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ANALYTIC FUNCTIONS WITH VALUES

IN A FRECHET SPACE

ERRETT BISHOP

We wish to extend certain results in the theory of analytic functions
of several complex variables to the case of analytic functions with values
in a Frechet space F. To do this, we prove (Theorem 1 below) that
such a function φ has an expansion of the form

where {Pn} is a sequence of continuous mutually annihilating projections
on F whose ranges are all one-dimensional subspaces of F. This repre-
sentation reduces the study of φ, for many purposes, to the study of
the functions Pn°φ, which are essentially scalar-valued analytic functions.
We actually prove the stronger (and more useful) result that if {φk} is
a sequence of analytic functions with values in F then a single sequence
{Pn} can be found to give an expansion (*) for every φk. Expansions
of vector-valued functions of a different type have been considered by
Grothendick [6],

Theorem 1 is applied to generalize Theorem B of H. Cartan [3].
We consider a coherent analytic sheaf S on a Stein manifold M and
introduce the notion of the vectorίzation SF of S (relative to a given
Frechet space F).

If 0 denotes the sheaf of locally-defined analytic functions and 0^
denotes the sheaf of locally-defined analytic functions with values in
F, then SF is defined to be the tensor product S (g) 0F of the 0-modules
S and 0 .̂ For the important case of a coherent analytic subsheaf S
of the sheaf 0* of locally-defined fc-tuples of analytic functions, SF turns
out to be canonically isomorphic to the sheaf SF determined by assigning
to each open set U the module of all fc-tuples (flf , fk) of analytic
functions from U to F which have the property that for each u in i*7*
the fc-tuple (uofl9 . . . , uofk) is a cross-section of S over [7. For instance,
if S is the sheaf of all locally-defined analytic functions which vanish
on a given analytic set A then it is evident that SF is the sheaf of
all locally-defined analytic functions with values in F which vanish on A.

One of the main results, an extension of Theorem B of [3], will be
that the cohomology groups HN{M, SF) vanish in all dimensions N it 1,
where SF is the vectorization of a coherent analytic sheaf S on a Stein
manifold M. Using this theorem and the isomorphism of SF to the
sheaf SF defined above one could show, for instance, that the usual
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sheaf—theoretic solutions to Cousin's problems carry over to the case of
analytic functions with values in a Frechet space. Special cases were
treated by totally different methods in [2], but the techniques of that
paper seem to be inadequate to obtain general results.

The proofs are all Banach-space theoretic. That is, only Banach
space theory is necessary to obtain the above extension of Theorem B
and to prove the necessary facts about vectorizations. We begin with
a theorem which is given without proof on p. 278 of Banach [1], who
attributes it to H. Auerbach. A proof can be found in Taylor [7], Since
complex Banach spaces are considered here, we give the proof.

THEOREM (Auerbach). An n-dimensional Banach space B has a
basis of unit vectors whose dual basis also consists of unit vectors.

Proof. Choose a basis (δ1, , bn) of B and for any x in B let
(x19 •••,#») be the coordinates of x relative to the chosen basis. Let
T be the set of all w-tuples (x1, , xn) of unit vectors in B. For each
(x\ ---,xn) in T let a(x\ ---,xn) be the absolute value of the determi-
nant det(aφ. Thus a is a continuous function on the compact space
T. Now a(x\ , xn) Φ 0 if and only if (x1, •••,&*) is a basis. Thus
a attains its maximum for T at some point (y1, , yn) in T which is
a basis of unit vectors. Let (u1, — ,un) be the dual basis in ΰ * . Now
H ^ l l ^ l because <j/% uιy = 1. Assume | | ^ | | > 1 for some i. Thus
there exists t in B with | | ί | | = 1 and <ί,u l} = c> 1. Thus <t — cy\u1} =
0, so that t — cyi is a linear combination of the vectors of the basis
(y\ --,yn) other than y\ If we let (z\ , zn) be the basis (y\ - ,yn)
with yι replaced by t it follows that a{z1

9 , zn) = ca(yτ, , yn). Since
the basis (z\ , zn) consists of unit vectors this contradicts the choice
of (y\ ---,yn). Thus || uι || = 1 for all i, and the theorem is proved.

COROLLARY. If Bo is a finite-dimensional subspace of dimension
n of a Banach space B there exist n mutually annihilating projections
(idempotent continuous linear operators) on B, each of norm 1, whose
ranges are one-dimensional subspaces of Bo and whose sum is a projec-
tion of B onto Bo of norm at most n.

Proof. Let {y1, , yn) be a basis of unit vectors of Bo such that
the dual basis {u1, , un) of B* also consists of unit vectors. Let vι

be an extension of uι to a linear functional on B of norm 1. The
operators Plf , Pn on B defined by

are the desired projections.
We recall that a Frechet space is a locally convex topological linear
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space F which admits a countable family {|| ||A} of continuous semi-
norms such that a basis for the neighborhoods of 0 in F is given by
the sets

{xzF:\\x\\k<l}.

If || II is any continuous semi-norm on F it follows that for some k
II x || ^ 11 # Ik for all x in F. If necessary it may be assumed that
{|| \\k) is a monotonely nondecreasing sequence of semi-norms, in which
case we shall call it a defining sequence of semi-norms for F.

LEMMA 1. Let F be a Frechet space with a defining sequence
ill life} °f semi-norms. Let {an} be a sequence of vectors in F, {δk} a
sequence of nonnegative real numbers, and {k3) a strictly increasing
sequence of positive integers. Then there exists a sequence {Pn} of
mutually annihilating continuous projections on F, whose ranges are
subspaces of F of dimensions at most 1, and a sequence {εk}, with
0 < εk < δk for all k, with the following properties. For each positive
integer j the operator

Q, = Σ*Pn

is a projection on the subspace B3 of F spanned by the vectors alf , akj.
For each positive integer n the sum

is finite for α = α%. For each positive integer j and all n^ k3 we
have || Pn ||0 ^ (1 + ft?) (1 + Jή), where

II JP llo = s u p {|| J P » 6 | | o : 6 e F, | | 6 | l o = l } .

Proof. We may assume the 8k to be so small that Σ~=i Sk \\ an \\k < CΌ
for all n. By induction we construct a sequence {Pn} of mutually anni-
hilating continuous projections, a sequence {εk} of positive real numbers,
and an increasing sequence {Nd} of positive integers such that

(a) 0 < εk < δk,
(b) For each j the operator Q3 is a projection onto Bj}

(c) || Pn \\j < (1 + fcj) . . . (l + ft?) for 1 ^ n ^ h and all i ^ j .
We explain what is meant by (c). First of all, || | | j is the continuous
semi-norm on F defined by

Secondly, \\Pn\\3 is defined by
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Assuming that P19 , Pkj and iVί , N3, and elf , ε ^ have been
found with the relevant properties, we show how to continue to the
next stage j + 1. First choose N3+1 > N3 so large that || \\NJ+1 is a
norm (and not merely a semi-norm) on Bj+1. Choose then εi9 N3 < i ^
Nj+1, so small that 0 < e< < δ< and || Pn \\3+1 < (1 + fc?) •••(! + fc2) for
w ^ k3 and all i ^ j . To see that this can be done, notice that be-
cause || \\Nj is a norm on Bj there exists r > 0 so that r || α |p' > || a \\m

for all α in B3 and all m ^ iVi+1. Thus

Now use (c).
Now let Qj be the restriction of Q3- to Bj+1 and let / i + 1 be the

identity operator on Bj+1. Thus Ij+1 — Q'3 is a projection of J5y+1 onto
a subspace SJ+1. Clearly 5 y and S3 +1 are complementary subspaces of
B3+1, so that dim S3+1 g fci+1 — fc^. By the above corollary there exists
a projection E3+1 with \\E3+1\\j+1 ^ kj+1 of i*7 onto # i + 1 . Also by the
above corollary there exist mutually annihilating projections Rn, k3 <n^
k3+1, of S3+1 onto subspaces of dimensions at most 1 such that || Rn \\j+1 ^ 1
for all n and such that ΣRn is the identity projection of S3+1 onto itself.
For k3 <n S k3+1 we define

Pn = Rn(Ij+1 — Qj)Ej+1 .

Thus the Pn are mutually annihilating projections for 1 ^ n gΞ &i+1.
Also Q i + 1 is a projection onto Bj+1. Finally for k3 < n ^ fci+1 we have

II P . i r g II Rn l l i + 1 II /y+1 - Q} ||j+1

< [1 + fc^l + kl) . . . (1 + fc})]fci+1

^ (1 + kί)... ( l + fc;+1).

The same is true for n ^ kjf by the above construction. Thus the con-
struction has been continued another step. By induction it follows
that sequences {PJ, {Nj}, and {εj can be chosen satisfying properties
(a), (b), and (c). It is immediate that the sequences {Pn} and {εk} satisfy
the requirements of the lemma.

LEMMA 2. Let {an} be a sequence of elements of a Frechet space
F, {\\ \\k} a defining sequence of semi-norms on F, and {δk} a sequence
of positive real numbers. Then there exist a sequence {εk} of positive
real numbers and a sequence {Pn} of mutually annihilating projections
on F whose ranges are subspaces of F of dimensions at most 1 having
the following properties.



ANALYTIC FUNCTIONS WITH VALUES IN A FRECHET SPACE 1181

( i ) 0<εk<dk for all k,
(ii) For a = an the norm \\a ||0 — ΣΓ=iS* II a \U ^s finite for all n,

(iii) Rman — an for all positive integers m and n with m ^ 2n,

where Rm = Σ U P*>
( v i ) For a l l t>l a n d ε > 0 ί Λ e s w m Σ « = i I l - P n l l o * " * 8 converges,

where | | P W | | O is defined as above.

Proof. Define the sequence {k3) by k3 = 2j. Choose the sequences
{Pn} and {εk} as in lemma 1. Clearly (i) and (ii) are satisfied. Now for
each positive integer n there is a positive integer j with 2j~1 tί n < 2j.
It follows that an e B3. Thus R2Jan — Qόan = αΛ, so that Rman = <xw for
all m ^ 2J and therefore for all m ^ 2w. This proves (iii).

Now for each n choose j with 23"1 ^ n < 23. Thus

where a — 1 + log2 w. From this it follows from elementary calculus
that (iv) holds, thereby proving the lemma.

LEMMA 3. Let

where a — a{ and 1 fg i < oo, 6e α sequence of formal power series
with coefficients in a Frechet space F. Let {dk} be a sequence of positive
real numbers. Then there exists a sequence {ek} with 0 < ek < δk for
all k and a sequence {Pn} of mutually annihilating continuous pro-
jections of F onto subspaces of dimensions at most 1 such that

(a) Rjiiin^ , nΛ) = a^n^ , na) whenever m ^ 2< +V, where
a = aif n = nλ+ + nΛ, and Rm = ΣJU Λ>

(b) Pma{{nλ, - ,na) — 0 whenever m > 2 < + a ^ Λ ,
(c) Σ~=i \\Pn Wo t~n* < oo for all ί > l α ^ ώ ε > 0, wfcerβ || ||0 i s

defined as above.

Proof. For each^ΐ order the coefficients a^n^ , nΛ) into a sequence
{̂ ?}Γ=i according to the size of n. We now define a sequence {αj of
elements of F which is an ordering of the totality of the a,i(nu , n*).
For k given let 2* be the largest power of 2 dividing fc and let j =
Il2(k2~i + 1). Let αfe = α|. Now choose the sequences {εj and {Pn} as
in Lemma 2. Clearly (c) holds. Since (b) is a consequence of (a) we
need only check (a). To this end consider a fixed a{(nly "-9na). Now
there exists j ^ n* with a^n^ , na) = αj. In turn αj = αfc for some
k ^ 2ί+1wα. By (iii) of Lemma 2 it follows that Rmak = αfc for m ^ 2k
and therefore for m ^ 2 ί + V, as was to be proved.
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We are now prepared to prove a series representation for analytic
functions with values in a Frechet space which will be the principal
tool in subsequent proofs.

THEOREM 1. Let F be a Frechet space and let {M{} be a sequence
of complex analytic manifolds. For each i let ψi be an analytic function
on Mi with values in F. Then there exists a sequence of vectors {bn}
in F and a sequence {Pn} of continuous mutually annihilating pro-
jections of F onto one-dimensional subspaces having the following pro-
perties. For each i the series ^Z=iPn°Ψi converges to φ{ on Mi9 For
each n we have Pnbn = bn, so that Pnoφi — φ"bn, for some analytic
function φ? on M{. For each i the series Σ?=iP? converges absolutely
and uniformly on all compact subsets of M{. For each continuous
semi-norm || || on F the sequence {||δΛ||} is bounded.

Proof. For each i let dim Mt = a — ai9 so that M* is coverable by
a countable family of analytic homeomorphs Γ of the unit polycylinder

U* = {z = (zlf , zΛ): I zj | < 1, 1 ^ j ^ a} .

Thus in the proof of the theorem we may replace the sequence {M^
by the totality of all such Γ. There is therefore no loss of generality
in assuming that each Mi is a polycylinder U* of dimension a = a{.
Let {|| life} be a defining sequence of semi-norms on F. Now for each
i the analytic function ψi has a power series expansion

Ψi- Σ a>i(n19 , nω)zp zl»

on the polycylinder Mi = U*. This expansion converges absolutely and
uniformly on each compact subset of Mi in each semi-norm || 1̂ . By
the diagonal process there therefore exist constants δk > 0 such that
the power series for each φζ converges absolutely and uniformly on each
compact subset of M{ in the norm ΣΓ=i<?/J| ||*, so that in particular
this norm is finite for each coefficient a^n^ •• ,wα). Now choose the
sequences {εj and {Pn} as in Lemma 3 relative to the power series
expansions of the φ{ and to the δk just obtained. Thus the power
series for φt converges absolutely and uniformly on compact subsets
of Mi in the norm || ||0 defined above. If some of the projections Pn

are zero, these may be omitted from the sequence. Thus for each n
there is a vector bn in F with | | 6 Λ | | 0 = 1 spanning the range of Pn.
To show that the sequences {Pn} and {bn} have the desired properties^
consider a fixed compact subset T of a fixed M{. For each n write

Ίn = Σ max {|| a,i(nlf , na)zV- zy | | 0 : z e T} .
+
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By the usual convergence criteria we see that there exist r > 1 and
e > 0 such that rn7n < c for all n.

If j is any positive integer let k be the largest integer such that
2i+2k« < j . Thus for each z in T we have

P3 Σ ai(ni> > ^ K 1 zla

Thus

A = m&x\Σ\\Pjφi(z)\\0:zeT.

Now by the definition of k we see that k is the integral part of (j2~l~2ylou,
so that k ^ j l l 2 a for all i sufficiently large. Thus Δ is finite if the sum
ΣΓ=ir~~JΊl-Pillo converges, where ε = (2a)"1. By the choice of the
sequence {P3) this series converges so that Δ is finite. Now since || bn ||0 = l,

max {| φ:(z) \:zeT} = max {|| P^(z) | | 0 : z e T} .

Therefore the series ΣϊU^ΓOs) converges absolutely and uniformly on
T. If |] II is a continuous semi-norm on F then || || ^ JK"|| ||0 for
some K > 0, so that {l|6n||} is bounded by K. Finally, we must show
that *Σi»=iP»o(Pi actually converges to φt (and not to something else).
To see this, note by (a) and (b) of Lemma 3 that Rmoφi and φi have
power series expansions in the coordinates z19 , zΛ which agree up to
terms of total order n, whenever m ^ 2i+2n*. This completes the proof
of Theorem 1.

Before giving the definition of the vectorization of an analytic
sheaf, we indicate the terminology to be used, following Godement [5].
A presheaf S on a topological space X assigns to each open ! 7 c l a
set S(U) and to each open set Va Ua X a map τvu : S(U)—> S(V)
satisfying rwv o rru — rwu for W c. V a U. In particular the same
terminology will be used if S is a sheaf, that is, a presheaf satisfying
axioms (Fl) and (F2) on page 109 of [5]. To any presheaf S is canoni-
cally associated a sheaf Sr, and each element / in S(U) gives rise to
a unique element in S'(U) which will also be denoted by /. If X is
a complex analytic manifold a sheaf S on X is called analytic if it is
a module over the sheaf 0 of locally defined analytic functions, that is,
if for each U the set S(U) is an 0(£/)-module, and if the usual com-
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mutation relations between module multiplicationjand the restriction
maps S( U) — S( V) and 0( U) — 0( V) hold.

DEFINITION 1. Let S be an analytic sheaf on a complex analytic
manifold M and let F be a Frechet space. Let 0 be the sheaf of
locally-defined analytic functions on M and let 0̂  be the sheaf of locally-
defined analytic functions on M with values in F, where by definition
a continuous function / from an open set U c M to F is called analytic
if uof is analytic for all u in F*. Clearly 0̂  is an 0-module, i.e., an
analytic sheaf. The vectorization SF of S (relative to F) is defined to
be the sheaf S®0F, the tensor product of the 0-modules S and 0 .̂
This is defined in [5] as the sheaf determined by the presheaf data

u->S(U)<8>oF{U),

where S(U) and 0F(U) are considered as 0(t/)-modules, together with
the obvious restriction maps.

Note that if T is a continuous linear operator from a Frechet space
F into a Frechet space G then the natural homomorphism TQ of 0̂  into
0s induced by T gives rise to a homomorphism T" = 1 (g) To of SF into
SΘ. In particular, if u is an element of F* (and so a continuous linear
operator from F into C) then u induces a homomorphism of SF into
So. But So is canonically isomorphic to S, in virtue of the canonical
isomorphism between the 0(Z7)-modules S(U) ® 0(i7) and S(U). (See
[5] p. 8.) If we identify So with S it follows that each u in F* induces
a homomorphism v/ of SF onto S.

DEFINITION 2. If S is an analytic subsheaf of the Cartesian product
0n we define

SF(U) = {fe(QF(U)T:uofeS(U) for all u in F*} .

Clearly SF so defined is an analytic subsheaf of the Cartesian product

(0,)\

THEOREM 2. If S is a coherent analytic subsheaf of 0n then to each
p in Uc M and each f in SF(U) there exists a neighborhood V of p,
functions Hu , Hk in S(V) and functions Gly , Gk in 0F(V) such
that

rvuf = Σ GmHm .

Proof. Since S is coherent, there exists a neighborhood Vo c U of
p and functions Hx, -*-,Hk in S(V0) which generate S at each point of
Vo. We may assume that Vo is a compact subset of £7. Let 7 0 D 7 I D 7 2 D
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be a basis for the neighborhoods of p. Let Ω be the subset of S(V0)
consisting of all elements in S(V0) which as elements of (0(V0))n are
bounded on Vo. Thus to each h in Ω there exists G — (Glf , Gk) in
(0(Vi))k for some i such that the restriction of h to F* has the form

h = Σ Gtfi.
ί = l

By choosing % large enough we may assume that

\\G\U = mvUGjiq)] :qe Vifl t ί j ^ k}

is finite. Thus if for each pair (i, N) of positive integers we let ΩiN

be the family of all h in Ω such that G can be chosen in (0( Vi))k with
|| G \\i g N, we see that Ω — \J ΩiN and that each ΩiN is a closed subset
of Ω, where Ω has the norm defined by

II h Ho - sup {| fe<(?) \:l^ί^n,qeV0}

for each h = (feu , hn) e Ω c (0( V0))n. By the Baire category theorem
there exists (i, N) such that ΩiN has a nonvoid interior. From this it
follows as usual that there exists a constant K > 0 such that for each
h in Ω there exists G in (0(V<))* as above with | |G| | , ^ -K"||fe||0. Now
consider / as in the statement of the theorem, so t h a t / e S^(U)c(0F(U))n.
By Theorem 1 there exists a sequence of vectors {bj} in F which is
bounded in each continuous semi-norm on F and a sequence {Pj} of
continuous projections on F having one-dimensional ranges such that
ΣΓ=i Pi °f converges uniformly to / on all compact subsets of U and
such that for each j we have P j ° / = / A with fj£(0(U))n, where
ΣΓ=ilΛI converges uniformly on all compact subsets of U. Thus
ΣΓ=ill/illo is finite, since Voc. U.

Now for each j there exists % in ί7* with <6y, u} = 1. Thus

Λ - w°(/A) = uo(PiOf) = (uoPd)of

is in S(Z7) because feS^(U) and ^oP, e F * . Thus fjeS(U) for all j .
By the above for each j there exists Gj = (G{, , GO in (0( 7ί))fc such
that on F< we have

k

fi — Σ G3

mHm ,

with IIG^Ii ^ if 11 Λ Ho. It follows that the series ΣΓ=iGj6, converges
uniformly and absolutely on Vi in each continuous semi-norm on F.
Thus the sum of this series is an element G = (Glf , Gk) in (0^(7*))*.
Thus in the topology of uniform and absolute convergence on compact
subsets of Vi in each continuous semi-norm on F we have
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= Km Σ Σ GLHJb,

- Σ (lim Σ GLbi)Hm
m — \ \ ί->oo j = ± /

A;

— Σ GmHm ,
m = l

as was to be proved.
The following consequence of Theorem 2 will be useful later.

LEMMA 4. If ίfce element f of SF(U) has the property that u'f is
the zero element of S(U) for all u in F* then / = 0.

Proof. By taking a covering of U by small open sets we reduce
to the case in which / has a representation

/ = Σ ^ (g) 9i ,
ΐ = l

with /̂  in S(ί7) and g{ in (̂ (CΓ). Let R be the sheaf on £/Όf relations
of hlf , hk. Thus for each u in F* we see that

o = u'f = Σ λ< ® <?*, ̂ >
t = l

A;

= Σ <Λ, ^>λi.

Thus by Definition 2 we see that g = (#!, , ̂ fc) 6 Rf

F{U). By Theorem
2 it follows that each p in U has a neighborhood F c ί J such that
there exist Hl9 , Ht in R(V) and Gx, , Gt in 0^(F) with

= Σ G.iϊy .
3 = 1

Thus for each i with 1 ^ i ^ k we have

r F ^ = Σ Gyfl"/ ,

where iΓ5 = (iίj, , Jϊ*). Therefore on V we have

Σ
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since H3 GR(V) for all j . This proves Lemma 4.
We next give an important characterization of SF in case S is a

coherent analytic subsheaf of 0n for some positive integer n.

THEOREM 3. Let M be a Stein manifold and S a coherent analytic
subsheaf of 0n. Let F be a Frechet space. For each open U c M there
is a mapping τ(U) from S(U)(g)0F(U) into (0F(U))n which for each
h = (hl9 - -,hn) in S(U) and g in 0F(U) maps h§§g onto gh = (ghl9 ,ghn)
in (0F(U))n. For each such g and h the image gh of h®g actually
lies in the subset SF(U) of (0F(U))n. The family of such mappings
r(U) induces an isomorphism τ of the sheaf SF (which was defined
above to be the sheaf determined by the presheaf data U—> S(U) (x) 0F(U))
onto the sheaf SF. Thus SF and SF are isomorphic.

Proof. Clearly the map of the Cartesian product S(U) x
into (0F(U))n defined by (h,g)-+gh induces a group homomorphism of
(S(U),0F(U))—the free abelian group generated by the elements of the
Cartesian product S(U) x 0F(U)—into (O^(Ϊ7))\ It is trivial to check
that N(S(U),0F(U)): belongs to the kernel of this map, where
N(S(U), 0F(U)) is defined as in [5] p. 8 to be the subgroup of (S(U), 0F(U))
generated by elements of the forms

( i ) (xx + x2, y) - (xlf y) - (x2, y)
(ii) (x, yλ + y2) - (x, yλ) - (x, y2)
(iii) (ax, y) - (x, ay)

where x, xl9 and x2 are in S(U), y> ylf and y2 are in O*(Ϊ7), and a e 0(U).
Thus this map induces a homomorphism τ(U) of the quotient
(S(U), 0F(U))IN(S(U), 0F(U)) = S(U)<g> 0F(U) into (0^(U))\ It is trivial
to check that τ(U) is an 0(ί7)-homomorphism. Now with g and h as
above and % in ί7* we have

uoτ(U)(hζ&g) = uo(gh) = (u og)heS(U) .

Thus τ(U)(h ®g)e SF(U). It follows that the range of τ(U) is a subset
of SF(U). It is now clear that the family of mappings τ(U) induces
an 0-homomorphism τ of SF into SF. To show that τ is one-to-one we
must prove

(a) If τ (Z7)(Σ£=i^<Θί7i) = 0 then each p in U has a neighborhood
V such that rvu(YJ=1 h{ (g) g%) = 0.
To show that τ is onto we must prove

(b) If / G SF( U) then each p in U has a neighborhood V such that
rvuf = r(F)(Σ£i ^ (g) gτ) for some elements h in S(V) and gt in 0F(V).
We first prove (a). If we let R be the sheaf of relations on U of
hlf , hN by the coherence of R there exists a neighborhood Vo of p
and elements r± = (r\, , rf), , rn = (r\, , rξ) of R(V0) which
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generate R at each point of Vo. Now

Thus for each u in F* we have

so that (uog19 , uogN) G jR(C7) for all % in i*7*. By definition thi&
means that (gl9 , gN)e R'F{U). Therefore by Theorem 2 we see that
there exists a neighborhood V of p and G = (6rlf , Gn) in ( 0 ^
such that (gl9 , fl^) = G1r1 + + Gwr%. Thus on V we have

Σ Λi ® ffi = Σ fe< ® ( Σ Gάr)

since r^-eiί ίF) for each j . This proves (a).
To prove (b) notice by Theorem 2 that there exists a neighborhood

V of p, elements hl9 - -,hN in S(V), and elements ^, , gN in
such that on V we have

This completes the proof of Theorem 3.
We state for future reference a version of a theorem of Banach^

first giving a definition.

DEFINITION 3. If {gn} is a sequence of vectors in a Frechet space
Foo the series Σ*=if/» *s called absolutely convergent if the series
Σn=illί7*ll converges for each continuous semi-norm || || on F.

Notice that a continuous linear transformation from a Frechet space
F to a Frechet space G takes absolutely convergent sequences into
absolutely convergent sequences.

LEMMA 5. Let σ be a continuous linear map of a Frechet space
F onto a Frechet space G. Let {g{} be an absolutely convergent sequence
from G. Then there exists an absolutely convergent sequence {/J in
F such that σ{fi) = gt for all i.

Proof. Let {|| ||A} be a defining sequence of semi-norms on F.
Since the map σ is continuous, we see ([1] p. 40) that for each k the
set σ{f: \\f\\k ^ 1} contains a neighborhood {g : ||flr||ί ^ 1} of 0 in G,
where || ||ί is some continuous semi-norm on G. Thus for each g in
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G and each k there exists f in F with σ(f) = g and \\f\\k ^ || g \\f

k- Now
for each k choose j — j(k) such t h a t

so t h a t

Σ v-i it 11/ ^

Σ II #» II* < °°
We may assume that i(l) < j(2) < . For each n with j(k) £ίn< j{k + 1)
choose / . in F with σ(f.) = gn and ||/.||» ^ ||flr.||ί. If for each n we
let k{n) be the smallest value of k for which n < j(k + 1), it follows
that

Σl
n — l

Since for each t we have ||/»|| t ^ ||/«||fc for all k i> t it follows that

Σ I I Λ I I ,

is finite for all t. This proves the lemma.

THEOREM 4. If S is a coherent analytic sheaf on a Stein manifold
M and if F is a Frechet space then HN{M, SF) — 0 for all iV Ξ> 1.

Proof. Let / be an element of HN(M, SF). Consider a locally finite
covering {Z7J of M by holomorphically convex open sets Ui9 so fine that
/ is represented by an element of HN({Ui}, SF). For each finite sequence
K = (ilf , ik) of positive integers let Uκ = Uh Π Π UijB. The
element / of HN(M, SF) can be considered to belong to i P ^ Ϊ / J , SF) and
therefore can be represented by a cocycle / = {fz} of ZN({Ui}, SF). Here
I is any sequence of JV + 1 positive integers, and, for each J, fz is an
element of SF(Ur). Also δf = 0, where δ is the coboundary operator
from CN({Ui}fSF) into C*+1({Ui}, SF) and -Z'̂ Cί?/*}, Ŝ ) is the kernel of
δ. By choosing the covering {Ui} fine enough we may assume that for
each K there exist elements hlκ, , haKf with a depending on K, in
S(UK) which generate S at each point of Uκ. This implies ([3], expose
XVIII, p. 9) that every h in S(UK) has a representation of the form
h = Σ?=iflfA ̂ » w i t h 9i^0(Uκ). We may also choose the covering {Ϊ7J
so fine that, for each I, / 7 can be represented in the form

a

J i — 2-Λ '"ii y_y tfii

with hu as above and with gu in (
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By Theorem 1 there exists a sequence {Pn} of continuous mutually
annihilating projections on F whose ranges are one dimensional and a
sequence {bn} of vectors in F bounded in each continuous semi-norm on
Fhaving the following properties. For each /and i the series Σn=i Pn°Λ/
converges to gu on UΣ. For each land i we have Pnogiz — g^bnf where
^ e θ ( ί 7 z ) . For each I and i the series Σn=i0?/ converges absolutely
in the Frechet space 0(Z7j). Now since for each n the projection Pn

induces a homomorphism of the sheaf SF onto itself, the element {Pnfi}
of (^({0,}, SF) is in ZN{{U%), SF). Also

iVΊ - Σ hu ® P^z

= Σ Λi, <g> ff«6.

If for each n and / we let f? be the element Σ?=i0?Ai of £(£/,) it
follows that for each n the element /» = {f?}i=1 of C (̂{C/i}, S) belongs
to Z^dUi}, S). It is also clear that fnbn = Pnf.

Now there exists a natural Frechet space topology on each S(U),
described in [4], expose XVII. This topology has the property that
for each h in S(U) the map g —> gh of O(Ϊ7) into S(U) is continuous.
We therefore see that for each I the series

2-ιJi - 2J I2i yu

converges absolutely in S(Z7Γ) because for each J and i the series
Σn=i&Λi converges absolutely in 0([7j). Now the space CN({TJ^, S) is
the Cartesian product of the Frechet spaces S(UX), and therefore
possesses a Frechet space structure. Moreover ZN({U-\, S) is closed in
CN{{Uτ), S) and is therefore also a Frechet space. Since for each I the
series Σ«=i/ί converges absolutely in S(Z7j) it follows that ΣΓ=i/w

converges absolutely in ZN({U,), S). By Theorem B of [3] and Leray's
theorem (see [5] p. 213) we see that the coboundary map δ of the Frechet
space CN-\{Uτ), S) into ^({£7,}, S) is onto. From [4] we also see that
δ is continuous.

Let J stand for an arbitrary iV-tuple of positive integers. Thus
for each J, by the above, there is a continuous homomorphism.

of the Frechet space (0(Uj))" onto the Frechet space S(Uj). These
maps induce a continuous homomorphism τ of the Frechet space Φ onto
the Frechet space C^"1^^}, S), where 0 is defined to be the product
Π J ΦiUj))*, with a depending as above on J, of the Frechet spaces (0(Z7j))Λ.
Thus
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σ =

is a continuous homomorphism of Φ onto ZN{{U%), S). Since ΣΓ=i/w

converges absolutely in ZN{{Ui}, S) it follows from Lemma 5 that there
exists an absolutely convergent sequence {Gn} in Φ with σ(Gn) = fn for
all w. For each n write Gw = {G*}, where

Thus for each J" we see that the series Σί=i Φ? converges absolutely
and uniformly on every compact subset of UJf so that the series
Σ»=iGjδΛ converges absolutely in (0F(Uj))" to an element

GJ = (G1Jf , GaJ)

in (0 (̂Z7j))Λ. Thus for each i and J we have Gu = ΣΓ=iG?j6w.
For each J let βj be the element

ej = Σ Λ*J ® G^
i

of Spίϋ",). Thus β = {βJeC'-^ϋi}, &). We shall^finish the proof by
showing that δe = f. To this end it is sufficient by^Lemma 4 to show
u'(δe) = u'(f) for all % in F*. We compute:

w = l

absolutely in S(Uj). Thus

absolutely in C'-^Ui), S). Thus

ϊ(βe) = δ{u'(e)) = Σ (δoτ)(G"X&»,
n = l

Also for each I we have

U'ifj) = Σ <Λi>
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= ΣΣ
\

= Σ K, u> = ΣΛ"<δ», u> .
l

Therefore u'(f) - Σϊ=if*<h, u>. It follows that u'(f) = u'(8e) for all
u in ί7*, so that / = δe. This completes the proof of Theorem 4.
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