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ON FUNDAMENTAL PROPERTIES OF A
BANACH SPACE WITH A CONE

T. ANDO

1. Introduction. Normed vector lattices have been investigated
from various angles (see [1] Chap. 15 and [7] Chap. 6). On the contrary,
it seems that there remain several problems unsolved in the theory of
general normed spaces with a cone since the pioneer works of Riesz and
Krein, though recently Namioka [8], Schaefer [9] and others made many
efforts in analysing and extending the results of Riesz and Krein. In
this paper we shall discuss two among them. Let E be a Banach space
with a closed cone K (for the terminologies see § 2);

(A) What condition on the dual E* is necessary and sufficient for
that E= K — K?

(B) What condition on the dual is necessary and sufficient for the
interpolation property of E?

Grosberg and Krein [3] dealt with (A) in a reversed form;

(A’) What condition on E is necessary and sufficient for that E*=
K* — K* where K* is the dual cone?

Schaefer ([9], Th. 1.6) obtained a complete answer to (A’) within a
scope of locally convex spaces. A result of Riesz gives a half of an
answer to (B), while Krein [6] obtained a complete answer only under
the assumption that the cone has an inner point.

The purpose of this paper is to give answers to both (A) and (B)
in natural settings. Our starting assumptions consist of the complete-
ness of K and of the closedness of the cone K.

After several comments on order properties in §2, Lemmas in §3
present algebraic forms to both the property named normality by Krein
[5] and that named (BZ)-property by Schaefer [9], supported by Banach’s
open mapping theorem. Then Theorem 1 will produce an answer to (A)
via these Lemmas. §4 is devoted to an answer to (B) under the con-
dition that E is an ordered Banach space. It should be remarked that
our main theorems are also valid for (F') spaces, that is, metrisable
complete locally convex spaces.

2. Definitions and consequences. Let E® be a real normed space and
let K be a cone, that is, a subset of E with the following properties:

(1) K+ KCK,

(2) aKcK for all @ =0, and

Received February 8, 1962.
1 Elements of E are denoted by , ¥, @, ---, ¢, and those of the dual E* by f, g,h.
Scalars are denoted by Greek letters. ¢ is reserved for the zero element.
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1164 T. ANDO

(8) KN(—K)=1{6}. Then the natural partial ordering = is as-
sociated with the cone K, i.e. ¢ = bincase a —be K. A subset of the
form {x;a < x < b} will be called an interval. The dual E* of E is
also partially ordered by the dual cone K* d_i_f{ feE*; f(x) 2 0 for all
x e K}, though K* does not always satisfy the condition (3).?

The cone K is said to generate E or to be a generalting cone in
case every element in E can be written as difference of two in K, that
is, ¥ = K— K. F is said to have the interpolation property with res-
pect to = in case a,b =c,d implies the existence of % such that
a,b=x=c¢,d. This property is equivalent to the following one named
the decomposition property: whenever a, b, xc K and a + b = x, there
exist ¢,de K suchthat x = ¢ +d,a = cand b = d. When for any pair
a,be E there exists the supremum a Vv b, E is called a wvector lattice.
A vector lattice has the interpolation property and its cone is generating.

There are several notions connected with the so-called order topology.
FE is said to be (0)-complete in case any upward directed subset with an
upper bound (with respect to =) has the supremum. When the directed
subset in question is restricted to that consisting of countable members,
E is said to be o-(0)-complete. As a less restrictive completeness, E is
said to be quasi-(0)-complete in case any sequence {a;}, such that 6 <
a0, < - =a and a;; — a; = ¢;a with ¢;]0, has the supremum. In
many cases (0)-completeness can be derived from o-(o)-completeness. It
is clear that if E with the generating cone is (0)-complete and has the
interpolation property, it is a vector lattice (cf. [9] Th. 13.2).

Usually a complete normed vector lattice is called a Banach lattice
in case its norm satisfies the following condition: |a| =< |b]| implies
la]l <]/b]] where la|=aV (—a). The cone in a Banach lattice is
obviously closed. In general, order topology is connected with the norm
topology through the closedness of the cone in the following way: if
a;, <at1=1,2,--- and lim;..a; = ¢ then < @, in particular, if a, <
a, < --- and lim,,..a; = a then « is the supremum of {a;}. Thus a Banach
lattice is quasi-(0)-complete. In this connection a quasi-(0)-complete
Banach space with a closed generating cone will be called an ordered
Banach space.

3. Generating cone. In this section £ is a Banach space with a
closed cone K. First on the ground of Klee’s theorem [4] it will be
.proved that the generating property is equivalent to the stronger one
named strict (BZ)-property in Schaefer [9] ((3) in Lemma 1 below).

LemMA 1. The following conditions are mutually equivalent, where
a, B and p are positive constants and U denotes the unit ball of E:

2 K* satisfies the condition (3), if and only if K — K is dense in K.
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(1) K generates E,

(2) (KNU—-—KnU)y>oalU where (-)~ denotes the closure,

(3) KnNnU—-KnU)DRU,

(4) any x<€ E admits a decomposition x = a — b such that a,be K
and |[e],|[b]l=pllz].

Proof. (1) = (2) follows from the second category of E, because
E=K—K=Un(KNU—KnU). In order to see (2)= (3), let
VEKNU— KN U and let F be the subspace generated by V. Then
on the basis of completeness of K, Klee ([4] and [8] Th. 5.5) shows that
F is complete under the norm defined by ||z |, =inf{{)]|; 2z € NV},
Then (2) shows that under the natural injection of F' into E the closure
of the image of the unit ball V is a neighborhood of the origin in E.
A modification of Banach’s open mapping theorem (see [2] Chap. I, §3)
yields (3). (3) = (4) and (4) = (1) are trivial.

In the next place quasi-(0)-completeness will be connected with the
property named normality in Krein [5] ((8) in Lemma 2 below).

LEMMA 2. The following conditions are mutually equivalent, where
0 18 a positive constant:

(1) E is quasi-(o)-complete,

(2) every interval is bounded in norm,

(8) a=w=>bmplies ||« = o-max([al],[ 0],

(4) U+K)n(U—-K)cplU.

Proof. In order to see (1) = (2), for each ac K let

V,,g—e—f{w: —a =2 = a}
and let F, be the subspace generated by V,. F, is complete under the
norm defined by ||z |, = inf {\: —na < 2 < Aa}. In fact, if

llwi+1_wi|la<1/2i (/1:2192;"')’

by the definition of the norm 6 < y, < /2 where ¥y, = x;,, — %, +a/2',
Then quasi-(0)-completeness implies the existence of the supremum ¥ of
the sequence {3V ;¥:}.. Put ® =y + %, — a, then & — %, is the supre-
mum of the sequence {x, — x; — a/2"},.; hence x — 2z, < a/27%, and
similarly ® — z; = — a/2"*. This means that

||x—90¢Ha§1/2H ("::192;"'),

hence lim; ..x; = 2. Since K is closed, as remarked in § 2, the natural
injection of F, into E is a closed linear mapping, hence on account of
Banach’s closed graph theorem (see [2] Chap. I, §3) it is bounded, i.e.
V. is bounded in E. Now every interval is readily proved to be bounded.
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(8) follows from (2) via a standard argument (see [8] p. 32). (8) = (4)
is trivial. (4) = (1) follows from the closedness of an interval and the
completeness of K.

Before going into the first theorem, let us recall the definition of
polar sets. The polar set A® of A E(resp. < E*) is defined by A° =
{feE* f(x) =1 for all e A} (resp. = {xe E; f(x) =1 for all fe A}).
For example, U° is the unit ball of £* and K°= — K*. The bipolar
theorem (see [2] Chap. IV, §1) asserts that (1) I'(4,B)Y =A4°NB°
where (A, B) denotes the convex hull of AU B, and (2) if A36 and
B3>0 are closed convex sets in E (resp. weakly?, i.e. o(E*, E), closed
convex sets in E*)(A N B) = I'(4° B%* (resp. = I'(A°, B°)") where (-)*~
denotes the weak closure, and (3) if A contains # and is a closed convex
set in K (resp. weakly closed convex set in E*), A® = A. By the way,
remark that the weak compactness of U° and the weak closedness of
imply that both U° + K* and U’ — K* are weakly closed.

THEOREM 1. (1) K generates E if and only if E* is quasi-(0)-com-
plete.
(2) K* generates E* if and only if E is quasi-(0)-complete.

Proof. (1) First remark the formula: A+ B>I'(A,B)D3A+iB
for any convex sets A360 and B36d. Now the following chain of
equivalences is valid, where «a, B,y and p are positive constants:
K generates E

— (UNK—-UNK)y>oaU by Lemma 1

= ['(UNK,-UNK)y>BRU by the above remark

= (U’ — K*) NIU° K*)*"c~yU° by the bipolar theorem

= (U"— K*)*"N(U"+ K*)*»~cCpU° by the above remark

— (U"— K" NU"+ K*)cCpl® by the weak closedness of

U+ K*

—= KE* is quasi-(0)-complete by Lemma 2. A proof of (2) is similar
and is omitted. ‘

The “‘only if”’ part of (1) is essentially known (see [8] p. 46), while
(2) is a restatement of Grosberg-Krein’s theorem [3] in terms of order
properties®.

If E* is quasi-(0)-complete, in view of Lemma 2 every interval of
E* is bounded in norm and weakly closed, hence weakly compact.
Therefore it is readily shown that all the three notions of completeness
are the same thing on E*,

4. Interpolation property. In this section E is an ordered Banach
space. Then Theorem 1 guarantees that E* is also an ordered Banach

8 The weak topology always refers to the topology ¢(E*, E).
4 Grosberg-Krein's proof differs essentially from ours.
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space. A result of Riesz can be stated as follows (see [8] Th. 6.1): if
E is an ordered Banach space with the interpolation property, the dual
has the same property, hence by the remark at the end of §3 it is a
vector lattice. In this section the converse will be proved.

LEMMA 3. Let E be an ordered Banach space. Then the interpo-
lation property can be derived from the following less restrictive one:
for any ¢ >0 and a; = b;9m E (1,7 =1,2, ---, n) there exist x€ E and
ye K such that a; 2z —yand 2 =2b,0t=1,2,---,n) and ||y]| £ e.

Proof. Let a,b =c,d. We can successively find 2,€ K and y,€ K
(x, and ¥, being disregarded) such that «, b, z,, = ;,—y; and «;=c,d,
%y — Y and ||y || =1/2°. Then —y,, = — ®_, =v; hence by
Lemma 2 ||z, — z,—, || = 0/2°(# =1, 2, ---). The completeness of E im-
plies that lim,..x; = « exists. Since lim;,..y;, = ¢ and K is closed, we
can conclude that a,b = 2 = ¢, d.

Before going into the second theorem, in order to simplify the no-
tations, for each AC E (resp. C E*) define A* = {feK*; f(x) =1 for
all xe A)(resp. = {xe K: f(z) = 1 for all fe A}). Since K is closed con-
vex, on account of the separation theorem (see [2] Chap. II §38), for
aecK {z;2 = a} =a + K = {a}*.

THEOREM 2. Amn ordered Banach space E has the interpolation
property, if (and only if) the dual E* has the same property.

Proof. Suppose that E* has the interpolation property. It suffices
to prove the less restrictive form of the interpolation property for FE
in Lemma 3. Leta;=0b;(:1,7=1,2,---,n). All b; may be assumed to
be in K because K generates E. For any ¢ >0 and v >0

AZ 1+l (@l;i=1,2--,m)
is disjoint from
BETI((a; — KYNyU%i=1,2,+-+,m).

Otherwise, since E* is an ordered Banach space with the interpolation
property, in view of Riesz result stated above the second dual E** has
the same property, therefore there exists X € E** such that o, = X =b;
(t=1,2,---,n) where E is imbedded into E** in the natural, linear-
order preserving way, then X(f) <1 and X(f)=1+¢ for feANB,
because, for example, f can be represented as f = 3.\ ,«;9; such that
g;e{b} and a; = 0, >\ a; =1 + ¢, hence

X(f) = SaX(g) 2 Bawb)z Ba=1+¢,
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This contradiction proves the expected disjointness. Next we shall prove
that A is weakly closed and B is weakly compact. Take, for example,
the former and suppose n = 2 for the simplicity sake. On account of
Banach’s theorem (see [2] Chap. IV, §2) it suffices to prove that

e i=1,2npel°

is weakly closed for all p > 0. Suppose that a net {a,f\ + (1 — a)g\}n
converges weakly to some k in E* where fie{b}, gac b}, 0 =a, =1
and ||anfn + 1 — a)g. || = p. Since E* is quasi-(0)-complete, by Lem-
ma 2 || a,fy ] and || (1 — @,)g, || are uniformly bounded. We may assume
that {«,}, converges to some . If 0 <a <1, ||f]| and || g9.|| are uni-
formly bounded, hence we may even assume that {f,}, and {g,}, con-
verge weakly to some f and to some g respectively because of the weak
compactness of U’. Since both {b,}* and {b,}} are weakly closed, it fol-
lows that 2 = af + 1 — a)g is in I'({d.}, {b.}). If a =1, say, we may
assume that {f.}, converges weakly to some f in {b,}}, therefore h = f,
hence % e{b} by the definition of {b,}*. Thus the proof of the weak
closedness is over.

Now since A is convex, weakly closed and is disjoint from the con-
vex weakly compact set B, by the separation theorem (see [2] Chap. II,
§ 8) there exists c< E such that f(¢c) =1 > g(¢) for all fe A and g€ B.
From the remark preceding the theorem and by the bipolar theorem it
follows that 1 +¢)e=b,(t =1,2,---,n) and ceNi(a; — K+ 1/y U)".
Therefore there exist {c;}! such that ¢+ ¢; = a; and || ¢;|| =2/ (¢ =
1,2, --.,n). Since the cone of E is generating, by Lemma 1 each ¢;
admits a decomposition ¢; = d, — e; with d,, ¢; € K such that

il e ll = ol el

where p, is a positive constant. Finally let « = (1 + ¢)c and
Y= ¢+ élei ,
then t —y <a;, and 2 2 b, (¢t = 1,2, --- ») and, for some o, > 0,
Ny ll=ellell + é!l e |l = e(o;lla.ll + 4/7) + 20m[v.

Since € > 0 and v > 0 are arbitrary, the expected conclusion has been
obtained.
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A NOTE ON HYPONORMAL OPERATORS

STERLING K. BERBERIAN

The last exercise in reference [4] is a question to which I did not
know the answer: does there exist a hyponormal (TT* < T*T) com-
pletely continuous operator which is not normal? Recently Tsuyoshi
Ando6 has answered this question in the negative, by proving that every
hyponormal completely continuous operator is necessarily normal ([1]).
The key to Ando’s solution is a direct calculation with vectors, show-
ing that a hyponormal operator T satisfies the relation || T"| = || T||"
for every positive integer » (for ‘‘ subnormal’’ operators, this was ob-
served by P.R. Halmos on page 196 of [6]). It then follows, from
Gelfand’s formula for spectral radius, that the spectrum of T contains
a scalar ¢ such that |¢| = || T'|| (see [9], Theorem 1.6.3.).

The purpose of the present note is to obtain this result from ano-
pher direction, via the technique of approximate proper vectors ([3]);
In this approach, the nonemptiness of the spectrum of a hyponormal
operator T is made to depend on the elementary case of a self-adjoint
operator, and a simple calculation with proper vectors leads to a scalar
£ in the spectrum of T such that || = || T'||. This is the Theorem
below, and its Corollaries 1 and 2 are due also to Ando. In the remain-
ing corollaries, we note several applications to completely continuous
operators.

We consider operators (=continuous linear mappings) defined in a
Hilbert space. As in [3], the spectrum of an operator 7 is denoted
s(T), and the approximate point spectrum is a(7'). We note for future
use that every boundary point of s(7') belongs to a(7'); see, for example,
([4], hint to Exercise VIII. 3.4).

LEMMA 1. Suppose T is a hyponormal operator, with || T|| =1,
and let _# be the set of all vectors which are fixed under the operator
TT*. Then,

(i) A 1is a closed linear subspace,

(ii) the wvectors in _# are fixzed under T*T,

(i) _#Z s imvariant under T, and

(iv) the restriction of T to _# ts an isometric operator in 7 .

Proof. Since _#7 ={x: TT*x =2} is the null space of I — TT*, it
is a closed linear subspace. The relation T7T* < T*T < I implies
0I—T*T<I-— TT* and from this it is clear that the null space
of I — TT* is contained in the null space of I— T*T. Thatis, TT*x =2

Received February 27, 1962.
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1172 STERLING K. BERBERIAN

implies T*Tx = x. This proves (ii). (Alternatively, given TT*x = x,

one can calculate directly that || T*Tx — z|* < 0.) If xe_ 7, that is if -
TT*x = x, then the calculation TT*(Tx) = T(T*Tx) = Tx shows that

Tx e _#; moreover, || T | =(T*Tx|z) = |||

LEMMA 2. Ewvery isometric operator has an approximate proper
value of absolute value 1.

Proof. Let U be an isometric operator in a nonzero Hilbert space.
Suppose first that the spectrum of U contains 1; since || U|| =1, it
follows that 1 is a boundary point of s(U) (see [4], part (ix) of Exer-
cise VII. 3. 12), hence 1 is an approximate proper value for U.

If the spectrum of U does not contain 1, that is if I — U is in-
vertible, we may form the Cayley transform A of U; thus,

A=1(I+U)\I-U)'=¢(I-U)"I+ U).

Using the hypothesis U*U =1, let us show that A is self-adjoint. Left-
multiplying the relation (I — U)A = +«(I + U) by U*, we have (U* — I)
A=4yU*+1I), thus I— U)*A=— I+ U)*. Since (I — U)* is in-
vertible, with inverse [(I — U)™']*, we have

A= —d4[(I—- U+ U)* = —i[(I + UYI — U)]* = A*.

It follows that the operators A + ¢I and A — 4l are invertible, and
solving the relation (I — U)A = i(I + U) for U, we have

U= (A—iI)A+ i) = (A + i) A — i) .

Incidentally, since U is the product of invertible operators, we conclude
that U is unitary.

Since A is self-adjoint, we know from an elementary argument
that the approximate point spectrum of A is non empty ([7], Theorem
34.2). Let aca(A), and let z, be a sequence of unit vectors such that
|| Az, — ax, || — 0. Define ¢t = (a + 7)™ (o — ©); since « is real, ¢ has
absolute value 1. It will suffice to show that ¢ is an approximate pro-
per value for U; indeed, ||(U — )z, || — 0 results from the calculation

U—pl=A+i)™A— 1) — (a+ 3)a— )]
= (@ + 1)(A + ) [(ax + )A — i) — (@ — I)(A + 1])]
= 2i(a + 1) (A + i) (A — al),
the fact that ||(A — al)z,|| — 0, and the continuity of the operator
2i(a + 1)~ YA + 2I).

Incidentally, if U is an isometric operator such that the spectrum
of U excludes some complex number £ of absolute value 1, then p'U
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is an isometric operator whose spectrum excludes 1. The proof of
Lemma 2 then shows that ¢*U is unitary, hence so is U. In other
words: the spectrum of a nonnormal isometry must include the unit
circle |¢¢| = 1; indeed, Putnam has shown that the spectrum is the unit
disc | 2] =1 ([8], Corollary 1). The latter result is also an immediate
consequence of ([5], Lemma 2.1), and the fact that the spectrum of
any unilateral shift operator is the unit disec.

THEOREM. (Ando) Ewvery hyponormal operator T has an approxi-
mate proper value (¢ such that || = || T|.

Proof. We may assume || T'|| = 1 without loss of generality. Since
TT* =z 0 and || TT*|| =1, we know that 1 is an approximate proper
value for TT*. Since the property of hyponormality is preserved under
x-isomorphism, we may assume, after a change of Hilbert space, that
1 is a proper value for T'T* ([3], Theorem 1). Form the nonzero clo-
sed linear subspace 7 = {x: TT*x = «}; according to Lemma 1, _~Z is
invariant under 7, and the restriction of T to . is an isometric opera-
tor U in the Hilbert space _#. By Lemma 2, U has an approximate
proper value £ of absolute value 1. Let x, be any sequence of unit
vectors in _# such that || Uz, — ¢z, || — 0. Since Uz, = T=x,, obviously
[ is an approximate proper value for T, and |¢| =1=|| T||.

COROLLARY 1. A generalized mnilpotent hyponormal operator 1is
necessarily zero.

Proof. If T is hyponormal, then s(7') contains a scalar ¢ such
that || = || T||. For every positive integer =, it follows that s(7™)
contains ¢ (see [7], Theorem 33.1); then ||T||* = |¢|" = || £ |IT")| < | T|",
and so || T"|| = || T'||*. If moreover T is a generalized nilpotent, that
is if lim || 7| = 0, then || T'|| = 0.

COROLLARY 2. If T is a completely continuous hyponormal opera-
tor, then T 1is normal.

Proof. The proof to be given is essentially the same as Ando’s.
The proper subspaces of T are mutually orthogonal, and reduce T ([4],
Exercise VII. 2.5). Let _# be the smallest closed linear subspace which
contains every proper subspace of T, and let ¢y~ = _# *; clearly _#" reduces
T, and the restriction 7T/_4 is a completely continuous hyponormal opera-
tor in 7~ ([4], Exercise VI. 9.18). If the spectrum of T/ s~ were dif-
ferent from {0}, it would have a nonzero boundary point g, hence g
would be a proper value for T/ 4~ (see [4], Theorem VIII. 3.2); this is
impossible since _#"*+ = _# already contains every proper vector for 7.
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We conclude from the Theorem that T/_#~ = 0, and this forces _+~ = {0}
(recall that _7~t contains the null space of T). Thus, the proper sub-
spaces of T are a total family, hence T is normal by ([4], Exercise
VII. 2.5).

Suppose T is a normal operator whose spectrum (a) has empty
interior, and (b) does not separate the complex plane. Wermer has
shown that the invariant subspaces of 7' reduce T ([10], Theorem 7).
It is well known that the conditions (a) and (b) are fulfilled by the
spectrum of any completely continuous operator. In particular: if T
is a completely continuous normal operator, then every invariant sub-
space of T reduces 7. A more elementary proof of this may be based
on Corollary 2:

COROLLARY 3. If T is a completely continuous normal operator,
and _v" 18 a closed linear subspace invariant under T, then v~ reduces T.

Proof. Indeed, it suffices to assume that T is hyponormal and ..+~
is an invariant subspace such that 7T/_#" is completely continuous. Since
T|_y" is hyponormal ([4], Exercise VI. 9.10), it follows from Corollary 2
that 7T/_s is normal, hence _+~ reduces T by ([4], Exercise VI. 9.9).

Quoting ([4], Theorem VII. 3.1), we have:

COROLLARY 4. If T is a hyponormal operator, then
| T[]l = LUB{|(Tz|x)|: |||l =1} .

Incidentally, if T is hyponormal, it is clear from Corollary 4 that
| T*|| = LUB{|(T*z|x)|: |||l = 1}.

COROLLARY 5. If the completely continuous operator T is semi-
normal in the sense of [8], then T is normal.

Proof. The definition of semi-normality is that either TT* < T*T
or TT* = T*T, in other words, either T or T* is hyponormal; since
both are completely continuous (see [4], Exercise VIII. 1.6), our as-
sertion follows from Corollary 2.

Let us say that an operator 7T is mearly mormal in case T com-
mutes with T7*7T. The structure of nearly normal operators has been
determined by Brown, and it is a consequence of his results that a
completely continuous nearly normal operator is in fact normal (see the
concluding remarks in [5]). This may also be proved as follows. An
elementary calculation with square roots shows that a nearly normal
operator is hyponormal (see [2], proof of Corollary 1 of Theorem 8); as-
suming also complete continuity and citing Corollary 2, we have;
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COROLLARY 6. If T is a completely continuous nearly normal opera-
tor, then T is mormal.

Finally,

COROLLARY 7. If S= T + NI, where T is a completely continuous
operator, and if S is hyponormal, then S is normal.

Proof. Since S is hyponormal, so is T ([4], hint to Exercise VII.
1.6), hence T is normal by Corollary 2; therefore S is normal. So to
speak, the C*-algebra of all operators of the from T + \I, with T
completely continuous, is of ‘‘finite class’’.

We close with an elementary remark about the adjoint of a hypo-
normal operator: if T is hyponormal, then s(7*) = a(T*). For, suppose
A does not belong to a(T*), and let £ = A\*. Then, (T — pl)* = T* — Al
is bounded below ([4], Exercise VII. 3.8), and since T — I is also hypo-
normal, the relation (T — pINT — pI)* < (T — pI)*(T — pI) shows that
T — pI is also bounded below. Then T — pI is invertible ([4], Exercise
VI. 8.11), hence so is T* — \I, thus A does not belong to s(7*).
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ANALYTIC FUNCTIONS WITH VALUES
IN A FRECHET SPACE

ERRETT BISHOP

We wish to extend certain results in the theory of analytic functions
of several complex variables to the case of analytic functions with values
in a Frechet space F. To do this, we prove (Theorem 1 below) that
such a function @ has an expansion of the form

(%) ¢=21Pno¢,

where {P,} is a sequence of continuous mutually annihilating projections
on F' whose ranges are all one-dimensional subspaces of F. This repre-
sentation reduces the study of ¢, for many purposes, to the study of
the functions P,o®, which are essentially scalar-valued analytic functions.
We actually prove the stronger (and more useful) result that if {@,}is
a sequence of analytic functions with values in F' then a single sequence
{P,} can be found to give an expansion () for every @,. Expansions
of vector-valued functions of a different type have been considered by
Grothendick [6].

Theorem 1 is applied to generalize Theorem B of H. Cartan [3].
We consider a coherent analytic sheaf S on a Stein manifold M and
introduce the notion of the wvectorization S, of S (relative to a given
Frechet space F').

If 0 denotes the sheaf of locally-defined analytic functions and 0,
denotes the sheaf of locally-defined analytic functions with values in
F, then S; is defined to be the tensor product S ® 0 of the 0-modules
S and 0,. For the important case of a coherent analytic subsheaf S
of the sheaf 0* of locally-defined k-tuples of analytic functions, S, turns
out to be canonically isomorphic to the sheaf S, determined by assigning
to each open set U the module of all k-tuples (fi, :--,f:) of analytic
functions from U to F which have the property that for each u in F'*
the k-tuple (wof, - -+, wof,) is a cross-section of S over U. For instance,
if S is the sheaf of all locally-defined analytic functions which vanish
on a given analytic set A then it is evident that S, is the sheaf of
all locally-defined analytic functions with values in F' which vanish on A,

One of the main results, an extension of Theorem B of [3], will be
that the cohomology groups H¥(M, S;) vanish in all dimensions N = 1,
where S; is the vectorization of a coherent analytic sheaf S on a Stein
manifold M. Using this theorem and the isomorphism of S, to the
sheaf S, defined above one could show, for instance, that the usual
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sheaf—theoretic solutions to Cousin’s problems carry over to the case of
analytic functions with values in a Frechet space. Special cases were
treated by totally different methods in [2], but the techniques of that
paper seem to be inadequate to obtain general results.

The proofs are all Banach-space theoretic. That is, only Banach
space theory is necessary to obtain the above extension of Theorem B
and to prove the necessary facts about vectorizations. We begin with
a theorem which is given without proof on p. 278 of Banach [1], who
attributes it to H. Auerbach. A proof can be found in Taylor [7]. Since
complex Banach spaces are considered here, we give the proof.

THEOREM (Auerbach). An n-dimensional Banach space B has a
basis of unit vectors whose dual basis also consists of unit vectors.

Proof. Choose a basis (b, -+, b") of B and for any x in B let
(2, +++, x,) be the coordinates of x relative to the chosen basis. Let
T be the set of all n-tuples («', - -+, ") of unit vectors in B. For each
(x, «+-,2") in T let a(z, -+, ") be the absolute value of the determi-
nant det (¢i). Thus «a is a continuous function on the compact space
T. Now a(z, ---,2") #= 0 if and only if (x', ---,2") is a basis. Thus
a attaing its maximum for T at some point (%', ---, ") in T which is
a basis of unit vectors. Let (u', ---, u") be the dual basis in B*. Now
[[u? || =1 because <y’,u’) =1. Assume |[|u’||>1 for some 4. Thus
there exists ¢ in B with [[t||=1and <{t,u> =c¢>1. Thus {t — ¢y’,u’)> =
0, so that ¢ — ¢y’ is a linear combination of the vectors of the basis
¥, +++,y") other than y*. If we let (2!, ---,2") be the basis (¥, ---, y*)
with %' replaced by ¢ it follows that «a(z', ---, 2") = ca(y*, -+, y¥"). Since
the basis (z%, - -+, 2") consists of unit vectors this contradicts the choice
of (%', --+,¥"). Thus ||u’]| =1 for all ¢, and the theorem is proved.

COROLLARY. If B, is a finite-dimensional subspace of dimension
n of a Banach space B there exist n mutually annihilating projections
(tdempotent continuous linear operators) on B, each of morm 1, whose
ranges are one-dimensional subspaces of B, and whose sum is a projec-
tion of B onto B, of morm at most n.

Proof. Let (%', --+,y") be a basis of unit vectors of B, such that
the dual basis (4', --+, u") of B also consists of unit vectors. Let v°
be an extension of u‘ to a linear functional on B of norm 1. The
operators P, ---, P, on B defined by

Pz = {x, vy

are the desired projections.
We recall that a Frechet space is a locally convex topological linear
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space F' which admits a countable family {|| ||} of continuous semi-
norms such that a basis for the neighborhoods of 0 in F is given by
the sets

{xeF:lz|, <1}.

If || || is any continuous semi-norm on F' it follows that for some k&
lz| = |lz]|l, for all  in F. If necessary it may be assumed that
{II 1} is a monotonely nondecreasing sequence of semi-norms, in which
case we shall call it a defining sequence of semi-norms for F.

LeMMA 1. Let F be a Frechet space with a defining sequence
{I I} of semi-norms. Let {a,} be a sequence of vectors in F, {0,} a
sequence of monmegative real numbers, and {k;} a strictly imcreasing
sequence of positive integers. Then there exists a sequence {P,} of
mutually annihilating continuous projections on F, whose ranges are
subspaces of F' of dimensions at most 1, and a sequence {e.}, with
0< ¢ <0, for all k, with the following properties. For each positive
integer j the operator

kj
Q=3P
8 a projection on the subspace B; of F spanned by the vectors a,, +--, a, 5

For each positive integer m the sum
el = kz::lsk [l

is finite for a=a,. For each positive integer j and all n=k; we
have || P, |le = @ + k) -+ 1 + k2), where

WP, llo=sup{[| Pbllo:b e F, [[bll,=1}.

Proof. We may assume the J, to be so small that 7., 0, ||, ||, < o
for all »n. By induction we construct a sequence {P,} of mutually anni-
hilating continuous projections, a sequence {¢,} of positive real numbers,
and an increasing sequence {N,} of positive integers such that

(a) 0 < 8/4: < Bky

(b) For each j the operator Q; is a projection onto B,

© [PIP<@+EK)--- 1+ E)for l=n=k; and all 7 < j.

We explain what is meant by (¢). First of all, || ||’ is the continuous
semi-norm on F' defined by

1817 = Seclbll.
Secondly, || P, || is defined by
| P ]l = sup{l| o[ [[b [ =1} .
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Assuming that P, ---, P,, and N,---, Nj;, and ¢, -+, €y, have been
found with the relevant properties, we show how to continue to the
next stage j + 1. First choose N;. > N; so large that || [ly,,, is a
norm (and not merely a semi-norm) on B;.;. Choose then ¢;,, N; <1t =
N;,, so small that 0 <e¢; <0; and ||P, |PPP< @+ K)--- Q1+ k) for
n=<k; and all ¢ <j. To see that this can be done, notice that be-
cause || ||y, is a norm on B, there exists » > 0 so that r||a [’ > [la |
for all @ in B; and all m < N,,;. Thus

I PP < sup (I DI 0IF =1 = @+ 5 )P

Now use (c).

Now let @; be the restriction of Q; to B;., and let I,;, be the
identity operator on B;.;. Thus I;.;, — Q} is a projection of B;,, onto
a subspace S;,;. Clearly B; and S;,,; are complementary subspaces of
B;.,, so that dim S;;, < k;., — k;. By the above corollary there exists
a projection E;,, with || E;.|/** < k;», of F onto B,,,. Also by the
above corollary there exist mutually annihilating projections R, k; < n <
k;,, of S;., onto subspaces of dimensions at most 1 such that || R, | =1
for all » and such that YR, is the identity projection of S;,, onto itself.
For k; < n < k;+;, we define

Pn = Rn(Ij—H - Q;‘)Ejﬂ .

Thus the P, are mutually annihilating projections for 1=n < k;,,.
Also Q,., is a projection onto B;,,. Finally for k; < n < k;., we have

P < | Rl | s — @515 || By
< (L + 2P ks,

<[+ k@ + K -+ A+ kb
=@ +E) - QA ).

The same is true for n < k;, by the above construction. Thus the con-
struction has been continued another step. By induction it follows
that sequences {P,}, {N;}, and {¢,} can be chosen satisfying properties
(a), (b), and (c). It is immediate that the sequences {P,} and {¢,} satisfy
the requirements of the lemma.

LEMMA 2. Let {a,} be a sequence of elements of a Frechet space
F, {|| |} a defining sequence of semi-norms on F, and {0,} a sequence
of positive real numbers. Then there exist a sequence {e,} of positive
real numbers and a sequence {P,} of mutually annihilating projections
on F whose ranges are subspaces of F of dimensions at most 1 having
the following properties.
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(i) 0<e, <0, for all k,

(ii) For a =a, the norm ||all, = Siclla|l: 98 fintte for all n,

(iii) R,a, = a, for all positive integers m and n with m = 2n,
where R, = >7, P;,

(vi) For all t>1 and ¢ >0 the sum S| P,|l,t™™ converges,
where || P, ||, is defined as above.

Proof. Define the sequence {k;} by k; = 2. Choose the sequences
{P,} and {&,} as in lemma 1. Clearly (i) and (ii) are satisfied. Now for
each positive integer » there is a positive integer j with 2/* <= n < 2/,
It follows that a,€ B;. Thus R,a, = Q,a, = a,, so that R,a, = a, for
all m = 2’ and therefore for all m = 2n. This proves (iii).

Now for each % choose 5 with 2 < n < 2/, Thus

[Pl = (1 + k) = (1 + 2¥)
< (5nYY < (5n??,

where @ = 1 + log,n. From this it follows from elementary calculus
that (iv) holds, thereby proving the lemma.

LEMMA 3. Let

Z ai(nl’ ce, nw)zI“ AR
n120,+00, g 20

where a =«a;, and 1 <1< o, be a sequence of formal power series
with coefficients in a Frechet space F. Let {0,} be a sequence of positive
real mumbers. Then there exists a sequence {e,} with 0 <e, <0, for
all &k and a sequence {P,} of mutually annihilating continuous pro-
Jections of F onto subspaces of dimenstons at most 1 such that

@) R,o(n, -+, n,) = an, -, n,) whenever m = 2%, where
a=a, n="mn-+ -+ n, and R, =37, P,
() P,an, ---,n,) = 0 whenever m > 2+,

) S| Pullot™ < oo for all t>1 and ¢ >0, where || ||, s
defined as above.

Proof. For each’t order the coefficients a,(n,, - - -, n,) into a sequence
{al}r., according to the size of n. We now define a sequence {a,} of
elements of F' which is an ordering of the totality of the a;(n,, ---, n,).
For k given let 2° be the largest power of 2 dividing % and let j =
1/2(k2-* + 1). Let a, = af. Now choose the sequences {¢,} and {P,} as
in Lemma 2. Clearly (¢) holds. Since (b) is a consequence of (a) we
need only check (a). To this end consider a fixed a;(n,, +--, n,). Now
there exists 7 < n* with a;(n, -+, n,) = ai. In turn of = a, for some
k < 2+'p®, By (iii) of Lemma 2 it follows that R,a, = a, for m = 2k
and therefore for m = 2'**n®, as was to be proved.
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We are now prepared to prove a series representation for analytic
functions with values in a Frechet space which will be the principal
tool in subsequent proofs.

THEOREM 1. Let F be a Frechet space and let {M;} be a sequence
of complex analytic manifolds. For each i let @; be an analytic function
on M; with values in F. Then there exists a sequence of wvectors {b,}
n F and a sequence {P,} of continuous mutually annihilating pro-
jections of F onto one-dimensional subspaces having the following pro-
perties. For each i the series X7, P,op; converges to @; on M;,. For
each n we have Pb,=0b,, so that P,op, = @'b,, for some analytic
Sfunction @F on M;. For each i the series S5, Pt converges absolutely
and uniformly on all compact subsets of M;. For each continuous
semi-norm || || on F the sequence {||b, ||} s bounded.

Proof. For each ¢ let dim M; = a = «;, so that M, is coverable by
a countable family of analytic homeomorphs I” of the unit polyeylinder

Ur={&=(®y  +*,2): |2 | <L, 1Z5 = a}.

Thus in the proof of the theorem we may replace the sequence {M;}
by the totality of all such I". There is therefore no loss of generality
in assuming that each M, is a polyeylinder U® of dimension «a = «;.
Let {|| [ls} be a defining sequence of semi-norms on F. Now for each
% the analytic function @, has a power series expansion

P; = 20 (g e, MR e 2
n120,000,m4 20

on the polycylinder M; = U®. This expansion converges absolutely and’
uniformly on each compact subset of M; in each semi-norm || |[|,. By
the diagonal process there therefore exist constants ¢, > 0 such that
the power series for each @, converges absolutely and uniformly on each
compact subset of M; in the norm >72,6,.]| |, so that in particular
this norm is finite for each coefficient a;(n, ---,n,). Now choose the
sequences {¢,} and {P,} as in Lemma 3 relative to the power series
expansions of the @, and to the J, just obtained. Thus the power
series for @, converges absolutely and uniformly on compact subsets.
of M; in the norm || ||, defined above. If some of the projections P,
are zero, these may be omitted from the sequence. Thus for each n
there is a vector b, in F' with ||b,], = 1 spanning the range of P,.
To show that the sequences {P,} and {b,} have the desired properties,
consider a fixed compact subset 7T of a fixed M,;. For each n write

Y = > max {|| a; (1, <+, Ny)2W - 20 ||,:2€ T} .

nyteeetng=n
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By the usual convergence criteria we see that there exist » > 1 and
¢ > 0 such that r™y, < ¢ for all n.

If 5 is any positive integer let & be the largest integer such that
2H® < 4. Thus for each z in T we have

:HPJ 2;, - ai(n“ ---’nw)zf1...zzm

S 1Pl 3y = ell Bilh 3
= el — r) || Pyllr

0

Thus
4 = max {;;lpj%(z) lo:ze T}
<ol — ) St Pl

Now by the definition of & we see that k& is the integral part of (j2-i-%)e,
so that &k = j¥* for all j sufficiently large. Thus 4 is finite if the sum
S r|| P;|l, converges, where ¢ = (2a)~'. By the choice of the
sequence {P;} this series converges so that 4 is finite. Now since ||b,|,=1,

max {| p7(2) | : 2€ T} = max {|| P.9:(2) |[,: 2€ T} .

Therefore the series 3o, *(2) converges absolutely and uniformly on
T. If || || is a continuous semi-norm on F then || || = K| ||, for
some K > 0, so that {||b,]]} is bounded by K. Finally, we must show
that >\, P,o®; actually converges to ¢, (and not to something else).
To see this, note by (a) and (b) of Lemma 3 that R, o®; and o; have
power series expansions in the coordinates z,, -+, 2, which agree up to
terms of total order n, whenever m = 2i+>n®. This completes the proof
of Theorem 1.

Before giving the definition of the vectorization of an analytic
sheaf, we indicate the terminology to be used, following Godement [5].
A presheaf S on a topological space X assigns to each open UcC X a
set S(U) and to each open set Vc Uc X a map 7,y :S(U)— S(V)
satisfying 7,07,y = 74y for W Vc U. In particular the same
terminology will be used if S is a sheaf, that is, a presheaf satisfying
axioms (F1) and (F2) on page 109 of [5]. To any presheaf S is canoni-
cally associated a sheaf S’, and each element f in S(U) gives rise to
a unique element in S’(U) which will also be denoted by f. If X is
a complex analytic manifold a sheaf S on X is called analytic if it is
a module over the sheaf 0 of locally defined analytic functions, that is,
if for each U the set S(U) is an 0(U)-module, and if the usual com-
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mutation relations between module multiplication’and the restriction
maps S(U)— S(V) and 0(U) — 0(V) hold.

DEFINITION 1. Let S be an analytic sheaf on a complex analytic
manifold M and let F be a Frechet space. Let 0 be the sheaf of
locally-defined analytic functions on M and let 0, be the sheaf of locally-
defined analytic functions on M with values in F, where by definition
a continuous function f from an open set U C M to F'is called analytic
if uof is analytic for all v in F'*. Clearly 0, is an 0-module, i.e., an
analytic sheaf. The vectorization S; of S (relative to F') is defined to
be the sheaf S 0y, the tensor product of the 0-modules S and 0,.
This is defined in [5] as the sheaf determined by the presheaf data

U—8(U)®0:(U),

where S(U) and 0,(U) are considered as 0(U)-modules, together with
the obvious restriction maps.

Note that if 7 is a continuous linear operator from a Frechet space
Finto a Frechet space G then the natural homomorphism 7, of 0, into
0, induced by T gives rise to a homomorphism 7" =1 T, of S, into
Ss. In particular, if # is an element of F'* (and so a continuous linear
operator from F' into C) then # induces a homomorphism of S, into
Sy;. But S, is canonically isomorphic to S, in virtue of the canonical
isomorphism between the 0(U)-modules S(U) X O0(U) and S(U). (See
[5] p. 8.) If we identify S, with S it follows that each w in F'* induces
a homomorphism «’ of S, onto S.

DEFINITION 2. If S is an analytic subsheaf of the Cartesian product.
0" we define

SHU) ={fex(U)*:uofecS(U) for all u in F*}.

Clearly S. so defined is an analytic subsheaf of the Cartesian product
(0)".

THEOREM 2. If S is a coherent analytic subsheaf of 0" then to each
p in Uc M and each f in S,(U) there exists a meighborhood V of p,
Sfunctions H, «-+, H, in S(V) and functions G, «-+, G, m 0,(V) such
that

k
Pyouf = E,leHm .

Proof. Since S is coherent, there exists a neighborhood V, C U of
p and functions H, ---, {-Ik in S(V,) which generate S at each point of
V,. We may assume that V, is a compact subset of U. Let VDV, D V,D-.-
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be a basis for the neighborhoods of p. Let 2 be the subset of S(V;)
consisting of all elements in S(V,) which as elements of (0(V,)" are
bounded on V,. Thus to each % in £ there exists G = (G, ---, G;) in
(0(V,)) for some % such that the restriction of % to V; has the form

h=3G.H, .

By choosing ¢ large enough we may assume that
Gl =sup{|Gia)|:9e V,,1 =j =k}

is finite. Thus if for each pair (¢, N) of positive integers we let 2,
be the family of all 2 in 2 such that G can be chosen in (0(V;))* with
[|G|l; £ N, we see that 2 = U 2,5 and that each 2,, is a closed subset
of 2, where 2 has the norm defined by

[[B]lo=sup{lhia)]|:1=1=m,qe Vy}

for each & = (hy, -+ -, h,) € 2 C (0(V,))". By the Baire category theorem
there exists (¢, N) such that 2, has a nonvoid interior. From this it
follows as usual that there exists a constant K > 0 such that for each
h in Q there exists G in (0(V))* as above with ||G|; < K||h|,, Now
consider f as in the statement of the theorem, so that f e S;(U)c(0,(U))".
By Theorem 1 there exists a sequence of vectors {b;} in F which is
bounded in each continuous semi-norm on F and a sequence {P;} of
continuous projections on F' having one-dimensional ranges such that
Si1 Pijof converges uniformly to f on all compact subsets of U and
such that for each j we have P;of = f;b; with f;€(0(U))", where
S| fi| converges uniformly on all compact subsets of U. Thus
Sl fille is finite, since V, < U.
Now for each j there exists u in F'* with <b;,u) = 1. Thus

Ji=uo(fb;)) = uo(Pjof) = (uoPj)of

is in S(U) because f€ S;(U) and uoP;e F*., Thus f;€S(U) for all j.
By the above for each j there exists G’/ = (Gi, ---, Gi) in (0(V;))* such
that on V; we have

fj = iGgmHm ’
m=1

with ||G’||; < K|/ f;ll,. It follows that the series 37, G; converges
uniformly and absolutely on V, in each continuous semi-norm on F.
Thus the sum of this series is an element G = (G,, -+, G}) in (0,(V)))".
Thus in the topology of uniform and absolute convergence on compact
subsets of V; in each continuous semi-norm on F we have
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f=lim Zt]fjbj

t—oo j=1

—lim S, S GLH,b,

t—oo 3=1 m=1

kl <lim S G{nb])H

t—oo j=1

Il

m

G.H, ,

1

I
M=

as was to be proved.
The following consequence of Theorem 2 will be useful later.

LEMMA 4. If the element f of S.(U) has the property that w'f is
the zero element of S(U) for all w in F'* then f = 0.

Proof. By taking a covering of U by small open sets we reduce
to the case in which f has a representation

f:éhi(ggi’

with &; in S(U) and g; in 0,(U). Let R be the sheaf on U of relations
of hy +++, h,. Thus for each w in F'* we see that

k
0=wf= Eh’z®<gwu>
k
= ; {Gs, whs;
Thus by Definition 2 we see that g = (g,, - -, 9:) € R;(U). By Theorem
2 it follows that each » in U has a neighborhood V < U such that
there exist H,, ---, H, in R(V) and G,, --+, G, in 0,(V) with
t
Tyrd = ;GjHj .
Thus for each ¢ with 1 <4 £k we have
Yyugi = ; G,;H},
where H; = (H}, -+, Hf). Therefore on V we have
k k t X
F=Nh®0= 5@ (3 GH)
k t
=3 (S 0@ @)

=1

SHEDEDR

Jj=1
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since H;€ R(V) for all . This proves Lemma 4.
We next give an important characterization of S, in case S is a
coherent analytic subsheaf of 0" for some positive integer n.

THEOREM 3. Let M be a Stein manifold and S a coherent analytic
subsheaf of 0~. Let F be a Frechet space. For each open U C M there
1s a mapping t(U) from S(U)Q 0,(U) into (0,(U))* which for each
h=(hy -+, h,) in S(U) and g in 0,(U) maps hK g onto gh = (gh,, - -+, gh,)
wn (0,(U))". For each such g and h the image gh of h® g actually
lies in the subset S;(U) of (0(U))". The family of such mappings
T(U) induces an tsomorphism T of the sheaf S, (which was defined
above to be the sheaf determined by the presheaf data U— S(U) Q 0,(U))
onto the sheaf S;. Thus S; and S, are isomorphic.

Proof. Clearly the map of the Cartesian product S(U) x 0,(U)
into (0,(U))" defined by (k, g) — gh induces a group homomorphism of
(S(U), 0,(U))—the free abelian group generated by the elements of the
Cartesian product S(U) x 0,(U)—into (0,(U))". It is trivial to check
that N(S(U), 0,(U)): belongs to the kernel of this map, where
N(S(U), 0,(U)) is defined as in [5] p. 8 to be the subgroup of (S(U), 0,(U))
generated by elements of the forms

(1) (@ + @y — (@, y) — (@, 9)

(li) (mr Y + yz) - (x7 yl) - (m’ ?/2)

(iii) (e, y) — (x, ay)
where x, x,, and 2, are in S(U), v, ¥, and y, are in 0,(U), and a € 0(U).
Thus this map induces a homomorphism 7(U) of the quotient
(S(U), 0,(U))IN(S(U), 0,(U)) = S(U) Q 0,(U) into (0,(U))*. It is trivial
to check that 7(U) is an 0(U)-homomorphism. Now with g and % as
above and w in F'* we have

wot(U)h ® g) = uo(gh) = (wog)h e S(U) .

Thus 7(U)h Q g9) e SH(U). It follows that the range of 7(U) is a subset
of Sy(U). It is now clear that the family of mappings z(U) induces
an 0-homomorphism 7 of S, into S;. To show that 7 is one-to-one we
must prove

@ Ifz(U0)(CE h;Rg;) =0 then each » in U has a neighborhood
V such that 7,,(37 . h; ® g;) = 0.
To show that 7 is onto we must prove

(b) If f£eS/(U) then each p in U has a neighborhood V such that
Porf = T(VYEE, h; @ g;) for some elements h; in S(V) and g; in 0,(V).
We first prove (a). If we let R be the sheaf of relations on U of
hy, +++, hy by the coherence of R there exists a neighborhood V, of »
and elements 7, = (7}, -+, 7F), ++e, 1, =Ty, +++,ry) of R(V,) which
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generate R at each point of V,. Now

S o = «(U)(S @) = 0.

Thus for each w in F'* we have
N
; (uogi)h; =0

so that (uog, +++,uo0gy) € R(U) for all u in F*. By definition this
means that (g, -+, g5) € Rp(U). Therefore by Theorem 2 we see that
there exists a neighborhood V of » and G = (Gy, -+, G,) in (0(V))™
such that (g, +++,95») =Gr.+ --- + G,r,. Thus on V we have

N N n A
5@ = 5@ (36r)
n N 3
=3 (S 0ih)) ®6G; =0
J=1 \1=1
since ;€ R(V) for each j. This proves (a).
To prove (b) notice by Theorem 2 that there exists a neighborhood
V of p, elements Ay, +--, hy in S(V), and elements g;, ++-, gy in 0,(V)
such that on V we have

F=S0h = (S k@)

This completes the proof of Theorem 3.
We state for future reference a version of a theorem of Banach,
first giving a definition.

DerINITION 8. If {g,} is a sequence of vectors in a Frechet space
F. the series >, g, is called absolutely convergent if the series
S 1l 9. ]| converges for each continuous semi-norm || || on F.

Notice that a continuous linear transformation from a Frechet space
F to a Frechet space G takes absolutely convergent sequences into
absolutely convergent sequences.

LEMMA 5. Let 0 be a continuous linear map of a Frechet space
F onto a Frechet space G. Let {g;} be an absolutely convergent sequence
from G. Then there exists an absolutely convergent sequence {f;} in
F such that o(f;) = g; for all 1.

Proof. Let {|| ||} be a defining sequence of semi-norms on F.,
Since the map ¢ is continuous, we see ([1] p. 40) that for each & the
set o{f :||fll < 1} contains a neighborhood {g:||g|li =1} of 0 in G,

where || ||; is some continuous semi-norm on G. Thus for each ¢ in
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G and each k there exists f in F with o(f) = g and || ||, < || 9|,. Now
for each & choose j = j(k) such that

2 g lls <27,
n=y

so that
S 2 lgalle < oo
k=1 n=3(k)
We may assume that j(1) <j(2) < ---. For each n with j(k) =n <jk + 1)

choose f, in F' with o(f,) = ¢, and ||f.ll: = || 9.1l If for each n we
let k(n) be the smallest value of & for which = < j(k + 1), it follows
that

glllfnllm; < o,

Since for each ¢ we have || f,|]. =< ||f.]ls for all & = ¢ it follows that

S 1l
is finite for all ¢. This proves the lemma.

THEOREM 4. If S is a coherent analytic sheaf on a Stein manifold
M and if F is a Frechet space then HY(M, S;) = 0 for all N= 1.

Proof. Let f be an element of H¥(M, S,;). Consider a locally finite
covering {U;} of M by holomorphically convex open sets U, so fine that
f is represented by an element of H¥({U;}, S;). For each finite sequence
K = (iy, -++, 1) of positive integers let Uz = U, N --- N U,. The
element f of H¥(M, S;) can be considered to belong to H¥({U;}, Sr) and
therefore can be represented by a cocycle f = {f;} of Z¥({U;}, Sy). Here
I is any sequence of N + 1 positive integers, and, for each I, f; is an
element of S,(U;). Also df =0, where ¢ is the coboundary operator
from C*{U}, Sy) into C**({U;}, Sy) and Z¥({U;}, Sy) is the kernel of
0. By choosing the covering {U;} fine enough we may assume that for
each K there exist elements h,g, + -+, hux, With a depending on K, in
S(Ug) which generate S at each point of Ur. This implies ([3], expose
XVIII, p. 9) that every & in S(Ug) has a representation of the form
h = 3%, g:hie, with g,€0(Ug). We may also choose the covering {U;}
so fine that, for each I, f, can be represented in the form

fI = ghu@gu

with h;; as above and with ¢,; in 0:(U;).
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By Theorem 1 there exists a sequence {P,} of continuous mutually
annihilating projections on F whose ranges are one dimensional and a
sequence {b,} of vectors in F' bounded in each continuous semi-norm on
F having the following properties. For each I and ¢ the series >, P,o9;;
converges to g;; on U;. For each I and ¢ we have P,og,;, = 9;b,, where
9% €0(U,). For each I and ¢ the series >\, g% converges absolutely
in the Frechet space 0(U;). Now since for each » the projection P,
induces a homomorphism of the sheaf S; onto itself, the element {P,f;}
of C¥({U}, Sy) is in Z¥({U}, Sp). Also

P.f; = 31hiu @ Pugs
= Sy @ g1ty = (55 91 ) @b -

If for each n and I we let f? be the element >, g%h;, of S(U,) it
follows that for each n the element f* = {f7}'=* of C*{U}}, S) belongs
to Z¥({U}, S). It is also clear that f"b, = P,f.

Now there exists a natural Frechet space topology on each S(U),
described in [4], expose XVII. This topology has the property that
for each %2 in S(U) the map g — gh of 0(U) into S(U) is continuous.
We therefore see that for each I the series

Zafzn = Z.l (Z g?zhu)

n=1 n=1 \1=1
converges absolutely in S(U,) because for each I and ¢ the series
Sie_ g% converges absolutely in 0(U,). Now the space C*({U;}, S) is
the Cartesian product of the Frechet spaces S(U;), and therefore
possesses a Frechet space structure. Moreover Z¥({U;}, S) is closed in
CY{Uj}, S) and is therefore also a Frechet space. Since for each I the
series >'r_, f converges absolutely in S(U,) it follows that >, .,/
converges absolutely in Z¥({U;}, S). By Theorem B of [3] and Leray’s
theorem (see [5] p. 213) we see that the coboundary map é of the Frechet
space C**({U}, S) into Z¥({U;}, S) is onto. From [4] we also see that
0 is continuous.

Let J stand for an arbitrary N-tuple of positive integers. Thus

for each J, by the above, there is a continuous homomorphism.

T (G o0, Gy)— éGihi.f

of the Frechet space (0(U;))* onto the Frechet space S(U;). These
maps induce a continuous homomorphism = of the Frechet space @ onto
the Frechet space C¥*({U;}, S), where @ is defined to be the product

11, (0(U,))*, with « depending as above on J, of the Frechet spaces (0(U;))*.
Thus
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0 =200T

is a continuous homomorphism of @ onto Z¥({U;}, S). Since >, f”
converges absolutely in Z¥({U;}, S) it follows from Lemma 5 that there
exists an absolutely convergent sequence {G"} in @ with ¢(G") = f* for
all n. For each n write G® = {G%}, where

G; = (G, -+, Gap) e (0(T))” .

Thus for each J we see that the series Y2, G* converges absolutely
and uniformly on every compact subset of U,, so that the series
~_. G1b, converges absolutely in (0,(U,))* to an element

GJ‘ = (Gl.h 0y GwJ)

in (0+U,))*. Thus for each 7 and J we have G;; = >.o., G&b,.
For each J let ¢; be the element

ey = ;14 hi; @ Gis
of Si(U,). Thus e = {e;) e C**({U;}, Sr). We shall_finish the proof by

showing that de = 7. To this end it is sufficient by-Lemma 4 to show
u'(0e) = w'(f) for all v in F'*. We compute:

u'(e;) = gi {Gizy uDhiy
= i i Gb,, ’M/>h”
=1 \os

(35 Gaha )b, 0

=

(@ (G bay %

Il

Il

absolutely in S(U,). Thus
w(e) = 3 (@G, v
absolutely in C¥*({U;}, S). Thus
w(96) = d(w(@)) = 3 (0.07)(G")<by, u>
= 5,0(G")Kbu, uy = SF<ba, u> .
Also for each I we have

u,(fl) = gll <gi19 u>hi1
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I

uMs iMe

i g:LIb’IU u>hi1
n=1
<§1 g?IhiI><b'n, u) = ;ﬂl(b"’ uy .

Therefore w'(f) = 3.2, f<b,, wy. It follows that w'(f) = u'(de) for all
% in F'*, so that f = de. This completes the proof of Theorem 4.

I
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EQUICONTINUITY OF SOLUTIONS OF A
QUASI-LINEAR EQUATION

S. E. Boun

On a bounded domain £ of the zy-plane the equicontinuity of a
family of solutions of a linear elliptic partial differential equation is
usually demonstrated by showing that the first partial derivatives of
solutions are uniformly bounded on compact interior subsets of 2. Finn
[2] uses this same method in showing the equicontinuity for a class of
quasi-linear elliptic equations referred to by him as “equations of mini-
mal surface type.” However, Finn cites an example which demonstrates
that in general bounded collections of solutions of elliptic equations do
not have uniformly bounded first partial derivatives on compact interior
subsets.

Here we shall consider the question of the equicontinuity of a
family of solutions of the quasi-linear equation

( 1) L[Z] = A(ﬂ’;’, Y, D, q)/)" + 2B(£U, Y, D, q)S + C(x’ Y, D, q)t =0

Where, as usuval, p =2, ¢ =2, r =2, $ =2, and t =z, and where
A, B and C satisfy a growth condition.

Suppose D to be a domain in the zy-plane for which

(i) A>0, AC— B*=1, and A, B, and C are continuous and
have continuous first partial derivatives with respect to p and ¢q on T
defined by T = {(z, ¥, p,q): (z,y)eD and —o0 < p,q < + o}, and

(i) (A+C)y=(@1/125)loglog (p*+ ¢*+ e) + k(z,y) for all (x,y,p,q)e T
where h(xz, y) is positive and continuous on D.

Henceforth, we shall assume that conditions (i) and (ii) are satisfied
‘whenever reference is made to the equation (1).

THEOREM 1. Let 2 be a bounded sub-domain of D with boundary
® such that 2 =0 +wc D. If {f(x,v):ve 7} is any collection of
Junctions which are continuous and wuniformly bounded on @ and if
corresponding to each f, there exists a function 2(x,y;f,) which is of
class C* on 2, is continuous on 2, is a solution of (1) on 2, and is
such that z(x,y; f,) = f.(x, y) on w,then the collection {z(x, y; f,) : ve ¥}
is equicontinuous on 2.

In proving Theorem 1 we shall employ a modification of the method
used by Serrin [5] and in so doing depend heavily on the following

Received December 20, 1961. This result is contained in the author’s doctoral dis-
sertation presented to the University of Nebraska. Sincerest appreciation is expressed to
Professor Lloyd K. Jackson for his direction.
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principle:

Maximum Principle [3]. Let D be any plane domain and consider
the function F'(x, v, ?, p, q, 7, s, t) with the following assumptions:

(i) F is continuous in all 8 variables in the region T defined by
T={x9,219781t:(x,y)eD and —o <2,p,q9,7,8t< +o} and

i) F,F,F,F,F,andF, are continuous on T, F? — 4F,F, <0,
F,>0,and F,<0on T.
Let z(z, y) and z,(x, ¥) be continuous in a bounded and closed subdomain
& < D and of class C? in the interior of .2°. Furthermore, suppose
z(x, ¥) = 2z,(2, ¥) on the boundary of .2° and suppose that in the interior
of #

F (%, 9, 2, 21y 21y, Zraar Zrouy Z1gy) Z 0
and
F(2, Y, 22 220, Zays Zoner Baays Z2y) = 0 .
Then, either z,(x, ¥) < 2z, y¥) in the interior of .27 or
2%, y) = 2w, y) on 27 .

Suppose M > 1 to be a uniform bound of |f,[|, ve & on ®. Since
constants are solutions of (1) it follows from the Maximum Principle
that |2z, ¥)| = |2(z,¥; /)| < M for (z,y)e2 and all ve.or. Also,
suppose {2,(x, ¥):ve Z} = {z(x,y):ve. o7 and z(x,y) > 0 on 2}

LeMMA 1. Let Pfx, y,) be any point of 2 and suppose {K,}i=y is
a sequence of closed cireular disks each having Pfx,, Y,) as its center
and R, = (1/7)"R, as its radius where R, <1 and K, 2. Then when-
ever z,(x,y) 1s a positive solution of (1) there exists a constant H,
0 < H< 1, depending only on R, § = max h(x,y) where (z,y)<c 2, and
M such that for all ve <7

z2(x, y) > H[o, M, Rz (2, ¥,) on 0= |P— P | = (1/NR,
and
2, y) > HI[0, M, (1/7)"RoJz,(w0, o) = HI9, M, (1/T)Ro](1/n)z.(o, Yo)
on 0 =|P—P|=Q/T)"R,, n=1,2,8, -+
Proof. Let E denote the component of the set
{(, ) e Ky : 2.(x, y) > (1/2) 2,20, Yo)}

t See Bers and Nirenberg [1] for a proof of a Harnack inequality for solutions of the
uniformly elliptic equation (1).
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which contains Py, ¥,). We can apply the Maximum Principle to
conclude that F must contain an arc of the circumference of K,. Hence,
there is a Jordan arc /" contained in E with one end at (x,, ¥,) and the
other end at a point (2, ¥,) on the circumference of K, which is such
that with the exception of (x,, ) I" is contained in the interior of E.
Let K? and K* be the two closed disks each of which has radius V5/2 R,
and each of which has the points (2, ¥,) and (z,, ¥) on its circumfer-
ence. FKach point (z, ) e K* N K® satisfies at least one of the following
conditions:
(@) (»,9)el” Ubdry(K* N K?),
(b) (x,y) is in a subdomain of K* the boundary of which consists
of arcs of I' and arcs of the circumference of K2,
(¢) (x,y) is in a subdomain of K*® the boundary of which consists
of arcs of I" and arcs of the circumference of K:3.
Let K* be the closed disk with center at

(@ Y) = (3%: “, 3%: v)

and radius (3/4) R, and let (x,, ¥,) and (x,, ¥,) be the respective centers
of K? and K® It is clear that

{(,9): (@ — 2+ (¥ — 9) £ (V52 R)} C comp K, ,
{@,9): (@ — ) + (W — y) = &V B5/2 R} < comp K, ,

and
{(z, ) : (x — x) + (¥ — y.)* < (3/4 R,)?} C interior (K*> N K?)

where & = 1/10.
Consider the function

1\7(6~0w2 _ e—m‘?)

v@, ¥ & ;1) = p——

defined on the region
SEpr)={@y):er=cd=c—-E+—nN'=rINkK,
where a > 0 and N = 1/2 z(x,, ¥,). In this region

2NT2,+2,—2wa2 2 2
v3,+v§,:4aNge“ é4]\27§M2
1 —e™) o e'r

for all ve &7 .

Furthermore, v < N on S(§, %; 7), v = 0 where 0 = r, and v > 0 where
oc<r. If A, B, and C are evaluated at (z, ¥y, vv,, 7v,), the following
succession of inequalities are valid in S(& »; r) where v, 0 < v <1, is
any fixed real number.



1196 S. E. BOHN
Llyv](1 — e*7) = 2ayNe=*"{2a[A(x — &) + 2B(x — &)y — 1)
+Cly—7]—(A+C)

s 4a(AC — B)q* B
= 2avNe {(A ToOTvaro—far—5 “T C)}

20y Ne —2*
> L2 19t — (A C)
20y Ne=** 1
= = 2903 9 142 9 _
=4+ 0) {20‘57” ——1 log log [v(v} + v}) + €] — h(z, y)}
20y Ne—2* M
> L~y 22 .
=" @+0 {Zaer —125 log log[ + e] 5}

where § = max h(z, y) for (z,y)e 2. Now L[vw]}=0 on S(&, »; r) if one
chooses

o o low [+ e + 1260}
> log log | 2L 1256}
e R e

Let
v,(, 9) = (@, Y; @, Ys; V52 Ry)
and
vy, ¥) = v(@, ¥; Ty, Y5, V' B2 Ry) .
Let
o = 45Ro —=_log log [(4M /3¢ R,)* + e] + 1255}

and assume that (z, ¥) is in the interior of K* N K*® and either (x,y)ec "
or (z, y) satisfies condition (b), then we can apply the Maximum Princi-
ple to conclude that z(z,y) > v(x,y). Similarly, if (z,y) is in the
interior of K* N K® and either (x,y)e " or (z,y) satisfies (¢c), we can
conclude that z,(x, y) > vy(x, y). Thus, for all (z, y) € interior (K* N K?)
it follows that

22, ¥) > min [vy(%, ¥), vi(z, Y] .
Now on the circle (x — x,)* + (¥ — ¥.)* = €(3/4 R,)?

5., z)_ (_E 3
exp( ZkaRo exp 1 aR0>

1 — exp (— -45— aRoz)

70 = min [’Uz(x; y), vs(x; y)] = N

> N1 — M) exp <—— % VaROZ)
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where ) = [(V17 + 8¢)15]/10 < 1. Another application of the Maxi-
mum Principle yields z,(x, ¥) > (v,/N)v,(x, y) on S(z,, ¥., 3/4 R,) where

v, ¥) = v(x, Y; T4y Y 3/4 R).
Now the annulus S(x,, ¥,; 3/4 R,) contains the disk with center at (x,, ¥,)
and radius 1/7 R,. On this disk

exp ('— 19_6 P2aRo2> — exp <— -1% aR&)

1 — exp (— 1—96 aR(?)

vy(®, y) =7=N

> N(1 — p*) exp (— —1%- pzaR§>

where p = 11/21.
Therefore, on the disk with center (z,, ¥,) and radius 1/7 R,

2o 9) > 8> 21— — g exp| — (2w 20 )aRe e )

1 2 . 2 . _ﬁ 2
> (=ML - ) exp(— 22 aki)e.(e )
> % (1 — N)(L — ) exp (—1255)

- exp {—log log [(4M /3¢ R,)* + el}2.(%o, o)
> H[o, M, R.Jz.(2, ¥o)
on 0 =<|P— P,| =17 R, for all ve &%
where

HI[S, M, R = % (1 — )1 — 0% exp (—1250) {1og [( 3?1‘;{0 ) + e]}_l.

Now by an inductive argument one concludes that

H[o, M, 1/7)"R;] = —;— (I — M1 — p°) exp (—1256)

- {log [(4—3”%)1 o))" = 2 Hip, M, 1T R]

and
2(x, ) > —71%- HI3, M, 1/7 Re(@o, y) on 0 < |P— Py| < (1/T)""R,,
n=1,2,8, -+ for all ve &Z, thus proving the lemma.

LEMMA 2. Using the assumptions of Lemma 1
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1
Hlo, M, 78 Ry}

Jor 0= |P— P,|=1/8R, for all ve .

z(x, y) < 220, Yo)

Proof. Follows directly from Lemma 1.

It is of interest to note that if 2(x,%y) is a positive solution of
Az, v, p, )r + 2B(z, ¥, p, ¢)s + C(x, ¥, »,q)t =0 in a domain 7, then
for any compact U c T and compact S properly contained in U there
is an H > 0 depending only on the bound of z(x,%) on U and the
distance from S to the boundary of U such that

% 2(2y, ¥y) = 2(%1, Y1) = Hz(%, ¥)
for any two points (z, %) and (x,, ¥,) in S.

LemMMA 3. If z/(x,%) ve <F is a solution of (1) on the interior of
a closed circular disk K, of radius R, <1 with center Py(x, ¥,), then
there exists a continuous decreasing function g, (r), 0 = r < Ry, g5(0) =
1, and a continuous increasing function fp(r), 0 =7 < R, fp(0) =1
such that

gPO(’I‘)Z,,(xo, Yo) = 2(x,Y) = fPO(/r)zv(xo’r?/o)

for 0 2| P— P)| = r where g and f are independent of v.
Proof. Define

7o (r) = inf ing BEU.
L VvE g |P—Pyl=r zy(xoy yO)

and
vE€gp |P—Pylsr zy(x[,, yo)

By Lemma 1, Lemma 2, and an argument similar to that used in
Kellogg [4] (page 263) fp(r) and gp(r) exist for each 0=1r <R,
Using standard arguments it is clear that

(2) lim inf inf 2&Y _inf inf %Y
rory Ve IP=Polsr 2Ty, Yo)  vER IP=Polsro 2%y, Yo)

for 0 < r, < R, and

(3) lim sup sup M = sup sup _w.)_
r—r> veg IP—Polsr 2,(%y, Yo)  vES |P-Polsry 2Ly, Yo)
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for 0 < 7, < R,. Also,

(4) lim inf inf 2% _ 1
ro0t YEP IP—Polsr 2,(%,, Yo)

This follows by observing that whenever z,(z, ¥) >0 for 0 < |P— P)| £ R,
2z, y) > H[0, M, R)z(2,,y,) for 0 =<|P— P,| =1/7TR,
and all ve <#. This latter inequality implies

2%, y) — H[0, M, Rz, Yo)
> H[ay M, 1/7 Ro]{zv(xo: yo) - H[ﬁ, M, Rn]zv(xm yo)}

for 0 <|P— P,| < (1J7)’R, and all ve . Thus, for 0 < |P— P)| <
(1/7}R, and all ve <z

o, y) > [1— (L= HIo, M, RJ)(L — HI3, M, 1T Rz, 1)
By induction
o, u) > |1 - 11— BB, M, 1R [0 0

(5) n .
> [1 — (1 — H[, M, R I <1 — H[5, M, 17 R)] 7)] (@or U0)

for 0 <|P— P,| = (1/7)""R, and all ve <#. Hence,

1 — inf inf @Y

vEz IP—Pylsa/nntig, zv(xo, ’!/o)

< exp (—HI5, M, R — HI[5, M, 1JT R 5, )

1=

|

(4) then follows by the usual argument.

Suppose P is any point in the circle 0 < | P — P,| = (1/7)"R,/[1 + (1/7)"]
and let K be the interior of a closed circular disk of radius 1/[1 + (1/7)"]R,
about P. Since z,(z,%) >0 on 0 <|P— P,| < R, we have z,(z', %) >0
on 0 =<|P—P'|<RJ[1+ @/7)"] for all yve &#. Also

w(ef, ) = [1 = (L= HD, M, T8 R))
11— H1o, M, 18 R) ) | (e, 1) > 0

=1

on
1
1+ @

Now Py, ¥,) is such a point P’(x’,%’); therefore, for all ve &z and
0=|P—PF|= Q0 H1/A + @7M]IR,

0<|P— P'| <)+ R, for all ve 7 .
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w(w0 v) > |1 — (L= H[, M, T8 R.)

e

T (1~ H[5, 1,18 R(,]—%l,—)] (2, ) ,

=1

2y(%
sup sup 2@ Y) 1
Ve |P—Pgls NP1 14+ /1 ™MIRy 24(Zoy Yo)

< exp (—H[3, M, 78 R — H[3, M, 1/8 R}] 3} %)
and we may conclude that

(6) lim sup sup 2@ Y) g
ro0+ VEB |P—Py|<r z,(wo, 2/0)

We will now show that

(7) lim sup sup @y sup sup (2, Y)
rork VEZ |P—Polsr 2%, Yo)  vEB 1P—Poisry 2,(%, Yo)

for 0 = r, < R,.

Suppose the contrary, then since fp(7) is increasing lim,_,+ f5 (r)>
Sfrp(r). Hence, there exists an ¢ >0 and a decreasing sequence {r,}
converging to 7, such that for all positive integers n fp(7.) — fr,(70) > €.
By the definition of supremum there exists for the above ¢ and each
n a function z,(x, y) such that

sup sup %Y qp A@Y) €
v€p |P—Polsry zv(wor ?/0) 1P—Pgl<ry zn(xor yo) 2

IA

and thus,

sup @Y _qup sup H&Y 5 €
1P—Pqlsn 2, (%5, Yo) veg |P-Polsry 2,(%o, Yo) 2

By the Maximum Principle

wp B0
1P=Polsry 2, (%o, Yo)

is assumed at some point P,(x,,¥. on |P— P,| =7, Hence, there
exists a sequence of points {P,(x,,v,)} which contains a convergent
subsequence which converges to a point Pj(xf, ) €| P — P,| = r,. Sup-
pose our sequence is such without relabeling. Let

., — E/Sup sup &Y
vE€g |P—Pyl=r zv(xm ',1/0)

Therefore,
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2.(%0, Yo) 2u(2oy Yo) 2,(%0, Yo) ve g 1P—Pyisry 2%y, Yo)

> —el—Sllp sup Z,,(x, y) .
2 vem 1P—PyIsry 2,(Xy, Yo)

Let us center our attention on the point P/(x), ;). Then, using (6),
there exists a ¢, > 0 such that

sup sup z—”(w’-'—-y?———lée—l if r<éd,.
v€P |P-Pg|sr zv(xm yo) 2

Also, by (4) there exists a 4, > 0 such that if » < 9,

1—inf inf &Y &
ve® |P-Pjisr 2,0, Yo) 2

Thus, if | P — P;| < min [4,, 0,]

2@y 4l <&

&
2(%0, Yo) o2
It then follows that if |P, — P;| < min [d,, d,]

for all ve &7 .

'6—1' sup sup zV(x’ y) zn(xn! yn) — zn(x(’)y yl,))

2 V€F |P-Pglsr) zv(xoy yo) zn(xoy yo)
< 2@, ) = 20, ¥0) | 24(%0, Y0)
2.(x, %5) Zu(Zos Yo)
— ’ ’
< 2@ Ya) = 2@ Y0 | gy gup EY)
zn(wﬂv yé) v€Z |P~Pyl=rg zv(xo: yo)
< & qup 2, ¥)

’
2 vez 1P-Pjisn zv(xor yo)

a contradiction. By a similar argument we may conclude

(8) Lim inf inf 2@&Y _ inf ing &Y
'r-—:r(‘)*‘ VER |P—Pylsr zv(xo, yo) VE 5 |P—Pyl<rg zv(yo’ xo)

Hence, by (2), (8), (7), and (8) our lemma is true.

Proof of Theorem 1. Recall that for ve .o |f,| < M on ® and
|2/, ¥)] < M on 2. Also, for all ve &, z(x,y) + M satisfies (1) and
2z, y) + M >0 on Q2.

Let Py(z,, ¥,) be any point of 2 and assume K is a closed circular
disk whose center is Py(,, ¥,) and such that K — 2. Hence, by Lemma
3 there exists positive continuous functions f, () and g, () (independent
of V) such that lim,.,fp(r) =1, lim,_,g,(7) =1, and on the interior of K

9 (N[2@o, Yo) + M] < 22, y) + M < S (20, ¥o) + M]
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and

— |2, Yo) + M| |gp(r) — 1] = 22, ¥) — 20, Y0)
= |Z,,(a’}0, yo) + M[ [fPO(/") - 1[

for all ve o7, It then follows that since {z,(x, y):ve o7} is uniformly
bounded on 2 that {z,(z, %) : v¢ &} is equicontinuous on Q thus proving
Theorem 1.
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SOME FUNCTION CLASSES RELATED TO THE
CLASS OF CONVEX FUNCTIONS

A. M. BRUCKNER AND E. OSTROW

1. Introduction. A real-valued function f defined on the positive
real line [0, ) is said to be convex if for every z = 0,y = 0, and
a,0 =a =1, f satisfies the inequality

) Sflaz + (1 — a)y] = af(x) + 1 — a)f(y) .

Such functions are important in many parts of analysis and ge-
ometry and their properties have been studied in detail (see e.g.
the expository article Beckenbach [1] which contains an extensive
bibliography).

A related class of functions is the class of superadditive functions
which satisfy the defining inequality

2) flx+y)zf@ +fy).

These functions, more precisely their negatives which are subadditive,
have been studied by Hille and Phillips [5] and R. A. Rosenbaum [7]
among others.

In the paper we shall be concerned, in large part, with classes of
functions that properly lie between these two classes and which are
defined by inequalities which are weaker than (1) but stronger than
(2). We obtain a strict hierarchy of classes and various characterizing
properties of these classes and study a simple averaging operation that
transforms each class into a smaller class.

2. Definitions and elementary properties of the classes. We shall
restrict our attention generally to functions which are continuous, non-
negative, and for which f(0) = 0 unless the contrary is explicitly stated.
The requirement of being nonnegative simplifies many proofs which
could be given without this assumption by considering the sum of f
with a suitably chosen linear function.

DerFINITION 1. Let f be defined on [0, ). The average function
F of f is the function defined for all x > 0 by

F@ =L{r@ar, FO)=0.

DEFINITION 2. The function f is said to be starshaped if for each

Received January 10, 1962.
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a,0=a =<1, and all z

flaw) = af (x) .

It is easy to see that the set of points lying above the graph of
a starshaped function is starshaped with respect to the origin in the
usual sense. A function can, of course, be starshaped with respect to
any other point on its graph, the definition of this phenomenon being
made in an obvious way. The characterization of Lemma 3 below then
applies mutatis mutandis. It is not hard to verify that a continuous
function is convex if and only if it is starshaped with respect to a set
of points dense in its graph.

DEeFINITION 3. The function fis said to be convex on the average,
starshaped on the average, or superadditive on the average if F is
respectively convex, starshaped, or superadditive.

In the sequel we shall use the abbreviation COA for convex on
the average. We shall also use the following notation for derivatives:

F(x) = lim [z, + h}z — f(xy) Fl (@) = lim fxy + k) — f(x)
K it » J Lo Aim h s

h—0 h—ot

and

Fl(x,) = lim S, + k) — f(x) .
=T h

h—0—

Simple characterizations of the classes are recorded in the following
series of lemmas.

LEMMA 1. A continuous convex function f is left and right differ-
entiable at each point, the one-sided derivatives being increasing func-
tions. Conversely, if any one of the Dini derivatives of a continuous
function f is increasing, the function ts convex.

Proof. For a proof of the first part see Hardy, Littlewood, and
Polya [4]. To prove the converse, let Df denote an increasing Dini
derivative of f and let G be an indefinite integral of Df. Then G is
convex. If %, is a point of continuity of Df, then both f and G are
differentiable at z, and Df(x,) = G'(x,) = f'(x,). Since Df is increasing,
it is continuous except on at most a countable set of points. It follows
(see Hobson [6]) that f and G differ by at most a constant. Thus f
is convex.

The proofs of the next three Lemmas are straightforward and will
be omitted.
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LEMMA 2. The function f is COA <f and only if f' = 2F".

LEMMA 3. The function f is starshaped if and only if either one
the two following conditions is satisfied:
(i) f(@)|x is increasing,

(i) f'(®) = f(x)/x for all .

LEMMA 4. The function f is starshaped on the average if and
only if f = 2F.

The inequality f = 2F has the following simple geometric interpre-
tation: Since

oF@) = |y dt = L5,

the area under the graph of f is at each point dominated by the area
of the triangle with vertices (0, 0), (z, 0) and (x, f(x)).
The inequality f(xz,) = 2F(x,) can be cast in the form

Fa) -1 flz)
T, 2 @,

Since F'(x)/x is increasing, we actually obtain the slightly more
general result,

Fl@ - F(r) -1 f(z)
a T x 2

for all @ = x,. This means geometrically that for a¢ < x, the area of
the triangle cut off from the above mentioned triangle by the line
% = @ is no smaller than the area under the graph of f from 0 to a.

LEMMA 5. If f is respectively convex, convexr on the average,
starshaped, or superadditive, then f is a mondecreasing function.

Proof. We have restricted ourselves to nonnegative functions for
which £(0) = 0. If f is superadditive, then f(y) = flx + (¥ — x)]

Z2f@) +fy—2)=f(x) fory=w.

As we show in Theorem 5, f satisfying any of the other conditions
implies that f is superadditive.
If f is merely starshaped on the average, it is clear from the
geometric interpretation of f = 2F that f need not be increasing.
Since f is an increasing function provided f belongs to one of the
function classes of Lemma 5, f has a finite derivative almost every-
where. For all these classes, F' has a continuous derivative for z > 0
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since xF'(x) = f(x) — F'(x). We consider the behavior of F’ at the
origin in Theorem 7 below.

We now investigate various operations under which our function
classes are closed. We have first of all

THEOREM 1. Let f and g be respectively convex, COA, starshaped,
starshaped on the average, superadditive, superadditive on the average;
then for a = 0,b = 0, af + bg belongs to the same class.

The proof involves a trivial computation.
The next two theorems consider the behavior of our classes under
the operation of pointwise limits.

THEOREM 2. Let {f,} be a sequence of convex, starshaped, or sup-
eradditive functions converging pointwise to a limit function f. Then
f 1s respectively convex, starshaped, or superadditive. Moreover, the
average functions F, converge to the average function F.

Proof. It is clear that the defining inequalities of these classes
are preserved in the limit. The proof of the second statement parallels
the proof of the corresponding part of Theorem 3.

THEOREM 3. Let {f.} be a sequence of COA functions converging
pointwise to a continuous limit f. The limit function s then COA
and the average functions F, converge to the average function F.

Proof. Let b >0. The sequence {f,} is uniformly bounded on
[0, ] by sup {f.(0)} = M. M is finite for f,(b) — f(b) and M is a uniform
bound because each f, is an increasing function. By the Lebesgue
bounded convergence theorem,

%S:fﬂ(t) dt — %S:f(t) dt

for each xz€[0,bd], that is F,(x) — F'(x). Since b was arbitrary, this
last relation holds for all . The convexity of F follows from the
convexity of F,.

In general, however, it is not true that the limit of the average
functions is equal to the average of the limit function. If f, —f and
the averages F,— G, an easy calculation shows that FF<G. For
functions which are starshaped on the average, we do have the follow-
ing theorem.

THEOREM 4. If{f.}is starshaped on the average and f,— f, then
f is starshaped on the average.
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Proof. For each 2 >0, let Tz and T* be the linear functions
determined by the origin and the points (, f,.(x)) and (x, f(x)). Since
Sfo—f, T:— T*, Moreover, the inequality 2F, < f, is equivalent to

|rwat = miwa;

by Fatou’s theorem,

S:f(t) dt < lim S:fn(t) dt < lim S:T;(t) dt — g:Tz(t) dt .

n—0co n—rco

Thus,

%Swf(t) dt < %S:T”(t) dt = %f @,

0

i.e.
Flo) =L
(%) = Ef (%),
8o f is starshaped on the average.

3. The hierarchy. We now consider the inclusion relationships
among the six classes.

THEOREM 5. Let f be a mnonnegative continuous function which
vanishes at the origin.

Consider the following six conditions on f:

(i) f is convex,

(ii) f ¢s COA,

(iii) f s starshaped,

(iv) f is superadditive,

(v) f s starshaped on the average,

(vi) f is superadditive on the average.

Then the following chain of implications is valid but none of the
reverse implications holds: (1) — (ii) — (iii) — (iv) — (v) — (vi).

Proof. (i) — (ii). This will be a consequence of Theorem 10.
(ii) — (iii).
f(x) — F’(x) s F('B) .
x

©

Since F' is convex, both F'’ and F'(x)/x are increasing. Thus f(x)/x is
increasing. It follows from Lemma 3, condition (i), that f is starshaped.
(iii) — (iv). For z >0 and y > 0, we have
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fx) ~ f@+y)
x = x4y

and

@) _ F@+9)
y x4y

These inequalities are equivalent to

(@ + s = af(c + y)

and

@+ =yf@+v)

which on addition yield f(x) + f(¥) < f(x + ¥).

(iv) — (v). We first consider the case in which f is a polygonal
superadditive function. The general case then follows by a limit
argument.

Let # > 0 and let f be polygonal of n segments with vertices over
the equidistantly spaced points 0,v,2v, ---,nv =2«. Let T be the
linear function determined by the origin and the point (z, f(x)), i.e.
T@) = (f(x)]x)t for all t. Furthermore, let q(t) = f(¢) — T(t). The
function ¢ is polygonal and superadditive, having its vertices over the
same points as f, and ¢(0) = qg(x) = 0. We will show that S:q(t) dt <0

which suffices for F' to be starshaped. Using the linearity of f on the
intervals [kv, (k + 1)v], we obtain

gywm:vgﬂm>

v(ni/z[Q(kv) + q(n — k)v)] if » is odd ,
k=1

vq((n/2)v) + vnlizz:[q(kv) + q((n — k)v)] if n is even .

Now q(kv) + q((n — k)v) < q(nv) = q(x) = 0 for ¢ is superadditive. In
either case xq(t) dt < 0.

In the goeneral case let {p,} be a sequence of polygonal functions
over equidistantly spaced points such that p, — f. Let T be the linear
function defined as above related to f. Since {p,} is superadditive for
each 7 (see Bruckner [2, THEOREM 8] and p,(x) < f(b) for all » and
all x < b, where b is arbitrary, it follows for each x that

[putyat— ey ae.

Since
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|2uat =T at,

the limit result

S:f(t) di < S:T(t) dt

follows.

(v) — (vi). This is just the case (iii) — (iv) for F.

That none of the reverse implications hold is shown by the follow-
ing examples:

(i) — @G): f(x)=2"—2 is COA on [0,4/9] but convex only on
[0, 1/3].

(iii) — (ii):

IA
IIA

2
f@ =1 O=a=l
x 1

is starshaped on [0, ) but COA only on {0, 1].

(iv) —(i): f@=n+@—n)forn=c<n+1,n=012--.)
is superadditive on [0, ) but starshaped only on [0, 1].

(v) — (iv): Let f be any function that is starshaped on the average
without being increasing.

(vi) — (v): Let F be any superadditive function which is not star-
shaped such that F'’ is continuous. Then zF'(x) has a continuous
derivative f(x) and F' is the average function of f.

4, Behavior for large and small 2. Our first theorem in this
section shows that superadditive functions are differentiable at the
origin. Actually, a weaker hypothesis suffices to give this result.

THEOREM 6. Let f be a continuous nonnegative function on [0, c],
F(0) =0, such that f((Ajn)x) < A/n)f(x) for alln=1,2,8, -+, and for
all x€[0,c]. Then f is differentiable at x = 0.

Proof. The hypothesis f((1/n)x) < (1/n)f(x) implies that

L@ < o .
20 P
‘Suppose f is not differentiable at the origin. Then there exists an
& > 0 such that 77(0) — £’(0) = 8¢. Choose =, so that f(z,) < (f'(0) + €),
and let {y,} be a sequence such that v, —0 and f(y.) > (f'(0) — &)y,
(k=1,2,8,---). Since f is continuous at x, there is a § > 0 such
that if |o — x,| < 9, then f(x) < (f'(0) + ¢)x. Let y* be a member of
the sequence {y,} such that y* < 4. There is then an integer N such
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that
| Ny* — @ | < 9; hence f(Ny*) < (f'(0) + e)Ny* .

However
FW) S 1) < (£10) + ep* < (7/(0) — eyy*

which contradicts the fact y* is a member of the sequence {y,}. Thus
f is differentiable at the origin.

COROLLARY. If f s superadditive, im particular if f is star-
shaped, COA, or convex, then f'(0) exists.

THEOREM 7. Let f be superadditive on the average, and let F be

its average functton. If f'(0) exists, then F' is continuous at % = 0
and f'(0) = 2F"(0).

Proof.

Fio = L&) _ F@, 2>0s

@X

The right member of this equality approaches f’(0) — F’(0) for
F'(0) exists by Theorem 6; hence lim,., F'(x) exists, and because F’
is a derivative, this limit must be F’(0). Thus, F' is continuous at
2 = 0 and 2F"(0) = f'(0).

Theorem 7 indicates that 2F(x)/x is approximately the same as
f(x)/x for  near 0, provided f behaves sufficiently well near the origin.
The next theorem shows that under suitable hypotheses the same
behavior holds for large x.

THEOREM 8. Let f be increasing and starshaped on the average
and let F be its average function. Then lim,..f(x)/x exists and ts
equal to 2lim,.., F'(x)/x.

Proof. Since F' is starshaped, the lim,.. F'(x)/x exists.

Let a be such that 0 < @ < 1 and let M = lim,_., (f(x)/x). Then

F@ 1 Trat
i 0

X
1
2

S:"f(t) dt + mi S:wf(t) dt
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> aF (azx) 4 1 _af(ax) .
® x

It follows that

lim 2 () za2lim-F§0—x) +al — a)M.

L=r00 X x—o03
This last inequality holds for all a, 0 < @ < 1 so

hmm = sup aM == _]_W_ .

PR <e<t 1 4+ « 2

On the other hand, sinece F' is starshaped, f(x) = 2F(x) for all z so
that

lim £® < L jiy S@
g L 2 e g

It follows that lim,.. (f(z)/x) exists and equals 2lim,.. (F'(x)/x).

COROLLARY. Let f be increasing and starshaped on the average
with average function F. Then the three functions f(x)/x, F'(z), and
F(x)]x simultaneously are bounded or unbounded.

Proof. This follows directly from the identity

F@) gy 4 F@
X i

and the preceding theorem.

5. Minimal extensions. We suppose in this section that f is defined
initially on an interval [0,¢]. We shall consider in this section the
problem of extending f in a minimal way to [0, o) while staying within
the same class. We start with

DerFINITION 4. Let f be convex (COA, starshaped, superadditive)
on [0, c¢]. Suppose f is a function defined on [0, o) with the following
properties:A

(i) F = on[0,cl,

(ii) f is convex (COA, starshaped, superadditive) on [0, o),

(iii) if ¢ is any function on [0, o) satisfying (i) and (ii), then
g(®) = F(x) for all ;
then f is said to be the minimal convex (COA, starshaped, superad-
ditive) extension of f.

We restrict our definition to functions which are at least superad-
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ditive for minimal extensions of functions in the larger two classes are
not, in general, continuous.

It is well known that if f is convex on |0, ¢], there exists a convex
extension of f to [0, <o) precisely when f’(¢) < «. In this case, the
minimal convex extension of f ig linear on [¢, o) with slope f’(¢). When
f is starshaped, it is clear that the minimal starshaped extension of f
to [0, ) is the linear function with slope f(c)/e. For superadditive
functions the situation is much more complicated and has been studied
in detail in Bruckner [2], where it is shown that the minimal extension
does exist and, roughly speaking, behaves about as well as f.

The following theorem states the corresponding result for functions
that are COA on {0, c].

THEOREM 9. Suppose f is COA on |0, ¢] with average function F'.
Define f by the equations

_[f(=) 0=wx=c
I 2F(e)x + f(c) — 2F"(c)x x>c;
then f is the minimal COA extension of f to [0, ). If F is the

average function of f, then F is the minimal convex extension of F
to [0, o).

F@)

Proof. For x = ¢, we have
F) = %SZf(t) dt + %S:BFC(c)t + F(e) — 2F" (c)e] dt .

It is easy to check that ﬁ’(c) = F(¢) and that for z > ¢, F'”(x) = 0 and
F'(x) = F"(c) so that F is the minimal convex extension of F to [0, ).
Thus f is a COA extension of f to [0, »). Let now g, with average
function G, be any COA extension of f to [0, ) and let £ > ¢. Since
G is convex, (& is increasing so

G'(x) = GL(¢c) = F'(c) = F'(x) .
Thus
9'(@) = 2G'(w) = 2F"(2) = f'(#) .

Since f and g agree at ¢ and g = ', 9(®) = F () so f is indeed the
minimal COA extension of f.

If a function is convex on [0, ¢], then it has extensions of each of
the four types mentioned above. It is interesting to compare these
various extensions. As an example, consider the function f(x) = #* on
[0,1]. Its minimal convex extension is linear with slope 2, the minimal
COA extension is linear with slope 4/3, and the minimal starshaped
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extension is linear with slope 1. In contrast, the minimal superadditive
extension is not linear. It is given by the function f(x) = n + (x — n)’
forn <o <n+1,n=1238, --- (see Bruckner [2], p 1155).

6. Tests for convexity on the average. In this section we shall
consider conditions that are necessary and/or sufficient that a function
be COA. Similar tests concerning superadditive functions are found in
Bruckner [3]. We begin with the following lemma.

LEMMA 6. Let f, be the function such that

0 0x=c

So@) = F@— ¢ z>e.

If f is COA, then f, is COA.

Proof. Let F, be the average function of f,. We shall show that
Sux) = 2F(x), » = ¢. Since fi(x) =f'(x —¢) for = ¢, it suffices to
show that f'(x — ¢) = 2F(x). This last inequality will be a consequence
of the inequality F'(x — ¢) = F(%).

Defining

Aw) = |"rwar,

we have that

1
x—c

Flo—c) = S:_cf(t) dt = %

and
1 © 1 £
= = —_ . —¢)dt
Fo) = Ll ar = 2\re -0
- lgwf(t) dt = Aw)
x Jo @
It thus suffices to show that

[A@)(@ — o)) =z [A@)2~T,

the “’’’ denoting differentiation with respect to . This last inequality
is equivalent to

’ 2c — ¢
Al(z) =z m—A(a’) ’

which is, on replacing A(x) by Sm—cf (t) dt and simplifying, equivalent to
0
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the relation

ﬂw—ﬂéz%%iﬂm—@.

Since f is starshaped, f is superadditive; hence f is starshaped on the
average. Thus, by Lemma 4,

f(x—c)ng(x—c);_zﬁx—_"F(x_c)

which proves the lemma.

DEerFINITION 5. Let f be defined on [0,a]. The functions f,, f,, - -,

Jf» defined on [0, a,], [0, @,], - - -, [0, @,] respectively form a decomposition
of f provided
(i) fi(0)=0 i=1,-,m
(ii) e;+a+ -+ 4+a,=aanda;, >0fort=1,.---,n
Si(®) 0=zx=aq,
— = O 2
(i) f(x) = Sow ..(.I’T)—{"fl(a’l) o< T=0 1+ a
Jal®@ — @y —ay — -+ —a,) + fil@) + -+ + faoi(@n-y)

o —a,<r=a.
In this case we write f = fiAfai\N -+ A LS.

THEOREM 10. Let f, and f, be COA on [0, a.] and [0, a,] respectively
and let f=f A fi on [0,a, + a,]. Let f, be the minimal COA extens-
son of fi. A necessary and suffictent condition that f be COA s that
f=fion[0,a + al

Proof. The necessity is obvious. As to the sufficiency let K, be
the average function of f,. For x€]0, a, + a,], write

F@ = @) + [F@) — B@] =A@ + {170 - folda.

Consider g¢(t) = f(¢t) — fi(t). g(t) =0 on [0,a,] so there is an h
defined on [0, a,] such that g(t) = A, (t) for t €0, a, + a,]. On [a,, a; + @],
—f, is linear. Since f, is COA on [0, a,],» is COA on [0, a,] being
the sum of COA functions. It follows from Lemma 6 that g is COA
on [0, a;, + a,]. Its average function is therefore convex and so F' is
the sum of convex functions; hence convex.

THEOREM 11. Let f,, -+, f. be COA on [0, /], - - -, |0, @, ] respectively
and let f=Ff ANLfa A\ -+« A Ffo. Furthermore let f, be the mimimal
COA extenston of fi, (k =1, ---,n). Then f is COA on [0, a, + -+ + a,]
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W fu Afeis A cor A fo = Fu for each k=1,2, -+, n.

Proof. The proof is an induction argument using the sufficiency
part of Theorem 10.

We now return to the proof of the first part of Theorem 5, namely
the proof of the statement: if f is convex, then f is COA.

Proof. Let us assume first that f is a polygonal function on [0, c].
If f has only one segment, then f is linear so the theorem is trivially
true.

Supposing, by induction, that the theorem holds for polygonal
functions with n segments, let f be polygonal with (n + 1) segments.
Let f, be the polygonal function which agrees with f on the first »
segments of f and let 7. be the minimal convex extension of fo to
[0,¢]. Thus f, is convex and polygonal with = segments and so is
COA. On the last segment f is linear and f > f.. By Theorem 10,
f is COA on [0, c].

The general situation follows immediately by Theorem 3. Let {p,}
be a sequence of convex polygonal functions approximating f. The
{p,} are thus COA and so their limit function £ is COA on [0, ¢]. Since
¢ is arbitrary, this concludes the proof.
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LIMITS AND BOUNDS FOR DIVIDED DIFFERENCES
ON A JORDAN CURVE IN THE
COMPLEX DOMAIN

J. H. CURTISS

1. Introduction. Let S,;; = {2, 2, -+, 2,11} e a set of # 4+ 1 com-
plex numbers and let f be a function on a set containing S,,, to the
complex numbers. The divided difference d, = d,.(f |2, 2s * -+, Zn11) Of
order n formed for the function f in the points' S,., is defined in a
recursive manner as follows:

d=d\(f|z,2)= f—(zé)—:#

dy = dy(F| 20, 2 25) = di(f121, 2) — di(f 25 2)

2 — 2

Il

dn dn (fl Ry Rgy * 0y zn-l-l)

= Gu(fl2n 2y ooy 20) = As (F 20asy 20y 2205 20)
2 — R

The definition requires further discussion when the points in S,,, are
not all distinct. We shall suppose that they are distinet unless provi-
sion is explicitly made for coincidences.

It can be proved by induction [7, p. 15] that if

@, 1(2) = (2 —2)(2 — 2) -+ (2 — 2,41

then

(1.1) d, = zg—@(z—) ,

where the prime denotes differentiation of ®,.,(2) with respect to z.
This formula shows that d, is a symmetric function of 2z, 2, -+, 2,,..

The divided differences of a function given on the real line play a
prominent role in the mathematics of computation. Their counterparts
in the complex plane have appeared in various classical studies of ap-
proximation by complex polynomials. The formal algebra of complex

Received January 10, 1962. This research was supported by the United States Air Force
through the Air Force Office of Scientific Research of the Air Research and Development
Command, under Contract No. AF 49 (638)-862.

1 We use the words ‘‘points’’ and ‘““‘numbers’’ interchangeably in referring to the argu-
ments in divided differences. This follows the practice in interpolation theory. It is con-
sistent within this terminology to speak of ‘‘coincident points’’ 2.
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divided differences is of course much the same as for the real case, but
the analytical properties of complex divided differences, such as asympto-
tic behavior and representability by integrals, are in some cases quite
different. It would appear that these analytical properties have not
received much attention in the literature, although some of them seem
interesting.

A primary motivation for the present paper was the need to estab-
lish that under certain smoothness hypotheses on a function f given on
a Jordan curve C, the divided difference of f of a fixed order formed
in points on C is uniformly bounded in modulus for all choices of the
points. This property was required in a study of complex interpolation
in random points [1]. The existence of the bound is proved in §2 be-
low for the case in which C is the unit circle. The extension to more
general Jordan curves appears in §3. In §4, the asymptotic behavior
of successive divided differences of order n formed in » + 1 points on
a Jordan curve, n =1, 2, ---, which in their totality become everywhere
dense in a certain way on the curve, is investigated. It is found that
the behavior to be expected in cases important in the theory of complex
interpolation is that the nth divided difference multiplied by the (n+1)th
power of the transfinite diameter, or capacity, of the curve C in ques-

tion approaches the limit S fdz|(2ri). Section 4 is essentially self-con-
4

tained and can be read separately.

As was mentioned above, the impetus for this study came from a
particular application. It is hoped that the results may turn out to be
useful in other directions. However, the general spirit in which this
paper is written is that of interest in the subject for itself alone, and
the possible applications will not be considered further.

2. An upper bound for the modulus of a divided difference formed
on the unit circle. If the numbers z, are all real numbers, and if f is
continuous on a closed interval I of the real line containing S,,, and
possesses an nth derivative f™ at each point of the corresponding open
interval I, then by elementary calculus [7, p. 24] it can be shown that
there exists a number #, in I such that d, = f™ (x,)/n!. Thus if |f™ |
is uniformly bounded everywhere on I, so also is | d, | for all choices of
S,.1 on I. Again, with real points S, ., if £ is absolutely continuous
[8, pp. 364 ff.] on I, then the iterated integral on the right side of the
following formula (in which we define z,,, as meaning z,),

(2'1) dn(fl Ry Ry * 0y zn+1)

1ty Vn—1 n
= S S .o .S: f<")|:22 + ;yi(zj+2 - Zj+1)]dy1 dyz ces dyn ,

0Jo

has meaning for all choices of S,,, in which the points z; are distinct,
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and indeed can be used to extend the definition of d, to cases involving
confluent points. It is easily shown by induction that the formula is
true [7, pp. 17-18]. Thus it follows with f™ absolutely continuous
and |f™ |, where it exists, uniformly bounded on I, that |d,| is also
uniformly bounded for all choices of S,.. on I such that completion of
the definition of d, through (2.1) is possible. If M is the least upper
bound of |f™ | on I, then |d,| < M/n!.

The formula (2.1) is no longer generally valid when the numbers
S,+: are not all real, and the derivation of a bound for |d,| in terms
of a given bound for |f™ | is not so readily accomplished. In the re-
mainder of the section we shall consider this problem in the case in
which S,,, lies on the unit circle in the complex plane.

In the development, we shall use a complex-variable type of inter-
pretation of the derivatives of a function g given on the circle C: |z |=1.
The symbol ¢®(z,) will mean

lim dy(g 2, 2) = lim 9B = 9@) |41 =1 |z =1,
z

2521 2921 2 — 1

provided of course that the limit exists. Higher derivatives g® are to
be defined recursively. The circle C can be parametrized in a one-to-
one manner by the equation z = ¢%, with a < 0 < a + 27, where « is
chosen arbitrarily. If this is done, then

The chief result is this:

THEOREM 2.1 Let the function f be given on C:|z| =1 together
with its first n — 1 derivatives f©, f®, --., f® V. Let the points S,
lie on C and be distinct. Then if " satisfies the Lipschitz condi-
tion:

| f () — FoDE) | SNz —E], A >0,

for all z and t on C, it follows that
TV 7T\
305 ™

(2-2) Idn(flzlv N "',zn+1)| é P<n+1)
2
uniformly for all such S,.,, where \, is the least upper bound of
lf™@)], 1z]=1.
The symbol I" in (2.2) refers to the Gamma Function.
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The hypothesis on ™ has the implication that f® be absolutely
continuous on |z | =1, and that it therefore be the indefinite integral
of a derivative f™ existing everywhere on |2| =1 with the possible
exception of a set of Lebesgue measure zero. Moreover the implication
is that | f™ |, on the set where it exists, is bounded and its least upper
bound \, does not exceed \.

Our proof involves integral representations, and it is important to
be explicit about the integral calculus to be used.

Consider two points e and e** on the unit circle. The complex
line integral of a function g given on the unit circle extended over either
one of the two arcs of the circle joining these points, directed from
¢*2 to e'1, is to be defined as a Lebesgue integral with respect to the
parameter 6 in the parametrization z = ¢?®., That is, if A is the chosen
directed are, then

(2.3) S 9(2)dz = S“‘g(ew)ieif*da .

If ¢ is continuous in a neighborhood of e**!, then

(2.4) L | gda= LENET — g
et Ja 1e'"!

The notation for the integral on the right side of (2.3) is ambiguous
in that it does not indicate which one of the two possible directed arcs
A is being integrated over. However in the sequel we shall be dealing
only with complex line integrals on |z| = 1 which are independent of
the path of integration. Such an integral extended over either arc
directed from z, to 2, |2, | =|%.| = 1, will be denoted by

S:g(z)dz .

If the two arcs joining z, to z, are are of equal length, then «a, = a,+7,
so the variation of ¢ in (2.3) is over a closed interval of length =« of
which one endpoint is a,. If the two paths are not of equal length,
then the shorter one corresponds under z = ¢ to an interval of values
of 6 of which one endpoint is &, and the other one, say «’, is such that
z,=¢e"1=¢" and |a, — a'| < w. (For example, if @, and «, are rest-
ricted to the interval [0, 27] and if «, > «y, @, — o, > 7, then we take
o =21 + )

We shall now drop the parentheses around superscripts indicating
derivatives of functions, but it is to be understood that superscripts
can also be exponents when the context requires, as in (z — z,)*. In
the case of divided differences, a derivative superscript will always in-
dicate a partial derivative with respect to the first argument when the
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notation in the first paragraph of the Introduction is being used. That
is

a(k)dm(fl Riy B9y ** %y Zm+1) .

d’:n = d’:n(f I R1y gy * 00y zm+1) az{’”

To prove Theorem 2.1 we need two lemmas, of which the first is
as follows.

LEMMA 2.1 Let the function f given on C:|z| =1 be such that its
(n — 1)st derivative exists everywhere on C and is absolutely continu-
ous. Then

| — apr-ipreyar

(2.5) di7(f] 2, 2) = 2 G — 2"

2.l =1, |z =1, 2 # 2, h=1,2---,n.

The integral is independent of the path of integration on C.

The absolute continuity of "' implies the absolute continuity of
Ly f% «++, f"? and so implies that each of these functions including f"!
is the indefinite integral of its derivative.

In the case h = 1, with 2, = e'*, 2, = ei*,

rf’(t) dt g"” F(e)iedo
21— 2 - 21— %

— f (zl) _ f (22)

2T 2

== 2

@ tor e s
S fl(ew),bewde

2 — 2

The second and fourth members of the equation show that whether
a, > a, or a; < «,, the integral is independent of the path. Thus the
Lemma is true for ~ = 1.

Suppose now that (2.5) gives a valid representation of d, 1 < k<h,
with the integral independent of the path and 2, # 2,. Then using (2.4),
we have after a brief computation

a2 e — k| — ) eyt

2.6 df =
(2.6) 0z, (2, — 2,)**!

Because of the absolute continuity of f*, integration by parts is valid
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in the integral in (2.6), with f* to be differentiated and (¢ — z,)** to
be integrated with respect to ¢. We thereby immediately obtain (2.5)
with & =k + 1, and the integral is again independent of the path. The

premises of the induction are true for k& = 1, so this establishes the
Lemma.

LEMMA 2.2 Let the fumnction g be given at all points on |z]| =1
with the possible exception of a set of Lebesgue measure zero; let
| 9(z) | = M where defined on |z| =1, and let g be such that

Iz, 2) = S“(t gty dt, |z =z =1, k=0,

1s independent of the path of integration. Then
I <lc +1
2 /M, k=0,1,2---,

* )

(o) | VT

@.7) lmk— <

for all z, and 2z, 2, #+ z,, on |z]| = 1.

When k£ = 0, the right side of (2.7) reduces to wM/2.

For the proof, we make the shorter arc joining 2z, = e!*z and 2z, =
et (or either of the two arcs if they are equal in length) correspond
under z = ¢* to a f-interval [a,, a'] or [, «,], where «' is such that
z,=¢" and |a, — a'| = 7. Thus

umw»=YwW—amwwmww.

For the case k = 0, we use the inequality |sind| = |20/n|, —7w/2 <0<
/2, which is merely an expression of the fact that sin 4 is convex on
[0, 7/2]. We also use the identity e® — e = 2ie!“*P* sin[(a — B)/2].
Then since | @' —a, |/2 = 7/2, it follows that |2, — 2, | = 2sin [(@'—a,)/2]|=
@) | 2(a’ — a)[2]. Now | I)(z,,2,) | = M| &' — a,|, so the inequality (2.7)
follows at once for k& = 0.

For k = 1 we have (recalling the restriction on |a' — «, ),

M2k Sw, sin® <0—_a'§> dﬁ‘
I Ik(zlr 22) ' < L2 2
(2.8) . E+1 — . r__ a
I zl z2 | 2k+1 Slnk+1 a 2
S“‘ gint| 9 — % dal
e
2 o —a,

sink-{-—l
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We make the substitution 8 = |6 — «,|/2 in the integral and let v =
|a' —a,|/2<7/2. By examination of the various cases corresponding to
k even or odd and « < «,, & > «, we find that the righthand member
of (2.8) is always equal to

M S@}}"_@i@ — MS().

o sinttiy

Inspection of its derivative shows that S(v) increases steadily with v on
the interval 0 < v < /2. The value of S(7/2) is given by the well known
formula

S"”sinwcw :1/2—,;1'@ ; Dy
| r(5)
Thus
ottt
2

as was to be proved.
Now let g in Lemma 2.2 be f* and M be A\,, where f is the func-
tion appearing in the Theorem. The two lemmas establish that

()
2.9) d; (flzl,zz):m, 2y F 2.

As a function of z, d}™ is continuous for z, # 2z, and uniformly bounded
in modulus. Consider next d} *(fz, 2, as a function of z,. This funec-
tion has a continuous derivative for 2z, ++ z,, which is moreover uniform-
ly bounded in modulus. Therefore this function is absolutely continuous
in z, for 2, on any closed arc of the unit circle not containing z,. But
the uniform boundedness of |d}~'| implies that d!™*(f |z, 2;) is of uni-
formly bounded variation in 2, on the entire unit circle with the point
z, deleted. By a well-known theorem [8, p. 872, Ex. 6] it follows that
as 2, approaches z, from either side, d?* approaches a limit; and if the
limit is the same for approach from either side, then when the defini-
tion of di~* is completed by this limit at 2z, = 2, the function d?~* will
be an absolutely continuous function for all z, on |2,| =1. To investi-
gate the limit, we write (2.5) in the form
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Sml(eio . eth)n-an—l(eze)ieiedﬁ 1
2

2

ar? = s e
1 (sin a; — a2>n—1 (2zei(w1+w2)/2)n—1 .
2

The limit as 2, — 2,, @, — a,, of the expression in square brackets can
be evaluated by I’Hospital’s rule used with (2.4) and with the fact that
S* is continuous. We find that for z, approaching z, on either side,
there is the unique limit

lim di7(f |2, 2) = J::_—_l_(zz) .

2129 1

Thus with proper completion of the definition of d?* at 2, = z,, this
function is an absolutely continuous function of z, on |2,| = 1. Similarly
we can complete the definition of d!(f |z, 2,) for h =n —3,n — 4, -,
1,0, so that the resulting function is in each case an absolutely conti-
nuous function of z,0n |2, | =1. We assume henceforth without change
m notation that for each relevant value of h, the proper extension of
the definition of d! at z, = 2, has been made.

What this establishes is that the completed first order divided dif-
ference d,(f|z, %), as a function of z,, together with its first » — 2
partial derivatives with respect to z,, have the same smoothness and
integrability properties as does f and its first n — 1 derivatives. That
is to say, d,,d3, ---,d’? are absolutely continuous functions of z, and
moreover the derivative of dy? where it exists, is uniformly bounded
in modulus.

The absolute continuity of the derivatives permits the inductive
argument which we used to establish (2.5) to be used again to prove
that

h—1
di7 (f | 21 20y 25) = %L: dl(di(f |2, 2) | 2, 2,)
| — zraicr 1, ) at
R Cr

‘zllzl’ Izzlzly 21¢z3, h=1,2,---,n——1.

By (2.9) and Lemma 2.2, d?~* as a function of 2, is uniformly bounded
in modulus. (It is not important at the moment to know how the
bound depends on z, and z,.) The definitions of d?3,dz, --.,d, can
now be completed by continuity at 2, = 2, so that in each case the re-
sulting function of 2, is absolutely continuous on |2, | = 1. Again we
assume without change of notation that the proper extensions have been
made.
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Proceeding in this way, we establish the chain of equations

z1
| = a1t 2 - 20 d

Zkt+1

(2.10) di* = (71 — )"

k=1,2--,n,

in which df = d,, dy = f*. Theorem 2.1 now can be proved by back
substitution into (2.10), beginning with (2.9) and using Lemma 2.2 at
each stage. Thus to start with, at least for 2, # 2, and 2z, # z,,

)
VIO RET 2y

Similarly,

VT r ”;2> 1/?1‘(”_1) v r<321)
1

2
2(g) NLF ()

lds| < g(‘@)r—(iﬁ? :
2

as stated in the conclusion of the Theorem.

It is clear from the proof that under the hypotheses of Theorem
2.1 on f, it is possible to extend the definition of d, by continuity so
as to admit point sets S,,; in which coincidences occur, and then (2.2)
will still be valid. However we shall not study this question in detail
under the hypotheses of Theorem 2.1 on f, which were chosen as being
natural to achieve boundedness of | d,| in the case of distinet points.
(The boundedness of d, =|f(z) — f(2) |/ |2 — 2| is equivalent to a
Lipschitz condition on f.)

The method of proof with only slight modifications can be used to
establish the following result:

THEOREM 2.2 Under the hypothesis of Theorem 2.1 concerning f,
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and with the added hypothesis that f™ is continuous on some open are
of |z| =1 containing the point z,, the following equation completes the
definition of d, by continuity for the case in which all the points S,
coinecide at z,:

(2.11) Ao(f| 20y 21y + o0y 22) = ﬂ% -

If f™ 4is everywhere continuous on |z| =1, then (2.2) is valid after
proper completion of the definition of d, for all choices of S,i, without
restrictions as to coincidences.

We conclude this section with two comments. In the first place it
is clear that by repeated back-substitution into (2.10), a single formula
for d, in terms of f™ involving repeated integration can be written
out. It would be somewhat similar in appearance to a variant of (2.1)
which appears in [5, p. 18, ex. 7].

In the second place, it may be that for » = 2 the bound in (2.2)
can be improved. For n =1 it is the best bound possible, as can be
seen from this trivial example: Let f be real and let its graph over a
period in the (0, f(e*®))-plane be a line segment joining (0, 0) to (rw, 7)
and another line segment joining (7, 7) to (27, 0). For this function the
maximum of d, is 7/2, the least upper bound of |f’| is one, and the
right side of (2.2) is (7/2)-1, which is as small as it can be. However
the general bound was derived through Lemma 2.2 in which the two
points 2, and 2, were placed at opposite ends of a diameter to obtain
the numerical appraisal. Such wide-apart spacing is of course not pos-
sible for the case of three or more points on the unit circle. The bound
given by (2.1) in the real case under the hypothesis of Theorem 2.1 is
A./n!, which is much smaller than that in (2.2).

3. Boundedness of the modulus of a divided difference formed on
a general Jordan curve. A generalization of Theorem 2.1 to the case
in which the unit circle is replaced by a more general Jordan curve is
not hard to derive. In doing so, for simplicity we shall not try to keep
track of the structure of the upper bound, and shall suppress various
details in the proof.

A Jordan curve is homeomorphic to a circle. It can be represented
by a parametric equation z = ¢(f), where ¢ is continuous in the real
variable # with period 27, and where for each given point z on the
curve, any two solutions of z = ¢(f) differ by an integral multiple of
2. Our considerations here will be restricted to Jordan curves such
that the first derivative d¢/b0 = +(0) exists for all ¢ and is continuous,
and (0) # 0 for all . Such a Jordan curve will be said to be ‘‘ad-
missible’’. (Presumably in what follows the definition of admissibility
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can be slightly relaxed.)

LemMmA 8.1. If z = ¢(0) is a parametric equation of an admissible
Jordan curve, then there exist numbers m and M, 0 < m < M, such
that

m é ' ¢(‘91) — ¢(02)

g% _ gib2

=M

Jor all 6, and 0,.

The divided difference appearing in the above inequality is to be
interpreted as meaning +(6,)/1¢'®> when 6, = 6,.

The existence of an upper bound M follows from Lemma 2.2 with
k=0 and g(e%) = 4(0)/ie*®. The existence of the lower bound can be
established by an elementary indirect argument which we omit®.

As in the unit circle case, it is convenient to interpret the deriva-
tives of a function on a Jordan curve to the complex numbers as limits
of complex-variable difference quotients. Specifically for any function
g given on a Jordan curve C, the symbol ¢’(z,) means lim,., d,(g | 2, 2),
z and 2, on C, and higher derivatives are to be defined recursively. If
C is admissible, then

o dgG0) 1
I0=="0% 3o

Integrals are to be defined as in (2.3) with 7¢* in that formula replaced
by +(¢). With this replacement and with e‘® replaced by ¢(«,), (2.4) is
is valid. An integral over C with limits of integration 2z, and 2, which
is independent of the path will be written as

S::g(z) dz .

The notation implies of course that the arc over which the integration
takes place is directed from z, to z,. The derivatives of divided differ-
ences are always partials with respect to the first apparent argument.
The generalization of Theorem 2.1 is as follows:
THEOREM 3.1. Let the function f be given on an admissible Jordan
curve C, together with s, f? ---, f"'. Let f~* satisfy the Lipschitz
condition

|f*7@) — @) | =Nz —t, x>0,

for all z and t on C. Let the points S,., = {2, 2y, =+, Zn11} lie on C and
be distinct. Then there exists a constant M depending only on n, A\,
and C, and independent of S,,,, such that | d,(f]2y, 2 ) Zur1) | = M.

2 Various related but deeper results may be found in [6, Section 2.5].
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The proof starts with a generalization of Lemma 2.1.

LEMMA 3.2. Let the function f, given on an admissible Jordan
curve C, be such that its (n — 1)th derivative exists everywhere on C
and s absolutely continuous as a function of 0, z = ¢(0). Then

| — mrrre at
df_l(fl 21y zz) = 27 ’

(zl - zZ)n

for z, and z, on C, 2, + 2, h =1,2, .-+, n, and the integral is indepen-
dent of the path of integration on C.

The argument used to establish Lemma 2.1 carries over to Lemma
3.2 with only minor changes, and will not be restated here.

LeEmMMA 3.3. Let the function G be given on the admissible Jordan
curve C with the possible exception of a set of Lebesgue measure zero;
let |G| be bounded on C and be such that

T 7) = |t — 2)G() dt

18 independent of the path of integration on C for all z, and z, on C.
Then for each k,k=0,1,---, there exists a constant M,, depending
only on G and C, and such that

k(zly ZZ)

l — )i | = M,

for all z, and z, on C, z, + z,.

The Lebesgue measure in the theorem means measure on the 6-line
after the transformation ¢=*: 2z — 6.

To prove this lemma, we let 2z, = g(a,), 2, = ¢(a,), t = ¢(F), and
write

Ji(21 25)
(3'1) (z1 - zz)k+1
glor — giwy k1 SM(@W — elm)kg(e')ie® df
- [¢(a1) — ¢(ay) ] (e — glaz)ktl ’
where
(3.2) o(eyie* = Gp(0) | 2O =2 |'yq)

By Lemma 3.1, the quantities in the square brackets in (3.1) and (3.2)
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are both uniformly bounded in modulus for all 4, a,, and «,, 0 #a,, @, FA,.
For any fixed a,, g(¢®®) as given by (8.2) is integrable, and its modulus
is uniformly bounded for all 6 and «,. The integral in (3.1), considered
as an integral over an arc of the unit circle, is independent of the path
of integration. Thus the hypotheses of Lemma 2.2 are satisfied by g
as given by (8.2). The truth of Lemma 3.3 now follows immediately.

Theorem 3.1 can now be proved by the use of Lemmas 3.2 and 3.3
in the same way that Theorem 2.1 was proved. The hypotheses on f
and C imply that f"'(e®®) is an absolutely continuous function of ¢* and
of ¢, and that its derivative with respect to ¢(6), where it exists, is
uniformly bounded in modulus. The same is true for its derivative with
respect to 0. (These facts follow from the existence of numbers X, and
A, such that with z = ¢, t = ¢,

[F*7@) = ") | =M 60) — d@) | =M€ — e[ =N [0 — ]

(Here we used Lemma 3.1 in passing from the second member to the
third member of the chain.) The functions f, f*, ---, f** are also abso-
lutely continuous and have uniformly bounded derivatives.

We can now re-establish the recursion formulas (2.10), which look
exactly the same as before and so will not be repeated here. The in-
tegrals in (2.10) are of course now complex line integrals over C. There-
after by back-substitution, using Lemma 3.3 at each stage, we establish
the existence of the bound for |d, |.

The analogous generalization of Theorem 2.2 is also valid. The
proper definition of d, for confluent points is again given by (2.11). It
is worth noting that what gives simplicity to our results and minimizes
the restrictions on C is the complex-variable type of definition which
we are using for derivatives of functions given on C.

4. Some asymptotic properties of divided differences formed on a
Jordan curve. In this section we shall be considering an infinite sequence
of divided differences

dl(fl %11 zlz); dz(fz:}l; 293y 223), °t %y dn(fl Zn1y Rnas "%y Ry zu+1)r Tty

formed for a function f given on a Jordan curve C in the z-plane. Do
there exist sequences of point sets S, ., = {Z.1, Zuzy ** 5 Zuy wta), B=1, 2, « -+
such that lim,.. d, exists for all functions f belonging to an interest-
ingly wide class; and if so, what is this limit?

Let D be the region interior to the curve C, let K be the unlimited
region exterior to C, and let D be D U C. There exists an analytic
function

“4.1) z=x(w)=cw+co+—9+fl2+---,c>0,
w oW
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univalent for |w | > 1, which maps | w | > 1 conformally onto K so that
the points at infinity in the z-plane and w-plane correspond. According
to the Osgood-Taylor-Carathéodory Theorem, ¥(w) can be extended in a
continuous and one-to-one manner onto |w | = 1, and x(e®) = #(¢) then
gives a parametric equation for C of the type considered above in § 3.
The number ¢ is called the transfinite diameter (Robin’s constant, capa-
city) of C.

If a function f is analytic on C, it is also analytic in a region (per-
haps multiply connected) which contains C in its interior. Let w=Re®
in (4.1). There is a largest value of R, say o > 1, such that f is analy-
tic at every point of the intersection of C U K with the region interior
to the Jordan curve Cg: z = y(Re®), 0 < 0 < 2r. (See [9, p. 79].) A curve
such as Cj is called a level curve of the map given by (4.1).

With z,, = x(e**), 0 < 0, < 2r, let N,(¢) be the number of elements
of the set {0,1, 0., +++, 0,.1,} falling into the closed interval [0, #]. The

numbers 0,,, k=1, ---,n+1,n =1, 2, --- are said to be equidistributed
on [0,2r] if lim,..N,(0)/(n + 1) = 6/27; and when this happens, the
corresponding sequence of point sets S,.,n =1,2,---, is said to be

equidistributed on C.
Our first result is as follows:

THEOREM 4.1. Let f be analytic on D and let the sequence {S,,.}
be equidistributed on C. Let p be the largest value of |w| in the map
(4.1) such that f is analytic interior to the level curve C,,. Then for
any R, 1 < R < p, there exists a constant M depending on f, R, and
C, but not on n, such that

M
Idn(f'znly "'7zmn%1)l é W'

Thus lim,_. c"*'d, = 0.
To prove this, we use the formula [5, p. 11]

_ 1 S (@)
. d, = ——\ L2 _dt, O0< R ,
“.2) 27 S("an»fl(t) s

where ®,..(2) = (2 — 2,)(8 — 242) *** (# — 2,.,+1). This formula can be
used to complete the definition of d, by continuity for the case of con-
fluent points z,,. We then refer to a classical result of L. Fejér [4],
[9, pp. 167 ff]: If {S...} s equidistributed on a Jordan curve C, then

lim | @,.,(2) 1" = c|w ],z = y(w),
n—oo

uniformly for z on any closed subset of K. This implies that if z lies
on C, and R, is such that 1 < R, < R, then for all n sufficiently large,
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e < 1 .
| @,4(2) | R

Letting M, be the maximum of |f(z)| on Cs, and L, be the length of
Cr, we appraise (4.2) as follows:

ML
4. n+1 d _tHRMR
(4.3) o dy S 5

and the theorem follows from this.

THEOREM 4.2. Let C be rectifiable, let f be analytic on C, and let
S, be the transform wunder (4.1) of n + 1 distinct points equally
spaced on |w| =1. Then

(4.4) lim ¢*1d, = _1__S f(t) dt .
2w Jo

n—oco

This is consistent with Theorem 4.1, because the sequence {S,,,} in
Theorem 4.2 is equidistributed and the integral in (4.4) would be zero
if f were analytic on D.

To prove the theorem we use a generalization of (4.2),

which is easily established by the calculus of residues. Here C,, R >1,
is a level curve of (4.1) and C’ is a suitably chosen rectifiable curve
lying in D. The curves C; and C’ are chosen so that f is analytic on
the closed annular region bounded by C, and C’. Integration on C’ is
in the opposite sense to that on C,.

The appraisal given by (4.3) is valid for the first integral in (4.5),
and it shows that this integral vanishes in the limit. The following
result of the author [2] is available for the second integral: From the
hypotheses of Theorem 4.2 on C and S,,, it follows that

lim,_ ., (&)= —1
uniformly for z on any closed subset of D. This implies that

m L[ S0 g,

e 2704 J0! wn+1(t)
— _1_8 lim & @ g4
2

3o ne @, (t)

= - L\ roa= L saar,

211,
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which completes the proof.

Generalizations of the above theorems to the case in which D is
replaced by a finite number of mutually exterior Jordan regions can be
developed by the methods to be found in Walsh’s book [9, Chap. VII].

The results from which the above two theorems are derived were
originally established in studying the convergence of sequences of poly-
nomials found by interpolation to the function f on C. Let L, .,(2) =
L, (f;2|S,1) be the (unique) polynomial in 2z of degree at most =
which is determined by the condition that it shall coincide with f(z) at
each of the points S,,,, assumed to be distinet. Then from the standard
formula

L, () = CUM_I(CY)% S ®ur)

=1 Wy 1 (2 ) (@ — Z,1)

it is seen by comparison with (1.1) that

(4'6) Ln+1(g; (24 ’ Sn+1) = wn+1(a) dn(fl any Sty zn,n+l)

where f(z) = g(2)/(« — z). The following result of the author [2], [3] is
relevant: Let the curve C be such that y'(w) is nonvanishing and of
bounded variation for |w|=1. Let g be bounded and integrable in
the sense of Riemann on C. Let the points S,., be the transforms un-
der (4.1) of distinct points equally spaced on the unit circle. Then

1

lim L,.(g; a|S,) = —.S 90)_ g
n—ooo 2milot — «

uniformly for a on any closed subset of D.
We now write (4.6) in the form

c’n+1

@, +1(a)

@) orvid, = [ = I~ Lunlgs ] 8,001

If « is a fixed point of D and f is bounded and Riemann integrable on
C, then so is g and conversely. We recall that —®, ,,(@)/c*™* tends to
unity at each point of D as n becomes infinite. It follows from these
facts that the limiting value of (4.7) is

lim ¢**1d, = :—18 9¢) g :LS F(t)dt .
P 2rr ot — « 2mlo

We summarize formally:

THEOREM 4.3. If the points S,,, are transforms under (4.1) of
distinct points equally spaced on the unit circle, and if C is such that
Y s monvanishing and of bounded variation for |w| =1, and if f is
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bounded and integrable in the sense of Riemann on C, then

lime*+d, = .Z%SO £ty dt .

n—roo
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DIMENSIONAL INVERTIBILITY

P. H. DoyLE AND J. G. HOCKING

We report here upon another aspect of our continuing investiga-
tion of invertibility (see [5, 6]) and its applications in the theory of
manifolds.

All spaces considered here are separable and metric.

A separable metric space X will be said to be k-invertible, 0 < k =
dim X, if for each nonempty open set U and each compact proper
subset C of dimension =Fk, there is a homeomorphism % of X onto
itself such that #(C) lies in U. Then we say that X is strongly k-
wnvertible if for each nonempty open set U and each closed proper
subset C of dimension =Fk, there is a homeomorphism % of X onto
itself such that A(C) lies in U.

Clearly, ‘‘strongly k-invertible’’ implies ‘‘k-invertible’”’ and the
two properties coincide in compact spaces. If dim X = n, then ‘“‘in-
vertible ”’ and ‘‘ strongly n-invertible ’’ are equivalent but, for instance,
E" is m-invertible and not invertible. We remark that k-invertibility
is a strong form of near-homogeneity and says that compact k-dimen-
sional subsets are ‘‘ small under homeomorphisms.”” In the case of
an n-manifold, k-invertibility is equivalent to the condition that eve-
ry compact set of dimension % lie in an open n-cell.

We first collect some results on 0-invertible spaces, most of these
results being simple generalizations of theorems to be found in [5].
The first of these requires no proof here,

THEOREM 1. The orbit of any point im a 0-invertible space is
dense in the space.

THEOREM 2, FEach orbit in a O-invertible space is itself 0-in-
vertible,

Proof. Let 0 be the orbit of any point in a O-invertible space
X. Let U be an open subset of 0 and C be a compact 0-dimensional
proper subset of 0. Then there is an open set V in X such that
VN 0= U and, by O-invertibility, there is a space homeomorphism
h such that A(C) lies in V. But by definition of 0 as an orbit, A(C)
also lies in 0, hence A(C) lies in VN 0= U.

COROLLARY. Fach 0-invertible space is a union of disjoint, dense
homogeneous, 0-invertible subspaces.
Received February 21, 1962.
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THEOREM 3. If X is O-imvertible and contains a mondegenerate
connected open set, then X 1is connected.

Proof. If U is a nondegenerate open connected set in X, let p
be any point in U.

For each point = in X, there is a space homeomorphism %, such
that 2.(x U p) = h,(x) U h(p) liesin U. Thus X is a union U ~;'(U)
of connected sets, each containing the point p. ‘

COROLLARY. If X s O-tnvertible and is locally comnected at any
point, then X is connected or X is the 0-sphere.

THEOREM 4. If X s 0-invertible and s locally Euclidean at any
point, then X is a manifold.

Proof. If X contains an open cell U as an open set, then X is
connected by Theorem 3 and, as in the proof of Theorem 3, A;'(U)
is an open cell neighborhood of the point x for each point z# in X.

THEOREM 5. If X 1s strongly 0-invertible and contains an open
set with compact closure, then X 1is compact.

Proof. Let U be an open set in X with compact closure U.
Given any infinite set A in X such that A has no limit point, the
set A contains an infinite sequence {a,} having no limit point in X.
But then the sequence {a,} can be carried into U by a space homeomor-
phism % in view of strong O-invertibility. In U, the sequence {i(a,)}
has a limit point. This contradiction shows that X is compact.

COROLLARY. A locally compact, strongly 0-invertible space 1is
compact.

Every 2-manifold is 0-invertible and every compact 2-manifold is
strongly O-invertible because any compact 0-dimensional set in a 2-
manifold lies in an arc in the manifold. In higher dimensions, howe-
ver, O-invertibility has more force. The following result is an inte-
resting characterization of the 3-sphere.

THEOREM 6. A strongly 0-invertible 3-manifold is S°.
Proof. We employ the characterization of R.H. Bing [1] and

show that every polygonal simple closed curve in such a 3-manifold
lies in an open 3-cell. Let M*® be a strongly 0-invertible 3-manifold
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and let J be a polygonal simple closed curve in M® A sufficiently
thin tubular neighborhood of J may be chosen to be a polyhedral
solid torus T in M?®. Since every longitudinal simple closed curve in
T is isotopic to J, if we can show that there is such a curve which
lies in an open 38-cell, the proof will be complete.

Using the solid torus T as the Oth stage, we construct a *‘ neck-
lace of Antoine’”” N in M?®. By the assumption of 0-invertibility, the
compact 0-dimensional set N lies in an open 3-cell in M°. Hence
there is a standard decomposition M* = P* U C, where P*® is an open
3-cell and C is a nonseparating continuum of dimension =2 (see [7]),
such that NN C is empty. Since N and C are compact, there is a
positive distance between N and C. Thus there is some stage, say
the kth, in the construction of N such that the residual set C fails
to meet each solid torus in the kth stage.

Now we add a 2-disk spanning the hole in each solid torus in
the kth stage of the construction of N. This results in a connected
set consisting of alternately ‘‘orthogonal’”’ disks with disjoint solid
toroidal rims in the interior of each solid torus in the (kK — 1)st stage.
Call these sets L;*™%,¢=1,2, --+, n*?!, where n = 8. There are two
cases to consider: (1) In each of the sets L,* we can find a simple
closed curve passing longitudinally around the hole in the correspond-
ing solid torus in the (k — 1)st stage and not meeting the residual
set C or (2) for some set L;*?, C meets every longitudinal simple
closed curve on L;®V,

In case (2), the residual set C does not meet the solid toridal
rims of the disks in L;*™ but C must meet at least one of the
spanning disks in such a way that no arc from one solid torus of a
linking pair to the other can be drawn in the spanning disk without
meeting C. Thus C must separate some spanning disk D into com-
ponents, one of which meets the solid torus spanned by D and ano-
ther of which meets one of the solid tori linked with that spanned
by D. This is impossible. For, in such a case, any longitudinal sim-
ple closed curve in the linking solid torus would be linked with C
while lying in the complement of C which contradicts the assumption
that M*® — C = P?® is an open 3-cell,

Case (1) reduces to the following situation: Each solid torus in
the (k — 1)st stage of the construction of the necklace N contains
a longitudinal simple closed curve lying in the open 3-cell P® and
these curves are linked just as are the solid tori in the (4 — 1)st
stage. We can now replace the solid tori in the (k — 1)st stage by
thinner ones where necessary so that the entire (k — 1)st stage lies
in the open 8-cell P®, The spanning disks are now added to these
tori to obtain the sets L;,* 2, 1=1,2, ---,n*? and the argument
above can be repeated. The finite regression is now obvious. The
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contradiction in case (2) at each step forces us back to the first
stage in the construction of the necklace N. But then the same
argument produces a longitudinal simple closed curve J' in the
original solid torus 7T such that J' N C is empty. By our remark
above J and J' are isotopic and since J’ lies in an open 3-cell, so
does J.

COROLLARY. FEvery polygonal simple closed curve in a 0-inver-
tible 3-manifold lies in an open 3-cell.

Proof. The argument for Theorem 6 goes through in this case,
too, because the residual set C is closed and there is still a positive
distance between C and a necklace N in the complement of C.

Imposing a natural restriction upon the manifold permits us to
generalize, not Theorem 6, but its corollary.

THEOREM 7. In a O-invertible, combinatorial n-manifold, every
polygonal simple closed curve lies im an open n-cell. (Hence such
manifords are simply connected.)

Proof. Let M™ be a 0-invertible, combinatorial n-manifold and
let J be a polygonal simple closed curve in M™. In the combinatorial
n-manifold, a sufficiently thin tubular neighborhood of J will be a
polyhedral solid n-torus T (a homeomorph of the product of an (v — 1)
disk and the unit circle). In the interior of T we construct a Cantor
set N by the method of Blankenship |2]. Then, with the appropriate
changes in dimension, the remainder of the proof is identical to that
of Theorem 6.

A natural conjecture at this point concerns k-invertibility and
the vanishing of the homotopy group =m,.,(M™"). Such a conjecture is
fruitless, however, in view of the following result.

THEOREM 8. Let A" = 8" x E',n =2, Then A" is an (n — 1)-
wmvertible manifold (and clearly w,(A™*) is not trivial).

Proof. Assume that A" is imbedded in E"™ as the region be-
tween two concentric spheres. Then A" is a closed annulus and
there is a map h from A" onto S™*' such that %|A™" is a home-
omorphism and & carries the two components of A" — A®*! into a
pair of points a and b.

If N is any compact (n — 1)-dimensional set in A"*', then A(N)
is a compact (n — 1)-dimensional set in S — (¢ U b). Since (V)
does not separate S”*!, there is a polygonal arc J in S — W(N)
from @ to b and S* — J is an (n + 1)-cell. Whence A(S"* — J)
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is an (n + 1)-cell in A*** containing N and therefore A"*' is (n — 1)-
invertible.

The next result is a slight generalization of our characterization
theorem [4].

THEOREM 9. The only strongly (n — 1)-invertible n-manifold is
S-.

Proof. If M~ is strongly (n — 1)-invertible, then M™ is compact.
Choose any standard decomposition M* = P* {y C. Since C is a con-
tinuum of dimension =n — 1 and P* is an open n-cell, there is a
space homeomorphism carrying C into P”. Then Corollary 1 of Theo-
rem 2 in [7] applies to show that M" is an #n-sphere.

THEOREM 10. The only (n — 1)-invertible, noncompact n-mani-
fold 1is E™.

Proof. Let M* be an (n — 1)-invertible, noncompact n-manifold.
Since M™ is locally compact, it is a union |J A, where we may cho-

ose A, to be a closed n-cell and where A; Tsl compact and lies in the
interior of A;,, for each j (Theorem 2.60 of [8]). Let U be an open
n-cell in A, with bi-collored boundary. Each set BdA; has dimension
=n — 1 and hence there is a homeomorphism %; of M" onto itself
such that h(BdA;) lies in U.

We claim that %;(4,) also lies in U. For BdA; separates M"
and if h,(A4,) does not lie in U, then h,(M*— A,) must lie in U.
But then hj(M"— A;)=h(M"— A;) is compact whence M*=(M"—A;) U A;
is the union of two compact sets and is compact. This contradiction
proves that %;(4;) lies in U.

From here we see that {h7'(U)} is a sequence of open n-cells.
We may select a monotone increasing subsequence inductively (or else
all 4; lie in some A;Y(U) which completes the proof). Therefore M"
is the union of a monotone increasing sequence of n-cells and, in
view of [3], M* = E*.

To finish this report, we collect some immediate consequences of
the Poincare dusality and the Hurewicz theorem.

THEOREM 11. Let M™ be a compact, triangulated, orientable, k-
invertible n-mainfold. Then the homotopy groups w,(M") are trivial
for 1< p =<k,

COROLLARY 1. If M" is as in Theorem 11, then M™ has trivial
integral homology groups in dimensions 1,2, ---, k and n—Fk, «--,
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n — 1.

COROLLARY 2. If M™ is as im Theorem 11, and if k = [n[2] (the
largest integer in m[2), then M™ is a homotopy sphere.

Recent results of Stallings |9] and Zeeman [10] provide immediate
proofs of the following result.

THEOREM 12. A strongly [n/2]-invertible polyhedral n-manifold,
n =5, 1s an n-sphere.
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BLOCK DIAGONALLY DOMINANT MATRICES AND
GENERALIZATIONS OF THE GERSCHGORIN
CIRCLE THEOREM

DaAviD G. FEINGOLD AND RICHARD S. VARGA

1. Introduction. The main purpose of this paper is to give gener-
alizations of the well known theorem of Gerschgorin on inclusion or
exclusion regions for the eigenvalues of an arbitrary square matrix A.
Basically, such exclusion regions arise naturally from results which
establish the nonsingularity of A. For example, if A = D + C where
D is a nonsingular diagonal matrix, then Householder [7] shows that
[|lD'C|| <1 in some matrix norm is sufficient to conclude that A is
nonsingular. Hence, the set of all complex numbers z for which

|z — D)'C|| <1

evidently contains no eigenvalues of A. In a like manner, Fiedler [4]
obtains exclusion regions for the eigenvalues of A by establishing the
nonsingularity of A through comparisons with M-matrices.® Our approach,
though not fundamentally different, establishes the nonsingularity of the
matrix A by the generalization of the simple concept of a diagonally
dominant matrix. But one of our major results (§ 3) is that these new
exclusion regions can give significant improvements over the wusual
Gerschgorin circles in providing bounds for the eigenvalues of A.

2. Block diagonally dominant matrices. Let A be any » x n matrix
with complex entries, which is partitioned in the following manner:
A1,1 A1.2 ce AI.N
Az,l Az,z Tt Az,N
2.1) A= . .

AN.I AN.Z AN,N

where the diagonal submatrices A;; are square of order n;,, 1 <% =< N.
For reasons to appear in § 3, the particular choice N =1 of

2.1) A= [A1.1]

will be useful. Viewing the square matrix A, ; as a linear transformation
of the m,-dimensional vector subspace 2; into itself, we associate with
this subspace the vector norm || x|, i.e., if x and y are elements of

Received April 11, 1962.
1 For the definition of an M-matrix, see §4 or [8].
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2., then

||x]lo, > 0 unless x = O ;
2.2) l”ax]],,i = |a|||x|l, for any scalar « ;
lx + yllo, = [1xllo, + llyllo,, 1=91=N.

The point here is that we can associate different vector norms with
different subspaces 2,. Now, similarly considering the rectangular matrix
A,;; for any 1 <1,5 < N as a linear transformation from 2; to £,, the
norm || A4, ;|| is defined as usual by

(2.3) Al = sup Auixlls

XER ;. XFO [[x”,,j
Note that if the partitioning in (2.1) is such that all the matrices A, ;
are 1 x 1 matrices and ||x||,, = |#|, then the norms || 4; ;|| are just the
moduli of the single entries of these matrices. As no confusion arises,
we shall drop the subscripts on the different vector norms.?

DEFINITION 1. Let the n x n matrix A be partitioned as in (2.1).
If the diagonal submatrices A;; are nonsingular, and if

2.4) (14731 = S |4, forall1<j <N,
k=1

k7

then A is block diagonally dominant, relative to the partitioning (2.1).
If strict inequality in (2.4) is valid for all 1 <7 < N, then A is block
strictly diagonally dominant, relative to the partitioning of (2.1).

It is useful to point out that the quantity appearing on the lefthand
side of (2.4) can also be characterized form (2.3) by

(2.5) U455~ = _int (1ol
x€94,x70 Hx”
whenever A, ; is nonsingular. With (2.5), we can then define (]| 4;5]))~*
by continuity to be zero whenever A;; is singular.
In the special case that all the matrices A, ; are 1 x 1 matrices and

[lz|| = |«|, then (2.4) can be written as

@.4) 14;,1= 3 |A;,] foralll<j=<N,
k=1
ki

which is the usual definition of diagonal dominance.
As an example of a matrix which is block strictly diagonally dominant,
consider the case n =4, N =2 of

2 Later, we shall use the notation ||x||, to denote the Ip-norm || x|, = (2 |2 |)!/2.
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-

0 110 0
2/3 0 |13 0
(2.6) A= ,
0 1/3| 0 23

Lo o |1 o]

where we choose the vector norms ||z]||. = max;|z;|. In this case,
(NATD = (lAzID =3, and ||A,|l = |4l =3 .

Obviously, A is not diagonally dominant in the sense of (2.4').

DEFINITION 2. The 7 x n partitioned matrix A of (2.1) is block
irreducible if the N x N matrix B = (b;; = ||4:;l])y 1=4,7 =N, is
iwrreducible, i.e., the directed graph of B is strongly connected.?

THEOREM 1. If the partitioned matriz A of (2.1) is block strictly
diagonally dominant, or 1f A is block irreducible and block diagonally
dominant with inequality holding in (2.4) for at least one j, then A
18 momsingular.

Proof. The extension to the case where A is block irreducible and
block diagonally dominant with strict inequality for at least one j is
easy, so we consider for simplicity only the case when A is block strictly
diagonally dominant. Suppose that A is singular, i.e., there exists a
nonzero vector W with

W,
@.7) Al ¢ |=0;

Wy
here, we have partitioned W conformally with respect to the partitioning
of (2.1). But this is equivalent to

(2.8) i AW, = —A, W, 1=<:1<iN.
Jj=1

Fka)

Since W is a nonzero vector, normalize W so that || W;|| =< 1foralll =
j = N, and assume that equality is valid for some 7, ie., |[|W,||=1
where 1 = r < N. Thus, from (2.3)

8 Equivalently, there exists no N X N permutation matrix P such that PBPT = [$2],

where C and E are square nonvoid submatrices. For strongly connected directed graphs,
see for example [6].
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@8) AT =115 AsWill £ S Al - Wil £ 51401 -

J#Er JFr JFEr

But as A, , is nonsingular by hypothesis, then putting A, . W, = Z,,

A'r'rWr = “ArTW"'” = ”Zr” > A——l —~1 ,
AWl =50 = aazy = 14+

using (2.3). This combined with (2.8') gives a contradiction to the
assumption (2.4) that A is block strictly diagonally dominant, which
completes the proof for the block strictly diagonally dominant case.

Actually, we can regard Theorem 1 as the block analogue of the
well known Hadamard theorem on determinants, since Theorem 1 reduces
to this result in the case that all the matrices 4, ; of (2.1) are 1 x 1
matrices and [|[x|| = |«x|. It should be pointed out that the result of
Theorem 1 itself is a special case of a more general result by Ostrowski
[10, Theorem 3, p. 185], and Fiedler [4].

As stated in the introduction, the above theorem leads naturally to
a block analogue of the Gerschgorin Circle Theorem. If I is the n xn
identity matrix which is partitioned as in (2.1), and I; is the n; x #n;
identity matrix, suppose that

N
(2.9) (1(As; =MD > X 1l 4,.]] forall1=5 = N.

k73

Thus, we have from Theorem 1 that A — A\I is nonsingular. Hence, if
A is an eigenvalue of A, then A — A\l cannot be block strictly diagonally
dominant, which gives us

THEOREM 2. For the partitioned matrixz A of (2.1), each etgenvalue
N of A satisfies

(2.10) (145 = M)TD™T = kil 145 1]

k

for at least one j, 1 <5 < N.

We again remark that if the partitioning of (2.1) is such that all
the diagonal submatrices are 1 x 1 matrices and ||«|| = ||, then Theorem 2
reduces to the well known Gerschgorin Circle Theorem.

3. Inclusion regions for eigenvalues. In Theorem 2, we saw that
each eigenvalue )\ of an arbitrary » x » complex matrix A necessarily

satisfied (2.10) for at least one j,1 < j < N,

DEFINITION 3. For the partitioned n x m» matrix A of (2.1), let the
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Gerschgorin set G; be the set of all complex numbers z such that

(3.1) (I(4s; — D)D) = kNEZLl Al 1=j=N.

Thus, from (2.5), we conclude that the Gerschgorin set G; always
contains the eigenvalues of A;; independent to the magnitude of the
right side of (3.1) and independent of the vector norms used. Next, it
is clear that each Gerschgorin set G; is closed and bounded. Hence, so
is their union

(3.2) ¢=U¢,.

Thus, we can speak of the boundary of G, as well as the boundary of
each G,. By Theorem 2, all the eigenvalues of A lie in G. Can any
eigenvalue A of A lie on the boundary of G? This can be answered
trivially for the particular partitioning of (2.1’). In this case, the right-
hand side of (3.1) is vacuously zero, and from (3.1), we see that the set
G is a finite point set consisting only of the eigenvalues of A. In this
case, Theorem 2 gives exact information about the eigenvalues of A.

It is interesting that Theorem 2 can be strengthened by the assumption
that A is block irreducible, which is the analogue of a well known
result of Taussky [11].

THEOREM 3. Let the partitioned matrixz A of (2.1) be block irreducible,
and let N be an eigenvalue of A. If N is a boundary point of G, then
it 1s a boundary point of each set G;, 1 < j < N.

Proof. Since \ is an eigenvalue of A, then > 7, A, ; W, = \W,, and
if || W;]| <||W,|| =1, then as before

B3 (e =MD S S AW = 514,00

But as N is a boundary point of @, equality must hold throughout (3.3),
showing that X\ is a boundary point of G,. Moreover, if |4, ;|| # 0, then
| W;|] =1, and we can repeat the argument with = replaced by 5. In
this way, we conclude that A is a boundary point of G;. From the
irreducibility of A, the argument can be extended to every index 7,
1 =< 5 £ N, which completes the proof. A similar argument can be applied
to complete the proof of Theorem 1.

Another familiar result of Gerschgorin can also be generalized. The
proof, depending on a continuity argument, follows that given in [13, p. 287].

THEOREM 4. If the union H=U;.G,, 1 =p; = N, of m Gerschgorin
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sets 1s disjoint from the remaining N — m Gerschgorin sets for the
partitioned matric A of (2.1), then H contains precisely 2051 My,
eigenvalues of A.

The previous example of the matrix of (2.1') indicated that sharper
inclusion regions for the eigenvalues of a matrix A may be obtained
from the generalized form of Gerschgorin’s Theorem 2. To give another
illustration, consider the partitioned matrix

4 —2] -1 0

—2 4 0 —1 A, | A,
(3.4) A= = .
-1 0 4 -2

0 —1| -2 4

J

Employing now the vector norm [|x||, = (C:|«;])"? it is apparent
that || 4,.|| = ||4..]| = 1. On the other hand, direct computation shows
that

(I(As — 2L = min {|6 — 2], |2 — 2},  i=1,2.
By definition, the set G, then consists of the points z for which
6 —z|=1, 2 —-2|=1,

so that G, is itself the union of two disjoint circles. The same is true for G,,
since G,=@G,, as shown in the figure below. The usual Gerschgorin circles

Ay
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for the matrix A of (3.4) are all given by the single circle |4 — )| = 3,
which is a circle of radius 8, with center at z = 4, as shown above.
From this figure, we conclude that the block Gerschgorin result can give
significant improvements over the usual Gerschgorin circles in providing
bounds for eigenvalues. For the matrix A of (8.4), its eigenvalues are

M=1, =8N =5A="T.

Note, again from the figure above, that Theorem 3 applies in this case.

At this point, we remark that the previous example was such that
each Gerschgorin set G, consisted of the union of circles. This is a
special case of

THEOREM 5. Let the partitioned matriz A of (2.1) be such that its
diagonal submatrices A; ; are all normal. If the Euclidean vector norms
[|x|l, are used for each subspace 2;, 1 < j = N, then each Gerschgorin
set G; ts the union of n; circles.

Proof. Let the eigenvalues of A;; be 0,, 1 =<1 < n,. Since 4;; is
normal, we can write (|[(4,; — 2I;)7*())"" = min, |, — 2|, which, combined
with Definition 3, completes the proof.

It is quite simple to obtain the block analogues of well known results
on inclusion regions for eigenvalues of n x n complex matrices. As a
first example, the result of A. Brauer [2] on ovals of Cassini easily
carries over.

THEOREM 6. Let the n x n complex matriz A be partitioned as in
(2.1). Then, all the etgenvalues of A lie in the union of the [N(N — 1)]/2
point sets C;; defined by

@) (10hes = 21 1 - Nz = 501" = (Bl (£ 142

I

where 1 < 1,5 < N and © # j. Moreover, if A 1s block irreducible, and
N 18 an eigenvalue of A mot in the interior of U.x;Ci; then \ is a
boundary point of each of the point sets C; ;.

Other obvious remarks can be made. Clearly, replacing A by AT
leaves the eigenvalues of A invariant. Thus, rows sums can be replaced by
column sums in the definition (2.4) of diagonal dominance, and many
results using both row and column sums admit easy generalizations. As
an illustration, we include the following known [4] generalization of a
result by Ostrowski [9].

THEOREM. 7. Let the n x n complex matrix A be partitioned as in
(2.1), and define
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N N .
(3.6) By =3 A5lls Ci= Xl Ausll, 1=j=N.
Z;; k;}

Then, for any a with 0 < a < 1, each eigenvalue N of A satisfies
(3.7 (1(4;,; = M7 = R¥C

for at least one 7, 1 < j < N.
Also, the important result of Fan and Hoffman [3] carries over with
ease.

THEOREM 8. Let the n x n complex matrix A be partitioned as in
(2.1). Let p>1, and 1/p + 1/q =1. If a >0 satisfies

N{@y&my

3.8 N
&9 STy

}gwa+w»
i=1
(whenever 0/0 occurs on the left-hand side, we agree to put 0/0 = 0),

then every eigenvalue N of A satisfies at least one of the following
relations:

N 1
(3.9) WMM—NM*W*é%;ﬁ&HwM, 1<j<N.
P
We wish to emphasize that, unlike the cases previously treated where
all the matrices A;; of (2.1) are 1 x 1 matrices, these new inclusion
regions now depend on the vector norms used. It seems reasonable, at
least theoretically, to minimize these inclusion regions by considering
all possible vector norms to produce optimum results. Similarly, there
is a great deal of flexibility in the manner in which the matrix A4 is
partitioned, and this perhaps can be used to advantage.

4. Another generalization. Another result, due again to Taussky
[12], states that if an n x » matrix A = (a;;) is strictly diagonally
dominant in the usual sense of (2.4') with positive real diagonal entries
a;; 1 =1 = n, then the eigenvalues \; of A satisfy

“.1) Ren; >0, 1<j<mn.

Based on our previous results, we now give a generalization of this result
which depends upon the use of absolute norms [1]. By this, we mean
the following. First, if x is a column vector with complex components
%;, let |x| denote the vector with components |z;|. If

(4.2) x|l = ]!l

for all vectors x, then the norm is an absolute norm.* This is equivalent

+ Clearly, the l,-norms of footnote 2 are absolute norms.
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[1] to the property that if |y| = |x|, i.e., each component of |y|— |x]|
is a nonnegative real number, then

(4.2 lyll = llx]| .

Next, if B = (b;,) is a real m x m matrix with b,; <0 for all 7 # 7,
and if B is nonsingular with B~ = (r; ;) such that r; ; = 0 for all 1 = 1,
J = m, then B is said to be an M-matrix [8].

THEOREM 9. Let the n x n complex matrix A be partitioned as in
(2.1), and let A be block strictly diagonally dominant (or block irreducible
and block diagonally dominant with strict imequality in (2.4) for at
least one j). Further, assume that each submatrixz A; ; is an M-matrix,
1 <7 = N, and the vector norms for each subspace 2; are absolute norms.
If N\ is any etgenvalue of A, then

4.3 Rex > 0.

Proof. For simplicity, we shall consider again only the case where
A is block strictly diagonally dominant. Let z be any complex number
with Rez = 0. If A7} = (7..), and (4, ; — zI;)™ = (s;..(2)), it follows [8]
from the assumption that A;; is an M-matrix that

(4.4) [86.:2)| = 740 s 1=k 1=n;.

Next, with (4.4) and the assumption of absolute norms, it follows from
(4.2) and (4.2") that

(A5 — 2L)?xll o [TA7S [ x]]]
Ix|] L]

so that from (2.8),
(1455 — 2I)* D7 = (A7 .

In other words, for any z with Rez < 0, then the matrix A — zI continues
to be block strictly diagonally dominant, and hence nonsingular. Thus,
if N is an eigenvalue of A, then Rex > 0, which completes the proof.
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A GENERALIZED SOLUTION OF THE BOUNDARY
VALUE PROBLEM FOR %" = f(=, y, ).

LEONARD FOUNTAIN AND LLOYD JACKSON

1. Introduction. In a paper in 1922 Perron [16] presented a new
method of attacking the boundary value problem for Laplace’s equation.
This method consisted of employing the existence of solutions of the
boundary value problem for small circles and the existence in the large
of subharmonic and superharmonic functions to demonstrate the existence
of a solution of the boundary value problem in the large. Since then
Perron’s methods have been generalized and applied to more general
elliptic partial differential equations, for example, Tautz [17], Becken-
bach and Jackson [2], Inoue [11], Jackson [12].

Subharmonic functions bear the same relationship to harmonic
functions that convex functions bear to solutions of y”(x) =0. In a
paper in 1937 Beckenbach [3] introduced the idea of generalized convex
functions. Since then a number of other mathematicians, for example,
Bonsall [4], Green [7, 8], and Peixoto [15], have studied subfunctions
with respect to solutions of second order ordinary differential equations.
These subfunctions are special cases of Beckenbach’s generalized convex
functions and, if they have sufficient smoothness, are solutions of second
order differential inequalities. Solutions of second order differential
inequalities appear in many papers concerned with the existence of a
solution of the boundary value problem for the equation

(1) v =f@,v,9),

for example, Nagumo [14], Babkin [1]. However, the Perron method
of systematically exploiting the properties of subfunctions and super-
functions in studying the boundary value problem does not appear to
have been applied to equation (1). This paper consists of such a study.

In §2 we list some properties of solutions of (1) most of which are
known. In §3 we define subfunctions and superfunctions and give some
of the properties of these functions that will be needed in the subse-
quent sections. Most of these properties are analogues of classical
properties of convex functions as given for example in [9; Chapt. III].
In §4 the Perron method is used to obtain a “generalized” solution of
the boundary value problem. Finally, in § 5 some conditions are given
which are sufficient to guarantee that the “generalized” solution of §4

Received February 6, 1961, and in revised form March 28, 1962. This research was
supported by the United States Air Force through the Air Force Office of Scientific Research

of the Air Research and Development Command, under Contract No. AF49 (638)-506. Repro-
duction in whole or in part is permitted for any purpose of the United States Government.
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is the solution of the boundary value problem in the usual sense.

2. Some basic lemmas. In this section we shall list the Dbasic
results concerning equation (1) which will be required in the subsequent
sections.

Let R be the region in three dimensional Euclidean space defined
by

R=l@ya:a<v=<b|yl+|z| < +oo]

where a and b are finite. We shall assume throughout this paper that
f(z, y, 2) is continuous on R. Various other assumptions will be made
from time to time concerning f(x, ¥, 2). The first of these are as follows:
A,;: f(z,v,2) is a nondecreasing function of y for each fixed
and z.
A,: f(z, v, 2) satisfies a Lipschitz condition with respect to y and
z on each compact subset of R.
However, unless we specifically state these or other assumptions we
will be assuming only the continuity of f(z, v, 2).
By a solution of the boundary value problem,

y'=f(x,y,9)
y@) =y, Y@x)=1v,

where a <, < 2, < b, we shall mean a function y(x) which is of class
C® and is a solution of (1) on (x,, #,), which is continuous on [z, x,],
and which assumes the given boundary values at x, and ..

We shall also be interested in the special case of equation (1) when
9’ is not present, that is, equation

(2) Y =f(=, ).
We shall always assume f(x, ¥) is continuous on

R*=[wy):a=2=0b,|y|< +x].

LEMMA 1. Given any M >0 and N >0 there is a 6(M,N) >0
such that the boundary value problem
v' =59, 9)
y(xl) =%, y(%) =Y

has a solution of class C® on [x,, x,] for any points (x,, y,) and (&, y,)
with @, @, € [a,b], |@,—u,| =9, || =M, |y, =M and |(y,—v.)/(w,—2,)| = N.

LemMMA 2. Given any M > 0 there is a o(M) >0 such that the
boundary value problem
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y'=f(,v)
y(xl) =Y, y(xz) =Y,
has a solution of class C® on [x,, x,] for any points (%, y,) and (%, ¥,)

with x, ,€[a,b], |, —2,| =0, |y | = M, and |y,| < M.

LEMMA 8. Let M >0, N >0 be fizred and let o(M, N) be as in
Lemma 1. Then given any € > 0 there is an 1, 0 < n < d(M, N), such
that, for any points (%, ¥,) and (x,, ¥,) with x,, x,€[a,bd], |©, — x,| < 7,
|| =M, |y.| =M, and | (Y, — ¥)[(%, — x,)| < N, there is a solution
y(x) of (1) of class C® on [z, x,] with y(x) = ¥, yY(x,) = ¥,, and with

ly(@) — o(x)| s ¢
and
Y (x) — ') = ¢

on [x,, x,] where w(x) is the linear function with w(x,) = ¥, and w(x,) =
Y. Am amalogous statement with N and |(y, — ¥.)/(%, — %,) | < N omitted
18 valid with respect to solutions of (2).

Proof. Lemmas 1 and 2 can be proved by using the Schauder-
Tychonoff fixed point theorem [6; p. 456]. Let

(%, — ) (@, — )

onr, =t=s=rx =,

T, — ®,

G(x, t) =

@ (@ — @)@ — 1) ony =r=t=ua.
Ly — Xy

Let B be the Banach space C%[x,, x,] with norm ||¥|| = max|y(x)| +
max |%'(x)|. For a function which satisfies a Holder condition with
exponent 0 < @ < 1 on [x,, 2,] let

ho(g) = sup [—————{ g(r) — 9(ry) | , 7y, 1 € [y, @], 1y # 1"2] .
I Ty — Ty Iw

Let K be the set of all functions u(x) in B which are such that u'(x)

satisfies a Holder condition with exponent a on [, x,], u(x,) = u(x,) = 0,

and ||« || + ko (u') < max[M, N]. Then K is a compact convex subset

of B. It can be shown that there is a d(M, N) > 0 such that the

mapping F'(u) = w defined by

w(w) = SG(w DF(E, ut) + o), w(E) + o'()d

is a continuous mapping of K into itself provided |z, — x,| < d(M, N),
l | M, |y,| =M, |(, — 9)/(w, — x,)| =N, and o(x) is the linear
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function with w(x;) = %, and w(x,) = y,. If u,x) is the fixed point of
the mapping, y(x) = ux) + o(x) is a solution of the boundary value
problem. Lemma 3 is an immediate consequence of the boundedness of
f@ul) + o), w' ) + o'(t)) for a<t<b, uwekK, |w@)| =M and
|'(t)] = N.

LEMMA 4. If y(x) is a solution of (1) of class C® on |z, x,] C |a, b]
and if a < x,<<b, then there is a 0 >0 such that x, +0 =b and a
solution y(x) of (1) of class C® on [x,, ®, + 0] with y(x) = y(x) on [z, x,].
A similar statement applies at x, in case a < x,.

Proof. This is an immediate consequence of well known results
[5; p. 15] concerning continuation of solutions.

LemmA 5. If f(x,y,2) satisfies condition A, and if y,(x) 1s a
solution of (1) of class C® on [x, x,] C [a, b], then for all sufficiently
small | m| there are solutions y(x) of (1) of class C® on [x,, %,] satisfying
y(@) = yo(@), Y'(@) = yo(®) +m, and |y@) — y(x)] = |m]|e* " on
2, ] where k is a constant independent of m. A similar statement
applies if the change in slope is made at x, instead of x..

Proof. This lemma is an immediate consequence of well known
results [5; p. 22] concerning the continuity of solutions with respect to
initial conditions.

3. Subfunctions and superfunctions. In this section we define and
develop some of the properties of subfunctions and superfunctions with
respect to the solutions of an arbitrary but fixed equation (1). These
definitions and properties will of course apply also to equation (2),
however, Theorem 2 will apply only to equation (2).

We shall use a capital letter I to represent a subinterval of the
basic interval [a,b]. I may be open, closed, or half-open. I is the
closure of I, I° the interior of I, and I’ the complement of I.

DEFINITION 1. A real valued function s defined on I is said to be
a subfunction on I in case s(x) < y(x) on %, %,] for any [z, #,] C I and
any solution ¥ of (1) on [z, x,] with s(x,) = y(z,) and s(x,) = y(x,).

DEFINITION 2. A real valued function S defined on I is said to be
a superfunction on I in case S(x) = y(x) on [z, ,] for any [z, x] <[
and any solution y of (1) on [, 2,] with S(z,) = y(x,) and S(x,) = y(x,).

We shall state our results in terms of subfunctions with obvious
analogous results, which we shall not bother to state, holding for super-
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functions. When we wish to refer to a result concerning superfunctions
we shall simply refer to the corresponding statement concerning sub-
functions.

THEOREM 1. If s is a subfunction on I, then the right-hand and
left-hand limits, s(x, + 0) and s(x, — 0), exist at every x,e€ I° and the
appropriate one-sided limits exist at the endpoints of I. These limits
may be infinite.

Proof. It will suffice to consider one case. Assume that s(xz, — 0)
does not exist at x,€ I°. Then there exist finite real numbers ¢ and d
such that

lim inf s(x) < ¢ < d =< lim sup s(x)

T TH— ToTH—

We can pick two sequences {a,}7-, < I and {b,}7-, C I with the following
properties:

(i) lima, =limd, = %,
G a,<b,<a,,, for each n =1,
and

(iii) lim s(a,) = lim sup s(x)

Z—wy—
and

lim s(b,) = lim inf s(x).

ToLH—

Let ¢ = (d — ¢)/4 and pick N; > 0 such that
s(a,) >d — ¢,
and
s <c+e

for n = N.,.
By Lemmas 1, 2, and 3 there is an n, = N, such that the boundary
value problem

y' =f,v,9)

4 = ¥bspe) = S d

has a solution y(x) with |[y(x)—(c+d)/2|<e on [b,, b, ,]. Then since
s is a subfunction,
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s(b,) <c+e<

“§d=M%L

and

(bugr) < ¢ + ¢ < EL b, 1),
it follows that we must have s(a, ) = y(a,,.,). However,

S(ano-H) > d — &

=c;d+€>MMW%

From this contradiction we conclude that s(x, — 0) exists.

COROLLARY 1. If s is a subfunction on I, then s(x,) < max [s(x, + 0),
s(x, — 0)] at every wx,c I°

Proof. 1If either s(x, 4+ 0) = + or s(z, — 0) = +o, the given
inequality obviously holds. If s(x, + 0) < + oo and s(x, — 0) < + oo, the
same type of argument as was used in proving the Theorem can be
employed to show that s(z,) > max [s(z, + 0), s(¥, — 0)] is not possible.
Since s(x) has a finite real value at every point of I, this shows that
we cannot have simultaneously s(x, + 0) = —o and s(x, — 0) = — at
any x,¢€ I°.

COROLLARY 2. If s is a bounded subfunction on I, then s has at
most a countable number of discontinuities on I,

Proof. This is a known consequence of the existence of onesided
limits everywhere on I, for example, see [10; p. 300].

THEOREM 2. If s is bounded function on I and is a subfunction

with respect to the solutions of a differential equation (2), then s 1is
continuous on I°

Proof. By Theorem 1 s(z, — 0) and s(x, + 0) exist at every x,&I°
and s(z,) =< max [s(x, + 0), s(x, — 0)]. To be specific assume s(x, — 0) =
s(x, + 0). First assume s(z,) < s(x, — 0) and let |s(x)] < M on I. Then
by Lemma 2 for [z, 2]cC I and |2, — x,| < 6(M) the boundary value
problem

y” = f(xy y)
y(xl) = S(wl) ’ y(wo) = 8(900)

has a solution y(x). Then, since s(x) < y() on [z, 2], s(x,—0) = y(2,—0) =
y(x,) = s(x,). Thus we have a contradiction and we conclude that s(x,) =
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s(x, — 0).

Now assume s(z, — 0) — s(x, + 0) =k > 0. By Lemma 3 there is
an 7 >0 such that [x,—», z, + 7] I, » < d(M), and such that, for
any [z, #,] € I with |2, — z,| = 7, the boundary value problem

Yy’ =f(z,v)
y(x,) = s(x,) , y(x,) = s(x,)
has a solution y(x; %, x,) with
ly(x; 2, @) — o(x; 2, ,) | < kl4

on [z, ;] where w(x; %, ;) is the linear function with w(x,) = s(x,) and
o(2,) = s(x,). Now take [, 2,] © I such that |2, — x| =7, 2, < &, < 2y,
| s(x,) — s(x, + 0)| < k/4, and @CM7n)|x, — z,| < k/4. Then, since
|@'(x; 21, )| < 2M)7, it follows that

| (g5 21, %) — s(x, + 0)| < k2,
Consequently,

| y(0; %y, ;) — s(, + 0) | < 3k/4
which means that

8(,) = s(xy — 0) > y(@,; 4y ) ©

This contradicts the fact that s is a subfunction and we conclude that
s is continuous on I°.

We shall see a little later that Theorem 2 is not true for equation
(1) even if conditions A, and A, are assumed in addition to the conti-
nuity of f(x, ¥, 2).

For the following theorems the proofs are the same as the corre-
sponding theorems for convex functions.

THEOREM 3. If {s,: o€ A} is any collection of subfunctions on I
bounded above at each point of I, then s, defined by

8,(%) = sup s,(x)
wEA

18 a subfunction on I,

THEOREM 4. Let s, be a subfunction on I and s, a subfunction on
[#, ;] € I. Assume further that s,(z;) < s(x;) for 1 =1,2 in case
x,€I°. Then s defined on I by

8,(x) for x ¢ [x,, x,]
max [s,(%), s(%)] for »e[x, x,]

s(z) =
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is a subfunction on I.
For a function g and a point x, at which g(x, — 0) or g(x, + 0)
exist we define

d-g(x,) = lim sup 9®) — 9@ — 0)

=z x — 1,

d_g(x)) = lim inf 9®) — 9% — 0)
z—z)— €r — X,

d*g(x)) = lim sup 9%) — 9(@ + 0)

To2)t+ T — Xy

d.9(x) = lim inf 9®) — 9@ +0)

T+ X — X

THEOREM 5. If s is a bounded subfunction on IC [a,b] with I =
[@,, .], then d-s(x,) = d_s(x,) for all x, < 2, < x, and d*s(x,) = ds(x,)
for all z, < 2, < a,.

Proof. 1t suffices to consider one case. Assume that z, <z, < =,
and that d*s(x,) = d.s(x,). Then there is a finite number ¢ such that

dis(w) < ¢ < dts(a,) .

There is a 0 > 0 such that [, #, + 6] C [#,, #,] and such that the initial
value problem
y” = f(xv Y, y’)
y(x,) = s(x, + 0), Y'(x,) = ¢
has a solution y(x) of class C*® on [#, %, + d]. It is clear that this

leads to a contradiction of the fact that s is a subfunction on I. We
conclude that d+*s(z,) = d.s(x,).

COROLLARY. If s is a bounded subfunction on I, then s has a
finite derivative almost everywhere on I.

For a function g defined on I and z, € I° we will employ the notation:

9%, + 0) — g(x, — 0)
20 ’

= Tim inf 9@ + 0) — g(, — 9)
Dy(x,) = lmsl_'})nf 55 .

Dg(z,) = lim sup
-0

THEOREM 6. If s ts a subfunction of class C® on I, then Ds'(x) =
f(z, s(x), s'(x)) on I°.

Proof. Let x,eI° and choose a 0, >0 such that [x,— d,, 2, + ] I.
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Let |s(x)| = M and |s'(x)| < N on [x, — 0y, %o + 0].
Given ¢ > 0 there is a o > 0 such that
f(x; Y, z) —2 f(xo; S(xo)’ sl(xo)) — €

for [z — x| <0, |y —s(x) | < P, |2 — ()| < p. Now choose a 4, >0
such that |w(x;0) — s(w,)| < /2 and |®'(x;0) — s'(x,)| < 0/2 on [x, — d, %, -+0]
for all 0 < 0 < 0, where w(x; 0) is the linear function with w(x, — 0) =
s(xy — 0) and w(x, + 0) = s(x, + 9).

By Lemmas 1 and 3 there is a §, > 0 with 2, < min [20,, 2d,, d(M, N)]
such that for any 0 < 6 < 9, the boundary value problem

v’ =f(99)
y(x, — 9) = s(x, — 9), y(x, + 0) = s(x, + 0)
has a solution y(z;d) with
ly(@; 0) — w(@; 9)| < p/2
and
ly'(w; 0) — @' (w; 9) | < p[2

on [x, — 0, %, + 0]. Hence, for 0 < d < d,, |y(x; d) — s(x)]| < o, and
|¥'(x; 0) — 8'(%) | < p on [x, — 0, %, + 6]. Then, since s is a subfunction
on I we have for any 0 < 0 < 0,

8' (@, + 0) — 8'(%, — 0) ~ Y'(% + 0;0) — Y'(x, — 9; 0) = (& 5
25 = 55 y"(&; 9)

where 2, — 0 < € < 2, + 0. Hence,

T ) 2—5 @ =9 > pe, y(&; 9), ¥ 9) = o, s(a), @) — ¢

for all 0 < 6 <4, From which we conclude
Ds'(x) = f(,, S(mo); s'(x,)) .

Under more stringent conditions on the function f(x, y, ), Peixoto
[15; p. 564] gives s"(x) = f(x, s(x), s'(x)) as a necessary and sufficient
condition for a function of class C® to be a subfunction. Theorem 6
generalizes the necessity part of this result. The condition s” = f(z, s, s')
is not sufficient to guarantee that a function of class C® be a subfunction
without having more than just continuity of f(x,w,?). As a matter
of fact continuity of f(«, v, #?) and condition A, are still not enough.
To see this we observe that, if s” = f(x, s, s’) is a sufficient condition
for a function of class C® to be a subfunction, then a solution of the
boundary value problem when it exists is unique. The boundary value
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problem y" = |y |3, y(—1) = y(+1) = 416 /45 has both y(x) = 416 /45
and y(x) = 41/°6 /45| x |"* as solutions.

The following Theorem gives conditions on f which are adequate
to insure that a function satisfying s” = f(x, s, ') is a subfunction. It
embodies a maximum principle which must be known; however, since
we are not aware of a reference for it in this form, we will include a
proof.

THEOREM 7. Assume that f(x,y, z) satisfies conditions A, and A,
and that the functions u(x) and v(x) satisfy the following conditions:
(i) u and v are both continuous on I and of class C® on I°,
(ii) Du'(x) = f(x, w(x), w'(@)) and Dv'(v) = f(®, v(@), v'(z)) on I

and
(iii) w(x) — v(®) £ M, where M =0, at the endpoints of I.
Then either w(x) — v(x) < M on I° or w(x) — v(x) = M on I.

Proof. We will assume M = 0 since the case where M > 0 can be
reduced to this one by replacing v(x) by v(x) + M.

Now assume that the statement of the Theorem is false. Then
there are functions % and v satisfying the hypotheses of the Theorem
with u(x) — v»(x) # 0 on I but with u(x) — v(x) = 0 at some points of
I'. Let N =max[u(x) — v(x)] on I. Because of the continuity of
w(x) — v(x) there is an z,eI° and an interval [z, x,] C I° such that
2 < Ty < 2y, (2,) — v(%) = N, and u(x) — v(x) < N either on z, < z = @,
or on &, < < %, Assume that u(x) — v(®) < N on z, < a <, to be
specific.

Let M, >0 be such that |u(x)| + |u'(x)] = M, and |v(z)| + |v'(x)| < M,
on [z, 2,] and let F' be the set [(x,y,2): &, S x =@, |y| + 2| = M.
By hypothesis there is a & > 0 such that

|f (%, Y1, 20) — F(@, Yoy 22) | S K[| — 92| + |20 — 2:]]

for all (2, v, 2,) and (z, ¥,, 2,) in F.
Define the functions w,(x) and w,(x) as follows:

{f(w, w(@), w(@) = £@ 1@, V@) gor y(m) - (@)
w,(w) = w(@) — v/(2)

0 for u'(x) = v'(x) ,
and

{ f(ﬂ’/', u(w)r 1)'(61’})) _ f(xy v(x)’ 'v'(ac)) for u(x) + v(x)
wy(x) = u(x) — v()
0 for u(x) = v(x) .
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Then it is clear that |w,(x)| <k and |wy(x)| <%k on [, x,]. Because
of the assumed condition 4, on f, w.,(x) = 0 on [z, x,].
Choose z; € I° such that x, < x, and define h(x; a) by

h(x; @) = e=@=—=9° _ g-alzo=sy)?
where a > 0 fixed is chosen large enough that
L[h] = h"(x) — w(x)h'(x) — wx)h(x) >0

on [, x,].

Since u(x,) — v(x,) < N we can choose % >0 such that wu(x,) —
v(%,) + Nh(x,) < N. Then, if g(x) = u(x) — v(x) + ph(x), we have g(x,)< N,
g(x,) = N, and g(x,) < N. It follows that g(x) has a maximum N, =
N=0 at a point x, with «, <z, < x,. It follows that Dg'(x,) < 0.
However,

Dy'(x,) = D[w'(x,) + nh'(x,)] — Dv'(x,)
= Du'(x,) — Dv'(x,) + 7h"(2,) > wy(x)N, = 0 .

We have arrived at a contradiction and the Theorem is established.

COROLLARY 1. Let f(x,vy,y') satisfy conditions A, and A,. Then
the solution of the boundary value problem

y'=f(,99)
y@) =y, Y(@;) = Y,

for [x, x,] C [a, b], if it exists, will be unique.

COROLLARY 2. If im the statement of Theorem T we assume only
that f(x,y,y") satisfies condition A, but strengthen the assumptions
concerning u and v by assuming that at least one of the differential
inmequalities is a strict inequality for x, < & < x,, then u(x) — v(x) < M
Jor x, < x < x,.

COROLLARY 8. If in Theorem T I = [c,d], u(c) = v(c), and u(d) > v(d),
then w(x) — v(x) s nondecreasing on [c,d]. If wu(c) > v(c) and w(d) =
v(d), then u(x) — v(x) is nonincreasing on [c, d].

THEOREM 8. Let s(x) be continuous on I and of class C® on I°.
Then, if f(x,y, z) satisfies A, and A, and if Ds'(x) = f(x, s(x), s'(x)) on
I, 4t follows that s(x) is a subfunction on I. If f(x,y,2) satisfies
condition A, and Ds'(x) > f(x, s(x), s'(x)) on I° s(x) is a subfunction
on I
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Proof. Let [z, 2,] C I and let y(x) be a solution of (1) on [x,, «,]
with s(z;) < y(x;) for 4 =1,2. Then that s(x) < y(z) on [, x,] follows
from Theorem 7 or Corollary 2 of Theorem 7.

THEOREM 9. Let s(x) be a continuous subfunction and S(x) a con-
tinuous superfunction on [x,, x,] with s(x;) < S(x;), ©+=1,2. Assume
that at least one of s(x) and S(x), say S(x), is of class C? on x, < x < «,.
Then, if f(x, y, ) satisfies A, and A,, s(x) = S(x) on [x, 2,]. If f(x,y,?)
satisfies A, and DS'(x) < f(x, S(x), S'(x)) on x, < x < x,, then again
s(z) = S(x) on [z, ).

Proof. Assume that the statement of the Theorem is false. Then
s(x) > S(x) for some points xz with z, < x < x,. Let M = max [s(x) —
S(x)] on [, 2,] and let x, be such that =z, < x, < x,, s(x,) — S(z,) = M,
and s(x) — S(x) < M for z, < <2,, By Lemma 1 there is a ¢ >0
such that 2, < 2, — 0 < 2, + 0 < ®, and such that the boundary value
problem

y' =f@99)
y(x, — 0) = S(x, — 0) + M, y(x, + 6) = S(x, +0) + M

has a solution y,(x) of class C® on [z, — d, 2, + 0]. If f(x, y, 2) satisfies
A, and DS'(z) < f(=, S(x), S'(x)) on z, < x < x,, it follows from Corollary
2 of Theorem 7 that y.(x,) < S(x,) + M. Furthermore, since s(x) is a
subfunction and s(x, + 0) = y,(x, = 0), we have s(x,) = yi(x,) < S(z,) + M.
From this contradiction we conclude that s(x) =< S(x) on [z, ,].

Now assume that f(z, v, 2) satisfies A, and A, and that we know
only that S(x) is of class C® on &, < x < x, which implies DS'(z) <
f(z, S(z), S'(x)) on z, < x < x,. Then, if y,(x) is again the solution of
the above boundary value problem, we have w(z,) < S(x,) + M. By
Lemma 5 and Theorem 7 there is an m > 0 such that the initial value
problem

y' =1y, v)
Y(x, — 0) = Yy(, — 0)
Y@, — 0) = yi(w, — 0) — m

has a solution y,(x) of class C*® on [x, — J, , + 0] with y.(x) < y.(x) on
(%, — 0, %, + 0] and

Yu(@, + 0) > yu(®, + 0) > s(x, + 9) .

Then we have s(x,) =< ¥.(2,) < ¥.(w,) = S(x,) + M which is again a con-
tradiction. Thus we have s(x) < S(x) on [z, ,].

COROLLARY. Let M > 0 be a constant and assume that f(x,y, 2)
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satisfies A, and A,. Then, if S(x) ts a continuous superfunction on
I, S(x) + M s also, and, if s(x) is a continuous subfunction on I,
s(x) — M 1is also.

THEOREM 10. Assume that f(x, ¥y, z) satisfies conditions A, and A,,
that y(x) is a solution of (1) of class C® on |[®, x,) C [a, b], and that
s(x) 1s a subfunction on |[x., %,]. Assume further that there is an x,,
x, < Ty < Xy, al which either s(x,) = y(x,), s(x, + 0) = y(x,), or s(x, — 0) =
Y(x)). Then, if s(,) = y(®), s(x) = y(@) on z, <z = 2. If s(x,) = y(x),
s(x) = y(x) on x, = & < x,.

Proof. Follows immediately from Lemma 5, Theorem 7, and the
definition of subfunctions.

COROLLARY. If f(x,y, 2) satisfies conditions A, and A, if y(x) is
a solution of (1) of class C® on [, x,] C {a, b], and if s(x) is a sub-
function on |z, 2] with sx) Zy(x;), 1=1,2, then either
max [s(x), s(x + 0),s(x — ) < y(x) on < x<wm or s(x)=yx) on
[, 2.].

In the papers mentioned in the introduction which deal with gener-
alized convex functions it is assumed that for any two points (x,, 4.,
(2, ¥), %, * @, in the strip a <2 =b, |y| < +o the boundary value
problem has a unique solution which is defined throughout a < x < b.
This leads to the conclusion that subfunctions and superfunctions are
continuous in the interiors of their intervals of definition. With the
assumptions we make this conclusion cannot be drawn. Consider the
equation

(3) y' = —18x(y')'

which is such that f(z, ¥, z) is continuous everywhere and satisfies A,
and 4,. The function g defined by g(x) = 2'* + 1 for 0 < x £ 1, g(x) = x**
for —1=<2<0, and ¢g(0) = g, where 0 =< g, =1 is simultaneously a
subfunction and superfunction on |[—1, +1] with respect to solutions
of (3).

4, A generalized solution of the boundary value problem. In the
previous Section the existence “in the small” of solutions for the initial
value problem and the boundary value problem for (1) was used in
discussing some of the properties of subfunctions and superfunctions
with respect to solutions of (1). In this section we use the Perron
method of using subfunctions and superfunctions to deal with the
boundary value problem “in the large” for equation (1). Throughout
this section we shall be dealing with the boundary value problem:
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Y'=f(x,y,9)
4
(4) ya) =, y®) =8.

DEFINITION 3. The function ¢(x) is said to be an under-function
with respect to the boundary value problem (4) in case @(x) is a sub-
function on [a, b] with @(a) < a and @(b) =< 6.

DEFINITION 4. The function ++(x) is said to be an over-function
with respect to the boundary value problem (4) in case +r(x) is a super-
function on [a, ] with +(a) = a and (b)) = B.

In most of the results obtained in this section we shall require the
following additional hypothesis:

Ay f(x,9y,2) is such that with respect to the boundary value
problem (4) there is an under-function which is continuous on [a, b] and

there is an over-function which is continuous on [a, b] and is of class
C® on (a,b).

DEFINITION 5. Let {®} represent the collection of all under-functions
with respect to boundary value problem (4) which are continuous on
[a,b]. Then we define H(x) by

H(z) = sup [p(x): ¢ € {p}]

for each z ¢ |a, b].

THEOREM 11. If f(x,y, ¥') satisfies conditions A,, A,, and 4;, H(x)
18 @ bounded subfunction on |[a, b].

Proof. By A,, {#} is nonnull and there is an over-function +, con-
tinuous on [a, b] and of class C® on (a, d). By Theorem 9 @(x) =< ()
on [a,b] for each @ e{p}, consequently, H(z) < v,(x) on [a,bd]. By
Theorem 3 H(x) is a subfunction and, if @,c{p}, Pyx) = H(x) = ()
so that H is bounded on [a, b].

THEOREM 12. If f(x,y,¥y') satisfies A, A, and A; then H(x) is a
superfunction on [a, b].

Proof. Assume that H is not a superfunction. Then there exists
[2,, ,] C [a, ] and a solution y(x) of (1) on [z, %] such that H(z;) =
y(x;), 1 =1,2, but H(x) < y(x) for some & with z, <z < x, Let w,
@, < 4, < ¥, be such that y(x,) — H(x,) = ¢ > 0. By the definition of
H there are continuous under-functions @, and @, such that H(z,) —
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P(,) < e/4 and H(x,) — p,(x,) < ¢/4. Now define ¢, on [a, b] as follows:

max [P.(x), Px()] for x ¢ [x,, @,]

P = {max [9,@), .00, u(@) — <12] for w el o]

Then by Theorems 3 and 4 and the Corollary of Theorem 9 ¢, is a con-
tinuous under-function. However, @,(x,) = y(x,) — /2 = H(x,) -+ ¢/2 which
is impossible. It follows that H is a superfunction on [a, b].

COROLLARY. For each x < (a,b) H(x) = min [H(x + 0), H(x — 0)].

Proof. Since H is a superfunction, it follows from Corollary 1 of
Theorem 1 that H(x) = min[H(x + 0), H(x — 0)]. Since H is lower
semicontinuous on [a, b], H(x) < min [H(x + 0), H(x — 0)].

Theorem 13. If f(x, vy, y') satisfies A, A,, and A, then H is a
solution of (1) on an open subset of [a, b] the complement of which s
of measure 0.

Proof. Let x,€(a,b) be a point at which H'(x,) exists. Then there
is a d, > 0 such that [z, — J,, %, + J,] C [a, b] and such that for all o
with 0 < 0 < 6, we have

H(wo + 5) - H(mo_‘ 5) < ]H'(%)I + 1.
20 o

Let o(M, N) > 0 be as in Lemma 1 with M = sup| H(2)| on [a, b] and
N=|H'(x,)]| + 1. Then for 26 = min [20,, (M, N)] the boundary value
problem

y'=f(y,9)
y(x, — 0) = H(x, — 0), y(x, + 0) = H(x, + 0)

has a solution y(x) of class C*® on [z, — 0, x, + 0]. Since H is simul-
taneously a subfunction and superfunction, H(x) = y(x) on [x, — 8, %, + d].
The result then follows as a consequence of the Corollary of Theorem 5.

In Theorem 5 we proved that, if s is a bounded subfunction on
|e, b], then d*s(x) = d,s(x)ona =z < band ds(x)=d s(x)ona <z b,
In view of these equalities we introduce the additional notation:

Ds(@, + 0) = lim 5®) = 8@ + 0)

a—ag+ T — ¥

and

Ds(z, — 0) = lim @) — 3 —0)

Tz~ €r — xo
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THEOREM 14. If f(x, v, ¥') satisfies A,, A,, and A;, then DH(x+0) =
DH(x — 0) for all xc(a,b). Let E be the set of points in (a,bd) at
which H does not have a finite derivative. If xe€E 1s a point of
continuity of H, either DH(x + 0) = DH(x — 0) = 4+ or DH(x + 0) =
DH(x —0) = —o, If Hxz + 0) > H(z — 0), DH(x 4+ 0) = DH(x — 0) =
4o, If Hx 4+ 0)< H(x — 0), DH(x + 0) = DH(x — 0) = — o0,

Proof. Since for x€(a, b) and x¢ E DH(x -+ 0) = DH(x — 0) = H'(x),
we need consider only the points of E.

First we observe that it follows from the argument used in the
proof of Theorem 13 that, if x,€ £ is a point of continuity of H,
DH(%, + 0) and DH(x, — 0) cannot both be finite. Assume that x,€ £
is a point of continuity of H, that DH(x,+0)=+ oo, but that DH(x,—0)=+
4o, It follows that there is an N >0 and a d, > 0 such that w(x)=
H(x,) + N(x — x) < H(x) for 0< 2, — 2 =<0,, By Lemmas 1 and 4
there is a 0,, 0 < 0, = 0,, a 0, >0, and a solution y(x) of (1) of class
C® on [x,— 8y, @,+0,] with y(x,)=H (%,) and y(,—0,) =@ (%,—06,) < H (x,—9,).
Applying Theorem 10 we conclude that H(x) < y(x) on [z, x, + 0,]. This
implies that DH(x, + 0) < ¥'(x,) which contradicts the assumption that
DH(x, + 0) = +. We conclude that DH(x, — 0) = +oo. The other
possibilities at a point of continuity can be dealt with in a similar way.

Now assume that H(x, + 0) > H(x, — 0) and that DH(x, + 0) = + .
Then by the same type of argument as was used above we can conclude
that there exist ¢, > 0, 0, > 0, and a solution y(x) of (1) of class C®
on [z, — 0y, 2, + 0, satisfying y(x,) = H(z, + 0) and y(x, + 0,) > H(x, + 9,).
We can then again apply Theorem 10 to conclude that H(x) = y(x) on
2, — 0, = x < , from which it follows that H(x, — 0) = y(x,) = H(x, + 0).
This contradicts the assumption that H(x, — 0) < H(x, + 0) and we
conclude that DH(x, + 0) = + o,

The remainder of the proof concerning the points of discontinuity
is similar to this and will be omitted.

Next we consider the behavior of H at the endpoints of the interval
[a, b].

THEOREM 15. Assume that f(x, y, ') satisfies A,, A,, and A,. Then,
if DH(a + 0) # -+, H(a + 0) = H(a). If H(a + 0) < a, DH(a + 0) =
—oo, If DH(a + 0) is finite, H(a + 0) = H(a) = «. Similar statements
apply at x = b.

Proof. The proof will be omitted since the methods used in it are
very similar to those used in the proofs of Theorems 12 and 14.

If f(x,y, ') satisfies conditions A,, 4,, and A,, and if the boundary
value problem (4) has a solution, H(x) is that solution. On the basis
of the properties of the function H(x) it seems reasonable to refer to
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H(x) as a “generalized solution” of the boundary value problem. Usually
by a generalized solution of a second order differential equation on an
interval one means a function which has an absolutely continuous first
derivative and which satisfies the differential equation almost everywhere
on the interval. The function H(x) may not even be continuous on
[a, b]. Consider the boundary value problem y” = —18x(y')!, y(—1) =
—1, y(+1) = +2. Here conditions A4, and 4, are obviously fulfilled and,
since ¢ (x) = +2 is an over-function and ¢(x) = —1 is an under-function,
condition A, is satisfied. In this case H(x) = 2* for —1 <2 <0 and
H@) =2+ 1 for 0 <2 < + 1.

We terminate this Section by considering the function H(x) with
respect to the boundary value problem:

(5) Yy’ =, y)_
ya)=a, yb)=24.

THEOREM 16. Assume that f(x,y) satisfies A, and A, with the
additional assumption that there is an over-function + with respect
to the boundary value problem (5) such that + ts continuous on [a, b],
ts of class C™ on (a, d), and satisfies Dy'(x) < f(x, ¥(x)) on (a, b). Then
the function H(x), defined in the same manner as above, is again
bounded on [a,b] and is simultaneously a subfunction and a super-
Sunction with respect to solutions of (2). Inm this case H(x) is of class
C® and is a solution of (2) on [a, b].

Proof. The proof that H(x) is bounded and is simultaneously a
subfunction and a superfunction on [a, b] is exactly as given in Theorems
11 and 12 with one exception. Since we do not now have the Corollary
of Theorem 9 available, we must give a separate proof that, if y(x) is
a solution of (2) on [z, z,] C [a, b] and M = 0, then y(x) — M is a sub-
function with respect to (2) on [z, #,]. To see that this is the case
assume that y,(v) is a solution of (2) on [x,, 2,] C [%,, x.] with

y(xs) - M= ’!/1(333) ’
y(w4) — M= .7/1(904) ’
and yx) — M>yx) on x,<x<ua,.

Because of condition A4, we then have
Y'(®) — y'(@) = f(z, y(x)) — f(x, y(x)) = 0

on (%, ). This implies that y(x) — y.(x) is convex on [x,, z,] which in
turn implies that y(x) — y(x) < M on [z, x,]. Thus it is not possible
that y(x) — y.(x) > M on (x,, x,). It follows that y(x) — M is a subfunction
on [x,, x,].
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Since H(z) is bounded and is simultaneously a subfunction and a
superfunction, we can apply Lemma 2 to conclude that H(x) is of clags
C® and a solution of (2) on [a, b].

5. Existence theorems for a solution. of the boundary value problem.
In this concluding Section we consider the question of determining
additional conditions on f(z, ¥, ¥') which will suffice to guarantee that
H(x) be a solution of the boundary value problem (4). Some of the
results are known and we are merely giving new proofs of them, others
appear to be new.

THEOREM 17. Assume that f(x,y,y') satisfies A,, A, and A,, that
(x) s an over-function continuous on [a,b] and of class CV on (a,b),
and that @(x) is a continuous underfunction. Assume that there is a
function h(t) positive and continuous for t = 0 such that |f(x,y,y')| <
YD) fora2x=b, o) <y =4 (®@), |¥] < +o and such that

Then H(x) is the solution of boundary value problem (4). Nagumo [14].

Proof. Let x,€(a, b) be a point at which H'(x,) exists. By Theorem
13 there is an open interval containing x, in which H is a solution of
(1). Let (¢, d) < [a, b] be the maximal such interval. Then, if N is
chosen so that

SN tdt

‘H/(%HW = max {r(x) — min @(x) ,

we will have |H'(z)| = N on (¢, d). It follows from Theorems 14 and
15 that ¢ = a, d = b and that H is the solution of the boundary value
problem.

THEOREM 18. If f(x,y) is continuous for a <z =b, |y| < + o,
and satisfies A,, then the boundary wvalue problem (5) has a wunique
solution for each a and B. Babkin [1].

Proof. Let w(x) be the linear function with w(e) = a and w(b) =
B. Define the functions u(x) and v(x) on [a, b] by

w'(@) = | f(z, @) + 1
u(a) = u(b) =0 ’

and
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V(@) = —|f(x, o@)| — 1
v(a) = v(b) = 0.

Tnen it is not difficult to verify that +r(x) = v(z) + w(x) is an over-
function of clags C® satisfying +'(x) < f (%, ¥o(2)) on [a, b], and @ (x)=
u(2) + o(x) is an under-function of class C?” satisfying @' (x) > f(z, P(x))
on [a,b]. The hypotheses of Theorem 16 are satisfied so that we can
conclude that H(x) is of class C® and is a solution of (2) on |a, b].
Since @|(x) = H(x) < (x) on [a,b], H(@) =« and H(b) =B so that
H(x) is a solution of boundary value problem (5). It follows from the
proof of Theorem 16 that it is unique.

THEOREM 19. Let f(x,y,y') satisfy A, A, and A, and assume
that there 1s a continuous function g(x,y) such that gz, y) < f (%, ¥, ¥)
for all (z,y,y)e R. Then H(x) is of class C® for all a < x<b. If
wn addition g(x, y) is nondecreasing as a function of y for each fixed
x, H(x) is continuous on |a, b].

Proof. Let [, 2,] C[a, b] and let S(x) be a solution of
(6) ¥ =g, v)

on [z, z,] with H(x,) < S(x,) and H(x,) < S(x,). Then S"(x) = g(x, S(x)) <
f(x, S(x), S'(x)) on (x;, x,), hence by Theorem 8 S(z) is a superfunction
on [%, #,]. Then from Theorem 9 and the fact that o(z,) < S(x,) and
@(x,) < S(x,) we conclude that o(x) < S(x) on [#,, 2.] for each continuous
under-function #. From this we conclude that H(x) < S(z) on [z,, «,]
and that H is a subfunction with respect to solutions of (6). By Theorem
2 H(x) is continuous on (a, b).

Assume that H does not have a finite derivative at x, a < x, < b.
Assume that DH(x, + 0) = +. By Lemma 2 there is a ¢ > 0 such
that the boundary value problem

y' = g(x, y)
y(@) = H(x),  y(w, + 0) = H(x, + 0)

has a solution #(x) of class C® on [x, %, + §]. Since H(z) < y(x) on
[%o, %, + 0], DH(%, + 0) < y'(x,) which contradicts the assumption that
DH(xy + 0) = +oo. Similarly DH(x, — 0) = — o is not possible. It
follows from Theorem 14 that H(x) has a finite derivative at each point
of (a, b), therefore, by Theorem 13 H(x) is of class C*® and is a solution
of 1) ona<z<b.

If g(x, y) is nondecreasing in y, it follows from Theorem 18 that
the boundary value problem

y' = g(x, y)
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y@)=a, yb)=4s

has a solution +(x) of class C® on |a, b]. +(2) is an over-function with
respect to the boundary value problem (4). It suffices to consider the
endpoint # = a. Since H(x) < y(x), H(a + 0) < (a) = a. If H(a +0) =
o, DH(a + 0) = '(a) so that DH(a + 0) # + . It follows from Theorem
15 that H(a + 0) = H(a). If H(a + 0) < o, we again apply Theorem
15 to obtain H(a + 0) = H(a). We conclude that H(x) is continuous
on [a, b].

COROLLARY If f(x,y,y') satisfies conditions A, and A, 1if there
18 a continuous function g(x,y) nondecreasing in y for each fixed
and satisfying g(x, y) = f(x,y, ¥') on R, and if there exists a continuous
under-function @(x) with @(a) = a and @Ob) =B, then the boundary
value problem (4) has a unique solution.

If f(x,y,y') satisfies the hypotheses of Theorem 19 including the
assumption that g(x, y¥) is nondecreasing in y for each fixed «, then H(x)
is continuous on [a, b] and of class C® on (a,b). Furthermore, DH(a+0)+
+o and DH(b — 0) +# —. As a consequence of Theorem 15 we could
conclude that H(x) is the solution of the boundary value problem if it
could be shown that DH(a + 0) # —co and DH(b — 0) # + . This
would be the case, for example, if for some N >0 and some ¢ >0
H'xx)< Nona<x=a-+0and onb—0 =x<b.

As an illustration of these remarks consider the boundary value
problem:

yll — (1 + xz)ya + ey’2sinm
y(—72) =a, y@Br/2)=4p.

The hypotheses of Theorem 19 are satisfied. @(x) = min|—1, «, b] is

an under-function and +(x) = max[1, @, 8] is an over-function. In the

intervals —7/2< 2 =<0 and 7 <2< 3r/2 H'(x) is bounded above,

consequently, this boundary value problem always has a unique solution.
We conclude the paper with a final result in this direction.

THEOREM 20. Assume that f(x,y,y') satisfies A, and A,, and that
there is a continuous function g(x,y) which is nondecreasing in y and
is such that g(x,y) < f(x,y,y) for all (x,y,y)e R. Assume further
that there exist functions +, @, and h such that

(i) +(x) ts continuous on [a,b], is of class C* on (a,d), and ts
an over-function with respect to boundary value problem (4),

(ii) @(x) 1s a continuous under-function with respect to the boundary
value problem,
and (iii) A(t) is positive and continuous for t = 0, | f(x, ¥, ¥")| = h(|y'])
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Jora<x=b, px) =y = y(@), |¥]| < +oo, and

= tdt ;
Sc G e ¥(x) — min p(x)

where

L) — P@)| |v(@) —P®)] |

¢ = Mmax
b—a ’ b—a

Then H(x) is a solution of boundary value problem (4).

Proof. By Theorem 19, H(x) continuous on [a, b] and is of class
C* on (a, b). Since p(x) = H(w) = v(x) on [a, ], |(H(})— H(@)/(b—a)|=
| H'(x,) | < ¢ for some a < #, < b. If N is chosen so that S tdt/h(t) =

max +(¢) — min @(x) then | H'(x) | =< N on (a, b). It follows from Theorem
15 that H(x) is a solution of the boundary value problem.

As an illustration of this Theorem consider the boundary value
problem

y" = a + )
v =a, yd)=48.

If || < M and |B| < M, the hypotheses of Theorem 20 are satisfied
with g(x, y) = @*°, y(x) = max[|«|, |B]], ¢(x) = min[—|a|, —]|B]] and
h(t) = t* + M® Hence, by Theorem 20 the boundary value problem has
a solution for |a| < M and |B| < M if

°° tdt
iy g =2

The largest M > 0 for which this inequality is satisfied is the positive
root of w/2 — Arctan 4M'* = 4]M°2,

There are few existence theorems for the boundary value problem
that do not impose more stringent conditions than Theorem 20 does on
the rate of growth of f(x, y, ¥') with respect to %’. In the cases in
which it is applicable Theorem 20 seems to give stronger results than
other known theorems.

A different method of obtaining existence theorems for the boundary
value problem (4) via existence theorems “in the small” was recently
given by Kamenskii [13].
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RINGS IN WHICH SEMI-PRIMARY IDEALS ARE PRIMARY

RoBERT W. GILMER

Every ring considered in this paper will be assumed to be com-
mutative and to have a unit element. An ideal A of a ring R will be
called semi-primary if its radical v'A is prime. That a semi-primary
ideal need not be primary is shown by an example in [3; p. 1564]. This
paper is a study of rings R satisfying the following condition: (*) Every
semi-primary ideal of R is primary. The ring Z of integers clearly
satisfies (*). More generally, if A is a semi-primary ideal of a ring R
such that V"4 is a maximal ideal of R, then A is primary. [3; p. 153].
Hence, every ring having only maximal nonzero prime ideals satisfies (*).

An ideal A of a ring R is called P-primary if A is primary and
P=1v"A. If ring R satisfies (*), then A is v/ A-primary if and only if
1A is prime. Some well-known properties of a ring R satisfying )
are listed below.

Property 1. If R satisfies (*) and A is an ideal of R, then R/A
satisfies (*). [38; p. 148].

Property 2. If R satisfies (*), if A and B are ideals of R such that
AZS BS VA, and if A is Vv A-primary then B is vV A-primary. [3;p.
147].

THEOREM 1. If ring R satisfies (*) and P, A, and Q are ideals of
R such that P is prime, PC A, and Q is P-primary, then QA = Q.

Proof. Since VQA = P, QA is P-primary. Thus Q-A S QA and
AZ P imply that Q S QA < Q. Hence QA = @ as asserted.

THEOREM 2. If P is a nonmaximal prime ideal in a ring R satisfy-
ing (*) and tf Q@ is P-primary, then @ = P.

Proof. We let P, be a proper maximal ideal properly containing
P. If p,e P, such that p,¢ Pand if pe P, then Q S Q + (pp) S P. By
property 2, @ + (pp,) is P-primary. Since pp, €@ + (pp) and 1, ¢ P,
pe@Q + (pp). Then for someqgeQ,rc R, p(1 — rp)=q. Nowl — rp, ¢ P,
since P,C R so that 1 — rp,¢ P. Thus pe@Q and PS Q & P. Hence
P = @ and our proof is complete.
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COROLLARY 2.1. If ring R satisfies (*), if P, and P, are prime
ideals of R with P,C P, and if Q is Pyprimary, then P,C Q.

Proof. Since VQP, = P,, QP, is P-primary. By Theorem 2, P, =
QP, < Q. Now Q is Pr-primary so that P, = Q. Hence P,CQ.

COROLLARY 2.2. If ring R satisfies (*) and P is a mnonmaximal
prime ideal of R, then P is idempotent.

Proof. The ideal P? has radical P and is therefore P-primary. By
Theorem 2, P*= P.

THEOREM 3. If R isa ring satisfying (*), if d is not a zero divisor
or unit of R, and if P is a minimal prime ideal of (d), then P is
maximal in R.

Proof. Suppose that P is not maximal in B, Let M denote the
complement of Pin B. We define A to be the set of all those elements
2 of R such that there exists me M such that xme(d). Since P is
prime, A is an ideal and A & P. We wish to show that P = A. Thus
if pe P and if N is the set of all elements of R of the form p*m where
k is a nonnegative integer and m e M, then N is a multiplicatively closed
set containing M and p and hence properly containing M. Because P
is a minimal prime ideal of (d), M is a maximal multiplicatively closed
subset of R not meeting (d). [2; p. 106]. Therefore NN (d) = ¢ so
that there exists an integer £ > 0 and an element m of M such that
p*me(d). That is, p*c A sothat peV ' A. Hence PSV ASV P=P
which implies P = 1" A. This means that A is P-primary. Under the
assumption that P is nonmaximal, we conclude that P = A by Theorem
2. Now P is also a minimal prime ideal of (d? so that if B is the set
of elements ¥ of R such that yme(d’) for some me M, we likewise
have P = B, Since d e P, there exist me M and r € R such that dm =
rd®’. The element d is not a zero divisor so that m = rd € (d) & P which
is a contradiction to our choice of m. Therefore P is maximal as the
theorem asserts.

COROLLARY 3.1, If ring R satisfies (*) and if P is a proper prime
ideal of R containing a monzero divisor d, then P is maximal in R.

Proof. There is a minimal prime ideal P, of (d) contained in P.
[1; p. 9]. By Theorem 3, P, is maximal. Hence P is also maximal.

COROLLARY 3.2. If J is an integral domain satisfying (*), then
nonzero proper prime ideals of J are maximal.
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COROLLARY 8.3. If ring R satisfies (*) and if P is a proper prime
ideal of R, then P is either maximal or minimal.

Proof. Suppose that P is not minimal and let P, be a prime ideal
properly contained in P. Now R/P, is an integral domain satisfying (*)
by property 1. By Corollary 3.2, P/P, is maximal in R/P,. Thus P is
maximal in R. [3; p. 151].

THEOREM 4. If ring R satisfies (*) and P is a finitely generated
nonmaximal prime ideal of R them P is a direct summand of R. If
P, is a prime ideal not containing P, then P and P, are relatively prime.

Proor. By Corollary 2.2, P = P? Since P is finitely generated,
there exists an element ec P such that (1 — ¢)P = (0). [3; p. 215].
Evidently ¢*=¢,P=(¢) and R=P@ (1 —¢). Now e(l —e)e P, and
e¢ P, so that 1 — ee P,. Therefore 1=¢+ (1 —e)e P+ P, so that P
and P, are relatively prime.

THEOREM 5. If the Noetherian ring S satisfies (*), S is a finite
direct sum of Noetherian primary rings and Noetherian integral do-
mains in which nonzero proper prime tdeals are maximal. Conversely
iof T is a finite direct sum of Noetherian primary rings and Noetherian
wntegral domains in which nonzero proper prime ideals are maximal,
then T is a Noetherian ring satisfying (*).

Proof. Since S is Noetherian, every ideal of S is finitely generated.
Let 0)=@.N --- NQ, be an irredundant representation of (0) as an
intersection of greatest primary components where P, = 1'Q,. If P,
P, ---, P, are the nonmaximal prime ideals of S in this collection, P; =
Q; for 1=1=k by Theorem 2. If 1<i1<j=<s,P,+ P;=38. This
follows from Theorem 4 if P, and P; are nonmaximal. If P;, say, is
maximal, then P; 2 P; by Corollary 2.1, for Q; 2 P, from the irredundance
of the representation. Therefore, P, + P, = S. Thus the P,’s, and
hence the Q,’s, are pairwise relatively prime. [3; p. 177]. This means
that S=S/P,P:--- PSP, D S/Quir D -+ D S/Q,. [3; p. 178]. Each
S/P; in this representation is a Noetherian integral domain in which
nonzero prime ideals are maximal. Since Q; for k +1 =<7 < s is P;-
primary with P; maximal, S/Q; is a Noetherian primary ring. [3; p. 204].

The converse follows from elementary facts concerning the ideal
theory in a finite direct sum since it is apparent that each summand

satisfies (*).

We give the following example of ring which is not a finite direct
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sum of indecomposable summands and which satisfies (*).

Let S= >4 Z, where each Z; is the ring of integers and >
designates the weak direct sum. Let R = S + Z be the usual extension
of S to a ring with unit element. [2; p. 87]. Clearly S is a prime
ideal of R, as is I, = S + pZ for every prime p of Z. In fact, each I,
is a maximal ideal of R. It is easy to show that there is no prime ideal

P between S and I,.

Next, assume that P is a prime ideal of R that does not contain
all of S. Then some ¢,¢ P, where ¢, is the unity of Z,. However,
since e;e, = 0 for every j + k, evidently Z,C P for every j #+ k. By
the same reasoning, (1 — ¢,)R & P. As before, it is easily shown that
either P=(1 —¢,)R or P= (1 — ¢,)R + pe,R for some prime p.

Knowing precisely what the prime ideals of R are, it is just a
routine matter to check that R satisfies (*).

The author is not able to give necessary and sufficient conditions
which he feels are adequate that an arbitrary ring satisfy (*). The
condition of Corollary 3.3, while necessary, is not sufficient to imply that
a ring satisfy (*) as is shown by the following example.

If S is the ring of polynomials in two indeterminates X and Y over
a field K, then every nonzero proper prime ideal of S has height 1 or
2. [4; p. 198]. Therefore if A = (XY) and if B = S/A, R is a Noetherian
ring in which every prime ideal is maximal as minimal. The nonmaximal
prime ideal (X)/A of R, however, is not idempotent so that R does not
satisfy (*).
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K-POLAR POLYNOMIALS

RuTtH GOODMAN

1. Introduction. The complex polynomials
W S, w05
are called apolar if their coefficients satisfy the condition
g(—l)jC;)%—jbj =0.
A well known property of apolar polynomials is given [1] by

GRACE’S THEOREM. If the polynomials f(z) and g¢(z) are apolar,
then every circular domain containing all the zeros of one polynomial
also contains at least one zero of the other.

The term “circular domain” is used here to denote any region into
which the circle [2]| =1 can be transformed by a nonsingular linear
fractional transformation

w = (ax + b)/(cx + d) ;

that is, a circular domain is a closed interior of a circle, a closed
exterior of a circle, or a closed half plane.

It is natural to ask whether similar but more stringent conditions
on the coefficients of (1) will insure that every circular domain contain-
ing all the zeros of one polynomial also contains at least k& zeros of the
other when & is integer greater than unity. We show here that this
is the case. Our results can be stated more easily if we first make
the

DEFINITION. The polynomials (1) are called k-polar A1 =k =0, k
an integer) if their coefficients satisfy the k* conditions

n—k+1 ; n — k + 1 .
(2) 5 (" TS Db = 0

th=0,-+,k—1;8s=mn,--,n—Fk+1).

We shall show that k-polarity of the polynomials (1) is sufficient
to insure that the desired relation between their zeros does hold.
It is apparent that when & is relatively large in comparison with

Received February 7, 1962.
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n there is only a restricted class of polynomials f(2) for which k-polar
polynomials g(z) can exist. We shall show that when 2k + 1 = n the
k-polarity of the polynomials (1) is both necessary and sufficient for
them to have a common, repeated zero such that the multiplicities, p
and ¢, with which this zero occurs in the two polynomials satisfy the
inequalities p =k, g =k, p+q=n + k.

2. The polar derivative. To prove our principal results, we shall
need a lemma concerning the (r — 1)st degree polynomial

£ = nf@) + € =@ =n 5 (" 7 D@t + a)’.

This polynomial is called the “polar derivative of f(z)” or the “deriva-
tive of f(z) with respect to ¢”. It can be obtain [2] from f(z) as
follows:

By the linear transformation

(3) z = L(w) = (aw + b)/(cw + d) (bc —ad =1)
transform f(2) into the polynomial
(4) F(w) = (cw + d)"f(L(w)) ;

then to the derivative F'(w) apply the inverse transformation w =
L(z), obtaining f;(z). If ¢+ 0, then { =a/c = L(x); if ¢ =0, then
g = = L(w).

We shall refer to the polynomial F'(w) defined by (4) as the trans-
form by (3) of the polynomial f(z). It is important to observe [2] that
the zeros of the transform F'(w) are the transforms by w = L7'(z) of
those of f(z).

LEMMA 1. Let the nth degree polynomial f(2) have n—k zeros in
|2] <1 and k zeros in |z| > r, where r > 1. Then there is a point {
(not unique) such that f:(z) has exactly k — 1 zeros im |z| > r.

Proof. Form F(w) by applying to f(z) the transformation

z = L(w) = Cw — 1)/(w — £) 1<e<n,

which takes |z]| < 1 into |w] < 1 and takes |z| > » into the circle
K |w— G| < R,, @:%, R,—r&=1
/" —

Now F'(w) has k zeros in K, and n — k zeros in |w]| < 1. Since the
maximum modulus of these latter n — k& zeros is less than unity, we
can choose ¢ < 1 such that these zeros also lie in |w| < . Let p=
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1 + /2. The circle
Kelw—(o—1D|<p

contains the circle |w| < f; for the line segment connecting w = —
and w = ¢ is a diameter of |w]< ¢ and is contained in the line
segment connecting w = —1 and w = ¢, which is a diameter of K.

Thus K, contains n — k zeros of F'(w). Applying the Walsh two circle
theorem [5] to K, and K,, we find that the zeros of F'(w) lie in K, K,,
and the third cirecle

n n

Furthermore, it is an immediate consequence of the two circle theorem
that if the boundaries of K and K, do not intersect then there are
exactly & — 1 zeros of F'(w) in K,. The condition for the non-inter-
section of these two circles is

C;—C>R,+R.
This condition is equivalent to
WC,—C—R,— R)=kC,— R,2n — k) — k(20 —1) >0,
and this last inequality is equivalent to
¢@) = k(r* — 1) — @n — k)r(* — 1) — k(2o — 1)(r* — &%) > 0.
Now
¢(1) = 2k(r' — 1)L — ) >0,

since » >1 and p < 1. Since #(¢) is a real, continuous function of ¢,
it follows that ¢(£) >0 in an interval 1 <& <1+ ¢, where € >0. For
any value of ¢ in this interval, K and K, do not intersect and F'(w)
has exactly k¥ — 1 zeros in K,. Now the zeros of f:(2) are the trans-
forms by z = L(w) of those of F'(w). Hence exactly ¥ — 1 of them lie
in the transform of K,, that is, in [2] > r.

3. Properties of the k-polarity conditions. To prove our prinecipal
results, we shall need to establish first some properties of the k-polarity
conditions.

LEMMA 2. For k=1, ..., n+ 1, the polynomials (1) can be writ-
ten in the form

o =57 e,

-1
i=0
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where
n—k+1 — . .
frs=Fu@="5 (" i Dot G=0,- k-1,

The functions f, ; satisfy the relation

2ferrinn + fevri = foi -

Proof. We show first the property of the functions f,; which is
stated last in the lemma. Using the definition of f,; and a well known
property of the binomial coefficients, we write

n—k n—k

n—k ; n—k ;

Zfirrin + ferni = 24 < i )‘1«;+j+1zt+1 + Z«o ( i >a,i+jz'
=

1=0
n—k+1 —k : n—k — k i
=5 (12D + 5 ("7 Puse

n—k — — .
= g7 ; [(1: _ l{) + (n i k)]ai”z‘ + a;

= ”;‘kfl <n B ic + l)am'zi

i=0
= fk,j .

The proof of the first part of the lemma is by induction. It is
true when k = 1, since f,, reduces at once to f(2). For any k¥ >1 we
have

.zk" <I;'>zjfk+1,j = 2" i1k + g[(l‘; :i) + (k ; 1)]sz,‘+1,,- + Frtro

j=0

>
|

1

Il

(k ; 1>zj+1fk+1,j+1 + g(lc _; 1>zjfk+1'j
(k ; 1>z5(sz+1‘j+1 + fr41.5)
(k ; 1>zjfk.j .

If the first part of the lemma is true when & is replaced by k — 1,
then the last expression above is equal to f(z). It follows that the
lemma is true for all values of k.

Il Il
e ESES
[ [
- o e

<
I
=3

LEMMA 8. The polynomials (1) are k-polar if and only if the
polynomials f,.; and g,; are apolar for all 1=0,---,k—1 and
=0, k—1.

Proof. The proof is immediate, since applying the apolarity con-
dition to all £, ; and g,; yields conditions (2) at once.
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LemMMA 4. The k-polarity conditions (2) are invariant under non-
singular linear transformations of the polynomials (1).

Proof. Since any non-singular linear transformation is equivalent
to a succession of transformations of the forms z = yw(y +# 0), z = 1jw,
z = w + 7, the lemma can be established by showing the invariance of
(2) for each of these special forms.

Each sum in (2) is invariant under magnifications and rotations.
For applying z = vyw to both f(z) and g(2) replaces a,_; by Y a,_;
and b,,, by ¥**b;,,, whence each term of the sum is multiplied by
ye~iyith = stk The sum, therefore, remains equal to zero.

Under the transformation z = 1/w, the polynomials (1) are carried
into

n

F(w) = z( )A wi and F(w) = z (?)ijf,

where A; =a,_; and B; =b,_(5 =0, ---,n). The entire set of con-
ditions (2) is invariant under this transformation. For we have

3=0
n— k+1( 1), ( k + 1>an—subn—h-i

=0

I

= Z: (—1)rker= j(nﬁ;ﬁi—{l >a/2nsk+1 .

= (- S (T R e s
j=o J
where s =2n—s—k+1and B’ =k — h — 1, so that s’ takes on the
values n — k+1,---,n and k' takes on the values k—1,---,0. Hence
satisfaction of (2) by f(2) and g¢(2) insures satisfaction of (2) by F'(w)
and G(w).

To prove the invariance of (2) under translations, we first make
use of Lemma 2 and show that if f£(z) is transformed into F'(w) by
z = w + 7, then each polynomial F, ;(w) is a linear combination of the
polynomials f, {(w + ¢)}(§ = 0, ---, k — 1). Precisely, we show that the
equations

k=§~1 /00 __ & _ .
(5)  Fo =35 (T T @ e G=0 k= 1)
hold for every k=1, ---,n + 1. The proof is by induction on k. We
show first that the desired relations hold for the highest value of Fk,
that is, k=n -+ 1. When k=% + 1, the equations defining f,; and
F, ; reduce to f,1,; = a; and F,,,; = A;, so that () becomes
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n—j A .
4= 5 ("5 7 Pras =0, k=1,
=0

To see that this holds, we find A; by collecting the coefficients of the
powers of w in the polynomial f(w + v). We have

=0

Fw) = £ +7) = 3(Faw + '

J
%(J)w i — 5%
so that
» n — > s n—3 n — >
4= 312 ])ar =5 ("5 e

Thus equations (5) hold when &k = + 1. Next, we assume that they
hold for general index %k + 1 and show that they also hold for index
k. TFor convenience, we shall temporarily let ¢,; denote f, ;(w + V).
(F.; will denote F), {(w) as usual.) Using the property of F, ; and f, ;
established in Lemma 2 and assuming that equations (5) hold for &k + 1,
we can write

Fo;=wFy 0+ Fipj
P P I
=w (k }1 1>7h¢k+1.j+n+1 + hZZ‘,o(k h J>'7h¢k+1,j+h
1 P
=w (k }Z 1)7h¢k+1.:‘+h+1

ST (T D

k—j—1 .
=w P (k J 1>7h¢k+1,j+n+1
h=i=1 /7. . &
+ X (k 1)7h+l¢k+1,j+n+1

J
h
k—j—1 A
T o2 <k }1 1>'Yh¢k+1.j+h
E—j—1 A
=S T @ + Dsrsin + S
< J
h

j — 1
Y r.ian -

S S
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Thus equations (5) hold for k =n + 1, ---, 1.

We have now established that each polynomial F) ,(w) is a linear
combination of the polynomials f, ;(w + ). To finish the proof of the
invariance of (2) under translations, we recall the known facts (i) that
apolarity is invariant under translations of the polynomials [1] and (ii)
that if E, and E, are two sets of polynomials such that every polynomial
of E, is apolar to every polynomial of E, then any linear combination
of polynomials from F, is apolar to any linear combination of polynomials
[1] from E,. By Lemma 3, the k-polarity of f(z) and g(z) implies the
apolarity of each polynomial in the set E: {f; r—i(w), -+, fr.o(w)} to each

polynomial in the set E,: {g;.,-.(w), -+, gro(w)}. Property (i) therefore
implies that all polynomials of E;: {f,..—(w +7), -, fr.o(w + 7) are apolar
to all polynomials of Ej: {g; ,—(w + 7), -+, gro(w + 7)}. We have just

shown that each polynomial F, ;(w) is a linear combination of polynomials
from E] and each G, ;(w) is a linear combination of polynomials from
E;. Thus property (ii) implies the apolarity of all the F, (w) to all
the G, ;(w). Lemma 3 now gives the k-polarity of F'(w) and G(w).
For convenience, we shall denote the repeated polar derivative

feponne (2) as (258, 9).

LEMMA 5. Let k=2 and 1 <s=k—1. The k-polarity of f(z)
and g(z) s mecessary and sufficient for the (k — s)-polarity of the
repeated polar derivatives f(z;¢&,s) and g(z; 7, s) for arbitrary points
gl; EEPE A and Ty * 0y Use

Proof. It suffices to make the proof for s =1, since re-application
of this proof will then establish the lemma for all values of s con-
cerned. Letting ¢(2) = f(z; &, 1) and (2) = g(2; 7, 1), we have

n—1

6@ = 5 (" 7 V@t + aper,

=

whence
n—k-+1 _
bens@ =3y (" E T Dt + ane
= & fki1(R) + fr.i(?) (=0, k—2).
Similarly,
Vi-1.i(@) = MGri1:1(2) + 91.4(2) 17=0,--,k—2).

The k-polarity of f(z) and g¢g(z) implies the apolarity of both f; ;i1(?)
and f, ;) to both g,.,;(z) and g, ;(z). Thus ¢, ;(2) and -, ;(z), which
are linear combinations of these polynomials, are apolar. The (kK — 1)-
polarity of ¢(2) and (2) now follows at once from Lemma 3.
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If, on the other hand, f(2;¢,1) = fe(?) and g(2; 79, 1) = g9,(2) are
(k —1)-polar for arbitrary values of & and %,, then, in particular, both

fo(2) and f.(2) are (k— 1)-polar to both g«2) and ¢g.(z). For convenience,
denote f(z; £, 1) by 4(2; &) and g(z; 9, 1) by +(2; 7). We have

4G 0 = =n3 (" e,
#e ) = fu@) =n S (" G Vas,

whence
T L S ey
Pr1,i(2, ) =1 1:0 (n ; 1>a'i+j+1zi = fr.i+(2)
FG=0,+,k—2).
Similarly,

V1,12 0) = 91.,4(2) ,
Vi-1.4(2; ©) = g1, 741(2) 17=0,---,k—-2).

The (k — 1)-polarity of ¢(z; 0) and ¢(2; ) to +(z; 0) and +(z; ) implies
the apolarity of all the ¢,_, ;(z; 0) and ¢,_, ;(z; ) to all the . ;(z;0)
and +,_, i(z; ) for =0, ---,k— 2. The apolarity of all the f, ;(z) to
all the g, ;(z) for 5 =0, ---, k — 1 now follows at once. This, in turn,
implies the k-polarity of f(z) and g(z).

LEMMA 6. Let the nth degree polynomials f(z) and g(z) be k-polar.
Let &, «++, &, 11, be the zeros of any one of the polynomials g, (), -+,
95.0(2), and let all these zeros be finite. Then f(z;¢, n — k + 1) vanishes
tdentically.

Proof. 1f &, -+, {us+s are the zeros of

k-+
0@ =3 (" T Db,
then their elementary symmetric functions can be expressed in terms
of the coefficients. Let S =1 and for 7 =1, -.-,m let S™ denote
the sum of all possible products of &, ---,&, taken 4 at a time. (Note
that b,_,414n 7 0 since it is the leading coefficient of g, ,(2) and all the
zeros of this polynomial are finite.) We have

Simk D — (_1),;(% —k+ 1) bupirin—s (T=0,-,mn—k+1).

v bn—k+1+h
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Thus we can write

k+1
a

n—
bn—k-l-l-H‘L Z

=0

n—k+1 S .
Z (—-1y (n f + 1)a’j+ibn—k+1+h—i (3=0,---,k—-1).
1=0

(n—k+1)
+iS8

Now for each value of j, the last expression above is the left side of
one of the conditions (2). Consequently the k-polarity of f(2) and g(2)
gives

n—k+1 .
2 @S =0 (G=0,--,k—1).

Now it is known [3] that f(2; &, t) can be written in the form

. . ’I’L! nt (n - t) d . (.&) ']
f(z’ é‘r t) - (n __ t)! Jz:::) j ;)a’ahs@ ® .
For t=n—k+ 1, we have just shown that the sum which appears
in the coefficient of each 2’ vanishes., Consequently, we have
f@# ¢ n—k+ 1) =0, as we wanted to show.

4. K-polar polynomials. We are now ready to prove our principal
results.

THEOREM 1. If the polynomials f(z) and ¢(z) are k-polar, then
every circular domain containing all the zeros of one polynomial
also contains at least k zeros of the other.

Proof. The proof will be by induction on k. For k =1, this
theorem is simply Grace’s theorem.

Assume that the theorem holds for £ = m, and let f(2) and g(?)
be (m + 1)-polar. Let C be a closed circular domain containing all the
zeros of g(z) and exactly s zeros of f(2). Then C is contained in an
open circular domain C’' whose closure also contains exactly s zeros of
f(@). Since Fk-polarity is invariant under linear transformations, we
can take |z]|>1 as C’. Then for a suitable r > 1, all the zeros of
g(2) and exactly s zeros of f(z) lie in |z| > r, while n — s zeros of
f(®) lie in |z| <1, By Lemma 1, therefore, there is a point ¢ such
that exactly s — 1 zeros of fi(2) lie in |z| > r. Also, by Laguerre’s
theorem [2], all the zeros of ¢,(?) lie in |z] > r whenever 7 lies in
|z] < r. By Lemma 5, the (m + 1)-polarity of f(z) and g(z) implies the
m-polarity of f:(2) and g,(2) for all values of & and 7. Consequently,
the assumption that the theorem holds for & = m implies that the
circular domain |z| > r, which contains all the zeros of g¢,(2), must
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contain at least m zeros of f¢(2). Since we know that this domain
contains exactly s — 1 zeros of f:(z), we have s —1=m. That is,
s=m + 1, so that the theorem holds for k¥ = m + 1.

THEOREM 2. For (n+ 1)/2 £ k £ n, the k-polarity of the nth degree
polynomials f(z) and g(z) is necessary and sufficient for them to have
a common, repeated zero whose multiplicities, p and gq, satisfy the
inequalities p =k, =k, p+q=n+ k.

Proof. Suppose that two polynomials have a common repeated root
whose multiplicities satisfy the given inequalities. A linear transfor-
mation will take the polynomials into

22¢(2) = g<?>alzt

and
2 (2) = %(?)bz’

where ¢y = --- =a,,=0and b, = --- =b,_, = 0. Now every product
a;b; which occurs in the k-polarity conditions (2) vanishes. For if «;b;
is to be nonzero, we must have 1 = p and j=g¢q, so that 1 +57=p+ ¢
whence 7+ j=mn+ k. The maximum value which ¢+ Jj can assume
for any ab; in (2), however, is n + k — 1. Thus conditions (2) are
satisfied and the polynomials are k-polar.

Suppose now that f(z) and g(z) are k-polar, with k& = (n + 1)/2.
We can, if necessary, perform a linear transformation on the poly-
nomials to make b, #+ 0 and b, = 0; that is, we can make all the zeros
&, vy Cupr Of gr4—1(?) finite and put one of these zeros at the origin.
By Lemma 6, f(z; &, n — k + 1) = 0. Thus [4] either f(z; ¢, n — k) = 0 or
f@z&n—k) =c@—1n,4)" In either event, there is an % in the
range k < h = n such that f(z;¢&,n —h+1)=0 and f(z;{,n— k)=
c(—&,—ni)". (Note that f(z; ¢, 0) =f(2).) We can agsume that &, .., is
at the origin, so that f(z; ¢, n — k) = cz*. By Lemma 5, the k-polarity
of f(2) and g¢g(z) guarantees the (¥ + h — m)-polarity of f(z;¢,n — h)
and g(z; », n — h) for arbitrary 7., -+, J,—n. Lzt

reen—n=3%("aq,

=

Then we have 4, = --- = A4, , =0, A, # 0; and the (k + k — n)-polariy
conditions which involve A, reduce to
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Ah.Bo =t = Ath+h—n—1 =0,
whence
(6) By= "+ =Bip01=0.
We know [3] that

n—h

Zﬂzb.ﬂ—isén_h) (j:()y "'7}1/) ’
where gt = (n!)/(k!). Now equations (6) hold for arbitrary values of
Ny ***y Nu-n. Hence they hold in particular for n,=+-- =9,, =0.
For these values, we have S{*™* = ... = S =0, so that B, = b,
whence B,=0 implies b,=0. We can now use ,=1, 9,=+--=9,_,=0,
so that S** =1, Si** =... =8 =0, B, = b, whence b, = 0.
Usmg h=n=17= = N_n = 0 gives S* M =2, Si* =1, SiP=

o= S =0, B, = /Jbz, whence b, =0. It is clear that we can

proceed in this way to establish b, = -.--- =b,, =0. We now have

B, = ttb,_,,S"3"», whence we can conclude that b,_,,, = 0. It then
follows that B, = ttb,_,:.S"5", whence b, ,., = 0. We can proceed in
this way to show that successive values of b; vanish until we arrive
at Biipn = bS53 =0, whence b,_, = 0. Thus g(z) has at least
a k-fold zero at the origin. Let q be the multiplicity of this zero, so
that b= ++- =b,,=0,b,+0. Sinceqzk=2k—k=n+1—-%Fk, it
follows that b, appears as the b; of highest index in k of the k-polarity
conditions. Since it is the only nonvanishing b, in any of these %
conditions, they reduce to

bqa(]: e :bqak—lzoa
whence
Ay = ++» =0y = 0.

Thus f(2) has a p-fold zero at the origin with p = k. To finish the
proof, we have left only to show that p-+¢=n-+%k. Now the product
a,b, is nonvanishing. If it were to appear in any of the k-polarity
equations (2), then the indices of every product a;b; appearing in the
same equation would have to satisfy ¢+ j = p + ¢q. But this means
that if + > p so that a; #+ 0, then 5 < ¢ so that b; = 0. Thus, if a,b,
did appear in any equation of (2), it would be the only non-vanishing
product in this equation, whence the equation would not hold. Hence
the product a,b, cannot appear in any of the equations (2). But every
product a.b; does appear for which

n—k+1=i+5=n+k—1.
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Therefore, either p+g9<n—k+1 or p+g>n+k—1. But
p+eg=zk+kz=zn+1>n+1—k.  Consequently, we must have
p+qg>n+k—1, thatis, p+qg=n-+ k.

REFERENCES

1. J. H. Grace, The zeros of a polynomial, Proc. Cambridge Philos. Soc., 11 (1902), 352-357.
2. E. Laguerre, Oeuvres, Paris: Gauthier-Villars, 1898, Vol. 1, pp. 48-66.

3. M. Marden, The geometry of the zeros of a polynomial in a complex variable, A. M. S.
Math. Surveys No. III, New York: (1949), 38-43.

4. G. Péblya and G. Szego, Aufgaben und Lehrsitz aus der Analysis, Berlin: Julius Springer,
Vol. II, (1925), 61-64.

5. J. L. Walsh, On the location of the roots of the derivative of a polynomial, C. R. du
Congress international des Mathematiciens, Strasbourg (1920), 339-342.

WESTINGHOUSE ELECTRIC CORP.



ON THE ADDITIVITY OF LATTICE COMPLETENESS

to the memory of Maurice Audin
ISRAEL HALPERIN AND MARIA WONENBURGER

1. Introduction. It was shown in [1, Theorem 4.3] that upper 8-
continuity® is additive in the following sense:

(1.1) Suppose that [0, a], [0, b] are upper W-continuous in a relatively
complemented modular lattice. Then [0, a U b] is upper W-continuous
provided that [0, a U b] is upper W-complete.

But it may happen that [0, a], [0, b] are both upper }R-complete
(both may even be von Neumann geometries with a perspective to b)
and yet [0,a U b] is mot upper YR-complete. In fact there are von
Neumann rings <% for which the lattice R &, With &7 = 22, is not even
upper Y,-complete (see the Remark preceding Definition 3.1)

With a modest supplementary condition however, additivity of upper
W-completeness does hold, as we show in this paper.

2. Terminology and notation. We shall use the notation of [1],
[2], and [4].

I will denote a set of indices @ and I will denote the cardinal
power of I.

W will denote an infinite cardinal, 2 will denote the least ordinal
number whose corresponding cardinal power is .

A lattice is called upper W-complete if the union a = U (a,jaecl)
exists whenever I < Y, and is called upper W-continuous if for every b:
bnNna=UW N U (a,lae F))lall finite F < I), with dual definitions for
lower W-completeness and lower YW-continuity. The lattice is called -
complete, respectively W-continuwous if it is both upper and lower
W-continuous.

A complemented modular lattice L is called an W-von Neumann-
geometry if it is Y-complete and YW -continuous (irreducibility is mnot
assumed).

If we omit the ¥ in any of these designations, this implies that
the lattice I has the corresponding Y-property for all 3.

If <Z is an associative regular ring (not necessarily with unit element)
then R _» denotes the relatively complemented modular lattice of its principal
right ideals, ordered by inclusion. <2 is called an YR-von Neumann-
ring, respectively a von Neumanmn ring, according as R&? is an YW-von
_—Rm—December 28, 1961. Dr. Wonenburger is a postdoctorate Fellow (of the

National Research Council of Canada) at Queen’s University.
1 Terminology and notation are explained in section 2 below.

1289



1290 ISRAEL HALPERIN AND MARIA WONENBURGER

Neumann-geometry, respectively a von Neumann geometry.

In any relatively complemented modular lattice, if @ = b then [a — b]
will denote an arbitrary (but fixed) element such that [a — 4] b =«
(the dot indicates that the summands in the union are independent). We
write a ~ b to denote: a is perspective to b, and a < b to denote: a ~ b,
for some b, = b. Elements a, b are called completely disjoint, (notation:
(a, b)P) if: a, ~ b, a;, £ a, b, < b together imply a, = 0.

3. The additivity of completeness theorem.
In this section @, b, ¢, +++ %,, +-- will denote elements in a given relatively
complemented modular lattice L.

If [0, @ U c] is upper W-complete we shall write u(a, ¢, ) to mean:

(8.1) Whenever x, <a Uc for all acl (with T < W) and

a N (U@lBeF) =0
Jor all finite F' I, then a N (U@x.lael)) =0.

It is important to note: if u(a, ¢, }) holds then u(a’, ¢’, W) holds
for all ¢’ < a,¢ <ec.

Clearly, if [0, @ U ¢] is upper Y-complete and upper ¥R-continuous then
u(a, ¢, W) does hold.

Similarly, if [0, a U c] is lower W-complete we shall write (e, ¢, 3)
to denote:

(8.1) Whenever z, <a Uc for all acI (with I £ W) and

aU(N@slBeF)=aUc
Jor all finite FC I, then o U (N®,]laecl))=a U ec.

It is important to note: if I(a, ¢, 3) holds then I(a’, ¢, $}) holds
for all @’ <a,c Ze.

Clearly, if [0,a U c] is lower Y-complete and lower ¥-continuous then
l(a, ¢, W) does hold.

LemMA 3.1. Suppose that each of [0,a U b], [0,b U ¢], [0,a U c] is
upper W-complete and suppose that u(a, ¢, W) holds. Then [0,a U b U c]
18 upper W-complete.

Proof. We may suppose that {a, b, ¢} is an independent set, for if
¢, b are replaced by [c — (@ N ¢)] and [b — (b N (@ U ¢))] respectively the
hypotheses of Lemma 3.1 continue to hold and the conclusion is not
changed.

Using transfinite induction, we may suppose that Lemma 3.1 holds
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for all W' < W. We may therefore assume that z, is given, <aUbU ¢
for all 0 < a < 2, that U(z.|a = B) exists for all 8 < 2 and we need only
show that U(z,|a < Q) exists.

We may suppose %, < 25 for « < 8 < 2 (by replacing the original
z, by U(xs|B8 = a) for all (a < Q).

Set T,—=UJ((x, N (a N b)) |a < Q) (this union exists since, by hypothesis,
[0,a U b] is upper W-complete). Set Z, =2z, U z, for 0 < a < £ and
observe that Z, =%, foral 0 = 8 < a < £,

Set ¥, =%, and ¥, = [Z, — U@:|0 = B8 < a)] for 0 < a < Q. Then
Uwsl0 =8 < a)=U@E:|0 = B<a)forall ) <a< £, as may be verified
easily by transfinite induction.

Clearly, we need only show that U(#.|0 £ a < Q) exists. Hence it
is sufficient to show that .y, exists, where (for the rest of this proof)
we write U, to mean Jjcncp (note: 0 < a < 2 has been replaced by
0<a< .

Set u = (a U (Ual(@ U %) N (U ))) N (B U (Uu® U %) N (a U )
(this union exists since, by hypothesis, [0, b U ¢} and [0, @ U ¢] are upper
M-complete). We observe that u = y, for all 0 < 8 < 2 since each factor
of # has this property: for fixed B, a U (U.l{(a Uy.,) N (b U e)) =
aU(@Uyy) NGUe)=(@Uy)N(@UbUc)=aUys=ys.

We shall show that « is the desired union U,y.. It is clearly suf-
ficient to show for every w: if u = w =y, forall 0 < a < 2 then u < w.

Sincea Uy, =aUwand DUy, =bU w for all 0 < a < 2,

u=(@U(@Uuw)yn®Gue))N@UdUwN@U-)
=(eUw)NGUw=wU-(@nN(@®Uw).

It is therefore sufficient to show that ¢ N (b U w) < w. We shall show
that ¢ N (b U ) = 0; this will imply:

aNOUW=Z=aNGUu=0=w,
Now bUu=(aUbU(UuaUg) NG UN)N(BUULbU)N@U)),

aN@Uu=an @ U UbUy) N (aUoc))
=anN(®N@Uec)U (Ub U )N (@U o))
=a N (U U ) N (@ U0)).

Since u (a, ¢, W) is assumed to hold we need only show:
anN (UG UY)N(@Uoa=a,--,a,)=0

for every finite set of indices 0 < o, < a4, < +o0 < ¥, < 2.
Hence it is sufficient to show that

a N (b U (U(ywla:alr '°',0(m))) = 0,
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and so it is sufficient to show that
(3-2) (aub)n(U(yw[a:alr"'!am))z()-

For this purpose, we note: ¥, N (UWs|0=8<a)=0forall 0<a< L,
This implies that {y,|a¢ =0, a;, -+, @,,} is an independent set and hence
% N (UW.|laa =ay, -+, @,)) = 0. This implies (8.2) since the left side
of (3.2) is <y, Thus Lemma 8.1 is proved.

COROLLARY 1. Suppose that [0,a; U a;] is upper W-complete for
1, =1, «+«, m for some finite integer m and suppose that u(a;, a;, W)
holds whenever 1 < j. Then [0,a, U +++ U a,] is upper YW-complete.

Proof. If m < 2 the conclusion is part of the hypotheses. Suppose
that m > 2 and that the Corollary is known to hold with m — 1 in place
of m; then Lemma 3.1 can be applied (with a =a,, b=a, U --- U a,
and ¢ = a,) to show that the Corollary holds for m itself. By induction
on m, the Corollary is established.

COROLLARY 2. Suppose that [0, a; U a;] s upper W-complete and
upper W-continuous for i,j =1, «+., m for some finite integer m. Then
[0,a, U +++ U a,] is upper W-complete and upper W-continuous.

Proof. Since upper W-continuity of [0, a; U a;] implies that u(a;, a;, $)
holds, Corollary 1 shows that [0,a, U +++ U a,] is upper ¥-complete. The
upper W-continuity then follows from [1, Theorem 4.3].

LemMMA 3.2. Suppose thata =a, U a,U -+~ Ua, and ¢, <a, U -+ Ua;_,
for 1< i1 =m. Then a can be expressed in the form:

(88) a, U U +++ U a, for some n=m and elements @, +-+,d, such
that @, S a, for all 1 <1 < m.

Moreover @, may be taken to coincide with a, tf a, N a, = 0.

Proof. Lemma 3.2 holds trivially if m =1 and also if m = 2 and
a, N a,=0. We may therefore suppose (by induction) that m > 1 and
that b=a, U *++ U @,_, has the form (3.3).

We can replace a,, by [a, — (¢, N b)] since the hypotheses of Lemma
3.2 continue to hold and the conclusion is not changed. After this change,

amﬂb=amﬂ(a10€_bzo"'Odn)zo-

Since a, <a, U@ U --- U @, there is a perspectivity mapping @ of
[0, @,] with ®(a,) <b. Then

Uy, = Q1 U Qo2 [GRERE U (L 2%
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where
¢(am,1) = g)(a’m) n al ’
and for 1< < m,
P(tm.2) = [(P(@n) N (@, U @ U -++ U @)
—(@@) N (@ UaU - Uay).

Obviously, @, < @,. If © > 1then a, ; ~ P(@n..); P(An.) S Ti; @; < ay;
and a,.; N (@(a@n;) U @ U a,) = 0; these facts imply that a,; < a, (use
(2.2) of [1]). The conclusion of Lemma 8.2 now follows at once.

LEmMmA 3.3. Suppose that

(i) ea=a,Uay,U -+ U a, for some finite m = 2,
(i) ay~a,
(iii) aiSal.U---Uai_lfor2<i§m,

@{iv) [0, a, U a,] is upper W-complete,
(v) u(ay, a, 3}) holds.

Then {0, a] is upper Y -complete.

Proof. Applying Lemma 3.2, and using a new m and new elements
Qs+, A, We may suppose that (i), (iii) hold in the strengthened form:
a=a Ua, U -+ Ua,and a; < a, for 2< i <m.

Suppose that 1 <1< 7 <m. If 1% 2 then a; S a, (because of (ii))
and there is a perspectivity mapping @ of [0,a; U a;] with o(a;) < a,
and @(a,) < a,. Hence [0, a; U a;] is upper WR-complete and u(a;, a;, W)
holds in this case.

If ¢ = 2 there is a perspectivity mapping @ of [0, a, U ;] with ¢(a,)=
a;, P(a;) = a;; the result for [0, @, U a;] obtained previously now implies:
[0, @, U a;] is upper W-complete and u(a,, a;, ) holds.

Corollary 1 to Lemma 8.1 now applies to these elements a,, ---, a,
and this completes the proof of Lemma 3.3.

COROLLARY. Suppose that the hypotheses (i), (ii), (iii), of Lemma 3.3
hold and suppose also that

(vi) [0, a, U a,] is upper W-complete and upper YW-continuous.

Then [0, a] is upper W-complete and upper Y-continuous.

Proof. (vi) implies (iv), (v). Hence [0, @] is upper W-complete by
Lemma 3.3. Upper W-continuity then follows from [1, Theorem 4.3].

LEMMA 3.4. (Additivity of lower W-continuity). Suppose that
[0,a, U -+ U a,] is lower W-complete and that [0,a;] ts lower -
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continuous for i=1, -+, m. Then [0,a,U - Ua,] ts lower WR-continuous.

Proof. We may assume that {a,, ---,a,} is an independent set
(replace a; by [a; — (a; N (a, U +++ U a;,))] for 2 <1 < m).

Then [a,, a, U a,] is lower }R-continuous since it is lattice isomorphic
to [0, a,] under the mapping: © —« N a,. Similarly [a,, a, U a,] is lower
W-continuous. By the dual of [1, Theorem 4.3], [0, a, U a,] = ([a; N a,,
a, U a,]) is lower Y-continuous. Lemma 3.4 follows by induction on m.

LemMA 3.5, Suppose that each of [0, U b],[0,b U c¢), [0,a U c] s
lower W-complete and suppose that l(a, ¢, W) holds. Then [0,a U b U c}
18 lower W-complete.

Proof. We may suppose that {a, b, ¢} is an independent set, for if
¢, b are replaced by [¢ — (@ N ¢)] and [0 — (b N (@ U ¢))] respectively the
hypotheses of Lemma 3.5 continue to hold (l(a,c;, 3) is equivalent to
l(a,c, W) if @ U c,=a Uc) and the conclusion is not changed.

Now set B=a Uc¢, C=bUa, A=bUc and 1=aUbUc. We
have: [A N B,1](=[¢,a U b U ¢]) is lower ¥-complete since it is lattice
isomorphic to [0, U b] under the mapping x—2 N (@ U b). Similarly
each of [BN C,1], [C N 4,1] is lower ¥W-complete.

We can now show that [0,a Ub U c](=[4 N BN C,1)]) is lower W-
complete (by applying the dual of Lemma 38.1) if we can show:

(8.4) Whenever X,=CNA for e I(with ISY)and CU(N(X:|Be F))=
1 for all finite F C I, then C U (N(X,|ael)) = 1.

Since CN A=b and C=a Ub, (3.4) can be rewritten:

(8.4 Whenever X,=b for a e I (with I<W) and o U(N(Xs|Be F))=
aUbUc for all finite FC I then a U (N (Xu|lacl))=a UbUec.

Suppose that the hypotheses of (3.4)' hold and set z, = X, N (a U ¢).
Then z, <a U ¢ for all « and

a U (N (%] B8eF))
=a U (NXslBeF) N(@Ue)=(aU(N(X|BeF)) N(aUc
=@uUbUucN@Uec)=aUec.

Since l(a, ¢, 3}) holds, it follows that

aU(N@sael)=aUc; a U(NXslael)N(@Ue)=aUc;
aU(NX,Jael))=aUc (hence=a UbUc).

This means: (3.4) does hold. This completes the proof of Lemma 3.5.
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COROLLARY 1. Suppose that [0,a; U a;] 1s lower Y-complete for
,7=1,+,m.

Suppose also that l(a;, a;, W) holds for all t<j. Then [0,a,U---Ua,]
18 lower W-complete.

Proof. This follows from Lemma 3.5 by induction on m, just as
Corollary 1 to Lemma 3.1 followed from Lemma 8.1.

COROLLARY 2. Suppose that [0,a; U a;] is lower Y-complete and
lower W-continuous for 1,5 =1,---,m. Then[0,a, U --- U a,] is lower
W-continuous.

Proof. Since lower Y-continuity of [0, a; U a;] implies that I(a;, a;, W)
holds, Corollary 1 shows that [0,a, U --- U a,] is lower R-complete.
The lower YW-continuity of [0,a, U -- - Ua,] then follows from Lemma 3.4.

LEMMA 3.6. Suppose that

(i) e=a,Ua,U -+ U a, for some finite m = 2,
(11) Ay ~ @y,
(111) aiS(IIU"'Uai_lfO')"2<i§m)

@{v) [0, a, U a,] is lower Y-complete,
‘(V) l(au g, R) holds.

Then [0, a] is lower W-complete.
COROLLARY. Suppose that (i), (ii), (iii) hold and also
i) [0, a; U a,] is lower YW-complete and lower W-continuous.

Then [0, a] is lower YW-complete and lower W-continuous.

Proof. Lemma 3.6 and its Corollary follow from Lemma 3.5 and
Lemma 3.4 just as Lemma 3.8 and its Corollary followed from Corollary
1 to Lemma 3.1 and [1, Theorem 4.3].

THEOREM 3.1. Suppose that each of [0, a;Ua;] is an W-von Neumann-
geometry (respectively a von Newmann-geometry) for i,j =1, «-+,m.
Then [0,a, U -+ U a,] is an W-von Neumann-geometry (respectively a
von Neumann geometry).

Proof. This follows from Corollary 2 to Lemma 3.1 and Corollary
2 to Lemma 3.5.

COROLLARY 1. Suppose that

(i) a=a,Ua, U -+ U a, for some finite m = 2,
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(11) Ay ~ @y,

(i) a; Sa, U -+ Ua for 2< 1 < m,

@iv) [0, a, U a,] s an W-von Neumann-geometry (respectively a wvon
Neumann-geometry).

Then [0, a] is an YR-von Neumann-geometry, respectively a von Neumann-
geometry.

Proof. This follows from the Corollary to Lemma 8.3 and the
Corollary to Lemma 3.6.

COROLLARY 2. Suppose that & s an YW-von Neumann-ring (re-
spectively a von Neumann-ring). If R, has a basis @, @, -+, %, such
that x, ~ 2, and x; < %, for 2 < 1 = m, then #, 1s an W-von Newmann-
ring (respectively, a von Newmann-ring).

Proof. By hypothe51s, the unit element of the lattice R is the
union @, U -+ U @,. The unit element of Ry, with & = .22, can be
represented as a union @ U U, Uy, U - < U vy, with ¥, ~ x; and
hence y;, S x, for 1 < ¢ < m. Slnce [0, @, U x,] is an W-von Neumann
geometry (respectively a von Neumann geometry) along with B 2, Corollary
1 applies and this completes the proof of Corollary 2.

COROLLARY 3. Suppose that <& and 2, are both W-von Neumann-
rings (respectively wvon Neumann-rings). Then Z, is an W-von
Neumann-ring (respectively a von Neumann-ring) for all finite n.

Proof. If n > 2 the umt element of Ry, with & = &, can be
expressed as «, U @, U - U, Where 2, is the unit element of R%,,
x; ~ %, for all ¢, and [0 @ U ] = @2. Theorem 3.1 applies and this
completes the proof of Corollary 3.

REMARK. Let <2 be the ring of sequences x=(x") with all 2" complex
numbers and all but a finite number of z™ real, with componentwise
addition and multiplication; this example was given by Kaplansky [3,
page 526]. This 2 is a von Neumann-ring but .2, is not even upper
W-complete.

DerFINITION 38.1. If L is a relatively complemented modular lattice,
then an element a is called Boolean (with respect to L) if b, ~b,, b, < a
together imply b, = b,; a is called the Boolean part of L (necessarily
unique if it exists)® if @ is Boolean and a, < a for every Boolean a,.

2 This is an abuse of language: properly, [0, a] should be called the Boolean part of L.
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LemmA 8.7. Suppose that L is a relatively complemented modular
lattice. If (a, b)P holds then for every cin L, cN(a Ub)=(cNa)U(cNbd)
and [0,a U b] is the direct sum of [0, a] and [0, b]. On the other hand
if a is Boolean then

(i) b= a implies that b is Boolean,

(iil) b N a =0 implies that (b, a)P holds,

(ili) b = a implies that the relative complement [b — a] is unique,
iv) en@®@Ue)=(@NbdU(@nc)for all b,c n L,

(v) [0,a] s @ Boolean algebra.

Proof. Suppose that (a,b)P holds and set d =[(c N (¢ UDd)) —
cnayund)),d,=C@UdnNa,dy=Ua)Nb Thend <a Ub,
dNa=dnb=0, d, Ud=@dUubN@dUa) =d, Ud, so d, ~d,.
Since d, < a, d, < b and (a, b) P holds, we must have: d,=0;b=d, U b=
dUb; d=b;henced =0, cN(@Ub)=@CcNa)Und). If czaUDd
then ¢c=(cNa)U (Nbd); and if c=¢, Uc, with ¢, <a, ¢, <b then
cNa=c U, NbNa)=c UO0=c¢, ¢cNb=c, This proves that
[0, @ U b] is the direct sum of [0, @] and [0, b].

(i) and (ii) are obvious from the definition of Boolean element.

(ii) asserts that a is in the centre of L as defined in [1, (2.5)]. But
if @ is in the centre of L and b is any element in L with b = ¢ then
a is in the centre of [0, d], hence [b — a] is uniquely determined (use
[1, (2.6)]). This proves (iii).

If b,c are arbitrary elements in L, set b,=1[b— (¢ ND)], ¢, =
[c —(@nc)]. Since a Nb,=a N ¢, =0 and a is in the centre of L, it
follows that (a, b)) P, (a, ¢,) P, hence (a, b, U ¢,)P (use [1, (2,6)]); therefore
a N (b, Ue)=0. By the modular law

anN@G@Ue)=an®Uc,U(@nNd UIane)
=@ndU@nec)Uan(®Uec)
=(@nbd U@nc

and hence (iv) holds.
Thus [0, a] is a distributive complemented lattice, equivalently: a
Boolean algebra. This proves (v).

LemMA 8.8. Suppose that L has a unit element 1=a,Ua, U -+- U @,
with m =2, a, ~ay, a; S a, for 2<t=m and a, N a,=0. Then the
Boolean part of L exists and s 0.

Proof. By Lemma 3.2 we may assume that 1 =a, U -+ U a, with
m=2, a,~a, and a; S a, for 2 <1 =< m.

To prove Lemma 8.8 we may suppose that a = 0 and we need only
exhibit elements b, b, such that b, < a, b, ~ b,, and b, # b,.
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If a; N @ # 0 for any 7 it suffices to choose this element as b, since
the relations a, ~ a, and a; < a, if 7 #+ 1 imply b, ~ b, for some b, = b,
(even b, N b, = 0).

On the other hand, if a; N @ =0 forall ¢, set b, =(a, U -+ Ua;) N a
where ¢ is the smallest integer for which this element is different from
0 (necessarily 1 < ¢ < m) and set b, = ((@, U +++ U @;—) U b) N a;. Then
b,~b, since (@, U -+ Udt;—y) U b= (a, U +-+ U a;_) U by; and b, = b, since
b,=a,and b, N a; = a N a; = 0. This completes the proof of Lemma 3.8.

LeMMA 3.9. Suppose that L is an upper complete complemented
modular lattice and let a be the union of all Boolean elements in L.
Then a is the Boolean part of L.

Proof. We need only show that a is Boolean, that is, we may suppose
that b < a, that @ is a perspective mapping of [0, b], that b = @(b) and
we need only derive a contradiction. By replacing b by [b — (b N @(b))]
we may suppose b = 0 and b N @(b) = 0.

Now for every ¢: (b Nc)) ~ B Nec)and (b Nec)) NGB Nec)y=D0.
If ¢ is Boolean this implies: 8 N ¢ = 0, and hence (since ¢ is Boolean)
(b, ¢)P holds. It follows from [1, formula (2.6)] that (b, a)P holds,
contradicting the fact that b = 0 and b < a. This contradiction proves
Lemma 3.9.

THEOREM 3.2. Suppose that L is a relatively complemented modular
lattice and

(i) a=a,Ua, Ua, U +++ U a, for some finite m = 2,
(ii) (@, @, U -+ U a,)P holds,

(i) ay,~a,a,Na =0,

(iv) ;s a, U -+ Ua, for 2<1=m,

(v) o is a perspective mapping of [0, b] with ¢(b) < a.

Let © denote one of the properties: to be upper YW-complete and upper
W-continuous, or to be lower W-complete and lower YW-continuous. Then
[0, @ U b] has property & if both of |0, a, U a,] and [0, a, U 7(a, N ¢(b))]
have property w; if a, is the Boolean part of [0,a] and [0,b] has a
Boolean part b, it is sufficient that [0, @, U a,] and |0, a, U b,] should
both have property =.

Proof. Since (a,a, U -+ U a,)P holds, Lemma 3.7 shows that
P(b)= @(b;) U @(bs) where b,=9(a, N ¢(b)) and b,=¢((a,U - - - Ua,) NP(b)).
Then (a, U b, a, U --- U a, U b)P holds (use [1, (2.6))).

By Lemma 8.7, [0,a U b] is the direct sum of [0,a, U b] and
[0,a, U --- U a, U b,] and has property = if each of the summands has it.
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Since b, <a, U --- U a,, [0,a, U -+ U a, U b,] has property = if
[0, @, U a,] has it, by Lemma 8.3 and its Corollary and Lemma 3.6 and
its Corollary.

If a, is the Boolean part of [0,a] then @(b) N a, is Boolean with
respect to [0, a], a fortiori Boolean with respect to [0, @(b)]. Thus, b, is
Boolean with respect to [0,b]. If [0,b] has a Boolean part b, then
b, <b,and a, U b, = a, U b,, hence [0, a, U b,] has property = if [0, a, U b ]
has it.

This proves all parts of Theorem 3.2.

REMARK. If &2 is a von Neumann ring then .2 has a unique
decomposition as a direct sum &2 = 77 (P .2 such that R - is the Boolean
part of B, and K has a basis @, @, x, with @, ~ 2, and ®, < «,. Then
Theorem 3.2 and Corollary 2 to Theorem 3.1 apply and show that .#,
is a von Neumann ring if and only if <%, is a von Neumann ring (for
details see [2]).
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ARC-WISE CONNECTEDNESS IN SEMI-METRIC SPACES

RoBERT W. HEATH

1. Introduction. The Arec Theorem wusually encountered is the
following: a connected and locally connected Cauchy complete metric!
space is arc-wise connected [10]. The most general Arc Theorem is
Theorem 1 in Chapter II of [14], in which “Cauchy complete metric space”
is replaced by “a space satisfying Moore’s Axiom 1”—i.e. a “complete
Moore space” (equivalent to a complete regular developable space [1];
see also [16] and [15]). Wyman Richardson, in one of F. B. Jones’
classes proved the Are Theorem for strongly complete regular semi-
metric spaces (unpublished though the argument differed considerably
from Moore’s argument). This was not, however, a real generalization
because such spaces are Moore spaces (cf. Corollary 4.3 of this paper).

Since most theorems which are true in Moore spaces are true in
regular semi-metric' spaces, and since the exceptions are “in general
those theorems whose validity depends upon that property of Moore
spaces which forces the equivalence of perfect and hereditary separability”
[7], one might hope that the Arc Theorem could be further generalized
by simply replacing “metric” by “regular semi-metric.” This paper
establishes that the Arc Theorem cannot be generalized directly to Cauchy
complete regular semi-metric spaces but can be extended to a somewhat
more general class of regular semi-metric spaces then those satisfying
Moore’s Axiom 1. The examples given show that, even in the presence
of such properties as possessing a uniformity and being compactly con-
nected, a regular semi-metric space can be Cauchy complete, connected
and locally connected but not be arc-wise connected. Other possible
means of extending the Arc Theorem are eliminated by establishing
that in the presence of certain topological properties a regular semi-
metric space is a Moore space (e.g. a strongly complete semi-metric
space is a Moore space)—or is even metrizable.

This paper is essentially a dissertation [4] written at the University
of North Carolina under the direction of Professor F. B. Jones. The

Received July 22, 1960, and in revised form May 17, 1961, and December 20, 1961.
Presented to the American Mathematical Society, June 18, 1960.

t A topological space S is said to be semi-metric if there is a distance function d for
S with respect to which the topology of S is invariant. A distance fumction d for S is a
function from S X S to the nonnegative numbers such that, if each of x and y is a point
of S, then (1) d(x, y) =0 only in case x = y and (2) d(z, y) = d(y, «) [11; 18]. The space
is metric if the distance function also satisfies (3) d(x, y) + d(y, «) = d(x, 2) for each triple
2,9, 2z of points of S. Note that every Moore space is regular and semi-metric. The set
Ue(zx) = {y: d(w,y) < ¢} is referred to herein as a c-neighborhood (with respect to d) of z.
Cauchy complete is defined as in [11, p. 316]. Topological space and regular are defined as
in [9, pp. 37 and 113]. Terms not defined herein are used as in [14], [11], or [1].
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author wishes to thank Professor Jones for his encouragement and
direction.

2. Cauchy complete semi-metric spaces in which the Arc Theorem
does not hold true. The following examples and theorems show that a
Cauchy complete regular semi-metric space may be connected and locally
connected (and even compactly connected) without being arc-wise con-
nected. Example 2.2 is such a space, some additional properties of which
are given in Theorem 2.3. Example 2.5 is such a space which is com-
pactly connected. In the remainder of this section some additional
properties of those spaces are pointed out to show that those properties
could not be used to extend the Arec Theorem, and there are described
some other spaces which are practically indistinguishable from the first
two spaces but which are arc-wise connected. The following definition
will be useful since weak completeness is equivalent to Cauchy complete-
ness [11, Theorem 2.3].

. . weakly complete } )
DErFINITION 2.1. A space S is said to be {stron gly complete] P

vided there exists a distance function d such that (1) the topology of S
is invarient with respect to d and (2) if M is a nonincreasing sequence
of closed sets in S such that, for each n, there is a 1/n-neighborhood

of a point p, M, which contains M,, then [[;-, M, contains a point.
in S

ExAMPLE 2.2. Let S consist of the points of [0, 1] x [0, 1] with a
distance function d and a topology defined as follows.

1) If zeS,d(z,x) =0, and

(2) if z and y are two points of S and a(z, %) is the smallest non-
negative angle (in radians) formed by the line which contains « and is
parallel to X (the z-axis), or is X, and the line which contains = and
y, then d(z,%) = |2 — y| + a(z,y). For each point p of S and each
positive number ¢, let the c-neighborhood of p, U,(p) = {x: d(x, ) < ¢},
be an element of a basis for the topology of S.

Clearly the semi-metric space S is weakly complete (hence Cauchy
complete), completely regular (hence uniform and, of course, regular;
cf. [9]) and separable. That S is connected and locally connected follows
from the fact that horizontal line segments in [0, 1] x [0, 1] have the
same relative topology in S as in Euclidean two-space.

Note that, if (b, ¢) is a point of S, if d >0, if 0 < @ < 7/2, and if
R, c;a,d) = [{(x,y):|x —b| < d, and either |y —¢c|<|x—Db]| tan a
or y = c}]-S—i.e. if R(b, c;a,d) is the point set consisting of (b, c)
and all points of S interior to a (horizontally oriented) “bow-tie region”
centered on (b,¢) and having (horizontal) length d and central angles
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of magnitude 2a radians—then R(b, ¢; a, d) is an open set in S. Further-
more, the collection {R(b, ¢; a, d): (b,c)eS,d >0 and 0 < e < 7/2} of all
such bow-tie regions in S forms a basis for the topology of S. That
basis is useful in the proof of Theorem 2.3.

The proof of the following lemma, as well as a more detailed proof
of Theorem 2.3, is contained in the proof of Theorem 1 [4, p. 10].

LeMMA. If M is an arc in S with mondegenerate x and y pro-
jections, then there is a subarc M, of M with nondegenerate x and y

projections and whose x-projection is a subset of the x-projection of
M — M,.

THEOREM 2.3. There exists a separable, connected, locally connected,

weakly complete, completely regular, semi-metric space which is not
arc-wise connected.

Proof. Let S be the space of Example 2.2. The space S is not
arc-wise connected. For suppose that there is an arc in S with end-
points (0, 0) and (1, 1).

By the above lemma, if M is an arc in S and with endpoints (0, 0)
and (1, 1), there is a sequence {M;}Z; of subarcs of M such that, for
each n, M, > M,,, and {x: (x,¥y) e M,..} C{x: (x,y)e[M, — M,.,]}. Then,
since M is compact, there is a point (p, q¢) in [[2, M;, and, for each =,
there is a point (p, ¢,) in M, such that ¢, = ¢, only if n =m. Thus
M contains an infinite subset without a limit point which violates the
compactness of M.

DEFINITION 2.4. A space S is said to be compactly connected pro-
vided that, if ¢ and b are points of S, S contains a compact continuum
which contains both a and b.

There are now two questions to be answered. Is a connected,
locally connected, weakly complete, regular (or completely regular) semi-
metric space compactly connected? Also, is a connected, locally con-
nected, weakly complete, regular (or completely regular) semi-metric
space which is compactly connected necessarily arc-wise connected? The
answer to both questions is no. It can be shown that the space of
Example 2.2 is not compactly connected by an argument in general
following the same outline as the proof of Theorem 2.83—replacing sub-
arc by irreducible subcontinuum and making use of Theorems 32, 39,
and 47 from Chapter I of Moore’s Foundations (for a detailed proof see

Theorem 2 [4, p. 13]). Example 2.5 and Theorem 2.6 answer the
second question.

ExamPLE 2.5. Let K be the “polyhedral sin 1/x curve” in [0, 1] X
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[0, 1] which is the union of all horizontal line segment of the form
{x:0 =Re[z] =1 and Im [z] = 0}
or
{x:0 =Re[x] =1 and Im[x] = 1/2n}
for n=0,1,2,---,
and of all vertical line segments of the form

{x:Re[x]:O,LSIm[m]g-;T} for m=0,1,2, -

22m+1 -

or

{x:Re[x]:l,%glm[a}]é 221_1} for m=1,2,3,---
Let d be the distance function for [—2, 2] x [0, 1] defined as follows:
(1) if x is a point of K and ¥ is a point of [—2, 2] x [0,1], then
dz,y) =z —y|;
(2) if # and y are points of ([—2,2] x [0,1] — K) and a(x, y) is
the smallest nonnegative angle (in radians) formed by the line 2y and
the horizontal, then d(x,y) = |2 — ¥ | + a(z, y).

Let S be the topological space consisting of the set [—2, 2] x [0, 1]
with the following topology: for each point » of K and each ¢ > 0, the
circular neighborhood {x:z€ S, |2 — y| < ¢} is a region in S, and, if p
is a point of S but not of K, every “bow-tie region” (as defined in
Example 2.2) with center at p is a region in S. Clearly S is a com-
pletely regular semi-metric space which is weakly complete, connected,
locally connected, and separable.

THEOREM 2.6. There is a connected, locally connected, weakly com-
plete, completely regular semi-metric space which is compactly connected
but mot arc-wise connected.

Proof. Let S be the space defined in Example 2.5. Since K has
the same relative topology as it would in the usual plane topology, K
is a compact continuum; likewise each horizontal interval contained in .
S is a compact continuum. Hence, if ¢ and b are points of S, the point
set [K+{x:2xeS and Im[z] = Im[a]} + {x: € S and Im [z] = Im [b]}]
is a compact continuum which contains ¢ and b and is contained in S.
Thus S is compactly connected.

From the proof of Theorem 2.8, it is clear that any nondegenerate
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compact continuum in S, other than a horizontal interval, must intersect
K. Therefore, a compact continuum L in S which contains the points
(2, 1) and (—2, 0) must contain K; but each pointof {z:2€ K, 0 < Re [z] < 1
and Im [2] = 0} is a nonseparating point of K and is not a boundary
point of any component of L — K (and therefore a nonseparating point
of L). Hence there is no arc in S which contains (2, 1) and (—2, 0).

Returning to the space S of Example 2.2, it is perhaps of interest
whether points of that space are connectable by any type of sets bear-
ing some resemblance to arcs. It will be shown in § VI that, if a and
b are points of S, there is a continuum M in S whose only nonseparating
points are a and b. It can also be shown that, if ¢ and b are points
of S, then either a and b are endpoints of an arc in S (in case a and
b are on the same horizontal line segment), or @ and b are the only
nonseparating points of a connected subset M of S which is the graph
of a function, namely M~ = {(z, ¥): (¥, x) e M} is a function. The ex-
istence of the latter can be established by an argument somewhat similar
to the proof of Theorem 5 in [6]. For a detailed proof see [4, pp. 20-24].

Consider now the following two examples each of which is a con-
nected, locally connected, weakly complete, completely regular, semi-
metric space which closely resembles Example 2.2, and each of which
also is neither a Moore space nor strongly complete (nor complete in any
of the “intermediate” senses to be subsequently defined), but each of
which 7s arc-wise connected.

ExAMPLE 2.7. Define a distance function d for the points of [0, 1] x
10, 1] as follows: if % and y are two points of [0, 1] x [0, 1], then (1) if
Re[x] = Re[y], d(x,y) =1, and (2) if Re[x] # Re[y], then d(z,y) =
2(g.lb.[c:c >0 and ye{z:|z—(x+c)|<c or [z—(x—c)|<e}]) =
|z —y|’//Rex — Rey| = |2 — y]| sec a, where a is the smallest non-
negative angle formed by the line passing through 2 and y and the
horizontal line through 2. Note that neighborhoods of radius less than
1 are “bow-ties” formed by tangent circles (the center of such a neigh-
borhood is the point of tangency, and, if the neighborhood has center
2 and radius 2¢, the centers of the circles are * — ¢ and « + ¢ and the
radius of each circle is ¢). The topological space S consisting of the
points of [0, 1] x [0, 1] and regions which are (all) such neighborhoods
is a connected, locally connected, weakly complete, completely regular
semi-metric space by the same arguments as used in Example 2.2. That
S is neither strongly complete nor a Moore space will be more easily
seen following subsequent theorems. The space S is arc-wise connected
since every nonvertical line segment in [0, 1] x [0, 1] has the same re-
lative topology in S as it does in the plane topology, and hence is an
arc in S.

The second example is due to L. F. McAuley [11].
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ExAMPLE 2.8. Let X denote the z-axis of the Cartesian plane E2.
Define a distance function d for the points of E? as follows: if each of
p and ¢ is a point of E? then

(1) if neither p nor q belongs to X or if both belong to X, d(p, q) =
|p» —ql, and

(2) if exactly one of p any ¢ belongs to X, d(p,q)=|p—¢q|+ a
where a is the nonobtuse angle (measured in radians) between X and
the line L determined by p and q. Thus a neighborhood of a point of
X is a “bow-tie” neighborhood while a neighborhood of a point not on
X is a disc (with some distortion in case the neighborhood intersects
X). The topological space S consisting of the points of E? and regions
which are d-neighborhoods is clearly a connected, locally connected,
weakly complete, completely regular semi-metric space that is arc-wise
connected.

Each of the distance functions defined in Examples 2.2, 2.7, and
2.8 has the following continuity property: (in each case d denotes the
distance function for the space S) if # and ¥ are point sequences in S
which have respective sequential limit points » and ¢ such that » # g,
then lim,_.. d(z,, ¥,) = d(p, ¢). It is easily shown that, if Sis a regular
semi-metric space with a distance function which has the above continuity
property, then neighborhoods with respect to that function are open
sets and the closure of a compact set in S is compact.

Each of the distance functions defined in Examples 2.7 and 2.8 has
in addition the following “convexity” property. If a and b are two
points of S such that d(a, ) < 1 and % is a natural number, then there
is a point sequence a,, a;, @y, *++, @, in S such that ¢, = a,a, =b and,
if0=si1<i<k=mn,da;,a;) + da;, a,) = d(a;, a), and a;,, is the only
point of S such that d(a;, a;:,) = d(@;11, @;4,) = 1/2d(a;, @;1,). That prop-
erty, plus the properties that neighborhoods are connected open sets
and that the closure of a compact set is compact, is a sufficient con-
dition for the (weakly complete, regular semimetric) spaces of Examples
2.7 and 2.8 to be arc-wise connected.

3. Conditions for semi-metric, developable, and metric spaces.
Among the open questions about semi-metric spaces are the following.
Is there a “purely topological” characterization of semi-metric spaces
[12], and what “topological” property can be added to a semi-metric
space to get a developable [1, p. 180] (or Moore) space [2, p. 64]? The
answers to those questions, or at least some uniform characterization,
of semi-metric, developable and metric spaces, should be useful in try-
ing to extend Moore’s Arc Theorem. The author found the character-
ization given below by the Conditions A, B and C useful not only for
that purpose, but also for easy construction of nondevelopable semi-
metric spaces as well as nonmetric Moore spaces (in trying to generalize
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the Arc Theorem by weakening the completeness part of Moore’s Axiom
1). For another application see [5].

A second set of topological conditions, A’ and B’, is obtained by
weakening Conditions A and B. Condition A’ is the topological axiom
used in the Arc Theorem given in § VI; and Theorem 8.5 establishes
that a regular T)-space satisfying Conditions A and B’ is a Moore space—
from which it follows (in § IV) that a strongly complete regular semi-
metric space is a Moore space (Theorem 2.2 in [11] is a corollary to this
theorem). Theorem 3.6 establishes that every semi-metric space has a
property analogous to that characterizing property of metric spaces
pointed out in [8] and to the similar characterizing property of Moore
spaces implicit in Moore’s Axiom 1.

Throughout this section Z denotes the set of all natural numbers,
and a Tj-space (also T,, T, etc.) is as defined in [9, p. 56]. The follow-
ing definition is also used.

DEFINITION 3.1. A sequence z of points in the space S converges
to a point ¥ of S only in case every region which contains ¥ contains
2; for all but finitely many values of 4; ¥ is then called a sequential
limit point of x.

Suppose that S is a 7Ti-space. Consider the following three con-
ditions on a function g from Z x S to the collection of all open sets
in S.

CoNDITION A. (1) For each point x of S, {g,(%)};=, is a nonincreasing
sequence which forms a local base for the topology at =. (2) If v is
a point of S and x is a point sequence in S such that, for each natural
number m, ¥ € g.(¢,), then = converges to ¥.

ConpITION B. If % is a point of S and x and 2z are point sequences
in S such that, for each m, [y + #.] C 9.(2.), then x converges to y.

CoNnDITION C. If each of = and ¥ is a point of S and » is a natural
number such that zeg,(y), then yeg,(x). [ef. 3, p. 2567 and p. 261].

THEOREM 3.2. A necessary and sufficient condition that a T,-space
S be semi-metric is that there is a fumction g, from Z x S to the open
sets of S, such that g satisfies Condition A.

Proof. The condition is sufficient. For suppose that there is a
function ¢ which satisfies Condition A. Define the function m, from
S x S to the natural numbers, as follows: if x and ¥ are two points of
S, m(x, y) is the smallest natural number p» such that y ¢ g,(x). Define
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a distance function d for S as follows: if ze S, d(x,2) = 0; if  and y
are two points of S, d(z, ¥) = min [1/m(x, y), 1/m(y, )] = the reciprocal
of the smallest natural number p such that y¢g,(x) and =€ g,(¥).
Clearly, if each of « and y is a point of S, d(x, ¥) = d(y, x); and d(x, y) = 0
only if # = y. Also limit points are invariant with respect to d (for a
proof see [4, p. 30]).

The condition is necessary. For suppose that S is a semi-metric
space. Define the function ¢ as follows: if « is a point of S and = is
a natural number, g,(x) = interior [U,,, ()] = {y: for some region R,
ye Rc U,,(x)}. Clearly g satisfies Condition A.

THEOREM 3.3. A mecessary and sufficient condition that a T-space
S be developable ts that there be a function g, from Z x S to the open
sets of S, such that g satisfied Conditions A and B.

Proof. The condition is sufficient. For suppose that there is a
function ¢ satisfying Conditions A and B. For each natural number <,

let G; = {g9,(x):2€S,5=1. The coverings G, G,, G;, --- constitute a
development (for proof see [4, p. 32)).
Suppose, conversely, that G,, G, --- is a development for S. Define

the function g as follows: for each point « of S let g,(x) be some member
of G, which contains %, and, if » is a natural number greater than 1,
let g.(x) be a member of G, such that zeg,(x)Cg,.,(x). Clearly g
satisfies Conditions A and B.

THEOREM 3.4. A mnecessary and sufficient condition that a Ti-space
S be metric is that there is a function g, from Z x S to the open sets
of S such that g satisfies Conditions A, B, and C.

Proof. The condition is necessary, for suppose that S is a metric
space. Define the function g, from Z x S to the open sets of S, as
follows: for each point x and natural number =, g,(x) = interior [U,,.(x)].
It is clear that g satisfies Conditions A, B, and C.

Conversely, let S be a T.-space, and let g be a function which
satisfies Conditions A, B, and C. For each =, let G, = {g.(x):xe S,
m = n}. By Moore’s metrization theorem [11, p. 325], if S is not
metrizable, there are two points p» and ¢ and a region R such that,
for each n, G, contains members % and %k such that peh, h-k = 0, and
E-[S— (R—q)] # 0 (i.e., K-(S— R) # 0 since Sis 7;). Thus there are
a point p, a region R, and point sequences x,y, and z such that, for
each n, pe g,(2.), ¥, € 9.(2,) 9.(2,), and g,(2,)-[S— R]+# 0. By Condi-
tion B, [y, + p]lCg.(®,) (»n=1,2,3, ---) implies that the sequence ¥
converges to . Therefore, there is an increasing natural number
sequence m such that, for each natural number %, ¥, € 9.(p), so, that,
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by Condition C, D€ ¢, (Unw). AlSO Ynin) € Iiy(Zmw) implies that z,., €
iy Ynw)—hence that 2, € g.(Ynw)-

Thus, for each %, [P + Znw] € 92(¥mw), so that, by Condition B,
{Zmm }ier converges to p. Therefore there is a subsequence 7 of m such
that, for each natural number %, z,., € ¢.(p), hence » € 9,(?,.,,). But by
supposition there is a point sequence « such that, for each %, u, € (S — R)
and u, € 9.(2,m), so that u converges to p; which leads to the contra-
diction that pe (S — R) while p is contained in the region R. Thus S
must be metrizable.

Consider Conditions A’ and B’ which are at least formally weaker
than A and B respectively.

ConNDITION A’. (1) For each point « of S, {g,(x)};-, is a nonincreasing
sequence which forms a local base for the topology at . (2) If v is
a point of S and x is a point sequence such that, for each natural
number %, y€g,(x,) and there is a natural number %k such that

oin(2,) C g.(,), then the sequence x converges to y.

ConDITION B’. If y is a point of S, R is an open set containing ¥,
and # is a point sequence such that, for each n, y € g,(x,) and there is
a k such that g, .(2,...) C 9.(x,), then there is a natural number m such
that g¢,.(x,.) C R.

It will be convenient now to have Condition A, A’, B, B’, and C
translated into corresponding conditions on a basis for the space.

DEFINITION 3.5. Suppose that S is a Ti-space and that G is a basis
for S. The basis G satisfies Condition A (A’, B, B’, or C) means that
there is a function g, from Z x S to the open sets of S, such that
G ={g9.(x):xeS,n=1,2,3, ---} and g satisfies Condition A (A’, B, B’,
or C).

Theorem 3.6 establishes that the Arc Theorem cannot be generalized
by simply replacing “Moore space” by “a regular semi-metric space
satisfying Condition B’” gince such a space is itself a Moore space;
moreover it will readily follow from this theorem (cf. Corollary 4.8)
that every strongly complete regular semi-metric space is a Moore space,
thus eliminating another means of extending the Arec Theorem as well
as improving upon Theorem 2.2 of [11].

THEOREM 3.6. Suppose that G is a basis for a regular T,-space S.
If G satisfies Condition A and B’, then S has a basis H which satisfies

Conditions A and B, hence S is a Moore space.

Proof. Suppose that the regular Ti-space S has a basis G =
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{9u(x): e S,m =1,2, ...} which satisfies Conditions A and B’. Let
o ={p, P, --+} be a well-ordering of the points of S. Define the
functions % (from Z x S to G), r (from « x Z to Z), and » (from awx
[a subset of Z] to «) as follows. For each p,c S, let 4,(p,) = 9,,m(».) =
9:(p,). For each p,e S and each natural number 4 greater than 1:

(Case 1) If there is mot a point q of [S — p,] and a natural number
J < 1 such that p, € hi(q) and hy(9)-[S — g,,i—11+:(p.) # 0, then let hi(p,) =
9rti(D:) = Gryti-1104(D2); oOF

(Case 2) otherwise, for each (such) j <4, let p,;; be the first
member ¢ of a(gq # p,) such that p, € k;(g) and hy(@)-[S — 9,,t-n+(0.)] # 0;
let 7,[¢] be the smallest natural number m > r,[¢ — 1] such that g,.(p.) C
I[A{(Puin:d < % and j is not covered by Case 1]; and let hy(p.) =
gr,m(pz)~

The basis H = {hi(x): x€S,72 =1,2, ---} then satisfies Conditions A
and B’, since H is a subcollection of G and since, if £ € g € G, then there
is an he H such that xeh Cyg.

The basis H satisfies Condition B. For if not, then there is a point.
x of a region R such that, for each m, there is a point ¢ such that.
2 € h,(q) and h,(q):[S — R] #+ 0. Let y be the point sequence such that,
for each m, ¥, is the first point ¢ in « such that xzeh,(¢) and A,(q)-
[S— R]+#0. (It will now be shown that, for each natural number <,
there is an m > ¢ such that A,(¥.) C hi(¥:).)

If 4 is a natural number there is a natural number N, > % such
that, if m > N,, then v, €[h,(y;) — v;] (since y converges to = and
2 € hy(y;)) and there is an N, such that, if m > N,, then gwm)[m_uﬂ(ym)‘
does not contain %;(y;) (otherwise, by Condition A, each point of h(y,)
would be a sequential limit point of y, and h,(y:) contains at least two
points, namely, £ and a point not in R); thus there is a natural number
m such that

Yn€lhi(¥:) —y:] and hi(y)-[S — gr(,,m)[m—uﬂ(?/m)] #0.

Moreover, there is no point ¢ such that g precedes ¥; in « and &.,.(¥..)
hi(q) (since y; is the first point @ in « such that xzeh,a) and hya)-
[S—R]+#0, and h,(y,) Ch(q) would imply that k,(q)-[S — R] + 0);
hence there is no point ¢ such that ¢ precedes y; in & and v, €h,(q)
and %,q)-[S — grwm)[m_uﬂ(ym)] # 0 (otherwise &;(¢) would contain %.,(y,)
by definition of 2,(y.)). Therefore h,(y,) C hi(y;) since y; #* ¥,.

Hence by Condition B’, there is a natural number N such that if
m > N, then h,(y,) C R contrary to the supposition that for each 7,
hiy:)-[S — R] # 0.

Using the same argument down to the last sentence, which is the
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first place that Condition B’ is used, Theorem 8.7 below also follows.

THEOREM 3.7. Suppose that S 1is a regular semi-metric space.
Then there is @ basis H = {h,(x): xS, n=1,2, ---} with the property
that for each p< S and for each closed and compact subset M of S — p
there 1s a natural number N such that if m > N and p € h,(x) then
ha(x)-M = 0.

4, Completeness axioms. Another way to generalize Moore’s Arc
Theorem is to weaken the completeness used. Three successively weaker
completeness axioms (1, 1/, and 1”) are given below. In a Moore space:
‘Completeness Axiom 1 is equivalent to Moore’s completeness, which is
known to be weaker than strong completeness [11, Example 3.3]; and
‘Completeness Axioms 1’ and 1” are both equivalent to the completeness
in Mrs. Rudin’s Axiom 1”7 [16, p. 320], and hence weaker than Moore’s
Completeness [16, p. 324]. In semi-metric spaces Completeness Axiom
1’ is stronger than 1” (all examples in § 11 satisfy Axiom 1” but not
1’; also see Corollary 4.3).

A Cauchy (or weakly) complete semi-metric space satisfies Complete-
ness Axiom 1”. In a metric space all of the completenesses mentioned
are equivalent [15].

The theorems listed below (for proofs see [4, pp. 35-43]) give the
relationships between the three completeness axioms and the topological
properties defined in §III. Aside from finding that completeness Axioms
1’ and 1”, which are used in separate arc theorems, are more general
than Moore’s completeness, the main results obtained in this section
are (1) that a strongly complete regular semi-metric space is a Moore
space (2) that Cauchy (or weak) completeness is weaker than Moore’s
completeness and (3) a generalization of Theorem 120 in [14] (also
Theorem 6 of [16]).

Suppose that S is a T.-space and G = {g.(®):2xeS,n=1,2,8..:}
is a basis for S which satisfies Condition A’. Consider the following
completeness axioms for G.

Completeness Axiom 1. If M is a nonincreasing sequence of closed
sets such that, for each m, there is a point x, of S such that M, c

g.(x,), then TI[7 M, =+ 0.

Completeness Axiom 1. If M is a nonincreasing sequence of closed
sets and z a point sequence in S such that, for each n, M, C g,(x,) and

there is a natural number & such that g, .(%.+:) C 9.(2,), than [, M, + 0.

Completeness Axiom 1”. If x is a point sequence such that, for
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each m, there is a k such that g,..(®.+.) C 9.(%,), then [, g.(x,) # O.
Theorem 4.1 shows in particular that Axioms 1’ and 1” are equivalent
in a developable T,-space.

THEOREM 4.1. Suppose that S is a Ti-space with a basis G that
satisfies Conditions A' and B'. A necessary and sufficient condition
that G satisfy Completeness Axiom 1' is that G satisfy Completeness
Azxiom 1".

An immediate corollary to Theorems 4.2 and 3.6 is that a strongly
complete regular semi-metric space is a Moore space.

THEOREM 4.2. Suppose that the Tyspace S has a basis G which
satisfies Condition A’'. A mecessary and sufficient condition that G
satisfy Condition B’ and Completeness Axiom 1" s that G satisfy
Completeness Axiom 1'.

COROLLARY 4.3. If the regular T.-space S has a basis G which
satisfies Condition A and Completeness Axiom 1, then S has a basts
which satisfies Conditions A and B. Hence every strongly complete
regular semi-metric space 1s a complete Moore space.

The following theorem shows that the space having a basis with
some of the completeness properties and another basis with some of the
topological properties has a basis with the combined properties.

THEOREM 4.4. If the T\-space S has a basis G which satisfies
Condition A’ and one of the Completeness Axioms 1, 1/, and 1", and
of S has a basis H which satisfies some combination of Conditions A’,
A, B’, and B, then S has a basts K which satisfies the Completeness
Axiom that G satisfies and the combination of Conditions A’, A, B’,
and B that H satisfies.

The next theorem is a generalization of a portion of a theorem due
to Moore [14, p. 83, Theorem 120]. (The other part of the theorem
also holds in any of the same spaces). Essentially the same proof may
be used (see [4, p. 39]).

THEOREM 4.5. Suppose that the Ti-space S has a basis G which
satisfies Condition A’ (or A’ and A, B’, or B) and one of the Complete-
ness Axioms 1, 1, and 1”. If M is an inner limiting subset (i.e. a
Gs set) of S, then there is a basts H for M such that H satisfies the
same combination of Conditions A’, A, B', and B and the Complete-
ness Axiom that G satisfies.
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The completeness defined in Definition 4.6 is clearly weaker in
general than Axiom 1’; however, Theorem 4.7 shows that replacing the
latter by the former in an arc theorem would not be a real generalization.

DEFINITION 4.6. A basis G for a T,-space S which satisfies Con-
dition A’ is said to satisfy Completeness Axiom 1’ peripherally provided
that, if Re G, M is a nonincreasing sequence of closed subsets of B(R),
the boundary of R, and z is a point sequence in S such that, for each
n, M,C g,(x,) and there is a k such that g¢,..(2,..) C 9.(¢,), then
5 M, + 0.

THEOREM 4.7. If G is a basis for a T,space S, if each member
of G 1is connected, and if G satisfies Condition A’ and satisfies Com-
pleteness Axiom 1 peripherally, then G satisfies Condition B’.

For a proof see [4, pp. 42-43].

5. Metrization. theorems. The metrization theorems below serve
not only to eliminate certain hypotheses from consideration for gener-
alizing the Arc Theorem, but also to show that the spaces described in
§ II, which are not even developable (and in some of which the Are
Theorem does not hold) are nonetheless very close to being metrizable.

Theorem 5.1 generalizes a well-known theorem which is included in
Theorem 10 [21]. It can also be shown that every semi-metric space
contains a dense metric subspace (but not necessarily one which is an
inner limiting subset).

The proof of the following lemma is exactly analogous to the proof
of Theorem 15 in [14, p. 11].

LEMMA. Suppose that S is a regular T,-space with a basis G that
satisfies Condition A’ and the Completeness Axiom 1". No closed sub-
set M of S is the sum of countably many closed sets each of which 1is
contained in the boundary of tts complement (in M).

THEOREM 5.1. If the regular Ti-space S has a basts G that satisfies
Condition A’ and the Completeness Axiom 1", then S contains a dense
wnner limiting subset K which (with the relative topology) is metrizable
and complete.

Proof. Let H, be a maximal collection of mutually exclusive regions
each of which belongs to {g,(x):x€S,7=1}. For each n >1, let H,
be a maximal collection of mutually exclusive regions each of which
belongs to {g,(x): x € S, © = n, and there is a region A in H,_, such that
gi(x)ch}. Let K= T[z,[H}]. Since by the above lemma, if R is a
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region in G, R is not the sum of countably many closed sets each
contained in the boundary of its complement (in R), so that R =
S (S — Hf)-R] and R-K+#0, it follows that K is dense in S.
Clearly K is an inner limiting set and K (with the relative topology)
is metrizable since (3., H,):- K forms a basis for the relative topology
of K, and since, for each n, the elements of H, are pairwise disjoint
and each member of H,., is a subset of a member of H,. That K is
complete follows from Theorem 4.5.

Theorem 5.2 shows how close the spaces of Examples 2.2, 2.5, 2.7,
and 2.8 are to being metrizable. Note that each of those spaces satisfies
the hypotheses of the theorem except for being locally peripherally
locally compact instead of locally peripherally compact.

THEOREM 5.2. Suppose that the semi-metric space S has a distance
Junction d such that d-neighborhoods are connected sets and such that,
if p 1is a sequential limit point of the point sequence x and q is @
sequential limit point of the point sequence y and lim,.. d(z;, ¥;) = 0,
then p =q. If S is locally peripherally compact, then S is metrizable.

Proof. The theorem will be proved by showing that S satisfies
the hypothesis of W. A. Wilson’s theorem [20, pp. 361 and 366; also 2,
p. 63] that a semi-metric space is metrizable provided that, for every
pair x,y of sequences, if p is a sequential limit point of 2 and
lim,_.. d(x;, ¥;) = 0, then p is a sequential limit point of y. For suppose
that p is a point of S and # and y are point sequences such that p is
a sequential limit point of 2 and lim,.. d(x;, y;) =0, but p is not a
sequential limit point of y. Then there is a region R with compact
boundary, B(R), and a sequence ¥,, ¥, %5, -+ of y such that R containg
» but contains none of the points ¥, v, ¥}, - --; thus (noting that it
may be assumed, without loss of generality, that, for each ¢, x; € R and
d(z;, ¥)) < (1/7)) each of the connected neighborhoods U,(x,), U,.(.,),
U,)s(x,), - -+ contains a point of (S — R) and hence contains a point of
B(R). Let z be a point sequence such that, for each =, z, € U,,(¢,): B(R).
Since B(R) is compact, there is a point ¢ of B(R) such that ¢ is a
sequential limit point of asubsequence of 2z, which leads to a contradiction
of the hypothesis of the theorem.

By Theorem 5.8 paracompactness (defined along with pointwise para-
compactness in [1. p. 177]) is too restrictive in the presence of a
completeness axiom slightly stronger than that possessed by the spaces
in §1II.

THEOREM 5.3. Suppose that the regular T,-space S has a basis G
which satisfies Condition A and Completeness Axiom 1’ peripherally
and whose elements are connected sets. If S is pointwise paracompact,
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then S is developable; hence, if S is paracompact, then S is metrizable.
For a proof of this theorem see [4, pp. 47-48].

6. An arc theorem. Theorem 6.2 is more general than R. L. Moore’s
Arc Theorem [14, p. 86], to the extent that the completeness axiom
used is known to be less restrictive than that in the hypothesis of
Moore’s theorem, and the other properties used are at least formally
more general than those used by Moore. To adapt the proof of Moore’s
theorem to Theorem 6.2, however, requires only fairly minor modifications.
Theorem 6.4 establishes that certain semi-metric spaces which are not
arc-wise connected (including Example 2.2) are nontheless connectable
by closed connected sets which closely resemble arcs.

In the following definition, which will be used in the proof of
Theorem 6.2, “simple chain” (or “chain”) is as defined in [14, p. 56].

DEFINITION 6.1. Suppose that G = {gi(x): € S,v=1,2,3, ---} is a
basis for the T,-space S, that A and B are two points of S, and that,
for each n, C, = {Q[n, 1], Q[~, 2], - - -, Q[n, m,]} is a simple chain from
A to B. The sequence {C,, C,, C,, :+-} has property P with respect to
G if

(1) for each 7 {Q[1 + ¢, 71};%* is a refinement of {Q[7, 7]}1;

(2) for each 7 and each j such that 1 < j < m,; there is a K such
that Cr<x Q7 + 1, P])-Q[¢, j] = 0, and such that (3.2 Q7 + 1, P)C
(S0 Qli, q)) and Q[ + 1, & + 1] € @[3, 4 — 11-Qi, 1; and

(8) there is a collection of natural numbers {k[7,j]:7 < m, 1 =
1,2,8, ---} and a collection of points {x, }2‘;1 such that, for each <

1sj=my

and each j < m,,
(@) klz,ilz7
() @[3, 71 = 9iu.»(x:;) and
(c) if ;4,5 €Qls, t], then Q[ + 1, j] C Q[¢, t].

THEOREM 6.2. If the connected regular Ti-space S has a basis G
each of whose elements is connected and which satisfies Condition A’
and Completeness Axiom 1/, then S is arc-wise connected.

Proof. Let a and b be two points of S. Moore’s proof (in particular
Theorem 77 [14, p. 56]) may be applied with slight alterations to the
sequence G of open coverings of S, such that, for each n, G, = {g,(x):
zeS and k=mn} to obtain a sequence, {Cj}i, = {Q[s, 1],Q[¢, 2], -,
Q[%, m;]}i,, of chains from a to b which has property P with respect
to G.

Let M = 12, CF =TI [ QLE, 1.
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Clearly M is closed.

Also M is compact. For suppose that an infinite subset K of M
has no limit point. Then there exists a sequence {H,};-, of collections
of pointsets such that, for each =:

(i) each point set in H, is a link of the chain C,,

(ii) each set in H, contains an infinite subset of K,

(iii) H,., is a refinement of H,, and

(iv) (by the above property 3¢ of the sequence C) if xeH,,,,
yeH, and xCvy, then TCy. By theorem 78 [14, p. 56] there is a
sequence h such that, for each =, h,c¢ H, and h,,,Ch,, so that, by
the above property (iv) of the sequence H, h,., Ch,. For each i, h; is
a link of the chain C;, so that, by property 3b (above) of the sequence
C, there is an increasing natural number sequence d and a point sequence
% such that, for each ¢, h; = g,,(u;), hence, for each ¢, the closed set
(h;+ K) is contained in g,.)(4), (hi* K) D (ki1 K), and ¢a0+0(%i41) C Gan ().
Therefore, by Completeness Axiom 1’, there is a point » such that
pellz.[K-h;]; hence, pe K, and for each 7, pe€gy,(u;), so that (by
Condition A’) p is a sequential limit point of a subsequence {u,;};=, of
the sequence %. Consider then the nonincreasing sequence of closed
sets, {(K — p)-h,u )}, which likewise has the property that, for each <,
(K — D) hyiy] C Gareiiyy(sy).  Again, there is a point ¢ such that
g€ (K — p) and such that ¢ is a sequential limit point of {u,;}; and
p # q. Thus the assumption that M is not compact leads to a con-
tradiction.

That M is connected follows as in Moore’s proof with slight alter-
ations (or see [4, pp. 53-54]); and that each point of M — (@ + b) is a
separating point of M and that a and b are nonseparating points also
follows as in Moore’s proof.

COROLLARY. The connected regular T\-space S s arc-wise con-
nected if S satisfies any one of the following conditions:

(a) S has a basis G which satisfies Conditions A’ and B’ and Com-
pleteness Axiom 1” and each of whose elements is connected;

(b) S has a basis G which satisfies Condition A’ and satisfies
Completeness Axiom 1’ peripherally and each of whose elements is
connected;

(¢) S is locally connected and satisfies Mary Ellen Estill Rudin’s
Axiom 1” [16].

(d) S is a locally connected strongly complete semi-metric space.

“Strong chainability,” defined below, is a rather restricted special
case of chainability but is useful for showing that certain spaces which
are not arc-wise connected are connectable by sets which closely resemble
arcs. Roughly speaking a space is strongly chainable with respect to
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a basis G provided that, for every pair a, b of points of S, there is a
sequence C of chains from a to b such that

(1) C has Property P with respect to b

(2) the “centers” of C(n) are also “centers” of C(n + 1) and

(3) the intersection of two adjacent links of C(n) with centers p
and ¢ contains a point ¥ such that the subchain from » to ¢ of C(n + 1)
is contained in ¢,(y) and y is a “center” of C(n + 1). Theorem 6.2
then establishes that the space of Example 2.2 is connectable by sets
having all the properties of an arc but compactness.

DEFINITION 6.3. Suppose that the regular T,-space S has a Dbasis,
G ={9.®):xeS,n=1,2, .-}, which satisfies Condition A. S is strongly
chatnable with respect to G provided that, if « and b are two points
of S, there is a sequence, C = {Q|[¢, 1], Q[%, 2], - - -, Q[%, m;]}, of chains
from a to b such that:

(1) C has property P with respect to G.

(2) There is a collection, {t(¢,7):7<m;,t1=1,2,---} of natural
numbers such that, for each % and each j < m,, 2;; = ;114,45 and

(8) there is a collection {y;;:7 <m;,t=1,2,---} of points such
that, for each ¢ and each 7 <m; () ¥<Ql7 71:Q[:, 7+ 1] and
S Qe + 1, r1 < gi(y;;) and (b) there is a natural number » such
that ¥,; = %;4,,. For each 7 and each j < m,;, the point z;; (from
Definition 6.1 part (3)) will be referred to as the center of the link

Note that the space of Example 2.2 (§ II), which is not arc-wise
connected, is strongly chainable with respect to the basis consisting of
all 1/n neighborhoods (for » =1, 2, ---).

THEOREM 6.4. Suppose that S 1s a connected regular T,-space
which has a basis, G = {g,(x): x€ S, n =1, 2, .-}, that satisfies Condition
A and Completeness Axiom 1" and each of whose elements is connected.
If S 1is strongly chainable with respect to G, then, for each pair of
points a and b, there is a continuum M contaiming a and b such that
a and b are the only non-separating points of M.

Proof. Let @ and b be two points of S; let C = {Q[4, 1], Q[4, 2], - - -,
Q[7, m;]}z, be a sequence of chains from a to b satisfying Definition
6.3 and, for each ¢ and each j < m,, let z;; be the center of Q[%,J].
Denote by L the set of all centers {x;;:5 =m;,7=1,2,.--}; and let
M =TIz, [Ci*. Clearly (a + b)c M, M is closed, and @ and b are the
only nonseparating points of M.

Furthermore, M is connected. For suppose that M = H + K,
H-K=H-K =0 (where ac H). Because M is closed, each of H and
K is a closed set. Also, because L = M, L-H=+ 0 and L-K +0. It
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will now be shown that there is a natural number %, a natural number
sequence %, and point sequences p and ¢ such that, for each 7 = n,
#(7) < m; and

(1) Qlt+ 1,u@@ + 1] < Q[4, w(?)] and

(2) pieH q;eK, and Q[v + 1, u(® + 1)] C gi(p,)-9:(¢:). Since a € H,
since L-H # 0, and since L-K # 0, there is a natural number % and a
natural number 5 < m, such that z,;€¢ H and «,;.€ K. If y,;€K, let
u(n) = J; if y,;€ H, let u(n) =3 + 1. In either case there is a natural
number 7 such that 2,.,,€ H, %,.,,.€ K, and [Q[n + 1, r]+ Q|n + 1,

r + 1]] C Q[n, u(n)]-9.(¥.;); again, if y,..,.c K, let w(n + 1) = r, and if
Yn+1., € H, let w(n +1) =7 + 1; and the process may be continued to
define sequences u, p, and ¢ which have the stated properties. Then,
by Completeness Axiom 1” there is a point 2z such that ze [[2, Q[n + 1,
u(n + 1)] and z is a sequential limit point of the sequence p in H and

of the sequence ¢ in K; hence z€ H-K contrary to the assumption that
H-K=0.

7. Summary and questions. Theorem 2.3 establishes that Moore’s
Arc Theorem cannot be generalized directly to Cauchy complete regular
semi-metric spaces, while Theorem 6.2 shows that it can be generalized
to a class of semi-metric spaces somewhat more general than complete
Moore spaces—in particular, the completeness axiom used is known to
be weaker than that of Moore’s Axiom 1. The examples in § II and
the theorems establishing certain sufficient conditions for a semi-metrie
space to be developable or even metrizable given in §§ III, IV and V
show rather clearly the limited nature of the progress that can be made
towards extending the arc Theorem to semi-metric spaces. For example,
Theorems 3.6 and 4.2 establish that every strongly complete regular
semi-metric space is a complete Moore space.

The following questions then are suggested:

(1) Can Moore’s Arc Theorem be generalized in another direction,
such as to complete uniform spaces?

(2) Since the class of strongly complete regular semi-metric spaces
properly includes the class of all complete Moore spaces and is properly
included in the class of all complete metric spaces, what is a sufficient
condition for a complete Moore space—or a weakly complete semi-metric
space—to be strongly complete, and what is a sufficient condition for
a strongly complete regular semi-metric space to be metrizable?

(8) Is there any reasonable necessary and sufficient condition for
a connected and locally connected complete regular semi-metric space
to be arc-wise connected?
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ON UNIMODULAR MATRICES

I. HELLER AND A. J. HOFFMAN

1. Introduction and summary. For the purpose of this note a
matrix is called unimodular if every minor determinant equals 0, 1 or —1,
I. Heller and C. B. Tompkins [1] have considered a set

S = {us, vy, Ui A Vjy Uy — Uiy, Vi — V)

where the wu,, u,, -+, %,, v, vy, ++-, v, are linearly independent vectors
in m + n = k-dimensional space E, and have shown that in the coordinate
representation of S with respect to an arbitrary basis in E every
nonvanishing determinant of & vectors of S has the same absolute value,
and that, with respect to a basis in S, the vectors of S or of any subset
of S are the columns of a unimodular matrix. For the purpose of this
note the class of unimodular matrices obtained in this fashion shall be
denoted as the class T.

A. J. Hoffman and J. B. Kruskal [4] have considered incidence
matrices A of vertices versus directed paths of an oriented graph G,
and proved that:

(1) if G is alternating, then A is unimodular;

(ii) if the matrix A of all directed paths of G is unimodular, then
G is alternating. The terms are defined as follows. A graph G is
oriented if it has no circular edges, at most one edge between any given
two vertices, and each edge is oriented. A path is a sequence of distinet
vertices v,, v,, - -+, v, of G such that, for each 7 from 1 to £ — 1, G contains
an edge connecting v; with »,,; if the orientation of these edges is from
v; to v;4,, the path is directed; if the orientation alternates throughout
the sequence, the path is alternating. A loop is a sequence of vertices
Vi, Vg, -+, Uy, Which is a path except that v, = v,. A loop is alternating
if successive edges are oppositely oriented and the first and last edges
are oppositely oriented. The graph is alternating if every loop is alter-
nating. The incidence matrix A = (a;;) of the vertices v; of G versus
a set of directed paths p, p,, +-+, P, of G is defined by

1 if »; is in p;
@;j

- 0 otherwise.

The class of unimodular matrices thus associated with alternating graphs
shall be denoted by K.

I. Heller [2] and [3] has considered unimodular matrices obtained

Received April 12, 1962. Research sponsored (for both authors) by the RAND Corporation,
in conjunction with the Symposium in Combinatorial Analysis, and (for the first author) by
‘the National Science Foundation.
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by representing the edges (interpreted as vectors) of an w-simplex in
terms of a basis chosen among the edges (in graph theoretical terms:
the edges and vertices of the simplex form a complete graph G; a basis
is a maximal tree in G, that is, a tree containing all vertices of G), and
has shown that:

(i) the matrix representing all edges of the simplex is unimodular
and maximal (i.e., will not remain unimodular when a new column is
adjoined);

(ii) the columns of every unimodular matrix of » rows and n(n + 1)
columns represent the edges of an m-simplex.

The class of (unimodular) matrices whose columns are among the
edges of a simplex shall be denoted by H. H can also be defined as a
class of incidence matrices: A matrix A belongs to H if there is some
oriented graph F without loops such that A is the incidence matrix
of the edges of F versus a set of path in F. That is,

1 if edge e¢; is in path p;
a; =1{—1 if —e; is in p;
0 otherwise .

In [2] it has further been shown that:
(iii) there exist unimodular matrices which do not belong to H;
(iv) the classes H and T are identical.
The purpose of the present note is to show that the class K is
identical with the set of nonnegative matrices of H.

2. THEOREM. If a matrix A of n rows and m columns belongs
to K (i.e., A is the incidence matrix of the n vertices of some alternating
graph G versus a set of m directed paths in G), then A belongs to H
(i.e, there is some n-simplex S and a basis B among its edges such that

the columns of A represent edges of S in terms of B). Conversely,
every non-negative matrixz of H belongs to K.

3. NOTATION. An oriented graph is viewed as a set

where V is the set of vertices A,, A, -+, A4,, and E is the set of oriented
edges e,, that is certain ordered pairs (4;, A;) with j # ¢ of elements
of V, such that at most one of the two pairs (4;, 4;), (4;, 4;) is in E.
For brevity of notation we define
(3.2) [4;, Aj] = {(4;, A)), (4;, A)} .
The origin and endpoint of an edge ¢ are denoted by pe and oe:
(3.8) o(A,By=A, o(A,B)=B,
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If A and B are vertices of R, the relation A < B (4 is immediate
predecessor of B), also written as B > A, is defined by

(3.4) A< B+ (A,B)eR.
Similarly, if a,b are edges of R,
(3.5) a<b——oca=pb.
A subset V' of vertices of R defines a subgraph of R
(3.6) R(VY=V'UE
where (4, B)e E' — Ac V', Be V', (4, B)e E.

4. Proof. Using the graph-theoretical definition of the class H,
the first half of the theorem shall be proved by showing that to each
alternating graph G there is an oriented loopless graph F' such that the
K-matrices associated with G are among the H-matrices associated with F'.

A column of a K-matrix is the incidence column K, of the vertices
of G versus a directed path p in G; a column of an H-matrix is the
incidence column H, of the edges of F' versus a path ¢ in F. For given
G it will therefore be sufficient to show the existence of an F' such that

to each directed path p in G there is a path

4.1
(4.1) g = @(p) in F such that K, = H, .

This will be shown by constructing an F and a mapping ¢ of the
set of vertices of G onto the set of edges of F' in such a way that ¢
satisfies (4.1), or equivalently, that ¢ preserves the relation defined in
(8.4) and (3.5), that is, for any two distinet vertices A, B of G,

(4.2) A< B (in G) — p(4) < ¢(B) (in F).

The construction of F' and ¢ shall now be carried out under the
assumption that G is connected. If G is not connected, the same con-
struction can be applied to each component of G, yielding an F' with
an equal number of components.

If G has n vertices, take as the vertices of F a set of n + 1 distinct
elements P, P, ---, P,.

The n edges e, e, +-+, ¢, of F' are defined successively as follows,.
First, choose an arbitrary vertex A, in G, define
(4.3) P(4) = e, = (P, P),

and note that:
(i) the subgraph G, = G(4,), consisting of the one vertex A, of
G, is, trivially, connected;
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(ii) the graph F; = {P,, P,, (P,, P,)} is connected;

(iii) with respect to G, and F), @ trivially satisfies (4.2).

Then, assuming A,€G already chosen and e, = @(4,) defined for
y=12,.--,k in such a manner that G, = G{4,, 4,, ---, A,} and F, =
{Py, Py ++-, Py, e, -+, e} are each connected and ¢ satisfies (4.2) with
respect to G, and F,, choose A,,, € @G such that

(4.4) [4;, Al NG #0
for some ¢ < k and define

(oe;, Pyyy) when (4;, 4,1 €G

4.5 Apa) = €a =
4.5) P(Ap11) = €5r (P11, pe;) when (4,.,, A)e @,

noting that this definition depends on the choice of ¢ since more than
one % may satisfy (4.4).

Obviously, G,;, and F., are each connected.

To show that ¢ satisfies (4.2) with respect to Gy., and F,.,, let
A, <A, in G4,

If r<k and s = h, (4.2) is satisfied according to the induction’s
hypothesis.

For {r, s} = {1, k + 1}, (4.2) is satisfied by definition (4.5). Namely:
for r =14, s=Fk + 1, (4.5) defines ¢,,, = (ve;, P,.,), hence oce; = pe,,,,
which by (8.5) means ¢; < ¢,,,; similarly for s =4, r = k + 1, (4.5) defines
€11 = (Pry1, pe;), hence oe,,, = pe;, which means e,,; < e,.

There remains the case {r,s} ={j,k+ 1},5 # 4,7 < k, with

(4'6) [AJ'} Ak-(—l] n Gk+1 *+ O ’

that is either A; < 4,., or A,., < 4; in G,

In this case A,,,, which by (4.4) has an edge in common with A4,,
now also has an edge in common with A; #+ A;, thus connecting these
two distinet vertices of G, by the path

(4.7) Ai! Ak+17 AJ'

in G,., but outside G,.
On the other hand, by the induction’s hypothesis, G, is connected.
Hence A; and A; are connected by a path in G,

(4.8) Ai, Atly At2y ) A Ai

N

(A = 0 not a priori excluded).
The paths (4.7) and (4.8) combine to the loop

(4.9) Ak+1; Aiy Atly At2; M) A Aj’ Ak+1

£)?

in G,,,, which is obviously also a loop in G.
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Since G is alternating, the loop (4.9) must be alternating. This
implies that the number of vertices is even, hence » = 2v + 1, and that
the orientation is either

‘(4-10) Ak+1 < Ai > At1 < At2 > <A, > A < Aj > Ak+1

toy tav+1

or the opposite.
Now assume first

(4.11) A < 4y,

which implies the orientation (4.10), and consider that part of the loop
which is in G,, namely the path (4.8)

(4.10) and the induction’s hypothesis that, relative to G, and F, @
satisfies (4.2), imply

4.12) e; > e, <e, > <e, >e, <e;,
hence
(4.13) oe; = o6, = Pe,, = 0e, = -+ = P&, = 0€, = 0¢.

The definition (4.5) of e,.,, in conjunction with A4,,, < A; from (4.10),
implies

(4.14) 0€,q1 = [oei .
This together with (4.18) yields
(4.15) oe,., = pe; , that is e, <e;,

which proves that assumption (4.11) implies (4.15).

Similarly, the assumption A,., > A; yields e,., > ¢;, by reversing
the relation < and interchanging p and ¢ in the above argument.

This completes the proof that to any connected alternating graph
G there exists a connected oriented graph F' and a mapping @ satisfying
4.2)

That F' has no loops (and hence is a tree) is obvious from the fact
that its » + 1 vertices are connected by n edges. Hence, the incidence
matrices of F' certainly belong to class H.

If G consists of & components, the construction will yield an F
consisting of k trees.

This completes the proof of the theorem’s first half, namely that
every K-matrix is an H-matrix.

The second half of the theorem, namely that each nonnegative
H-matrix is a K-matrix, is due to J. Edmonds. It will be proved by
showing that to each loopless oriented F' there is an alternating G and
a mapping  of the edges of F' onto the vertices of G that preserves
the relation <, that is, for any two edges a,b of F
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(4.16) @ < b== (a) < ().

This is achieved by the following simple construction.
If F has n edges e, ¢, - - -, ¢, choose a set of n elements A, 4,, -+-, 4,
as the vertices of G, define « by

(4.17) 1#6@ — A,,, 9
and define the edges of G by
(4.18) (4;, A)eG—e;< ¢,

that is, G shall have an edge oriented from A; to A; if and only if
06,; = pej.
Obviously 4 preserves the relation <, since (4.18) is equivalent to

(4.19) A,, < Aj = g, < ej .

Note that < ig also preserved by the inverse of 4, that is, in the
transition from G to F.

Note further that G is oriented (in the sense of the definition given
in [4] and cited in §1 of present note), that is:

(a) each edge of G is oriented, since the edges of G have been
defined by (4.18) as oriented edges;

(b) G has no circular edge, since (4,, 4;) € G for some ¢ would imply
e; < e;, or equivalently oe;, = pe;, that is, e; a circular edge in F, con-
tradicting the assumption on F

(¢) G has at most one edge between any given two vertices:
(4;, A)e G and (4;, A,) e G for some pair ¢, 7, would imply e; < e; and
e; < e;, that is ge; = pe; and oge; = pe;, hence e; and e; would form a
2-loop (with the vertices pe,, g¢,), again contradicting the assumption on F.

Finally, to show that G is alternating, note that, by (4.17) and (4.19),
G, F and @ = +* satisfy the condition (4.1). Thus the incidence matrices
(of vertices versus directed paths) associated with G are among the
incidence matrices (edges versus paths) associated with F, and hence
unimodular. Especially then, the incidence matrix of the vertices versus
all the directed paths of G is unimodular, which, by the Hoffman-Kruskal
Theorem (Theorem 4 in [4], cited in §1 of this note), implies that G
is necessarily alternating.

This completes proof of the theorem.

It is worth noting that the last part of the proof (namely that G
is alternating) can easily be established without using the result of [4]
(which contains more than is needed here).
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DUALITY IN GENERAL ERGODIC THEORY

ROBERT G. HEYNEMAN

Introduction. Let G be a semi-group of operators acting on a Banach
space E. Alaoglu-Birkhoff [1], Eberlein [8], Jacobs [9], deLeeuw and
Glicksberg [12], and others have given conditions under which certain
orbits (see §1) in £ will contain a single fixed vector under the action
of G. In general of course, a given orbit may contain many fixed points
or none at all; moreover it need not be the case that the ‘ergodic’ vectors
(those whose orbits contain a single fixed point) form a linear subspace
as one would wish.

The object of this paper is to show how the introduction of conside-
rations involving the conjugate space E* under the action of the adjoint
semi-group G* illuminate these matters. We shall see that there is an
intimate connection between the existence of fixed points in the orbits
of one space and the uniqueness of fixed points in the orbits of the
associated space. Our first result in this direction, Theorem 1.3, asserts
that if every orbit in one space contains at least one fixed point, then
every orbit in the other contains at most one fixed point.

In §2 we define what we mean by saying that the semigroup G
acts ergodically on the space E. When this is the case the pathology
that arises from the existence of more than one fixed point in a given
orbit of £ cannot occur. Thus the ergodicity of G on E may be considered
as a strong uniqueness requirement on the fixed points of orbits of FE.
When E is reflexive we can then show that this requirement (that (G, E)
is ergodic) may be characterized by the fact that every orbit of the con-
jugate space E* contains at least one fixed point under the adjoint semi-
group G*. Indeed whether E is reflexive or not, Theorem 3.1 asserts that
the ‘ergodic behaviour’ of the orbits of one space insures the existence of
(at least) one fixed point in any weakly compact orbit of the other.

These results ‘explain’ and unify many earlier results which were
obtained using different specialized techniques. The following two
examples are instructive:

(a) G is abelian., As it is quite trivial to verify that abelian semi-
groups act ergodically, both (G, E) and (G*, E*) are ergodic. Then since
(G, E) is ergodic (respectively (G*, E*) is ergodic), we see that every weakly
compact orbit of E contains at most (respectively at least) one fixed point.
Thus weakly compact orbits contain precisely one fixed point (ef. for
example [8]).

(b) G is a group acting on a Hilbert space E. Here one can show

Received June 2, 1962. This work was supported by the Office of Ordnance Research
(Contract DA-04-200-ORD-171).
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(Jacobs [9]) that whenever a (bounded) group acts on a Hilbert space,
any orbit contains at least one fixed point. Since this applies to (G*, E*)
as well as to (G, E), we see from the previous discussion that every
orbit of E contains exactly one fixed point. Jacobs makes use of the
special nature of the hypotheses on G and FE in deriving the uniqueness
of fixed points in orbits in case (b). Nonetheless the spirit of his argu-
ment is akin to ours and suggested the interest of such an investigation
as the present one.

In the last section of the paper we describe the relationship between
ergodicity and invariant means. We show in particular that if (G, E) is
ergodic where G is a semi-group of ‘transition operators’ on an appropriate
space E, then E admits a mean which is invariant under G.

This paper represents part of the authors doctoral dissertation
presented in 1957 at the University of California at Berkeley. In the
authors thesis ergodicity was also characterized generally in terms of
the notion of convergence due to Birkhoff and Alaoglu [1]. Here we
have preferred to proceed independently of all convergence considerations
in an entirely self-contained way. The author would like to thank
Professor F. Wolf, under whose direction the thesis was written for his
generous help and advice.

1. Fixed points in orbits. Throughout this paper G will denote a
bounded semi-group of linear transformations acting on a Banach space
E. This means simply that G is closed under multiplication and that
there is a positive number M such that ||gz|| < M ||z|| for all x € E and
gcG. We will assume that G contains the identity transformation. If
x € E, the closed convex hull of the set {gx; g € G} will be referred to as
the orbit of # and denoted K(x); subsets of this type will frequently be
called orbits without specific reference to the generating vector. G will
denote the collection of operators on E which are convex combinations
of elements of G. Then G is a bounded semi-group in its own right
with the same bound M, the same orbits, and the same fixed points as
G. Clearly K(x)=closure {gz; g € G}. Finally we define N={x € E; 0 € K(x)},
F={xcE;gx=xforallgeG}, D={x —gx;xec Eand gcG}, and [D] =
the closed subspace spanned by D.

In passing to the action of the adjoint semi-group G* on the conjugate
space E*, the corresponding dual objects are naturally defined. Thus if
Ee E*, the orbit of £ will mean the closed convex hull of {g* & g* € G*} and
will be denoted again K(£). In the same spirit we define G*, N, D, and F',.

We use the notation (x, &) to express the linkage between a vector
xecE and a vector Ec E*. If S is a subset of £ and T is a subset of
E* weset St={cE*;(x,§)=0forallzeS}and T+ ={xc E;(x, & =0
for all £¢ T'}. Recall that St+ = [S], the closed subspace spanned by S.



DUALITY IN GENERAL ERGODIC THEORY 1331

The following technical proposition expressing the relationships
between the sets we have defined will be used repeatedly throughout
this paper.

1.1. PROPOSITION.
111, NNF=0
1.1.2. D+ =F, and Dy = F
1.1.3. N s closed in E
1.14. Dc Nc[D]
1.1.5. If z,€ F, then x,€ K(x) vf and only tf x — x,e N
1.1.6. If [D] N F =0, then any orbit of E can contain at most one
fized point.

Proof. If xe NN F, then K(x) = {x} and also 0e K(x) so that (1)
follows. (2) is immediate by virtue of the identity (x—gx, &)=(x, E—g* &).
To prove (3), let xe¢ N and choose ne N with ||z —n|| <e. We can
then find ge G with ||gn]] <e. We now have ||gz| < ||gx — n)]| +
llgn|l < (M + 1)e so that x e N.

To prove (4), we define g, =1/n(1+ g+ g°+ -+ + g"") where g€ G.
Then g,€ G. If now & — gx e D, we have g,(x — gx) = 1/n (x — g"x) — 0
so that 0e K(x — gx). Thus D c N. To show that N c [D], it will
suffice to prove that (N, F,) = 0 for then N F{ = D+ =[D]. Butif
ne N and e F, we may choose g G with ||gn]|| < ¢/||€]|. We have:

|, &) = |(n, g*E)| = |(gm, &)| = llgn|| |||l <e
so that

(n, & =0.

If x,e F, then gx — x, = g(x — x,) so that ||gx — x,|| < ¢ if and only
if ||g(x — x)|| < e. This proves (5).

To prove (6), let «,, x, be fixed points in the orbit K(x). Then by
®) n,=2 —, and n,=2 —x, are both in N. Since N cC [D], this
means that n, and %, are in [D] so that n, —n, =2, —2,€[D] N F. In
particular if [D] N F' = 0, then %, = x,.

1.2 EXAMPLE. In the classical context where G is the bounded semi-
group consisting of the powers of a single operator 7' (where || T*|| < M,
k=12 --+), we may identify N with the closed subspace: 7 = {x € K,
T.x=1n®+ Tx + --- + T* %) — 0}, For, take v — T*xe D, Then
T.(x — T*x) = k/n T,(1 — T")xz — 0 so that D C 7. Since 7 is closed,
this means that [D] € » and so N € 7. But also if T\, — 0, then 0 € K(x)
so that » ¢ N. Thus N=7.

If now x € E and «, is a fixed point in K(x) then by (1.5) * — 2, N
and so T,¢ — 2, = T,(x — x,) — 0. Consequently T,x —x,, We have
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thus shown: &f the orbit of a vector x € E contains a fixed point x, then
T.x converges to x,. Conversely the identity 1 — T)T,x = 1/n(1 — T™)x
shows that if T,z converges to x,, then x, is a fixed point. (cf. Eberlein

(8D.

1.3 THEOREM. If every orbit of E (respectively E*) contains at
least one fixed point, then any orbit of E* (respectively E) contains at
most one fixed point.

Proof. If the orbit of every vector x € E contains a fixed point %,,
then ¢ — x,€ N, so that every vector « in E can be expressed as the
sum of a vector x, in F' and a vector £ — %, in N. Thus F* N N- = 0.
Now since D c N cC [D] one has N* = Dt =F,. Also (F,D,) =0 so
that F'* contains [D,]. Consequently F'* N N* contains [D,] N F, and
so[D,] N F, =0. Applying Proposition 1.1.6 to the adjoint space, the
conclusion then follows.

If every orbit of E'* contains at least one fixed point, then by what
we have just shown, any orbit of E** contains at most one fixed point.
But because of the isometric imbedding of E in E**, the orbit of a
vector x€ E is the same whether « is considered to lie in E or E**.
Thus orbits of E contain at most one fixed point.

1.8.1 COROLLARY. If every orbit in E and in E* contains at least
one fixed point, then any orbit in E or in E* contains precisely one
Sized point.

1.4 EXAMPLES

1.4.1. If G consists of contractions' on Hilbert space then any orbit
K(x) certainly contains at least one fixed point. For if x, is the (unique)
element of K(x) having smallest norm, then since ||gux,|| =< ||%,|] and
gx, € K(x), it follows from the defining property of w, that gx, = x,; that
is, ®, is a fixed point.

As the same argument applies to the adjoint semi-group G* (which
also consists of contractions on Hilbert space) we conclude by Corollary
1.8.1 that every orbit contains precisely one fixed point (Alaoglu-Birkhoff
[1D.

1.4.2. More generally Day [5], pointed out that whenever G consists
of contractions on a strictly-convex® reflexive space, the above argument
is still effective and shows that every orbit contains at least one fixed

1 An operator T is called a contraction if || T|| < 1. It is called an isometry if || T || =
|| 2|l for all x € E.

2 A Banach space is strictly convex is the unit sphere (vectors of norm 1) contains no
line segment.
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point. Thus if we assume that both E and E* are strictly convex,
Corollary 1.3.1 again allows us to conclude that every orbit contains
precisely one fixed point. Such is the case, for example, if F isan L,
space for p > 1.

1.4.3. If G consists of a (bounded) group acting on a Hilbert space
E, then we may define a new norm on E in the following way: |z|* =
SUPgee <92, gx>. This clearly defines an equivalent norm relative to
which G acts isometrically. Moreover Jacobs [9] has shown that this
new norm is strictly convex. Thus by Day’s result, every orbit of E
contains at least one fixed point. Since G* is also a group, the same
conclusion is valid for orbits of E*; by Corollary 1.8.1 it then follows
that every orbit of E contains precisely one fixed point (Jacobs [9]).

1.5. REMARK. We are indebted to the referee for informing us of
some unpublished results of C. Ryll-Nardzewski [14]. His results imply
the following: if G is a semi-group of isometries' on a Banach space E
then any weakly-compact orbit of E contains fixed points. In particular
if E is reflexive (and G consists of isometries) then every orbit of E
contains at least one fixed point. If in addition G* also acts as isometries
on the (reflexive) space E*, we conclude by Corollary 1.8.1 that every
orbit of E contains precisely one fixed point.

In the same way if G is any (bounded) group acting on a reflexive
Banach space we may renorm the space as in Example 3 above so that
G consists of isometries. The result of Ryll-Nardzewski thus again
applies to show that in this case too every orbit contains precisely one
fixed point

2. Ergodicity and duality. We now proceed to an examination of
the ‘good’ case where G acts ‘ergodically’ on E.

2.1 PROPOSITION. The following conditions are equivalent:

1. gNC N for any ge G (if 0 K(n), then 0<c K(gn)).

2. If ne N then K(n) C N.

8. N is a linear subspace of E (i.e. if 0¢ K(x) and 0¢< K(y), then
0e K(x + v)).

4. N=[D].

Proof. (1) = (2) since N is closed.

(2)==(3). Let xe N and ye N. Choose g,€ G such that
llgx|| <e. Then as gyeN by (2), we can choose g,€ G such that
llg.0:¥]] < e. We now have:
lg:0: + )| = M|l gz]| + || gy || < (M + 1)s. Thus = + ye N.

(8) = (4) for N is closed and D < N < [D].
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(4) = (1). Since F, is invariant under the action of G*, it follows
that [D] = F% is invariant under the action of G. In particular, if
[D] = N, then condition (1) is satisfied.

The pair (G, E) will be called ergodic if any of the above conditions
is satisfied. We will then call a vector of E ergodic if its orbit contains
a fixed point. By proposition 1.1.5 and proposition 2.1 a vector x € F
is ergodic if and only if it belongs to the subspace R = NP F =[D]DF.
R will be referred to as the ergodic subspace. (This nomenclature is
in accord with a somewhat unfortunate tradition.)

2.2 ExAMPLES 2.2.1. If G is abelian, then (G, E) is ergodic. For
if ne N and g€ G we may choose g, € G with ||gn|| < e. We then have
lgign]|| = |lggm|| < Me so that gne N. Thus (G, E) is ergodic by
proposition 2.1.1.

2.2.2. If every orbit of E contains precisely one fixed point, then
(G, E) 1s ergodic. For let ne N and ge G. Since K(gn) < K(n), the
fixed point of K(gn) must coincide with that of K(n); that is, 0 € K(gn).
Thus gn e N and so again by proposition 2.1.1 (G, E) is ergodic.

2.2.3. If G admits a right invariant mean, then (G, E) is ergodic
(Theorem 4.2).

2.2.4. If every orbit of E* contains at least one fixed point, then
(G, E) is ergodic. (We will see later—cf. Corollary 3.1.1—that when £ is
reflexive, (G, E) is ergodic if and only if every orbit of E* contains at
least one fixed point.)

Proof. If (G, E) is not ergodic, by proposition 2.1.1 there is an
neN and a ge G with gn¢ N, so that 0e K(n) but 0¢ K(gn). The
Hahn-Banach Theorem then asserts the existence of a functional &£e E*
which separates 0 from the closed convex set K(gn); that is, 0 < a =
(K(gn), &) where « is a real number. In particular, 0 < a < (Ggn, &) =
(gn, G*E) and so 0 < a = (gn, G*E). But as gn induces a continuous
functional on E* (in the norm topology on E*) we have:

(gn, G*&) D (gn, {G*E}) = (gn, K(§))
so that 0 < a < (gn, K(&)). If then K(&) were to contain a fixed point
&, we would have 0 < a =< (gn, &) = (n, &) which would contradict the
fact that N is perpendicular to F,.
2.3 THEOREM. If (G, E) is ergodic, then:

2.8.1. the ergodic subspace R is closed and strongly inmvariant (in
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the sense that gx e R if and only if z ¢ R),

2.3.2. the orbit of a wector x € E contains precisely one fixzed point
if x€ R and contains none if ©¢ R,

2.8.3. if € R and p(x) is the assoctated fixed point of K(x) then
x — p(x) defines a (bounded) linear operator » on R such that pg =
gp =p'=p.’°

2.8.4. F, + 0 whenever F =+ 0; indeed the dimension of F, is at
least as great as the dimension of F.

Proof. If (G, E) is ergodic, then N =[D] and so [D] N F = 0.
Then by proposition 1.1.6 orbits of E contain at most one fixed point.
Thus if ze€ R, K(x) contains precisely one fixed point. This gives 2.

By proposition 2.1, [D] = N is invariant under the action of G so
that R = N@ F' is invariant under G. Moreover if gx e R, then K(gx)
contains a fixed point and since K(x) D K(gx), K(x) contains the same
fixed point. Thus z€ R.

Next we show that R is closed. For xe R, let p(x) denote the
unique fixed point in K(x). Then ||p(®)|| = M||x]|| for all x € R. Moreover,
if neN and feF, then p(n + f)=f so that || f]] =|px + )| <
Miln + £l

Suppose then that z, € R and that ¢, —» x,. Putx, = d, + f, where
d,e[D]=Nand f, € F. Since z, is Cauchy and || f,—f.|| =< M| (d,—d,) +
(fo— Sl = M||x, — x,]||, we conclude that f, is Cauchy. Thus f,—f,€ F
and so d, — %, — fy€ N. Consequently x,e NP F = R.

Let %, x,€ R and ¢, = n; + f; where n,€ Nand f;€ F. Then p(x;) =
Si and o, + @) = p((n, + n,) + (f1 + f2)) = fi + f since by Proposition
2.1 n, + n,€ N, Thus p is linear.

Finally in order to prove that dim F' < dim F,, we may assume that
dim F, < . We then have F, =|[D]* = (E/[D])* so that dim F, =
dim (E/[D]) = codim [D]. But if (G, E) is ergodic, [D] N F = 0, and so
in this case codim [D] = dim F.

This completes the proof.

Part 4 also follows from some results of Yood [15].

REMARK. If FE is reflexive and both (G, E) and (G*, E*) are ergodic,
(cf. Corollary 38.1.1) then applying Theorem 2.3.4 to both spaces, we
conclude that dim F'= dim F,. In particular, this equality holds when G is

8 It is easy to see that gx — xo in the sense of Alaoglu-Birkhoff [1] if and only if x€ R
and %o = p(x).
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a group or an abelian semi-group on Hilbert space. When G consists
of contractions on Hilbert space, it follows for the same reason that
dim F' = dim F,. But in this case one actually has more; namely F' — F,.
For if xe F, then ||z|]* = (9%, ) = (x, g*x) < ||2]| ||g*x|] =< ||«||* and so
2| = [lg*x|]* = (=, g*2). Thus ||g*x — | = (9*¢ — @, g*x — ) = 0 so
that g*x = 2 and 2z e F,.

3. Existence of fixed points. As the next proof will require us to
conduct our arguments in the (non-normed) weak-xtopology of E*, we
mention here some of the relevant background. The definitions and
proofs of the results we use concerning topological vector spaces can be
found in Bourbaki [3].

We define the weak-topology on a Banach space E to be the least
fine topology relative to which all the elements of the adjoint space E*
are continuous. Thus the weak topology on the Banach space E* is
defined using the elements of E**., By the weak-+ topology on E* we
mean the least fine topology relative to which the elements of E induce
continuous functionals. By definition then, when E* is endowed with
the weak-x topology, any element of E induces a continuous funectional
on it. One can show that every functional on E* which is continuous
in the weak-* topology arises in this way from an element of F.

Although the norm topology is in general definitely richer in closed
sets than the weak topology, Mazur’s theorem asserts that a convex
closed set is weakly closed. We will also make use of the fact that the
unit ball of £* is compact in the weak-+ topology. Finally, as the new
topologies on E and E* are locally convex (that is, every vector possesses
a fundamental system of convex neighborhoods), the theorems of the
Hahn-Banach type apply. These guarantee in particular the existence
of continuous functionals strictly separating a given closed convex subset
from a disjoint compact convex subset.

3.1 THEOREM. (a) If (G, E) is ergodic, then any convexr weak-*
compact subset of E* which is invariant under the action of G*,
contains a fixed point. In particular, any orbit of E* which is compact
wn the weak-+ topology contains a fixed point.

(b) If (G*, E*) ts ergodic, then any convexr weakly-compact subset
of E which is invariant under the action of G, contains a fixed point.
In particular, any orbit of E which is compact in the weak topology
contains a fixed point.

REMARK. Since by Mazur’s theorem orbits are weakly closed, the
two assertions of part (b) are actually equivalent. Orbits of E*, on
the other hand, need not be weak-+ closed so that the first assertion
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of part (a) is really stronger than the second one.

Proof of the theorem. Part (a). Suppose that W is a convex,
weak-x compact subset of E* which is invariant under G* and yet which
does not contain fixed points. Then W N F,=¢. As F, =D, F, is
weak-+ closed. In the space E* endowed with the weak-x topology we
may then apply one form of the Hahn-Banach Theorem to the disjoint
closed convex set F, and the compact convex set W. This theorem
asserts the existence of a weak-x-continuous functional on E* which
strictly separates W and F,. As we have seen that all such funectionals
arise from elements in E, there is then an «# + 0 in F and a real number
.« with (z, F,) < a < (x, W). Since F, is a subspace, this requires (z, F,)
to be zero and so x € Fyi = [D].

Thus 0 < a < (%, W) where ze€[D]. Choosing an arbitrary w,c W,
we have G*w, C W so that 0 < a < (x, G*w,) = (G, ®,) and hence 0 <
o < (Ge, w). But as ®, is continuous in the norm topology of E,
(K@), wy) = (G}, ®,) < (Gx, @) and so 0 < o < (K(x), @,). In particular
then, we conclude that 0 ¢ K(x); that is, x¢ N. As x was shown to be
in [D], this means that (G, E) cannot be ergodic.

Part (b). Since the weak-x topology of E** induces on E (which
is naturally imbedded in E**) a topology which coincides with the ordinary
weak topology of E, a subset of E which is weakly compact may be
considered a subset of E** which is compact in the weak-x topology on
that space. An application of part (a) then gives part (b).

3.1.1 CorOLLARY. If E is reflexive, then (G, E) is ergodic if and
only if every orbit of E* contains at least one fixed point.

Proof. Orbits are bounded and (by Mazur’s theorem) weakly closed
;80 that in a reflexive space any orbit is weakly compact. Theorem 3.1
thus gives the forward implication. Example 2.2.4 gives the converse
independently of reflexivity.

3.2 REMARKS.

3.2.1. If both (G, E) and (G*, E*) are ergodic, then any orbit in
.either F or E* can contain at most one fixed point (Theorem 2.3.2).
But then by Theorem 3.1, any weakly compact orbit of E or any weak-x
compact orbit of E* must contain precisely one fixed point. Since an
abelian semi-group always acts ergodically, these results are valid in
particular in the case where G is abelian (G* is also abelian). We shall

see that the same is true when G possesses a two-sided invariant mean
(Remark 4.3.1.).
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3.2.2. By the corollary of the last theorem we see that when FE
is reflexive every orbit contains precisely one fixed point if and only if

either (a) both (G, E) and (G*E*) are ergodic
or (b) every orbit of E and of E* contains at least one fixed point.

In the case where G is abelian, (a) is immediate. If E is a Hilbert
space and G is either a semi-group of contractions or a (bounded) group,
we have seen that (b) holds. In fact using the results of C. Ryll-
Nardzewski [14] mentioned in remark 1.5., (b) is valid on any reflexive
Banach space so long as G is a bounded group or if both G and G*
are each semi-groups of isometries. His proof presumably depends on
delicate measure-theoretic machinery. It would be interesting to see if
one could prove (a) directly in these cases.

4, Means and ergodicity. Let E be the Banach space B(2) of
all bounded continuous functions on the completely regular topological
space £ under sup norm‘. An element &€ E* is called positive if &(f) = 0
whenever f = 0. In that case it is clear that ||&|| = £1). A positive
functional M e E* is called a mean on E if M1) =1. We then have
[[A]] =1 and moreover |Mf)| < M|f]) £ ||f]l for any fe E. Let P be
the set of means on E. Evidently P is weak-+ closed in E*. As P is
convex and is contained in the (weak-* compact) unit ball of E*, it follows
that P is weak-+ compact.

An operator T on E is called an endomorphism (or a transition-
operator) if 7f = 0 whenever f= 0 and also 71 = 1. This is equivalent
to requiring T*P c P; i.e., that the set of means on E is carried into
itself by 7*. Finally as [|f]|] =<1 if and only if —1 <=1, we see
that the norm of an endomorphism is 1.

Suppose now that G is a semi-group of endomorphisms on the Banach
space F as above. Since every element of G has norm 1, G is bounded
in the sense of our earlier discussion. A mean A on E is said to be
mvariant (under G) if A(gf) = A(f) for each geG, fe E. Thus an
invariant mean on E is simply an element of P N F,. In general, of
course, this set may be empty. However, as a consequence of Theorem
3.1, we have:

4.1 THEOREM. If G is a semi-group of endomorphisms which acts
ergodically on E, then E possesses an invariont meamn.

Proof. The set P of means on F is a convex weak-+ compact subset
of E*. The fact that G consists of endomorphisms means that P is
4 The development in this paragraph could be carried through taking for E what Kakutani

[11] has called an abstract M-space with unit, but his results show that the generality
gained is only formal.
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carried into itself by every element of G*. But then by Theorem 3.1
(a), P contains a fixed point for G.

4,1.1. COROLLARY. If G s abelian, then E possesses an invariant
mean (Kakutani [10] and Day [4]).

If the space 2 is a (topological) semi-group G, then there are several
ways for G to induce endomorphisms on the space £ = B(G). If geG
and f € B(G) let us define the operators L, and R, on E by: (L,f)(¢') =
f(99') and (R,f)(9') = f(¢9'9). We then have L, L, = L,,, R, R, = R,,,
and R, L, = L, R, sothat G, = {L,; g € G} and G, = {R,; g € G} form two
semi-groups of endomorphisms on E which commute elementwise. Thus
Gr = {L,R,,; 9, 9:€ G} also forms a semigroup of endomorphisms on K.
Corresponding to these three semigroups we obtain the notion of left,
right and two-sided invariant means on E (or as we shall say, on G).
By Corollary 4.1.1 any abelian semi-group possesses an invariant mean.
The existence of Haar measure (cf. § 4.4) shows that any compact group
possesses a (unique!) invariant mean.

Heretofore, in the discussion of bounded semi-groups of operators,
the topology on the semi-group played no role. We might equally well
have been dealing with an abstract semi-group G, together with a bounded
representation of G into the multiplicative semi-group of operators on
E, where we call a representation 7 of G bounded when the image
semi-group is bounded. If G is a topological semi-group, we will say
that the representation © is weakly-continuous if g — (z(g)x, &) is a
continuous function on G for any xe E, £ E*. For convenience we
omit the letter = and speak of the continuity of (gx, &), the ergodicity
of (G, E), ete.

4.2 THEOREM. Let w be a bounded weakly-continuous representation
of the topological semi-group G on the Banach space E. Then tf G
admits a right invariant mean, (G, E) is ergodic.

Proof. For xe K, £c E*, let [z, £] denote the function in B(G)
whose value at g is (g, ). If A denotes a right invariant mean on
G, then we may define a transformation 7 E — E** by means of the
equation (Tx, &) = A([z, &]). Then

|| Tz|| = sup [(T%, &)| = sup | A([z, D] = sup [|[z, &]]]
l§l1=1 Iél=1 Iél=1
= sup sgpl(gx, 8| = M||x||

Thus T is continuous.
Observing that R,([z, £]) = [9x, &] we have:

(Tgx, &) = A9, D) = AR [z, &) = A([, &]) = (T=, §)
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for any £€ E* so that Tgx = Twx and consequntly 7T vanishes on D. By
the continuity of 7' then, 7 vanishes on [D] and so a fortiori on N.

But now conversely if 7% = 0, we claim that 0 € K(x) so that x € N.
For otherwise, we could find £€ E* and a real number a with 0 < a <
(K(x), £). In particular a < (gz, &) for all ge G and so [z, £] = @. But
then (T, &) = A(lz, £])) = « > 0, which contradicts the fact that Tx = 0.
Thus 7% = 0 if and only if € N, so that N is a linear subspace and
(G, E) is ergodic.

4.3.1. Let G be a bounded semi-group of operators on E. If G
admits a right invariant mean when given either the discrete or the
uniform operator topology then Theorem 4.2. applies so that (G, E) is
ergodic. If instead G admits a left invariant mean in either of these
topologies then G* admits a right invariant mean in the same topology
so that (G*, E*) is ergodic. Thus in this case by Theorem 3.1 any invariant
compact convex set of E contains a fixed point (cf. Day [6]). In particular
if G admits a two-sided invariant mean in either topology then any
compact convex orbit of £ must contain precisely one fixed point.

4.3.2. Combining Theorem 4.1 and 4.2, we see that if G is a
(topological) semi-group of endomorphisms of the space E = B(£2) (and
g — (gx, &) is continuous) then whenever G possesses a right invariant
mean, E also possesses a mean which is invariant under G.

4.4. Application to Haar Measure on a Locally Compact Group.

As an amusing application of the fact that abelian semi-groups admit
invariant means, we give here a construction of Haar measure (or rather
of a nontrivial invariant content’) on an arbitrary locally compact group.

Suppose then that & is a locally compact group and let G denote
the collection of neighbourhoods of the identity ¢ in &. Then G is an
abelian semi-group under the operation of intersection! Let 4 be an
invariant mean on G. We wish to associate with each compact subset
K of the group & a bounded function X on G in such a way that
K — A(K) will define a nontrivial invariant content. Let K, be a fixed
compact neighborhood of e. Then if Sc % and the interior of S is
nonvoid, define (K:S) as the smallest integer n such that K can be
covered by n (left) translates of S. We now define the function K on
G by setting K(V) = (K: V)/(K,: V) where VeG. As K(V) = (K:K),
K is bounded and we may define )»(,IQ = A(K). Observing that (¢K: V) =
(K: V) for ge &, we have K = (gK) and so MgK) = MK). Also if K
has a nonvoid interior, then K(V) = 1/(K,: K) so that in this case

5 cf. Halmos-Measure Theory, Theorem B, p. 254.
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MK)=1/(K,: K) > 0. It is clear that in general MK, U K,) = MK)) +
MK,). If, moreover, K, and K, are disjoint, (K, U K,: V) =(K,: V) +
(K,: V) for all small enough Ve@G. By virtue of the invariance of A,
we then have MK, U K,) = MK)) + MK,).
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ABELIAN SUBGROUPS OF »-GROUPS

CHARLES HoBBY

Let G be a finite p-group where p is an odd prime. We say that
@G has property A, if every abelian normal subgroup of G can be generated
by n elements. Further, if G, denotes the nth element in the descending
central series of G, we say that G has property A4,.(G,) if every abelian
subgroup of G, which is normal in G can be generated by » elements.
If G has property A,, then G is cyclic. N. Blackburn [1] found all of
the groups which have property A4,. It follows from the work of Blackburn
that if G has property A, then the derived group of G is abelian and
every subgroup of G has property A,. We shall show that if G has
property A, then every subgroup of G has property A,. There exist
groups which have property A4, in which the derived series is arbitrarily
long [2] so no analogue of Blackburn’s result on the derived group is
possible. We next consider groups G which have property A4,(G,) and
show that G, can be generated by » elements. This leads to the existence
of a bound on the derived length of G which depends only on » and the
exponent of G,.

We shall use the following notation: p is an odd prime; G=G,D>G,D- -
is the descending central series of G; Z(G) = Z\(G) C Zy(G) < --- is the
ascending central series of G; G*® is the kth derived group of G; (H, K)
is the subgroup of G generated by all elements (&, k) = h=k'hk for
heH, ke K; N<G means N is normal in G; N C G means N is properly
contained in G; C4(N) is the centralizer of N in G; H? is the normal
subgroup of G generated by H; ¢(G) is the subgroup generated by pth
powers of elements of G. 2(G) is the subgroup generated by all elements
of order p in G; ¢(G) is the Frattini subgroup of G; |G| is the order of G.

If A<]Gand A c CyA), then there is a subgroup B of Cy(4) such
that B <] G and [B: A] = p. It follows that if a normal subgroup A of
G is properly contained in an abelian subgroup C of G, then A is properly
contained in some abelian normal subgroup B of G.

LEMMA 1. Suppose A <] G and A < C where C is an elementary
abelian subgroup of G. Then G contains an elementary abelian normal
subgroup B such that A is a subgroup of index p in B.

Proof. Suppose G is a group of minimal order for which the lemma
is false. Then C C G, so there is a subgroup M of index p in G which
contains C. It follows that M contains an elementary abelian normal
subgroup B, such that [B,: A] =p. Set D= M N Cx(A4). Then B, <{D <G.
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Since (D, B) < A and (D, A) =1, we have B, S Z,(D) <|G. Therefore
Bf & Z,(D). But Z,(D) is a regular p-group for p > 2, so Bf has exponent
p. Let B be a subgroup of Bf which is normal in G and which contains
A as a subgroup of index p. Clearly B is elementary abelian, so the
lemma is true for G.

THEOREM 1. If G has property A, then every subgroup of G has
property A,.

Proof. Suppose G is a group of minimal order for which the theorem
is false. Then G contains an elementary abelian normal subgroup A of
order p° and there is a subgroup M of index p in G which does not
have property A,. It follows that M contains an elementary abelian
normal subgroup D of order »*. Let N be a subgroup of order p*in A
which is contained in M and which is normal in G. If we let C = Cy4(N),
then [G:C] < p, hence [D:D N C]=p. Thus we may suppose that
N c D, since otherwise we could choose a new subgroup D, in (C N D)N
such that Nc D, <{ M and D, is elementary abelian of order p*

Since G has property A, it follows from Lemma 1 that A contains
the only elements of order p in C,(4). Therefore N = D N Cy(4). It
is easy to see that [C:C,(4)] = p° thus C = DC,(A). Therefore, if
deD, ge@, then g~'dg = d,c for some d,e D, ce C,(4). We recall that
D is an abelian normal subgroup of M, and that M <{G. Thus D and
9 'Dg generate a group of class at most two; hence for p > 2 the group
generated by D and g—*Dg has exponent p. Thus it follows from g-'dg =
d,c that ¢» =1, whence ce A. Therefore AD <{G. But AN D= N, so
[AD: D] = p. Since D is not normal in G, we must have AD = D(¢g7'Dg)
for some element g € G. Therefore D N g~*Dg has order at least p* and
is contained in Z,(AD) which is normal in G. Thus AD must contain
an element of order p which centralizes A and which does not belong
to A. This is a contradiction.

THEOREM 2. If G has property A,(G,) then G, can be gemerated
by n elements.

Proof. Suppose G is a group of minimal order for which the theorem
is false. Then G, is not abelian, so ¢(G,) + 1. Let Z be a group of
order p in Z,(G) N 4(G,). Then G, and (G/Z), have the same number
of generators, so (G/Z), must contain an elementary abelian subgroup
B|Z of order p"*' which is normal in G/Z. Let B be the preimage of
B|/Z in G. Then B <] G, B has order p"*’, and BY & Z. Thus B has
class at most two, hence is regular for p > 2. But g(B) € Z, so 2(B)
is a group of order at least p"*' which is normal in G. Thus there is
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a subgroup A of 2(B) such that A <| G, ¢(4) = 1, and A has order p"*'.
Let N be a subgroup of index p in A which is normal in G. Then |N| =
p* and N<|G imply N< Z,(G), whence N< Z,(G,). Therefore A is
abelian, a contradiction.

COROLLARY. Suppose G has property A,(G,), where G, has exponent
p™. Let k be an integer such that 2¢ =n. Then G*™™ =1,

Proof. By Theorem 2, G, can be generated by n elements. Therefore
[3, Theorem 2] ¢(G,) = 2(G,). It follows that G = (1) [4, Theorem 2].
In any p-group, G & G,. Therefore G* = G,, whence G**™ = {1).
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THE MINIMUM BOUNDARY FOR AN
ANALYTIC POLYHEDRON

KeNNETH HOFFMAN AND HuGgo Rossi

1. Introduction. If K is a compact subset of a complex analytic
manifold M, then for each f, holomorphic (analytic) in a neighborhood
of K, the maximum modulus of f over K is attained on the topological
boundary of K. If the complex dimension of M is greater than 1, it
may happen that there are proper closed subsets of the topological
boundary on which each holomorphic f attains its maximum modulus.
In case there are sufficiently many holomorhic functions on M to separate
the points of the manifold, a general result of Silov [6] states that
there is a uniquely determined smallest closed subset of K which has
this maximum modulus property. This set is known as the Silov boundary
for the ring of functions holomorphic in a neighborhood of K.

The Silov theorem is valid for separating algebras of continuous
complex-valued functions on a compact space, and has nothing to do
with analyticity as such. Many years earlier, the pioneering work on
maximum modulus sets for rings of analytic functions had been done
by Bergman [1;2;3]. He considered principally domains in C™ which
were bounded by a finite number of analytic hypersurfaces, and for
these he introduced a distinguished boundary surface. For a wide
class of such domains, he showed that his distinguished boundary was
a smallest maximum modulus set. References to more recent work on
these problems may be found in the second author’s paper [9].

In this paper we consider the case in which M is a Stein manifold,
e.g., a domain of holomorphy in C*, and the compact set K is an
analytic polyhedron. This means that K has the form

K={meD;|f;|=1,j=1,--,k}

where fi, ++-, f, are holomorphic functions on some open subset D of
the manifold M. We consider those subsets S of K which have the
property that, for every f holomorphic in a neighborhood of K, the
maximum modulus of f over K is attained on the subset S. We prove
that among all such subsets S there is a smallest one, which we call
the minimum boundary for the polyhedron. The closure of this minimum
boundary is (of course) the Silov boundary for the ring of functions
holomor]gv)hic on K. While it is difficult to give an explicit description
of this Silov boundary, such a description can be given for the minimum
boundary. It is obtained by deleting from K all connected local analytic

Received May 16, 1962.

1347



1348 KENNETH HOFFMAN AND HUGO ROSSI

varieties of positive dimension which are contained in K. In terms of
the functions f; which define the polyhedron K, the description is as
follows. Let m,c K, and let 3, ---, 4. be those indices j for which
[filmy)| = 1. Then m, belongs to the minimum boundary if and only
if m, is an isolated point of the set (variety)

V:{meD;fji(m):fji(mo)vi: 1, "-,’i”}.

In [7], the first author identified the minimum boundary for the
ring of functions on K which are uniform limits of functions holomor-
phic in a neighborhood of K. The arguments there made essential use
of a fundamental theorem of Bishop: if A is a uniformly closed separating
algebra of continuous complex-valued functions on a compact metric
space K(1 € A), there is a smallest subset of K on which each function
in A attains its maximum modulus. This minimum boundary for A
consists of the points of K at which some function in A “peaks”, i.e.,
those points with the property that there is a function in A which
attains its maximum modulus at the point, and at no other point. The
description of the minimum boundary for the ring of functions holomor-
phic on K is exactly the one which was shown in [7] to define the
minimum boundary for the uniform closure of the ring. In particular,
it results that the minimum boundary for the polyhedron consists of
those points of K at which some holomorphic function peaks (over K),
or, it consists of the peak points for functions which are uniformly
approximable by holomorphic functions. We shall use methods from [7],
and we shall make essential use of Bishop’s general existence theorem.
This theorem is not directly applicable to the ring of functions holomor-
phic in a neighborhood of K, since the ring is not generally closed
under uniform convergence. However, by using a technique from the
second author’s paper [8], based upon the solution of the second Cousin
problem for Stein manifolds, we are able to show that the ring of
holomorphic functions has the same peak points as does its uniform
closure.

2. Notation and basic definitions. A Stein manifold is a d-di-
mensional complex analytic manifold M such that
(i) the global holomorphic (analytic) functions on M separate the

points of M;
(ii) for each point m e M there are global holomorphic functions
h,, -+, hy which serve as coordinates in some neighborhood of m;

(ili) M is a countable union of compact sets;

(iv) if K is any compact set in M, the set of points m e M such
that |k(m)| < supg | k| for every holomorphic function 2 on M is also
compact.
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Let M be a Stein manifold. An analytic polyhedron in M is a
subset P of M such that

(i) P is compact

(i) P={meD;|f(m)|=<1,7=1,---,k}, where D is an open
subset of M and f,, ---, f. are holomorphic functions on D.

If P is an analytic polyhedron in M we denote by H(P) the set of
all functions f on P such that f is the restriction to P of a function
holomorphic in some neighborhood of P. We denote by A(P) the class
of functions on P which can be approximated, uniformly on P, by
functions in H(P). Both H(P) and A(P) are algebras of continuous
functions on P. Our task is to prove the existence of a smallest subset
S of P such that, for every h in H(P), the maximum modulus of %
over P is attained on the set S, and then to describe the set S explicitly.
For this we need to discuss briefly boundaries for algebras of continuous
functions.

Let X be a compact Hausdorff space, and let A be a collection of
continuous complex-valued functions on X. A boundary (of X) for A
is a subset S of X such that

max [f|=max|f[, feAd

that is, a subset S of X such that for each f in A the maximum modulus
of f over X is attained at some point of S. If

(a) A is a complex-linear algebra, using pointwise operations

(b) the constant functions are in A

(¢) the functions in A separate the points of X,
then among all closed boundaries for A there is a smallest one, i.e.,
the intersection of all closed boundaries for A4 is a boundary for A. This
smallest closed boundary for A we call the Silov boundary for A, in honor
of G. E. Silov who first proved its existence [6]. If, in addition to (a),
(b), and (c¢) we have

(d) A is closed under uniform convergence

(e) X is metrizable
then the intersection of all boundaries for A is a boundary for A. This
smallest of all boundaries we shall call the minimum boundary for A.
Its existence was proved by Bishop [4], who also showed that it consists
of those points x e X which are peak points for A. We call ¢ a peak
point for A if there exists an f in A such that | f(z)| > | f(y)| for all
points ¥ in X which are different from xz. Evidently, the Silov boundary
for A is the closure of the minimum boundary for A.

Both H(P) and A(P) are algebras of continuous functions on the
compact space P which satisfy conditions (a), (b), (c¢) above. Since A(P)
is the uniform closure of H(P), these algebras have the same Silov
boundary. Now P is metrizable, as is easy to see from the countability
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condition imposed on a Stein manifold. Therefore, there exists a minimum
boundary for the uniformly closed algebra A(P). The general function
algebra results cited above do not guarantee the existence of a minimum
boundary for H(P); thus, as we proceed now to prove the existence of
such a boundary, we shall make heavy use of explicit properties of
analytic polyhedra.

3. The minimum boundary. Now suppose we are given the ana-
lytic polyhedron

P={m€D;|fJ(m)| §17.7:17 ""k}

in the Stein manifold M. With each point m, in the polyhedron P we
associate an analytic variety V, in the ambient neighborhood D by

(3'1) V'mg = {m € D;f.n(m) = fii(mo)y 1= 1’ Tty ,r}

where j,, -+, J, are those indices j such that |f;(m,)| = 1.

THEOREM 1. Let m,e P and suppose m, is a local peak point for
the algebra A(P). Then m,is an isolated point of the variety V,, (3.1).

Proof. This is proved in [7; Theorem 4.1]; here, we merely outline
the proof. By the statement that m, is a local peak point for the
algebra A(P) we mean that there is a function # € A(P) and a neigh-
borhood N of m, such that f(m,) = 1 and | f(m)| < 1 for all other points
in NN P. Given such an f and N, we may assume that those functions
fi (occurring in the definition of P) which are of modulus less than 1
at m, are of modulus less than 1 on the open set N. Then NN V,, =
V is an analytic variety in N and this variety is contained in the
polyhedron P. Since f is a uniform limit on P of functions holomorphic
in a neighborhood of P, f is ‘analytic’ on the variety V. Also, f has
a local maximum over V at the point m, The maximum modulus
principle for analytic varieties then states that m, is an isolated point
of V.

THEOREM 2. Let m,€ P and suppose that m, is an isolated point
of the variety V,, (8.1). Then m, is a peak point for the algebra H(P).

Proof. Let g;= %1+ f;,(m)f;),4=1,---,r. Then the function
g; is bounded by 1 on P, and has the value 1 at any point of P where
it is of modulus 1. Now let =g, ---g,. Then h is bounded by 1 on
P, has the value 1 at any point of P where it is of modulus 1, and,
furthermore, the set of points in P where % has the value 1 is precisely
the intersection of P with the analytic variety V,, Thus, m, is an
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isolated point of the set on which 2 = 1. We should also remark that
h is holomorphic in the open set D which occurs in the definition of P.

Since M is a Stein manifold, we can find functions A, --- k,, holo-
morphic on all of M, such that the map m — (h(m), - - -, h,(m)) is biholo-
morphic on P, and the image of P under this map is a polynomial convex
subset of C*. See [5]. Now we consider the map

g(m) = (hu(m), - -+, h,(m), h(m))

from D into C**. This map is biholomorphie, and the set K = ¢(P) is
polynomial convex. (polynomial convexity of K means that if z is a
point of C™** which is not in K, there exists a polynomial p in (n + 1)
variables such that |p(z)| > supg|p]|.) Let 2° = ¢(m,). The coordinate
function 2,,, is bounded by 1 on K, is equal to one at any point of K
where it is of modulus 1, and 2° is an isolated point of K N {#,., = 1}.

Choose a neighborhood U of the point 2° such that for any point
2= (%, ***,2,4) in UN K which is different from z° we have |z,..| < 1.
By [8; Theorem 2.4] there exists a function g, holomorphic in a neighbor-
hood W of K, such that g never vanishes on W — U and g/(1 — #z,.,) is
holomorphic and without zeros on W n U.

On the neighborhood W N U, the function g has the form ¢ =
(2,1 — Dk, where k is holomorhpic and never vanishes on Wn U. In
particular k£(z°) # 0. Thus, by shrinking U, we may assume that k¥ has
a single-valued logarithm; say k& = ¢ where [ is holomorphic on W N U.
Since K is polynomial convex, it is an intersection of polynomial convex
open sets. Therefore, it may be assumed that W is polynomial convex,
and hence is itself a Stein manifold. Similarly, a small contraction of
W will assure that the part of the intersection of W with the hyper-
plane {z,,; = 1} which lies in U is a closed analytic variety in W. Since
W is a Stein manifold, there is a holomorphic function » on W such
that p = [ on that variety [5]. Now let § = ge=®*. Then § is holomor-
phic on W and has no zeros on W — U. Also §= (2,.. — 1)ke™® on
WnNn U. Now ke ® = ke™" = 1 on that part of the hyperplane {z,., = 1}
which lies in W N U. Thus, on WN U, ke® =1 + (2,., — 1)k. Finally
we have a function §, holomorphic on W, which has no zeroson W — U
and has the form

g = (zn+1 - 1) + (zn+1 - 1)2E

on W N U (k holomorphic on W N U).

From § we shall now construct a function holomorphic in a neigh-
borhood of K, which has the property that its maximum modulus over
K is attained at 2° and at no other point of K. This function will be
an analytic function of §. Thus we shall examine the range of § on
K. The crucial fact about the set §(K) is that it lies outside a simply
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connected domain in the plane which has an analytic boundary contain-
ing the origin. To see this, we argue as follows. Choose a neighbor-
hood N of 2° such that the function % is bounded on W N N. We shall
then have

|§ — (s — 1) =c¢|2,0,— 1" on WNN

where ¢ is some positive constant. The range of (z,., — 1) on K lies in
the left half-plane. For each point w in the left halfplane, we consider
the disc

[E—wl=clwlf.

It is easy to see that there is an analytic curve v through the origin
such that for all points w near the origin this dise lies to the left of
v. Because, a short computation shows that the envelope of the family
of discs is an analytic curve through the origin. We may assume that
N is sufficiently small that for any point z in K N N the point w =
Z.,+1 — 1 has this property. Therefore, the range of § on NN K lies
to the left of v. On K — N the function § has no zeros. Choose ¢ > 0
such that |§| > ¢ on K — N. If ¢is sufficiently small, the circle |w| =
& will intersect v in precisely two points. Let D be the domain bounded
by v and |w| =¢. Let 7 be the Rieman map of the complement of D
onto the unit dise, which carries the origin onto 1. Since v is an analytic
curve, T will extend analytically across that part of v which is on the
boundary of D. The composition 7og = F' is then holomorphic on a
neighborhood of K, is of modulus less than 1 on K — {2, and F'(z°) = 1.

Now we return to the polyhedron P which we mapped holomorphi-
cally onto K via the map ¢. If welet f = Fog¢, then f is holomorphic
in a neighborhood of P, and the maximum modulus of f over P is at-
tained at m, and at no other point of P. Thus m, is a peak point for
the algebra H(P).

COROLLARY. Let M be a Stein manifold, and Let P be an analytic
polyhedron in M. Then there is a (unique) smallest subset S of P
such that for every function f, holomorphic in a neighborhood of P,
the maximum modulus of f over P is attained on the set S. A meces-
sary and suffictent condition that a point m, in P should belong to this
minimum boundary S is any one of the following.

(i) m, 1s a peak point for the algebra H(P).

(ii) m, 1s a peak point for the algebra A(P).

(iii) m, s a local peak point for the algebra H(P).

@iv) m, is a local peak point for the algebra A(P).

(v) There is mo connected local analytic variety of positive di-
mension which passes through m, and ts contained in P.
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(vi) m, is an tsolated point of the variety V,, defined by (3.1).

Proof. By Bishop’s theorem [4], there is a minimum boundary for
‘the algebra A(P), and it consists of those points of > which are peak point
for A(P). In Theorem 1 we showed that any local peak point for the
algebra A(P) satisfies (vi). Indeed, the proof showed that the point
satisfies (v), which clearly implies (vi). Theorem 2 states that (vi) implies
(1). From this it is clear that the six statements about m, are equivalent.
Furthermore, it is evident that the minimum boundary for A(P) is a
boundary for H(P); and, since each point of this boundary is a peak
point for H(P), this boundary is the smallest boundary for H(P).
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THE BERGMAN KERNEL FUNCTION FOR
TUBES OVER CONVEX CONES

ApaM KORANYI

In this article we determine the Bergman kernel function of the
tube domain over an arbitrary convex cone not containing any entire
straight line. For homogeneous self-dual cones this problem was solved
by O. S. Rothaus ([3], Theorem 2.6). It turns out that his method can
also be used in our considerably more general case. In fact, the proofs
of our Theorems 1 and 2 follow closely the corresponding proofs of
Rothaus; it is only in Lemma 2 that the proof of Rothaus has to be
replaced by an essentially different convexity argument.

Let V be an n-dimensional real vector space. A set D V is called
a cone if xeD and A >0 imply MeeD. Let V* be the dual space of
V. The dual cone D* of D is defined as the set of all ae V* such
that {a, > > 0 for all xe D, # + 0. We call the cone D regular if it is

(i) open,

(ii) convex,

(iii) nonempty, and

(iv) contains no entire straight line, i.e. x € D implies —x ¢ D. It
is easy to see that if D is regular then D* is regular too, and D** = D,

We assume that a Euclidean norm « — |« | is defined on V. The
dual norm on V* will likewise be denoted by a — |«|.

LEMMA 1. If D is a regular cone and K C D is a compact set tiﬁen
there exists a number o > 0 such that {a, x> = p|a| for all xe K, a € D*,

Proof. The proof is the same as that of [2] Lemma 1. By homo-
geneity it suffices to prove the assertion for |a|=1. Let S=
{ee V*||a| =1} be the unit sphere in V*. Now {a,x) is a positive
continuous function on the compact set (SN D*) x K and thus has a
positive minimum p, finishing the proof.

We define the positive real-valued function M on D* by

M@ = | eerda

for all @ e D*. By Lemma 1 the integral converges uniformly on compact
sets. As it can immediately be seen, M is a homogeneous function of
degree —n.

LEMMA 2. Let D be a regular cone and let B cdD* (the boundary
of D* wn V*). Then
Received May 4, 1962.
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lim M(«) = oo .
a—p
Proof. If B =0 the assertion is trivial. Let 8 # 0. For ae D*
and ¢t > 0 define H,(t) = {x € D|<a, > = t} and let

Vt) = S dv,
Hy,(t)
be the volume of H,(t) (dv, denotes the volume element of the hyperplane
{x|<a, x> =t}). Clearly we have V, () =t""'V,1) for all ¢ >0. Also

M(x) = S e=@ Oy = rdtS e~ 2y,
D H (b

0

_ S: Vityetdt = Vy(L)I'(n) .

Therefore the Lemma will be proved if we show that lim, .V, (1) = .

Let Uc D* be a compact neighborhood of B relative to D*. Then
the set L of all x € D such that {a, > < 1 for all a € U has an interior.
(In fact, if A is a bound for |a| on U, it is easy to see that L contains
all €D such that |x] < A™"). Let K be an open sphere contained in
L; let ce D be its center and r > 0 its radius.

For ac U let K, be the (n — 1)-dimensional sphere of radius 7 and
center ¢, = {a, ¢>~'¢ contained in the hyperplane {z|<{a, x> =1}. By
convexity and by <{a, ¢>~*>1 we have K, c H,(1). Since |¢,| =<a, > ¢]|
and since the continuous function <{«, ¢)>™' is bounded on the compact
set U, there exists a number R such that

(1) lea| = R

for all e U.

Now let 2 > R be an arbitrarily large number. There exists an
element ae€ D, |a| =1 such that {B,a) =0, for otherwise we would
have Be D*. Hence there exists an element e D, || =1 such that
B,x> < (R+ 2)t. It follows then that there exists a neighborhood
U@)c U of B relative to D* such that <{a, 2> < (R+ 2)7* for all
ac U(2). Let xz, =<a,x)™ . Clearly we have z,¢c H,(1) and

(2) |#,] >R+ 2

for all e U(2). Now H,(1) is convex, and thus contains the convex
hull B, of K, and z,; hence, be (1) and (2),
vz | an>_ o
Ba n — 2
for all ae U(Q), C denoting the volume of the (n» — 2)-dimensional
sphere of radius ». This completes the proof.
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Let V, = V@1V be the complexification of V. The tube over D
in V, is the domain 7T, = {x + iy|xe D,ye V}. For 2z =2 +iye V, and
aec V* we write <{a, 2> = {a, x> + Ka, y>. We denote by Z*(Tp) the
Hilbert space of holomorphic functions on T,, square integrable with
respect to dxdy, and by L%(D*) the Hilbert space of functions on D*
square integrable with respect to M(a)dc.

THEOREM 1. The mapping ¢ — f defined by
(3) 1@ = n| pl@eeda
18 am isomorphism of Li(D*) onto Z*(Ty).

Proof. Let e Li(D*). Then

|, lp@eeda = | |p@]|e“da

= (SD*I pa))P M (a)da)llzqmg—m,n M(a)—ldoz>l/2

by the Schwarz inequality. The first integral is just ||®||?, the second
is also convergent by Lemma 2 and by the homogeneity of M; by Lemma
1 it is even bounded on compact subsets of D. Thus (3) converges
absolutely and uniformly on compact subsets of T',, and hence represents
a holomorphic function. Furthermore, reversing the order of integration
(which is possible since the integrand is positive and measurable), and
then applying the Plancherel theorem we have

(4)  lelr=| lp@FM@da=| |p@[da| cvda
= 2| lp@lda] eends =2 |da| |plee e da

- SndeV|f(m + i) Pdy = || fII*,

which shows that fe <% T,) and also that the mapping is an isomor-
phism.

Remains to show (and this is the more important part) that the
isomorphism is onto.

First we prove that there exists a measurable function ¢ on V*
such that

f(2) = f(x + 1) = lim ﬂ"”’2SV*¢(a)e‘<“~”da

for almost all z € D. In fact, by Fubini’s theorem f(z + ty) as a function
of y is in L*(V) for almost all z; so the Fourier transform
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¥(z, @) = lim 71'"'”/28 f(@ + ty)e~“*vdy

exists. The assertion is that (x, @) = @(@)e=** with some measurable
®. Let Nc D be a subset whose distance from 9D is d > 0. Then,
by a well-known property of <“*spaces, |f(2)| = |f(z + )| = C.||f|
for all xe N, fe &*Tp). Using this remark the proof of our assertion
is the same as that of a similar assertion in [1], p. 128, and will not
be reproduced here.

Next we show that (@) = 0 for almost all « ¢ D*. In fact, using
the Plancherel theorem and reversing the order of integration we obtain

Iflr =2 dal |p@]exeda.

In particular, S | p(a) e **»dx exists for almost all « and is integrable.
D

Now if a¢ D*, then <{a, 2> < 0 for some x€D and hence S e X@ N dy

diverges. Therefore o(a) = 0 for almost all such «. B
Finally we must show that ¢ e L%(D*). This however follows at
once from the Plancherel theorem through the equalities (4).

THEOREM 2. The Bergman kernel function of T, s

K(Zy 7/()) = %Sn*e—ﬂn,zi—if))M(a)_lda{ .

Proof. From Theorem 1 it is clear that, for fixed we T,, K(z, w)
as a function of z is in <#*T,). Also for fixed we T, and z € D, K(z, w)
is in L V) as a function of .

Let fe <#*(Tp), then f can be represented in the form (3). Using
the Plancherel theorem and then reversing the order of integration
(which can be done since the integrand is measurable and the repeated
integral in reverse order exists absolutely), we obtain

|, f@RG, wdsdy = | ds| F@K G widy
=2 | pl@ereerwm@ da
— 2| dagp(@e- =M@ oxerda
= | e evda = raw)

for all we T,. Owing to the fact that the Bergman kernel is uniquely
determined by its reproducing property, the proof is finished.
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THE TIME-DOMAIN ANALYSIS OF A CONTINUOUS
PARAMETER WEAKLY STATIONARY
STOCHASTIC PROCESS

P. MASANI AND J. ROBERTSON

1. Introduction. In this paper we shall give a new, spectral-free,
method to obtain the differential innovations and the Wold decomposition
of a univariate, continuous parameter, weakly stationary’, mean-continu-
ous, non-deterministic stochastic process (f;,, —o <t < ). We shall
affect a transition from the continuous to the discrete parameter case
by systematic use of the infinitesimal generator ¢H of the shift group
(U,, —o0 <t < ) of the process, and of the Cayley transform V of
the self-adjoint operator H(§2). Our analysis will be purely in the
time-domain.

With the f,-process we shall associate the discrete parameter process
(fDy-—w, where f! = V"(f,). Since V is unitary, the f,-process is weakly
stationary. Letting _#,, _# ! be the past and present subspaces of the
fi- and f.-processes, respectively, and .#Z _.., _# .. be their re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>