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VALUE PROBLEM FOR y" - f(χ, y, y').
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1. Introduction* In a paper in 1922 Perron [16] presented a new
method of attacking the boundary value problem for Laplace's equation.
This method consisted of employing the existence of solutions of the
boundary value problem for small circles and the existence in the large
of subharmonic and superharmonic functions to demonstrate the existence
of a solution of the boundary value problem in the large. Since then
Perron's methods have been generalized and applied to more general
elliptic partial differential equations, for example, Tautz [17], Becken-
bach and Jackson [2], Inoue [11], Jackson [12].

Subharmonic functions bear the same relationship to harmonic
functions that convex functions bear to solutions of y"(x) = 0. In a
paper in 1937 Beckenbach [3] introduced the idea of generalized convex
functions. Since then a number of other mathematicians, for example,
Bonsall [4], Green [7, 8], and Peixoto [15], have studied subf unctions
with respect to solutions of second order ordinary differential equations.
These subf unctions are special cases of Beckenbach's generalized convex
functions and, if they have sufficient smoothness, are solutions of second
order differential inequalities. Solutions of second order differential
inequalities appear in many papers concerned with the existence of a
solution of the boundary value problem for the equation

( l ) y"=f(χ,y,v'),

for example, Nagumo [14], Babkin [1]. However, the Perron method
of systematically exploiting the properties of subfunctions and super-
functions in studying the boundary value problem does not appear to
have been applied to equation (1). This paper consists of such a study.

In § 2 we list some properties of solutions of (1) most of which are
known. In § 3 we define subfunctions and superfunctions and give some
of the properties of these functions that will be needed in the subse-
quent sections. Most of these properties are analogues of classical
properties of convex functions as given for example in [9; Chapt. Ill],
In §4 the Perron method is used to obtain a "generalized" solution of
the boundary value problem. Finally, in § 5 some conditions are given
which are sufficient to guarantee that the "generalized" solution of §4
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is the solution of the boundary value problem in the usual sense.

2. Some basic lemmas* In this section we shall list the basic
results concerning equation (1) which will be required in the subsequent
sections.

Let R be the region in three dimensional Euclidean space defined
by

R = [ ( x , y , z ) : a ^ x ^ b , \ y \ + \ z \ < + < * > ]

where a and b are finite. We shall assume throughout this paper that
f(x, y, z) is continuous on R. Various other assumptions will be made
from time to time concerning f(x, y, z). The first of these are as follows:

ΛL" f{x, y, z) is a nondecreasing function of y for each fixed x
and z.

A2: f(x, y, z) satisfies a Lipschitz condition with respect to y and
z on each compact subset of R.

However, unless we specifically state these or other assumptions we
will be assuming only the continuity of f(x, y, z).

By a solution of the boundary value problem,

y" = /(a, y, v')

v(χi) = Vi, y(χ2) = V2

where a ^ xx < x2 ^ 6, we shall mean a function y(x) which is of class
C(2) and is a solution of (1) on (xlf x2), which is continuous on [xl9 x2],
and which assumes the given boundary values at xx and x2.

We shall also be interested in the special case of equation (1) when
y' is not present, that is, equation

(2) V"=f(x,V).

We shall always assume f(x, y) is continuous on

12* = [(x,y):a^x^b,\y\ < +™] .

LEMMA 1. Given any M > 0 and N > 0 there is a δ(M, N) > 0
such that the boundary value problem

y"=f(χ,y,y')

has a solution of class C(2) on [xlf x2] for any points (xlf yλ) and (x29 y2)
with xl9x2e[a,b],\x1—x2\^δ, \yλ\^M, \y2\^Mand \(y1—y2)l(x1—x2)\^N.

LEMMA 2. Given any M > 0 there is a δ(M) > 0 such that the
boundary value problem
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α solution of class C{2) on [xlf x2] for any points (xl9 y^) and (x2, y2)
with xu x2e [α, 6], | xx — x2| ^ δ, \y±| ^ M, and \y2\ ^ M.

LEMMA 3. Let M > 0, N > 0 be fixed and let δ(M, N) be as in
Lemma 1. Then given any ε > 0 there is an η, 0 < ΎJ ^ <5(M, iV), swcfc
ίftαί, / o r α^i/ points (xlf y±) and (α?a, τ/2) wiίft a?i, ^ 2 € [α, b], \x1 — x2\ ^7]f

\Vi\ ^ M, \y3\ ^ M, and | (y± — i/a)/(a?i — x2) \ ^ AT, ί/?,βre is a solution

y(x) of (1) of class C(2) ow [xu x2] with y(xλ) = ^ 7/(αj2) = τ/2, α?ιcί with

— ω(aj) I ^ ε

I y\x) - ωf(aj) I ^ ε

on [xu x2] where ω(x) is the linear function with ω(xx) = y1 and ω(x2) =
ί/2. An analogous statement with N and \ {yx — y2)l{x1 — x2) \ S N omitted
is valid with respect to solutions of (2).

Proof. Lemmas 1 and 2 can be proved by using the Schauder-
Tychonoff fixed point theorem [6; p. 456]. Let

(x

— t
χ2

χ2

){x2 —

xx

X)

t)
on xx S: x s, £ ^ x2 .

Let I? be the Banach space C(1)[&i, &3] with norm \\y\\ = max\y(x)\ +
max I y\x) |. For a function which satisfies a Holder condition with
exponent 0 < a < 1 on [α ,̂ #2] let

't'Λlyj = sup — — . rl9 r21 ιxlf x2\, rx ψ- r2 .

Let K be the set of all functions u(x) in B which are such that u'(x)
satisfies a Holder condition with exponent a on [xl9 x2], u{x^) = %(a?2) — 0,
and ll^ll + hju') ^ max [M, N], Then K is a compact convex subset
of B. It can be shown that there is a δ(M, N) > 0 such that the
mapping F(u) = w defined by

w(#) = \ G(x, ί)/(ί, te(ί) + ω(t), u\t) + ω\t))dt
jxl

is a continuous mapping of K into itself provided | xx — x2 \ ^ δ(M, N),

\Vi\ ^ Mf Iy21 ^ M, I (̂ /i — 2/2)/(#i ~ ^2) I = ^> a n d ω (^) is the linear
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function with a){x^) — y1 and o)(x2) = y2. If uo(x) is the fixed point of
the mapping, y(x) = uo(x) + ω(x) is a solution of the boundary value
problem. Lemma 3 is an immediate consequence of the boundedness of
f(t, u(t) + ω ( ί ) , u\t) + ω'(t)) for a^t^b, ueK, \ ω(t) | ^ M, a n d
I ω'(t) I g N.

LEMMA 4. // yo(x) is a solution of (1) of class C(2) on [xlf x2] c [α, b]
and if a < x2 < 6, £/̂ ew ίfeerβ is α <5 > 0 such that x2 + δ rg δ omcί α
solution y(x) of (1) o/ ciαss C(2) ow [α ,̂ $2 + έ] ^iίfe ί/(α;) Ξ ?/O(^) on [xly x2],
A similar statement applies at xλ in case a < xlΛ

Proof. This is an immediate consequence of well known results
[5; p. 15] concerning continuation of solutions.

LEMMA 5. If f(x, y, z) satisfies condition A2 and if yo(x) is a
solution of (1) of class C(2) on [xlf x2] c [a, b], then for all sufficiently
small I m \ there are solutions y(x) of (1) of class C(2) on [xlf x2] satisfying
y(®i) = 2/ofai), V'ψi) = V'o(%i) + m, and I y(x) - yo(x) \ ^ | m | e

2k^~9ύ on
[xlf x2] where k is a constant independent of m. A similar statement
applies if the change in slope is made at x2 instead of xλ.

Proof. This lemma is an immediate consequence of well known
results [5; p. 22] concerning the continuity of solutions with respect to
initial conditions.

3, Subfunctions and superfunctions In this section we define and
develop some of the properties of subfunctions and superfunctions with
respect to the solutions of an arbitrary but fixed equation (1). These
definitions and properties will of course apply also to equation (2),
however, Theorem 2 will apply only to equation (2).

We shall use a capital letter I to represent a subinterval of the
basic interval [α, 6], / may be open, closed, or half-open. / is the
closure of /, P the interior of /, and P the complement of I.

DEFINITION 1. A real valued function s defined on I is said to be
a subfunction on I in case s(x) ̂  y(x) on [xu x2] for any \xu x2] c / and
any solution y of (1) on [xl9 x2] with s(xx) ̂  y(xL) and s(x2) ̂  y(x2).

DEFINITION 2. A real valued function S defined on / is said to be
a super function on I in case S(x) ̂  y(x) on [xl9 x2] for any [xl9 x2] c /
and any solution y of (1) on [xu x2] with S(&i) ;> y{xλ) and S(x2) ^ y(x2).

We shall state our results in terms of subfunctions with obvious
analogous results, which we shall not bother to state, holding for super-
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functions. When we wish to refer to a result concerning superfunctions
we shall simply refer to the corresponding statement concerning sub-
functions.

THEOREM 1. If s is a subfunction on I, then the right-hand and
left-hand limits, s(xQ + 0) and s(x0 — 0), exist at every x0 e 1° and the
appropriate one-sided limits exist at the endpoints of I. These limits
may be infinite.

Proof. It will suffice to consider one case. Assume that s(x0 — 0)
does not exist at x0 £ P. Then there exist finite real numbers c and d
such that

lim inf s(x) £Ξ c < d ?g lim sup s(x)
x-+xQ- &-»x0-

We can pick two sequences {αn}~=1 c / and {bn}^λ c / with the following
properties:

(i) lim an = lim bn = xQ,

(ii) an < bn < an+1 for each n^l,

and

(iii) lim s(an) = lim sup s(x)

and

lim s(bn) = lim inf s(x).
x~>x0-

Let ε = {d — c)/4 and pick iVi > 0 such that

s(αΛ) > c? - ε ,

and

s(K)]< c + ε

for n ^ JVi.

By Lemmas 1, 2, and 3 there is an n0 ^ iN̂  such that the boundary
value problem

has a solution y(x) with | y(x) — (c + d)/2 | < ε on [bnQi bnQ+1], Then since
s is a subfunction,
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ΦnQ) <C + ε< t±— = y(bn) ,

and

s(KQ+1) < c + e < £ - ± — =>y(bnQ+1) ,

it follows that we must have s(αWo+1) ^ y(anQ+1). However,

s(anQ+1) > d- ε = ^ - ± — + ε > 3/(αno+1) .

From this contradiction we conclude that s(x0 — 0) exists.

COROLLARY 1. If s is a subfunction on 7, then s(x0) :g max [s(#0 + 0),
s(#0 — 0)] at every xQ e P.

Proof. If either s(x0 + 0) = + oo or s(xQ — 0) = + oo, the given
inequality obviously holds. If s(x0 + 0) < + oo and s(xQ — 0) < + oo, the
same type of argument as was used in proving the Theorem can be
employed to show that s(x0) > max [s(x0 + 0), s(x0 — 0)] is not possible.
Since s(x) has a finite real value at every point of 7, this shows that
we cannot have simultaneously s(xQ + 0) = — oo and s(#0 — 0) = — oo at
any x0 e P.

COROLLARY 2. If s is a bounded subfunction on 7, then s has at
most a countable number of discontinuities on 7.

Proof. This is a known consequence of the existence of onesided
limits everywhere on 7, for example, see [10; p. 300].

THEOREM 2. If s is bounded function on I and is a subfunction
with respect to the solutions of a differential equation (2), then s is
continuous on P.

Proof. By Theorem 1 s(xQ — 0) and s(x0 + 0) exist at every x0 e 7°
and s(x0) ̂  max [s(xQ + 0), s(x0 — 0)]. To be specific assume s(x0 — 0) ^
s(x0 + 0). First assume s(x0) < s(xQ — 0) and let | s(x) \ g M on 7. Then
by Lemma 2 for [xl9 x0] c 7 and | xλ — x01 ̂  δ(M) the boundary value
problem

y(xλ) = six,) , y(x0) = s(x0)

has a solution y(x). Then, since s(x) ̂  y(x) on [xu x0], s(xQ—0) ^ y(x0—0) =
y(χ0) — s(x0). Thus we have a contradiction and we conclude that s(xQ) =
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s(x0 - 0).
Now assume s(x0 — 0) — s(x0 + 0) = k > 0. By Lemma 3 there is

an η > 0 such that [x0 — η9 x0 + η\ c 7, )? ̂  <5(ΛO, and such that, for
any [xl9 x2] c 7 with | xx — x2 \ = η, the boundary value problem

V"=f(x,V)
y(x±) = sfo) , y(x2) = s(α2)

has a solution ?/(#; a?!, a?2) with

I y(x; xl9 x2) - ω(x; xu x2) | < fc/4

on [x ly α?2] where ω(x; xlf x2) is the linear function with ω(xλ) = s (^) and
ω(x2) = s(ίr2). Now take [xl9 x2] c I such t h a t | ^ — x2 \ = ^, ^ < a?0 < a?2,
I s(aj2) - s(α;0 + 0) | < A /4, and (2M/^) | £2 - a;01 < fc/4. Then, since
I ω'(α;; a?lf a?2) | ^ 2Λf/̂ , it follows t h a t

I ω(x0; xl9 x2) - s(x0 + 0) | < fc/2.

Consequently,

I y(χ0; χ» Xi) - s(x0 + 0) |

which means that

s(x0) = s(aj0 - 0)

This contradicts the fact that s is a subfunction and we conclude that
s is continuous on 7°.

We shall see a little later that Theorem 2 is not true for equation
(1) even if conditions Aλ and A2 are assumed in addition to the conti-
nuity of f(x9 y9 z).

For the following theorems the proofs are the same as the corre-
sponding theorems for convex functions.

THEOREM 3. If {sa: aeA} is any collection of subfunctions on I
bounded above at each point of 7, then s0 defined by

80(x) = sup sa(x)

is a subfunction on 7.

THEOREM 4. Let sx be a subfunction on I and s2 a subfunction on
[xu x2] c 7. Assume further that s2(Xi) ̂  s^Xi) for i = 1, 2 in case
Xi e 7°. Then s defined on I by

ίs^x) for xί[x19 x2]

(max [s^x), s2(x)] for x e [xl9 x2]
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is a subfunction on I.
For a function g and a point x0 at which g(x0 — 0) or g(x0 + 0)

exist we define

d~g(x0) = lim sup #W ~ 9\χo ——L

= lim inf 0)
X-*XQ- X — Xo

= lim sup —

d+g(x0) Ξ lim inf

X — Xo

- (K«. + 0)

THEOREM 5. If s is a bounded subfunction on la [α, 6] wίίΛ J =
[a?i, a?J, ίfcβ^ d~s(α?0) = d_s(α?0) / o r αZZ ^ < αj0 ̂  ^ 2 ^ticί d + s (^ 0 ) = d+s(xQ)

for all xx ^ xQ < OJ2.

Proof. It suffices to consider one case. Assume that ĉ  ̂  α50 < #2

and that d+s(x0) Φ d+s(xQ). Then there is a finite number c such that

d+s(tf0) < c < d+s(x0) .

There is a <5 > 0 such that [x0, xQ + δ] c [a?!, OJ2] and such that the initial
value problem

V"=f(p,V,V')
y(x0) = s(α?o + 0) , y'(x0) = c

has a solution 2/(cc) of class C(2) on [x0, xQ + δ]. It is clear that this
leads to a contradiction of the fact that s is a subfunction on /. We
conclude that d+s(x0) = eZ+s(#0).

COROLLARY. If s is a bounded subfunction on 7, £/&e% s Λαs a
finite derivative almost everywhere on I.

For a function g defined on I and x0 e 1° we will employ the notation:

) ^ lim sup
δ 2δ

Dg(x0) Ξ lim inf * * + g> "

THEOREM 6. If s is a subfunction of class C(1) o^ /, then Ds'(x) ^
J, 8(x), 8'(x)) on Γ.

Proof. Let x0e Γ and choose a δ0 > 0 such that [#0 — δ0, x0 + δo]al.
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Let I s(x) I ̂  M and | s'(x) | ^ N on [a?0 - δ0, x0 + δ0].
Given ε > 0 there is a p > 0 such that

/(», 2/, z) ̂  /(a?0, φ 0 ) , s'(&0)) - ε

for I x — xQ I < /?, 11/ — s(a?0) I < /°, Is — sf(x0) \ < p. Now choose a δx > 0
such that I ω(#; δ) - s(x0) | < ρ\2 and | ω'(tf; δ) - s'(x0) \ < p/2 on [xQ - δ, α;0 +δ]
for all 0 < δ ̂  δx where ω(ίc; δ) is the linear function with ω(xQ — δ) —
s(xQ — δ) and ω(x0 + δ) = s(x0 + <5).

By Lemmas 1 and 3 there is a δ2 > 0 with 2<52 ̂  min [230, 2δx, δ(M, N)]
such that for any 0 < δ ̂  δ2 the boundary value problem

7/(x0 — δ) = s(#0 — δ) , (̂α?0 + δ) = s(x0 + δ)

has a solution ?/(α;; δ) with

\y(x;δ)-ω(x;δ)\<pl2

and

on [̂ 0 — δ, x0 + δ]. Hence, for 0 < δ <£ δ2, | ?/(a;; δ) — s(ί»0) | < p, and
I y'(x; δ) — s'(x0) \ < p on [x0 — δ, x0 + δ]. Then, since s is a subfunction
on / we have for any 0 < δ ̂  δ2

8'(x0 + δ) - 8 ^ - δ) yy(a?0 + δ; δ) - y'Qg0 - δ; δ) _ ,,(βm ^
2δ = 2δ y (ξy }

where x0 — δ < ξ < x0 + δ. Hence,

^ / ( | f y ( | g)f y ( ξ ; 8)) ^ f(χof s(χo)y s(χo)) e

for all 0 < δ ̂  δ2. From which we conclude

D8'(XO) ^ f(X0, 8(XO), S'(XO)) .

Under more stringent conditions on the function f(x, y, z), Peixoto
[15; p. 564] gives s"(x) ^ f(x, s(x), s'(x)) as a necessary and sufficient
condition for a function of class C(2) to be a subfunction. Theorem 6
generalizes the necessity part of this result. The condition s" ̂  f{x, s, s')
is not sufficient to guarantee that a function of class C(2) be a subfunction
without having more than just continuity of f(x, y, z). As a matter
of fact continuity of f(x, y, z) and condition Ax are still not enough.
To see this we observe that, if s" ̂  f(x, s, s') is a sufficient condition
for a function of class C(2) to be a subfunction, then a solution of the
boundary value problem when it exists is unique. The boundary value
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problem y" = | y' |1/3, y(-l) = y( + l) = 4i/~6 /45 has both y(a?) Ξ= 4 I / 6 / 4 5

and 2/(α?) = 4i/ 6 /45 | α? |δ/2 as solutions.
The following Theorem gives conditions on / which are adequate

to insure that a function satisfying s" Ξ> /(#, S, S') is a subfunction. It
embodies a maximum principle which must be known; however, since
we are not aware of a reference for it in this form, we will include a
proof.

THEOREM 7. Assume that f(x, y, z) satisfies conditions Ax and A2

and that the functions u(x) and v(x) satisfy the following conditions:
( i ) u and v are both continuous on ϊ and of class Ca) on 7°,
(ii) Du'{x) ^ f(x, u(x), u\x)) and Dvr{x) ^ f(x, v(x), v'{x)) on Γ,

and
(iii) u(x) — v(x) ̂  M, where M ̂  0, at the endpoints of I .

Then either u(x) — v(x) < M on 1° or u(x) — v(x) = M on I.

Proof. We will assume Λf = 0 since the case where M > 0 can be
reduced to this one by replacing v(x) by v(x) + M.

Now assume that the statement of the Theorem is false. Then
there are functions u and v satisfying the hypotheses of the Theorem
with u(x) — v(x) ΐ θ on J but with u(x) — v(x) ̂  0 at some points of
1°. Let N = max [u(x) — v(x)] on J. Because of the continuity of
u{x) — v(x) there is an x0 e Γ and an interval [xlf x2] c 1° such that
Xi< xo< x2, u(x0) — v(x0) = N, and u(x) — v(x) < N either on xo< x ̂ x2

or on xx ̂  x < a?0. Assume that u(x) — v(x) < N on OJ0 < a? ̂  a72 to be
specific.

Let Mx > 0 be such that | %(») | + | u'(x) \ ̂  Mλ and | v(a?) | + | v'(x) \ ̂  Mx

o n [ a ? ! , α? 2 ] a n d l e t F b e t h e s e t [(x, y , z ) : x x ̂  x ̂  x 2 y \ y \ + \ z \ ^
By hypothesis there is a & > 0 such that

\f{x, yl9 zλ) - f(x, y2, z2) \ ̂  k[\ yx - y2 \ + | zλ - z21]

for all (x, yl9 zλ) and (x, y2, z2) in F.
Define the functions wx(x) and w2(x) as follows:

(f{x,u{x\u'{x))-f{x,u{x),v'{x)) f o r M,(χ) φ v,{χ)

wax) = j u'{x) — v'(x)
v 0 for u'(x) = vf(a?) ,

and

(f(xu(x)v'(x))f(xφ)*(x)) ί0τu(x)Φv(x)

for iφ) = v{x) .
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Then it is clear that | wx(x) | ^ k and | w2(x) | g k on [xu x2]. Because
of the assumed condition A1 on /, w2(x) ̂ 0 on [xl9 x2].

Choose α?3 e P such that x2 < #3 and define h(x; a) by

Λ(aj; a) = β-*<*-*8>a _ β-^uo-^)2

where α > 0 fixed is chosen large enough that

L[h] == Λ"(α) - nφJΛ'ίaO - w%(x)h(x) > 0

on [ajlf α?J.
Since u(x2) — v(β2) < N we can choose ^ > 0 such that t*(a?2) —

v(»a) + ^Λ(aj2) < iV. Then, if flf(aj) Ξ U(X) — v(a ) + f̂e(aί), we have gfaXN,
g(x0) = iV, and flf(aj2) < ΛΓ. It follows that g(x) has a maximum JVί ^
JV^O at a point x± with ^ < x4 < a?2. It follows that Dg\x^ g 0.
However,

Dg'(x4) ^ ΰ[^ ;(α;4) + ^ f(a? 4)] - Dv'(x4)

4) - Dv'(x4) + ηh"{xA) > w2{x,)Nx ^ 0 .

We have arrived at a contradiction and the Theorem is established.

COROLLARY 1. Let f{x, y, yf) satisfy conditions A± and A2. Then
the solution of the boundary value problem

/or [#j, α?2] c: [α, δ], if it exists, will be unique.

COROLLARY 2. If in the statement of Theorem 7 we assume only
that f(x, y, y') satisfies condition Aλ but strengthen the assumptions
concerning u and v by assuming that at least one of the differential
inequalities is a strict inequality for xλ < x < x29 then u(x) — v(x) < M
for xx<x< x2.

COROLLARY 3. If in Theorem 7 I = [c, d], u(c) = v{c), and u(d) > v(d),
then u(x) — v(x) is nondecreasing on [c,d]. If u(c) > v(c) and u(d) =
v(d), then u(x) — v(x) is nonincreasing on [c, d\.

THEOREM 8. Let s(x) be continuous on I and of class C(1) on P.
Then, if f(x, y, z) satisfies Ax and A2 and if Ds'(x) ̂  f(x, s(x)f s'(x)) on
1°, it follows that s(x) is a subfunction on I. If f(x, yf z) satisfies
condition Aλ and Ds'(x) > f(xt s(x), s'(x)) on Pf s(x) is a subfunction
on I.
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Proof. Let [xl9 x2] c I and let y(x) be a solution of (1) on [xl9 x2]
with s(Xi) ^ y(Xi) for i = 1, 2. Then that s(#) ^ 2/(cc) on [a?!, #2] follows
from Theorem 7 or Corollary 2 of Theorem 7.

THEOREM 9. Let s(x) be a continuous subfunction and S(x) a con-
tinuous superfunction on [xlf x2] with s(Xi) ^ S(Xi), i = 1, 2. Assume
that at least one of s(x) and S(x), say Six), is of class C(1) on xx < x < x2.
Then, if f(x, y, z) satisfies A1 and A2, s(x) ̂  S(x) on [xu x2]. If f(x, y, z)
satisfies A1 and DS'(x) < fix, Six), S'(x)) on xx < x < x2f then again
s(x) ^ S(x) on [xu x2].

Proof. Assume that the statement of the Theorem is false. Then
s(x) > S(x) for some points x with xλ < x < x2. Let M — max [s(#) —
S(x)] on [a?!, x2] and let x0 be such that xt < x0 < x2f s(x0) — S(x0) = Λί,
and s(^) — S(x) < M for x0 < ^ ^ #2. By Lemma 1 there is a δ > 0
such that xx < xQ — δ < xQ + 3 < x2 and such that the boundary value
problem

2/(a?0 - δ) = S(^o - δ) + M, y(x0 + δ) = S(x0 + δ) + M

has a solution yx{x) of class C(2) on [xQ — δ, x0 + <?]. If /(a?, /̂, 2) satisfies
Aj and DS'(x) < fix, Six), S'(x)) on xx < a; < a?2, it follows from Corollary
2 of Theorem 7 that ^(XQ) < S(xQ) + Af. Furthermore, since s(x) is a
subfunction and s(x0 ± δ) ̂  2/1(̂ 0 ± δ), we have s(x0) ̂  Vi(x0) < S(x0) + M.
From this contradiction we conclude that s(x) ̂  S(x) on [xl9 x2].

Now assume that f(x, y, z) satisfies Ax and A2 and that we know
only that S(x) is of class C(1) on xx < x < #2 which implies DS'(x) ^
/(a?, S(aj), S'(x)) on ^ < a? < x2. Then, if ^(x) is again the solution of
the above boundary value problem, we have yλ{xQ) ^ S(x0) + M. By
Lemma 5 and Theorem 7 there is an m > 0 such that the initial value
problem

y" = f(χ, v, yf)

y(x0 - δ) = yx{x, - δ)

y'(x0 - δ) = y[(x0 - δ) - m

has a solution y2(x) of class C(2) on [x0 — δ, x0 + δ] with τ/2(α?) < ^(x) on

(a?0 — δ, xQ + <5] and

2/i(a?0 + δ) > y2(x0 + δ) > s(x0 + δ) .

Then we have s(x0) ?g i/2(aj0) < 1/1(̂ 0) ̂  S(x0) + M which is again a con-
tradiction. Thus we have s(x) ̂  S(x) on [xlf x2].

COROLLARY. Let M > 0 be a constant and assume that fix, y, z)



A GENERALIZED SOLUTION 1263

satisfies A± and A2. Then, if S(x) is a continuous super function on
I, S(x) + M is also, and, if s(x) is a continuous subfunction on I,
s(x) — M is also.

THEOREM 10. Assume that f(x, y, z) satisfies conditions A1 and A2,
that y(x) is a solution of (1) of class C(2) on [xu x2] c [a, b], and that
s(x) is a subfunction on [xl9 x2]. Assume further that there is an x0,
Xί < x0 < x2, at which either s(x0) = y(x0), s(x0 + 0) = y(x0), or s(x0 — 0) =
y(x0). Then, if six,) g y{xt), s{x) ^ y(x) on x0 < x ^ x2. If s(x2) ^ y(x2),
s(x) ^ y(x) on x±Sx < x0.

Proof. Follows immediately from Lemma 5, Theorem 7, and the
definition of subfunctions.

COROLLARY. If f(x, y, z) satisfies conditions Aλ and A2, if y(x) is
a solution of (1) of class C(2) on [xl9 x2] c [a, b], and if s(x) is a sub-
function on [xl9 x2] with sfa) ^ y(Xi), i = 1,2, then either
max [s(x), s(x + 0), s(x — 0)] < y(x) on xx < x < x2 or s(x) = y(x) on
[Xl9 X2\.

In the papers mentioned in the introduction which deal with gener-
alized convex functions it is assumed that for any two points (xu yj,
(x2, y2), xλ Φ x2 in the strip a ^ x tίb, \y\ < + O T the boundary value
problem has a unique solution which is defined throughout a 5g x <Ξ b.
This leads to the conclusion that subfunctions and superfunctions are
continuous in the interiors of their intervals of definition. With the
assumptions we make this conclusion cannot be drawn. Consider the
equation

( 3 ) y"= -18x(y'Y

which is such that f(x, y, z) is continuous everywhere and satisfies A±

and A2. The function g defined by g(x) = x1" + 1 for 0 < x S 1, g(%) = %1Γά

for — 1 ^ x < 0, and g(0) = g0 where 0 ^ g0 ^ 1 is simultaneously a
subfunction and superfunction on [—1, +1] with respect to solutions
of (3).

4* A generalized solution of the boundary value problem* In the
previous Section the existence "in the small" of solutions for the initial
value problem and the boundary value problem for (1) was used in
discussing some of the properties of subfunctions and superfunctions
with respect to solutions of (1). In this section we use the Perron
method of using subfunctions and superfunctions to deal with the
boundary value problem "in the large" for equation (1). Throughout
this section we shall be dealing with the boundary value problem:
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v" =f(χ,v,vt)
y(a) = a , y(b) = β .

DEFINITION 3. The function φ(x) is said to be an under-function
with respect to the boundary value problem (4) in case φ(x) is a sub-
function on [α, δ] with <p(a) fg a and φ(b) ^ β.

DEFINITION 4. The function ψ(x) is said to be an over-function
with respect to the boundary value problem (4) in case ψ(x) is a super-
function on [α, b] with ψ(a) ^ a and ψ(b) ^ β.

In most of the results obtained in this section we shall require the
following additional hypothesis:

A3: f(x, y, z) is such that with respect to the boundary value
problem (4) there is an under-function which is continuous on [α, δ] and
there is an over-function which is continuous on [a, b] and is of class
C(1) on (α, 6).

DEFINITION 5. Let {φ} represent the collection of all under-f unctions
with respect to boundary value problem (4) which are continuous on
[α, δ]. Then we define H(x) by

H(x) = SUP [φ(x): φ G {φ}]

for each x e [α, b].

THEOREM 11. If f(x, y, yf) satisfies conditions Au A2, and A3, H(x)
is a bounded subfunction on [α, 6],

Proof. By A3, {φ} is nonnull and there is an over-function ψ0 con-
tinuous on [α, b] and of class C(1) on {a, b). By Theorem 9 φ(x) ^ ψo(x)
on [a, b] for each φe{φ}, consequently, H(x) ^ ψo(x) on [a, δ]. By
Theorem 3 H(x) is a subfunction and, if φQ e {φ}, φo(x) S H(x) g ψo(^)
so that H is bounded on [α, δ].

THEOREM 12. // f(x, y, yr) satisfies Alf A2, and A8, ί^e^ H(x) is a
superfunction on [α, 6],

Proof. Assume that H is not a superfunction. Then there exists
[xίf x2] c [a, b] and a solution y(x) of (1) on [xlf x2] such that iϊί^i) ^
•!/(»<), i = 1, 2, but ίί(^) < y(a?) for some x with a?x < x < x2. Let xQf

X!< xo< x3, be such that y(x0) — iϊ(x0) = ε > 0. By the definition of
H there are continuous under-functions φλ and ^ 2 such that H(x^) —
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ε/4 and H(x2) — φ2(x2) g ε/4. Now define φ3 on [α, 6] as follows:

(max [^(fl?), 9>a(a?)] for x £ [xl9 x2]φ3(X) = J
(max [?>!(»), φ2(#), y(x) - ε/2] for a? e [^, α?J .

Then by Theorems 3 and 4 and the Corollary of Theorem 9 φs is a con-
tinuous under-f unction. However, 9>3(αj0) ^ y(x0) — ε/2 = ίf(#0) + ε/2 which
is impossible. It follows that H is a superfunction on [α, 6].

COROLLARY. For each x e (α, b) H(x) = min [iJ(# + 0), i ϊ ( ^ — 0)].

Proof. Since if is a superfunction, it follows from Corollary 1 of
Theorem 1 that H(x) ^ min [H(x + 0), H(x - 0)]. Since H is lower
semicontinuous on [α, 6], if(#) ̂  min [H(x + 0), iϊ(α? — 0)].

Theorem 13. If f(x, y, yf) satisfies Au A2, and A3, then H is a
solution of (1) on an open subset of [a, b] the complement of which is
of measure 0.

Proof. Let xQ e (a, b) be a point at which H'(xQ) exists. Then there
is a δQ > 0 such that [x0 — δ0, x0 + δ0] c [α, b] and such that for all δ
with 0 < δ <Ξ <50 we have

+ 8) - iffa - 3) < i H,( x I ,

Let δ(M, N) > 0 be as in Lemma 1 with M = sup | H(x) | on [α, b] and
N = I jff'(αo) 1 + 1. Then for 23 = min [230, δ(M, N)] the boundary value
problem

y" = f(χ, y, y')

y(x0 - 3) = H(x0 - 3), y(x0 + 3) = ff(a?0 + 3)

has a solution y(x) of class C(2) on [xQ — δ,xo + δ]. Since i ϊ is simul-
taneously a subf unction and superfunction, H(x) = y(x) on [x0 — δ, xo + δ].
The result then follows as a consequence of the Corollary of Theorem 5.

In Theorem 5 we proved that, if s is a bounded subf unction on
[α, 6], then d+s(x) = cί+s(x) on a ^ a? < 6 and d~s(x) = d_s(α;) on α < a? g δ.
In view of these equalities we introduce the additional notation:

Ds(x0 + 0) = lim

and

Ds(x0 - 0) = lim Φ ) - s(fto - 0)
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THEOREM 14. Iff(x, y, y') satisfies Au A2, and A3, then DH(x+0) =
DH(x — 0) for all x e {a, b). Let E be the set of points in (α, b) at
which H does not have a finite derivative. If xeE is a point of
continuity of H, either DH(x + 0) = DH(x - 0) = + oo or DH(x + 0) =
DH(x - 0) = - o o . IfH(x + 0) > H(x - 0), DH(x + 0) = DH(x - 0) =
+ oo. If H(x + 0 ) < H(x - 0), DH(x + 0) = 2λff(a - 0) - - o o .

Proof. Since for aj 6 (α, b) zndxZE DH(x + 0) = DH(x - 0) = ff'(a ),
we need consider only the points of E.

First we observe that it follows from the argument used in the
proof of Theorem 13 that, if xoeE is a point of continuity of H,
DH(x0 + 0) and DH(xQ — 0) cannot both be finite. Assume that x0 e E
is a point of continuity of H, that DH(xQ+0)= + oo, but that DH(xo—O)φ
+ oo. It follows that there is an N > 0 and a <50 > 0 such that ω(x) ==
iί(α;0) + JV(a? — x0) < H(x) for 0 < x0 — # ̂  δ0. By Lemmas 1 and 4
there is a δ l f 0 < δx ̂  30, a ^2 > 0, and a solution y(x) of (1) of class
C(2) on [a?0-*i, ^0+^2] with y(xo) = H(xo) and »(ajo-δ1)=α)(α?o-δi)<flr(a?o-ίi).
Applying Theorem 10 we conclude that H(x) ^ y(x) on [α?0, x0 + δ2]. This
implies that DH(x0 + 0) ̂  y'(x0) which contradicts the assumption that
DH(x0 + 0) = +00. We conclude that DH(x0 - 0) = +00. The other
possibilities at a point of continuity can be dealt with in a similar way.

Now assume that H(x0 + 0) > H(x0 - 0) and that DH(x0 + 0) φ + 00.
Then by the same type of argument as was used above we can conclude
that there exist dx > 0, d2 > 0, and a solution y(x) of (1) of class C{2)

on [x0 — δlf x0 + δ2] satisfying y(x0) = H(x0 + 0) and y(xQ + δ2) > H(x0 + δ2).

We can then again apply Theorem 10 to conclude that H(x) Ξ> y(x) on
x0 — δ1 ^ x < a?0 from which it follows that H(x0 — 0) ̂  y(x0) = H(^ o + 0).
This contradicts the assumption that H(x0 — 0) < £Γ(α?0 + 0) and we
conclude that DH(x0 + 0) = + co.

The remainder of the proof concerning the points of discontinuity
is similar to this and will be omitted.

Next we consider the behavior of H at the endpoints of the interval
[α, 6].

THEOREM 15. Assume that f(x, y, y') satisfies Alf A2, and A3. Then,
if DH(a + 0) Φ + 00, H(a + 0) = H(a). If H(a + 0 ) < a, DH(a + 0) =
— 00. If DH(a + 0) is finite, H(a + 0) = H(a) = a. Similar statements
apply at x = b.

Proof. The proof will be omitted since the methods used in it are
very similar to those used in the proofs of Theorems 12 and 14.

If f(%f y> yf) satisfies conditions Au A2, and Ai9 and if the boundary
value problem (4) has a solution, H(x) is that solution. On the basis
of the properties of the function H(x) it seems reasonable to refer to
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H(x) as a "generalized solution" of the boundary value problem. Usually
by a generalized solution of a second order differential equation on an
interval one means a function which has an absolutely continuous first
derivative and which satisfies the differential equation almost everywhere
on the interval. The function H(x) may not even be continuous on
[α, 6]. Consider the boundary value problem y" — — 18x(y')\ y(—ΐ)~
— 1, y( + l) — + 2 . Here conditions Aλ and A2 are obviously fulfilled and,
since ψ(x) Ξ + 2 is an over-function and φ{x) = —1 is an under-function,
condition A3 is satisfied. In this case H(x) = x113 for — 1 ^ x <£ 0 and
H(x) = x1" + 1 for 0 < x ^ + 1.

We terminate this Section by considering the function H(x) with
respect to the boundary value problem:

, 5 v v" = /(%> v)

y(a) = a, y(b) = β .

THEOREM 16. Assume that f(x, y) satisfies Aλ and A3 with the
additional assumption that there is an over-function ψ with respect
to the boundary value problem (5) such that ψ is continuous on [a, δ],
is of class C(1) on (α, 6), and satisfies Dψ'(x) < f(x, ψ{x)) on (α, b). Then
the function H(x), defined in the same manner as above, is again
bounded on [α, b] and is simultaneously a subfunction and a super-
function with respect to solutions of (2). In this case H(x) is of class
C(2) and is a solution of (2) on [a, b].

Proof. The proof that H(x) is bounded and is simultaneously a
subfunction and a super function on [a, b] is exactly as given in Theorems
11 and 12 with one exception. Since we do not now have the Corollary
of Theorem 9 available, we must give a separate proof that, if y(x) is
a solution of (2) on [xu x2] c [α, b] and M ^ 0, then y(x) — M is a sub-
function with respect to (2) on [xu x2]. To see that this is the case
assume that yλ{x) is a solution of (2) on [x3, x4] c [xl9 x2] with

y(x3) - M= yγ(xz) ,

y(x4) - M= yλ(x,) ,

and y(x) — M > yλ(x) on #3 < x < x± .

Because of condition Ax we then have

y"(x) - y['(x) = f(x, y(x)) - f(x, Vl(x)) ^ 0

on (xBf x4). This implies that y(x) — yx(x) is convex on [α?3, x4] which in
turn implies that y(x) — yx(x) ^ l o n [x^ x±\. Thus it is not possible
that y(x) — yλ{x) > M on (x3, a?4). It follows that y(x) — M is a subfunction
on [xlt x2].
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Since H(x) is bounded and is simultaneously a subfunction and a
superfunction, we can apply Lemma 2 to conclude that H(x) is of class
C(2) and a solution of (2) on [α, 6].

5Φ Existence theorems for a solution of the boundary value problem*
In this concluding Section we consider the question of determining
additional conditions on f{x, y, y') which will suffice to guarantee that
H(x) be a solution of the boundary value problem (4). Some of the
results are known and we are merely giving new proofs of them, others
appear to be new.

THEOREM 17. Assume that f(x, y, y') satisfies Au A2, and A3, that
ψ(x) is an over-function continuous on [α, b] and of class C(1) on {a, b),
and that φ(x) is a continuous underfunction. Assume that there is a
function h(t) positive and continuous for t ^ 0 such that \f{x, y, yf) \ S
Ml Vf I) for a ^ x ^bf φ(x) ̂  y ^ ψ(x), \yr\< + °° o/nd such that

Jo h(t)

Then H(x) is the solution of boundary value problem (4). Nagumo [14].

Proof. Let x0 e (α, 6) be a point at which H'(x0) exists. By Theorem
13 there is an open interval containing xQ in which H is a solution of
(1). Let (c, d) c [a, b] be the maximal such interval. Then, if N is
chosen so that

(* KΓ I _7.#

= max ψ(x) — min φ{x) ,
J|jsr'(ίβo)i h(t)

we will have | H'{x) \ ^ N on (c, d). It follows from Theorems 14 and
15 that c = α, d — b and that H is the solution of the boundary value
problem.

THEOREM 18. If f(xfy) is continuous for a^x^b, \y\< + c o ,

and satisfies Au then the boundary value problem (5) has a unique

solution for each a and β. Babkin [1].

Proof. Let ω(x) be the linear function with ω(a) = a and ω(b) =
β. Define the functions u(x) and v(x) on [α, b] by

u(a) = %(δ) = 0

and
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v"(x) = -\f(x,ω(x))\-l

v(a) = v(b) = 0 .

Tnen it is not difficult to verify that ψo(x) = v(x) + ω(x) is an over-
function of class C(2) satisfying ψ"(x) <f(x, ψo(x)) on [α, 6], and φo(x) =
u(x) + ω(x) is an under-function of class C(2) satisfying φ'0'(x) > f{x, φQ(x))
on [α, &]. The hypotheses of Theorem 16 are satisfied so that we can
conclude that H(x) is of class C(2) and is a solution of (2) on [α, &].
Since φo(x) ^ H{x) ^ ψo(x) on [α, 6], H(a) = α: and iϊ(&) = /3 so that
H(x) is a solution of boundary value problem (5). It follows from the
proof of Theorem 16 that it is unique.

THEOREM 19. Let f{x, y, y') satisfy Alf A2, and Ad, and assume
that there is a continuous function g(x, y) such that g(x, y) ^ f{x, y, y')
for all (x, y, yf) e R. Then H(x) is of class C{2) for all a < x < b. If
in addition g(x, y) is nondecreasing as a function of y for each fixed
x, H(x) is continuous on [α, 6].

Proof. Let [xu x2] c [a, b] and let S(x) be a solution of

( 6 ) y" = 9(x,V)

on [xl9 x2] with H{xx) ^ S(xλ) and H(x2) ^ S(x2). Then S"(x) = g(x, S(x)) g
f{x, S(x), S'(x)) on (xl9 x2), hence by Theorem 8 S(x) is a superfunction
on [xlf x2]. Then from Theorem 9 and the fact that φfa) ^ S(a?i) and
φ(x2) ^ S(x2) we conclude that φ(x) ^ S(x) on [xl9 x2] for each continuous
under-function φ. From this we conclude that H(x) ^ S(x) on [xlt x2]
and that i Π s a subf unction with respect to solutions of (6). By Theorem
2 H(x) is continuous on (α, 6).

Assume that H does not have a finite derivative at x0, a < x0 < b.
Assume that DH(xQ + 0) = + oo. By Lemma 2 there is a δ > 0 such
that the boundary value problem

y" = g(χ, y)

y(x0) = H(xQ) , y(xQ + δ) = H(xQ + δ)

has a solution 7/(cc) of class C(2) on [α;0, x0 + δ]. Since ίί(ίi?) ^ τ/(̂ ) on
[xOf x0 + δ], J3ϋf(^0 + 0) ^ ί/'(a?0) which contradicts the assumption that
DH(x0 + 0) = +oo. Similarly J5ίί(^0 - 0) = — oo is not possible. It
follows from Theorem 14 that H(x) has a finite derivative at each point
of (α, δ), therefore, by Theorem 13 iϊ(^) is of class C(2) and is a solution
of (1) on a < x < b.

If g{x, y) is nondecreasing in y, it follows from Theorem 18 that
the boundary value problem

y" = g{x, y)
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y(a) = a , y(b) = β

has a solution ψ(x) of class C(2) on [α, 6]. i/r(#) is an over-function with
respect to the boundary value problem (4). It suffices to consider the
endpoint x = a. Since H(x) ^ ψ(x), H(a + 0) ^ f(a) = α. If £Γ(α + 0) =
α, Diϊ(α + 0) ^ α/r'(α) so that DH(a + 0) φ + co. It follows from Theorem
15 that H(a + 0) = fί(α). If £Γ(α + 0) < a, we again apply Theorem
15 to obtain H(a + 0) = H(a). We conclude that H(x) is continuous
on [α, 6],

COROLLARY // /(a?, y, yr) satisfies conditions Aλ and A2, if there
is a continuous function g(x, y) nondecreasing in y for each fixed x
and satisfying g(x, y) ^ f(x, y, yf) on R, and if there exists a continuous
under-function φix) with φ{a) — a and φ(b) — β, then the boundary
value problem (4) has a unique solution.

If f{x, y, y') satisfies the hypotheses of Theorem 19 including the
assumption that g(x, y) is nondecreasing in y for each fixed x, then H(x)
is continuous on [a,b] and of class C(2) on (α,6). Furthermore, DH(a + 0)Φ
+ co and DH(b — 0) Φ — co. As a consequence of Theorem 15 we could
conclude that H(x) is the solution of the boundary value problem if it
could be shown that DH(a + 0) Φ - ^ and DHφ - 0) φ + co. This
would be the case, for example, if for some N > 0 and some δ > 0
H"ix) <N on a < x ^ a + δ and on b - δ ^ x < b.

As an illustration of these remarks consider the boundary value
problem:

y" = (1 + x2)y3 + ey'2*lnx

y(-π/2) = a , y{Zπβ) = β .

The hypotheses of Theorem 19 are satisfied. φ(x) = min [ — 1, α, b] is
an under-function and ψ(x) = max [1, α, β] is an over-function. In the
intervals — τr/2 < x ^ 0 and π ^ x < 3τr/2 H"(x) is bounded above,
consequently, this boundary value problem always has a unique solution.

We conclude the paper with a final result in this direction.

THEOREM 20. Assume that f(x, y, yf) satisfies Aτ and A2, and that
there is a continuous function g{x, y) which is nondecreasing in y and
is such that g(x, y) ^ f(x, y, y') for all (x, y, yr) e R. Assume further
that there exist functions ψ, φ, and h such that

( i ) ψ{x) is continuous on [α, 6], is of class C(1) on (a, 6), and is
an over-function with respect to boundary value problem (4),

(ii) φ(x) is a continuous under-function with respect to the boundary
value problem,
and (iii) h(t) is positive and continuous for t Ξ> 0, |/(cc, y, y') \ ̂  h{\y'\)
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for a ^ x ίg 6, φ(x) ^ y ^ ^(x), | ?/' ] < + °°, α^cϊ

1 > max ψ(x) — min <p(#) ,
JC h(t)

where

c = max
b — a b — a

Then H(x) is a solution of boundary value problem (4).

Proof. By Theorem 19, H(x) continuous on [α, b] and is of class

C(2) on (α, b). Since φ(α ) ^ #(&) ^ ψ(a?) on [α, 6], | (JEZ"(6) - H(a))/(b - a) | =

tdtjh(t) =

max ψ(a?) — min £>(#) then | iί '(^) | ^ ΛΓon (α, 6). It follows from Theorem
15 that H(x) is a solution of the boundary value problem.

As an illustration of this Theorem consider the boundary value
problem

y" = xψ + (yj

y(0) = a ,

If \a\ < M and | /3 | < M, the hypotheses of Theorem 20 are satisfied
with g(x, y) — xY, ψ(x) = max [\oc\, \β | ] , φ{x) = min [— | a |, — | β |] and

/ (̂ί) — ί4 + M3. Hence, by Theorem 20 the boundary value problem has
a solution for | a \ < M and | β | < M if

Mi

The largest M > 0 for which this inequality is satisfied is the positive
root of τr/2 - Arctan 4M1/2 = 4M5/2.

There are few existence theorems for the boundary value problem
that do not impose more stringent conditions than Theorem 20 does on
the rate of growth of f(x9 y, y') with respect to yf. In the cases in
which it is applicable Theorem 20 seems to give stronger results than
other known theorems.

A different method of obtaining existence theorems for the boundary
value problem (4) via existence theorems "in the smalΓ was recently
given by Kamenskii [13].
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J. Śladkowska, Bounds of analytic functions of two complex variables in domains

with the Bergman-Shilov boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435
Joseph Gail Stampfli, Hyponormal operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453
George Gustave Weill, Some extremal properties of linear combinations of kernels

on Riemann surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1459
Edward Takashi Kobayashi, Errata: “A remark on the Nijenhuis tensor” . . . . . . . . . . 1467

Pacific
JournalofM

athem
atics

1962
Vol.12,N

o.4


	
	
	

