U a2] is upper ^-complete and upper ^-continuous.

Then [0, a] is upper ^-complete and upper ^-continuous.

Proof, (vi) implies (iv), (v). Hence [0, a] is upper ^-complete by
Lemma 3.3. Upper ^-continuity then follows from [1, Theorem 4.3].

LEMMA 3.4. (Additivity of lower ^-continuity). Suppose that
[0, ^ U ••• UftJ is lower ^-complete and that [0, a{] is lower ^ -
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continuous for ί — 1, , m. Then [0, ax (J U am] is lower ^-continuous*

Proof. We may assume that {al9 , am} is an independent set
(replace a{ by [a{ — (a{ Π (aλ U U a*-i))] for 2 ^ i ^ m).

Then [αx, αx U α2] is lower ^-continuous since it is lattice isomorphic
to [0, α2] under the mapping: x —> x Π a2. Similarly [α2, αx U α2] is lower
^-continuous. By the dual of [1, Theorem 4.3], [0, ax U a2] — (\a1 Π α2,
«i U α2]) is lower ^-continuous. Lemma 3.4 follows by induction on m.

LEMMA 3.5. Suppose that each of [0, a U 6], [0, 6 U c), [0, α U c ] is
lower ^-complete and suppose that l(a, c, ^ ) holds. Then [0, a U & U cj
is lower ^-complete.

Proof. We may suppose that {α, b, c) is an independent set, for if
c, b are replaced by [c — (a Π c)] and [6 — (b Π (α U c))] respectively the
hypotheses of Lemma 3.5 continue to hold (l{a, clf ^ ) is equivalent to-
l(a, c, ^ ) if a U cλ = a U c) and the conclusion is not changed.

Now set B = aU c, C = b U α, A = δ U c, and 1 = α U b U c. We
have: [A Π -B, 1](— [c, a U & U c]) is lower ^-complete since it is lattice
isomorphic to [0, a U b] under the mapping x—+x Π (a U 6). Similarly
each of [ 5 f | C , l ] , [CΠ A, 1] is lower fc$-complete.

We can now show that [0, a U b U c] ( = [A Π ^ Π C, 1]) is lower fc$-
complete (by applying the dual of Lemma 3.1) if we can show:

(3.4) Whenever Xa^Cf)Afor ae I (with T^ ^ ) and C U (Π(^β \βeF)) =
1 for all finite Fa 7, then C U (Γ\(Xa\ae I)) = 1.

Since C Π A = 6 and C — α U b, (3.4) can be rewritten:

(3.4)' Whenever Xa^b for a e I (with Γ ^ ) and αU {f\(Xβ\β € F))=
α U 6 U c /or all finite F c I then a [j (C[(Xa\a e I)) = a [j b [j c.

Suppose that the hypotheses of (3.4)' hold and set xa = Xa Π (a U c).
Then xω^a{j c for all a and

= a U ( ( Π ί - ^ l ^ e ί 7 ) ) n (α U c)) = (α U ( Π (Xβ\βeF))) Π ( α U c )

= (a U δ U c) Π (α U c) = α U c .

Since l(a, c, ^ ) holds, it follows t h a t

α U (Π(»«»l«e/)) = α U c α U (fl ( X I ^ e / ) Π (α U c)) = a U c

a \J (Γi(XΛ\aeI)) ^ a \J c (hence = α U b U o) .

This means: (3.4)' does hold. This completes the proof of Lemma 3.5*
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COROLLARY 1. Suppose that [0, a{ U cίj] is lower ^-complete for
i,j = 1, - ,m.

Suppose also that l(aif ah ^ ) holds for all i<j. Then [0, aλ U U am]
is lower ^-complete.

Proof. This follows from Lemma 3.5 by induction on m, just as
Corollary 1 to Lemma 3.1 followed from Lemma 3.1.

COROLLARY 2. Suppose that [0, a{ U a \ is lower ^-complete and
lower ^-continuous for i, j = 1, , m. Then [0, aλ U U am] is lower
^-continuous.

Proof. Since lower ^-continuity of [0, a{ U αy] implies that l(aif ah ^ )
holds, Corollary 1 shows that [0, ax U U αm] is lower ^-complete.
The lower ^-continuity of [0, a± U Uαm] then follows from Lemma 3.4.

LEMMA 3.6. Suppose that

{ i) α = aλ U tt2 U U am for some finite m ^ 2,
(ii) α2 - ax,
(iii) α̂  < αx U U »<_! for 2 < i ^ m,
(iv) [0, αx ύ 0̂2] is lower ^-complete,
(v) £(<&!, α2, ̂ ) holds.

Then [0, α] is lower ^-complete.

COROLLARY. Suppose that (i), (ii), (iii) /̂ oid απcί αiso

(vi) [0, aλ 0 α2] is Zo^βr ^-complete and lower ^-continuous.

Then [0, a] is lower ^-complete and lower ^-continuous.

Proof. Lemma 3.6 and its Corollary follow from Lemma 3.5 and
Lemma 3.4 just as Lemma 3.3 and its Corollary followed from Corollary
1 to Lemma 3.1 and [1, Theorem 4.3],

THEOREM 3.1. Suppose that each o/[0, a{ U a3 \ is an )ft-von Neumann-
geometry (respectively a von Neumann-geometry) for i,j — l, « ,m.
Then [0, aλ U U αm] is an #-von Neumann-geometry (respectively a
von Neumann geometry).

Proof. This follows from Corollary 2 to Lemma 3.1 and Corollary
2 to Lemma 3.5.

COROLLARY 1. Suppose that

< i) a = ax U a2 U U am for some finite m ^ 2,
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(ii) α2 ~ a19

(iii) α< <; αi U U di-i for 2 < i ^m,
(iv) [0, ax 0 a2) is an ^-von Neumann-geometry (respectively a von,
Neumann-geometry).

Then [0, α] is an )&-von Neumann-geometry, respectively a von Neumann-
geometry.

Proof. This follows from the Corollary to Lemma 3.3 and the
Corollary to Lemma 3.6.

COROLLARY 2. Suppose that & is an #-von Neumann-ring (re-
spectively a von Neumann-ring). If R^. has a basis xu x29 , xm such
that x2 ~ xx and x{ < xλ for 2 < i ^ m, then &2 is an #-von Neumann-
ring (respectively9 a von Neumann-ring).

Proof. By hypothesis, the unit element of the lattice R^ is the
union xλ LJ [j xm. The unit element of R^f with £S = ̂ 2 , can be
represented as a union xx LJ L) xm U Vi U U l/» with ]/i — xi and
hence ^ < xx for 1 ̂  i ^ m. Since [0, ̂  U x2] is an ^-von Neumann
geometry (respectively a von Neumann geometry) along with R^y Corollary
1 applies and this completes the proof of Corollary 2.

COROLLARY 3. Suppose that & and &% are both ̂ -von Neumann-
rings (respectively von Neumann-rings). Then &n is an ^-von
Neumann-ring (respectively a von Neumann-ring) for all finite n.

Proof. If n > 2 the unit element of Ry, with S? = ̂ » , can be
expressed as xx U x2 U U %n where xλ is the unit element of R^f

Xi ~ a?! for all i, and [0, a?! ύ #2] = JB^ . Theorem 3.1 applies and this
completes the proof of Corollary 3.

REMARK. Let & be the ring of sequences x — (xn) with all xn complex
numbers and all but a finite number of xn real, with componentwise
addition and multiplication; this example was given by Kaplansky [3,
page 526]. This <% is a von Neumann-ring but ^ ? 2 is not even upper
^-complete.

DEFINITION 3.1. If L is a relatively complemented modular lattice,
then an element a is called Boolean (with respect to L) if b± ~ b2f bλ rg a
together imply bλ — δ2; a is called the Boolean part of L (necessarily
unique if it exists)2 if a is Boolean and at ^ a for every Boolean ax.

2 This is an abuse of language: properly, [0, a] should be called the Boolean part of
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LEMMA 3.7. Suppose that L is a relatively complemented modular
lattice. If (a, b)P holds then for every c in L, c (Ί (a U b) — (c Π a) U (c Π δ)
and [0, a U b] is the direct sum o/[0, α] and [0, δ]. On the other hand
if a is Boolean then

( i ) b ^ a implies that b is Boolean,
(ii) b Π a = 0 implies that (6, a)P holds,
(iii) b ^ a implies that the relative complement [b — a] is unique,
(iv) a Π (b U c) = (a Π 6) U (a Π c) /or αZZ 6, c m L,
(v) [0, a] is a Boolean algebra.

Proof. Suppose that (α, b)P holds and set d = [(c Π (α U δ)) —
((c Π α) U (c n 6))], da = (d U δ) Π α, dδ = (d U α) Π δ. Then d ^ α U δ,
d Π α = d Π b = 0, dα ύ d = (d U b) n (d U α) = d6 0 d, so da ~ db.
Since da ^ a, db tίb and (α, δ)P holds, we must have: da = 0; 6 = dα U δ =
d U 6; d ^ 6; hence d = 0, c Π (α Uδ) = (c n α) U (c Π δ). If c ̂  α U δ
then c — (c n α) U (c Π δ); and if c = ^ U c2 with ^ ^ α, c2 ̂  δ then
c Π a = cx U (ca Π δ Π α) = cλ U 0 = cx, c ίΊ δ = c2. This proves that
[0, α- U δ] is the direct sum of [0, a] and [0, δ].

(i) and (ii) are obvious from the definition of Boolean element.
(ii) asserts that a is in the centre of L as defined in [1, (2.5)]. But

if a is in the centre of L and b is any element in L with 6 ^ a then
a is in the centre of [0, δ], hence [b — a] is uniquely determined (use
[1, (2.6)]). This proves (iii).

If 6, c are arbitrary elements in L, set bλ — [b — (a Π δ)], cλ =
[c — (a Π c)]. Since α fl ί)i = α ίl c2 = 0 and a is in the centre of L, it
follows that (α, δx)P, (α, cx)P, hence (α, δx U c J P (use [1, (2,6)]); therefore
α Π (δx U Ci) = 0. By the modular law

a Π (δ U c) = a Π (δx U cx U (a Π δ) U (α Π c))

= (α Π 6) U (α Π c) U (α Π (δx U cx))

and hence (iv) holds.
Thus [0, a] is a distributive complemented lattice, equivalently: a

Boolean algebra. This proves (v).

LEMMA 3.8. Suppose that L has a unit element l = a1[Ja2 U U am

with m ^ 2, α2 ~ αx, α̂  < ax for 2 < i ^ m and aλ Π a2 — 0. Γ/̂ ew the
Boolean part of L exists and is 0.

Proof. By Lemma 3.2 we may assume that 1 = ^ 0 # (j am with
m Ξg 2, α2 ̂  αx and α̂  < αx for 2 < i ^ m.

To prove Lemma 3.8 we may suppose that a Φ 0 and we need only
exhibit elements blf δ2 such that bx ^ α, bx~ δ2, and bx Φ δ2.
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If a{ Π a Φ 0 for any i it suffices to choose this element as bλ since
the relations ax ~ a2 and a{ < αx if i Φ 1 imply δx — δ2 for some δ2 =£ bλ

(even δx ΓΊ δ2 = 0).
On the other hand, if a{ Π a = 0 for all i, set δx = (αx U U ̂ ) (1 α

where i is the smallest integer for which this element is different from
0 (necessarily 1 < i S m) and set b2 — ((α2 U U di-i) L) δx) Π α*. Then
δx~δ2 since (aι U Uα»-i) LJ δx = (αx U U a^) LJ δ2; and bλ Φ b2 since
δ2 ^ α{ and bλ Π α< ̂  α Π a{ = 0. This completes the proof of Lemma 3.8.

LEMMA 3.9. Suppose that L is an upper complete complemented
modular lattice and let a be the union of all Boolean elements in L.
Then a is the Boolean part of L.

Proof. We need only show that a is Boolean, that is, we may suppose
that δ ̂  α, that ψ is a perspective mapping of [0, δ], that δ Φ φ(b) and
we need only derive a contradiction. By replacing δ by [δ — (δ Γt φ(b))]
we may suppose δ Φ 0 and δ Π φ(b) = 0.

Now for every c: (φ(b Π c)) - (ί) Π c) and (φ(δ Π c)) Π (δ Π c) = 0.
If c is Boolean this implies: δ Π c — 0, and hence (since c is Boolean)
(b,c)P holds. It follows from [1, formula (2.6)] that (b,a)P holds,
contradicting the fact that δ Φ 0 and δ ̂  α. This contradiction proves
Lemma 3.9.

THEOREM 3.2. Suppose that L is a relatively complemented modular
lattice and

( i ) a = a0 U a± U a2 U
 β ' [J am for some finite m ^ 2,

(ii) (α0, αx U U αm)P feoZds,
(iii) α2 — αj, α2 Π aλ = 0,
(iv) a{ < αx U U αi-i /or 2 < i ^ m,
(v) φ is a perspective mapping of [0, δ] with φ(b) <S α.

Let 7Γ denote one of the properties: to be upper ^-complete and upper
^-continuous, or to be lower ^-complete and lower ^-continuous. Then
[0, a U δ] has property π if both of [0, aλ U a2] and [0, α0 U φ~\a0 f] φ(b))]
have property π; if a0 is the Boolean part of [0, a] and [0, δ] has a
Boolean part δ0, it is sufficient that [0, ax U a2] and [0, a0 U δ0] should
both have property π.

Proof. Since (α0, αx U U αm)P holds, Lemma 3.7 shows that
φ(b)=φ(b1) ύ φ(b2) where b^φ^a, n 9?(δ)) and 6a=9?"1((a1 U U αm) Π ^(δ)).
Then (α0 U ^ ^ U U α m U δ2)P holds (use [1, (2.6)]).

By Lemma 3.7, [0, a (J δ] is the direct sum of [0, a0 U δj and
[0, αj U U am U δ2] and has property TΓ if each of the summands has it.
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Since b2 < ax U U amf [0, a± U U α m U b2] has property π if
[0, a± U α2] has it, by Lemma 3.3 and its Corollary and Lemma 3.6 and
its Corollary.

If a0 is the Boolean part of [0, a] then φφ) n &0 is Boolean with
respect to [0, α], a fortiori Boolean with respect to [0, φφ)]. Thus, 6X is
Boolean with respect to [0,6], If [0, b] has a Boolean part bQ then
ii ^ &0 and α0 U bλ <£ α0 U ί>0? hence [0, α0 U &i] has property π if [0, a0 U &0]
has it.

This proves all parts of Theorem 3.2.

REMARK. If & is a von Neumann ring then ^ has a unique
decomposition as a direct sum & — & 0 & such that R^ is the Boolean
part of R^ and R^ has a basis α̂ , x2, x3 with x2 ^ #i and x3 < Xi. Then
Theorem 3.2 and Corollary 2 to Theorem 3.1 apply and show that ^ ? 2

is a von Neumann ring if and only if &2 is a von Neumann ring (for
details see [2]).
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ARC-WISE CONNECTEDNESS IN SEMI-METRIC SPACES

ROBERT W. HEATH

1Φ Introduction. The Arc Theorem usually encountered is the
following: a connected and locally connected Cauchy complete metric1

space is arc-wise connected [10]. The most general Arc Theorem is
Theorem 1 in Chapter II of [14], in which "Cauchy complete metric space"
is replaced by "a space satisfying Moore's Axiom 1"—i.e. a "complete
Moore space" (equivalent to a complete regular developable space [1];
see also [16] and [15]). Wyman Richardson, in one of F. B. Jones'
classes proved the Arc Theorem for strongly complete regular semi-
metric spaces (unpublished though the argument differed considerably
from Moore's argument). This was not, however, a real generalization
because such spaces are Moore spaces (cf. Corollary 4.3 of this paper).

Since most theorems which are true in Moore spaces are true in
regular semi-metric1 spaces, and since the exceptions are "in general
those theorems whose validity depends upon that property of Moore
spaces which forces the equivalence of perfect and hereditary separability"
[7], one might hope that the Arc Theorem could be further generalized
by simply replacing "metric" by "regular semi-metric." This paper
establishes that the Arc Theorem cannot be generalized directly to Cauchy
complete regular semi-metric spaces but can be extended to a somewhat
more general class of regular semi-metric spaces then those satisfying
Moore's Axiom 1. The examples given show that, even in the presence
of such properties as possessing a uniformity and being compactly con-
nected, a regular semi-metric space can be Cauchy complete, connected
and locally connected but not be arc-wise connected. Other possible
means of extending the Arc Theorem are eliminated by establishing
that in the presence of certain topological properties a regular semi-
metric space is a Moore space (e.g. a strongly complete semi-metric
space is a Moore space)—or is even metrizable.

This paper is essentially a dissertation [4] written at the University
of North Carolina under the direction of Professor F. B. Jones. The

Received July 22, 1960, and in revised form May 17, 1961, and December 20, 1961.
Presented to the American Mathematical Society, June 18, 1960.

1 A topological space S is said to be semi-metric if there is a distance function d for
S with respect to which the topology of £ is invariant. A distance function d for S is a
function from S X S to the nonnegative numbers such that, if each of x and y is a point
of S, then (1) d(x, y) = 0 only in case x = y and (2) d(x, y) = d(y, x) [11; 18]. The space
is metric if the distance function also satisfies (3) d(x, y) -f d(y, x) ^ d(x, z) for each triple
x, y, z of points of S. Note that every Moore space is regular and semi-metric. The set
Uo(x) = {y> d(x, y) < c} is referred to herein as a c-neighborhood (with respect to d) of x.
Cauchy complete is defined as in [11, p. 316]. Topological space and regular are defined as
in [9, pp. 37 and 113]. Terms not defined herein are used as in [14], [11], or [1].

1301
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author wishes to thank Professor Jones for his encouragement and
direction.

2- Cauchy complete semirmetric spaces in which the Arc Theorem,
does not hold true* The following examples and theorems show that a
Cauchy complete regular semi-metric space may be connected and locally
connected (and even compactly connected) without being arc-wise con-
nected. Example 2.2 is such a space, some additional properties of which
are given in Theorem 2.3. Example 2.5 is such a space which is com-
pactly connected. In the remainder of this section some additional
properties of those spaces are pointed out to show that those properties
could not be used to extend the Arc Theorem, and there are described
some other spaces which are practically indistinguishable from the first
two spaces but which are arc-wise connected. The following definition
will be useful since weak completeness is equivalent to Cauchy complete-
ness [11, Theorem 2.3].

D E F I N I T I O N 2 . 1 . A s p a c e S i s s a i d t o b e { L V p U
vided there exists a distance function d such that (1) the topology of S
is invarient with respect to d and (2) if M is a nonincreasing sequence
of closed sets in S such that, for each nf there is a 1/w-neighborhood
of a point p J ϊ! en\ which contains Mn, then Π « = i ^ contains a point.

EXAMPLE 2.2. Let S consist of the points of [0,1] x [0,1] with a
distance function d and a topology defined as follows.

(1) If x e S, d(x, x) = 0, and
(2) if x and y are two points of S and a(x, y) is the smallest non-

negative angle (in radians) formed by the line which contains x and is
parallel to X (the x-axis), or is X, and the line which contains x and
y, then d(x, y) = | x — y \ + a(x, y). For each point p of S and each
positive number c, let the c-neighborhood of p, Ue(p) = {%: d{x, p) < c},
be an element of a basis for the topology of S.

Clearly the semi-metric space S is weakly complete (hence Cauchy
complete), completely regular (hence uniform and, of course, regular;
cf. [9]) and separable. That S is connected and locally connected follows
from the fact that horizontal line segments in [0,1] x [0,1] have the
same relative topology in S as in Euclidean two-space.

Note that, if (6, c) is a point of S, if d > 0, if 0 < a < τr/2, and if
R(b, c; α, d) = [{{x, y):\x — b\ < d, and ei ther | y — c\ < \ x — b\ t a n a

or y = c}] S—i.e. if R(b,c;a,d) is the point set consisting of (6, c)
and all points of S interior to a (horizontally oriented) "bow-tie region"
centered on (6, c) and having (horizontal) length d and central angles



ARC-WISE CONNECTEDNESS IN SEMI-METRIC SPACES 1303

of magnitude 2α radians—then R(b, c; a, d) is an open set in S. Further-
more, the collection {R(b, c; a, d): (b, c) e S, d > 0 and 0 < a < τr/2} of all
such bow-tie regions in S forms a basis for the topology of S. That
basis is useful in the proof of Theorem 2.3.

The proof of the following lemma, as well as a more detailed proof
of Theorem 2.3, is contained in the proof of Theorem 1 [4, p. 10].

LEMMA. // M is an arc in S with nondegenerate x and y pro-
jections, then there is a subarc M1 of M with nondegenerate x and y
projections and whose x-projection is a subset of the x-projection of
M- Mλ.

THEOREM 2.3. There exists a separable, connected, locally connected,
weakly complete, completely regular, semi-metric space which is not
arc-wise connected.

Proof. Let S be the space of Example 2.2. The space S is not
arc-wise connected. For suppose that there is an arc in S with end-
points (0, 0) and (1,1).

By the above lemma, if M is an arc in S and with endpoints (0, 0)
and (1,1), there is a sequence {M^χ=1 of subarcs of M such that, for
each n, Mn z> Mn+1 and {x: (x, y) e Mn+1} c {x: (x, y) e [Mn - Mn+1]}. Then,

since M is compact, there is a point (p, q) in ΠΓ=i Mi9 and, for each n,
there is a point (p, qn) in Mn such that qn = qm only if n = m. Thus
M contains an infinite subset without a limit point which violates the
compactness of M.

DEFINITION 2.4. A space S is said to be compactly connected pro-
vided that, if a and b are points of S, S contains a compact continuum
which contains both a and b.

There are now two questions to be answered. Is a connected,
locally connected, weakly complete, regular (or completely regular) semi-
metric space compactly connected? Also, is a connected, locally con-
nected, weakly complete, regular (or completely regular) semi-metric
space which is compactly connected necessarily arc-wise connected? The
answer to both questions is no. It can be shown that the space of
Example 2.2 is not compactly connected by an argument in general
following the same outline as the proof of Theorem 2.3—replacing sub-
arc by irreducible subcontinuum and making use of Theorems 32, 39,
and 47 from Chapter I of Moore's Foundations (for a detailed proof see
Theorem 2 [4, p. 13]). Example 2.5 and Theorem 2.6 answer the
second question.

EXAMPLE 2.5. Let K be the "polyhedral sin 1/x curve" in [0,1] x
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[0,1] which is the union of all horizontal line segment of the form

{x: 0 ^ Re [x] g 1 and Im [x] = 0}

or

{x: 0 ^ Re [x] g 1 and Im [x] = l/2w}

for w = 0,1, 2, ,

and of all vertical line segments of the form

\x: Re[x] = 0, - ^ — < Im [x] < - 1 - 1 for m = 0,1, 2,

or

{a?: Re [a?] = 1, — < Im [x] < —1—1 for m = 1, 2, 3, •
^ L J 7 O 2 m 9 2 m ~ 1 J 7 7 7

Let c? be the distance function for [—2, 2] x [0,1] defined as follows:
(1) if x is a point of K and y is a point of [—2, 2] x [0,1], then

d(x,y) = \x-y\;
(2) if x and y are points of ([—2, 2] x [0,1] — K) and α(a?, ?/) is

the smallest nonnegative angle (in radians) formed by the line xy and
the horizontal, then d(x, y) — \ x — y | + a(x, y).

Let S be the topological space consisting of the set [—2, 2] x [0,1]
with the following topology: for each point p of K and each c > 0, the
circular neighborhood {x: x e S, | x — y \ < c} is a region in £, and, if p
is a point of S but not of K, every "bow-tie region" (as defined in
Example 2.2) with center at p is a region in S. Clearly S is a com-
pletely regular semi-metric space which is weakly complete, connected,
locally connected, and separable.

THEOREM 2.6. There is a connected, locally connected, weakly com-
plete, completely regular semi-metric space which is compactly connected
but not arc-wise connected.

Proof. Let S be the space defined in Example 2.5. Since K has
the same relative topology as it would in the usual plane topology, K
is a compact continuum; likewise each horizontal interval contained in
S is a compact continuum. Hence, if a and b are points of S, the point
set [K + {x:xeS and Im [x] = Im [a]} + {x: xeS and Im [x] = Im [6]}]
is a compact continuum which contains a and b and is contained in S.
Thus S is compactly connected.

From the proof of Theorem 2.3, it is clear that any nondegenerate
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compact continuum in S, other than a horizontal interval, must intersect
K. Therefore, a compact continuum L in S which contains the points
(2, 1) and (—2, 0) must contain K; but each point of {z: z e K, 0 < Re [z] < 1
and Im [z] = 0} is a nonseparating point of K and is not a boundary
point of any component of L — K (and therefore a nonseparating point
of L). Hence there is no arc in S which contains (2,1) and (—2, 0).

Returning to the space S of Example 2.2, it is perhaps of interest
whether points of that space are connectable by any type of sets bear-
ing some resemblance to arcs. It will be shown in § VI that, if a and
b are points of S, there is a continuum M in S whose only nonseparating
points are a and b. It can also be shown that, if a and b are points
of S, then either a and b are endpoints of an arc in S (in case a and
b are on the same horizontal line segment), or a and b are the only
nonseparating points of a connected subset M of S which is the graph
of a function, namely M~x — {(x, y): (y, x) e M} is a function. The ex-
istence of the latter can be established by an argument somewhat similar
to the proof of Theorem 5 in [6]. For a detailed proof see [4, pp. 20-24].

Consider now the following two examples each of which is a con-
nected, locally connected, weakly complete, completely regular, semi-
metric space which closely resembles Example 2.2, and each of which
also is neither a Moore space nor strongly complete (nor complete in any
of the "intermediate" senses to be subsequently defined), but each of
which is arc-wise connected.

EXAMPLE 2.7. Define a distance function d for the points of [0,1] x
[0,1] as follows: if x and y are two points of [0, 1] x [0,1], then (1) if
Re [x] = Re [y], d{x, y) = 1, and (2) if Re [x] Ψ Re [y], then d(x, y) =
2(g.l.b. [c: c > 0 and y e {z: \ z - (x + c) \ < c or | z - (x - c) \ < c}]) =
I x — y 171 Re x ~ Re y\ = \x — y\ sec α, where a is the smallest non-
negative angle formed by the line passing through x and y and the
horizontal line through x. Note that neighborhoods of radius less than
1 are "bow-ties" formed by tangent circles (the center of such a neigh-
borhood is the point of tangency, and, if the neighborhood has center
x and radius 2c, the centers of the circles are x — c and x + c and the
radius of each circle is c). The topological space S consisting of the
points of [0,1] x [0,1] and regions which are (all) such neighborhoods
is a connected, locally connected, weakly complete, completely regular
semi-metric space by the same arguments as used in Example 2.2. That
S is neither strongly complete nor a Moore space will be more easily
seen following subsequent theorems. The space S is arc-wise connected
since every nonvertical line segment in [0,1] x [0,1] has the same re-
lative topology in S as it does in the plane topology, and hence is an
arc in S.

The second example is due to L. F. McAuley [11].
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EXAMPLE 2.8. Let X denote the #-axis of the Cartesian plane E\
Define a distance function d for the points of E2 as follows: if each of
p and q is a point of E2, then

(1) if neither p nor q belongs to X or if both belong to X, d{p, q) =
| p - q\, and

(2) if exactly one of p any q belongs to X, d(p, q) — \ p — q \ + a
where a is the nonobtuse angle (measured in radians) between X and
the line L determined by p and q. Thus a neighborhood of a point of
X is a "bow-tie" neighborhood while a neighborhood of a point not on
X is a disc (with some distortion in case the neighborhood intersects
X). The topological space S consisting of the points of E2 and regions
which are cί-neighborhoods is clearly a connected, locally connected,
weakly complete, completely regular semi-metric space that is arc-wise
connected.

Each of the distance functions defined in Examples 2.2, 2.7, and
2.8 has the following continuity property: (in each case d denotes the
distance function for the space S) if x and y are point sequences in S
which have respective sequential limit points p and q such that p φ q,
then lim^oo d(xn, yn) = d(p, q). It is easily shown that, if S is a regular
semi-metric space with a distance function which has the above continuity
property, then neighborhoods with respect to that function are open
sets and the closure of a compact set in S is compact.

Each of the distance functions defined in Examples 2.7 and 2.8 has
in addition the following "convexity" property. If a and b are two
points of S such that d(a, 6) < 1 and n is a natural number, then there
is a point sequence α0, al9 a2, , an in S such that a0 = α, an — b and,
if 0 ^ i < j < k ^ n, d(aif a5) + d(ajf ak) = d(aif ak), and ai+1 is the only
point of S such that d(aif ai+1) = d(ai+1, ai+2) = l/2d(αί, α ί+2). That prop-
erty, plus the properties that neighborhoods are connected open sets
and that the closure of a compact set is compact, is a sufficient con-
dition for the (weakly complete, regular semimetric) spaces of Examples
2.7 and 2.8 to be arc-wise connected.

3«, Conditions for semi'metric, developable, and metric spaces*
Among the open questions about semi-metric spaces are the following.
Is there a "purely topological" characterization of semi-metric spaces
[12], and what "topological" property can be added to a semi-metric
space to get a developable [1, p. 180] (or Moore) space [2, p. 64]? The
answers to those questions, or at least some uniform characterization,
of semi-metric, developable and metric spaces, should be useful in try-
ing to extend Moore's Arc Theorem. The author found the character-
ization given below by the Conditions A, B and C useful not only for
that purpose, but also for easy construction of nondevelopable semi-
metric spaces as well as nonmetric Moore spaces (in trying to generalize
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the Arc Theorem by weakening the completeness part of Moore's Axiom
1). For another application see [5].

A second set of topological conditions, A' and B', is obtained by
weakening Conditions A and B. Condition A' is the topological axiom
used in the Arc Theorem given in § VI; and Theorem 3.5 establishes
that a regular TV-space satisfying Conditions A and B' is a Moore space—
from which it follows (in § IV) that a strongly complete regular semi-
metric space is a Moore space (Theorem 2.2 in [11] is a corollary to this
theorem). Theorem 3.6 establishes that every semi-metric space has a
property analogous to that characterizing property of metric spaces
pointed out in [8] and to the similar characterizing property of Moore
spaces implicit in Moore's Axiom 1.

Throughout this section Z denotes the set of all natural numbers,
and a TVspace (also Γ2, T3, etc.) is as defined in [9, p. 56]. The follow-
ing definition is also used.

DEFINITION 3.1. A sequence x of points in the space S converges
to a point y of S only in case every region which contains y contains
Xi for all but finitely many values of i; y is then called a sequential
limit point of x.

Suppose that S is a TΊ-space. Consider the following three con-
ditions on a function g from Z x S to the collection of all open sets
in S.

CONDITION A. (1) For each point x of S, {gn(%)}n=i is a nonincreasing
sequence which forms a local base for the topology at x. (2) If y is
a point of S and x is a point sequence in S such that, for each natural
number m, y e gm(%m), then x converges to y.

CONDITION B. If y is a point of S and x and z are point sequences
in S such that, for each m, [y + xm] c gm{zm), then x converges to y.

CONDITION C. If each of x and y is a point of S and n is a natural
number such that xegn(y), then yegn{x). [cf. 3, p. 257 and p. 261].

THEOREM 3.2. A necessary and sufficient condition that a T^space
S be semi-metric is that there is a function g, from Z x S to the open
sets of S, such that g satisfies Condition A.

Proof. The condition is sufficient. For suppose that there is a
function g which satisfies Condition A. Define the function m, from
S x S to the natural numbers, as follows: if x and y are two points of
Sf m(xf y) is the smallest natural number p such that y g gp(x). Define
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a distance function d for S as follows: if xe S, d(x, x) = 0; if x and y
are two points of S, d(x, y) = min [l/m(#, y), llm(y, x)] = the reciprocal
of the smallest natural number p such that y g (̂ (cc) and x φ gp{y).
Clearly, if each of x and y is a point of S, d(x, y) = c%, #); and c£(x, #) = 0
only if a> = #. Also limit points are invariant with respect to d (for a
proof see [4, p. 30]).

The condition is necessary. For suppose that S is a semi-metric
space. Define the function g as follows: if x is a point of S and w is
a natural number, flrw(a?) = interior [Ulln(x)] — {y: for some region R,
yeRcz U1{n(x)}. Clearly g satisfies Condition A.

THEOREM 3.3. A necessary and sufficient condition that a Tλspace
S be developable is that there be a function g, from Z x S to the open
sets of S, such that g satisfied Conditions A and B.

Proof. The condition is sufficient. For suppose that there is a
function g satisfying Conditions A and B. For each natural number i,
let Gι = {gj(x)ι x£ S,j Ξ> i}. The coverings Glf G2f G8, constitute a
development (for proof see [4, p. 32]).

Suppose, conversely, that Gu G2, is a development for S. Define
the function g as follows: for each point x of S let ^(a;) be some member
of Gi which contains x, and, if n is a natural number greater than 1,
let gn(x) be a member of Gn such that xeg^dg^x). Clearly g
satisfies Conditions A and B.

THEOREM 3.4. A necessary and sufficient condition that a Tλ-space
S be metric is that there is a function g, from Z x S to the open sets
of S such that g satisfies Conditions A, B, and C.

Proof. The condition is necessary, for suppose that S is a metric
space. Define the function g, from Z x S t o the open sets of S, as
follows: for each point x and natural number n, gn(x) = interior [Ul!n{x)\.
It is clear that g satisfies Conditions A, B, and C.

Conversely, let S be a TV-space, and let g be a function which
satisfies Conditions A, B, and C. For each n, let Gn = {gm{x): xeS,
m ^ n}. By Moore's metrization theorem [11, p. 325], if S is not
metrizable, there are two points p and q and a region R such that,
for each n, Gn contains members h and k such that pe h, h-k Φ 0, and
k [S - (R - q)] Φ 0 (i.e., K>(S - R) Φ 0 since S is Tλ). Thus there are
a point p, a region JB, and point sequences x, y, and z such that, for
each n, pegn(xn),ynegn(xn) gn(zn), and gn(zn) [S- R] φ 0. By Condi-
tion B, [yn + p] agn(xn) (n = 1, 2, 3, •) implies that the sequence y
converges to p. Therefore, there is an increasing natural number
sequence m such that, for each natural number n, ymin) e gn{p), so, that,
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by Condition C, pegn(ym{n)). Also ym{n) e gm{n)(Zm{n)) implies t h a t zm{n) e

gm{n)(ym{n))—hence t h a t zm{n)egn(ym{n)).

Thus, for each n, [p + zm{n)] c gn(ym{n)), so that, by Condition B,
{Zm(n)}n=i converges to p. Therefore there is a subsequence r of m such
that, for each natural number n, zr{n) e gn{p), hence p e gn(zr{n)). But by
supposition there is a point sequence u such that, for each n, une(S — R)
and un e gn(zrin)), so that u converges to p; which leads to the contra-
diction that pe(S — R) while p is contained in the region R. Thus S
must be metrizable.

Consider Conditions A' and B' which are at least formally weaker
than A and B respectively.

CONDITION A'. (1) For each point x of S, {gn(%)}n=i is a nonincreasing
sequence which forms a local base for the topology at x. (2) If y is
a point of S and a; is a point sequence such that, for each natural
number n, yegn(xn) and there is a natural number k such that
gn+k(xn+k) c gn(xn), then the sequence x converges to y.

CONDITION B\ If y is a point of S, R is an open set containing y,
and x is a point sequence such that, for each n, y e gn(xn) and there is
a k such that (7M+A.(#W+A.) c gn(xn), then there is a natural number m such
that gm(xm) c # .

It will be convenient now to have Condition A, A', B, B', and C
translated into corresponding conditions on a basis for the space.

DEFINITION 3.5. Suppose that S is a TV-space and that G is a basis
for S. The basis G satisfies Condition A (A', B, B', or C) means that
there is a function g, from Z x S to the open sets of S, such that
G = {gn(x): xeS,n = 1,2, 3, •} and # satisfies Condition A (A', B, B',
or C).

Theorem 3.6 establishes that the Arc Theorem cannot be generalized
by simply replacing "Moore space" by "a regular semi-metric space
satisfying Condition B ' " since such a space is itself a Moore space;
moreover it will readily follow from this theorem (cf. Corollary 4.3)
that every strongly complete regular semi-metric space is a Moore space,
thus eliminating another means of extending the Arc Theorem as well
as improving upon Theorem 2.2 of [11].

THEOREM 3.6. Suppose that G is a basis for a regular Tλ-space S.
IfG satisfies Condition A and Bf, then S has a basis H which satisfies
Conditions A and B, hence S is a Moore space.

Proof. Suppose that the regular TΊ-space S has a basis G ~
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{gm(x):xε S,m = 1,2,--•} which satisfies Conditions A and B\ Let
<* = {Pif P*f •••} be a well-ordering of the points of S. Define the
functions h (from Z x S to G), r (from a x Z to Z), and n (from <ra
[a subset of Z] to α) as follows. For each pz e S, let h^p,) = grzm(Pz) =

For each p z e S and each natural number i greater than 1:

(Case 1) If there is not a point q of [S — pz] and a natural number
j <i such that pz e hό{q) and hj(q) [S — grzii-iw(pz) Φ 0, then let h^p,) =

or

(Case 2) otherwise, for each (such) j < i, let j>Λβ[Λ be the first

member q of α(g Φ pz) such that p, e hs(q) and Λi(?) [S - grzu-u+i(Pz)] Φ 0;

let r s[ΐ] be the smallest natural number m > r z[ί — 1] such that gm(pz) c

>»βci] ί < if a n ( i i is n ° t covered by Case 1]; and let hi(pz) =

The basis i ϊ = {^(a?): a? e S, i = 1, 2, •} then satisfies Conditions A
and B', since H is a subcollection of G and since, if xegeG, then there
is an h e H such that xehczg.

The basis H satisfies Condition B. For if not, then there is a point
x of a region iϋ such that, for each m, there is a point g such that
x e Λw(g) and frm(g) [S — iϋ] ̂  0. Let y be the point sequence such that,,
for each m, ym is the first point q in a such that xehm(q) and Λm(ϊ)
[S — R] Φ 0. (It will now be shown that, for each natural number %,.

there is an m > i such that hm{ym) c
If i is a natural number there is a natural number Nλ> i such,

that, if m > iVΊ, then ym G [feid/i) — y^\ (since # converges to x and
xzhityi)) and there is an iV2 such that, if m > iV̂ , then r̂(2,m)[m-i]+i(2/m>
does not contain /&*(#<) (otherwise, by Condition A, each point of λ<(y<)
would be a sequential limit point of y, and /̂ (2/i) contains at least two
points, namely, x and a point not in R); thus there is a natural number
m such that

- y j and Λ ^ ) [S - 0 r (2,m)[m-1]+1(2/w)] ^ 0 .

Moreover, there is no point q such that q precedes j/< in α and hm(ym) a
hi(q) (since j / 4 is the first point a in a such that xeh^a) and /^(α)
[ S - i 2 ] ^ 0 , and Kiy^ch^q) would imply that &<(?)• [S - JB] Φ 0);
hence there is no point # such that q precedes yi in α: and ym e h^q}
and hi(q)-[S- gr{ym)im-ii+i(Vn>)] ^ 0 (otherwise h^q) would contain Λm(ym>
by definition of hm(ym)). Therefore hm{ym) c hι{y%) since j/< ̂  ym.

Hence by Condition B', there is a natural number N such that if
m > N, then Λm(̂ /m) c R contrary to the supposition that for each i,
hi(yi)-[S-R]Φ0.

Using the same argument down to the last sentence, which is the
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ϋrst place that Condition B' is used, Theorem 3,7 below also follows.

THEOREM 3.7. Suppose that S is a regular semi-metric space.
Then there is a basis H — {hn(x): x e S, n = 1, 2, •} with the property
that for each p e S and for each closed and compact subset M of S — p
there is a natural number N such that if m > N and p e hm(x) then
hm(x)-M=0.

4. Completeness axioms. Another way to generalize Moore's Arc
Theorem is to weaken the completeness used. Three successively weaker
completeness axioms (1, Γ, and 1") are given below. In a Moore space:
•Completeness Axiom 1 is equivalent to Moore's completeness, which is
known to be weaker than strong completeness [11, Example 3.3]; and
Completeness Axioms V and 1" are both equivalent to the completeness
in Mrs. Rudin's Axiom 1" [16, p. 320], and hence weaker than Moore's
Completeness [16, p. 324], In semi-metric spaces Completeness Axiom
1' is stronger than 1" (all examples in § 11 satisfy Axiom 1" but not
1'; also see Corollary 4.3).

A Cauchy (or weakly) complete semi-metric space satisfies Complete-
ness Axiom 1". In a metric space all of the completenesses mentioned
are equivalent [15].

The theorems listed below (for proofs see [4, pp. 35-43]) give the
relationships between the three completeness axioms and the topological
properties defined in §IΠ. Aside from finding that completeness Axioms
1' and 1", which are used in separate arc theorems, are more general
than Moore's completeness, the main results obtained in this section
are (1) that a strongly complete regular semi-metric space is a Moore
space (2) that Cauchy (or weak) completeness is weaker than Moore's
completeness and (3) a generalization of Theorem 120 in [14] (also
Theorem 6 of [16]).

Suppose that S is a TΊ-space and G = {gn{%Y- % e S, n = 1, 2, 3 •}
is a basis for S which satisfies Condition A'. Consider the following
completeness axioms for G.

Completeness Axiom 1. If M is a nonincreasing sequence of closed
sets such that, for each n, there is a point xn of S such that Mnc
gn(xn), then ΠίU Mn Φ 0.

Completeness Axiom Γ. If M is a nonincreasing sequence of closed
sets and x a point sequence in S such that, for each n, Mn c gn{xn) and
there is a natural number k such that gn+k(xn+k) c flfΛ(»«), than Π»=i Mn ψ 0.

Completeness Axiom 1". If x is a point sequence such that, for
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each n, there is a k such that gn+k(xn+k) c gn(xn), then Π.% 0»O»n) =£ 0.
Theorem 4.1 shows in particular that Axioms 1' and 1" are equivalent

in a developable 2\-space.

THEOREM 4.1. Suppose that S is a Tx-space with a basis G that
satisfies Conditions A! and B'. A necessary and sufficient condition
that G satisfy Completeness Axiom Γ is that G satisfy Completeness
Axiom 1".

An immediate corollary to Theorems 4.2 and 3.6 is that a strongly
complete regular semi-metric space is a Moore space.

THEOREM 4.2. Suppose that the T2-space S has a basis G which
satisfies Condition A!. A necessary and sufficient condition that G
satisfy Condition Br and Completeness Axiom 1" is that G satisfy
Completeness Axiom Γ.

COROLLARY 4.3. If the regular Tλ-space S has a basis G which
satisfies Condition A and Completeness Axiom 1', then S has a basis
which satisfies Conditions A and B. Hence every strongly complete
regular semi-metric space is a complete Moore space.

The following theorem shows that the space having a basis with
some of the completeness properties and another basis with some of the
topological properties has a basis with the combined properties.

THEOREM 4.4. If the Tx-space S has a basis G which satisfies
Condition A! and one of the Completeness Axioms 1, 1', and 1", and
if S has a basis H which satisfies some combination of Conditions A',
A, B', and B, then S has a basis K which satisfies the Completeness
Axiom that G satisfies and the combination of Conditions A'', A, B\
and B that H satisfies.

The next theorem is a generalization of a portion of a theorem due
to Moore [14, p. 83, Theorem 120]. (The other part of the theorem
also holds in any of the same spaces). Essentially the same proof may
be used (see [4, p. 39]).

THEOREM 4.5. Suppose that the Tx-space S has a basis G which
satisfies Condition Af (or A! and A, B\ or B) and one of the Complete-
ness Axioms 1, 1', and 1". If M is an inner limiting subset (i.e. a
Gs set) of S, then there is a basis H for M such that H satisfies the
same combination of Conditions Af, A, Br, and B and the Complete-
ness Axiom that G satisfies.
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The completeness defined in Definition 4.6 is clearly weaker in
general than Axiom Γ; however, Theorem 4.7 shows that replacing the
latter by the former in an arc theorem would not be a real generalization.

DEFINITION 4.6. A basis G for a TΊ-space S which satisfies Con-
dition A' is said to satisfy Completeness Axiom 1' peripherally provided
that, if ReG, M is a nonincreasing sequence of closed subsets of B(R),
the boundary of R, and x is a point sequence in S such that, for each
n, Mn c gn(xn) and there is a k such that gn+k(xn+k) c gn(xn), then

THEOREM 4.7. If G is a basis for a T2-space S, if each member
of G is connected, and if G satisfies Condition A! and satisfies Com-
pleteness Axiom V peripherally, then G satisfies Condition Br.

For a proof see [4, pp. 42-43].

5 Metrization theorems. The metrization theorems below serve
not only to eliminate certain hypotheses from consideration for gener-
alizing the Arc Theorem, but also to show that the spaces described in
§ II, which are not even developable (and in some of which the Arc
Theorem does not hold) are nonetheless very close to being metrizable.

Theorem 5.1 generalizes a well-known theorem which is included in
Theorem 10 [21]. It can also be shown that every semi-metric space
contains a dense metric subspace (but not necessarily one which is an
inner limiting subset).

The proof of the following lemma is exactly analogous to the proof
of Theorem 15 in [14, p. 11].

LEMMA. Suppose that S is a regular Tx-space with a basis G that
satisfies Condition A' and the Completeness Axiom 1". No closed sub-
set M of S is the sum of countably many closed sets each of which is
contained in the boundary of its complement (in M).

THEOREM 5.1. If the regular T^space S has a basis G that satisfies
Condition A! and the Completeness Axiom 1", then S contains a dense
inner limiting subset K which (with the relative topology) is metrizable
and complete.

Proof. Let HΎ be a maximal collection of mutually exclusive regions
each of which belongs to {flf<(«?): x e S, i ^ i}. For each n > 1, let Hn

be a maximal collection of mutually exclusive regions each of which
belongs to {#;(#): x£ S, i ^ n, and there is a region h in Hn-X such that
gi(x)<zh}. Let K = ΠΓ=i [#**]. Since by the above lemma, if R is a
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region in G, R is not the sum of countably many closed sets each
contained in the boundary of its complement (in R), so that R ψ
Σn=Λ(S- H*) R] and R KΦO, it follows that K is dense in S.
Clearly K is an inner limiting set and K (with the relative topology)
is metrizable since (Σjn=iHn)-K forms a basis for the relative topology
of K, and since, for each n, the elements of Hn are pair wise disjoint
and each member of Hn+1 is a subset of a member of Hn. That K is
complete follows from Theorem 4.5.

Theorem 5.2 shows how close the spaces of Examples 2.2, 2.5, 2.7,
and 2.8 are to being metrizable. Note that each of those spaces satisfies
the hypotheses of the theorem except for being locally peripherally
locally compact instead of locally peripherally compact.

THEOREM 5.2. Suppose that the semi-metric space S has a distance
function d such that d-neighborhoods are connected sets and such that,
if p is a sequential limit point of the point sequence x and q is a
sequential limit point of the point sequence y and lim^^ d(xif y{) = 0,
then p — q. If S is locally peripherally compact, then S is metrizable.

Proof. The theorem will be proved by showing that S satisfies
the hypothesis of W. A. Wilson's theorem [20, pp. 361 and 366; also 2,
p. 63] that a semi-metric space is metrizable provided that, for every
pair x, y of sequences, if p is a sequential limit point of x and
lim^oo d(xif y%) — 0, then p is a sequential limit point of y. For suppose
that p is a point of S and x and y are point sequences such that p is
a sequential limit point of x and lim^c* d(xif /̂̂ ) = 0, but p is not a
sequential limit point of y. Then there is a region R with compact
boundary, B(R), and a sequence y[, y[, y\, of y such that R contains
p but contains none of the points y[, yr

2y y[, thus (noting that it
may be assumed, without loss of generality, that, for each i, a?4 e R and
d{Xi, y[) < (1/Ό) each of the connected neighborhoods Z7i(a?i), Ull2{x^,
Ul!3(x3), contains a point of (S — R) and hence contains a point of
B{R). Let z be a point sequence such that, for each n, zn e Ulln{xn)-B(R).
Since B(R) is compact, there is a point q of B(R) such that q is a
sequential limit point of asubsequence of z, which leads to a contradiction
of the hypothesis of the theorem.

By Theorem 5.3 paracompactness (defined along with pointwise para-
compactness in [1. p. 177]) is too restrictive in the presence of a
completeness axiom slightly stronger than that possessed by the spaces
in § II.

THEOREM 5.3. Suppose that the regular Tλ-space S has a basis G
which satisfies Condition A and Completeness Axiom V peripherally
and whose elements are connected sets. If S is pointwise paracompact,
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then S is developable; hence, if S is paracompact, then S is metrizable.

For a proof of this theorem see [4, pp. 47-48].

6. An arc theorem. Theorem 6.2 is more general than R. L. Moore's
Arc Theorem [14, p. 86], to the extent that the completeness axiom
used is known to be less restrictive than that in the hypothesis of
Moore's theorem, and the other properties used are at least formally
more general than those used by Moore. To adapt the proof of Moore's
theorem to Theorem 6.2, however, requires only fairly minor modifications.
Theorem 6.4 establishes that certain semi-metric spaces which are not
arc-wise connected (including Example 2.2) are nontheless connectable
by closed connected sets which closely resemble arcs.

In the following definition, which will be used in the proof of
Theorem 6.2, "simple chain" (or "chain") is as defined in [14, p. 56].

DEFINITION 6.1. Suppose that G = {&(&): x e S, i = 1, 2, 3, •} is a
basis for the TΊ-space S, that A and B are two points of S, and that,
for each n, Cn = {Q[n, 1], Q[n, 2], , Q[n, mn]} is a simple chain from
A to B. The sequence {Cu C2, C3, •••} has property P with respect to

G if

(1) for each i {Q[l + i, j]}^1 is a refinement of {Q[i, j]}^;

(2) for each i and each j such that 1 < j ^ m< there is a if such

that (Σ>p<κQ[i + l,P]) Q[i,j] = 0, and such that ( Σ P > * Q[i + l,P)c
<Σ£i Q[i, «]) and Q[i + 1, k + 1] c Q[i, j - l] Q[i, j]; and

(3) there is a collection of natural numbers {k[i,j]:j^m,i =
1,2,3, •••} and a collection of points ίxi3 \f=i such that, for each i
and each j ^ mif

(a) fe[ί, j] ^ i
(b) Q[i, j] = gk(ij){%ij) and

(c) if xi+1J e Q[i, f\, then Q[i + 1, j] c Q[i, «].

THEOREM 6.2. If the connected regular Tx-space S has a basis G
each of whose elements is connected and which satisfies Condition Af

and Completeness Axiom 1', then S is arc-wise connected.

Proof. Let a and b be two points of S. Moore's proof (in particular
Theorem 77 [14, p. 56]) may be applied with slight alterations to the
sequence G of open coverings of S, such that, for each n, Gn — {gk(x):
xeS and k^n} to obtain a sequence, {C^i = {Q[ί, 1], Q[i, 2], ,
Q[i, mi]}?=1, of chains from α to 6 which has property P with respect
to G.

Let M - ΠΓ=i C? = IL°°=i [ΣΓΛ QFΓίϊ.
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Clearly M is closed.
Also M is compact. For suppose that an infinite subset K of M

has no limit point. Then there exists a sequence {Hn}~=1 of collections
of pointsets such that, for each n:

( i ) each point set in Hn is a link of the chain Cnf

(ii) each set in Hn contains an infinite subset of K,
(iii) Hn+1 is a refinement of Hn, and
(iv) (by the above property 3c of the sequence C) if xeHn+lr

yeHn, and xay, then xay. By theorem 78 [14, p. 56] there is a
sequence h such that, for each n, hn e Hn and hn+1 c hn, so that, by
the above property (iv) of the sequence H, hn+1 c hn. For each i, ht is
a link of the chain Ci9 so that, by property 36 (above) of the sequence
C, there is an increasing natural number sequence d and a point sequence
u such that, for each i, hi = gda)(Ui), hence, for each i, the closed set

(hi-K) is contained in gd{i){n%), (h^K) D (hi+1*K), and gdiί+1)(ui+1) c gdU)(Ui).
Therefore, by Completeness Axiom 1', there is a point p such that
peHT=i[K hi]', hence, peK, and for each ΐ, pegd{i)(Ui)f so that (by
Condition Af) p is a sequential limit point of a subsequence {utii)}?=1 of
the sequence u. Consider then the nonincreasing sequence of closed
sets, {(K — p) ht{i)}T=u which likewise has the property that, for each ί,
[(K — p)'ht{i)](zgditm(ut{i)). Again, there is a point q such that
qe(K — p) and such that q is a sequential limit point of {utiί)}?=1 and
p Φ q. Thus the assumption that M is not compact leads to a con-
tradiction.

That M is connected follows as in Moore's proof with slight alter-
ations (or see [4, pp. 53-54]); and that each point of M— (a + b) is a
separating point of M and that a and b are nonseparating points also
follows as in Moore's proof.

COROLLARY. The connected regular Tλ-space S is arc-wise con-
nected if S satisfies any one of the following conditions:

(a) S has a basis G which satisfies Conditions A' and B' and Com-
pleteness Axiom 1" and each of whose elements is connected;

(b) S has a basis G which satisfies Condition A' and satisfies
Completeness Axiom 1' peripherally and each of whose elements is
connected;

(c) S is locally connected and satisfies Mary Ellen Estill Rudin's
Axiom 1" [16].

(d) S is a locally connected strongly complete semi-metric space.
"Strong ehainability," defined below, is a rather restricted special

case of ehainability but is useful for showing that certain spaces which
are not arc-wise connected are connectable by sets which closely resemble
arcs. Roughly speaking a space is strongly chainable with respect to
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a basis G provided that, for every pair α, b of points of S, there is a
sequence C of chains from a to b such that

(1) C has Property P with respect to b
(2) the "centers" of C(w) are also "centers" of C(n + 1) and
(3) the intersection of two adjacent links of C(ri) with centers p

and q contains a point y such that the subchain from p to q of C(w + 1)
is contained in gn(y) and y is a "center" of C(n + 1). Theorem 6.2
then establishes that the space of Example 2.2 is connectable by sets
having all the properties of an arc but compactness.

DEFINITION 6.3. Suppose that the regular ϊVspace S has a basis,
G = {gn(x): x e S, n = 1, 2, •}, which satisfies Condition A. S is strongly
chaίnable with respect to G provided that, if a and 6 are two points
of S, there is a sequence, C = {Q[ί, 1], Q[i, 2], , Q[i, m$γ=1 of chains
from a to 6 such that:

(1) C has property P with respect to G.
(2) There is a collection, {ί(ί, j ) : i ^ m{, i = 1, 2, •} of natural

numbers such that, for each i and each j ^ mi9 x{j = ^i+i,^,;): and
(3) there is a collection {yi5\ j < mΐ? i — 1, 2, •} of points such

that, for each i and each j < mif (a) 2/ί3 e<2[ί, j] Q[if j + 1] and
Σr(iίu\J) Q[ί + 1, ^] c ^ΐ(^ii) and (b) there is a natural number r such
that i/ij = %i+ι,r. For each i and each j ^miy the point xi5 (from
Definition 6.1 part (3)) will be referred to as the center of the link
Q[i,3] of Ct.

Note that the space of Example 2.2 (§ II), which is not arc-wise
connected, is strongly chainable with respect to the basis consisting of
all 1/n neighborhoods (for n = 1, 2, •).

THEOREM 6.4. Suppose that S is a connected regular Tλ-space
which has a basis, G = {gn(x): x e S, n = 1, 2, •}, that satisfies Condition
A and Completeness Axiom 1" and each of whose elements is connected.
If S is strongly chainable with respect to Gy then, for each pair of
points a and 6, there is a continuum M containing a and b such that
a and b are the only non-separating points of M.

Proof. Let a and 6 be two points of S; let C = {Q[i, 1], Q[i, 2], ,
Q[i, mi\}T=i be a sequence of chains from a to 6 satisfying Definition
6.3 and, for each i and each j ^ mif let xi3 be the center of Q[i, j].
Denote by L the set of all centers Spif.j ^ mif i = 1, 2, •}; and let
M= ΠΓ=i [£<[*- Clearly (a + δ ) c l , M is closed, and a and 6 are the
only nonseparating points of M.

Furthermore, M is connected. For suppose that M — H + K,
H-K — H-K — 0 (where aeH). Because M is closed, each of H and
i£ is a closed set. Also, because L = M, LΉΦ 0 and L-KΦ 0. It
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will now be shown that there is a natural number n, a natural number
sequence u, and point sequences p and q such that, for each i^n,
u(i) ^ m{ and

(1) Q[i + 1, u(i + 1)] c Q[i, u(i)] and
(2) p4 eH^q.e K, and Q[i + 1, %(i + 1)] c gAPiYgfai). Since α e jfff

since L Hφ 0, and since L-Kψ 0, there is a natural number n and a
natural number j < mw such that xnj e H and α;w,i+16 K. If # n i e K, let
%(w) = j ; if ynj G iί, let u(n) = j + 1. In either case there is a natural
number r such that xn+1,r e J3", #»+i,r+i e if, and [Q[^ + 1, r] + Q[n + 1,
r + 1]] c Q[w, u(ri)] gn(ynj); again, if yn+1>reK, let t φ + 1) = r, and if
Vn+i.re fi> let %(n + 1) = r + 1; and the process may be continued to
define sequences u, p, and q which have the stated properties. Then,
by Completeness Axiom 1" there is a point z such that z e ΠΓ=iQ[^ + 1,
u(n + 1)] and z is a sequential limit point of the sequence p in H and
of the sequence q in K; hence zeH-K contrary to the assumption that
H K=0.

7. Summary and questions* Theorem 2.3 establishes that Moore's
Arc Theorem cannot be generalized directly to Cauchy complete regular
semi-metric spaces, while Theorem 6.2 shows that it can be generalized
to a class of semi-metric spaces somewhat more general than complete
Moore spaces—in particular, the completeness axiom used is known to
be weaker than that of Moore's Axiom 1. The examples in § II and
the theorems establishing certain sufficient conditions for a semi-metric
space to be developable or even metrizable given in §§ III, IV and V
show rather clearly the limited nature of the progress that can be made
towards extending the arc Theorem to semi-metric spaces. For example,
Theorems 3.6 and 4.2 establish that every strongly complete regular
semi-metric space is a complete Moore space.

The following questions then are suggested:
(1) Can Moore's Arc Theorem be generalized in another direction,

such as to complete uniform spaces?
(2) Since the class of strongly complete regular semi-metric spaces

properly includes the class of all complete Moore spaces and is properly
included in the class of all complete metric spaces, what is a sufficient
condition for a complete Moore space—or a weakly complete semi-metric
space—to be strongly complete, and what is a sufficient condition for
a strongly complete regular semi-metric space to be metrizable?

(3) Is there any reasonable necessary and sufficient condition for
a connected and locally connected complete regular semi-metric space
to be arc-wise connected?
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ON UNIMODULAR MATRICES

I. HELLER AND A. J. HOFFMAN

l Introduction and summary. For the purpose of this note a
matrix is called unimodular if every minor determinant equals 0, 1 or — 1.

I. Heller and C. B. Tompkins [1] have considered a set

S = {Uif V, , Ui + Vjf Ui - Ui*, Vj - Vj*}

where the uuu2, , umf v19 v2, —-,vn are linearly independent vectors
in m + n = fc-dimensional space E, and have shown that in the coordinate
representation of S with respect to an arbitrary basis in E every
nonvanishing determinant of k vectors of S has the same absolute value,
and that, with respect to a basis in S, the vectors of S or of any subset
of S are the columns of a unimodular matrix. For the purpose of this
note the class of unimodular matrices obtained in this fashion shall be
denoted as the class T.

A. J. Hoffman and J. B. Kruskal [4] have considered incidence
matrices A of vertices versus directed paths of an oriented graph G,
and proved that:

(i) if G is alternating, then A is unimodular;
(ii) if the matrix A of all directed paths of G is unimodular, then

G is alternating. The terms are defined as follows. A graph G is
oriented if it has no circular edges, at most one edge between any given
two vertices, and each edge is oriented. A path is a sequence of distinct
vertices vl9 v2, , vk of G such that, for each i from 1 to k — 1, G contains
an edge connecting v{ with vi+1; if the orientation of these edges is from
Vi to vi+1, the path is directed; if the orientation alternates throughout
the sequence, the path is alternating. A loop is a sequence of vertices
Vu V2, , vk9 which is a path except that vk = vx. A loop is alternating
if successive edges are oppositely oriented and the first and last edges
are oppositely oriented. The graph is alternating if every loop is alter-
nating. The incidence matrix A = (ai3) of the vertices v{ of G versus
a set of directed paths pu p2, , pk of G is defined by

1 if Vi is in pj

(0 otherwise .

The class of unimodular matrices thus associated with alternating graphs
shall be denoted by K.

I. Heller [2] and [3] has considered unimodular matrices obtained

Received April 12, 1962. Research sponsored (for both authors) by the RAND Corporation,
in conjunction with the Symposium in Combinatorial Analysis, and (for the first author) by
the National Science Foundation.
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by representing the edges (interpreted as vectors) of an w-simplex in
terms of a basis chosen among the edges (in graph theoretical terms:
the edges and vertices of the simplex form a complete graph G; a basis
is a maximal tree in G9 that is, a tree containing all vertices of G)9 and
has shown that:

(i) the matrix representing all edges of the simplex is unimodular
and maximal (i.e., will not remain unimodular when a new column is
adjoined);

(ii) the columns of every unimodular matrix of n rows and n(n + 1)
columns represent the edges of an ^-simplex.

The class of (unimodular) matrices whose columns are among the
edges of a simplex shall be denoted by H. H can also be defined as a
class of incidence matrices: A matrix A belongs to H if there is some
oriented graph F without loops such that A is the incidence matrix
of the edges of F versus a set of path in F. That is,

1 if edge e{ is in path p3

— 1 if — e{ is in p3

0 otherwise .

In [2] it has further been shown that:
(iii) there exist unimodular matrices which do not belong to H;
(iv) the classes H and T are identical.
The purpose of the present note is to show that the class K is

identical with the set of nonnegative matrices of H.

2. THEOREM. / / a matrix A of n rows and m columns belongs
to K {i.e., A is the incidence matrix of the n vertices of some alternating
graph G versus a set of m directed paths in G), then A belongs to H
{i.ef there is some n-simplex S and a basis B among its edges such that
the columns of A represent edges of S in terms of B). Conversely,
every non-negative matrix of H belongs to K.

3. NOTATION. An oriented graph is viewed as a set

(3.1) R = V U E ,

where V is the set of vertices Al9 A2, , An, and E is the set of oriented
edges ev, that is certain ordered pairs {Ai9 A3) with j Φi of elements
of V, such that at most one of the two pairs (Ai9 A3)9 (Aί9 A{) is in E.

For brevity of notation we define

(3.2) [Aif Aj] = {(Aif A3 ), (Aj, A,)} .

The origin and endpoint of an edge e are denoted by pe and σe:

(3.3) p(A,B) = A, σ(A,B) = B,
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If A and B are vertices of Rf the relation A < B (A is immediate
predecessor of 2?), also written as B > A, is defined by

(3.4) A<B*=>(A,B)eR.

Similarly, if α,6 are edges of R,

(3.5) a < b <=^> σa = pb .

A subset V of vertices of R defines a subgraph of R

(3.6) R{V')= V1 U E'

where (A,B)eE'<=>AeV',BeV',(A,B)eE.

4 Proof. Using the graph-theoretical definition of the class H,
the first half of the theorem shall be proved by showing that to each
alternating graph G there is an oriented loopless graph F such that the
if-matrices associated with G are among the iJ-matrices associated with F.

A column of a if-matrix is the incidence column Kp of the vertices
of G versus a directed path p in G; a column of an iί-matrix is the
incidence column Hq of the edges of F versus a path q in F. For given
G it will therefore be sufficient to show the existence of an F such that

to each directed path p in G there is a path
(4.1)

q = φ(p) in F such that Kp = Hq .

This will be shown by constructing an F and a mapping φ of the
set of vertices of G onto the set of edges of F in such a way that φ
satisfies (4.1), or equivalently, that φ preserves the relation defined in
(3.4) and (3.5), that is, for any two distinct vertices A, B of G,

(4.2) A < B (in G) = > φ(A) •< φ{B) (in ί7) .

The construction of F and <p shall now be carried out under the
assumption that G is connected. If G is not connected, the same con-
struction can be applied to each component of G, yielding an F with
an equal number of components.

If G has n vertices, take as the vertices of F a set of n + 1 distinct
elements Po, Pu •••, Pn.

The n edges el9 e2, , en of F are defined successively as follows.
First, choose an arbitrary vertex Aλ in G, define

(4.3) φ{A±) = β l = (POf PO ,

and note that:
(i) the subgraph Gτ = G{A^), consisting of the one vertex A1 of

G, is, trivially, connected;
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(ii) the graph Fx = {Po, Pu (Po, Px)} is connected;
(iii) with respect to Gx and Fl9 φ trivially satisfies (4.2).
Then, assuming AveG already chosen and ev = φ{Av) defined for

v — 1, 2, , k in such a manner that Gk = G{AU A2, , Ak} and Fk =
{Po, P l f •• , P A , ex, " , e j are each connected and <p satisfies (4.2) with
respect to Gk and Fk, choose Ak+1eG such that

(4.4) [ A i f A k + 1 ] f ] G Φ θ

for some ί ^ k and define

βi, Pk+1) when (A4, Afc+1) e G

[(Pk+u Red when

noting that this definition depends on the choice of i since more than
one i may satisfy (4.4).

Obviously, Gk+1 and Fk+1 are each connected.
To show that ψ satisfies (4.2) with respect to Gk+1 and Fk+U let

Ar < A8 in Gk+1.
If r ^ k and s ^h, (4.2) is satisfied according to the induction's

hypothesis.
For {r, s} = {i, fc + 1}, (4.2) is satisfied by definition (4.5). Namely:

for r = ί, 8 = fc + 1, (4.5) defines βfc+1 = (σβί? P&+1), hence σβί = pek+1,
which by (3.5) means et < ek+1; similarly for s = i, r = k + 1, (4.5) defines
Â +i = (ί*+i> i°ei)> hence σek+1 — peίt which means ek+1 < eim

There remains the case {r, s} = {,/, & + 1}, j" Φ i,j ^ A;, with

(4.6) [Aif Afe+1] Π GΛ+1 Φ 0 ,

that is either As < Ak+1 or Ak+1 < A3- in Gfc+1.
In this case Ak+1, which by (4.4) has an edge in common with Aif

now also has an edge in common with A3 Φ Ai9 thus connecting these
two distinct vertices of Gk by the path

(4.7) A ί f A k + 1 , A 3

in Gk+1 but outside Gk.
On the other hand, by the induction's hypothesis, Gk is connected.

Hence A< and A, are connected by a path in Gk

(4.8) Aif Atl, At29 , Atχ, Aj

(λ = 0 not a priori excluded).
The paths (4.7) and (4.8) combine to the loop

in Gk+1, which is obviously also a loop in G.
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Since G is alternating, the loop (4.9) must be alternating. This
implies that the number of vertices is even, hence λ — 2v + 1, and that
the orientation is either

(4.10) Ak+1 <Ai>Ah<Ah>. -< A2V > Ahv+l < As > Ak+1

or the opposite.
Now assume first

(4.11) Ak+1 < Aj ,

which implies the orientation (4.10), and consider that part of the loop
which is in Gk, namely the path (4.8)

(4.10) and the induction's hypothesis that, relative to Gk and Fk, Ψ
satisfies (4.2), imply

hence

{4.13) ρe{ = σeh = ρeh = σeh = . . . = pehv = σehv+1 = ρe5 .

The definition (4.5) of ek+u in conjunction with Ak+1 < A{ from (4.10),
implies

(4.14) σek+1 = pe, .

This together with (4.13) yields

(4.15) σek+1 = ρe3- , t h a t is ek+1 < ed ,

which proves that assumption (4.11) implies (4.15).
Similarly, the assumption Ak+1 >- Aό yields ek+1 >• ejf by reversing

the relation •< and interchanging p and σ in the above argument.
This completes the proof that to any connected alternating graph

G there exists a connected oriented graph F and a mapping φ satisfying
(4.2)

That F has no loops (and hence is a tree) is obvious from the fact
that its n + 1 vertices are connected by n edges. Hence, the incidence
matrices of F certainly belong to class H.

If G consists of k components, the construction will yield an F
consisting of k trees.

This completes the proof of the theorem's first half, namely that
every iΓ-matrix is an iϊ-matrix.

The second half of the theorem, namely that each nonnegative
ϋ-matrix is a Z-matrix, is due to J. Edmonds. It will be proved by
showing that to each loopless oriented F there is an alternating G and
a mapping ψ of the edges of F onto the vertices of G that preserves
the relation •<, that is, for any two edges α, b of F
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(4.16) a < b ==> f(a) < f(b) .

This is achieved by the following simple construction.
If F has n edges el9 e2 , en9 choose a set of n elements Au A2, , An.

as the vertices of G, define ψ by

(4.17) ψe< = A, ,

and define the edges of G by

(4.18) (^A^eG — β^β,,

that is, G shall have an edge oriented from A{ to As if and only if

Obviously ψ preserves the relation •<, since (4.18) is equivalent to

(4.19) A, < A3 <=^ei< es .

Note that •< is also preserved by the inverse of φ, that is, in the
transition from G to F.

Note further that G is oriented (in the sense of the definition given
in [4] and cited in §1 of present note), that is:

(a) each edge of G is oriented, since the edges of G have been
defined by (4.18) as oriented edges;

(b) G has no circular edge, since (Ai9 Aτ) e G for some i would imply
βi < eif or equivalently σe{ — peif that is, et a circular edge in F, con-
tradicting the assumption on F;

(c) G has at most one edge between any given two vertices:
(Aif Aj) e G and (Ajf A%) e G for some pair i, j, would imply e{ < ed and
βj -< ei9 that is σe{ = pβj and σe3- = peiy hence eζ and βj would form a
2-loop (with the vertices pei9 σe{), again contradicting the assumption on F.

Finally, to show that G is alternating, note that, by (4.17) and (4.19),
(?, F and ψ — ψ~λ satisfy the condition (4.1). Thus the incidence matrices
(of vertices versus directed paths) associated with G are among the
incidence matrices (edges versus paths) associated with F, and hence
unimodular. Especially then, the incidence matrix of the vertices versus
all the directed paths of G is unimodular, which, by the Hoffman-Kruskal
Theorem (Theorem 4 in [4], cited in § 1 of this note), implies that G
is necessarily alternating.

This completes proof of the theorem.
It is worth noting that the last part of the proof (namely that G

is alternating) can easily be established without using the result of [4]
(which contains more than is needed here).
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DUALITY IN GENERAL ERGODIC THEORY

ROBERT G. HEYNEMAN

Introduction* Let G be a semi-group of operators acting on a Banach
space E. Alaoglu-Birkhoff [1], Eberlein [8], Jacobs [9], deLeeuw and
Glicksberg [12], and others have given conditions under which certain
orbits (see § 1) in E will contain a single fixed vector under the action
of G. In general of course, a given orbit may contain many fixed points
or none at all; moreover it need not be the case that the 'ergodic' vectors
(those whose orbits contain a single fixed point) form a linear subspace
as one would wish.

The object of this paper is to show how the introduction of conside-
rations involving the conjugate space £7* under the action of the adjoint
semi-group G* illuminate these matters. We shall see that there is an
intimate connection between the existence of fixed points in the orbits
of one space and the uniqueness of fixed points in the orbits of the
associated space. Our first result in this direction, Theorem 1.3, asserts
that if every orbit in one space contains at least one fixed point, then
every orbit in the other contains at most one fixed point.

In § 2 we define what we mean by saying that the semigroup G
acts ergodically on the space E. When this is the case the pathology
that arises from the existence of more than one fixed point in a given
orbit of E cannot occur. Thus the ergodicity of G on E may be considered
as a strong uniqueness requirement on the fixed points of orbits of E.
When E is reflexive we can then show that this requirement (that (G, E)
is ergodic) may be characterized by the fact that every orbit of the con-
jugate space E * contains at least one fixed point under the adjoint semi-
group G*. Indeed whether E is reflexive or not, Theorem 3.1 asserts that
the 'ergodic behaviour' of the orbits of one space insures the existence of
(at least) one fixed point in any weakly compact orbit of the other.

These results 'explain' and unify many earlier results which were
obtained using different specialized techniques. The following two
examples are instructive:

(a) G is abelian. As it is quite trivial to verify that abelian semi-
groups act ergodically, both (G, E) and (G*, E*) are ergodic. Then since
(G, E) is ergodic (respectively (G*,E*) is ergodic), we see that every weakly
compact orbit of E contains at most (respectively at least) one fixed point.
Thus weakly compact orbits contain precisely one fixed point (cf. for
example [8]).

(b) G is a group acting on a Hubert space E. Here one can show

Received June 2, 1962. This work was supported by the Office of Ordnance Research
(Contract DA-04-200-ORD-171).
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(Jacobs [9]) that whenever a (bounded) group acts on a Hubert space,
any orbit contains at least one fixed point. Since this applies to ((?*, E*)
as well as to (G, E), we see from the previous discussion that every
orbit of E contains exactly one fixed point. Jacobs makes use of the
special nature of the hypotheses on G and E in deriving the uniqueness
of fixed points in orbits in case (b). Nonetheless the spirit of his argu-
ment is akin to ours and suggested the interest of such an investigation
as the present one.

In the last section of the paper we describe the relationship between
ergodicity and invariant means. We show in particular that if (G, E) is
ergodic where G is a semi-group of 'transition operators' on an appropriate
space E, then E admits a mean which is invariant under G.

This paper represents part of the authors doctoral dissertation
presented in 1957 at the University of California at Berkeley. In the
authors thesis ergodicity was also characterized generally in terms of
the notion of convergence due to Birkhoff and Alaoglu [1]. Here we
have preferred to proceed independently of all convergence considerations
in an entirely self-contained way. The author would like to thank
Professor F. Wolf, under whose direction the thesis was written for his
generous help and advice.

l Fixed points in orbits. Throughout this paper G will denote a
bounded semi-group of linear transformations acting on a Banach space
E. This means simply that G is closed under multiplication and that
there is a positive number M such that \\gx\\ < Λf H#|| for all xeEand
g e G. We will assume that G contains the identity transformation. If
x e E, the closed convex hull of the set {gx; g e G} will be referred to as
the orbit of x and denoted K(x); subsets of this type will frequently be
called orbits without specific reference to the generating vector. G will
denote the collection of operators on E which are convex combinations
of elements of G. Then G is a bounded semi-group in its own right
with the same bound M, the same orbits, and the same fixed points as
G. Clearly K(x) = closure {gx geG}. Finally we define N= {xeE Qe K(x)},
F = {xeE gx = x for all g e G}, D = {x — gx; x e E and g e G}, and [D] =
the closed subspace spanned by D.

In passing to the action of the adjoint semi-group G* on the conjugate
space E*9 the corresponding dual objects are naturally defined. Thus if
ξe E*, the orbit of ξ will mean the closed convex hull of {#* ξ; g* e G*} and
will be denoted again K(ξ). In the same spirit we define G*, N*, D* and ί7*.

We use the notation (x, ξ) to express the linkage between a vector
xeE and a vector ξeE*. If S is a subset of E and Γis a subset of
E*, we set Sλ={ξe E*; {x, ξ) = 0 for all xeS} and TL = {x e E; (x, ξ) = 0
for all ξe T}. Recall that S11 = [S], the closed subspace spanned by S.
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The following technical proposition expressing the relationships
between the sets we have defined will be used repeatedly throughout
this paper.

1.1. PROPOSITION.

1.1.1. N f] F= 0
1.1.2. DL = F* and D$ = F
1.1.3. N is closed in E
1.1.4. Da Na[D]
1.1.5. If x0 e F, then x0 e K(x) if and only if x — xoe N
1.1.6. If [D] Π F = 0, then any orbit of E can contain at most one

fixed point.

Proof. If x e N Π F, then K(x) = {x} and also 0 e K(x) so that (1)
follows. (2) is immediate by virtue of the identity (x — gx, ξ) = (x, ξ—g* ξ).
To prove (3), let x e N and choose neN with \\x — n\\ < ε. We can
then find geG with \\gn\\ < e. We now have \\gx\\ g llflΌB —w))|| +
\\gn\\ < (M + l)ε so that xeN.

To prove (4), we define gn = 1/n (1 + g + g2 + + g''"1) where geG.
Then 0% G G. If now as — gx e D, we have #„(# — ^x) = 1/w (x — gnx) —> 0
so that 0eK(x-gx). Thus D cz N. To show that ΛΓc [D], it will
suffice to prove that (N, F*) = 0 for then N c F$ - D11 = [D]. But if
neN and ξeF* we may choose geG with ||ι/w|| < ε/| |£| |. We have:

\{n,ξ)\ = \{n,g*ξ)\ - \(gn,ξ)\ ^ \\gn\\ | | f | | < ε

so that

(n, I) - 0 .

If x0 e F, then βrcc — x0 = fiί(x — x0) so that 11 gx — #011 < £ if and only

if HfKa - &o)ll < ε T h i s P r o v e s (5)
To prove (6), let xlf x2 be fixed points in the orbit K(x). Then by

(5) nx — x — xx and n2 = x — x2 are both in N. Since N c [D], this
means that ^ and n2 are in [D] so that nλ — n2 = x2 — xxe [D] f] F. In
particular if [D] Π F = 0, then a?! = a?2.

1.2 EXAMPLE. In the classical context where G is the bounded semi-
group consisting of the powers of a single operator T (where || Th\\ ^ M,
k — 1, 2, •), we may identify N with the closed subspace: η = {xe E;
Tnx = l/w(a? + Γx + + T71'^) -> 0}. For, take x — Tkx e D. Then
TJx - Tkx) = k/n Tk(l - Tn)x —> 0 so that J9 c 57. Since η is closed,
this means that [D] c 37 and so N c 37. But also if Γ%α; —> 0, then 0 e ίΓ(a?)
so that η cz N. Thus N=η.

If now x e i ? a n d x0 is a fixed point in K(x) then by (1.5) x — x0e N
and so Tnx — x0 = Tw(a; — a?0) —> 0. Consequently Twx —> a?0. We have
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thus shown: if the orbit of a vector xeE contains a fixed point xQf then

Tnx converges to x0. Conversely the identity (1 — T) Tnx = l\n(l — Tn)x

shows that if Tnx converges to xQ, then x0 is a fixed point, (cf. Eberlein
[8]).

1.3 THEOREM. If every orbit of E (respectively E*) contains at
least one fixed point, then any orbit of E* (respectively E) contains at
most one fixed point.

Proof. If the orbit of every vector x e E contains a fixed point xOr

then x — x0 e N, so that every vector x in E can be expressed as the
sum of a vector x0 in F and a vector x — x0 in N. Thus Fλ Γi NL = 0.
Now since D c N a [D] one has NL = DL = F*. Also (F, D*) = 0 so
that JP X contains [D*]. Consequently F1 Π ΛP- contains [D*] Π i*7* and
so [JD*] Π F* = 0. Applying Proposition 1.1.6 to the adjoint space, the
conclusion then follows.

If every orbit of E* contains at least one fixed point, then by what
we have just shown, any orbit of 2?** contains at most one fixed point-
But because of the isometric imbedding of E in E**9 the orbit of a
vector xeE is the same whether x is considered to lie in E or £/**»
Thus orbits of E contain at most one fixed point.

1.3.1 COROLLARY. / / every orbit in E and in £7* contains at least
one fixed point, then any orbit in E or in E* contains precisely one
fixed point.

1.4 EXAMPLES

1.4.1. If G consists of contractions1 on Hubert space then any orbit
K(x) certainly contains at least one fixed point. For if xQ is the (unique)
element of K(x) having smallest norm, then since ||flfa?0|| ^ ll̂ oll a n ( i
gxQ e K(x), it follows from the defining property of x0 that gxQ = xQ; that
is, xQ is a fixed point.

As the same argument applies to the adjoint semi-group G* (which

also consists of contractions on Hubert space) we conclude by Corollary

1.3.1 that every orbit contains precisely one fixed point (Alaoglu-Birkhoff

[1]).

1.4.2. More generally Day [5], pointed out that whenever G consists
of contractions on a strictly-convex2 reflexive space, the above argument
is still effective and shows that every orbit contains at least one fixed

1 An operator T is called a contraction if || T\\ ̂  1. It is called an isometry if || Tx\\ =
|| x || for all x e E.

2 A Banach space is strictly convex is the unit sphere (vectors of norm 1) contains no
line segment.
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point. Thus if we assume that both E and £** are strictly convex,
Corollary 1.3.1 again allows us to conclude that every orbit contains
precisely one fixed point. Such is the case, for example, if E is an Lp

space for p > 1.

1.4.3. If G consists of a (bounded) group acting on a Hubert space
Eλ then we may define a new norm on E in the following way: | x |2 Ξ=
supg€(? (βttf 9χy* This clearly defines an equivalent norm relative to
which G acts isometrically. Moreover Jacobs [9] has shown that this
new norm is strictly convex. Thus by Day's result, every orbit of E
contains at least one fixed point. Since (?* is also a group, the same
conclusion is valid for orbits of E*; by Corollary 1.3.1 it then follows
that every orbit of E contains precisely one fixed point (Jacobs [9]).

1.5. REMARK. We are indebted to the referee for informing us of
some unpublished results of C. Ryll-Nardzewski [14]. His results imply
the following: if G is a semi-group of isometries1 on a Banach space E
then any weakly-compact orbit of E contains fixed points. In particular
if E is reflexive (and G consists of isometries) then every orbit of E
contains at least one fixed point. If in addition G* also acts as isometries
on the (reflexive) space E*, we conclude by Corollary 1.3.1 that every
orbit of E contains precisely one fixed point.

In the same way if G is any (bounded) group acting on a reflexive
Banach space we may renorm the space as in Example 3 above so that
G consists of isometries. The result of Ryll-Nardzewski thus again
applies to show that in this case too every orbit contains precisely one
fixed point

2 Ergodicity and duality• We now proceed to an examination of
the 'good' case where G acts 'ergodically' on E.

2.1 PROPOSITION. The following conditions are equivalent:
1. gNcz N for any geG (if 0 e K(ri), then 0 e K(gn)).
2. If neN then K(n) c N.
3. N is a linear subspace of E (i.e. if 0 e K(x) and 0 e K(y), then

OeK(x + y)).
4. N=[D\.

Proof. (1) = > (2) since N is closed.
(2) = > (3). Let x e N and yeN. Choose g1 e G such that

e. Then as gλyeN by (2), we can choose g2eG such that

/|| < ε W e n o w have:
O* + y)\\ ̂  M\\gix\\ + \\g,giy\\ < (M+ l)e. Thus x + yeN.

(3) = » (4) for N is closed and D c Nd [D].
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(4) ==> (1). Since F* is invariant under the action of £?*, it follows
that [D] = Fi is invariant under the action of G. In particular, if
[D] = N, then condition (1) is satisfied.

The pair (G, E) will be called ergodic if any of the above conditions
is satisfied. We will then call a vector of E ergodic if its orbit contains
a fixed point. By proposition 1.1.5 and proposition 2.1 a vector xeE
is ergodic if and only if it belongs to the subspace R = iV0 F — [D] 0 F.
R will be referred to as the ergodic subspace. (This nomenclature is
in accord with a somewhat unfortunate tradition.)

2.2 EXAMPLES 2.2.1. If G is abelian, then (G, E) is ergodic. For
if ne N and ge G we may choose gλeG with ||βriw|| < ε. We then have
11 #10̂ 11 = IIWî ll < Me so that gneN. Thus (G,E) is ergodic by
proposition 2.1.1.

2.2.2. If every orbit of E contains precisely one fixed point, then
(G,E) is ergodic. For let neN and geG. Since K(gri) c K(ri), the
fixed point of K{gn) must coincide with that of K(n); that is, 0 e K{gn).
Thus gneN and so again by proposition 2.1.1 (G, E) is ergodic.

2.2.3. If G admits a right invariant mean, then (G, E) is ergodic
(Theorem 4.2).

2.2A. If every orbit of E* contains at least one fixed point, then
(G, E) is ergodic. (We will see later—cf. Corollary 3.1.1—that when E is
reflexive, (G, E) is ergodic if and only if every orbit of E* contains at
least one fixed point.)

Proof. If (G, E) is not ergodic, by proposition 2.1.1 there is an
neN and a geG with gn£N, so that OeK(n) but OgK(gri). The
Hahn-Banach Theorem then asserts the existence of a functional ξeE*
which separates 0 from the closed convex set K(gn); that is, 0 < a ^
(K(gri), ξ) where a is a real number. In particular, 0 < a ^ (Ggn, ξ) =
(gn, G*ξ) and so 0 < a ^ (gn, G*ξ). But as gn induces a continuous
functional on i?* (in the norm topology on E*) we have:

(gn, G*ξ) => (gn, {G*ξ}) = (gn, K(ξ))

so that 0 < a ^ (gn, K(ξ)). If then K(ξ) were to contain a fixed point
ξ0, we would have 0 < a ^ (gn, ξ0) — (n, ξQ) which would contradict the
fact that N is perpendicular to F*.

2.3 THEOREM. // (G, E) is ergodic, then:

2.3.1. the ergodic subspace R is closed and strongly invariant (in
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the sense that gxe R if and only if x e R),

2.3.2. the orbit of a vector x e E contains precisely one fixed point
if xe R and contains none if x& R,

2.3.3. if xe R and p(x) is the associated fixed point of K(x) then
x —> p(x) defines a (bounded) linear operator p on R such that pg =

2.3.4. F* Φ 0 whenever F Φ 0; indeed the dimension of F* is at
least as great as the dimension of F.

Proof. If (G, E) is ergodic, then N = [D] and so [D] Π F = 0.
Then by proposition 1.1.6 orbits of E contain at most one fixed point.
Thus if xe R, K(x) contains precisely one fixed point. This gives 2.

By proposition 2.1, [D] = N is invariant under the action of G so
that R = J V 0 F is invariant under G. Moreover if gx e R, then K(gx)
contains a fixed point and since K(x) 3 K(gx), K(x) contains the same
fixed point. Thus xe R.

Next we show that R is closed. For x e R, let p(x) denote the
unique fixed point in K(x). Then ||p(x)\\ ίk M\\x\\ for all xe R. Moreover,
if neN and feF, then p(n + f) - / so that | |/ | | - \\p(n + / ) | | ^
M\\n + f\\.

Suppose then that xne R and that xn —• x0. Put xn = dn + fn where
dn e [D] = Nand fn e F. Since xn is Cauchy and \\fn-fm\\ ^ M\\ (dn - dm) +
(fn-f«)\\ = M\\xn-xm\\,we conclude that/ . is Cauchy. Thus fn->/0e F
and so dn —> x0 — /0 e N. Consequently x0 e iV0 F = R.

Let x19 x2eR and xi — n{ + /; where n^N and /< e F. Then ί>(a?i) =
fi and (̂α?! + a?2) = p((nλ + n2) + {f± + /2)) =fx + f2 since by Proposition
2.1 nλ + n2e N. Thus p is linear.

Finally in order to prove that dim F g dim F*, we may assume that
dimF* < oo. We then have F* = [D]1- ̂  (EI[D\)* so that dimΐ7* =
dim (£7/[i)]) = codim[i)]. But if (G, J5?) is ergodic, [ ΰ ] n f = 0, and so
in this case codim [D] ^ dim F.

This completes the proof.

Part 4 also follows from some results of Yood [15].

REMARK. If E is reflexive and both (G, E) and (G*, 2£*) are ergodic,
(cf. Corollary 3.1.1) then applying Theorem 2.3.4 to both spaces, we
conclude that dim F= dim F*. In particular, this equality holds when G is

3 It is easy to see that gx -» xo in the sense of Alaoglu-Birkhoff [1] if and only if x 6 R
and xo = p(x).
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a group or an abelian semi-group on Hubert space. When G consists
of contractions on Hubert space, it follows for the same reason that
dim F = dim F*. But in this case one actually has more; namely F — F*.
For if x e F, then \\x\\2 = (gx, x) = (x, g*x) ^ | | g | | \\g*x\\ ^ | |a | | a and so
\\x\\* = \\g*x\\2 = (x,g*x). Thus \\g*x - x\\2 = (g*x - x, g*x - x) = 0 so
t h a t g*x = x and x e F*.

3. Existence of fixed points* As the next proof will require us to
conduct our arguments in the (non-normed) weak-*topology of E*, we
mention here some of the relevant background. The definitions and
proofs of the results we use concerning topological vector spaces can be
found in Bourbaki [3].

We define the weak-topology on a Banach space E to be the least
fine topology relative to which all the elements of the adjoint space E*
are continuous. Thus the weak topology on the Banach space J57* is
defined using the elements of 2?**. By the weak-* topology on E* we
mean the least fine topology relative to which the elements of E induce
continuous functionals. By definition then, when J57* is endowed with
the weak-* topology, any element of E induces a continuous functional
on it. One can show that every functional on E* which is continuous
in the weak-* topology arises in this way from an element of E.

Although the norm topology is in general definitely richer in closed
sets than the weak topology, Mazur's theorem asserts that a convex
closed set is weakly closed. We will also make use of the fact that the
unit ball of E* is compact in the weak-* topology. Finally, as the new
topologies on E and E* are locally convex (that is, every vector possesses
a fundamental system of convex neighborhoods), the theorems of the
Hahn-Banach type apply. These guarantee in particular the existence
of continuous functionals strictly separating a given closed convex subset
from a disjoint compact convex subset.

3.1 THEOREM, (a) If (G, E) is ergodic, then any convex weak-*
compact subset of E* which is invariant under the action of G*,
contains a fixed point. In particular, any orbit of E* which is compact
in the weak-* topology contains a fixed point.

(b) If (G*, 2?*) is ergodic, then any convex weakly-compact subset
of E which is invariant under the action of G, contains a fixed point.
In particular, any orbit of E which is compact in the weak topology
contains a fixed point.

REMARK. Since by Mazur's theorem orbits are weakly closed, the
two assertions of part (b) are actually equivalent. Orbits of E*f on
the other hand, need not be weak-* closed so that the first assertion
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<)f part (a) is really stronger than the second one.

Proof of the theorem. Part (a). Suppose that W is a convex,
weak-* compact subset of E* which is invariant under G* and yet which
does not contain fixed points. Then W Π F* = φ. As F* = DL, F* is
weak-* closed. In the space E* endowed with the weak-* topology we
may then apply one form of the Hahn-Banach Theorem to the disjoint
closed convex set F* and the compact convex set W. This theorem
asserts the existence of a weak-*-continuous functional on E* which
strictly separates W and F*. As we have seen that all such functionals
arise from elements in E, there is then an x Φ 0 in E and a real number
a with (x, F*) < a < (x, W). Since F* is a subspace, this requires (x, F*)
to be zero and so xeF^ = [D].

Thus 0 < a < (x, W) where xe[D], Choosing an arbitrary ω0 e W,
we have G*ω0 c W so that 0 < a < {x, G*ω0) = (Gx, ω0) and hence 0 <
•cc 5Ξ (Gx, ω0). But as ω0 is continuous in the norm topology of E,
(K(x), ω0) = {{Gx}, ω0) c (Gx, ω0) and so 0 < a S (K(x), (o0). In particular
then, we conclude that 0 $ K(x); that is, x g N. As x was shown to be
in [D], this means that (G, E) cannot be ergodic.

Part (b). Since the weak-* topology of £*** induces on E (which
is naturally imbedded in E**) a topology which coincides with the ordinary
weak topology of Ef a subset of E which is weakly compact may be
considered a subset of i?** which is compact in the weak-* topology on
that space. An application of part (a) then gives part (b).

3.1.1 COROLLARY. If E is reflexive, then (G, E) is ergodic if and
only if every orbit of E* contains at least one fixed point.

Proof. Orbits are bounded and (by Mazur's theorem) weakly closed
so that in a reflexive space any orbit is weakly compact. Theorem 3.1
thus gives the forward implication. Example 2.2.4 gives the converse
independently of reflexivity.

3.2 REMARKS.

3.2.1. If both (G, E) and ((?*, E*) are ergodic, then any orbit in
either E or £7* can contain at most one fixed point (Theorem 2.3.2).
But then by Theorem 3.1, any weakly compact orbit of E or any weak-*
compact orbit of E* must contain precisely one fixed point. Since an
abelian semi-group always acts ergodically, these results are valid in
particular in the case where G is abelian (G* is also abelian). We shall
see that the same is true when G possesses a two-sided invariant mean
(Remark 4.3.1.).
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3.2.2. By the corollary of the last theorem we see that when E
is reflexive every orbit contains precisely one fixed point if and only if

either (a) both (G, E) and ((?*#*) are ergodic

or (b) every orbit of E and of E* contains at least one fixed point.

In the case where G is abelian, (a) is immediate. If E is a Hubert
space and G is either a semi-group of contractions or a (bounded) group,
we have seen that (b) holds. In fact using the results of C. Ryll-
Nardzewski [14] mentioned in remark 1.5., (b) is valid on any reflexive
Banach space so long as G is a bounded group or if both G and G*
are each semi-groups of isometries. His proof presumably depends on
delicate measure-theoretic machinery. It would be interesting to see if
one could prove (a) directly in these cases.

4Φ Means and ergodicity. Let E be the Banach space B(Ω) of
all bounded continuous functions on the completely regular topological
space Ω under sup norm4. An element ξeE* is called positive if ξ(f) ^ 0
whenever / ^ 0. In that case it is clear that \\ξ\\ = ξ(l). A positive
functional λ e E* is called a mean on E if λ(l) = 1. We then have
||λ| | = 1 and moreover |λ(/) | ^ λ(|/|) ^ | |/ | | for any feE. Let P be
the set of means on E. Evidently P is weak-* closed in E*. As P is
convex and is contained in the (weak-* compact) unit ball of E*, it follows
that P is weak-* compact.

An operator T on E is called an endomorphίsm (or a transition-
operator) if Tf^O whenever / ^ 0 and also Tl = 1. This is equivalent
to requiring Γ P c P; i.e., that the set of means on E is carried into
itself by T*. Finally as | |/ | | ^ 1 if and only if - l ^ / ^ l , we see
that the norm of an endomorphism is 1.

Suppose now that G is a semi-group of endomorphisms on the Banach
space E as above. Since every element of G has norm 1, G is bounded
in the sense of our earlier discussion. A mean A o n E is said to be
invariant (under G) if A (ft/") = Λ(/) f o r e a c h 9^Gf feE. Thus an
invariant mean on E is simply an element of P (Ί F*. In general, of
course, this set may be empty. However, as a consequence of Theorem
3.1, we have:

4.1 THEOREM. If G is a semi-group of endomorphisms which acts
ergodically on E, then E possesses an invariant mean.

Proof. The set P of means on E is a convex weak-* compact subset
of £/*. The fact that G consists of endomorphisms means that P is

4 The development in this paragraph could be carried through taking for E what Kakutani
[11] has called an abstract Tkf-space with unit, but his results show that the generality-
gained is only formal.
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carried into itself by every element of G*. But then by Theorem 3.1
(a), P contains a fixed point for G.

4.1.1. COROLLARY. If G is abelian, then E possesses an invariant
mean (Kakutani [10] and Day [4]).

If the space Ω is a (topological) semi-group G, then there are several
ways for G to induce endomorphisms on the space E = B{G). If g e G
and/e.B(G) let us define the operators Lg and Rg on E by: (LQf)(gr) =
f(gg') and (RJ) (</') = f(g'g). We then have LQγLH = L w RQiRΰ2 = RHH

and RgiLg2 = I^-R^ so that GL = {Lg; g e G} and GΛ = {Rg; g e G} form two
semi-groups of endomorphisms on E which commute elementwise. Thus
Gτ = {LgiRg2; glf g2 e G} also forms a semigroup of endomorphisms on E.
Corresponding to these three semigroups we obtain the notion of left,
right and two-sided invariant means on E (or as we shall say, on G).
By Corollary 4.1.1 any abelian semi-group possesses an invariant mean.
The existence of Haar measure (cf. § 4.4) shows that any compact group
possesses a (unique!) invariant mean.

Heretofore, in the discussion of bounded semi-groups of operators,
the topology on the semi-group played no role. We might equally well
have been dealing with an abstract semi-group G, together with a bounded
representation of G into the multiplicative semi-group of operators on
E, where we call a representation π of G bounded when the image
semi-group is bounded. If G is a topological semi-group, we will say
that the representation π is weakly-continuous if g —> (π(g)x, ξ) is a
continuous function on G for any xeE, ξeE*. For convenience we
omit the letter π and speak of the continuity of (gx, ξ), the ergodicity
of (G, E), etc.

4.2 THEOREM. Let π be a bounded weakly-continuous representation
of the topological semi-group G on the Banach space E. Then if G
admits a right invariant mean, (G, E) is ergodic.

Proof. For xeE, ξeE*, let [xf ξ\ denote the function in B{G)
whose value at g is {gx, ξ). If A denotes a right invariant mean on
G, then we may define a transformation T: E-^ E** by means of the
equation (Tx,ξ) = A([^!])- Then

| | Γ s | | = sup \(Tx,ξ)\= sup | Λ ( M ) I = § sup | | [ s f f ] | |
llίll^i llfll^i llfll^i

= sup sup I (gx, ξ) I ^ M \\ x \\
l l $ i | £ i Q

Thus T is continuous.
Observing that Rg([x, ξ]) = [goo, ξ] we have:

(Tgx, ξ) - A([gx, ξ]) = A(Rβ[x, ξ]) = Λ([a, f]) - (Tx, ξ)
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for any ξeE* so that Tgx = Tx and consequntly T vanishes on D. By
the continuity of T then, T vanishes on [D] and so a fortiori on N.

But now conversely if Tx — 0, we claim that 0 e K(x) so that x e N.
For otherwise, we could find ξe 2?* and a real number α with 0 < a ^
(i£(£), f). In particular α ^ (gx, ξ) for all # e G and so [#, £] ^ α. But
then {Tx, ξ) = Λ(l>, £]) ^ α > 0, which contradicts the fact that Tx = 0.
Thus Tx = 0 if and only if xe N, so that JV is a linear subspace and
(G, E) is ergodic.

4.3.1. Let G be a bounded semi-group of operators on E. If G
admits a right invariant mean when given either the discrete or the
uniform operator topology then Theorem 4.2. applies so that (G, E) is
ergodic. If instead G admits a left invariant mean in either of these
topologies then G* admits a right invariant mean in the same topology
so that (G*, E*) is ergodic. Thus in this case by Theorem 3.1 any invariant
compact convex set of E contains a fixed point (cf. Day [6]). In particular
if G admits a two-sided invariant mean in either topology then any
compact convex orbit of E must contain precisely one fixed point.

4.3.2. Combining Theorem 4.1 and 4.2, we see that if G is a
(topological) semi-group of endomorphisms of the space E = B(Ω) (and
g —> (gx, ξ) is continuous) then whenever G possesses a right invariant
mean, E also possesses a mean which is invariant under G.

4.4. Application to Haar Measure on a Locally Compact Group.

As an amusing application of the fact that abelian semi-groups admit
invariant means, we give here a construction of Haar measure (or rather
of a nontrivial invariant content5) on an arbitrary locally compact group.

Suppose then that & is a locally compact group and let G denote
the collection of neighbourhoods of the identity e in &. Then G is an
abelian semi-group under the operation of intersection] Let A be an
invariant mean on G. We wish to associate with each compact subset
K of the group gf a bounded function K on G in such a way that
λ: K —> Λ(K) will define a nontrivial invariant content. Let Ko be a fixed
compact neighborhood of e. Then if S c ^ and the interior of S is
nonvoid, define (K: S) as the smallest integer n such that K can be
covered by n (left) translates of S. We now define the function K on
G by setting K( V) = (K: V)I(KQ: V) where^ VeG. As K( V) ^ (K: Ko),
K is bounded and we may define λ(ίQ = A(K). Observing that (gK: V) =
(K: V) for ge gf, we have j £ = (flϋΓ) and so λ ( ^ ) - λ(iΓ). Also if iΓ
has a nonvoid interior, then K( V) ^ l/CKi,: K) so that in this case

5 cf. Halmos-Measure Theory, Theorem B, p. 254.
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\(K) ^ l/(Zo: K) > 0. It is clear that in general \{Kλ U K2) g X{K±) +
X(K2). If, moreover, Kx and K2 are disjoint, (Kx [j K2: V) = {Kx: F) +
(iΓ2: V) for all small enough VeG. By virtue of the invariance of Λ,
we then have X(KX U 1Q = HKJ + λ(iQ.
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ABELIAN SUBGROUPS OF ^-GROUPS

CHARLES HOBBY

Let G be a finite p-group where p is an odd prime. We say that
<? has property An if every abelian normal subgroup of G can be generated
by n elements. Further, if Gn denotes the wth element in the descending
central series of G, we say that G has property An(Gn) if every abelian
subgroup of Gn which is normal in G can be generated by n elements.
If G has property Al9 then G is cyclic. N. Blackburn [1] found all of
the groups which have property A2. It follows from the work of Blackburn
that if G has property A2 then the derived group of G is abelian and
every subgroup of G has property A2. We shall show that if G has
property Az then every subgroup of G has property A3. There exist
groups which have property A5 in which the derived series is arbitrarily
long [2] so no analogue of Blackburn's result on the derived group is
possible. We next consider groups G which have property An(Gn) and
show that Gn can be generated by n elements. This leads to the existence
of a bound on the derived length of G which depends only on n and the
exponent of Gn.

We shall use the following notation: p is an odd prime; G=G1ZDG2ZD

is the descending central series of G; Z(G) = Zλ{G) c Z2(G) c is the
ascending central series of G; G{k) is the kth. derived group of G; (H, K)
is the subgroup of G generated by all elements (h, k) = h~xk~λhk for
heH, ke K; N<\G means N is normal in G; N c G means N is properly
contained in G; Cβ(N) is the centralizer of N in G; H& is the normal
subgroup of G generated by H; @(G) is the subgroup generated by pth
powers of elements of G. Ω(G) is the subgroup generated by all elements
of order p in G; φ(G) is the Frattini subgroup of G; \G\ is the order of G.

If A O G and A c CQ{A), then there is a subgroup B of CQ(A) such
that B <\G and [B: A] = p. It follows that if a normal subgroup A of
G is properly contained in an abelian subgroup C of G, then A is properly
contained in some abelian normal subgroup B of G.

LEMMA 1. Suppose A <| G and A c C where C is an elementary
abelian subgroup of G. Then G contains an elementary abelian normal
subgroup B such that A is a subgroup of index p in B.

Proof. Suppose G is a group of minimal order for which the lemma
is false. Then C c G , so there is a subgroup M of index p in G which
contains C. It follows that M contains an elementary abelian normal
subgroup Bx such that [Bx: A] = p. Set D = MΠ Ca(A). T h e n J ? 1 < D < G .
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Since (D, Bλ) g A and (A A) = 1, we have Bx g Z2{D) < G. Therefore
i?ί S ^2(-D). But Z2(D) is a regular p-group for p > 2, so 5* has exponent
p. Let B be a subgroup of Bf which is normal in G and which contains
A as a subgroup of index p. Clearly B is elementary abelian, so the
lemma is true for G.

THEOREM 1. If G has property A3 then every subgroup of G has:
property Az.

Proof. Suppose G is a group of minimal order for which the theorem
is false. Then G contains an elementary abelian normal subgroup A of
order p3, and there is a subgroup M of index p in G which does not
have property A3. It follows that M contains an elementary abelian
normal subgroup D of order p\ Let N be a subgroup of order p2 in A
which is contained in M and which is normal in G. If we let C = CG(N),
then [G: C] ̂  p, hence [D: D Π C]^p. Thus we may suppose that
N c D, since otherwise we could choose a new subgroup A in (C Π D)N
such that N c DX<\M and A is elementary abelian of order p\

Since G has property A3 it follows from Lemma 1 that A contains
the only elements of order p in C0(A). Therefore N = D Π ̂ (A). It
is easy to see that [C: C0(A)] ̂  p2, thus C = DC0(A). Therefore, if
deD, geG, then g~λdg = dλc for some d1eD, ce C0(A). We recall that
D is an abelian normal subgroup of My and that M<\G. Thus D and
g~~xDg generate a group of class at most two; hence for p > 2 the group
generated by D and g~xΌg has exponent p. Thus it follows from g~λdg =
ώxc that cp = 1, whence c e i . Therefore AD <\ G. But A Π D = JV, so
[AD: D] = p. Since D is not normal in G, we must have AD = D(g-λDg)
for some element geG. Therefore D Π g~λDg has order at least p3 and
is contained in ZX{AD) which is normal in G. Thus AD must contain
an element of order p which centralizes A and which does not belong
to A. This is a contradiction.

THEOREM 2. If G has property An(GJ then Gn can be generated
by n elements.

Proof. Suppose G is a group of minimal order for which the theorem
is false. Then Gn is not abelian, so φ(Gn) Φ 1. Let Z be a group of
order p in ZX(G) Π Φ{Gn). Then Gn and (GIZ)n have the same number
of generators, so {GjZ)n must contain an elementary abelian subgroup
BjZ of order pn+1 which is normal in G\Z. Let B be the preimage of
BIZ in G. Then B<\G, B has order pw+2, and B{1) S ^. Thus B has
class at most two, hence is regular for p > 2. But ̂ (5) S ^, so J2(j?)
is a group of order at least pn+1 which is normal in G. Thus there is



ABELIAN SUBGROUPS OF ^-GROUPS 1345

a subgroup A of Ω{B) such that A <\ G, o(A) = 1, and A has order pn+1.
Let N be a subgroup of index p in A which is normal in G. Then | N\ =
p* and ΛΓ<]G imply NSZn(G), whence NSZλ(Gn). Therefore A is
abelian, a contradiction.

COROLLARY. Suppose G has property AJGn), where Gn has exponent
pm. Let k be an integer such that 2fc ^ n. Then G{JC+m) = 1.

Proof. By Theorem 2, Gw can be generated by n elements. Therefore
[3, Theorem 2] φ(Gn) = Ω(Gn). It follows that G{

n

m) = <1> [4, Theorem 2].
In any p-group, G{t) S Gat. Therefore G(fc) C Gn, whence G(fc+m) - <1>.
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THE MINIMUM BOUNDARY FOR AN
ANALYTIC POLYHEDRON

KENNETH HOFFMAN AND HUGO ROSSI

l Introduction, If K is a compact subset of a complex analytic
manifold M, then for each / , holomorphic (analytic) in a neighborhood
of K, the maximum modulus of / over K is attained on the topological
boundary of K. If the complex dimension of M is greater than 1, it
may happen that there are proper closed subsets of the topological
boundary on which each holomorphic / attains its maximum modulus.
In case there are sufficiently many holomorhic functions on M to separate
the points of the manifold, a general result of Silov [6] states that
there is a uniquely determined smallest closed subset of K which has
this maximum modulus property. This set is known as the Silov boundary
for the ring of functions holomorphic in a neighborhood of K.

The Silov theorem is valid for separating algebras of continuous
complex-valued functions on a compact space, and has nothing to do
with analyticity as such. Many years earlier, the pioneering work on
maximum modulus sets for rings of analytic functions had been done
by Bergman [1; 2; 3], He considered principally domains in Cn which
were bounded by a finite number of analytic hyper surf aces, and for
these he introduced a distinguished boundary surface. For a wide
class of such domains, he showed that his distinguished boundary was
a smallest maximum modulus set. References to more recent work on
these problems may be found in the second author's paper [9].

In this paper we consider the case in which M is a Stein manifold,
e.g., a domain of holomorphy in Cn, and the compact set K is an
analytic polyhedron. This means that K has the form

where flf •••,/* are holomorphic functions on some open subset D of
the manifold M. We consider those subsets S of K which have the
property that, for every / holomorphic in a neighborhood of K, the
maximum modulus of / over K is attained on the subset S. We prove
that among all such subsets S there is a smallest one, which we call
the minimum boundary for the polyhedron. The closure of this minimum
boundary is (of course) the Silov boundary for the ring of functions
holomorphic on K. While it is difficult to give an explicit description
of this Silov boundary, such a description can be given for the minimum
boundary. It is obtained by deleting from K all connected local analytic
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varieties of positive dimension which are contained in K. In terms of
the functions f$ which define the polyhedron K, the description is as
follows. Let m0 e K, and let j19 , j r be those indices j for which
\fj(mo)\ — 1. Then m0 belongs to the minimum boundary if and only
if m0 is an isolated point of the set (variety)

V= {me D;fh(m) = fu(mQ), i = 1, , r} .

In [7], the first author identified the minimum boundary for the
ring of functions on K which are uniform limits of functions holomor-
phic in a neighborhood of K. The arguments there made essential use
of a fundamental theorem of Bishop: if A is a uniformly closed separating
algebra of continuous complex-valued functions on a compact metric
space K(l e A), there is a smallest subset of K on which each function
in A attains its maximum modulus. This minimum boundary for A
consists of the points of K at which some function in A "peaks", i.e.,
those points with the property that there is a function in A which
attains its maximum modulus at the point, and at no other point. The
description of the minimum boundary for the ring of functions holomor-
phic on K is exactly the one which was shown in [7] to define the
minimum boundary for the uniform closure of the ring. In particular,
it results that the minimum boundary for the polyhedron consists of
those points of K at which some holomorphic function peaks (over K),
or, it consists of the peak points for functions which are uniformly
approximable by holomorphic functions. We shall use methods from [7],
and we shall make essential use of Bishop's general existence theorem.
This theorem is not directly applicable to the ring of functions holomor-
phic in a neighborhood of K> since the ring is not generally closed
under uniform convergence. However, by using a technique from the
second author's paper [8], based upon the solution of the second Cousin
problem for Stein manifolds, we are able to show that the ring of
holomorphic functions has the same peak points as does its uniform
closure.

2 Notation and basic definitions* A Stein manifold is a ώ-di-
mensional complex analytic manifold M such that

( i ) the global holomorphic (analytic) functions on M separate the
points of M;

(ii) for each point meM there are global holomorphic functions
hl9 , hd which serve as coordinates in some neighborhood of m;

(iii) Mis a countable union of compact sets;
(iv) if K is any compact set in ikί, the set of points meM such

that I h(m) | ^ sup^ | h \ for every holomorphic function h on ikί is also
compact.
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Let M be a Stein manifold. An analytic polyhedron in M is a
subset P of M such that

(i) P is compact
(ii) P = {meΰ; |/;(m) | <£ 1, i = 1, , k}, where D is an open

subset of M and fl9 •••,/*. are holomorphic functions on D.
If P is an analytic polyhedron in M we denote by H(P) the set of

all functions f on P such that / is the restriction to P of a function
holomorphic in some neighborhood of P. We denote by A(P) the class
of functions on P which can be approximated, uniformly on P, by
functions in H(P). Both H(P) and A(P) are algebras of continuous
functions on P. Our task is to prove the existence of a smallest subset
S of P such that, for every h in H(P), the maximum modulus of h
over P is attained on the set S, and then to describe the set S explicitly.
For this we need to discuss briefly boundaries for algebras of continuous
functions.

Let X be a compact Hausdorff space, and let A be a collection of
continuous complex-valued functions on X. A boundary (of X) for A
is a subset S of X such that

max I /1 = max | /1 , feA
S X

that is, a subset S of X such that for each f in A the maximum modulus
of / over X is attained at some point of S. If

(a) A is a complex-linear algebra, using pointwise operations
(b) the constant functions are in A
(c) the functions in A separate the points of X,

then among all closed boundaries for A there is a smallest one, i.e.,
the intersection of all closed boundaries for A is a boundary for A. This
smallest closed boundary for A we call the Sίlov boundary for A, in honor
of G. E. Silov who first proved its existence [6]. If, in addition to (a),
(b), and (c) we have

(d) A is closed under uniform convergence
(e) X is metrizable

then the intersection of all boundaries for A is a boundary for A. This
smallest of all boundaries we shall call the minimum boundary for A.
Its existence was proved by Bishop [4], who also showed that it consists
of those points xe X which are peak points for A. We call x a peak
point for A if there exists an / in A such that | f(x) | > | f(y) | for all
points y in X which are different from x. Evidently, the Silov boundary
for A is the closure of the minimum boundary for A.

Both H(P) and A(P) are algebras of continuous functions on the
compact space P which satisfy conditions (a), (b), (c) above. Since A(P)
is the uniform closure of H(P), these algebras have the same Silov
boundary. Now P is metrizable, as is easy to see from the countability
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condition imposed on a Stein manifold. Therefore, there exists a minimum
boundary for the uniformly closed algebra A(P). The general function
algebra results cited above do not guarantee the existence of a minimum
boundary for H(P); thus, as we proceed now to prove the existence of
such a boundary, we shall make heavy use of explicit properties of
analytic polyhedra.

3. The minimum boundary. Now suppose we are given the ana-
lytic polyhedron

P={meD;\ fj(m) | ^ 1, j = 1, • , fc}

in the Stein manifold M. With each point m0 in the polyhedron P we
associate an analytic variety VmQ in the ambient neighborhood D by

(3.1) Fw o = {m e D fh(m) = fh(mQ), i = 1, - , r}

where j l f •• , i r are those indices j such that |/, (mo)| = 1.

THEOREM 1. Let moeP and suppose m0 is a local peak point for
the algebra A(P). Then m0 is an isolated point of the variety VmQ (3.1).

Proof. This is proved in [7; Theorem 4.1]; here, we merely outline
the proof. By the statement that m0 is a local peak point for the
algebra A(P) we mean that there is a function heA(P) and a neigh-
borhood N of ra0 such that /(m0) = 1 and \f(m) | < 1 for all other points
in N ft P. Given such an / and N, we may assume that those functions
fj (occurring in the definition of P) which are of modulus less than 1
at m0 are of modulus less than 1 on the open set N. Then N ΓΊ Vmo =
V is an analytic variety in N and this variety is contained in the
polyhedron P. Since / is a uniform limit on P of functions holomorphic
in a neighborhood of P, f is 'analytic' on the variety V. Also, / has
a local maximum over V at the point m0. The maximum modulus
principle for analytic varieties then states that m0 is an isolated point
of V.

THEOREM 2. Let moeP and suppose that m0 is an isolated point
of the variety VmQ (3.1). Then m0 is a peak point for the algebra H(P).

Proof. Let g{ = i (1 + fjt(mo)fjt)9 i = 1, , r. Then the function
g{ is bounded by 1 on P, and has the value 1 at any point of P where
it is of modulus 1. Now let h = gx gr. Then h is bounded by 1 on
P, has the value 1 at any point of P where it is of modulus 1, and,
furthermore, the set of points in P where h has the value 1 is precisely
the intersection of P with the analytic variety FWo. Thus, m0 is an
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isolated point of the set on which h = 1. We should also remark that
h is holomorphic in the open set D which occurs in the definition of P.

Since M is a Stein manifold, we can find functions hu hnf holo-
morphic on all of M, such that the map m —> (h1{m)9 , hjyri)) is biholo-
morphic on P, and the image of P under this map is a polynomial convex
subset of Cn. See [5], Now we consider the map

φ(m) = (hx(m)9 , Λn(m), Λ(m))

from D into C%+1. This map is biholomorphic, and the set K = φ(P) is
polynomial convex, (polynomial convexity of K means that if z is a
point of Cn+1 which is not in K, there exists a polynomial p in (n + 1)
variables such that \p(z)\ > swpκ\p\.) Let z° = ^(m0). The coordinate
function 2W+1 is bounded by 1 on if, is equal to one at any point of K
where it is of modulus 1, and z° is an isolated point of K Π {zn+1 — 1}

Choose a neighborhood U of the point z° such that for any point
z = (zl9 , 3n+1) in U Π if which is different from z° we have | zn+1 | < 1.
By [8; Theorem 2.4] there exists a function #, holomorphic in a neighbor-
hood TΓ of K, such that # never vanishes on W — U and gj(l — sn+i) is
holomorphic and without zeros on W Π U.

On the neighborhood W Π U, the function g has the form # =
(zn+1 — l)fe, where k is holomorhpic and never vanishes on W Π U. In
particular k(z°) Φ 0. Thus, by shrinking U, we may assume that k has
a single-valued logarithm; say k — eι where I is holomorphic on W Π U.
Since if is polynomial convex, it is an intersection of polynomial convex
open sets. Therefore, it may be assumed that W is polynomial convex,
and hence is itself a Stein manifold. Similarly, a small contraction of
W will assure that the part of the intersection of W with the hyper-
plane {zn+1 = 1} which lies in U is a closed analytic variety in W. Since
W is a Stein manifold, there is a holomorphic function p on W such
that p = i on that variety [5]. Now let g = ge~p. Then (? is holomor-
phic on W and has no zeros on W — U. Also g = (zn+1 — T)ke~p on
W Π U. Now fee"2' = fce~z = 1 on that part of the hyper plane {zn+1 — 1}
which lies in W Π U. Thus, on W Π U9 ke~p = 1 + (zn+1 - ΐ)k. Finally
we have a function g, holomorphic on W9 which has no zeros on W — U
and has the form

9 = («»+i - 1) + (2»+i - l ) 2 ^

on W Π U (k holomorphic on W Π Ϊ7).
From g we shall now construct a function holomorphic in a neigh-

borhood of K, which has the property that its maximum modulus over
K is attained at z° and at no other point of K. This function will be
an analytic function of g. Thus we shall examine the range of g on
K. The crucial fact about the set g(K) is that it lies outside a simply
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connected domain in the plane which has an analytic boundary contain-
ing the origin. To see this, we argue as follows. Choose a neighbor-
hood N of z° such that the function k is bounded on W Π N. We shall
then have

I 9 - (Sn+i - 1) I S c I zn+1 - 112 on W Π N

where c is some positive constant. The range of (zn+1 — 1) on K lies in
the left half-plane. For each point w in the left half plane, we consider
the disc

I ξ — w I S c I w |2 .

It is easy to see that there is an analytic curve 7 through the origin
such that for all points w near the origin this disc lies to the left of
7. Because, a short computation shows that the envelope of the family
of discs is an analytic curve through the origin. We may assume that
N is sufficiently small that for any point z in K f] N the point w =
zn+1 — 1 has this property. Therefore, the range of g on N Π K lies
to the left of 7. On K — N the function g has no zeros. Choose ε > 0
such that I g | > ε on K — N. If ε is sufficiently small, the circle | w | =
ε will intersect 7 in precisely two points. Let D be the domain bounded
by 7 and | w | = ε. Let τ be the Rieman map of the complement of D
onto the unit disc, which carries the origin onto 1. Since 7 is an analytic
curve, τ will extend analytically across that part of 7 which is on the
boundary of D. The composition τ o g = F is then holomorphic on a
neighborhood of K, is of modulus less than 1 on K — {z0}, and F(z°) = 1.

Now we return to the polyhedron P which we mapped holomorphi-
cally onto K via the map φ. Ifweletf—Foφ, then / is holomorphic
in a neighborhood of P, and the maximum modulus of / over P is at-
tained at m0 and at no other point of P. Thus m0 is a peak point for
the algebra H{P).

COROLLARY. Let M be a Stein manifold, and Let P be an analytic
polyhedron in M. Then there is a (unique) smallest subset S of P
such that for every function /, holomorphic in a neighborhood of P,
the maximum modulus of f over P is attained on the set S. A neces-
sary and sufficient condition that a point m0 in P should belong to this
minimum boundary S is any one of the following.

( i ) m0 is a peak point for the algebra H(P).
(ii) m0 is a peak point for the algebra A(P).
(iii) m0 is a local peak point for the algebra H(P).
(iv) m0 is a local peak point for the algebra A(P).
(v) There is no connected local analytic variety of positive di-

mension which passes through m0 and is contained in P.
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(vi) m0 is an isolated point of the variety VmQ, defined by (3.1).

Proof. By Bishop's theorem [4], there is a minimum boundary for
the algebra A(P), and it consists of those points of P which are peak point
for A(P). In Theorem 1 we showed that any local peak point for the
algebra A(P) satisfies (vi). Indeed, the proof showed that the point
satisfies (v), which clearly implies (vi). Theorem 2 states that (vi) implies
(i). From this it is clear that the six statements about m0 are equivalent.
Furthermore, it is evident that the minimum boundary for A(P) is a
boundary for H(P); and, since each point of this boundary is a peak
point for H(P), this boundary is the smallest boundary for H(P).
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THE BERGMAN KERNEL FUNCTION FOR

TUBES OVER CONVEX CONES

ADAM KORANYI

In this article we determine the Bergman kernel function of the
tube domain over an arbitrary convex cone not containing any entire
straight line. For homogeneous self-dual cones this problem was solved
by 0. S. Rothaus ([3], Theorem 2.6). It turns out that his method can
also be used in our considerably more general case. In fact, the proofs
of our Theorems 1 and 2 follow closely the corresponding proofs of
Rothaus; it is only in Lemma 2 that the proof of Rothaus has to be
replaced by an essentially different convexity argument.

Let V be an w-dimensional real vector space. A set D c F is called
a cone if x e D and λ > 0 imply Xx e D. Let F * be the dual space of
F. The dual cone D * of D is defined as the set of all a e F * such
that ζa, xy > 0 for all x e D, x Φ 0. We call the cone D regular if it is

( i ) open,
(ii) convex,
(iii) nonempty, and
(iv) contains no entire straight line, i.e. xeD implies ~x$D. It

is easy to see that if D is regular then D* is regular too, and D** = D.
We assume that a Euclidean norm ct? —> | α; | is defined on F. The

dual norm on F * will likewise be denoted by α — > | α | .

LEMMA 1. If D is a regular cone and K c D is a compact set then
there exists a number p > 0 such that ζa, xy ^ p\a\ for all x e K, α e ΰ * .

Proof. The proof is the same as that of [2] Lemma 1. By homo-
geneity it suffices to prove the assertion for | a | = 1. Let S —
{ae F * | | α | — 1} be the unit sphere in F * . Now (a, xy is a positive
continuous function on the compact set (S Π 5*) x K and thus has a
positive minimum p, finishing the proof.

We define the positive real-valued function M on D* by

M(ά) =

for all a e D*. By Lemma 1 the integral converges uniformly on compact
sets. As it can immediately be seen, M is a homogeneous function of
degree —n.

LEMMA 2. Let D be a regular cone and let βedD* (the boundary

of D* in F*). Then
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lim M(a) = oo .

Proof. If β = 0 the assertion is trivial. Let β Φ 0. For
and ί > 0 define HΛ(t) - {# e D|<α, α?> - ί} and let

)l

be the volume of HJt) (dvω denotes the volume element of the hyperplane
{x\<a, x> = ί}). Clearly we have VJt) = t^V^l) for all ί > 0. Also

= Γdίί
JO Ji

= Γ VΛ(t)e-*dt = VΛ(l)Γ(n) .
Jo

Therefore the Lemma will be proved if we show that linv-^Va(l) = co.
Let U a D* be a compact neighborhood of β relative to 5* . Then

the set L of all x e D such that (a, x} < 1 for all α e U has an interior.
(In fact, if A is a bound for | a | on U, it is easy to see that L contains
all xeD such that | x\ < A"1). Let K be an open sphere contained in
L; let ce D be its center and r > 0 its radius.

For a G U let iζ* be the (n — l)-dimensional sphere of radius r and
center ca = ζa, c>-1c contained in the hyperplane {x \ ζa, α?> = 1}. By
convexity and by <α, c>-1 > 1 we have if̂  c -£^(1). Since | cΛ | = <α, c>-1| c |
and since the continuous function <α, c>-1 is bounded on the compact
set U, there exists a number R such that

( 1 ) \cΛ\^R

for all α e U.
Now let β > R be an arbitrarily large number. There exists an

element a 6 D, \ a \ — 1 such that </3, α> = 0, for otherwise we would
have /3eD*. Hence there exists an element xeD, \x\ = 1 such that
</3, a?> < (JB + fl)"1. It follows then that there exists a neighborhood
U(Ω)cz U oΐ β relative to D* such that <a, x) < (R + β)-1 for all
α e ί7(β). Let ^Λ = <α, a;)-1^. Clearly we have xa e H^l) and

( 2) I g Λ I > R + β

for all a e U(Ω). Now ίία(l) is convex, and thus contains the convex
hull Ba of KΛ and x*; hence, be (1) and (2),

Λ(1) ^ \
J — 2

-Ω

for all α e U(Ω), C denoting the volume of the (n — 2)-dimensional
sphere of radius r. This completes the proof.
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Let VG = F φ i F be the complexification of V. The tube over D
in Vo is the domain TD = {x + iy | x e D, y e V}. For z — x + iye Vo and
a e V* we write (a, z) — (a, x} + iζa, y). We denote by Sίf\TD) the
Hubert space of holomorphic functions on TD, square integrable with
respect to dxdy, and by L2

M(D*) the Hubert space of functions on ΰ *
square integrable with respect to M(a)da.

THEOREM 1. The mapping φ-+f defined by

(3) f(z) = π~nl2 \ ψ{a)e-^^da
J D*

is an isomorphism of L\(D*) onto Sf\TΌ).

Proof. Let φ e L\(D*). Then

ί I φ(a)e-<oύ z> I da = ( | ψ{a) \ e~<oί x>da
JD* JD*

1/2

by the Schwarz inequality. The first integral is just | |^ | | 2 , the second
is also convergent by Lemma 2 and by the homogeneity of M; by Lemma
1 it is even bounded on compact subsets of D. Thus (3) converges
absolutely and uniformly on compact subsets of TD, and hence represents
a holomorphic function. Furthermore, reversing the order of integration
(which is possible since the integrand is positive and measurable), and
then applying the Plancherel theorem we have

( 4 ) | | 9 > I Γ = ( \φ(a)\2M(a)da= \ \φ{a)|2da\ e~^x>dx
JD* JD* JD

= 2n \ I φ{a) I2 da \ e-**-*>dx = 2n \dx \ \ φ(a)e~ia'x> |2 da
JD* JD J JD*

= \ dx\ \f(χ + iy)\*dy=\\f\\\
JD JV

which shows that fe^f2(TD) and also that the mapping is an isomor-
phism.

Remains to show (and this is the more important part) that the
isomorphism is onto.

First we prove that there exists a measurable function φ on F*
such that

f(z)=f(x + iy)^\imπ~n'^

for almost all x e D. In fact, by Fubini's theorem f(x + iy) as a function
of y is in L\V) for almost all x; so the Fourier transform
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ψ(x, a) = Km π~nl2 \ f(x
Jv

exists. The assertion is that ψ(x, a) = φ(a)e~ia'x> with some measurable
φ. Let Nd D be a subset whose distance from dD is d > 0. Then,
by a well-known property of .Sf2-spaces, \f(z)\ = \f(% + w)\ ^ CJI/H
for all xeN, fe^f2(TD). Using this remark the proof of our assertion
is the same as that of a similar assertion in [1], p. 128, and will not
be reproduced here.

Next we show that φ(a) = 0 for almost all α ί ΰ * . In fact, using
the Plancherel theorem and reversing the order of integration we obtain

11 /112 = 2n \ da\ I φ{a) \2 e~2i<*'x>dx .
JV* JD

In particular, I | φ(a) \2e~Koύ'x)dx exists for almost all a and is integrable.

Γ
Now if α g ΰ * , then <a, x) < 0 for some xeD and hence I e~2<(*'x}dx

JD

diverges. Therefore φ{a) = 0 for almost all such a.
Finally we must show that <peL2

M(D*). This however follows at
once from the Plancherel theorem through the equalities (4).

THEOREM 2. The Bergman kernel function of TD is

K(z, w) = —
πn

Proof. From Theorem 1 it is clear that, for fixed w e TDJ K(z, w)
as a function of z is in ^f\TD). Also for fixed weTD and xeD, K{z, w)
is in L2(V) as a function of y.

Let fe^?\TD), then / can be represented in the form (3). Using
the Plancherel theorem and then reversing the order of integration
(which can be done since the integrand is measurable and the repeated
integral in reverse order exists absolutely), we obtain

— f f —
f(z)K(z, w) dxdy = \ dx \ f(z)K(z, w)dy

D JD JV

dx\
D JV

= \ φ(a)e-{a wyda = f(w)
Jv*

for all w e TD. Owing to the fact that the Bergman kernel is uniquely
determined by its reproducing property, the proof is finished.
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THE TIME-DOMAIN ANALYSIS OF A CONTINUOUS
PARAMETER WEAKLY STATIONARY

STOCHASTIC PROCESS

P. MASANI AND J. ROBERTSON

l Introduction* In this paper we shall give a new, spectral-free,
method to obtain the differential innovations and the Wold decomposition
of a univariate, continuous parameter, weakly stationary1, mean-continu-
ous, non-deterministic stochastic process (/f, — oo < ί < oo). We shall
affect a transition from the continuous to the discrete parameter case
by systematic use of the infinitesimal generator ίH of the shift group
(Ut, — co < t < oo) of the process, and of the Cayley transform V of
the self-ad joint operator H(% 2). Our analysis will be purely in the
time-domain.

With the /Γprocess we shall associate the discrete parameter process
(/«)£=—, where f'n = Vn(f0). Since Fis unitary, the /^-process is weakly
stationary. Letting ^£ u ^/ί'n be the past and present subspaces of the
fc and/^-processes, respectively, and ^^_c«, ^ L^ be their remote pasts,
we shall show that ^t0 = ^T o ' and ^—o = ^-00 (§ 4). In the non-
deterministic case we shall show that the subspace ^<^f = ^ f ΊL Π Λ!' % is
the past and present of the process (ht, — oo < t < oo), where ht = Ut(hr

0), h[
being the Oth normalized innovation of the discrete /^-process (§ 5). We
shall then show (§6) that the /^-process is weakly Markovian1 with
covariance e~m for lag t, and that if

(1.1) ξt - Tt{h[), where Tt = ̂ γ{ut - I + \[ Usds} ,

the process (ξt, — oo < ί < oo) has stationary, orthogonal increments
such that \ξb — ξa\

2 = 16 — α|. These increments are the "differential
innovations" of our /t-process; for we shall show (6.6) that the set of

S t
c(s)dξs> cGL2(-oo,ί), is identical

— CO

with the subspace ^\ mentioned above. Since

it follows at once that ft — ut + vt, where the ut form a one-sided moving

Received March, 21, 1962. Preliminary attempts in the direction of the research here
presented were made by the first-named author some years ago in collaboration with Mr.
P. D. Kapadia of Bombay, India, whose help we gratefully acknowledge. Much of the
work was done recently at Indiana University, that of the first named author being supported
in part by the Office of Naval Research.

1 In this paper the term "weakly" has the same meaning as Doob's expression "in the
wide sense" [5, p. 95].

1361



1362 p. MASANI AND J. ROBERTSON

average process, and the vt a deterministic one:

Φ)dsξt-S> vt = projection of ft on ^f-^ .

0

We thus get the Wold decomposition cf. 6.7 below.
In justification of this new approach we may mention its simplicity

and coherence. With the time-domain analysis so completed, one can
develop the spectral theory in an equally coherent way. One can also
deal conveniently with the extension to vector-valued processes. In
comparison, an approach in which spectral considerations are brought
to bear on time-domain questions or vice versa seems cumbersome and
roundabout. But quite apart from this, our approach is essentially
more general than one based on the spectral resolution of the group
(Ut, — co < t < oo) and is more suggestive of further research, although
it does not yield any really new results on univariate stationary processes.
As prediction theory has advanced, its connection with the theory of
shift-invariant subspaces of the Hardy class H2 initiated by Beurling
[2] has been noticed; see especially Helson and Lowdenslager [10] and
Lax [14]. Recently Halmos [8] has brought to light a result, which
shows that underlying both theories is a semi-group of isometries on a
Hubert space (cf. also [15]). (In the case under discussion, this semi-
group comprises the (isometric) restrictions of the unitary operators
U* to the subspace Mo.) One of us [16] has found that our approach
based on use of the infinitesimal generator iH and of the operator Tt

defined in (1.1) extends to general continuous parameter semi-groups
of isometries to yield valuable results concerning their structure. But
since in general these isometries will be non-normal, the generator H
will not be self-adjoint and the usual spectral considerations will fail;
cf. Cooper [3], Thus it seems worthwhile to try to dispense with
spectral tools in the analysis of time-domain problems.

Hanner [9] was the first to make a purely time-domain analysis in
the continuous parameter case. By an ingenious construction he proved
the existence of differential innovations and derived the Wold decom-
position. His approach, somewhat ad hoc in nature, has not been pursued
in the literature, and its points of contact with the earlier work of
Cooper [3] have gone unnoticed. Our approach differs from that of
Hanner and Cooper in the transition we make to the discrete parameter
case by means of the infinitesimal generator and the Cayley transform.

It is reasonably clear that our approach will work in the case of
processes for which the differential innovations can be had by Hanner's
method. As an instance we cite the study of continuous parameter
random distributions due to K. Ito, Gelfand, and Balagangadharan [12,
7,1]. It is also possible that our ideas may apply to some of the non-
stationary processes studied recently by Cramer [4, 4', 4"].
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2. The infinitesimal generator and Cayley transform,. Let
(Ut, — c Ό < ί < c χ D ) b e a strongly continuous group of unitary operators
acting on a complex Hilbert space X; i.e. let

(2.1)

(a) Ut be a unitary operator on X onto X, — oo < t <

(b) UsUt - Us+t = UtUs, -α> < s, t < c«.

) Ut+h—> [^(strongly)2 on ϊ as /t->0, — co < £ < co.

It is known [17, p. 385] that the group has an infinitesimal generator

(2.2) iH - lim !•{£/, - /}
Λ0 ft

on

where i ί is a self-adjoint operator with domain ^ , and ^ is a linear
manifold everywhere dense in X. Also, cf. [19, p. 142 and 6, p. 622]

(2.3)

(a) H + iI is one-to-one on ^ onto X,

1(b) (H + ΐ / ) " 1 = —
^ Jo

is bounded and one-to-one

on £ onto &, and | (H + il)"1 \B ^ 1(3) .

Now let V be the Cayley transform of H:

(2.4) V = c(-ff) = (H- U)(H + iiy1 on 1.

Then [19, p. 304]

(a) V is unitary on ϊ onto ϊ ,

(2.5)
(b) / — V = 2i(iί + ΐJ)"1 is one-to-one on X onto £^,

(c) fiΓ = i(I + V)(I - F)- 1 on &,

,(d) ί/.F* = F^ί/ί on X, -co < n, t < cχ>, % = integer.

In this section we shall establish the relationship between Ut and
Vn for arbitrary t and n on which will hinge the subsequent develop-
ment.

The Ut are expressible in terms of H by the Hille-Yosida exponential
formula, cf. [17, p. 403],

(2.6)

Ut = lim exp (tiHJn), (strong)2, 0

One sees trivially that Jn is a bounded operator and that so therefore
is iHJn = %(</„ — /). Hence the term ex$(tiHJn) in (2.6) is definable

2 It is to be understood in the sequel that all operator-limits are in the strong sense.
3 I T\B refers to the Banach norm of the operator T.
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by the usual power-series. We now assert two lemmas:

2.7 LEMMA. (Expression of Ut in terms of Vk).

U±t = e-Ί + lim Σ T Ϊ ^ T T ) V + A±nY ~ 7 } ' * ~ ° '»-- k=i k\\n + 1/

where

n + 1 T=

Proof. Let t ^ 0. Then by (2.6)

(1) ϋi = limΣ?ϊ(i
n-x* k=0 k\

Using (2.5)(c) we can express the R.H.S. of (1) in terms of V:

iHJn - - ( 7 + V)(I- V)-ιil + — (7 + V)(I- V)'1]'1

n / T \ A \n + 1

after some simplification. Thus

Hence from (1)

(2) Ut = lim exp (-^-)l + lim £ -fr (-=7^)* «7 + ̂ M )" ~ 7 } '
w-oo \ ^ -f i / n-oofc=i k\\n + 1 /

Since the first term on the R.H.S. is e~ιI, we have the desired expres-
sion for Uu t ^ 0.

To obtain the expression for U-t, t ^ 0, we note that Z7_t = C/ί*,
V'* = T -̂1 and so A* = A_n, n ^ 0. Thus, taking adjoints on both sides
of (2), we get the desired result.

2.8 LEMMA. (Expression of Vn in terms of U%

V±n = I + 2\O°L'n(2t)e-tU±tdt , n^O
Jo

where

Ln(t) = Σ — ( 7 )** 9 n = 0, (nth Laguerre polynomial).
fc=o fc! V^/
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Proof. The result obviously holds for n — 0. We establish it for
n > 0 by induction. For n = 1, the desired result reduces to the equality

(1) V=I-2\~e-*Utdt ,
Jo

the correctness of which is clear from (2.5)(b) 'and (2.5)(b). Next, as-
suming the result for n, we find using (1) that

Vn+1 = 1 + 2[°{L'n(2t) - I}β"*ϊ74dt - i[°[°Un(2t)e-{s+t)Us+tdsdt .
Jo Jo Jo

Putting σ — s + t9 and using Dirichlet's formulae we find that

4\~\~L'n(2t)e-{8+t)Us+tdsdt = 2^{Ln(2σ) - l}e~σUσdσ .
Jo Jo Jo

Hence

Vn+1 = I+2\~{L'n(2t) - L^φ-'Utdt .
Jo

Since the Laguerre polynomials satisfy the recurrence relation Ln =
L'n - L'n+1, cf. [18, p. 299, (10)] we get

as desired. The result thus holds for all n ^ 1. Its validity for n ^
— 1 follows on taking adjoints and noting that V~n = {Vn)* and U-t —
U*.

We shall denote by @(Xλ)λ€Λ the (closed) subspace spanned by the
subsets Xλ of 96, for XeΛ. We now assert the following lemma:

2.9 LEMMA. For any I g ϊ , we have

(a)

(b)

Proof (a). Lemma 2.8 asserts that for n ^ 0 V~n is the strong
limit of a linear combination of the C7Lt for t ^ 0. It follows that for
any X g ϊ ,

whence

On the other hand, Lemma 2.7 asserts that for ί ^ 0, U-t is the strong
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limit of a linear combination of the V~n, for n ^ 0, so that

From this follows the inclusion reverse to (1), thereby yielding (a).
(b) can be derived similarly from Lemmas 2.7, 2.8 taking Vn, Ut,

instead of V~n, U-t, with n,t^0.

3Φ Weakly stationary stochastic processes* In this section we shall
recall the basic notions and results on weakly stationary stochastic
processes.

By a weakly stationary stochastic process (S.P.) is meant a function
/ o n (— oo, oo) to a complex Hubert space Xsuch that the inner product

(3.1) (/.,/«) = 7.-,

depends only on the difference s — t and not on s and t separately.
The complex-valued function 7 on (— oo, oo) is called the covariance
function of the S.P. It is convenient to denote the values of / and
7 at t by ft and 7* rather than by f(t) and y(t), and to denote the S.P.
itself by (ft, -oo < t < oo) rather than by /.

We shall be especially interested in the subspaces

( 3 2 ) i ^ - Π
-oo<ί<oo

We shall call ^ t the past and present of ft, ^έt-<*> the remote past of
the S.P., and ^f'«, ίfeβ space spanned by the S.P. Obviously

s * , - c o < β < t <
(3 8 ) \

It is known, cf. Karhunen [13, p. 55], that if (/,, — oo < t < oo) is
a weakly stationary S.P., then there exists a group of unitary operators
Ut on X, — co < t < oo, such that

(3.4) fs+t = W . ) , - oo < 8, * < oo .

The operators Ut are uniquely determined on the subspace ^f«, but not
on X. We shall call {Uu — °o < ί < oo) £/*,e sΛi/ί group of the S.P.
(/*> — °° < t < oo). It follows easily, cf. Hanner [9, p.162], that

(3.5) c ^ u o ^ ^ f β - H , 1^(^-00)=^-co,u ί (^r . . )=^roo,-co<s,t<oo.

We call a S.P. (/,, —00 < ί < 00) mean-continuous, if the function
/ is continuous on (—00, 00) with respect to the metric induced by the
norm of the Hubert space X. From the stationarity condition (3.1) we
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readily infer the following:

3.6 LEMMA. For a weakly stationary S.P. (/*, -co < t < oo) with
covariance function 7 mean-continuity is equivalent to each of the
conditions:

( i ) f is continuous at 0,
(ii) Ύ is continuous at 0,
(iii) 7 is continuous on (-co, co),
(iv) the shift group (Ut, — 00 <£< 00) is strongly continuous on ^f ,*>.

The following result is known:

3.7 LEMMA. // the S.P. is mean-continuous, then
(a) ^ f 00 is α separable subspace of 3C,
(b) ^ t - = ~^t = ^t+, — 00 < ί < co, where ^/f t^^=

4Φ The associated discrete parameter process* Let (ft, —00 < t < 00)
be a weakly stationary, mean-continuous S.P. with shift group (C/i,
— co < t < 00). Let V be the Cay ley transform of H, where iH is the
infinitesimal generator of the shift group, cf. (2.2), (2.4). Let

(4.1) /,; = V\f0) .

Then the bisequence (/»)~co is a discrete-parameter, weakly stationary
S.P. with shift operator V. We shall call it the discrete S.P. associated
with (ft, ~ co < t < 00).

We shall denote the past and present of f'nj the remote past, and
the subspace spanned by the S.P. (/ή)-*, by ^//f

n, ^ 1 * , , and ^ £ , respec-
tively; thus

(4 2) /// ' — &( f!)f .// ' — Π //' //'

It follows that

^f-oo S ^Cm C .-̂ f» S ^^«, — °° <m <n <
o(4.3)

As far as we know the associated discrete parameter S.P. (/ή)ϋoo has
been defined in the literature, not by (4.1), but as the process whose
spectral distribution is the Cayley transform (in the complex plane) of
the spectral distribution of the given continuous parameter process, cf.
e.g. Doob [5, p. 583]. It can be shown that the two definitions are
equivalent. But as indicated in § 1 there are advantages in adopting
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a purely time-domain and spectral-free definition. For instance, in the
light of Lemma 2.9 we can assert the following theorem, which reveals
the close relationship between the two processes. Variants of parts
(a), (b) of this theorem are know, cf. e.g. Doob [5, p. 583-84]; part (c)
is new as for as we know.

4.4 THEOREM, (a) ^ r , = Λ l , (b) Λ - = Λ l , (c)

Proof, (a) Take X = {/„} in 2.9(a). We then get

(b) Now take X = {/„} in 2.9(b). We then get @( F"(/0))Mδ0

o. Hence,

^ T i = clos. {Λl

o} (by (a))

(c) Take X = ^ f _TC in 2.9(b). Then using (3.5) we get

Applying F~* to both sides, and using (a),

Hence, cf. (4.3),

( l )

Next taking X= ^fL* in 2.9(b), we get

Proceeding as before, we derive the inclusion relation reverse to that
in (1). Thus (c).

5. Non-deterministic S.P* Pre-Wold decomposition* We shall say
that a S.P. (ft, — oo < t < c») is deterministic, if and only if ^_oo = ̂ Όo;
otherwise non-deterministic. From the stationarity condition (3.1) we
infer the following lemma, cf. Hanner [9, p. 163]:

5.1 LEMMA. For a weakly stationary S.P. the following conditions
are equivalent:

( i ) the S.P. is deterministic
(ii) ^ s = ^f\ for all s,t, — oo < s, £ < co
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(iii) ^£s — ̂ £' t for some s,t — co < s < £ < co
(iv) ft e ^ ' s for some s,t, — co < s < £ < co .

Let the S.P. be non-deterministic. Then by 5.1 (iii) for any t and
any s < t, ^_«> £ ^ts c ^ f ' t . Hence

^r% = ^ f ±TO n ^€t Φ {0}, -oo < t < co ,

and we get the decomposition

(5.2) ^ = ^//^ + ^ , ^£^ 1 Λ\ Φ {0}, -co < t < co .

Moreover from (3.5)

(5.3) Ut(^r8) = Λ^s+t, - co < s, ί < co .

If in the preceding paragraphs of this section we interpret s, t as
integers rather than as real numbers, we get the definition and prop-
erties of non-deterministic processes in the discrete parameter case.
But in the discrete case, additional results are readily available. We
recall some of these in the next paragraph.

Let (/ί)-oo be any weakly stationary, non-deterministic S.P. with
shift operator V. Denote by (fi \ ̂ 'n-i) the orthogonal projection of f'n on
the subspace ^TUi, cf. (4.2). Then

(5.4) ffi=Λ-(Λl^rU)^0, -co <n< co .

The vectors gr

n and h'n = g'J\ g'n \ are called the nth. innovation and
normalized innovation vectors, respectively, of the process (/»)-«. It
is easily seen that

(5.5) (h'm, K) - δmn, h'm+n - V»(h'n), - co < m , n < co ,

so that (/̂ )-oo is an orthonormal S.P. with the same shift operator V
as (/n)-oo. It is an important fact that in the discrete analogue of
(5.2), viz.

(5.6) ^£'n - ^ ^ + ^r'n ^?'_«, j . ^T'n Φ {0} ,

the subspace N?[ is the past and present of h'n:

(5.7) ^ r ; - © T O — - @(7*(Λί))L-co .

The relations (5.6), (5.7) constitute the Wold decomposition of Mil. From
this decomposition follows at once the canonical decomposition of f'n into
a one-sided moving-average part and a deterministic part:

fn = < + <, - co < ^ < oo

X^)ϋoo, «)ϋoo have the same shift operator V as (/*„')-«>•
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To revert to the continuous parameter case, let (ft, — oo < t < oo)
be a weakly stationary, mean-continuous, non-deterministic S.P. with
shift group (Ut, -oo < t < oo). It is clear from the equalities in 3.7(b)
that attempts to define "innovation vectors" gt for this process by an
equation analogous to (5.4) will fail. Indeed, since there is no atomic
time unit in the continuous parameter case, all that we may expect
our /^-process to possess are "differential innovations."

Now let (/,0-co be the discrete S.P. associated with (ft, — oo < t < co)#

Since the latter process is non-deterministic, it follows from Theorem
4.4 that so is the former. Let h[ be its Oth normalized innovation vector,
and let

(5.9) Λ t= Ut(h'o), -oo < ί < oo .

The resulting process (ht, — oo < t < oo) plays an important role in the
theory. In § 6 we shall show that it is weakly Markovian, and explain
how the differential innovations of the /Γprocess can be had from it.4

Here we shall show that the subspaces ^v~t of (5.2) are its past and
present subspaces:

5.10 THEOREM. (Pre-Wold Decomposition) Let (ft, — oo < t < oo)
be a weakly stationary, mean-continuous, non-deterministic S.P. with
shift group (Ut, — oo < t < oo), so that cf. (5.2)

Then <yV~t — ®(h8)8^t is the past and present of ht, — oo < t <

Proof. By Theorem 4.4, ^ = ^ 0 , Λ"-- = ^'-«,. Hence, taking
t = 0 = n in (5.2), (5.6) we see that ^ 0 ' = Λ\. But taking X= {K} in
2.9(a), where h[ is the Oth normalized innovation of the associated discrete
process, we find on using (5.7) that

(5.11) ^To = ^

Hence by (5.3) and (5.9)

6. Differential innovations and the Wold decomposition* Let
4 The physical significance of the /^-process has been indicated by Wiener and Wintner

[20]. When 3E is the class of L2-functions on a probability space (Ω, &, P), and t is the
time, ht provides the weak (or wide sense) version of * 'random time", i.e. time as measured
by a perfect clook which is subjected to Brownian fluctuations. More precisely, if

2/ί(ω) = exp [iλ{t + axtM}], ω G Ω

where (xt, — oo < t < oo) is the Brownian movement S.P., and λ, a are constants such that
aλ = |/2, then the yt- and ftt-processes have the same wide sense properties.
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(ft* — °° < £ e o o ) b e a weakly stationary, mean-continuous, non-determin-
istic S.P. with shift group (Ut, — oo < t < oo), and let h[ be the Oth
normalized innovation vector of the associated discrete process (/ή)-oo.
In the next lemma we study the S.P. (ht, — oo < £ < oo) defined by
(5.9), the present and past subspaces ^Vt of which have been mentioned
in the Pre-Wold decomposition 5.10.

6.1 LEMMA, (a) The ht-process is weakly (or wide sense) Mark-
ovian; more fully,

(ht I ̂ r . ) = e-%, -oo < s < t < oo

depends only on the terminal vector hs of
(b) Its convariance function 7 is given by 7* = e~m, — oo < t <

Proo/. (a) Let t ^ 0. Then by 2.7

where

, - e-% + lim Σ ̂ Γ f-^rτ) V + A.)4 -
n-ooifĉ i fc! \n + 1/

n
Σ

Since by (5.5) the h) = Fj(/^J) constitute an orthonormal process, we see
that

ht = e-'λί + ^ , where ^ ± fc{, fc'_lf , t ^ 0 .

It follows from (5.10) that rjt _L ̂ f̂ 0 = ®(K)s^ Hence

e"% = (ht I ̂ To), ί ^ 0.

On applying Us to both sides we get

(1) e - % = ( k β + t \ ^ r 8 ) , - c o < s < o o , t ^ o .

This reduces to the desired relation on changing the index,
(b) From (1) it follows at once that

Ύt = (hB+t,hB) = e-<, ί ^ 0 .

This in turn entails that 7* = e~ιtι, — oo < £ < oo.

We shall now study the £Γprocess mentioned in (1.1). By definition

(6.2) ξt = —ί=={/^ - K + ΫKds] , -oo < ί < oo .
V 2 I Jo J
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It follows at once that ξ0 — 0 and

(6.3) ξb - ξa = ̂ { h - K + \\ds\ , -oo < α, 6 < oo .

6.4 THEOREM, (a) The ξt-process has increments which are station-
ary under the group (Ut, — oo < t < oo), i.e.

Ut{ξb - ξa) = ξb+t - ξa+t , - oo < a, b, t < oo .

(b) The ξt-process has orthogonal increments, i.e.

ξb-L±ξa-ξΰ, if -oo < a < b ̂  c < d < oo .

(c) \ξb-ξa\*= \b-a\ , - o o < α , 6 < o o .

(d) ( f 6 - f α , ! Λ - £ o ) = l f6-£,l > = δ - * , i/ - o o < α < c < 6 < d < o o .

Proof, (a) follows at once from (6.3) since Ut(hs) — λβ+ί.
(b) Let a < b ̂  c < d. Then from (6.3) and 6.1(b),

2{ξb - | β , | d - | c ) = (Λ6 - ^α + j ^ . c ί s , λd - K

= leb~a - e6-c + ( V - ' d ί j - iea~a - ea

Since the expression in each {} on the R.H.S. is zero, the result follows,
(c) First let 0 = a < b. Then from (6.3) and 6.1(b)

tdt2\ξ b - ξQ|2 = (hb - h0 + \bh,ds, hb - ho+ Γ h t
\ Jo Jo

S
o= 2(1 - e~b) + 0 + Γ [e-{s~tldtds .

Jo Jo

Since the last integral equals

'-dί + [e^dtlds = 26 + 2(e~b - 1) ,

it follows that \ξb — | 0 1 2 = 6.
Next, let - o o < α < 6 < o o . Then by (a) & - & = ET^-α - | 0 ) ,

6 — α > 0, and so
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(c) is a simple consequence of (a), (b), the verification of which
we leave to the reader.

S oo

c{s)dξs will
— oo

exist for any complex-valued function C G L 2 ( - O O , OO), cf. Doob [5, Ch.
IX, §2], In the next lemma we shall show that the vector ht is ex-
pressible in terms of the ξs by means of such an integral. In effect
we shall invert the relation expressed in (6.2):

6.5 LEMMA. (Inversion formula)

ht = τ /

Proof. Since ht = Ut(h'o) and U (as a function of t) is strongly con-

tinuous on (—00,00), it follows that the vector-valued function h is

continuous for te(— 00, 00), and therefore by (6.2) so is the function

ξ. Hence the Riemann integral \ es~ιξ8ds exist for — 00 < α < & ̂  £.
Ja

Moreover, since

is~ιξsds ^ \es~l I ζs I ds — \ es~l\/s-ds or ^/s ds ,
J Jα

the infinite integral 1 es-ιξ8ds converges.
J-00

Now consider the case t — 0. We have from (6.2)

CO CO ( Γ s l

S O CO CO

eshsds + h0 + \ \ e8hσdσds .
- 0 0 J-ooJβ

Now by Dirichlet's formula the last integral equals

S O CO CO (CO Λ CO

\ eshσdsdσ = I < \ esds \hσdσ = I eσhσdσ .
Hence

(1) V'\

Since for any real t, Ut(ξ0 - ξ8) = ξt - £.+*, ^(ΛΌ) = Λ«, we get the first
equality in the lemma by applying Ut to both sides of (1) and then
changing variables.

The second equality follows on integrating by parts:

S t Ct Ct

—00 s 8 J—00 J — 00
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The use of integration by parts is justified as follows. In the first
place, for — c o < α < έ < o o we have

( 2 ) Γ β-'dg. - [β-'f j ;=i - Γ W.(β- ') .
Ja Ja

This follows from the fact that for a continuous integrand the stochastic

integral is a Riemann-Stieltjes integral (with vector-valued integrator ξa)

and that for the latter, integration by parts is valid, cf. [5, p. 429 (2.6)]

and [11, p. 63 (3.31)]]. Next, the last integral in (2) is obviously equal

ξ8e*-*d8. Finally, since both I es~ιdξs, \ ξse
s~ιds are known to

exist, we can let α->—oo in (2), cf Γ [5, p. 428° (2.4)].

The formulae (6.2) and 6.5 together entail the following important
result:

6.6 LEMMA. For any real t, the past and present subspace Λr

t of

S t

c(s)dξs, with
complex-valued functions ceL2(—«>, t), i.e. ^4r

t = &{ξσ — ξτ)σ,τ<t-

Proof. Denote by ^f]{ξ) the set of all such stochastic integrals. Let
> < T ^ t < oo. Then by 6.5

es~τdξs = \ c(s)<Zf s ,

where c(s) = \/2es~τ on (— oo, τ] and c(s) = 0 on (τ, ί]. Since c e L2(—coft],
it follows that hτ e ^Γiξ). Hence ^ r t = ®(hT)τίit S ^Tf.

To prove the reverse inclusion, let

S t

c(s)dξs, where c 6 L2(— oo, t] .
- 0 0

Suppose first that c is a step-function:

Φ ) = Σ 0kχjk(8)

χJjc being the indicator function of the interval Jk = [ak, bk] S (— oo, *].

Then by definition (cf. Doob [5, p. 427 (2.1)])5

n

g = Σ <>*(&* - !«*)

From (6.3) it is clear that ge^Γt Next suppose ceL2(— oo, ί], and
c = limn^ooC(1l), where c{n) is a step-function. Then by definition

5 We note that from 6.4(c) it follows that &-=& = &+, -°° < ί < °°
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g = lim Γ cM(s)dξs e ^ ,
n-*oo J —oo

since ^v% is closed. Thus ^Vt

{ζ) £ ^f;.

We may sum up the main results established so far as follows:

6.7 THEOREM. {Wold Decomposition I) Let (ft, — oo < t < oo) be a
weakly stationary, mean-continuous, non-deterministic S.P. with shift
group (Ut, — oo < £ < oo). Let h'o be the Oth normalized innovation of
the associated discrete process, and let

K = Ut{K) f ξt = ht-h0+ \*had8 , - oo < t < oo .
Jo

Then (a) Λ % = ^ t + ^ _ o o , ^ i 1_ ̂ _ o o , - oo < t < oo, where
@(^s)s^ί is ίλβ ̂ αsί α^ώ present of ht;

(b) ίfee ξt-process has stationary, orthogonal increments such that

\ξt — ξs Γ = I * — s I; moreover, ^Γt = @(|v — ?r)σ,r^t, i.e. ^fΐ is the set of

all stochastic integrals \ c(s)dξs with ceL2(~coft],

6.8 UNIQUENSES THEOREM. Let {ηt, — oo < t < oo) be any process
with the following properties:

( i ) it has orthogonal increments such that

\Vb — Va\2 — \b — a\ , — o o < α , & < o o , and η0 = 0

(ii) ί / ^ ~ Va) = Vt+t - %+«, -oo < α, 6, ί < oo

(iii) &(ησ - ^ Γ ) σ , Γ ^ 0 = ^ ± ~ Π ^ T o .
yf = eίαJ|ί, where ξt is as in 6.7, αwcZ a is some real number.

Proof. Our proof of this result is essentially that given by Hanner
[9, p. 175-176]. Since our treatments and notations differ, we may
indicate the main steps. We first show that

where y\^h is an in 6.7(a). It follows from 6.7(b) thatf 6 — ft =

By piecing together the functions fn,n+1, — oo < n < oo, we can define
a function / on (— oo, oo) such that

ft — ft = 1 f(s)dys , a <b .

Using the fact that ft — ft = Uh(ξh-h - ft_ft), we can show that / is
essentially constant-valued on (—00, 00). From this the desired result
is immediate.
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An immediate corollary of Theorem 6.7 is the cannonical decompo-
sition of the vector ft itself:

6.9 COROLLARY. (Wold Decomposition II) With the hypothesis of
Theorem 6.7 we have

(a) ft = ut + vt, ut = (ft I ̂ ) , vt = (ft I ^^-oo);
(b) the ut-process in (a) is a one-sided moving average, i.e.

S CO

c(s)dsξt-s , — co < t < oo, where c e L2[0, co) .
o

and @(OS^ = ^Vt, —oo < t < oo;
(c) ίfeβ vt-process is deterministic, and &(vs)s^t = ^ -^, for

— oo < ί < oo.

7 Purely non-deterministic stochastic processes* We call a weakly
stationary S.P. purely non-deterministic, if and only if ^J?-«> — {0}. For
completeness we state here the anologue of a theorem given by Kolmo-
gorov for discrete parameter processes:

7.1 THEOREM. For any weakly stationary, mean-continuous sto-
chastic process (ft, — co < t < co) the following conditions are equiva-
lent:

( i ) (fu — °° < * < °°) i>s purely non-deterministic,
(ii) (ft, — co < t < co) is α one-sided moving average:

0

(£sf ~" co < s < co) δem^r α process with stationary and orthogonal
increments such that \ξb — ξa |2 = | δ — a |;
(iii) limf^ (/0 \^f_t) = 0.

Proof. The proof runs parallel to that in the discrete case and is
omitted.

It follows from Corollary 6.9 and Theorem 7.1 that every weakly
stationary, mean-continuous, non-deterministic S.P. (ft, — co < £ < oo)
can be decomposed in the form ft = ut + vt, where the uΓprocess is
purely non-deterministic, the ^-process is deterministic, and all three
processes have the same shift group (Ut, -co < t < co). We shall refer
to the uranά ^-processes as the purely non-deterministic part and the
deterministic part of the /^process. With an obvious notation, we have

t — *sf& t "ΊΓ *^r£ t y — ^ oo _L

(u) — ΛS jp (Ό) —

Now let (K)-oo, (O-PO be the purely non-deterministic and determin-
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istic parts of the discrete process (jQ-eo associated with (ft, — co < t < oo).
Then by 6.9(a), 4.4(c), and (5.8)

and therefore

ô = /o - % = fό - V'o = <

Moreover, the shift operator F of the <-, ^-processes is the Cayley
transform of H, where iH is the infinitesimal generator of the shift
group (Ut, — oo < t < oo) of the %Γ, ^-processes. We can thus assert
the following:

7.2 COROLLARY. // (fi)00 is the discrete process associated with
the weakly stationary, mean-continuous, non-deterministic S.P. (ft,
— c o < £ < c o ) , then the purely non-deterministic and deterministic
parts of (fn)-oo are the discrete processes associated with the determin-
istic and purely non-deterministic parts of (ft, -co < t < co).
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NON-EXISTENCE OF ALMOST-COMPLEX STRUCTURES

ON QUATERNIONIC PROJECTIVE SPACES

W. S. MASSEY

l Introduction* In [3] P. Hirzebruch proved that the ^-dimensional
quaternionic projective space (which we denote by Pn(H)) does not admit
any almost structure in case n φ 2 or 3. According to Hirzebruch's
lecture at the 1958 International Congress [5], Milnor has since proved
that P2(H) and PZ{H) do not admit almost complex structures. At the
time of this writing, Milnor's proof has not yet been published.

It is the purpose of this note to give a short proof of this theorem
of Milnor's making use of the theory of the ring K(X) of complex vector
bundles over a space X due to Atiyah and Hirzebruch together with
certain facts that are readily available in the literature. From the brief
description given in Hirzebruch's lecture (loc. cit.) it seems that our
method is quite different from Milnor's. Our method may be applicable
in other cases to prove the existence or nonexistence of almost complex
structures on a manifold.

2* Summary of some known facts* We will make use of the
following results:

(a) The cohomology ring H*(Pn(H), Z) is a truncated polynomial
ring generated by a 4-dimensional cohomology class u and subject to the
single relation un+1 = 0.

(b) Let τn denote the tangent bundle to Pn(H). The total Pontr jagin
class of τn is given by the formula

(1) P(τn) = (1 + u)2n+2(l + An)-1

for appropriate choice of the generator u (Borel and Hirzebruch [2],
15.5 or Hirzebruch [3]).

(c) We will use the following notation: If ξ is a real w-plane bundle,
then ξ (g) C denotes its complexification, while if £ is a complex w-plane
bundle, then ξR denotes the real 2%-plane bundle obtained by "restriction
of coefficients" to the reals. Also, ξ* denotes the complex conjugate
bundle. We then have the following relation for any complex vector
bundle ξ:

(2) ξR <g) C = ξ + ξ * (Whitney sum) .

(see Hirzebruch, [4], p. 68, proof of Theorem 4.5.1). Moreover, for any

Received January 10, 1962. During the preparation of this note the author was partially
supported by N. S. F. Grant G 18995.
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real vector bundle η,

(3) Pi(y) = (-iy

(Hirzebruch [4], p. 67).

(d) We will also need to make use of the properties of the ring
K(X) as summarized for example in § 2 of Atiyah and Todd [1]. We
will use their notation and results without any further comment.

3 The ring K(Pn(H))Φ By proposition 2.3 of [1] the Chern character

ch:K(Pn(H))-+H*(Pn{H),Q)

is a monomorphism.

LEMMA 1. The image of this homomorphism, denoted by chPn(H),
is the subring of H*(Pn(H), Q) generated by

2 cosh i/ΊΓ = 2 (1 + v\2\ + va/4! + + vn/(2n)l)

where v is an appropriately chosen generator of

H\Pn(H)y Z) c H\H), Q) .

Proof. Consider the well-known principal fibre bundle πn: S4n+3 —>
Pn(H) with group Sp(ΐ); let ηn denote the associated bundle with fibre
a quaternionic vector space of dimension 1. We assert that the total
symplectic Pontrjagin class of this bundle is

e{ηn) = 1 + eλ{ηn) = l + v

where v is an appropriately chosen generator of H\Pn{H), Z). This
foΏows from the fact that πn: S4n+3 -> Pn(H) is a universal bundle for
the group Sp(l) (up to the dimension An + 2), and that the integral
cohomology ring of the classifying space for Sp(l) is a polynomial ring
generated by the symplectic Pontrjagin class ex (see Borel and Hirzebruch,
[2], §9.6).

Let ξn denote the complex vector bundle obtained from rjΛ by ' 're-
striction of coefficients'' to the complex numbers; the associated principal
bundle is a U(2)—bundle which is the extension of πn: S4n+3->Pn(H)
under the standard inclusion Sp(ϊ) c [7(2), By § 9.6 of [2],

hence

c(ξn) = 1 - v %

The Chern character (see [2], § 9.1) of ξn is
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ch(ξn) = β* + e"2

where

Hence

Vi + y2 = 0 , y^j = -v

From this we conclude that

2/i = VΊ7, y2 = - l / T ,

βMI ) = exp(v) + exp(—v) = 2 cosh l/ v .

Hence ck(Pn(H)) contains the subring generated by 2 cosh V v it
remains to show that it is exactly equal to this subring. This is done
by induction on n exactly as in the proof of Proposition 3.1 of [1], The
details may be left to the reader.

Note that chPn(H) may be equivalently described as the subring of
H*(Pn(H), Q) generated by

w = 2 cosh V v - 2 = v + 2^/4! + + 2vnl(2n)l

For many purposes this description of ch Pn(H) is more convenient; note
that wn+1 = 0, and {1, w, w2, , wn} is a basis of ch PJfl) over the integers.

Lemma 1 and equation (1) above are both stated in terms of
' 'appropriately" chosen generators, v and u respectively, of the infinite
cyclic group iϊ4(Pn(H), Z). Therefore u = ±v. We assert that u = +v.
To prove this, it obviously suffices to show that ch(τn (g) C) belongs to
the subring of H*(PW(H), Q) generated by 2 coshi/w, but that it does
not belong to the subring of H*(Pn(H),Q) generated by 2 cosh V —u.
This we will now do by an essentially straightforward, but rather
lengthy, computation.

LEMMA 2. The Chern character of τn(g) C is given by

ch(τn ® C) = (in + 4) cosh Vu — 4 cosh2 Vu .

Proof. It follows from equations (1) and (3) that the total Chern
class of τn® C is given by

c(τn <g) C) = (1 - ufn+\l - An)'1 .

To compute the Chern character of τn ® C, we may proceed as follows:
Write the total Chern class as a formal product
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where the x/s have degree 2. Then

To actually carry out the computation, take the logarithm of both sides
of the equation

Π (1 + x{) = (1 - uYn+\l - An)-1 ,

and use the MacLaurin series expansion of log (1 + z) and log (1 — z).
The result is

k>0 k>0

where

An

Q — V wk

«fc — _/ ι i

Since each x{ is of degree 2, while u is of degree 4, we conclude from
equation (4) that

Therefore

ch(τn0ί

0

2(2%

Φ(^)

for fc
ι 2

4TC

odd ,
A*)u*

= 4% 4

= 4% + Σ 2(2% + 2 - 4*K/(2fc) !
A;>0

= (4w + 4) cosh T/ U — 2 cosh V An — 2

= (4t̂  + 4) cosh T/ t6 — 4 cosh21/ % ,

as was to be proved.
It is obvious from this formula that ch(τn (g) C) belongs to the

subring of H*(Pn(fiΓ), Q) generated by 2 coshλ/n; we must now prove
that ch(τn (g) C) does not belong to the subring generated by

2 cosh V — u = 2 cos V7 w .

Assume the contrary; then there exist integers a09 al9 , an such that

ch(τn (g) C) = Σ α^(2 COS T / ¥ - 2)k ,
A;=0

that is,
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2 Σ (2n + 2 - 4:k)ukl(2k) !

= Σ «*(-^ + 2w2/4! - 2 ^ / 6 ! + ± 2^/(2^)!)* .

If we compare coefficients of u, u2, u3, and u* in this equation, we obtain

β __ 2/γι 4- 2

αa = (w - 4)/3 ,

α3 = (7 - w)/18 ,

α4 = (5w - 47)/504 .

For n = 2 or 3, α2 is not an integer; for n < 7, α3 is not an integer;
and for any value of n, it is impossible that both α3 and α4 are integers.
For, if a3 is an integer, then

n = 7 mod 18 or 5n = 35 mod 18 ,

while if a4 is an integer, then

5n == 47 mod 18

which is a contradiction.

This completes the proof that u — +v.

4. Proof of the theorem. Assume τn admits an almost complex
structure θn; we will show that this leads to a contradiction.

θn is a complex 2n-plane bundle over Pn(H) such that τn = ^ n Λ .
Then by equation (2)

τn (g) C = ^%R (g) C = θn + θt .

Next, recall that

where cfc< denotes the component of ch of degree 2i. However, since
the base space of the bundle θn is Pn(H),

ch(θ*) =

Therefore

ch(τn (g) C) -

It follows from Lemma 2 that

cft(0n) = (2n + 2) cosh l / ¥ - 2 cosh2 T/ΊΓ

- - I (2 cosh τ / ¥ - 2)2 + (n - 1) (2 cosh τ / ¥ - 2) + 2n .

This is the desired contradiction, since the Chern character of any complex
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vector bundle is an integral linear combination of the powers of
w = (2 cosh Vΰ — 2).

REMARK. We have actually proved a slightly stronger theorem, in
that we have shown that for any integer n > 1, Pn(H) does not admit
a ' 'generalized almost complex structure" as defined by Hirzebruch in
his lecture [5]. As Hirzebruch remarks, this can be proved easily by
induction on n, once the case n — 2 is taken care of. However, the
above computations of ch(Pn{H)) and ch(zn(&C) may be of some inde-
pendent interest.
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A THEOREM ON THE ACTION OF SO(3)

D. MONTGOMERY AND C. T. YANG

l Introduction* We shall use notions given in [1], Let G be a
compact Lie group acting on a locally compact Hausdorff space X. We
denote by F(G, X) the set of stationary points of G in X, that is,
F(G, X) = {xeX\Gx = x}. If G is a cyclic group generated by geG,
F(G, X) is also written F(g, X).

Whenever x e X, we call Gx — {gx \ g e G} the orbit of x and Gx =
{g eG\gx = x} the isotropy group at a?. By a principal orbit we mean
an orbit Go? such that Gx is minimal. By an exceptional orbit we mean
an orbit of maximal dimension which is not a principal orbit. By a
singular orbit we mean an orbit not of maximal dimension. Denote by
U the union of all the principal orbits, by D the union of all the
exceptional orbits and by B the union of all the singular orbits. Then
U, D and B are all G-invariant and they are mutually disjoint. Moreover,
χ= U U D U B and both B and D U B are closed in X

Denote by X* the orbit space X/G and by π the natural projection
of X onto X*. Whenever A c X, A* denotes the image 7rA. If X is
a connected cohomology ^-manifold over Z [1; p. 9], where Z denotes
the ring of integers, then the following results are known.

(1.1) J7* is connected [ 1 ; p . 122J so that whenever x,ye U, Gx and
Gy are conjugate.

(1.2) dimzJ3* ^ dimzί7* — 1 so that if r is the dimension of princi-
pal orbits and Bk is the union of all the k-dimensional singular orbits
(k < r), then dim^^ g n — r + k — 1 [1; p. 118]. Hence dimzjB ^ n — 2.

Denote by £'?ι+1 the euclidean (w + l)-space, by Sn the unit ^-sphere
in En+1 and by SO(3) the rotation group of E*. In this note G is to be
S0(3) and X is to be a compact cohomology ^-manifold over Z with
H*(X; Z) = iϊ*(Sw; £) .

Let us first observe the following examples.
1. Let G = S0(3) act trivially o n l = S1. (Here we have n = 1.)
2. Let G = S0(3) act on JS^x = # 5 x En~* (n ^ 4) by the definition

where the action of G on i?5 is an irreducible orthogonal action. Then
G acts on X = Sn and in this action, the 2-dimensional orbits are all
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protective planes, F(G, X) is an (n — 5)-sphere and for every x e U, Gx

is a dihedral group of order 4.

3* Let G = S0(3) act on En+1 = E3 x E3 x j©—B(n ^ 5) by the

definition

g{x, y, z) = (flfα?, flfy, z),

where the action on E* is the familiar one. Then G acts on X = Sn

and in this action, the 2-dimensional orbits are all 2-spheres, F(G, X) is
an (n — 6)-sphere and for every x e U, Gx is the identity group.

In all three examples, D = φ and dim B — n — 2. The orbit space
JΓ* is X itself in the first example and it is a closed (n — 3)-cell with
boundary B* in the other two examples.

The purpose of this note is to prove that if X is a compact cohomology
^-manifold over Z with H*(X; Z) = iϊ*(Sw; Z), then every action of
G = SO(3) on X with dim^ B = n — 2 strongly resembles one of these
examples. In fact, we shall prove the following:

THEOREM. Let X be a compact cohomology n-manifold over Z with
H*(X; Z) = £Γ*(SW; Z) and let G - SO(3) act on X with dimz B = n - 2.
T/&ew D — φ and one of the following occurs.

1. w = 1 and G acts trivially on X.

2. n ^ 4 and /or et er^ xe U, Gx is a dihedral group of order 4.
Moreover, £Λe 2-dimensional ordits are all projective planes and F(G, X)
is a compact cohomology (n — 5)-manifold over Z2 with H*(F(G, X); Z2) =
H*(Sn~δ; Z2), where Z2 denotes the prime field of characteristic 2.

3. n ^ 5 and for every xeU, Gx is the identity group. Moreover,
the 2-dimensional orbits are all 2-spheres and F(G, X) is a compact
cohomology (n - 6)-manifold over Z2 with H*(F(G, X)\ Z2) = H*(Sn~6; Z2).

In the last two cases, B* is a compact cohomology (n — 4)-manifold
over Z with iϊ*(J5*; Z) = H*(SW-4; Z) and X* is a compact Hausdorff
space which is cohomologically trivial over Z and such that X* — B*
is a cohomology (n — 3)-manifold over Z.

The proof of this theorem is given in the next three sections.

2* The set D. Let X be a connected cohomology n-manifold over Z
and let G = SO(3) act on X with dimz B = n - 2. If G acts trivially
on X, it is clear that n — 1 and that D= φ. Hence we shall assume
that the action of G on X is nontrivial.

Since G is a 3-dimensional simple group which has no 2-dimensional
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subgroup, it follows that
(2.1) G acts effectively on X and no orbit is 1-dimensional.
(2.2) Principal orbits are 3-dimensional so that for every x e U\J D,

Gx is finite.
By (2.1), principal orbits are either 2-dimensional or 3-dimensional.

If principal orbits are 2-dimensional, then B = F(G, X) so that, by (1.2),
dimz B < n — 2, contrary to our assumption.

(2.3) Denote by B2 the union of all the 2-dimensional orbits. Then
dimz B2 — n — 2 so that B2 Φ φ and n ^ 4. Moreover, whenever Gz is
a 2-dimensional orbitf Gz is either a circle group or the normalizer of a
circle group and accordingly Gz is either a 2-sphere or a projective plane.

By (2.2), n = dim^ X ^ dimz U ^ 3. We infer that B2 Φ φ so that
n — 2 = dimz B2 ^ 2. Hence n ^ 4.

(2.4) Let x e U. Whenever yeD, there is a g e G such that Gx is
a normal subgroup of Ggy.

Let S be a connected slice at y [1; p. 105], Then S is a connected
cohomology (n — 3)-manifold over Z and Gy acts on S. As seen in [7],
S is also a connected cohomology (n — 3)-manifold over Zp for every
prime p, where Zp denotes the prime field of characteristic p.

Let xr e S Π U. We claim that GS' is a normal subgroup of Gy.
Since Gy is a finite group (see (2.2)) and Gx, is a subgroup of Gy, there
exists a neighborhood N of the identity in G such that N^G^N f) Gy —
Gx>. Let F be a neighborhood of xr such that whenever x" 6 F,
hGχflh~λ c G^ for some fce iV. (For the existence of V, see [4; p. 216].)
Then for every x" e V Π S, G9., c N^G^N n Gy = Gx, so that G9» = G^.
Therefore Gα/ leaves every point of V Π S fixed. Since S is a connected
cohomology (n — 3)-manifold over Zp for every prime p, it follows from
Newman's theorem [6] that Gx, leaves every point of S fixed. Hence
Gχ> = {Q€Gy\gx" = x" for all x" e S}, which is clearly a normal subgroup
of Gy. By (1.1), Gx and Gx, are conjugate so that our assertion follows.

(2.5) Let xeU. Whenever Gz is 2-dimensional, there is a geG
such that Gx c Ggz. Hence Gx is either cyclic or dihedral and it is
cyclic if there is a 2-dimensional orbit which is a 2-sphere.

For the rest of this section, we assume that

HC*(X; Z) = H*(Sn; Z) .

Under this assumption, H°C(X\ Z) = H°(Sn; Z) = Z. Hence X is compact.

(2.6) Let T be a circle group in G. Then F(T, X) is a compact
cohomology (n - ^-manifold over Z with JT*(F(Γ, X); Z) = H*(Sn~4; Z).
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Since F(T, X) intersects every singular orbit at one or two points,
άimz F(T, X) = dimzj?* = n — 4. Hence our assertion follows [1;
Chapters IV and V].

(2.7) Let g eGbe of order pa, where p is a prime and a is a positive
integer. If geGx for some x e U U D, then F{g, X) is a compact
cohomology (n - 2)-manifold over Zp with H*{F(g, X); Zp) = H*(Sn-2; Zp).
Hence F(g, X) intersects every principal orbit.

It is known that X is also a compact cohomology ^-manifold over
Zp with H*{X; Zp) = H*(Sn) Zp). Since G is connected, g preserves the
orientation of X. It follows that for some r < n of the same parity,
F(g, X) is a compact cohomology r-manifold over Zp with H*(F{g, X); Zp) =
H*(Sr; Zp) [1; Chapters IV and V].

Let T be the circle group in G containing g. By (2.6), F(g, X) π
B — F(T, X) is a compact cohomology (n — 4)-manifold over Zp. Since,
by hypothesis, there exists a point of U U D contained in F(g, X),
F{g> X) (Ί B is properly contained in F(g, X) so that r = n — 2. Hence
F(g, X) is a compact cohomology (n — 2)-manifold over Zp with
H*(F(g, X); Zp) = iJ*(S-2; Zp).

Since dim^ Z>* < n — 3 [1; p. 121] and since F(g, X) intersects every
exceptional orbit at a set of dimension ^ 1, it follows that dimZp(F(g, X) Π
D) ^ dimz(F(g, X) f] D)< n - 2. But we have dimZpF(g, X) = n - 2
and dimZp (F(g, ί ) Π B ) = w - 4 . Therefore F(g, X) n ί/ ^ 0. Hence,
by (1.1), F(g, X) intersects every principal orbit.

(2.8) Let xe U and y e D. Let pbe a prime and let a be a positive
integer. If Gy has an element of order p*, so does Gx.

Let geGy be of order p". By (2.7), F{g, X) Π Gx Φ φ so that for
some heG, hxe F(g, X). Hence h~λgh is an element of Gx of order p".

(2.9) D=φ.

Suppose that D Φ φ. Let xe Uand yeDbe such that Gx is a proper
normal subgroup of Gy (see (2.4)). We first claim that Gy is dihedral.

It is well known that a finite subgroup of SO(3) is either cyclic or
dihedral or tetrahedral or octahedral or icosahedral. If Gy is cyclic, so
is Gx. Let the order of Gy be pi1 ••• pfr, where pl9 ••• pk are distinct
primes and slf , sk are positive integers. Then for every i — 1, , fc,
Gy contains an element of order p? so that, by (2.8), Gx also contains
an element of order pj*. Hence Ĝ  is of order ^ p'1 pi* and conse-
quently Gx = Gy, contrary to the fact that G* is a proper subgroup of
Gy. If Gy is either tetrahedral or octahedral or icosahedral, then
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by (2.8), Gx contains a subgroup of order 2 and a subgroup of order 3.
In case Gx is octahedral, it also contains a subgroup of order 4. Hence
Gx, as a normal subgroup of Gy, is equal to Gy, contrary to our hypo-
thesis. This proves that Gy is dihedral.

Now the order of Gy is even. It follows from (2.7) that whenever
g e G is of order 2, F(gy X) is a compact cohomology (n — 2)-manifold
over Z2 with iϊ*CF(#, X); Z2)=iϊ*(Sn-2; Z2). Let H be a dihedral subgroup
of G of order 4. By BoreΓs theorem [1; p. 175], F(H, X) is a compact
cohomology (n - 3)-manifold over Z2 with H*(F(H, X); Z2) = #*(S^ 3 ; Z2).
Since dimZ2 (ίXiϊ, X) n (£> U B)) ^ dimz (F(iί, X ) n ( f l U B ) ) < » - 3, it
follows that F(H, X) n f/ is not null. Hence we may assume that
HcGx(Z Gy.

Let T be the circle group in G such that its normalizer contains Gy.
Then HnT(zGxf]Tc:Gyr\Tso that G, Π 21 is a cyclic group and
Gx Π Γ is a proper subgroup of Gy (Ί Γ of even order. Let the order
of Gy Π T be 2s°Pi1 p*k

k, where plf , pk are distinct odd primes and
so> su •••,$* are positive integers. By (2.8), there are fc + 1 elements
9o, 9i, ' , 9k of Gx of order 2S°, p i, , pp respectively. Since plf * ,pk

are odd, gx , gk are in Gx Π T7. Therefore no element of Gx f) T is of
order 2S°. But this implies that sQ > 1 so that goeGx Π Γ. Hence we
have arrived at a contradiction.

3 Case that the 2-dimensional orbits are all protective planes.
Let X be a compact cohomology ^-manifold over Z with H*(X; Z) —

H*(Sn; Z) and let G = SO(3) act nontrivially on X with dimz B = n - 2.
Throughout this section, we assume that for some x e U,GX is of even order.

(3.1) Let H be a dihedral subgroup of G of order 4 and let Mbe
the normalizer of H that is the octahedral group containing H. Then
F(H, X) is a compact cohomology (n — 3)-manifold over Z2 with
H*(F(H, X); Z2) = H*(S%~3; Z2) and K - M\H is isomorphic to the sym-
metric group of three elements and acts on F{H, X). Moreover, the
natural map of F(H, X)/K into X* is onto.

By (2.7), for every g e G of order 2, F(g, X) is a compact cohomology
(n - 2)-manifold over Z2 with H*(F(g, X); Z2) - iϊ*(S%-2; Z2). It follows
from BoreΓs theorem [1; p. 175] that F(H, X) is a compact cohomology
(n - 3)-manifold over Z2 with H*(F(H, X); Z2) = if*(Sw~3; Z2).

Clearly K = M/H is isomorphic to the symmetric group of three
elements and the action of M on F(H, X) induces an action of K on
F(H, X). Moreover, there is a natural map f:F(H, X)IK-+X*.

Let z 6 F{H, X) n B. If Gz - z, then F(H, X) n Gz - z. If Gz is
2-dimensional, then Gz contains H so that by (2.3) it is the normalizer
of a circle group. Therefore any two isomorphic dihedral subgroups of
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Gz are conjugate in Gz. Let g be an element of G with gzeF(H, X).
It is clear that g~λHg c g~τGgzg = Gz so that for some k e Gz, h^g^Hgh =
Horghe M. Hence gfz = ghz e Mz. This proves that F{H, X) Γ\Gza Mz.

From these results it follows that F(H, X) intersects every singular
orbit at a finite set. [This and one or two facts mentioned below can be
seen by examining the standard action of SO(3) on S2 or on P2 (viewed
as the acts of lines through the region in i?3).] Therefore, by (1.2),
dimz (F(H, X) Π B) ^ dimz J3* < n — 3. As a consequence of this result
and that D = φ (see (2.9)), we have F(H, X) Π UΦφ. Hence F(H, X)
intersects every principal orbit and consequently it intersects every orbit.
This proves that the natural map / : F(H, X)\K—>X* is onto.

(3.2) Every 2-dίmensional orbit is a projective plane and intersects
F(H, X) at exactly three points.

Let Gz be a 2-dimensional orbit. By (3.1), F(H, X) intersects Gz
so that we may assume that z e F(H, X). Since Gz contains H, it follows
from (2.3) that Gz is the normalizer of a circle group. Hence Gz is a
projective plane.

In the proof of (3.1) we have shown that F(H, X) Π Gz c Mz. But
it is clear that Mz c F(H, X) Π Gz. Hence

F(H, X) f)Gz = Mz = M\(M n G.) .

Since M is of order 24 and M Π Gz is of order 8, it follows that F{H, X) Π
Gz contains exactly three points.

(3.3) J3* is a compact cohomology (n — A)-manifold over Z with
H*(B*; Z) = ίί*(S%-4; Z).

Let Γ be a circle group in G. It is clear that F(T, X) c B. Since,
by (2.1) and (3.2), every singular orbit is either a point or a projective
plane, it follows that F(T, X) intersects every singular orbit at exactly
one point. Therefore the natural projection π maps F(T9 X) home-
omorphically onto J3* and hence our assertion follows from (2.6).

(3.4) Let Y = F(H, X) - F(G, X). Then Ϋ - F(H, X) and every
point of Y has a neighborhood V in Y which is a cohomology (n — 3)-
manifold over Z and such that the isotropy group is constant on V — B.

Let T be a circle group whose normalizer N contains H. Then
F(H, X) 3 F{N, X) = F(T, X) => F(G, X). Since F(H, X) is a compact
(n — 3)-manifold over Z2 (see (3.1)) and since F(T, X) is a compact
(n—4)-manifold over Z2 (see (2.6)), it follows that the closure of F(H, X) —
F(T, X) is F(H9 X). Hence Ϋ - F(H, X).
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Let x e Y Π U and let S be a slice at x. Then S is a cohomology
(n — 3)-manifold over Z. Moreover, Gy = Gx for all j / e S so that S a Y.
Since both S and Y are cohomology (w — 3)-manifolds over Z2, it follows
that S is open in Y. Hence our assertion follows by taking S as V.

Let ze Y Π B and let S be a slice at z. Then S is a cohomology
(w — 2)-manifold over Z and Gz is the normalizer of a circle group Γ
acting on S. Whenever x e S Π £7, Gx ΓΊ T is a finite cyclic group in T
and the index of Gx Π T in Gx is 2 because Gx in a dihedral subgroup
of Gz. Since the order of Gx is independent of x G S Ω £f, so is the order
of Gτ Π Γ. Hence G* Π T is independent of x e S Π Z7 so that for
x e F{H, S) Π U.

GXS = H(GX n T)S = HS = S

and

F(GX, S) = F(GJ(GX Π T), S) = F(HI(H f] Γ), S) = ^(ff, S) .

Let Q be a neighborhood of the identity of G such that Q~λTQ Π Gz —
Γ. If ffy G FίfiΓ, X) with ff G 0 and y G S, then βf-1^ c sr- :G,^ = Gy (Z Gz

so that fif-^JEί (Ί T)flr c Q-χTQ n Gz = T. Therefore g~ιTg = TOY geGz.
Hence gy e Gzy c S. This proves that i^(.fί, S) = F(H, X) Π S =
F(i ϊ , X) Π QS is open in F(fί, X) so that it is a cohomology (w — 3)-
manifold over Z2.

Since S is a cohomology (w — 2)-manifold over Z with

F(ίΓ/(fΓ Π Γ), S) = F(H, S) ,

it follows that F(H, S) is also a cohomology (n — 3)-manifold over Z.
(If Z2 acts on a cohomology m manifold over Z with i 7 ^ ) being
a cohomology (m — l)-manifold over Z2, then ^(Za) is also a cohomology
(m - l)-manifold over Z.) That G* is constant on F(H, S) Π U is
a direct consequence of the fact that ^(G^, S) = ^ ( i ϊ , S) for all
a? G F(iJ, S) Π U.

(3.5) Y" is a connected cohomology (n — 3)-manifold over Z and the
isotropy group is constant on Y — B.

By (3.4), Y is a cohomology (n — 3)-manifold over Z. Let T be a circle
group in G whose normalizer N contains H. Then F(H, X) 3 ^(ΛΓ, X) =
F ( Γ , X) =) F(G, X). From (2.6) and (3.1), it is easily seen that F(H, X)-
F(Ty X) has exactly two components with F(T, X) as their common
boundary. By (2.3), there exists a point z of F(Ty X) such that Gz is
a projective plane so that z G F(T, X) — F(G, X). Hence F i s connected.

Let x G F n ί7. Then ^(G,, X) Π Y is clearly closed in Y. But,

by (3.4), it is also open in Y. Hence, by the connectedness of Y,

F{G.,X)Γι Y=Y.
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(3.6) Whenever x e F(H, X) Π U, Gx = H. Hence for every xeϋ,
Gx is a dihedral group of order 4.

Let x be a point of F(H, X) n U. Since HczG., F{Hy X) D F(G9, X).
But, by (3.4) and (3.5), F(H, X) c F(Gβ, X). Hence JΓ(J3Γ, X) = F(GXf X).

It is clear that G' = {# e G | flrίW, X) - F(JEΓ, X)} is a closed subgroup
of G containing M. Since F(H, X) = F(GX> X), G* is a normal subgroup
of Gr so that G' is contained in the normalizer of Gx. But, by (2.5), Gx

is dihedral and H is the only dihedral group whose normalizer contains
M. It follows that Gx = if. Hence, by (1.1), the isotropy group at any
point of U is a dihedral group of order 4.

(3.7) Whenever x e F(H, X), F{H, X) Π Gx = ίfo w&icλ contains
one point or three points or six points according as Gx is ^-dimensional
or 2-dimensional or ^-dimensional.

If Gx is O-dimensional, it is clear that F(H, X) Π Gx = a? = i£tf. If
Gx is 2-dimensional, we have shown in the proof of (3.2) that
F(H, X) Π Gx — Mx = Kx which contains exactly three points.

Now let Gx be 3-dimensional. If g is an element of G with
gx e JFCEΓ, X), then, by (3.6), gHg~x - gGxg~x = Ggx = H so that # e M.
Therefore F(H, X)ΠGxc. Mx. But it is obvious that MxcF(H, X) Π Gx.
Hence

F(H, X) ΓiGx = Mx = Kx

which clearly contains six points.
From this result, it is easily seen that the natural map / :

F(H, X)IK—* X* is a homeomorphism onto.

(3.8) Whenever ae K is of order 2, we abbreviate F(a, F{H, X))
by F(a). Then F(a) c B and F(a) is a compact cohomology (n — 4)-
manifold over Z with H*(F(a); Z) = jEf*(Sw"4; Z). Moreover, F{H, X) -
F(a) contains exactly two components V and V with aV = V.

Whenever x e F(H, X) n U, Gx - H (see (3.6)) so that x $ F{a).
Hence F(a) c B. Let a = a'H with a' being of order 4 and let T be
the circle group containing ar. Then F(a) — F{T, X) and hence the first
part follows from (2.6). Now F(H, X) is a compact cohomology (n — 3)-
manifold over Z2 with H*(F(H, X); Z2) = H*(SW"3; Z2) and F(a) =
F(α, -P(fΓ, X)) is a compact cohomology (n — 4)-manifold over Z2. The
second part follows.

(3.9) F{H, X) — B contains exactly six components and whenever
P is a component of F(H, X) — B, KP = F(H, X) — B and the natural
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projection π maps P homeomorphically onto £/*.

Let P be a component of F(H, X) — B. Since the isotropy group
is constant on P (see (3.5)), the natural projection π defines a local
homeomorphism π': P—• U*. By (3.7), for every x* e Z7*, π'~ιx* contains
no more than six points. We infer that π' is closed so that π'P is both
open and closed in Z7*. Hence, by the connectedness of U*f π'P= U*.

Let Q be a second component of F(H, X) — B and let yeQ. Then
there is a point xe P such that πx = πy. Therefore, by (3.7), for some
k e K, y = kx so that Q = kP. Hence KP = F(H, X) - B.

Let xe P. By (3.8), x and ax belong to different components of
F(H, X) - F(a) z> F(H, X) - B. Therefore aP is a component of
F(H, X) — B different from P. Similarly, bP and cP are components of
F(H, X)-B different from P.

If aP, bP and cP are not distinct, say bP = cP, then {k e K \ kP = P}
is of order 3 so that P and aP —bP — cP are the only two components
of F(H, X) - B. Now F(H, Z) - B = F(H, Z) - (F(a) U Fφ) U F(c))
and F(α), -F(δ), F(c) are manifold over ^ of dimension one less than the
dimension of F(H). Hence F(H, X) Γ\ B = F(a) f] Fφ) n F(c) = ^(G, X).
This is impossible, because the intersection of F(H, X) and a 2-dimensional
orbit is contained in B but not contained in F(G, X). From this result
it follows that P, aP, bP, cP are distinct components of F(H, X) — B.
Hence P, aP, bP, cP, bcP, cbP are all the distinct components of
F(H, X) - B.

Now it is clear that for every x* e U*, π'^x* contains exactly one
point. Hence πf is a homeomorphism.

(3.10) Let P be a component of F(H, X) — B. Then the map of
G/H x P onto U defined by (gH, x) —* gx is a homeomorphsim onto.
Hence U is homeomorphic to the topological product of a principal
orbit and U*.

This is an immediate consequence of (3.5) and (3.9).

(3.11) The closure of F(a) - F{G, X) is equal to F(a). Hence
άimZ2F(G, X) rg dim^ F(G, X) S n - 5.

Suppose that the closure of F{a) — F{G, X) is not equal to F{a).
Then there is a point z of F(G, X) and a neighborhood A of z such that
A n F(a) = A Π F(G, X). Since A n F(G, X) c Fφ) and since, by (3.8),
both A Π F(G, X) and Fφ) are cohomology (n — 4)-manifolds over Z,
A n F(G, X) is open in Fφ) so that we may assume that A n F(G, X) =
A Π Fφ). Similarly, we may assume that A Π F(G, X) = A Π!F(c).
Hence A Π F(G, I ) = AΠ F(H, X) Π 5, By (3.1) and (3.8), we^may
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also assume that KA = A and A Γt {F{H, X) — F(a)) contains exactly
two components Q and Qf. Now both Q and Qf are contained in
F(H, X) - B and aQ = 6Q = Q' Therefore α&Q = Q so that ab maps
the component of F{H, X) — B containing Q into itself, contrary to (3.9).

Since, by (3.8), F(a) is a cohomology (n — 4)-manifold over Z and
since F(G, X) is nowhere dense in F(a), it follows that dimZa F(G, X) ^

(3.12) 7/ n = 4, ί/tew JF(G, X) is

This is a direct consequence of (3.11).

(3.13) Let T be a circle group in G, let N be the normalizer of T
and let A be an orbit. If A is a protective plane, then AIT is an arc
and NfTacts trivially on AIT so that F(N/T9 A/T) = A/T = A/N. If
A is ^-dimensional, then AIT is a 2-sphere and A/N is a closed 2-cell
so that F(N/T, A/T) is a circle.

If A is a projective plane, it is clear that A\T is an arc and NjT
acts trivially on A/T. Therefore A/N = A/T = F(N/T, AIT).

Now let A be 3-dimensional. By (3.6), we may let A = G/H =
{gH\geG}. Therefore A/T is the double coset space (G/H)IT and
(G/T)IH are homeomorphic. Since G/Γ is a 2-sphere and since every
element of H preserves the orientation of G/ϊ7, it follows that (G/T)IH
is a 2-sphere. Hence A/T is a 2-sphere.

As seen in [3], the double coset space (GIN)IH is a closed 2-cell.
Since A/N may be regarded as the double coset space (G/H)IN which
is homeomorphic to {GIN)IH, we infer that AjN is a closed 2-cell.

From these results, it follows that f(N/Tt A/T) is a circle.

(3.14) X* is cohomologicαl trivial over Z.

Let N be the normalizer of a circle group T in G. Then N/T is
a cyclic group of order 2 which acts on XIT with (XIT)I(N/T) = X*.
Since, by (2.6), £Γ*(F(Γ, X); Z) = H*(Sn~*; Z), it follows that H(XjT; Z) =
H iS-1; Z) [1; p. 65],

By (3.13), F(N/T, B/T) = B\T and for every singular orbit A, A\T is
either a single point or an arc. It follows from the Vietoris map theorem
that H*(B/T; Z) = H*(B*; Z) = H*(Sn-4; Z) (see (3.3)). By (3.10) and
(3.13), F(N/T, U/T) is homeomorphic to the topological product of a circle
and [/* so that H*-%F(NIT, U/T); Z) Φ 0. Therefore H*{F{NIT,
XIT); Z) = ii*(Sw~2; Z). Hence H*(X/N; Z) - 0. By (3.13), for every
orbit A, AjN is either a single point or an arc or a closed 2-cell. It follows
from the Vietoris map theorem that JΪ*(X*; Z) = H*(XIN; Z) = 0.
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HΪ(U*;Z2) =
0 otherwise .

This follows from (3.3), (3.14) and the cohomology sequence of

(Λ , IS ) .

I Z2 for k = n — 3, n;

Z2®Z2 for k = n-2, n-1;

0 otherwise .
Since for a principal orbit A, we have

for k = 0, 3

0 Z2 for fc = 1, 2

0 otherwise ,
our assertion follows from (3.10) and (3.15).

As a consequence of (3.16) and the cohomology sequence of (X, J5),
we have

ίZ2 for k = 0, w - 4

(3.17) i P ( £ ; Z2) = ] z a 0 Z2 for k = n - 3, n - 2

[0 otherwise .
(3.18) Let T be a circle group in G and let n^5. Then

H*-\F(G, X); Z2) {the reduced group)

for fc = 1

Hk-\F(G, X); Z2)®Z2 fork = n-4;

KH"-\F(G, X); Z2) otherwise .

This follows from (2.6) and the cohomology sequence of {F{Ty X),
F(G, X)).

X) - F{G, X); Z£=

(3.19) Let n>5. Then

(H"(B; Z2)

H\B; Z2) 0

HUB - F(G, X); Z2)

for k > n - A

X); Z2)

for k = n — 4

H«-\F{G, X); Z,)

for k = 2,'--,n-5;

H«-\F{G, X); Z2) for k = l .

This follows from the cohomology sequence of (B, F(G, X)).

(3.20) B — F(G, X) is homeomorphic to the topological product of
a projective plane and F(T, X) — F(G, X). Hence
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H!(B - F(G, X); Z2)

= H*(F(T, X) - F(G, X); Z2) 0 H*-\F{T, X) - F(G, X); Z2)

0 Hi-\F{T, X) - F(G, X); Z2) .

The first part follows from the that F(T, X) - F(G, X) is a cross-
section of the transformation group (G, B — F(G, X)) on which the
isotropy group is constant. The second part follows from the first part
and the fact that if A is a protective plane, then

HHA Z)-[Zt ίmk==0'1'2'
±1 \J±, ZJ2) — \

(0 otherwise.
(3.21) dimZ2 F(G, X) = n — 5. Ifn = 4:, then B contains exactly

two protective planes. If n = 5, then F{G, X) contains exactly two
points. Ifn>5, then Hn~5(F(G9 X); Z2) = Z2 so that F(G, X) is not null.

Setting k = n - 2 in (3.20), we have, by (2.6) and (3.17),

Z%@ Z2 = HΓ\F(T, X) - F(G, X); Z2) .

If w = 4, then, by (3.12), H°{F{T, X); Zz) = Z2 0 Z2 so that F(T, X)
contains exactly two points. Hence B contains exactly two protective
planes.

If n = 5, then H}(F(T, X) - F(G, X); Z2) = H°(F(Gf X); Z2) 0
H\F(T, X); Z2) so that H°(F(G, X); Z2) = Z2. Hence F(G, X) contains
exactly two points.

If n > 5, it follows from (3.18) that Hn~\F{G, X); Z2) - Z2. Hence
F(G, X) is not null.

(3.22) H*{F(G, X); Z2) = ίf*(S^5; Z2).
For n = 4 and 5, the result has been shown in (3.12) and (3.21). For

n > 5, our assertion follows from (3.18), (3.19), (3.20) and (3.21).

(3.23) F(G, X) is a compact cohomology (n — 5)-manifold over Z2.

To prove (3.23), we have only to localize the preceding computations.
Details are omitted.

REMARK. There is no difficulty to use Z in place of Z2 in these
computations. However, the computations over Z will not strengthen
our final results (3.22) and (3.23).

4 Case that the 2-dimensional orbits are all 2-spheres.
Let X be a compact cohomology %-manifold over Z with ίf*(X; Z) =

H*(Sn; Z) and let G = SO(3) act nontrivially_on X with dim* B = n - 2.
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Throughout this section, we assume that for some xe U, Gx is of odd order.

(4.1) Let Hbe a dihedral subgroup of G of order 4. Then F(H, X)
is a compact cohomology (n — 6)-manifold over Z2 with H*(F(H, X); Z2) =
iϊ*(S"-6; Z2). Hence n^5.

Let g e G be of order 2 and let T be the circle group in G containing g.
Since for some x e U, Gx is of odd order, F(g, X) c B so that F(g, X) =
F(T, X) is a compact cohomology (n — 4)-manifold over Z2 with
H*(F(g, X); Z2) - H*(Sn-A; Z3). By Borel's theorem [1; p. 175], F{H, X)
is a compact cohomology (n — 6)-manifold over Z2 with H*(F(H, X); Z2) —
£Γ*(SW-6; Z2). From this result it follows that n - 6 ^ - 1 . Hence n ^ 5.

(4.2) The 2-dimensional orbit are all 2-spheres.

Suppose that this assertion is false. Then there is, by (2.3), a pro-
jective plane Gz. Denote by T the identity component of Gz and by H
a dihedral subgroup of Gz of order 4. Let S be a connected slice at z.
Then S is a cohomology (n ~ 2)-manifold over Z and Gz acts on S.
Moreover, F(T, S) = F(T, X) Π S is open in F(T9 X) so that it is a
cohomology (n — 4)-manifold over Z. Hence we may let S be so chosen
that F{T, S) is connected and that both S and F(T, S) are orientable.

Since T is a circle group and since dim^ S — dim^ F(T, S) — 2, it
follows that SI T is a connected cohomology (w — 3)-manifold over Z with
boundary JP(Γ, S) [1; p. 196]. Hence we have a connected cohomology
(w-3)-manifold Y over Z obtained by doubling SIT on F(T, S) [1; p. 196].
Since S is orientable, so is S/T — F(T, S). It follows from the connected-
ness of F(T, S) that Y is orientable.

It is clear that K = GJ T is a cyclic group of order 2 which acts
on SIT with iLF(T, S) = F(T, S). Since F(i:, F(Γ, S)) - ^(fl", S) is a
cohomology (n — 6)-manifold over Z2, we infer from the dimensional parity
that K preserves the orientation of F(T, S) [1; p. 79],

The action of if on S/T defines a natural action of K on Y which
also preserves the orientation of Y. Hence dim^ F(K, Y) > n — 6 so
that for some y* = Tye S/T - F(T, S), Ky* = y*. But this implies that
Gzy— Ty so that y is a point of D, contrary to (2.9). Hence (4.2) is proved.

(4.3) F(G, X) is a compact cohomology {n—&)-manifold over Z2 with
H*(F(G, X); Z2) - Jff*(S— Z2).

By (4.2), F(G, X) = F(H, X). Hence our assertion follows from (4.1).

(4.4) Whenever x e U, Gx is the identity group.
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If X is strongly paracompact, the result can be found in [5]. But
an unpublished result of Yang shows that it is true in general.

(4.5) B* is a compact cohomology (n — 4)-manίfold over Z with
#*(£*; Z) = i?*(Sw"4; Z).

Proof. Let T be a circle group in G and N its normalizes Then
F(T, X) is a compact cohomology (n — 4)-manifold over Z with
H*(F(T, X); Z) = £Γ*(SW-4; Z) and N/T is a cyclic group of order 2 acting
on F(T, X) with F(T, X)I(N/T) = B*. Therefore #*(£*; Z) is finitely
generated [1; p. 44], If H is a dihedral subgroup of iNΓof order 4, it is
easily seen that F(NjT, F(T, X)) = F(iJ, X) so that F(N/T, F(T, X)) is
a compact cohomology (w-6)-manifold over Z2 with H*(F(NIT, F(T, X));
Z2) = H*(Sn~6; Z2). Hence, by the dimensional parity theorem, N/T
preserves the orientation of F(T, X).

By [1; pp. 63-64],

#*(£*; Z2) = H*(F(Γ, X)I(NIT); Z2) = £Γ*(S*-

We now use the following diagram from [1; p. 45]

> Hk(B*', Z) — L Hk(B*; Z) -?U iϊ fc(β*; Z2)

, X); Z)

in which the horizontal sequence is exact and the triangle is commutative.
For k Φ 0, n - 4, we have iP(£*; Z2) = 0 and Hk(F(T, X); Z) = 0; hence
Hk(B*; Z) = 0. For ft = 0, we have H°(B*; Z) = Z, because B* is clearly
connected. For k = n — 4, H*~\B*\Z) is a finitely generated group
with Hn~\B*; Z)®Z2 = Hn~\B*; Za) = Z2. It follows from the universal
coefficient theorem that there is a finite subgroup K of Hn~A(B*;Z) of
odd order such that iiw"4(B*; £)/£" is Z or Z2. Since iΓ = 2K = ^τr*if = 0,
Hn-\B*; Z) = Z or Z2. But JΪ%-4(5*; Z) ^ Z,, because iV/Γ preserves
the orientation of ^(Γ, X). Hence Hn~\B*\ Z) = Z.

By localizing this result, we can show that U* is a cohomology
(n — 4)-manifold over Z near every point of F(G, X). (This result is
also shown in [2].) Since the projection of F(T, X) — F(G, X) onto
B* — F{G, X) is a local homeomorphism, B* is a cohomology (n — 4)-
manifold over Z near every point of B* — F(G, X). Hence J5* is a
compact cohomology (n — 4)-manifold over Z.

(4.6) Let T be a circle group in G and let N be the normalizer
of T. Then H*(B/N; Z) = i?*(Sw~4; Z).

Let A be a singular orbit. If A is a single point, so is A/N. If A
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is a 2-sphere, we may let A = GIT. Therefore A/N= (G/Γ)/iVis home-
omorphic to (G/N)IT which is known to be a closed 2-cell [3]. Hence
A/N is a closed 2-cell.

Since, by (2.1) and (4.2), every singular orbit is either a single point
or a 2-sphere, it follows from Vietoris map theorem that H*(B/N; Z) =
H*(B*;Z). Hence our assertion follows from (4.5).

(4.7) H«(X/N; Z) =

Z for k = 0

Z2 for k — n — 1

0 otherwise.

Since H*(F(T, X); Z) = iϊ*(Sn-4; Z), it follows that H^X/T; Z) =
H*(Sn~lm, Z). Now NfT is a cyclic group of order 2 acting on XIT with
(XIT)I(NIT) = JSΓ/JSΓ.

Let A be an orbit. If A is 3-dimensional, then, by (4.4), A/T is
a 2-sphere and JV/T7 acts freely on AjT. If A is a 2-sphere, then AjT
is an arc and F(N/T, A/T) is a single point. If A is a point, then
F(NIT, A/T) = A/T = A. Hence F(N/T, XIT) is homeomorphic to £*
so that, by (4.5), H*(F(N/T, X/T); Z2).

As in the proof of (4.5), we can show that

Z fork = n-3,

(4.8) Hc

k(UIN; Z) = Z2 fork = n-l9

v0 otherwise.

(4.9) There is an exact sequence

TTk—3/ TT* ^ \ TJk/TT*. r7\ TJkί TTI Λ7". ^ \ TJΓk—2/ 7 T * . 7 \
* * * ' — - " c \ ^ i ^ i ) — - " c \ U y *-* ) — - " c \ ^ / ^ ' > ^ / — ^ - " c V ̂  1^2) — ^ #

By (4.4), G acts freely on U. Hence we have the desired exact
sequence as seen in [3].

(4.10, HΆϋ';Z)=\l

(0 otherwise.

Since dimz C7* = n — 3, we have

jff*(!7*; Z) = 0 for fc > n - 3 .
It follows from (4.9) and (4.8) that HΓ\U*; Z2) = HΓW/N; Z) = Z2.
From (4.9), it is easily seen that Hc

n~XU*; Z) = Z® I, where 1 =
im(HΓ\U*; Z2) -> iϊc

n-3(?7*; Z)) so that every element of I different from
0 is of order 2. By the universal coefficient theorem,

Z2 - HΓ\U*; Z2) = HΓXU*; Z)®Z2® Ύov(H«-\U*; Z\ Z2)

= Z2®I.

Hence I = 0, proving that
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If k < n - 3, then by (4.8) and (4.9), He
k(U*; Z) = H*-\U*; Z2). Hence

for k < n — 3,

(4.11) X* is cohomologically trivial over Z.
This is an easy consequence of (4.5), (4.10) and the cohomology

sequence of (X*, £*).
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A NOTE ON ABELIAN GROUP EXTENSIONS

R. J. NUNKE

In Exercise 21 page 248 of his book Abelian Groups L. Fuchs asks
for a proof of the following

THEOREM. If A is a torsion-free and C a torsion group, then
Ext (A, C) is either 0 or contains an element of infinite order.

Unfortunately the hint given with the exercise leads only to the
conclusion that every countable subgroup of A is free. Professor Fuchs
has informed me that he meant to assume A countable. The purpose
of this note is to prove this theorem.

LEMMA. If Cl9 C2, is a sequence of abelian groups, ΠCi their
direct product and ΣC{ their direct sum, then Ext {A, ΠCi/Σd) = 0
for all torsion-free groups A.

Proof. A special case of this lemma with all the C{ — Z the group
of integers is a consequence of Theorem 1 of [1], The proof of the
special case given in [4] makes no use of the fact that Ct = Z. This
proof will be sketched here. It is enough to prove the case in which
A is the rational numbers. Since Ext (A, ΠCJΣCi) is a homomorphic
image of Ext (A, ΠCi) we must show that each extension 0 —> 77 C< —»
E — A -> 0 splits over ΠCJΣd, i.e., that there is a map f: E-> ΠCJΣd
whose restriction to Π d is the canonical projection. With A the ration-
als we choose elements e1, e2, in E such that en maps onto ljnl
modulo Πd. Then E is generated by 77d and the e's with relations

en = (n + l)en+ι + cn n = 1, 2,

where cneΠd. We choose bneΣCi such that the first n coordinates
of cn + bn are 0 and put

Then

xn = (n + l)xn+1 + cn + bn

and we can define / to be the projection on 77d and by f(en) = xn + Σd.

PROPOSITION. If C is the direct sum of infinitely many copies of
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D and if A is torsion-free with Ext (A, D) Φ 0, then Ext (A, C) has an
element of infinite order.

Proof. Since D is a direct summand of C we have Ext (A, C) Φ 0.
The sequence

Ext {A, ΣC) — Ext (A, ΠC) — Ext (A, ΠC\ΣC) — 0

is exact where ΣC is the direct sum and ΠC the direct product of
countably many copies of C. By the lemma Ext {A, ΠC/ΣC) = 0 so
that the left-most map in the sequence is an epimorphism. Since A is
torsion-free Ext {A, C) is divisible and hence has elements of arbitrarily
large finite order if it has nonzero elements of finite order at all. Hence
Ext (A, ΠC) = 77 Ext (A, C) has an element of infinite order. It follows
that Ext {A, ΣC) also has an element of infinite order. Since C is the
direct sum of infinitely many copies of D we have ΣC = C so that
Ext (At ΣC) = Ext (A, C) proving the proposition.

Now to prove the theorem we suppose that A is torsion-free, C is
torsion and that Ext (A, C) is a nonzero torsion group. Then Ext (A, C)
has a nonzero p-primary component for some prime p. Since C = C 0 E
where C is the p-primary component of C and E is the sum of the
other primary components we have

Ext (A, C) = Ext (A, C) 0 Ext (A, E) .

Multiplication by p is an automorphism of E, hence also an automor-
phism of Ext (A, E). It follows that Ext (A, C) is a nonzero torsion
group. Hence in proving the theorem we may assume that C is p-
primary.

In [3] it was shown that, for A torsion-free and C p-primary,

Ext (A, C) = Ext(A, M)

where M is a direct sum of copies of ΣZ\pnZ, the number of copies
being equal to the final rank of C If C has bounded order, then
Ext (A, C) = 0 for all torsion-free groups A. Otherwise the final rank
of C is infinite. This last case is the one to be considered. Then M
is the direct sum of countably many copies of itself and the proposition
shows that Ext (A, M) is either 0 or has an element of infinite order.

The referee has pointed out that a stronger form of the lemma in
this paper has been proved by A. Hulanicki (Bull. Acad. Pol. Sci. Ser.
Sci. Math. Astr. Phys., 10 (1962), 77-80.) He showed that each element
of infinite height in ΠCJΣCi is in the maximal divisible subgroup,
hence this group is algebraically compact.
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A COMPLETE SET OF UNITARY INVARIANTS
FOR OPERATORS GENERATING FINITE

W^-ALGEBRAS OF TYPE I

CARL PEARCY

l Introduction. The principal object of this paper is to give a
complete set of unitary invariants for a certain class of operators on
Hubert space. The operators considered are exactly those operators
which generate a W*-algebra which is finite of type / in the terminology
of Kaplansky [6]. Such an operator is a direct sum of homogeneous
^-normal operators, and a homogeneous ^-normal operator can be
regarded as a continuous function from a totally disconnected topological
space to the full ring of n x n complex matrices. Thus it was con-
jectured by Kaplansky that if one could find a suitable set of invariants
for complex matrices, one could also solve the unitary equivalence
problem for homogeneous ^-normal operators, and Brown's solution [2]
of the problem in the case n — 2 strengthened this belief. A complete
set of unitary invariants for n x n matrices was furnished by Specht.
In [10] he showed that there is a collection of traces attached to every
n x n complex matrix such that two matrices are unitarily equivalent
if and only if the corresponding traces in this collection are equal. A
generalization of the trace of a matrix to ^-normal operators is given
by Diximier in [3], and it was thus natural to suppose that the gener-
alized Specht invariants would serve for homogeneous ^-normal operators.
(See page 20, [7].)

Unfortunately, the Specht invariants have the unpleasant feature
that they are infinite in number, and for n fixed it seemed likely that
some finite subset would serve. Herein it is shown (Theorems 1 and 2)
that there is always a subset of less than 4n2 traces which is a complete
set of unitary invariants for n x n complex matrices. Furthermore,
the same invariants form a set of orthogonal invariants for n x n real
matrices. (One observes that Specht's proof does not generalize to the
real case, due to the failure there of Burnside's theorem.)

The (local) unitary equivalence problem for homogeneous w-normal
operators generating the same TF*-algebra is then considered, and it is
shown that the same finite number of Dixmier traces is a (local) complete
set of unitary invariants for such operators (Theorem 3). Finally the
question of global unitary equivalence for operators which generate a
finite I^*-algebra of type I is considered, and a global complete set of

Received September 28, 1961, and in revised form December 20, 1-961. This paper is
essentially a part of the thesis submitted in partial fulfillment of the requirements for the
Ph. D. degree at Rice University.
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unitary invariants is determined (Theorem 5). In particular, to each
such operator A is attached a countable collection of mutually commuting
normal operators Ni(A). Then A is unitarily equivalent to B if and
only if there is a unitary isomorphism φ between the respective Hubert
spaces which satisfies φNi{A)φ~ι = N^B) for all i.

The author wishes to express his appreciation to Professor Arlen
Brown for his encouragement and patient criticism during the prepa-
ration of this paper.

2, n x n matrices* We first obtain the result for n x n matrices,
or what is the same thing, for operators on an ^-dimensional (complex)
Hubert space. The reader is reminded that a ring of operators, or
ΫF*-algebra, is a self-adjoint algebra of operators closed in the weak
operator topology acting on a Hubert space. ΫF*-algebras are not
assumed to contain the identity operator.

Throughout this paper W will denote the free multiplicative semi-
group generated by the two free variables x and y. Words in this
collection are denoted by w(x, y), and the collection of all words w(x, y)
with the property that the sum of the exponents appearing in w(x, y)
does not exceed n is denoted by W(n). Also, if A is an operator, the
notation WJn) denotes the collection of all operators w(A, A*) with
w(x, y) e W(ri).

LEMMA 2.1. // A is an operator on an n-dimensional Hilbert
space, and d is a positive integer such that every operator in WA(d + 1)
is a linear combination of operators in WA(d), then WA(d) spans the
""-algebra V generated by A.

Proof. Clearly, V consists of all linear combinations of words
w(A, A*) where w(x, y) e W. If WA(d) does not span V, then there is
a word w(A, A*) which is independent of WJd) with the property that
the sum of the exponents in w(x, y) is a minimum. A contradiction is
easily reached by factoring A (or A*) out of w(A, A*) and writing the
other factor as a linear combination of operators in WA(d).

LEMMA 2.2. If A and V are as before, then V is spanned by the
collection of operators WA(n2).

Proof. This follows from Lemma 2.1 and the fact that V can
contain at most n2 linearly independent operators.

We introduce the notation σ(A) for the trace of an operator A
acting on a finite dimensional space.

THEOREM 1. If A and B are operators on an n-dimensional
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Hilbert space J%?f and σ[w(A, A*)] = σ[w{B, B*)] for every word
w(x, y) e W(2n2), then A and B are unitarily equivalent.

Proof. Let R(A) and R(B) be the *-algebras generated by A and
B respectively. If A* = XA for some scalar λ, then it is easy to see
that JB* = XB, so that A and B are normal, and the traces assumed
equal are more than enough to guarantee the unitary equivalence of A
and B. Thus, we can assume that A and A* are linearly independent,
and it results from the preceding lemmas that there is a basis β(A) —
{Wi(A, A*)IWi(x, y) e τ) of R(A) such that τ c W(n2 - 1), wλ(x, y) = x and
w2(ίc, y) = y. It follows easily from the hypothesis and the fact that
σ(CC*) = 0implies C = 0 for arbitrary C that β(B) = {w^B, B*)IWi(x,y) e r}
is a basis for R(B). To complete the proof, it suffices to show that if
Wj(x, y) is any word in τ and Wj(A9 A*) A = Σ Λ W^A, A*), wά{A, A*)A* =
ΣίViiWίίA, A*), then wά{B, B*)B = Σla^w^B, B*) and Wj{B, B*)B* =
Σ* yi3wi(B> B*) For if this is so, then it is clear that if any word
w(A, A*) is formed by multiplications of appropriate powers of A by
appropriate powers of A*, and the corresponding word w(By B*) is formed
similarly, we will obtain w(A, A*) = ΣA^XA, A*) and w(B, B*) =
ΣiδiW^B, 5*). This implies that σ[w(A, A*)] = σ[w(B, B*)], and the
result will follow from the original theorem of Specht. Thus let wά(x,y) e τ
and consider L = w3(B, B*)B - ^a^w^B, 5*) and N = wά(B, £*)£ -
ΣiΎijwi(B> B*) Since LL* and NN* are linear combinations of words
each of which is in WB(2n2), it follows from the hypothesis that σ(LL*) =
σ(NN*) = 0, so that L — N = 0, and the proof is complete.

It is easy to see that some of the equalities σ[w(A, A*)] = σ[w(B,B*)]9

w(x, y) G W(2n2), follow from others as a result of properties of the trace
function, and thus there are smaller sets of invariants than the set indi-
cated by Theorem 1. For example, it suffices to assume equality for words
of the form x* and xiy5xk y* in view of the identity σ(A*) = [tf(A)]*
and the fact that the trace of any commutator is zero. Detailed con-
sideration of the case n = 3 indicated (see § 5) that it is probably not
worthwhile to pursue the question of how many words can thus be dis-
pensed with, so we content ourselves with the observation that there are
more distinct sequences of positive integers each having the property
that the sum of its terms is at most 2n2 than there are traces needed.

THEOREM 2. There is a complete set of unitary invariants for
n x n complex matrices containing fewer than 4̂ 2 elements.

Proof. By induction, the number of distinct sequences of positive
integers each having the property that the sum of its terms is a given
positive integer k is 2*~\ and one sums the resulting geometric series.

The following corollary extends the above result to real matrices.
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COROLLARY. Any collection of traces which is a complete set of
unitary invariants for n x n complex matrices is also a complete set
of orthogonal invariants for n x n real matrices, and therefore there
is a complete set of orthogonal invariants containing fewer than 4w2

elements.

Proof. We can assume A and B are real n x n matrices with
UAU* = B, U complex unitary. Let U = R + iJ where R and J are
real matrices. Then RA = BR, JA = BJ, RA* = B*Rf JA* = B*J, and
one can choose a real λ such that S = R + λJ is nonsingular. It follows
that SAS*1 = B and SA*S~1 — B*, and the usual construction yields an
orthogonal real matrix V such that FAF* = B.

3* Homogeneous n-normal operators* Terms such as abelian pro-
jections, equivalence of projections, and homogeneity of projections are
taken as defined in [6]. A FF*-algebra R is n-normal if it satisfies
the identity

where the sum is taken over all permutations on 2n objects, and the
sign is determined by the parity of the permutation. An n-normal
algebra is homogeneous n-normal (also called type In) if the unit is
homogeneous of order n, and an operator is (homogeneous) n-normal if
the Wr*-algebra it generates is (homogeneous) n-normal.

The imposition of (*) on an algebra R restricts the number of non-
zero, orthogonal, equivalent projections in R to a maximum of n, and
since every direct summand of an n-normal algebra contains an abelian
projection [2], it follows easily that any n-normal algebra is a direct
sum of algebras of type Ik where k ^ n. Kaplansky [5] and Brown [2]
gave a structure theory for these algebras, and according to [2], if R
is a homogeneous n-normal algebra, then R is unitarily isomorphic to
the algebra of all n x n matrices with entries from an abelian W*-algebra
Z' containing 1. By applying the representation theorem for abelian
C*-algebras to Z', one obtains that Z' is C*-isomorphic to the C*-algebra
C(ϊ) of all continuous complex-valued functions on a compact Hausdorff
space X. Now Zr is weakly closed, and it has been shown that this
gives 36 the additional properties that the closure of every open set is
open, and the compact open sets form a base for the topology [11]. It
results that R is C*-isomorphic to the C*-algebra MJlί) of all continuous
functions from 3c to the full ring Mn of n x n complex matrices, where
|| A( ) || = supίE£ || A(t) ||. If A = (Ai3)eR, then A corresponds to the
function A(-)eMn{l) whose value at te3c is A(t) = {aiά{t))y where α^( )
js the function in C(3c) corresponding to AiS in Z'. See [2] for details,
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It will be useful from here on to have a notation for a diagonal
matrix which has the same entry E in every position on the main
diagonal and zeros elsewhere. We hereby adopt the notation Diag(JS')
for this matrix whose size will always be clear from context.

Dixmier [3] has demonstrated the existence of a unique center
valued trace-like function (called by him "Γapplication % canonique")
defined on finite W*-algebras. This function, which we denote by D(-),
is linear, a unitary invariant, constant on the center of the algebra,
preserves the *-operation, and has the property that if Aλ is a net of
uniformly bounded operators converging weakly to A, then D(Aλ) con-
verges weakly to D(A). For more information concerning this function,
see [3].

Our intention is to use operators of the form D[w(A, A*)] as unitary
invariants for operators A generating finite W* -algebras of type I. To
this end, let R be a homogeneous ^-normal T^*-algebra. Then as
mentioned, we can take R to be the W*-algebra of all n x n matrices
over an abelian algebra Z', and any A e R has the form A = (Ad).
Thus one can define a mapping A —> Diag (Ijn Σ* ̂ ώ from R to the
center of R, and it is not hard to see that this mapping has all of the
afore mentioned properties of D{-), and in addition is globally weakly
and uniformly continuous. From these considerations and from Theorem
3, page 267, [3], it follows that D(A) - Diag (1/n Σ* Au). The usefulness
of this fact is that under the C* -isomorphism between R and MJjί),
any operator D[w{Ay A*)] e R corresponds to the function Diag
(llnσ[w(A(-),A*(.)]) in Mn(X).

We solve the local unitary equivalence problem first in the simplest
case where the ^-normal operators A and B under consideration are
both in the homogeneous W* -algebra R and where A is assumed to
generate R. We begin by supposing that D[w{A, A*)] = D[w(B, B*)]
for w(x, y) G C, where C is any collection of words w(x, y) furnishing a
complete set of unitary invariants for n x n matrices. Then it follows
that A(t) is unitarily equivalent to B(t) for each ί e ϊ , and as a result
D[w{A, A*)] = D[w(B, B*)] for all words w(x, y) e W. At this point we
make two observations. The first is that the problem of finding a
unitary operator in R satisfying UAU* = B is equivalent to being able
to choose the unitary matrix U(t) implementing the equivalence of A(t)
and B(t) in a continuous fashion. The second follows: consider the
mapping φ:p(A, A*)<-+p(B,B*) between the algebraic *-algebras generated
by A and B. It is clear, since φ was shown above to be trace pre-
serving, that φ is in fact a norm-preserving *-algebra isomorphism, and
as such can be extended to a C*-isomorphism between the C*-algebras
generated by A and B. Thus the question of whether A is unitarily
equivalent to B is exactly the question of whether the isomorphism φ
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is implemented by a unitary operator. To answer this question, it is
useful to consider the problem locally in Mn(ϋ), where the appropriate
AW*-algebras are more accessible. The following lemmas lead to the
result.

LEMMA 3.1. Suppose A generates the homogeneous n-normal W*-
algebra R, and as such corresponds to the function A(-)e Mn(X). If
<%/ is any compact open subset of X, then there is a te^/ such that
A(t) generates the full*-algebra Mn ofnxn complex matrices.

Proof. Suppose there is some compact open <%/ such that for each
t e <%/, the *-algebra of matrices generated by A(t) [which is, of course,
a direct sum of factors] is not the full algebra Mn. Let (**) be the
polynomial identity obtained from (*) by replacing n by n — 1. It
follows from the facts about polynomial identities in [1] that for any
te *%S, the *-algebra of matrices generated by A(t) satisfies (**). Now
the characteristic function of W corresponds to a projection E' in Z'',
and thus the operator E — Diag (Ef) is a central projection in R. What
we have just proved is that the algebraic *-algebra generated by EA
satisfies (**). It follows by continuity that ER satisfies (**) also, which
is impossible because ER is homogeneous w-normal with R and thus
contains n2 matrix units which cannot satisfy (**).

The next lemma uses the fact that if <%/ is any compact open subset
of ϊ , then the algebra Mn(^/) of continuous functions from <?/ to Λf»,
considered as a normed algebra with sup norm, is a C*-algebra and, in
fact, an AW*-a\gebm.

LEMMA 3.2. Suppose that A( ) and B( ) are elements of Mn{H) such
that for every word w(x, y)e W and for every t e 36, σ[w(A(t), A*(t))] =
σ[w(B(t)9 B*(t))]. Suppose further that s e ϊ is such that A(s) generates
Mn. Then there is a compact open set <?/ containing s and a unitary
element V( )eMn(<%?) such that for each te^, B(t) = V(t)A{t)V*{t).

Proof. Since A{s) generates Mn, there are n2 words Wi(x, y) such
that the matrices Wi(A(s), A*(s)) are linearly independent, and we can
take w1(A(8)9 A*(s)) = A(s) and w2(A(s), A*(s)) = A*(s). Since A( ) can
be regarded as a matrix with continuous functions as entries, there is
a compact open set ^/ containing s such that for t e <%?, the n2 matrices
Wi(A(t), A*(t)) remain linearly independent. Thus for each t e"?/, one
obtains, just as in the proof of Theorem 1, that the n2 matrices
Wi(B(t), B*(t)) are linearly independent. Furthermore, if

, A*(t))Wj(A(t), A*(t)) = Σ dUt)wk(A(t), A*(t)) ,
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then the same equation holds with A everywhere replaced by B. Now
any element T(-)e Mn(<%s) is such that T(t) = ΣSi c^w^Ait), A*(£))
for te^, where the c{( ) are uniquely determined continuous complex-
valued functions on <%s. This is the crucial fact, for it allows us to
define the mapping

of MJ&) onto itself. Using the facts mentioned above, it is not hard
to see that φ is in fact a *-algebra automorphism of Mn(^) which leaves
the center elementwise fixed. It follows from Theorem 3, [5] that
there is a unitary element V( )e Mn(<%s) implementing φ, and since φ
maps A( ) to B( ) we have the desired result. (It is perhaps worth
remarking that instead of using Kaplansky's theorem above, the desired
unitary element V( ) could have been constructed via a construction
from standard algebra.)

THEOREM 3. Suppose A is a homogeneous n-normal operator gener-
ating the W*-algebra R, and suppose B is any operator in R. Suppose
also that C is any collection of words w(x, y) with the property that
the associated traces form a complete set of unitary invariants for
nxn complex matrices. Finally, suppose that D[w(A, A*)]~D[w(B, JS*)]
for each w(x,y)eC. Then there is a unitary element UeR such that
UAU* = B.

Proof. Consider collections of nonzero, orthogonal, central pro-
jections Eλ in R for which there exists some unitary operator Vλ in R
satisfying BEλ = VλAV^Eλ. By Zorn one obtains a maximal collection
{Eλ}. Let F = supλ {Eλ} = Σ λ Eλ. To show that F is the unit of R,
suppose not. Then the central projection 1 — F is nonzero, and thus
is of the form Diag (£") where E' is a projection in Z'. Now E' cor-
responds to the characteristic function of a compact open subset ^ί of
£, and by Lemmas 3.1 and 3.2 we can drop down to a compact open
subset ^ of ^< such that there is a unitary V(-) e Mn(^) with B(t) =
V(t)A(t)V*(t) for every te^. Then of course F( ) can be extended
to a unitary element V(-)e Mn(£), and if E is the central projection
in R corresponding to the set ^ , we have BE = VAV*E. This con-
tradicts the maximality of the collection {Eχ\, and thus Σ λ Eλ = 1. If
U is defined as Σλ ^Λ Vλ, it is an easy matter to verify that U is a
unitary operator in R and that UAU* = B.

We can remove the restriction in Theorem 3 that A generates a
homogeneous algebra, provided we maintain the requirement that A
generates a W*-algebra of type /, finite. For it is known that any
such algebra R is a direct sum Σ ei Θ -K» where / is some (perhaps
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infinite) subset of the positive integers and each R{ is homogeneous i-
normal, and it is easy to see that the Dixmier trace D(-) on R is the
direct sum of the functions A( ) defined as previously on the homo-
geneous summands R{. Thus we get immediately.

THEOREM 4. If A generates the finite W*-algebra R of type I, B
is any operator in R, and D[w(A, .A*)] — D[w(B, B*)] for each
w(x, y) G W, then there is a unitary operator Ue R such that UAU* = B.

4. Global unitary equivalence. We now shift our attention from
the question of local unitary equivalence to the question of global unitary
equivalence. In other words, if A and B are operators on the Hubert
spaces 3^ and J3Γ respectively, and each generates a finite ΫΓ*-algebra
of type /, we wish to set forth necessary and sufficient conditions for
the existence of a unitary isomorphism φ mapping §ίf onto 3ίΓ and
satisfying φAφ~ι = B. Suppose A and B generate the W* -algebras
R(A) and R(B) respectively. Let Da( ) be the Dixmier trace defined
on the algebra R{A), and similarly let A( ) be the trace on the algebra
R(B). In order to eventually arrive at a complete set of unitary in-
variants for A and B, we must set forth conditions which will ensure
that the algebras R(A) and R(B) are unitarily equivalent, and the
following lemma begins this program.

LEMMA 4.1. If A and B are as above, and if there is a unitary
isomorphism φ mapping ^ onto 5ίΓ such that φDa[w(A, A*)]^"1 =
Db[w(B, £*)] for each w{x, y) e W, then φZ{A)φ~λ = Z(B), where Z(A)
and Z(B) are the centers of R(A) and R(B) respectively.

Proof. It clearly suffices to demonstrate that the T^*-algebra Z(Γ)
which the collection Γ = {Da[w{A, A*)]/w(x, y) e W) generates is Z(A).
By the fundmental density theorem, Z(Γ) is the ultraweak ("ultrafaible")
closure of the algebraic *-algebra generated by Γ, and R(A) is the
ultraweak closure of the algebraic *-algebra generated by A. If Ke Z(A),
then there is a net of polynomials pλ{A, A*) converging ultraweakly to
K, and Da[pλ(A, A*)] converges ultraweakly to Da(K) = K.

One conjectures that the number of traces required in the previous
lemma can be reduced somewhat if it is assumed that R(A) and R(B)
are both ^-normal for some n. (This is equivalent to supposing that
there exists a positive integer n such that neither R(A) nor R(B) has
a nontrivial i-homogeneous summand with i > n.) The following lemma
affirms this conjecture.

LEMMA 4.2. If R(A) and R(B) are both n-normal W*-algebras, C
is any collection of words w(x, y) furnishing a complete set of unitary
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invariants for n x n complex matrices, and φDa[w(A, A*)]<p-1 =
Db[w(B, £*)] for w(x, y) e C, then φZ{A)φ~ι = Z(B).

Proof. As before, it suffices to demonstrate that the T7*-algebra
which the collection Ω = {Da[w(A, A*)]lw(x, y) e C} generates is Z(A).
On the other hand, we know from Lemma 4.1 that the collection Γ =
{Da[w(A, A*)]lw(x, y) e W} generates Z(A). Thus it suffices to show
that Ω and Γ generate the same W*-algebra, or even less, the same
C*-algebra. Now R(A) is a direct sum of homogeneous algebras Rif

and thus is C*-isomorphic to an algebra of the form Σ i € I Θ Mffii) where
/ is a subset of the first n positive integers. Consider the compact
Hausdorff space X = \Jiei Xif defined by agreeing that a set ^ is open
in 2ί if and only if <%/ n X» is open in Xt for each iel. Clearly, Z(A)
is C*-isomorphic to the C*-algebra F of all continuous complex-valued
functions on 36. For any w(x, y) e W, let fweF be the element corres-
ponding to Da[w{A, A*)] in Z(A). If A corresponds to Σ e i Θ ^ ( ),
then it is easy to see that /„/£< (the restriction of /„, to 3̂ ) is equal to
lliσ[w(Ai( ),Aϊ( ))]. We want to prove that Ωx - {/„ 6 Fiw(x, y) e C}
and Γ1 = {fw e F/w(x, y) e W) generate the same closed subalgebra of
F. Define gwβι = i -fwβi for iel. Then Ωx and Γx generate the same
closed subalgebra of F if and only if Ω2 = {gw\w{x, y)eC} and Γ2 =
{gjw(xf y) G W) do also. We apply the Stone-Weierstrass Theorem to
prove that Ω2 and Γ2 do indeed generate the same C*-subalgebra
of F, and thus complete the argument. Suppose tu ί2 e X, and suppose
9v>(ti) — Qw(Q for each w(x, y) e C. Say tx e ϊ^ and ί2 e ϊ 5 . Then the
matrices -Â ίO and Aχί2) can both be made into n x n matrices by
forming direct sums with appropriate sized zero matrices, and one sees
by virtue of the hypothesis on C that the resulting n x n matrices are
unitarily equivalent. Thus gw(tλ) — gw(t2) for all w(x9 y) e W, and it
remains only to show that if ί e X* is such that gw(t) — 0 for all w(x, y) e C,
then gw(t) = 0 for all w(x, y) e W. This is immediate, however, since
then Aι(t) is unitarily equivalent to the zero matrix and thus is equal
to zero.

One knows (Theorem 3, [2]) that two w-homogeneous TF*-algebras
whose centers are unitarily isomorphic are then themselves unitarily
isomorphic, and the next lemma gives conditions under which the
homogeneous summands of two finite W* -algebras of type / can be
aligned.

LEMMA 4.3. Suppose A generates the n-homogeneous W*-algebra
R(A) with center Z, and suppose B generates the m-homogeneous W*-
algebra R(B) whose center is also Z. Suppose also that Da[w(A, A*)] =
Db[w(B, 5*)] for each w(x, y) e T7(max [2n\ 2m2]). Then m = n.
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Proof. We can regard R(A) and R{B) as matrix algebras over the
common center Z, and if X is taken to be the maximal ideal space of
Z, we obtain C*-isomorphisms of Z onto C(ϊ), R(A) onto Mn(%), and
R(B) onto Mm(3E). If A <-> A( ) and B *-* B{ ) under these isomorphisms,
then as usual Dα[w(A, A*)] and JD6[W(I?, B*)] correspond respectively to
the n x n matrix Diag (l/na[w(A(-), A*( ))]) and the mxm matrix
Diag(l/m0 [w(J3( ), J5*(•))]). It follows from the hypothesis and the
isomorphism between C(ϊ) and Z that m/iw[w(A(ί),A*(ί))] = <7[w(B(ί),S*(ί))]
for each ί e X and for each w(#, τ/)e I^(max [2w2, 2m2]). By Lemma 3.1
we can choose a point s e 3£ such that A(s) generates ΛfΛ, and thus find
n2 words w^x, y) e W(n2) such that the matrices Wi(A(s), A*(s)) are
linearly independent. Proceeding just as in the proof of Theorem 1,
one concludes that the n2 matrices wi(B{s)J B*(s)) are linearly independent,
and thus m ^ n. The result follows by symmetry.

We are now in a position to prove the central result of the paper.

THEOREM 5. Suppose A is an operator acting on the Hilbert space
£ίf and generating the finite W*-algebra R(A) of type /. Let Da( )
be the Dixmier trace defined on the algebra R(A), Then A is unitarily
equivalent to an operator B acting on the Hilbert space 5ΐ~ if and only

if
(1) B generates a W*-algebra R(B) which is finite of type /, and
(2) there is a unitary isomorphism φ of the Hilbert space Sίf

onto the Hilbert space 3ίΓ satisfying φDa[w(A, A*)]^"1 = Db[w(B, B*)]
for each w(x,y)e W, where A( ) is the Dixmier trace on the algebra
R(B).

Proof. If there is a unitary isomorphism φ of £%f onto 3f satis-
fying φAφ-1 = B, then φR(A)φ~ί = R(B), and φZ(A)φ~1 = Z(B), where
Z{A) and Z(B) are the centers of the respective algebras R(A) and
R(B). That <pDa[w(A, A*)]^-1 = Db[w(B, B*)] for each w(x, y)eW follows
easily from the uniqueness of the Dixmier trace (Theorem 3, page 267,
[3]). Going the other way, suppose B generates the finite Wr*-algebra
R(B) of type /, and suppose there is a unitary isomorphism φ of ,*%?
onto 3ίί such that φDa[w(A, A*)]^-1 = Db[w(B, 5*)] for w(x, y) e W.
Let Aj be the operator φAφ-1 acting on 3ίΓ, and suppose AΛ generates
the TF*-algebra R(Aλ) with center Z(Aλ) and Dixmier trace Dai(-). Then
another uniqueness argument shows that Db[w(B, B*)] = Daι[w(Au Af)]
for w(x, y) G W, and from Lemma 4.1 we obtain Z(B) = Z{Aλ). Write
R(Aλ) = Σi€/ Θ Ri and R(B) = Σiej Θ Tj where R{ and T{ are homo-
geneous ΐ-normal algebras, and / and J are subsets of the positive
integers. (It is convenient to regard the above direct sums as internal
in this situation, and we do so.) If Et is the unit of the algebra Ri9

then at least E% is a central projection in Z(B), and we show that Ei
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is in fact the unit of T{ (thus proving / c / ) . Write E{ = Σ e j θ ^ ; ,
where each F3 is a central projection in T3 . If F3 is nonzero, then the
algebra FjR(B) = F3T3 is j-homogeneous, and since F3 ^ #<, FaR(A^ = 7 ^
is ΐ-homogeneous. It is easy to see that Lemma 4.3 is applicable to
the operators FjAι and FjB, and it results that j = ί and hence Ei =
i^. Thus JS7€ is dominated by the unit of the algebra Tif and from
symmetry considerations one can conclude that E{ is the unit of the
algebra T{ and that I = J. In other words, for i e I, the homogeneous
algebras Rt and T{ have the common center EiZ(B). If Theorem 3,
[2], is now applied for each iel, there results a unitary operator V
such that VRiAJV* = R(B) and V commutes with Z{Aλ). Consider
A, = VΛF* which clearly generates the PF*-algebra R(B). This fact
and another uniqueness argument yield Db[w(A2, Af)] = Db[w(B, B*)] for
w(x, y) e Wf and it follows from Theorem 4 that there is a unitary
operator YeR(B) satisfying YA.2Y* = B. Thus (YVφ)A(YVφ)'1 = B,
and the argument is complete.

As was the case in Lemma 4.2, if it is known that the operators
A and B of Theorem 5 each generate an ^-normal ΫΓ*-algebra, it is
possible to get by with assumptions on fewer traces.

THEOREM 6. If the W*-algebras R(A) and R(B) of Theorem 5 are
n-normal, and φDa[w(A, A*)]*?-1 = Db[w(B, B*)] for w(x, y) e W(2n2),
then A and B are unίtarίly equivalent.

The proof is similar to that of Theorem 5 and is omitted.

5 Remarks •
(1) It is of interest to ask how near the upper bound in2 obtained

in § 2 is to the least upper bound on the number of traces required to
form a complete set of unitary invariants for n x n matrices. In this
connection, it is well known that for n = 2 the collection {σ(A)9 tf(A2),
σ(AA*)} is a complete set of invariants, and also the author has shown
[9] that for n = 3, a collection of nine traces suffices. Thus it would
appear that the estimate 4*a is not very good, but it is thought that
to obtain any substantial improvement, a completely new approach will
be necessary.

(2) (Added in proof) I wish to acknowledge my indebtedness to
Don Deckard for pointing out a slight simplification in my original proof
of Theorem 1 which enabled me to reduce the number of traces needed
from 16*a to 4π'\

(3) Whether the sets of invariants provided by Theorem 5 and 6
are satisfactory is, of course, open to question. We present the following
facts in support of their reasonableness:

(a) Two normal operators are unitarily equivalent if and only
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if their associated spectral measures are, and thus a solution of
this simpler problem requires the simultaneous unitary equivalence
of the corresponding elements in two infinite families of commuting
projections.

(b) Brown [2] has given a complete set of unitary invariants
for homogeneous binormal operators which requires the simultaneous
unitary equivalence of four commuting normal functions of the opera-
tors. Furthermore, he shows by example that one cannot do away
with the simultaneity of this unitary equivalence.
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INTEGRAL CLOSURE OF RINGS OF SOLUTIONS OF

LINEAR DIFFERENTIAL EQUATIONS

EDWARD C. POSNER

Let K be an ordiary differential field of characteristic zero with
field of constants C. Let R be a differential subring of K containing
C and having quotient field K. A differential subring V of an ex-
tension differential field M of K is called a fundamental differential
ring (over R) if V contains R and if, for each v in V, there exist
v2, , vn in V, n depending on v, such that v,vif , vn form a funda-
mental system of solutions of a homogeneous linear differential equation
with coefficients in K. Throughout this paper, {•••} denotes differ-
ential ring adjunction, < > differential field adjunction.

THEOREM 1. Let K, C, R, M, V be as above. Then V is a funda-
mental differential ring over R if and only if V ~ R{vai, aeA,l^ί
^ na}f A an indexing set, where for each a in A, vΛU vΛ3f , vΛna form
a fundamental system of solutions of a homogeneous linear differential
equation over K.

Proof. If V is a fundamental differential ring over R, we may let
A = V; the interest attaches to the converse. It amounts to proving
that every differential polynomial with coefficients in R in the vΛi is one
element of a fundamental system of solutions of a homogeneous linear
differential equation over K, all the elements of which system of
solutions belong to V. By use of induction, we may reduce the problem
to consideration of the four differential polynomials s', s +1, st, and rs,
r e K. We treat the polynomials s' and s + t; the polynomials st and rs
are treated in a like manner.

Let s{n) + αw_1s
(w~1) + + aos = 0, a, e K, 0 ^ i ^ n - 1. (There

is no loss of generality in supposing that the leading coefficient of this
differential equation is 1.) If α0 = 0, then sr already satisfies a homo-
geneous linear differential equation (of order n — 1) over K; if a0 φ 0,
we differentiate the expression

(-!.>•> + ( «s=i-W + .. . + ί^iλs' + s)
\ a01 \ a0 I \ a0 / /

to obtain a homogeneous linear differential equation of order n in s'

Received May 23, 1960, and in revised form February 8, 1962. Supported by NASA
Contract NASw-6 between the Jet Propulsion Laboratory of the California Institute of Tech-
nology and the National Aeronautics and Space Administration. I am indebted to the referee
for suggesting valuable improvements incorporated into this paper.
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with coefficients in K.
To prove the result for s + t, let s, t be in V with s + t Φ 0; let

s, s2, , ŝ  be w elements of V forming a fundamental system of
solutions of a homogeneous linear differential equation over K, and the
same for t, t2J , tm. Let sx = s, ίx = £. Let uλ — sx + tx and choose
w2, u3, --,ur from among s1? s2, , s%; ίu ίa, •••,*„ such that ^ , w2, ,
wr form a basis over the constants for the vector space spanned over
the constants by sl9 s29 , sn; tlf t2, , tm. Let W(zu z2, , 2P) denote
the wronskian of the p elements zl9 z2f -—,zp. Consider the linear
differential operator of order r, ^f(y) — W(y, uu , ur)IW(ul9 , ur).
(Since ul9 , ur are linearly independent over constants, their wronskian
is nonzero.) £f{ur) = 0, 1 ^ λ ^ r, and .Sf7 ^ 0 since the coefficient of
2/(r) is 1 = W(ulf •• ,ur)IW(u1, --,ur). We shall prove that all the
coefficients of ^f are in K; Sf(y) = 0 will then be the sought-after
differential equation.

Let σ be a differential isomorphism of K(sίy s2, , sn; tu t2, , έm>
over iί; then σ(sμ) = Σ?=icμΐs^ 1 ^ /̂  ^ ^ and σ(ίv) ΣΓ=i^vi*i, 1 ^ î  ^ m,
where the c N and ώvi are constants. This is true because su s2, •• ,s w

span over constants the vector space of solutions of the homogeneous
linear differential equation over K satisfied by sx; similarly for tu ,
tm. These two sets of equations taken together imply σ(uλ) — Σ ^ 1

e\kuk, 1 ^ λ ^ r, eλfc constants, for each σ(^λ) is in the vector space
spanned over the constants by slf , sn; tu , tm.

This implies that W{y, σuu , σur) = (det {eλk)) W(y, ulf , ur),
and similarly W(σuu , σ^r) = (det (βλJfe)) W(ul9 , wr). Therefore the
coefficients aP90 ^ p ^ r9 of Jίf(y) are invariant under <τ, for all
differential isomorphisms σ of -K"<slf , sw; t l f •• , ίw> over K. By
Theorem 2.6, pg. 16 of [1], ap is in K, as required. This proves the
theorem.

The above theorem has the following immediate consequence.

COROLLARY. If M is a universal differential field extension of
K ([2], Sec. 5, esp. pg. 771, Theorem), the set V of all elements of M
satisfying a homogeneous linear differential equation over K forms a
fundamental differential ring.

The following lemma isolates the key property of fundamental
differential rings that will be used to prove integral closure. An
element w in an extension differential field of K is called a wronskian
over K if w Φ 0 and w'lw belongs to K.

LEMMA. Let V be a fundamental differential ring over R. Then
any nonzero differential ideal I of V contains a wronskian over K.
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Proof. Let ux be a nonzero element of the differential ideal / of
V, and let u2, u3, , un be n — 1 elements of V such that ulf u2, ,
un form a fundamental system of solutions of a homogeneous linear
differential equation over K. Then W(ulf u2, , un) is a nonzero
element of I: it is nonzero since ul9u3, , un are linearly independent
over constants; it belongs to I because each term in the expansion of
the determinant defining W(uu , un) contains a derivative of uλ as
a factor. Since W(uly , un) is a wronskian over K, the proof is
complete.

DEFINITION. A differential ring is called differentiably simple if
it has no differential ideals other than zero and itself.

THEOREM 2. Let R be differentiably simple (in particular, R =
K), and for every wronskian w over K belonging to V, let there exist
a nonzero h in R such that h/w is in V. Then V too is differentiably
simple. (When R — K, the assumption is that V contains the inverse
of every wronskian over K which belongs to V.)

Proof. Let I be a nonzero differential ideal of V. To prove that
I = V, let |p be a wronskian over K in /; such exist by the lemma.
Now by hypothesis, there is a nonzero h in R with h\w in V. Thus
w h\w = h is in I, so that / Π R is not the zero ideal of R. Since
/ Π R is a differential ideal of R and R is differentiably simple, IΠ R
= R, so that 1 e IΠ R, and 1 e /. Thus / = V as required.

The next theorem is a sort of converse to the previous theorem.
(Here V need not be a fundamental differential ring over R; V can be
any differential subring of M containing R.)

THEOREM 3. Let V, but not necessarily R, be differentiably simple,
and let w be a wronskian over K belonging to V. Then there is a
nonzero h in R such that h\w is in V. (Thus if R — K, \\w is in V.)

Proof. Since K is the quotient field of R, there exist b, c in R,
with c Φ 0, such that wf — (bjc)w. Let I denote the set of elements
of V of the form vc~pwf p a nonnegative integer, v an element of V.
I can readily be shown to be an ideal of V; we shall prove that / is
closed under differentiation. If vc~pw e I, then (vc~pw)' = v'c~pw —
pvc-p-Vw + vc~pw' = (v'c)c-p-χw — (pvcf)c~p~λw + {bv)c~p~ιw = (v'c — pvcr

+ bv)c-p-χw is an element of V and hence of I. Thus I is a differential
ideal of V, and is nonzero since w is in 7. Since V is differentiably
simple, I = V, and lei. Thus 1 = vc~pw for some ve V, p ^ 0. Then,
if cp = h, we have hjw = veV, with h an element of R. This proves
the theorem.
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The following theorem with K = C generalizes a consequence of a
result of Ritt ([4], Sec. 1, pg. 681) to the effect that if C is the field
of complex numbers, the ring C [eλx, all complex λ] is integrally closed
in its quotient field. In fact, Theorem 4 also implies that C [x, eλx] is
is integrally closed in its quotient field.

THEOREM 4. Let K be a differential field of characteristic zero
with field of constants C. Let K be differential algebraic over C. Let
V be a fundamental differential ring over K which contains the in-
verse of every wronskian over K in it. Then V is integrally closed
in its quotient field (it is differentiably simple by Theorem 2).

Proof. Let u be an element of the quotient field M of V integral
over V: that is, there exist elements vt in V, 1 ^ i ^ n, such that
v>* + Σ ί ^ i ^ * " * ~ 0, and there exist vn+19 vn+2 in V with u = vn+1lvn+2.
Let Vi be a solution of a homogeneous linear differential equation £fi(y)
= 0,1 ^ i ^ n + 2, where Sfly) = Σ;io&ΰ1/(i)', 1 ^ i ^ n + 2, 0 ^ j ^
nc biH = 1,1 ^ i ^ n + 2. Furthermore let vik91 ^ k ^ ni9 be for each
i a fundamntal system of solutions of ^fi(y) = 0, with viλ = vim Let
F be a differential indeterminate, and, for each i, j , let Pa(Y) e C{Y}
be a differential polynomial of lowest order riά say satisfiqjl by bi3 over
C and such that the degree of Pi3 in Yr(r^) is as small as possible
among these differential polynomials of order rij9 Define the separant
Si,-, of P{j as the (partial) derivative of Pi3 with respect to Y{r^\ One
verifies, using the minimal property of the Pi3, that 5̂ (6̂ -) is nonzero.
Then b$*+1) is S^φij) multiplied by a differential polynomial over C in
&„• of order at most ri3 . This implies that C{bi3) = C ^ , 0 ^ p ^ r^ ],
all i, i . (This argument is well known.)

Now define V =_C{bi3,S^(vi3),vik, all 1 ^ i £n+ 2,0 S>j S>ni9

1 ^ fc g %}; observe F c V. Since jSf̂ < has leading coefficient 1 and
£fi(vik) = 0,1 ^ i ^ n + 2,1 ^ k ^ nίf and because of the above prop-
erty of each C{64y}f.onβ concludes that V = C[b{$, S^Φu)9 vlP, all
l ^ i ^ n + 2, 0^'j ^nif l ^ k ^ n . O ^ p ^ ri31_0 g. q ^ n{ - 1]. This

is what we were after: we have proved that V is finitely generated
as an ordinary ring over C. We can now apply Theorem 2 of [3] to
conclude that the integral closure 0 of V in its quotient field M is in
fact a differential subring of M. But u is in 0; if we can prove that
0 is contained in V, the proof will be completed.

So consider the ideal J of V consisting of all h in V such that
hO c V. By [5], pg. 267, Theorem 9, I is nonzero; a fortiori, the
ideal / of V consisting of those h in V with hO c V is also nonzero,
since it contains I. We assert that I is a differential ideal of V: let
ω e O; then hω e V, (hω)f = h'ω + hω' e V. Since O is closed under
differentiation by [3], pg. 1393, lemma, ω'eO, so that, since he I,
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hω' e V. Thus h'ω is in V if o) is in 0 and h is in /. In other words,
I is a differential ideal of V. Since V is differentiably simple by
Theorem 2, and I is nonzero, we conclude that I = V. Therefore l e i .
This implies that 0 = 1-0 is contained in V, as promised. This
completes the proof of Theorem 4.

(The above theorem could be strengthened by use of the following
unproved result: a differentiably simple ring of characteristic zero is
integrally closed in its quotient field. This result would generalize
Theorem 1 of [3].)

Theorem 4 has the following corollary.

COROLLARY. Let K be a differential field of characterististic zero
with field of constants C. Let K be differential algebraic over C.
Let M be a universal differential field extension of K. Let V be the
subset of M comprising those elements of M satisfying a homogeneous
linear differential equation over K. Then V is integrally closed in
its quotient field.

Proof. That V is a fundamental differential ring over K follows
from the corollary to Theorem 1. To prove V integrally closed in its
quotient field, we shall prove that V contains the inverse of every
wronskian over K in it, and then apply Theorem 4.

Now if w is a wronskian over K in V, then w Φ 0 and w' — kw,
keK. Then (1/w)' = (-l/w')-™' = {-Ifw^-kw = -fc (l/w). So \\w
satisfies a (first order) homogeneous linear differential equation over K;
by the definition of V, (1/w) belongs to V, as required for the applica-
tion of Theorem 4.

REMARK. Let V1—V and Vn+1, n^l, be the differential subring
of M consisting of those elements of M satisfying a homegeneous linear
differential equation with coefficients in Vn. Then Vn+1 contains Ln

(thus UΓ=iVn= Ko is a field), for if f(Φθ) is in Vn, then (1//)'=
—f'lf llf. Thus 1// satisfies a first order homogeneous linear differ-
ential equation with coefficients in Ln and so is in Vn+1. Since Vn+1 con-
tains Vnf and now the inverse of every nonzero element in Vn9 Vn+1 con-
tains Ln. But each Ln is differential algebraic over C, and M is still a
universal differential extension of Ln. The above corollary thus implies
that each Vn is integrally closed in its quotient field Ln, n ^ 1.
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ASYMPTOTICS III: STATIONARY PHASE FOR TWO
PARAMETERS WITH AN APPLICATION TO

BESSEL FUNCTIONS

D. SATHER

1. Introduction. The method of stationary phase has long been
a valuable analytical tool for investigating the asymptotic behavior as
p—* co of integrals of the form

Up) = (βQ(ί) exp (ipF(t))dt.
JO

As a natural generalization of the method of stationary phase involv-
ing one parameter we will investigate the asymptotic behavior of an
integral of the form

I(h, k) = [ V"1? (ί) exp [i(htλf(t) + ktvg(t))]dt
Jo

where h and k tend to infinity independently.
It will be shown that under certain restrictions between the real

numbers λ, v and 7 that the asymptotic form of I(h, k) is determined
by the behavior of the ratio kh~vlλ as h,k-+co and by the character
of / and g in a neighborhood of t = 0. For example, if 7 < v < λ,
7 > 0, /(0) > 0, flr(O) > 0 and kh~vlλ — co then

As an immediate application of our results we will determine the
asymptotic behavior of the Bessel function Jv(x) in Watson's transition
region, i.e. when v, x and | v — x \ are large and v\x is nearly equal to
1. In particular, we will obtain a simple rigorous proof of Nicholson's
formulas under the restriction that 0 < lim sup x~lβ \ v — x | < co.

2 General assumptions* Throughout the paper we shall use A^B
to mean lim AjB = 1, and all limits will mean the limit as h and k
tend to infinity. A similar remark applies to order symbols.

We shall consider I{h, k) under the following general assumptions:

Received January 3, 1962. This paper was written at the University of Minnesota in part
under Contract Nonr 710(16), sponsored by the Office of Naval Research, and in part under
a National Science Foundation Fellowship. The author wishes to express his appreciation
to Professor W. Fulks for suggesting the problem and for giving valuable aid in its
solution.
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( i ) k = o(h),
(ii) λ > 0, v > 0, and 7 > 0,
(iii) g(0) Φ 0 and g(0) Φ 0,
(ίv) /, </ and q are real valued functions such that f e C2, g e C2

and q e C on [0, α],
(v) λ/(t) + t/'(ί) > 0 on [0, a].
For convenience we shall consider here only the case /(0) > 0. If

/(0) < 0 and — / satisfies certain obvious conditions one obtains analog-
ous results with — i and —g replacing i and g, respectively.

3 Preliminary lemmas. We shall first establish the following
lemmas.

S b

ω{t)Ψ{t) exp (ipΦ(t))dt. Suppose d is a
0

nonnegatίve constant and p, a and μ are functions of h and ft such
that p—•» oo, μ—*0 and a is bounded as h, ft—* co.

( i ) Φ(t) = trφ(at), Ψ(t) = t^ψiμit + d)), the functions Φ and ψ
are real with ψ(0) Φ 0, r > 0, 0 < s < r, ^(αί) > 0 for 0 ^ t ^ c',
c' > 0 α^cί ^ G Cw+2 α^cί ψ e Cn for 0 ^ t ^ c' where m and n are the
least integers such that mr > 1 and n ^ m(r — s) + 1, respectively.

(ii) b is a constant such that 0 < b < cf and bMK/mor < 1 where
M — maximumo^^cf | φ\t) |, m0 = minimumo^^c/ ^(ί) and K ^ a when h, ft
are sufficiently large.

(iii) ω = u + iv is a complex valued function such that u(0) =1,
v(0) = 0 and u,v e Cn for 0 ̂ t ^ &. Then

iπs

r[pφ(O)]8lr

Proof. We may set v = 0 since it will be seen that the contribu-
tion from v to I(p) is negligible because v(0) — 0. Let x = t[φ(oct)]llr.
Since x'(t) > 0 for 0 ^ t ^ b and x e Cn+2 there exists a unique inverse
function, say t(x), such that t e Cn+2 for O ^ n ; ^ b[Φ(ab)]ιlr — α, ί(0) = 0
and i'(0) = αx — [^(0)]~1/r. Hence we may write t(x) = α ^ + α2#

2 + +
an-1x

n~1 + A(x)x% where A e C2 and αz is bounded as h, ft —> oo for
2 ^ Z ̂  n — 1. We may assume that c' is sufficiently small such that
if t(x) = α^( l + w{x)) then | ^(x) | < 1 for 0 ̂  x ^ α. This implies that

(tix))*-1 = αΓ^l + M + + δw-2#%-"2 + ̂ (x)^"1)^8-1

where z e C and δz is independent of x for 1 ̂  Z ̂  n — 2. If we now
expand ψ and ω about ί = 0 and substitute t(x), and let B(x) =ω(t(x))

+ d)) we have

B(x) ^M- = a Mμtyx-1 + cox
s + + cn^xs+n~* + D(x)xn+

dx
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where h and k are sufficiently large such that μd < b, D e C and ct is
bounded as h,Jc—*co and independent of x for 0 g I ^ w — 3. There-
fore,

S α w-3 Ca

Xs'1 exp (ίpOcte + J(p) + Σ M χS+ι e χ P (i£Wr)d#
0 1=0 JO

where J(p) = \" D(x)xn+s-2exp(ίpxr)dx. Since ( V t ^ 1 ^ exp (MΓ/3/2)Γ(/3)
Jo Jo

f or 0 < β < 1 and r ^n + s — 1 < r + 1 when r > 1 we have

f ( μ ) exp
/(p) =

exp (^)(7)

; 2 r / V r 7 + W +

Finally an integration by parts yields J(p) = 0(11p) since w—(r+1—s)^0
by the choice of n and D e C. This completes the proof of Lemma I
for the case r > 1. For 0 < r g 1 one makes the change of variable
t = xm and the desired result follows from the case r > 1.

LEMMA II. Suppose that in addition to the assumptions of Lemma
I that r is an even integer, s = 1, φ(at) > 0 for —c'^t^c', b satis-
fies the same conditions as in Lemma I except that M and m0 are now
determined for —cr tί t ^ c\ and ω, ψ and Φ are now in their respec-
tive differentiability classes given in Lemma I for —cτ^t^cf. Then

P 2f (0)Γ
ω(t)Ψ(t) exp (ipΦ(t))dt

J-&
r[pφ(θ)]1/r

The proof follows immediately from Lemma I.

We will introduce the following functions which will be used through-
out the remainder of the paper:

F(t) = tλf(t), G(t) - Pg(t) and Q(t) = P-Xq(t).

LEMMA III. Under the general assumptions on F, G and Q we
have for each arbitrarily small but fixed positive constant c < a that

L{h, k) - \aQ(t) exp [i(hF(t) + kG(t))]dt - O(l/Λ) .

Proof. Let H(t) = F(t) + (fc/fc)G(ί). Then H'(t) > 0 for c ^ ί g a
and /̂ , fc sufficiently large since λ/(£) + tfr{t) > 0 by hypothesis and
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k = o(h). Hence an integration by parts implies L(h, k) = 0(l/h).
This completes the necessary lemmas and the main results of the

paper will now be presented.

4* The asymptotic evaluation of I{h, fc) We shall first consider
the case where kh~vlλ —> 0 so that I(h, k) is almost completely determined
by the character of hf at the origin.

THEOREM I. Suppose that
1. / G Cn+2 and q e Cn for 0 ^ t ^ c, c > 0, where m and n are

the least integers such that mλ > 1 and n ^ m(λ — 7) 4-1, respectively,
2. if O^t^c then tvg(βt) = 60 + 6^ + + δΛ_2£

n-2 + B{t)tn~ι where
B e C and bt is bounded as β —* 0 for 0 ^ I ^ w — 2,

3. &λ = o(fev) α^d 7 < λ. Then

7 i
q(0)r(

k)

Proof of Theorem I. For c as given we have

I(h,k) = ( ' + [ " = Γ(h, k) + 0(1//*)
JO Jc

by Lemma III. Let t = a;fc-1/v, f(x)^f(xk'lh')f g(x) - g(xk'll")f Q(x) =
Q(xk~llv) and ί) = fefc~λ/v. For any 6 such that 0 < b < c we have

[Q(x) exp (ig(x)a;v)] exp (ipf(x)xλ)dx

= I"(fc, k) + J(fe, fe), respectively.

6

Set μ = fc~1/v, ψ — q, Φ .= /, λ = r, 7 = s, ω(#) — exp (i^g^)) and note
that /(0) > 0 implies that f(x) > 0 for 0 ^ a? ̂  c', c' > 0, so that 6 may
be chosen to satisfy the requirements of Lemma I. Hence by Lemma I

τn(h ,Λ . g(0)Γ(7/λ)

Therefore to complete the proof of Theorem I it is sufficient to
show that hy'λJ(h, k) - o(l). Let d = bk~liv, H{t) = F(ί) - + (k/h)G(t)
and P(t)=Xf(t) + tf'(t) + kp-λlh[vg(t) + g'(t)t]. Note that P(d)-> λ/(0) =
2B > 0 as h,k—> co since &λ = 0(fev) and P(t) is continuous for
0 < d ^ ί ^ a. We may assume that c is such that for h, k sufficient-
ly large, P(t) Ξ> B for the entire closed interval d g t g c. This im-
plies fl"f(ί) ^ J5ίλ-1 > 0 f o r 0 < c Z g ί ^ c and hence we can integrate
J(h, k) by parts as follows;
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J(h, k) = \CQ(t) exp (ihH(t))dt = <*°> ̂ (fH(c)) _ Q(d)
U %hH (c)'(c) ihH'(d)

JL_ fc Q'(ί) exp (ihH(t))dt 1 fc Q(t)H"(t) exp (ίhH(t))dt
ih U H'{t) ih it

+ 4̂. + J'(h, k), respectively.

Using the estimates H'(t) ^ Bt^1 and | H"{t) | ^ Ktλ~2 for some K we
see immediately that J = 0(fc(λ-γ)v/fc). Since fcλ = o(hv) this implies
hylλj(h, k) = o(l) which completes the proof of Theorem I.

We state the following corollary to Theorem I which may apply
when tvg{βt) does not have the required smoothness at the origin but
/, g and q are highly differentiate on [0, c], c > 0.

Corollary. Suppose that v + 7 > λ and
1. / e Cw+2, # e Cw and q e Cw for 0 g £ g c, c > 0 where m and w are the

least integers such that m(v+y—λ)^2, m λ > l and %^m(λ—
2. kλ = o{hv) and 7 < λ. Then

Proo/. Note that mv ^ m(λ — 7) + 2 > w by the definition of n
and hence xmv e Cw. The change of variable ί = xm and the use of
Theorem I completes the proof.

We shall next consider the case where the behavior of kg at the
origin becomes a significant factor in the asymptotic evaluation of
J(Λ, k).

THEOREM II. Suppose that
1. q e Cn and g e Cn+2 for 0 S t ^ c, c > 0, wAere m and w are ίfce

least integers such that mv > 1 and n i> m(v — 7) + 1, respectively,
2. if 0 ^t ^c then tλf(βt) =b0 + bxt + . . . + bn^tn'2 +

BeC and bt is bounded as β —> 0 for 0^1 ^n — 2,
3. 0(0) > 0, ftv = o(fcλ) and 7 < v < λ.

7

—jexp

Proof of Theorem II. The proof of Theorem II follows from the
proof of Theorem I with the roles of / and g, λ and v, h and k inter-
charged.



1428 D. SATHER

COROLLARY. Suppose that
1. feCn,qe Cn and g e Cn+2 for 0 ^ t ^ c, c > 0, where m and n are the

least integers such that m(λ + 7 — v) ^ 2, mv > 1 and n ^ m(v— 7) + l,
2. #(0) > 0, hv = o(fcλ) emc? 7 < v < λ.

J(Λ, fc)

When fcfe"v/λ —> co and #(0) < 0 the character of both F and G in
a neighborhood of £ = 0 becomes important since for h and k suffici-
ently large they determine uniquely in some (0, c0) a number τ such
that hFf(τ) + kGf(τ) — 0 and in terms of which the asymptotic form
of I(h, k) may be expressed.

THEOREM III. Suppose that g(0) < 0, v < λ, 7 < λ, hv = o(fcλ), / e Cc,
g eC6 and q e C2 for 0 ^ ί ^ c, c > 0, αwd hypothesis 1 αnc? 2 Theorem
II are satisfied when v Ξ> 7.
A. 7/ v < 27

• ^7Γ -

Ίl/2(λ—V)

7(Λ,fc) (λ - y)1 / 2

x exp [i(hF(τ) + ΛG (τ))] .

B. If v = 27 ί/̂ βw

J(fe, fc) ̂  9 ( 0 ) Γ V 2 ^ Θ X P W i { V^exp [i(fcF(τ) + fcG(r))1 _ f a_1 / 1l ^
( —vfcgf(0))1 / 2 I (λ — v)1'2 J

C. 7/ v > 27

I(h, k) ^

Proof of Theorem III. We may assume that c is such that G'{t) < 0
and f(t) > 0 for 0 < t ^ c. For 0 < t ^ c let D(ί) - F'(t)l-G'(t) with
7>(0) = 0. Then D'(ί) - ίλ+v-V(G'(ί))2[vλ/(ί)ί/(ί)(v-λ) + ^ ( ί ) ] for 0 < t ^ c
where E is continuous on [0, c]. Hence there exists cQ such that
0 < Co < c, D'{t) > 0 for 0 < t ^ c0, 7)(c0) > 0 and for h and k suffici-
ently large kjh < D(c0). This implies that there exists a unique
re (0, c0) such that 7)(τ) = fc/Λ which is equivalent to hF'(τ) + A:Gr(r) = 0.
Moreover from the definition of D we have

_ / —vkg(0)^llλ-*
λA/(0) ,
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which implies that τ λ " v — o{kjh) = o(l).
If we now let H(t) = F(t) + {kjh)G{t) and expand h(H(t) - H(τ))

about t = T we have using1 the integral form of the remainder

h(H(t) - H(τ)) = λj' (ί - y)F"{y)dy + fcj'(ί - y)G"{y)dy

= hR(t, τ) + fcS(ί, τ), respectively.

We may further assume that c0 is so small that /, / ', / " , g, gf and g"
are of constant sign for 0 g t ^ c0. If we apply the mean value theo-
rem for integrals and substitute t = τ(# + 1) we have for — 1 < x < 1
that

T(x, τ) = R(φ + 1), r) = 1 ^ [λ(λ - l)/(r0(»))αo(»)

where α0, «„ α2 6 C°°, aoφ) = «2(0) = a^O) = 1, P, e C4 and P1(0)=λ(λ-1)
/(0)+o(l). Similarly

W(αf T) = S(φ + 1), T) = |rVP2(a;)

where P2 e C4 and P2(0) = y(υ - 1)0(0) + o(l). Let d0 = (co/r) - 1, J'(A, k) =
exp(—ίhH(τ))I(h, k) and choose δ such that τ(6 + l)<c 0 and 0 < δ < 1.

I'(h, k) = J°° + θ(i-) = J"(Λ, fc) + θ ( l ) .

/"(Λ, fc) = r j ~ * + τ j % τj^Q(φ + 1)) exp [i(ΛΓ(aj, r) + kW(x, τ))]dx

= L(h, k) + Γ"(h, k) + J(h, k), respectively.

Let

f = q, ω(x) = (1 + xy-1 and Φ(x) = P^

Then 0(0) = λ(λ - v)/(0) + o(l) implies for h, k sufficiently large
that φ{x) > 0 for — c' ^ x ^ c',c' > 0. Hence b may be chosen small
enough that the conditions on b in Lemma II are satisfied. Therefore

V ' ' (λ -

The contribution of L(h, k) to I(h, k) may be determined by con-
sidering

L\h, k) = [{1~b)Q(t) exp (ihH(t))dt .
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We note that the uniqueness of τ in [ε, c0], ε > 0, implies that Hf{t) Φ 0
on ε ̂  ί ̂  τ(l - 6) for every ε > 0. In fact, there exists a number
K > 0 which is independent of ε and for which we have | H'(t) | ̂  K{klh)V"-λ

for ε ̂  t ̂  τ(l - 6).

( i ) For v < 7 the usual integration by parts together with the
above inequality for H'(t) yields that L'(h, k) =o(l/&). Hence L'(fe, fc) -
o(fev-2Vfcλ-2γ)1/2(λ~v) since &v = o(/bλ).

(ii) For v > 7 we rewrite Z/(fe, fc) as

L'(Λ, fc) = [a~b)Q(t) exp { - i[kt\-g{t)) + ht\- f(t))]}dt
Jo

and apply Theorem II with — g playing the role of / . Hence

7 Ϊ
g(0)r(

L'ih, k)
v[-kg(fl)γlv

(iii) Finally for v = 7 a closer examination of the proof of Lemma
I together with the change of variable t = xh~llκ implies for p' —
that L'(h, k) = /t^'λ0(l/ί?') = 0(l/fc).

The given relation fev = o(fcλ) and the calculation

Z,V-2γ \ l/2(λ-v) \ / / I, \v-2γ/2(λ-v)

fcλ/v

then imply that I'"(h, k) = o(k-ylv) if ̂ >27 and L'(h, k) = o((h"-2y/kλ-2ψ2{λ-v))
if 7 ̂  v < 27. When v = 27 we note that both L'(h, k) and Γ"(fc, fe)
are of the same order so that both terms contribute to I(h, k).

To complete the proof of Theorem III we need only show tha^
J(h, k) is negligible compared to I"'(h, k). For P(t) defined as in the
proof of Theorem I and d = τ(b + 1) we have

P(d) = λ/(0)[l - (b + iy~λ](l + o(l)) .

Then P(d) > 0 for h and k sufficiently large and hence proceeding
exactly as in the proof of Theorem I we obtain H\t) ^ Bt^1 > 0 for
0 < d ̂  t g c0 and 2B = λ/(0)[l - (1 + 6)v~λ]. We now write

J(h, k) = f C°Q(t) exp (ihH(t))dt
Jd

and integrate by parts as in Theorem I to obtain J(h, k) = 0((hv-ylkλ-ψλ-v).
Hence hv — o(kλ) implies that

l/2(λ-V) / / ZjV \l/2(λ-V)
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To obtain the value of exp [ί(hF(τ) + kG(τ))] in a more explicit form
we need to know more about the exact relation between h and k.
For example we shall state the following corollary under more stringent
assumptions.

COROLLARY. // in addition to the above assumptions in Theorem
III we have kλ+1 = o(hv+1) then

Proof of the Corollary to Theorem III. We will use the same
notation as in the proof of Theorem III. If we expand hH{τ) about
the origin and substitute for τ we have

exp( (ihH{τ)) = exp \i\hf(0)
I L \hf(0)

Hence if fcλfl = o(hv+1) the Corollary is established.
Finally, we shall consider the case where lim sup fcfc"~v/λ is bounded

away from both 0 and oo.

THEOREM IV. Suppose that 7 < λ, v < λ and 0 < lim sup p < 00
where p == kh~vlλ. Then

, k) ^ ?(0)Λ"^/λ( V - 1 exp [i(f(0)xλ + pg(0)xv)]dx
Jo

+ g(0)χv)]dx .
h \γ/λ—v r 0

-T-)
ft/ Jo
T
ft

Proof of Theorem IV. We will consider only values of c > 0 such
that (i) vg{t) + tg'(t) is of constant sign for 0 ^ t ^ c and (ii) for each
ε > 0 we have | q(t) - q(Q) \ < ε, \f(t) - /(0) | < ε and | g(t) - flf(O) | < ε

for 0 g ί ^ c. Set fί(ί) = F(ί) + (fc/λ) G(ί) and Γ(h, k) = ("as usual.
JO

Let m = minimumo^ί^αλ/(ί) + tf'(t) > 0, ω = lim sup 2> and M" =maxi-
mumo,(,β (1, \fu) I, I ? I, I ?f IJ 0{ι) 11 *>ff(*) + ^ ' ( 0 I) for ί = 0,1, 2. Consider
a number 6 > 1 chosen such that b>N = (4Mώ/m)1/u~v). If d = bh~llλ<c
then for 0 < ίί ^ ί ^ c we have for ^(0) < o

H'(t) > t^ (m -J°M) > ί^ (m mk
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since 2ω>kh~vlλ for h and k sufficiently large. Hence H'(t) ^ (l/2)mίλ"1 >0
for 0 < d ^ t ^ c. Let ί - xh~llλ, q(x) = q(xh~llλ), f(x) = f{xh~lίλ) and
g(x) = g(xh~llλ). Then

hylλΓ(h, k) = I α?- 1 ^) exp [i(/(ίφ λ

Jo
+ = i"(h, k) + J{h, k), respectively.

o h

We will first estimate J{h, k) in terms of the number b. Since
H\t) ^ (l/2)mέλ~1 > 0 for 0 < d ^ t ^ c we may integrate J(λ, fc) by
parts as follows:

J(h k) = /^/λ / Q(c) e χ P (ihHjc)) _ Q(d) exp (ihHjd))

, 1 fc Q(t)F"{t) exp (ihH(t))dt
ih )dih id H\t) ih )d [H'(t)

,, -fe fc Q(t)G"(t) exp (ihH(t))dt 1

λ/λ) + A + J'(λ, fc) + J"(h, k) + J"'(fc, k), respectively.

Hence | A \ ̂  2M/m6λ-y = j56γλ,

d m ( λ — 7)

A/If2

I J"(h, k) I < ——— = B"V-χ , and

'"ih, k) I <
m\2X - 7 - y)6 2 λ -^ v ~ m%2X - Ί - v)b

Define

h^I0(h, k) = ( V - W ) exp [i(f(0)xκ + pg(0)xv)]dx = Γ
Jo Jo

Then there exists a number K which is independent of h, k and ε and
for which | J(h, k)\ ^ Kb^x and |R(b) | ^ ϋΓ6^λ . Consider

- q(x)) exp [i(f(x)xλ + pg(x)x")]dx

( -'U - P(a )) exp [ΐ(
Jo

+ Rφ) + 0(^-λ/λ) - J(Λ, k)

= L(h, k) + L'(Λf Λ) + J2(6) + 0(/ιγ-λ/λ) - J(Λ, Jfc),
respectively,

where P(x) = exp {i[/(*) - /(0))a;λ + p(g(x) - g(0))x*]}. By the choice
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of c for each ε > 0 we have | L(h, k) | ^ Mebλ+\ \L'(h, k) \ < 2Mεbλ+y+
2Meωbv^y. If we take lim sup of both sides of (*) as h, k—> co we
obtain

0 ^ lim sup hylλ \ Io - I\ ^

which is true f or ε > 0 and b > N. Since lim sup hylλ \I0 — I\ is inde-
pendent of both ε and 6 we first let ε —> 0 and then b —-> co. Hence
hylλ(I0 - I) = o(l) which implies that I(h, k) ^ I0{h, k). To obtain the
alternate form of J0(Λ, k) we let x = h"k(kjk)llik-v)t.

5 Discussion of the suggested application* Consider for x > 0
Schlafli's generalization of BesseΓs integral:

os(vέ - x sin t)dt - s m V 7 Γ t°°exp [- vt - a;
JΓ Jo

= — J2 Γexp [i(vί - x sin ί)]dί + 0 (—
π Jυ \ v

Let F(ί) = ί - sin t and |G(ί) | = ί. We rewrite F(έ) as F(t) - (l/6)ί8

cos (r(t)) and let fe = x, k = \ v - α? |, g(ί) = 1 and /(£) = 1\6 cos (r(t)). It
follows that the condition 3/(ί) + ί/'(ί) > 0 for 0 ^ ί ^ TΓ is satisfied
since F\t) = 1 - cos ί > 0 for 0 < t ^ TΓ.

We note that our Theorem 1 and III yield the dominant terms of
some well known complete asymptotic expansions for Jv(x) with τ — Arc-
cos vjx in Theorem III1. For the case 0 < lim sup x~1131 v — x \ < co we
have by Theorem IV with p — x~irό \ (v — x)x~lβ \ that

Γ C O S (—
Jo \ 6

where the expression on the right is one of Airy's integrals2, whose
evaluation for p > 0 and p < 0 yields precisely Nicholson's formulas
when v is an integer3.

1 See W. Magnus and F. Oberhettinger, " Formeln und Satze fur die Speziellen Funk-
tionen der Mathematischen Physik," Springer-Verlag, Berlin, 1948, pp. 33-34. Our theorems
ϊ and III give results which are equivalent to the dominant terms of the expansions (63)
and (61), respectively.

2 See, for example, G. N. Watson, " Theory of Bessel Functions," Cambridge, 1944,
pp. 188-190.

3 See G. N. Watson, op. cit., pp. 248-249.
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BOUNDS OF ANALYTIC FUNCTIONS OF TWO COMPLEX

VARIABLES IN DOMAINS WITH THE

BERGMAN-SHILOV BOUNDARY

J. SLADKOWSKA

Introduction* From the function-theoretic point of view, the three-
dimensional boundary of a domain (in the space of two complex variables)
does not play a role analogous to the boundary curve in the theory of
one variable. In order to be able to use methods similar to those in one
variable, Bergman introduces analytic polyhedra, i.e., domains bounded
by finitely many segments of analytic hypersurfaces.1 On the three-
dimensional boundary of an analytic polyhedron lies a two-dimensional
manifold which, from the function-theoretic point of view, plays a role
similar to that of the boundary curve. In studying the value distribution
of holomorphic and meromorphic functions in an analytic polyhedron,
we can distinguish with Bergman two types of problems:

(1) derivation of bounds for a function in terms of values on the
(two-dimensional) distinguished boundary (the so-called Bergman-Silov
boundary),

(2) studies of the relations between the value distribution on the
complementary part of the boundary and in the interior of the domain.
While studies of problems of type (1) proceed along the lines similar to
those in the case of one variable (through repeated use of the Cauchy
and Poisson-Jensen formula, etc.), the investigation of problems of type
(2) has a different character. Bergman and Charzyήski considered the
case of functions f(zl9 z2) which belong to a normal family in every
lamina. For instance, they assume f(zlf z2) to be a Schlicht function in
every lamina. In this case it is possible to obtain bounds for |/ | in
terms of its maximum along a one-dimensional boundary manifold. In
the present paper, the investigation of problems of type (2) is continued,
and we assume that the function / in every lamina is mean multivalent
of order p (see § 1 for details). The order p = p(X) is a function of the
parameter λ2; p(k) is square-integrable.

Let ©2 be a segment of an analytic surface (§>l which intersects the
polyhedron. We obtain bounds for \f(zl9 z2)\, (zlf z2) e©2, in terms of

(a) the minimum and the maximum of | / | on the one-dimensional
manifold mentioned before,

(b) a quantity connected with p(λ),

Received May 16, 1962. This work was done under NSF Grant 10375.
1 An analytic hypersurface is a one-parameter family of analytic surfaces called a laminas.
2 The laminas of a segment of an analytic hypersurface depend on a parameter λ.
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(c) certain constants which depend only upon the domain and the
surface ©?.

O Definitions and notations* We shall consider an arbitrary-
bounded domain 23 lying in the space of two complex variables zlf z2, zk =
%k + Wk, k = 1, 2. We assume that the boundary b3 of this domain
consists of finitely many segments

(0.1) eί, fc = l, .--,*&,

of analytic hyper surf aces. Every such segment is given by a parametric
representation of the form

(0.2) zx = hlk(Zk, Xk) , z2 = h2k(Zk, Xk) ,

where hlk{Zk, Xk) and hak(Zk, Xk) are continuously diίferentiable functions
of Zk, Xk i n t h e s e t {(Zk9 Xk): \Zk\^l90^Xk^ 2π}. F o r a fixed k a n d
Xk the corresponding set of points (0.2) will be called a lamina of e| and
designated $>l(Xk). We assume that

(0.3) 3Ϊ(M) Π SS(λίO = 0 if λ [ ^ λ£',

and that for fixed Xk

(0.4) (^(Zί , \k), hlk(Zl, Xk)) Φ {hlk{Z'k
f, Xk)9 hu{ZΪ Xk)) .

The set g 2 of points (0.2) corresponding to the values \Zk\ = l, k = l, , n,
constitutes the so-called Bergman-Silov boundary surface of 33 on which
the maximum principle holds for functions regular in 33 (see [1]). We
shall also assume that for every \Zk

w\ < 1, λ[0), k = 1, « , n , and for
sufficiently small a > 0, the set of points (0.2) which correspond to the
values

\Zk-Zk

w\<σ, \Xk-Xl0)\<a

of the parameters contain all the points of 63 lying sufficiently near the
point

ΛP(O) L CZ(o) \(o)\ ~(o) z, (7(0

The set of points of four-dimensional space of the form

(0.5) «i

where 5) is a domain in the f-plane, and the expressions on the right-
hand sides of (0.5) are holomorphic functions of ζ in ® and continuous
in ®, is called an analytic surface.

The set of points which corresponds to the values ζed{Ί)f will be

= boundary of
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called the boundary of the surface.
The complement of 35 with respect to the whole space will be called ^Po.

l Bounds for the function f(z19 z2) on the analytic surface* Let
S be a domain described in § 0 and let ©o denote an analytic surface
of the form (0.5). We assume that ©o has common points with 25 and
its whole boundary lies in §β0. Further, let the intersection ©2 with SB
satisfy the following conditions:

1°. The intersection is a segment

© 2 - © 2 n 35 = {(zu z 2 ) : zλ = gi(ξ), z2 = g2(ξ), \ξ\ < 1} .

Here g^ξ), g2(£) are analytic functions which are regular in \ξ\ < 1 and
continuous in \ξ\ ^ 1.

2°. The boundary curve
We assume that

91 =

of ©2 is the intersection ©o with b3.

φ)9 z2 = g2(e*), 0 ^ φ ^ 2π}

can be divided into J parts

2): «i = gi(eiφ), z2 = g2{eiφ), φά^ψ^ φj+ι) ,

, J , φλ < φ2 < < φ J + 1 - <?i + 2TΓ ,

β) =

3 = 1,

so that gj eeϊ , fc i 2 for i 2 and only the points

belong to g2.

3°. Every point of Q) lies in a certain lamina, say

Bkfokj) = {(si, «2): «i = hlkj(Zkj, Xkj), z2 = h2kj(Zkj, Xkj)} .

Hence, by (0.3) and (0.4), functions Xkj — Xkjiψ) and Zkj = Zkj(φ),
ψ S <Pj+i, exist such that

9} = hlkj(Zkj(φ), Xkj(φ)), z2 = h2kj(Zkj(φ), Xkj(φ)),

We assume that Xkj{φ), Zkj(φ), j — 1, , J, are continuous and that
λ^(<p) are also monotone in the intervals ζcph ψj+ϊϊ Therefore, the
derivatives Xkj(φ) exist almost everywhere.

4°. Since Xkj(φ) are monotone in (<Pj9g>j+^f there exist inverse
ίunctions <Pj(Xkj) in the intervals (aj9 βj)=XjCj(((Pj, <Pi+i». The derivatives



1438 J. SLADKOWSKA

φ'&kj) also exist in ζajy βdy almost everywhere. We shall assume that

l9>}(λfc,)| ^ Q , 3 = 1, •••, J.

5°. The intersection ©o is such that the expressions 1— \Zkj(φ)\
go to zero no faster than some positive power of φ — φό or φ — φj+1 if
φ —• φi + or <p —> 9>i+1 —, respectively.

The hypotheses 1°, 2°, and 3° are the same as hypotheses 1, 2, and
3 in [4], p. 188. Instead of hypothesis 6, [4] we have the weaker
hypothesis 5°.4

We define now a family of functions in a domain 33. The func-
tion f(zl9 z2) defined in 23 will be called the function of the family

o, P), P > 0, if it satisfies the following conditions:

1°°. f(zu z2) is regular in the set S^ = 33\S2 continuous in 332 =
S3i u β1 n g2.

2°°. f(zlfz2)Φ0 in S32.

3°°. On almost every lamina Z$lfokj), <*i = λfĉ  ^ & , the function
/fe, z2) = f(hlkj(Zkj, Xkj), h2kj(Zkj, \kj)) considered as a function of one
variable Zkj in the circle \Zkj\ < 1 is a mean multivalent function of
the order Pj(Xkj) in the sense of Biernacki, see [5], [7].5

4°°. The functions P3 (\>kj) may grow to infinity, but in such a way
that they are square-integrable in <(ajf βdy.

5°°. i

DEFINITION. Every f(zu z2) which belongs to ^ ( © o , P) will be called
a mean multivalent function of the order P with respect to ®l.

We set

(1.1) I = min [1, min |/(fclfc/0, λ f c), ^ (0, λ f c)

(1.1') L = max [1, max | f(hlkj(0, \k.), Λ2fc (0, λ, )) | ] .
»j*H*βj 3 3 3 3

4 From hypothesis 6 it follows that l — \Zjcj(φ) I must go to zero no faster than l/log\ <p — <pj |.
5 A function f(z) regular in \z\ < 1 is called mean multivalent of order p in the sence

of Biernacki if

p(R) = -o— J n(Re'ίθ)dθ ^ p

for every positive number R. Here n(Reίθ) designate the number of Reίθ — points of f(z}
in \z\ < 1.

6 The integrals here are in the sense of Lebesgue.
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THEOREM 1. For every ε > 0 there exists r0, 0 < r0 < 1, so that at
•every point of G\ say at z\ = #i(ξΌ), %\ = #2(£O), the function f(zu z2) e
jβ^(®l, P) satisfies the inequality

for every r ^ r0.

Proof. First, we prove the last inequality in (*). Let ε > 0. By
hypothesis 5° there exist positive numbers a3- and bj such that

lim x~~ \»k5w)\ a n d i i m

are different from zero.7 Hence, there are positive numbers, say A3

and Bj, and a positive number rf such that

'(1.2) l-\Zkj(φ)\ >A,{φ-φsyj

and

<1.2') 1 - I Zkj(φ) I > Bj(φj+1 - φf>

for 0 < φ — ψj < rf or 0 < φj+1 — φ < rf, respectively. Further, since
the functions

ωlά(x) = a; log2 — ^ - + 2αi# log -—— + 2<ήx

and

o)2j(x) = a; log2 —^— + 26,-α; log —^— + 262α;
JDjX 3 lJjX *

go to zero for $-^0 + , there exists an rf9 > 0 such that

(1.3)

for 0 <x < v".

ωu(x) <

If we set

ττε2

8 Q J 2 P 2 '

now

57 = min

st\ (rγ\ •
KΛJ2j\iλj) •

(V, V") ,

8QJ*P2

then the inequalities (1.2), (1.2') and (1.3), respectively, are satisfied for
0 < φ - φά < η, 0 < 9>i+1 - φ <η and 0 < a? < η.

Let («;, «S) 6 ©2. Then z\ = ^(ζΌ), 2' = flra(?O). We consider now the
function f(zlf z2) in the segment ©2, i.e., /(&(£), ft(O) i n l?l ̂  L Con-
sidered as a function of f it is regular in | ξ\ < 1 and continuous in

7 a,j, bj may be infinite.
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I ξ\ <L 1. For ξ = eiφ it has the following bounds

for φ 6 (φi9 φj+1) , j" = 1, , J .

This is a consequence of the fact that f(zu z2) assumes at the point
(9i(eίφ), g*(eiφ)) the values of the multivalent functions f(hlkj(Zkj, Xkj),.
hkjiZjcj, λfcj)) (of order Pjfakj(φ))) at the point Zkj(φ), see [7], p. 116.
We divide the line Q) into two parts 8} and gj as follows

6 <9?if Ψi + η) U

It is easy to see that r0 exists such that for every point (gλ{eiφ)9 g2(eiφ))
the inequality | Zkj(φ) | ^ r0 holds (this follows from the continuity of
the functions Zk {<&)). Therefore, for these points, the inequalities (1.4)
give the following bounds

(1.5) I f(g1(ei% ft(β*)) I 2*

for every r ^ r0 and for φ e ̂ ^ + ^, < î+1 — rjy, j — 1, , J. On the
complementary part of g18 we have the inequalities

2p, (λfc to))

(1.6) ( A ^ ^ ^

for φ € (cp, , φy + η) f

and

for φ e (φj+1 - η, φj+1) .

This follows from (1.4), (1.2) and (1.2').
Applying now the Poisson formula to the function log !/(&(?), &(£))!,

which is harmonic in \ζ\ < 1 and continuous in \ζ\ ^ 1, and using the
inequalities (1.5), (1.6) and (1.6') we obtain

l - r

logL -—) j 3 re

8 Except for the points (gi(ei(f>j),
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Interchanging the variables of integration and applying the Schwarz
inequality to the last two integrals we get

log |/(zϊ, zl)I ^ 4 ^ - Γ+1log L dφ
2

— r

Aά{φ - q>}f
-dφ

+ 2 ^ ι r ^ + ,

Evaluating the integrals

and log2

using hypotheses 4°, 4°° and 5°°9 and inequalities (1.3), we have

log !/(*?, s!)| ̂  l±i|L[logL + Q 21og(l±X) Σ ^ " W ^ S

V2π 2V2VQJP

Therefore, finally

(1.7)

which is the first inequality of (*). We notice now that
9 From 5°° and the Schwarz inequality, we get

Σ ±

* J P •
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1
± g J^Z(®2

0, P) ίf f(%i 22)

Moreover,

maxίl, max

"V ' mir

f{hφ,
1

1
K

,h, λ

min (1, min | f(hlk(0, Xk ), h2k (0, Xk )
OjS^jίβj 3 3 3 3

Applying the inequality (1.7) to the function l/f(zlf z2), we obtain the
inequality

for r ^ ro; r0 is here the same as in (1.7), because it is independent of
the function. From (1.8) we have

2JPQ\ (l+\ζO\) I d-\ζO\)

The inequalities (1.7) and (1.9) give the conclusion of the theorem.

REMARK 1. Modifying the definition of the family ^ζ(©o, P), we
obtain somewhat simpler analogous results. Instead of hypothesis 4°°
we assume that the function Pj(Xkj(φ)) considered as a function of the
variable φ is square-integrable in the interval ζφjf <Pj+1>, and we replace
condition 5°° by the condition

The assumptions that Xk{φ) are continuous and monotonic and that
\φ\Xk)\ S Q are now superfluous. The family of functions which satisfy
these conditions will be called ^<§(®o, P). For functions of that family
we can prove

THEOREM Γ. For every ε > 0 there exists r0, 0 < r0 < 1, such that
for every point (s°, zl) e ®2 and for every f(zu z2) e ^ | ( © o , P) the inequality

10 If f{z) ^ 0 and is mean-multivalent of order p in the sense of Biernacki, then l//(z)

has the same property.
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holds for every r ^ r0.
The number r0 is chosen in the following way. Let ε > 0 be an arbitrary-
number. The number rf is chosen in the same way as in the proof
given above; η" is such that

and Vω2j{%) <

for 0 < x < ψ. We set rj = minO/, η") and for η we choose a number
r0 as previously.

REMARK 2. If the surface ©o intersects only one boundary segment,
say e|, and the line of intersection g1 lies e\rQ, where

eL0 = {(«i, s 2 ): *i = λifc(^*, λ A ) , \Zk\ ^ r 0} ,

then

for every r ^ r0 in the case that f(zu z2) e ^$β\, P) and

if f(zlt z2) e jr*(β>, p).
Indeed, for every φ for which {gι{eiφ), g%{eiφ)) e e|ro, the corresponding

point ^(9?) satisfies the inequality

(1.12) \

and therefore

for <p e <(0, 2τr>. Applying, as previously, the Poisson formula and using
the inequality (1.12), we obtain (1.11) in the first case and (1,11') in
the second.

REMARK 3. The result of Theorems 1 and V can be obtained without
requiring that S3 is an analytic polyhedron. It is sufficient to assume
that the part of the boundary which intersects by ®l is a sum of the
analytic hyper surf aces mentioned in § 0. Concerning the complementary
part of the boundary no special hypotheses are needed.

REMARK 4. The lower and upper bounds of | / | are expressed in
terms of the minimum and the maximum of | / | on the manifold
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U U
3=1 λ ^

(hlkj(0, \k), h2kj(0, Xkj)
^j.βjy 3 3 3 3

We note that analogous bounds can be obtained in term of the minimum
and the maximum of | / | on a manifold

U U (hlk(Zk(Xk), Xk), h2kj(Zkj(Xkj), Xk )) ,
3=1 λkjewj.βp 3 3 3 3 3 3 3 3

where | Zkj(Xkj) | < 1 and Zkj(Xkj) are continuously differentiate functions
of Xkj e ζaj9 βάy. These new bounds are obtained by changing the para-
metric representations of ej^, j = 1, •••,/, as follows:

1 ^ 1, where

Here

^{aό) for Xkj e <0, aό) ,

Zkj{Xk) for Xkj e <μh /9, > ,

kj(βd) for λ*. 6 (ft, 2ττ> .

REMARK 5. Let 0 < R < 1 and let

Then for every (zu z2) e ®2

B and for every f(zu z2) e _̂ (@<>, P) the inequality

holds; here r0 depends only upon S3, ©o and ε.
Let {©2}ro be the set of all segments ©2 of analytic surfaces ©2 for

which the conditions l°-5° are fulfilled and for which the set of the
corresponding numbers r 0 has an upper bound smaller than x0 < 1. We set

©* = u

For every (zl9 z2) e ©Λ the inequality

_ r \2JPQ\(1+R)l(l-R)

holds. Corresponding to {©2}ro we define a sequence of sets {2IJ by
induction as follows:
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2. 31*+! is the set of all points (zlf z2) e $&[(% U U 1.) which
belong to at least one of the analytic surfaces ®l lying in S3 and having
its boundary in 2tx U U 5Ϊ» The sum of all the sets SΪΛ will be denoted
by Slie and called the associated domain corresponding to the set {®2}ϊo

and to the number R. We can prove (similarly to [6], p. 33) that the
inequality (***) holds in the full set Sί̂  and consequently also in its
closure 2ίΛ.

2 The case of a bounded p{X). If we replace the hypotheses 4°°
and 5°° by the condition

(2.1) ps(\kj) ^ P for xhj e <μi9 &>, j = 1, . . . , J ,

the function / which satisfies the hypotheses l o o -3° o and the condition
(2.1) belongs to the family J%(®1, P) and even to the family ^jg(®2, P ) n

For these functions the inequality (*) follows from Theorem Γ. However,
repeating the proof of theorem 1' and using the condition (2,1) yields
a better result.

THEOREM 2. For every ε > 0 there exists r09 0 < r0 < 1, such that
for every point (zl, z°2) e (&2 and for every function / e j ^ | ( © o , P) the
inequalities

(2.2) ( ^ y v p ' ' ' - ™ ^ i/(2o ,o}| ̂

hold for every r ^ r0 iff satisfies condition (2.1).

The proof of Theorem 2 proceeds in a way analogous to that of
Theorem Γ. Let η = min ()/, η"), where rf has the same meaning as in
the proof on p. 8, and rff > 0 is chosen in such a way that for 0 < x < rff

a>lj(x) = x log -f- - aj x log x - a.-a? < ^
A

^ ε ,
t 2JP

ώ2j(x) = a? log - J - - δ, a? log a? - bs x < -£— ε

hold. We choose r0 in the same way as before. If we assume, instead
of hypothesis 5°, that 1 — \Zkj(φ)\ goes to zero no faster than (φ — <ps)

as
or (φj+1 — φyi, where 0 < aj9 bj < 1/2P, when φ-*φj+ or φ-+φj+1—,
respectively (hypothesis 5°'), we can obtain a better inequality.

THEOREM 3. For every sufficiently small ε > 0 there exists rQ9 0 <
r0 < 1 such that for every point (z\9 z°2) e ©2 and for every function

the inequalities

1 1 Indeed, the functions pfak•(&))> ^^^Ψjyψj+jc^y being bounded, are square-integrable.
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for every r ^ r0, if the function f satisfies the condition (2.1) and
if, instead of hypothesis 5°, hypothesis 5°' is fulfilled.

Proof. Let ε > 0 and ε < lβ. It follows from hypothesis 5°' that
there exist numbers As, Bj > 0 and rf > 0 such that

(2.4) 1 - I Zφ) I > Afa - φ3)
aj and 1 - I Zφ) \ > Bά{φj+1 - <pf*

for 0 < ψ — ψi < rf and 0 < φj+1 — ψ < rf, respectively. Let rf9 > 0 be
a number such that, for 0 < x < rf\

(2.5) &Jp) = L (4-) 2 P , χl~ZZ < 4 ε '

and

( O \2P /y,l-2P&ί ^

hold. We set η = min (η'9 ψ). There exists r0, 0 < r0 < 1, such that

(2.6) I Zφ) \^rQ for ψ e {φά + η, φj+1 - η), j = 1, . , J .

Applying the Cauchy formula to the function /(g^ξ), g2(ζ)) which is regular
in |f| < 1 and continuous in \ζ\ ^ 1, dividing the interval of integration
and using the inequalities (2.6), (1.4), (2.4), (2.5), and (2.5'), we obtain

(2.7) dφ

1 - |r,| /=!L27Γ lJ+, \ i - r

J _ L
2J

2τr 3
+jr ; + i

- i-ιr.
If we apply the inequality obtained above to the function llf(zu z2),
which also belongs to ^~fe(($l, P) and for which the condition (2.1) holds,
we have the inequality

12 Here I = min |/(fci*/0, λkj), hΆj{0, λkj))\, L - max |/(/n*/0, χkj), h2kj(0, λkj))\, I may be
larger than 1 or m smaller than 1.
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1 '^τΐ|§t(τ(τΪ7Γ + ε)
•*• bO x ^ \ JL ' / '

13

for r ^ r0. Hence,

1

(Z.8) ]jr(^i^2)

TΛT=~W +

From (2.7) and (2.8), (2.3) follows.

REMARK 1. The inequality on the right hand side of (2.3) is obtained
in the same way as an inequality obtained by Bergman (see [4] p. 190).
Bergman assumes that the function / omits the values 0 and 1 in every
lamina and, instead of the inequality (1.5), he applies an inequality,
which follows from the Schottky theorem.

The case when ©o intersects b3 along only one segment ej so that
the line of the intersection g1 lies in e|ro is of special interest. This case
is considered in remark 2 of § 1. We assume there that the function
/ belongs to the family ^~%(®l, P). However, if we assume in addition
that p(λk)^P (this means that f(hlk(Zk, \k), h2k(Zk, Xk)) is mean multivalent
of at most order P in every lamina 3>i(λfc) for which ^(λj.) n Q1 Φ 0) we
obtain a better result, using, instead of the Poisson formula, the minimum
and maximum principles (see [6], p. 31). This method yields the following
theorem:

THEOREM 4. // g1 c e|ro, fe ^^βl, P) and the additional condition
p(Xk) ^ P is satisfied on every lamina 3\(Xk) which is intersected by g1,
then for every (z°u z°2) e ©2 and for every r ^ r0 the inequality

=

holds. Here,

1= min|/(M0,λ t),M0,λ fc))|

L = max I/(MO, **), MO, λt))|

sk designates the set of \k for which %?k(Xk) Π g1 Φ 0.

REMARK 1. Bergman [2], [3], [4] obtained an upper bound for | / | on
an analytic surface, which intersects b3 along a line lying in ejro, under
the assumption that / is a univalent function in every lamina

18

max 0, λkj)) ^min I MikjΦ, hs), hnjφ, λkj)) I
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The bound is expressed in terms of the maximum of | / | and of the
maximum of the absolute value of the derivate of f(hlk(Zk, Xk), h2k(Zk, Xk))
with respect Zk on a one-dimensional manifold lying on b3.

3 Example* Let Φ be a univalent function in | ί | < 1, continuous
in | ί | ^ 1, \Φ(t)\< 1 for | ί | <, 1 and t Φ exp(ίλϊ), |Φ[exp(iλ?)]| = 1. In
addition we assume that

(3.1)

exists. Let

S3 z2):z

\Jo ( 1 -

i = Z, z2

- 10(eiλi

- Φ(t),

)\y

\z\ 1, | ί | < 1} .

S3 is a domain which is obtained from the bicylinder \Z\ < 1, \t\ < 1 by
pseudo-conformal mapping zλ=Z, z2=Φ(t). Its three-dimensional boundary
ϊ>3 consists of two segments, say e3 and ef>, of analytic hyper surf aces:

eϊ = {(Zi, z>): zx = Zyz2 = Φ(eiλή, \Z\ ̂  1, 0 ^ \ ^ 2ττ}

ê  = {(*!, 2a): ̂  = βίλ% z2 - <P(t), | t | g 1, 0 g λ2 g 2π} .

33 is obviously an analytic polyhedron. The Bergman-Silov boundary of
S3 is a two-dimensional manifold

δ 2 = {(Si, ««): ̂ i = eiλιi ^ = ^ ( β i λ 2 ) , 0 ^ λ x ^ 2ττ, 0 ^ λ2 ^ 2ττ} .

Let ©o be a plane

#! = roe
iθ°, 0 < r0 < 1 , ί0 real number .

The common part @2 = ®l Π S can be represented in the form

^ 2 = {fe, z2): zΎ - τ^\ z2 = Φ(£), \ζ\ ̂  1} .

The intersection g1 = ®l Π b3 has the parametric representation

91 = {fe, «,): «i = rQeiθ°, z2 - <P(β )̂, 0 ^ ^ ^ 2ττ} .

Here, φ = λα and (dφ)l(dX1) = 1. ©o intersects the segment e3. only, and
the line of the intersection g1 lies in cjro. We consider the function

(3.2) f(zu z%) = exp( 1 - l ) .

It is holomorphic in S3; its singularities lie on the line

& = {(zlf z2): zx = e*+, z2 = Φ[exp(iλ?)], 0 ^ ψ ^ 2ττ} ,

which belongs to %2. f(zly z2) is different from zero and holomorphic in
the segment ©2 (®2 has no common points with %2). Now, we shall prove
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that on every lamina

•(3.3) $l(\) - {(z19 z2): Zl = Z,z2 = Φ(e^), ] Z\ S 1} ,

except on lamina 3f?(̂ ?)> the function (3.2) is mean multivalent of order

in the sense of Biernacki.
Let α be an arbitrary complex number such that

<3.4) 1 α I g e~2 or | α | ^ 1 .

We want to estimate the number of α-points of function (2.3) in lamina
(3.3). This number is equal to the number of α-points of the function

(3.5)

in the circle \Z\ < 1. We must estimate the number of roots of the
equation

(3.6)

which lie in \Z\ < 1. From (3.6) we have

1y .
V 1 + log α

As \Z\ < 1,

1
1

V1 + log a

Hence, by hypothesis (3.4)

1 ^ 1 - \Φ(eίλή\

and

(3.7) | l + l o g α | ^ - X

From (3.7) it follows that

1
|argα | ^

( i -

If we set argα = Argα + 2kπ, fc = 0, ± 1 , ±2, , where |Argα| ^ π,
then
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1
2\k\π - |Argα| ^

(21 k I — l)π ^ -

and finally

1 +1 ' — 7Γ V ' 2 ( 1 — I <^(β^i) |;

The number n(a, λx) of α-points of (3.2) in lamina (3.3) cannot exceed
2\k\ + 1; this means that

J π \

for |α | ^ e"2 or |α | ^ 1. For numbers α such that β~2 <£ |α | ^ 1, the
corresponding number p(|α|, λx) is ^ 1. Hence,

= sup

S 2π

392(λ1)cZλ1 exists, as
0

a consequence of (3.1), and
1 Γ2JΓ

(3.8) A - p
2π Jo

9 9 1

7Γ8 7Γ2 2 π

2 3

2τr3Jo (1 -

The function (3.2) belongs to the family %%(®l, P), where S3 and ©ϋ are
the domains and the analytic surface described above. P equals a square
root of the right-hand side of (3.8). Here, Q — 1, J = 1,

I = min (1, min |/(0, Φ{e^)\) = 1

L = max (1, max |/(0, 0(eίλO|) = 1 .

Applying Theorem 1 and remark 1 of § 1, we can say: for every
(z°u z°2) = (roe

iθ°, Φ(ζ0)), \ξQ\ < 1, and for every r ^ r0 the inequalities

hold. The inequality on the right-hand side of (3.9) gives a better
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estimate for r0 and \ζo\ sufficiently near to 1, then the inequality

exp rg exp
Λi-r\ξo\γ

which we may obtain directly.
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HYPONORMAL OPERATORS

JOSEPH G. STAMPFLI

We say a bounded linear transformation T on a Hubert space H
is hyponormal if || Tx\\ ^ || T*x\\ for all xεH or equivalently if T * T -
TT* ^ 0. The notion of hyponormality was introduced in [6], through
under another name. In [8], Putnam studied properties of the opera-
tor Jθ = eiθT + e~ieT*, where T is hyponormal. Lemmas 1 through 6
which appear below occur as exercises in [1], and will be quoted wi-
thout proof. Henceforth the term operator will mean bounded linear
transformation.

LEMMA 1. Let T be a hyponormal operator on the Hilbert space

H, then\\(T - zl) x\\ ^ | | (Γ* - zl)x\\for xεH, i.e. T - zl is hyponormal.

LEMMA 2. Let T be hyponormal on H; then Tx = zx implies
T*x — zx.

LEMMA 3. Let T be hyponormal on H with Txx = zλxlf Tx2 = z2x2

and z±Φ z2. Then (xlf x2) = 0.

LEMMA 4. If T is hyponormal on H and MczH is invariant under
T; then T\M is hyponormal.

LEMMA 5. Let T be hyponormal on H, with McH invariant
under T and let T\M be normal. Then M reduces T.

LEMMA 6. Let T be hyponormal on Hand Let M — {xεH: Tx = zx}.
Then M reduces T and T\M is normal.

THEOREM 1. Let T be hyponormal on H, then \\T\\ = RSP(T) (the
spectral radius of T).

Proof. For xεH, \\x\\ — 1 we have

\\Tx\\2 = (Tx, Tx) = (T*Tx, x) S | |Γ*Γa?|| ^ \\T2x\\.

But then | | Γ | | 2 ^ | | T 2 | | ^ | | Γ | | 2 which implies | | Γ | | 2 = | | Γ 2 | | .

Now

|| Tnx\\2 = (Tnx, Tnx) = (T*Γ% T^x)

Received February 15, 1962.
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Thus \\Tn\\2^ HΓ -MHIΓ 'Ίlf and combining this with the equality
above, a simple induction argument yields \\Tn\\ = || T\\n for n = 1, 2,
Since RSP(T) = l i m ^ || Tn\\lln = l i π w || Γ|| the proof is finished.

COROLLARY. The only quasi-nilpotent hyponormal operator is the
transformation which is identically zero.

THEOREM 2. Let T be hyponormal on the Hilbert space H and let
z0 be an isolated point in the spectrum of T. Then zoεσp(T), the point
spectrum of T.

Proof. By Lemma 1 we may assume zQ — 0. Choose R > 0 suf-
ficiently small that 0 is the only point of σ(T) contained in or on the
circle \z\ = R. Define

E = ( (T-ziy'dz .

Then E is a nonzero projection which commutes with T (see [9]; pro-
jection as used here does not necessarily mean self-ad joint).

Thus EH is invariant under T and T\EH is hyponormal. Also

σ(T\EH) = σ(T)[]{\z\<R}

by, [9] p. 421, so σ(T\EH) = {0} .
From the last corollary we may conclude that T\EH is the zerα

transformation. In fact, it is now clear that EH = {xεH: Tx=0} which
implies EH actually reduces T.

THEOREM 3. If T is hyponormal on H with a single limit point in
its spectrum, then T is normal.

Proof. We may assume by Lemma 1 that the limit point is 0.
By Theorem 1 there exists z1eσ(T) such that | ^ | = || Γ | | .

Let Mx — {xeH: Tx = zλx}; Mx is not empty by theorem 2 and since
Λfi reduces T, we conclude from theorem 2 that T\mL does not have
zx in its spectrum. We note also by Lemma 6 that T\Mι is normal.
We continue in this way, selecting points in σ(T) ordered by absolute
value, setting M{ = {xεH: Tx = z&}.

Then ilίi© ••• ®Mn reduces T and Tr||JflΘ...ΘJfn is normal. We ob-
serve that T\lMlΘ...ΘMnll is hyponormal with its spectral radius equal
to its norm. Thus, since 0 is the only limit point of o{T), the normal
operators T\MlΘ...ΘMn must converge to T in the uniform operator topo-
logy. Hence, T is normal.

COROLLARY 1. If T is a hyponormal, completely continuous opera-
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tor, then T is normal.

COROLLARY 2. If T is hyponormal on H with only a finite num-
ber of limit points in its spectrum; then T is normal.

Proof. Let zx be a limit point of σ(T) and choose a smooth sim-
ple closed curve G which does not intersect o(T) and contains only the
limit point zΎ in its interior. Now define

Then T is invariant on EλH and

σ(T) n [Interior G] - σ(T\BlB)

so o{T\ElH) can have only one limit point.
We now apply theorem 3 to T\EXH to conclude that it is normal.

Then by Lemma 5, T is reduced by EJί. We may thus turn our at-
tention to T on {Ex H)± and continue this process until the limit points
are exhausted.

Theorem 1 and the first corollary to Theorem 3 have been proved
independently by both T. Ando and S. Berberian, and will soon appear.

The subsequent theorem generalizes the well-known result which
equates similarity equivalence of normal operators with unitary equi-
valence. However, there is a strong restriction on the spectrum of
the operator.

THEOREM 4. If T is a hyponormal scalar operator and σ(T) has
zero area, then T is normal.

Proof. Since T is scalar, (see [2]), T = QAQ-1 where Q is positive

.self-adjoint and A is normal. Let A = \zdE(z). For ε > 0, there ex-

ists a set of half-open, half-closed disjoint squares {#*}**=! with each Rζ

of dimension \\n x 1/n such that k/n2 = area {Uk

%^R^ < ε where

σ(T) c (Uk

i=1Ri). Now for x.eEiR,)!!] s< the center of 22*

we have

Q ηi/2 i

\z-ziγd\\E{z)xi\\Λ ^ i .
Rι Λ n

Thus

j | (A - zJ)Q% | | = | | A* - zJ)Q*x{ | | = | | Q(T* - z{I)Qa>t II

^ | | ( Γ * - z^Qx, | | | | Q | | ^ | | (T - zJ)Qxi \\ \\Q \\
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= \\Q(A-ziI)xi\\.\\Q\\£\\Q\\*.±- and
n

| | ( ^ ) ^ | | S | | Q | |
n

Combining these we have

|| (AQ2 - Q*A)x{ || ^ 2 || Q ||2 1 for xfi
n

Now E{Rτ)H is orthogonal to E{R3)H for i Φj so for yεH, \\y\\ = 1
we have

2/ = Σιi=iaiχi where Σ J = 1 I α< |2 = 1 .

Thus

|| (AQ" - Q2A)?/1| = || ΣI=

«*
£ { Σ ί u I ^ I2 Σ ϊ = i ( 2 I I Q I I 2 ^ ) } 1 / 2 - 211Q ||'

implying that AQ2 = Q2A.
Noting that Q is positive we may conclude from the spectral theo-

rem that AQ — QA and thus T = A which completes the proof.
The author has been unable to decide whether the condition on

the area of the spectrum in the last theorem may be omitted. He
would conjecture that it cannot. There is a generalization of the theo-
rem quoted above which states that if A and B are normal operators,
Q an arbitrary operator such that AQ — QB; then A*Q = QJ3*. This
statement does not hold if A is normal and B semi-normal. To see
this, let H be a Hubert space with the basis {&•}£=-«, and define Aφ{ =
Φi+U all i; Bφ{ = Φi+1, i^O Bφi = 0, i < 0; and Q = B. Then it is-
clear that AQ = Q£ but A*Q^0 = ^0 =£ QJ5*^0 = 0.

Before going on to the next theorem we must recall some results
from the literature. Let B be a normal operator of finite spectral
multiplicity n, and let T be an operator commuting with B. Then
there is a finite measure v(-) defined on Borel sets of the complex plane
and vanishing outside of σ(B) and n Borel sets el9 , en with e1 the
plane and e{ c ei+1, such that if we define v{(e) = v(e n β<) for such Borel
set e; set H — Σ?=i^2(^ί) and define

for f(a)eH; then B and JB are unitarily equivalent. Also there exist
measurable functions α, y(s)i, j = 1, , ^ such that if we define
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Tf(a) =

a1>n(s) Ms)

for f(s)εH; then T and T are unitarily equivalent. The foregoing may
be found in [3] Chapter X theorem 5.10, in [4], [7] and in its earliest
form is due to von Neumann.

Using results of Gonshor (see [5] Theorem 3 and remarks in section
6) we may define H in such a way that

^n(s) α12(s) aln{i

0 a22(s) a2n{i

: ° :
0 ann(i

or roughly speaking f has super diagonal form. In what follows we
will identify f with T and B with B.

THEOREM 5. Let T be a hyponormal operator with Tn — B where
n is a positive integer and B is a normal operator; then T is normal.

Proof. For xoeH, let M = clmlB'B*^^] (the closed linear mani-
fold spanned by the iterates) for k — 0,1, , n — 1; i,j — 0, 1, 2, .

Then M reduces B and B has spectral multiplicity n on M (we will
assume x0, Tx0, •••, Tn~λx^ are linearly independent). Also M is invari-
ant under T since TrBΐi?*:'Trfc$o = BiB*3'T*+1x0 and invariance holds under
closure. The Fuglede theorem is used in obtaining the last equality.

Let us now consider T | M which we may write as

Then for the vector fx = (xσ{B)1 0, , 0), where xσ{B) is the character-
istic function of o{B),

we have

and

σ-(B)
a11{s)\*dvι{s)
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But || ΓI if/ill ^ ||(ZΊjf)*/ill since the restriction of a hyponormal opera-
tor to an invariant subspace is hyponormal. Thus αiy(s) = 0 a.e. (vs)
for j = 2, 3, , n. Continuing this argument, we find that a^s) = 0
a.e. (Vj) for iφj. We conclude from this that T\M is normal, or
II T\My || - || (T\M)*y || for ysM. Therefore,

II rn || — NT7! T II — 11 (TI Ί*r II < II T * r II
II * * Ό I I — II J- l i f ^ o l l — W K 1 \M) Λ O II = II •* * Ό | |

But this with hyponormality implies that || Txo\\ = || Γ*#o|| . Since x0

is arbitrary Γ must be normal.

COROLLARY. If T is kyponormal and commutes with a normal
operator having finite spectral multiplicity; then T is normal.

EXAMPLE. Let {φ%)i = — oo be a basis for the Hubert space H
and define Tψi — a^i+1. Then if | a{ \ ̂  | ai+1 \, all i, T is hyponormal.
T will be normal if and only if j α, | = | α ί + 1 j for all ΐ. If | ak j = | αΛ+11
for some fixed k and | aό \ Φ \ ak | for some j > k then Γ will not be
subnormal. Another example of hyponormal operator which is not sub-
normal is given in [6],
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SOME EXTREMAL PROPERTIES OF LINEAR COM-
BINATIONS OF KERNELS ON RIEMANN

SURFACES

GEORGES G. WEILL

l Introduction^ Let Γa be the Hubert space of analytic differenti-
als of finite Dirichlet norm on an open Riemann surface. We shall
consider analytic singularities which are finite linear combinations of
elements of the type

Let

sdz = Σβjώ , Σ#* = 0 .

To a given singularity scϊz there correspond Bergman kernels

kβ(z, ξ)dz and hs(z, ζ)dz

for the space Γa.

We now consider various subspaces raa Γa, and show that linear
combinations of the kernels for ΓΛ of the form

h8dz + Xksdz ,

where λ is complex, extremalize an explicity given functional.
We proved in our thesis [2] that, for the space Γae of analytic ex-

act differentials on a planar Riemann surface,

ksdz = -IJLfo - po)dz

hsdz = _ JLφj, + Po)dz

where px and p0 are Sario's principal functions with the corresponding
singularities [1, Chapter III].

Here we show that the right hand sides still enjoy the same pro-
perties on an arbitrary Riemann surface, for the subspace Γp Π Γase, where

ΓΌ,se =\adz:adze Γa, 1 adz — 0, 7 any dividing cycleL and Γp is gene-
rated over the complex numbers by {Γp} = {adz: adz = dpjdz, p a sin-
gle-valued harmonic function on W, with finite Dirichlet integral.}

Received August 21, 1961.
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2. Inner products and singular differentials* We shall be con-
cerned here with the Hubert space Γa of analytic differentials on a given
Riemann surface W. The inner product of two analytic differentials
adz = adx + βdy and aλdz = axdx + βλdy is defined as:

{adz, aλdz)w = — i\aaxdzdz = \(αδi + /3 βjdxdy .

If we now consider differentials analytic on W, except for a singularity
of the type dz\(z — ξ)m+2, m ^ 0, we delete a disk § of radius r about
3 = ξ and define for differentials bdz and ί̂ cfe analytic except for a
singularity of the above type, the inner product

{bdz, bλdz)w — lim (bdz, b1dz)w-8 ,
r->0

which amounts to considering the Cauchy principal value for the inner
product. In the case of a singularity dzj(z — ζ±) — dz\(z — f2), we re-
place δ by disks about z = ξλ and z =f2, plus a narrow strip along a
cut joining z = ξ± to z — ζ2 and define in the same fashion the inner
product by a Cauchy limit.

The previous remarks may be extended to finite linear combinations
of singularities of the type

feΌ (z - ξ^ (z - ς,)

provided ΣfU dj = 0.

3* Extremal properties of the kernels* Let sdz = Σ£=i sjdz be a
singularity differential and ksdz,ksdz be the Bergman kernels corre-
spond to that singularity. We shall consider linear combinations

(hs + \ks)dz

which are normalized in the sense that they all exhibit the same ̂ sin-
gularity.

We recall that for l(z)dz e Γa, the Bergman kernels corresponding
to a singularity sdz, enjoy the following properties:

for sdz = — , m ^ 0 (Idz, k8dz) —% , m ^ 0 (Idz, k8dz)
(z - ξ)m+2 (m + 1)!

(Idz, hsdz) = 0

for sdz = — ^ ^— (Idz, ksdz) = - (Idz, hsdz)]^[2π [ Idz
Z — ξi Z — ξi J cZ — ξi Z —

where c is a path from ξΊ to fa.
For sdz = αsxcί0 + δs2cte, (α, 6 constant),
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k8dz — aksldz + bks2dz

hsdz — ahsldz + bhs2dz .

Such a linear property is a consequence of the uniqueness of the ker-
nels. Notice that in particular: (ldzf ksdz) — a(ldzf ksldz) + b(ldz9 ks2dz).
Let now asdz be a differential, analytic except for the singularity sdz.
We form

II a.dz - (hs + Xks)dz | | 2 - || asdz\\2 ~ II Kdz ||2 + | λ | 21| ksdz\\2

+ 2Re((hs - as)dz, hsdz) + 2ReX((hs - as)dz, ksdz) .

Assume now that in a disk about z —ζj

hsdz = sjdz + Σ H(z - ζjfdz

asdz — Sjdz + 2 a{(z — ξjYdz .

We then compute:

2Re((hs - αs)ώ^, hsdz) = - 4ττ

- αs)d^, ksdz) = 4π Σ ^βλΓf; (&* - ^i)c i + jy f ( Λ _α s)
i=i Lfc=i k+1 Jcj

using the linear property of the kernels, with respect to the coefficients
of the singularity. We now write (1) in the following form:

II a.dz ||2 - Aπ Σ Re \£ ψψL + (x _ ΐβS (as - 8)dz]= \\ hsdz ||2

- I λ |21| Ίe.dz ||2 - 4τr Σ i2e Σ - p * f + (λ - l)d' (Λ. - s ) ^
j=i L*=o /C + 1 J J

+ \\asdz - {hs + \ks)dz\\" .

We can now study the value of the bracket in the functional, and
prove that

Γ ^ g f + λd't (Λ. - s)^Ί =0 .
A + 1 J

We shall summarize our results in a theorem:

THEOREM III A. Let sdz = ΣjU S J ^ where

S j d z "

6e α^ analytic singularity with Σιf=i dj = 0.
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Let ksdz, hsdz be the Bergman kernels corresponding to sdz, and
let λ be a complex parameter.

Then the linear combination (hs + Xks)dz minimizes the functional:

II asdz ||2 - 4ττ Σ Be\± φ ^ i + (λ - l)d'[ (α. -
i=i L*=o k + 1 J

over the class of differentials aadz, analytic except for the singularity
sdz. The minimum is

II hsdz ||2 + 4ττ Σ Λedy ( (Λ. - s)dz + | λ | 2 1 | fcfcfe II2 ,

and the deviation from the minimum is

\\α8dz - (ha + Xks)dz\\2 .

Proof. hsdz + XeίΘksdz for 0 real is a competing function; therefore:

|| hsdz ||2 - I λ | 2 1 | ksdz ||2 - 4ττ Σ

^ 1 1 > , t f e II 2 - I λ |2 II k s d z II 2 - 4 τ τ Σ ΓΣ y
ί=ib=i k + 1

+ (λe~ίθ - l )d ' ( (Λ. - s)dz\ .
JC3 J

It follows that

Σ Re \± ^ L + xdλ (hs - s)dz]
3=1 Lk=0 k + 1 Jcj J

^ L [ (λ. - β)

Jcj

^ Σ \ Σ ^ +
i=i I Lk=o k + 1

which is only possible if the bracket is real. It cannot be real fer all
λ except if it is equal to zero.

4* Particular cases*apρlications» Assume now that adz = {d/pjdz)dz,
where p is a single-valued harmonic function on W, except for a sin-
gularity Re S(z) = Σί=i -Be Si(s), with

a

where dj is real. The singularity of (dp/dz)dz is then sdz = Σf=i Sj cẐ ,
with

_ κ.
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Moreover if p = Re {Sό{z) + Σ?=o A{(z - ξ3)*) near z = ζs and

22-dz = 8jdz + Σίaί(z-ξs)*9

OZ k=Q

it follows that Aj

k+1=aίlk+l for k ̂  0. We notice furthermore that

|| adz ||2 = 2(B(p) - A(p)), where 5(2)) = ί pdp* (β the ideal boundary of

S Jβ
(αs — s)dz . The functional to be minimized

b
S

becomes:

>\ (as - s)dz\\ .2πΣiRe\± ] \ +
j=i Lfe=o /C + 1

We notice that the differentials adz = (dpldz)dz with p single valued
harmonic function generate a subspace Γp c Γ α . If kspdz and λ,pc&? are
the Bergman kernels for Γp, they correspond to two functions Ks

harmonic and Hs harmonic except for the singularity ReS(z) and such
that:

kspdz = ̂ ^ dz
dz

hspdz = - ds .

We can write the value of the minimum as:

2B(HSP) + |λ | J | | fc.pcfe| | 2.

We now shall prove the following theorem.

THEOREM IV A: Let (dpjdz)dz and (dpjdz)dz be the analytic dif-
ferentials with singularity sdzf corresponding to the principal functions
p0 and pλ. Then

x - po)dz = kspdz

id/dz(p1 + po)dz = hspdz ,

where hspdz and kspdz are the orthogonal and reproducing kernels for
Γp Π Γase, corresponding to the singularity sdz.

Proof. First, we know from the definition of p0 and p19 that
(dpjdz)dz and {dpljdz)dz are elements of Γp (Ί Γase. Second, from (1.
Chapter III. Theorem 9E where only the notation is different), (dp0/Θz)dz
minimizes the same functional as hspdz — kspdz (which corresponds to
λ = — 1), and (dplldz)dz minimizes the same functional as (hspdz + ksp)dz>
(which corresponds to λ = 1). The theorem follows.

We shall consider here a family of functions P harmonic, except
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for a singularity of the type ReS(z); the periods of P vanish along all
dividing cycles. It follows that the differentials (dP/dz)dz are elements
of ΓP n Γase, except for a singularity s(z)dz.

We shall call Hs the function corresponding to hspdz, and Ks the
one corresponding to kspdz. The following results are consequences of
the main Theorem.

THEOREM IV B: Among all functions P with singularity lftz — ζ),
Hs + \KS minimizes the functional B(P) — 2πRe\A1.

THEOREM IV C: Among all functions P with singularity log | (2—ξΊ)/
(z - fa) I, Hs + \KS minimizes B(P) - 2πRe\{A\ - Al).

THEOREM IV D: Among all functions P with singularity ReS(z)f

H8 minimizes the functional B(P).

We shall now consider exact differentials, analytic except for some
singularity s(z)dz = Σf=i Sj(z)dz, which may be written ff(z)dz = df(z)f
where / is a function analytic except for a singularity S(z) = Σί=i Sj(z)
such that S'{z)dz = s(z)dz; then f=Sj(z) + Σ Γ = o ^ — ζ3)

h near z = ξim

We proved [II] the existence of a non-zero reproducing kernel if W& 0ΛD.
We shall now find a sufficient condition for the existence of an ortho-
gonal kernel. We recall that in the case of a planar Riemann surface

rh = rhe + n. n Γt.

We shall consider here Riemann surfaces on which

We call such surfaces type WE. On a surface of type WE

rh0 n rt - [rhe + rteY = o.

We then get the following lemma:

LEMMA IV E: On a surface of type WE, given a singularity
s{z)dz = dz\(z — ζ)m+2

f m ^ 0, there exists a differential analytic exact,
except for the corresponding singularity.

Proof. Let Θ be constructed as in [1, Chapter V. 18.19]. The
differential Θ — iΘ* is square integrable and hence has the decomposi-
tion?.

Θ - i§* = a)h + ωe0 + ft>* = ωhe + ωt + ωe0 + ωf0 .

It follows that

η = Θ - ωe0 - ωhe = i0* + ω?β + ω*
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is harmonic exact except for the singularity and so is η*. We may
write v) = Φ + ψ where ψ is analytic and Φ is analytic except for the
singularity. It follows that Φ is the differential mentioned in the lemma;
Φ = dFm where Fm is an analytic function except for the singularity

and from [2] there exists an orthogonal kernel dHm for Γae on WE.

Note. An analogous proof works for differentials with s(z)dz~
dzftz — ξΊ) — dz\(z — f2); we have only to discard the periods about
z = ξ1 and z = ζ2.

From the existence of orthogonal kernels for Γae we can state the

following theorems; here B{f) = J 1 fdf; H8 and iΓs are analytic func-

tions whose differentials are respectively the orthogonal and reproduc-

ing kernels for Γae, corresponding to the singularity.

THEOREM IV F: Among all functions f analytic except for a
simple pale at z = ζ with expansion f = cx\{z — ξ) + aλ{z — £ ) + . . . in
a neighborhood of z = ξ, Hs + \KS minimizes the functional B(f) +
2πReXc1a1.

THEOREM IV G: Among all functions f(z) analytic except for the
singularity

ύ W - h h (z - ζ^i- k -l) *

the function Hs minimizes B(f).
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Errata to the paper

"A remark on the Nijenhuis tensor'7

BY E. T. KOBAYASHI

LEMMA 1.3 (page 965 in proof) is not correct as it is stated, the
hypothesis is too weak. The hypothesis should be stated as: "If
#i, >θg are completely integrable distributions of dimensions r19 ,
rg on Mf such that the sums 0t + Θ3 : x —• θ^x) + θά{x) are also com-
pletely integrable (i, j = 1, , g; i Φ j), and such that

θi(x) + 02(x) + . + θg(x) = Tx (direct sum)

for each x e M" where the underline portion is what should be added
to the old version.
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