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ON THE ADDITIVITY OF LATTICE COMPLETENESS

to the memory of Maurice Audin

ISRAEL HALPERIN AND MARIA WONENBURGER

1. Introduction* It was shown in [1, Theorem 4.3] that upper fc$-
continuity1 is additive in the following sense:

(1.1) Suppose that [0, a], [0, b] are upper ^-continuous in a relatively
complemented modular lattice. Then [0, a U b] is upper ^-continuous
provided that [0, a U b] is upper ^-complete.

But it may happen that [0, a], [0, b] are both upper ^-complete
(both may even be von Neumann geometries with a perspective to 6)
and yet [0, a U b] is not upper ^-complete. In fact there are von
Neumann rings & for which the lattice R^, with £f = ^ 2 , is not even
upper ^0-complete (see the Remark preceding Definition 3.1)

With a modest supplementary condition however, additivity of upper
^-completeness does hold, as we show in this paper.

2. Terminology and notation* We shall use the notation of [1],
[2], and [4].

I will denote a set of indices a and I will denote the cardinal
power of /.

^ will denote an infinite cardinal, Ω will denote the least ordinal
number whose corresponding cardinal power is ^ .

A lattice is called upper ^-complete if the union a = U (α Λ |αe I)
exists whenever I ^ ^ , and is called upper ^-continuous if for every b:
b Π a = U ((& Π U (a* I a e F)) I a 1 1 finite F c Of w i t h d u a l definitions for
lower ^-completeness and lower ^-continuity. The lattice is called ^~
complete, respectively ^-continuous if it is both upper and lower
^-continuous.

A complemented modular lattice L is called an #-von Neumann-
geometry if it is ^-complete and ^-continuous (irreducibility is not
assumed).

If we omit the fc$ i n anY of these designations, this implies that
the lattice L has the corresponding ^-property for all ^ .

If & is an associative regular ring (not necessarily with unit element)
then RM denotes the relatively complemented modular lattice of its principal
right ideals, ordered by inclusion. & is called an ^-von Neumann-
ring, respectively a von Neumann ring, according as R^> is an
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1 Terminology and notation are explained in section 2 below.
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Neumann-geometry, respectively a von Neumann geometry.
In any relatively complemented modular lattice, if a ^ b then [a — b]

will denote an arbitrary (but fixed) element such that [a — b] (j b = a
(the dot indicates that the summands in the union are independent). We
write a ~ b to denote: a is perspective to 6, and a < b to denote: a ~ 6X

for some bx ^ b. Elements α, b are called completely disjoint, (notation:
(α, b)P) if: ax ~ bu ax ^ α, 6X <̂  6 together imply αx = 0.

3* The additivity of completeness theorem*
In this section α, 6, c, a?*, will denote elements in a given relatively
complemented modular lattice L.

If [0, a U c] is upper ^-complete W e shall write u(a, c, ^ ) to mean:

(3.1) Whenever xa ^ a U c for all ael (with / ^ K

a Π (U(%l/3eF)) = 0

/or αZi j^mίe F cz I, then a Π ( U f e l α e ^ ) ) = 0.

It is important to note: if u(a, c, ^ ) holds then u(ar, c', ^ ) holds
for all a' ^ a, c' <L c.

Clearly, if [0, a (J c] is upper ^-complete and upper ^-continuous then
u(a> Cf #) does hold.

Similarly, if [0, a U c] is lower ^-complete we shall write ϊ(α, c, #)
to denote:

(3.1) Whenever xa ^ a (J c /or αii α e l (wΐ£/& /

α U (Γi(xβ\βeF)) = a U c

/or all finite F c /, £ftew α U

It is important to note: if l(a, c, ^ ) holds then ί(α', c', y^) holds
for all af ^ α, c' ^ c.

Clearly, if [0, a U c] is lower ^-complete α^d lower ^-continuous then
i(α, c, fc$) does hold.

LEMMA 3.1. Suppose that each of [0, a u 6], [0, 6 U c], [0, α U c] is
upper ^-complete and suppose that u(a, c, ^ ) holds. Then [0, a U b U c]
is upper ^-complete.

Proof. We may suppose that {α, 6, c} is an independent set, for if
c, b are replaced by [c - (α Π c)] and [6 — (6 Π (α U c))] respectively the
hypotheses of Lemma 3.1 continue to hold and the conclusion is not
changed.

Using transίinite induction, we may suppose that Lemma 3.1 holds
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for all fc$' < ^ . We may therefore assume that xa is given, ^ α U δ U c
for all 0 < a < Ω, that U f e \ a ^ β) exists for all β < Ω and we need only
show that \J(xω\a < Ω) exists.

We may suppose xΛ ^ xβ for a <£ β < Ω (by replacing the original
v» by \J(xβ\β S oc) for all {a < Ω).

Set xo=\J((xΛ f](aΓ\b))\a<Ω) (this union exists since, by hypothesis,
[0, a U δ] is upper ^-complete). Set xa — xQ U %a for 0 < α: < Ω and
observe that xβ^xa for all 0 ^ β g α: < £.

Set y0 = ά0 and ya = [άΛ - UfelO ^ /9 < α)] for 0 < a < Ω. Then
U(2/β|0 ^ iδ < α) = U(^β|0 ^ /S < a) for all 0 < a < fl, as may be verified
easily by transfinite induction.

Clearly, we need only show that \J(ya\0 ^ a < Ω) exists. Hence it
is sufficient to show that \JΛyΛ exists, where (for the rest of this proof)
we write LL to mean \J0<a<Ω (note: 0 ^ a < Ω has been replaced by
0 < a < Ω).

Set u = (a\J (U«((α U V») Π (δ U c)))) Π (b U (U ((δ U yΛ) Π (α U c))))
(this union exists since, by hypothesis, [0, b U c] and [0, a [j c] are upper
^-complete). We observe that u ^ yβ for all 0 < β < β since each factor
of t& has this property: for fixed ft α U (\J»((a U 2/Λ) Π (6 U c))) ^
α U ( N 2/β) n ( ί ) U c ) ) = ( α U % ) n ( α U δ U c ) = α U | / β ^ %.

We shall show that u is the desired union \Jaya. It is clearly suf-
ficient to show for every w: if u ^ w ^ j / Λ for all 0 < α < Ω then ί ί ^ w .

Since a U 2/* ^ α U w and 6 U ya ^ 6 U ^ for all 0 < a < Ω,

u ^ (α U ((a U w) Π (6 U c))) Π (6 U ((6 U w) f) (a U c)))

= (α U w) Π (δ U w) = w U (α Π (6 U w)) .

It is therefore sufficient to show that a Π (δ U w) ^ w. We shall show
that a Π (δ U u) = 0; this will imply:

Now 6 U ^ = (αUδU(U»(αU2/*)Π(δUc))j)Π(δU(U«((δU2/*)Π(αUc)))),

α (Ί (δ U w) = a Π (δ U (U«((δ U yΛ) Π ( α U c))))

= a Π ((δ Π (α U c)) U (U«((δ U yω) Π (a U c))))

= α Π (U«((δ U yΛ) Π (a U c))) .

Since u (a, c, )&) is assumed to hold we need only show:

α Π (U(((δ U yΛ) Π (α U c))\a = alf , am)) = 0

for every finite set of indices 0 < ax < a2 < < am < Ω.
Hence it is sufficient to show that

α Π (δ U (U(l/«|α - «!, •-,«*))) - 0 ,
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and so it is sufficient to show that

(3.2) ( α U δ ) Π (U(V.|α = «i, , O ) = 0 .

For this purpose, we note: ya Π (\J(Vβ10 ̂  β < a) = 0 for all 0 < a < β.
This implies that {t/α | a = 0, α ,̂ , am} is an independent set and hence
Vo Π (U(l/«lα = αi> '•"> #«)) = 0. This implies (3.2) since the left side
of (3.2) is ^ y0. Thus Lemma 3.1 is proved.

COROLLARY 1. Suppose that [0, a{ U α/| ΐs upper ^-complete for
i, j = 1, , m for some finite integer m and suppose that u(aif ah ^ )
holds whenever i < j . Then [0, a1 U U αm] is upper ^-complete.

Proof. If m rg 2 the conclusion is part of the hypotheses. Suppose
that m > 2 and that the Corollary is known to hold with m — 1 in place
of m; then Lemma 3.1 can be applied (with a = al9 b = α3 U U« f f l

and c = α2) to show that the Corollary holds for m itself. By induction
on m, the Corollary is established.

COROLLARY 2. Suppose that [0, a{ U αy] is upper ^-complete and
upper ^-continuous for i, j = 1, , m for some finite integer m. Then
[0, ax U * U am] is upper ^-complete and upper ^-continuous.

Proof. Since upper ^-continuity of [0, a{ U ad] implies that u(aif ah \&)
holds, Corollary 1 shows that [0, aτ U U am] is upper ^-complete. The
upper ^-continuity then follows from [1, Theorem 4.3].

LEMMA 3.2. Suppose that α = α 1 U α 2 U U am and ai<a1 (J U a>i-i
for 1 < i ^ m. Then a can be expressed in the form:

(3.3) ax U a2 (j U ΰn for some n ^ m and elements α2, , dn such
that άi < ax for all 1 < i ^ n.

Moreover a2 may be taken to coincide with a2 if ax Π a2 = 0.

Proof. Lemma 3.2 holds trivially if m = 1 and also if m = 2 and
αj fl α2 = 0. We may therefore suppose (by induction) that m > 1 and
that b = a1U U αm-i has the form (3.3).

We can replace am by [am — (am Π b)] since the hypotheses of Lemma
3.2 continue to hold and the conclusion is not changed. After this change,

am Π b = am Π (a, (j a2 \J . . . \j an) = 0 .

Since αm < αx lj ά2 LJ U an there is a perspectivity mapping <£> of
[0, am] with 9>(αm) ̂  6. Then
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where

<P(a>m.i) = <P(<*>m) Γl ax ,

and for 1 < i <; n,

ψiflm.i) = [(?>(« J Π (a, (j a2 \J ύ ά<))

- (9>(α«) Π (αx ύ α2 u 0 α ^ ) ] .

Obviously, αW i l < aτ. If i > 1 then αW t i ~ 9>(α*,<); ?>(»».*) ^ α»; ά< < αx;
and αw > ί Π (?>(««,») U α» U αx) = 0; these facts imply that amΛ < a± (use
(2.2) of [1]). The conclusion of Lemma 3.2 now follows at once.

LEMMA 3.3, Suppose that

(i) a = G&! U α2 U U am for some finite m Ξ> 2,
(ii) α 2 ~ α 2 ,
(iii) α̂  < αi U U α*-i /or 2 < i ^ m,
(iv) [0, αx U α2] is upper ^-complete,
( v ) ^(αx, α2, 5rt) holds.

Then [0, α] is upper ^-complete.

Proof. Applying Lemma 3.2, and using a new m and new elements
&3, # ,^m we may suppose that (i), (iii) hold in the strengthened form:
a — ax 0 a2 0 LJ m̂ and a{ < «! for 2 < i ^ m.

Suppose that l ^ ΐ < i ^ m . If i =̂ 2 then ad < α2 (because of (ii))
and there is a perspectivity mapping φ of [0, a{ U αy] with 9?(α<) ^ di
and 9>(αy) ^ a2. Hence [0, a{ U dj] is upper ^-complete and u(aif ajf ^ )
holds in this case.

If i = 2 there is a perspectivity mapping <ρ of [0, α2 U a,j] with ^(α2) —
^i, φ(p>ύ) — ao'y the result for [0, ax U α̂  ] obtained previously now implies:
[0, α2 U cίj] is upper ^-complete and u(a2, ajf ^ ) holds.

Corollary 1 to Lemma 3.1 now applies to these elements alf •• , α w

and this completes the proof of Lemma 3.3.

COROLLARY. Suppose that the hypotheses (i), (ii), (iii), of Lemma 3.3
hold and suppose also that

(vi) [0, aλ U a2] is upper ^-complete and upper ^-continuous.

Then [0, a] is upper ^-complete and upper ^-continuous.

Proof, (vi) implies (iv), (v). Hence [0, a] is upper ^-complete by
Lemma 3.3. Upper ^-continuity then follows from [1, Theorem 4.3].

LEMMA 3.4. (Additivity of lower ^-continuity). Suppose that
[0, ^ U ••• UftJ is lower ^-complete and that [0, a{] is lower ^ -
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continuous for ί — 1, , m. Then [0, ax (J U am] is lower ^-continuous*

Proof. We may assume that {al9 , am} is an independent set
(replace a{ by [a{ — (a{ Π (aλ U U a*-i))] for 2 ^ i ^ m).

Then [αx, αx U α2] is lower ^-continuous since it is lattice isomorphic
to [0, α2] under the mapping: x —> x Π a2. Similarly [α2, αx U α2] is lower
^-continuous. By the dual of [1, Theorem 4.3], [0, ax U a2] — (\a1 Π α2,
«i U α2]) is lower ^-continuous. Lemma 3.4 follows by induction on m.

LEMMA 3.5. Suppose that each of [0, a U 6], [0, 6 U c), [0, α U c ] is
lower ^-complete and suppose that l(a, c, ^ ) holds. Then [0, a U & U cj
is lower ^-complete.

Proof. We may suppose that {α, b, c) is an independent set, for if
c, b are replaced by [c — (a Π c)] and [6 — (b Π (α U c))] respectively the
hypotheses of Lemma 3.5 continue to hold (l{a, clf ^ ) is equivalent to-
l(a, c, ^ ) if a U cλ = a U c) and the conclusion is not changed.

Now set B = aU c, C = b U α, A = δ U c, and 1 = α U b U c. We
have: [A Π -B, 1](— [c, a U & U c]) is lower ^-complete since it is lattice
isomorphic to [0, a U b] under the mapping x—+x Π (a U 6). Similarly
each of [ 5 f | C , l ] , [CΠ A, 1] is lower fc$-complete.

We can now show that [0, a U b U c] ( = [A Π ^ Π C, 1]) is lower fc$-
complete (by applying the dual of Lemma 3.1) if we can show:

(3.4) Whenever Xa^Cf)Afor ae I (with T^ ^ ) and C U (Π(^β \βeF)) =
1 for all finite Fa 7, then C U (Γ\(Xa\ae I)) = 1.

Since C Π A = 6 and C — α U b, (3.4) can be rewritten:

(3.4)' Whenever Xa^b for a e I (with Γ ^ ) and αU {f\(Xβ\β € F))=
α U 6 U c /or all finite F c I then a [j (C[(Xa\a e I)) = a [j b [j c.

Suppose that the hypotheses of (3.4)' hold and set xa = Xa Π (a U c).
Then xω^a{j c for all a and

= a U ( ( Π ί - ^ l ^ e ί 7 ) ) n (α U c)) = (α U ( Π (Xβ\βeF))) Π ( α U c )

= (a U δ U c) Π (α U c) = α U c .

Since l(a, c, ^ ) holds, it follows t h a t

α U (Π(»«»l«e/)) = α U c α U (fl ( X I ^ e / ) Π (α U c)) = a U c

a \J (Γi(XΛ\aeI)) ^ a \J c (hence = α U b U o) .

This means: (3.4)' does hold. This completes the proof of Lemma 3.5*
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COROLLARY 1. Suppose that [0, a{ U cίj] is lower ^-complete for
i,j = 1, - ,m.

Suppose also that l(aif ah ^ ) holds for all i<j. Then [0, aλ U U am]
is lower ^-complete.

Proof. This follows from Lemma 3.5 by induction on m, just as
Corollary 1 to Lemma 3.1 followed from Lemma 3.1.

COROLLARY 2. Suppose that [0, a{ U a \ is lower ^-complete and
lower ^-continuous for i, j = 1, , m. Then [0, aλ U U am] is lower
^-continuous.

Proof. Since lower ^-continuity of [0, a{ U αy] implies that l(aif ah ^ )
holds, Corollary 1 shows that [0, ax U U αm] is lower ^-complete.
The lower ^-continuity of [0, a± U Uαm] then follows from Lemma 3.4.

LEMMA 3.6. Suppose that

{ i) α = aλ U tt2 U U am for some finite m ^ 2,
(ii) α2 - ax,
(iii) α̂  < αx U U »<_! for 2 < i ^ m,
(iv) [0, αx ύ 0̂2] is lower ^-complete,
(v) £(<&!, α2, ̂ ) holds.

Then [0, α] is lower ^-complete.

COROLLARY. Suppose that (i), (ii), (iii) /̂ oid απcί αiso

(vi) [0, aλ 0 α2] is Zo^βr ^-complete and lower ^-continuous.

Then [0, a] is lower ^-complete and lower ^-continuous.

Proof. Lemma 3.6 and its Corollary follow from Lemma 3.5 and
Lemma 3.4 just as Lemma 3.3 and its Corollary followed from Corollary
1 to Lemma 3.1 and [1, Theorem 4.3],

THEOREM 3.1. Suppose that each o/[0, a{ U a3 \ is an )ft-von Neumann-
geometry (respectively a von Neumann-geometry) for i,j — l, « ,m.
Then [0, aλ U U αm] is an #-von Neumann-geometry (respectively a
von Neumann geometry).

Proof. This follows from Corollary 2 to Lemma 3.1 and Corollary
2 to Lemma 3.5.

COROLLARY 1. Suppose that

< i) a = ax U a2 U U am for some finite m ^ 2,
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(ii) α2 ~ a19

(iii) α< <; αi U U di-i for 2 < i ^m,
(iv) [0, ax 0 a2) is an ^-von Neumann-geometry (respectively a von,
Neumann-geometry).

Then [0, α] is an )&-von Neumann-geometry, respectively a von Neumann-
geometry.

Proof. This follows from the Corollary to Lemma 3.3 and the
Corollary to Lemma 3.6.

COROLLARY 2. Suppose that & is an #-von Neumann-ring (re-
spectively a von Neumann-ring). If R^. has a basis xu x29 , xm such
that x2 ~ xx and x{ < xλ for 2 < i ^ m, then &2 is an #-von Neumann-
ring (respectively9 a von Neumann-ring).

Proof. By hypothesis, the unit element of the lattice R^ is the
union xλ LJ [j xm. The unit element of R^f with £S = ̂ 2 , can be
represented as a union xx LJ L) xm U Vi U U l/» with ]/i — xi and
hence ^ < xx for 1 ̂  i ^ m. Since [0, ̂  U x2] is an ^-von Neumann
geometry (respectively a von Neumann geometry) along with R^y Corollary
1 applies and this completes the proof of Corollary 2.

COROLLARY 3. Suppose that & and &% are both ̂ -von Neumann-
rings (respectively von Neumann-rings). Then &n is an ^-von
Neumann-ring (respectively a von Neumann-ring) for all finite n.

Proof. If n > 2 the unit element of Ry, with S? = ̂ » , can be
expressed as xx U x2 U U %n where xλ is the unit element of R^f

Xi ~ a?! for all i, and [0, a?! ύ #2] = JB^ . Theorem 3.1 applies and this
completes the proof of Corollary 3.

REMARK. Let & be the ring of sequences x — (xn) with all xn complex
numbers and all but a finite number of xn real, with componentwise
addition and multiplication; this example was given by Kaplansky [3,
page 526]. This <% is a von Neumann-ring but ^ ? 2 is not even upper
^-complete.

DEFINITION 3.1. If L is a relatively complemented modular lattice,
then an element a is called Boolean (with respect to L) if b± ~ b2f bλ rg a
together imply bλ — δ2; a is called the Boolean part of L (necessarily
unique if it exists)2 if a is Boolean and at ^ a for every Boolean ax.

2 This is an abuse of language: properly, [0, a] should be called the Boolean part of
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LEMMA 3.7. Suppose that L is a relatively complemented modular
lattice. If (a, b)P holds then for every c in L, c (Ί (a U b) — (c Π a) U (c Π δ)
and [0, a U b] is the direct sum o/[0, α] and [0, δ]. On the other hand
if a is Boolean then

( i ) b ^ a implies that b is Boolean,
(ii) b Π a = 0 implies that (6, a)P holds,
(iii) b ^ a implies that the relative complement [b — a] is unique,
(iv) a Π (b U c) = (a Π 6) U (a Π c) /or αZZ 6, c m L,
(v) [0, a] is a Boolean algebra.

Proof. Suppose that (α, b)P holds and set d = [(c Π (α U δ)) —
((c Π α) U (c n 6))], da = (d U δ) Π α, dδ = (d U α) Π δ. Then d ^ α U δ,
d Π α = d Π b = 0, dα ύ d = (d U b) n (d U α) = d6 0 d, so da ~ db.
Since da ^ a, db tίb and (α, δ)P holds, we must have: da = 0; 6 = dα U δ =
d U 6; d ^ 6; hence d = 0, c Π (α Uδ) = (c n α) U (c Π δ). If c ̂  α U δ
then c — (c n α) U (c Π δ); and if c = ^ U c2 with ^ ^ α, c2 ̂  δ then
c Π a = cx U (ca Π δ Π α) = cλ U 0 = cx, c ίΊ δ = c2. This proves that
[0, α- U δ] is the direct sum of [0, a] and [0, δ].

(i) and (ii) are obvious from the definition of Boolean element.
(ii) asserts that a is in the centre of L as defined in [1, (2.5)]. But

if a is in the centre of L and b is any element in L with 6 ^ a then
a is in the centre of [0, δ], hence [b — a] is uniquely determined (use
[1, (2.6)]). This proves (iii).

If 6, c are arbitrary elements in L, set bλ — [b — (a Π δ)], cλ =
[c — (a Π c)]. Since α fl ί)i = α ίl c2 = 0 and a is in the centre of L, it
follows that (α, δx)P, (α, cx)P, hence (α, δx U c J P (use [1, (2,6)]); therefore
α Π (δx U Ci) = 0. By the modular law

a Π (δ U c) = a Π (δx U cx U (a Π δ) U (α Π c))

= (α Π 6) U (α Π c) U (α Π (δx U cx))

and hence (iv) holds.
Thus [0, a] is a distributive complemented lattice, equivalently: a

Boolean algebra. This proves (v).

LEMMA 3.8. Suppose that L has a unit element l = a1[Ja2 U U am

with m ^ 2, α2 ~ αx, α̂  < ax for 2 < i ^ m and aλ Π a2 — 0. Γ/̂ ew the
Boolean part of L exists and is 0.

Proof. By Lemma 3.2 we may assume that 1 = ^ 0 # (j am with
m Ξg 2, α2 ̂  αx and α̂  < αx for 2 < i ^ m.

To prove Lemma 3.8 we may suppose that a Φ 0 and we need only
exhibit elements blf δ2 such that bx ^ α, bx~ δ2, and bx Φ δ2.
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If a{ Π a Φ 0 for any i it suffices to choose this element as bλ since
the relations ax ~ a2 and a{ < αx if i Φ 1 imply δx — δ2 for some δ2 =£ bλ

(even δx ΓΊ δ2 = 0).
On the other hand, if a{ Π a = 0 for all i, set δx = (αx U U ̂ ) (1 α

where i is the smallest integer for which this element is different from
0 (necessarily 1 < i S m) and set b2 — ((α2 U U di-i) L) δx) Π α*. Then
δx~δ2 since (aι U Uα»-i) LJ δx = (αx U U a^) LJ δ2; and bλ Φ b2 since
δ2 ^ α{ and bλ Π α< ̂  α Π a{ = 0. This completes the proof of Lemma 3.8.

LEMMA 3.9. Suppose that L is an upper complete complemented
modular lattice and let a be the union of all Boolean elements in L.
Then a is the Boolean part of L.

Proof. We need only show that a is Boolean, that is, we may suppose
that δ ̂  α, that ψ is a perspective mapping of [0, δ], that δ Φ φ(b) and
we need only derive a contradiction. By replacing δ by [δ — (δ Γt φ(b))]
we may suppose δ Φ 0 and δ Π φ(b) = 0.

Now for every c: (φ(b Π c)) - (ί) Π c) and (φ(δ Π c)) Π (δ Π c) = 0.
If c is Boolean this implies: δ Π c — 0, and hence (since c is Boolean)
(b,c)P holds. It follows from [1, formula (2.6)] that (b,a)P holds,
contradicting the fact that δ Φ 0 and δ ̂  α. This contradiction proves
Lemma 3.9.

THEOREM 3.2. Suppose that L is a relatively complemented modular
lattice and

( i ) a = a0 U a± U a2 U
 β ' [J am for some finite m ^ 2,

(ii) (α0, αx U U αm)P feoZds,
(iii) α2 — αj, α2 Π aλ = 0,
(iv) a{ < αx U U αi-i /or 2 < i ^ m,
(v) φ is a perspective mapping of [0, δ] with φ(b) <S α.

Let 7Γ denote one of the properties: to be upper ^-complete and upper
^-continuous, or to be lower ^-complete and lower ^-continuous. Then
[0, a U δ] has property π if both of [0, aλ U a2] and [0, α0 U φ~\a0 f] φ(b))]
have property π; if a0 is the Boolean part of [0, a] and [0, δ] has a
Boolean part δ0, it is sufficient that [0, ax U a2] and [0, a0 U δ0] should
both have property π.

Proof. Since (α0, αx U U αm)P holds, Lemma 3.7 shows that
φ(b)=φ(b1) ύ φ(b2) where b^φ^a, n 9?(δ)) and 6a=9?"1((a1 U U αm) Π ^(δ)).
Then (α0 U ^ ^ U U α m U δ2)P holds (use [1, (2.6)]).

By Lemma 3.7, [0, a (J δ] is the direct sum of [0, a0 U δj and
[0, αj U U am U δ2] and has property TΓ if each of the summands has it.
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Since b2 < ax U U amf [0, a± U U α m U b2] has property π if
[0, a± U α2] has it, by Lemma 3.3 and its Corollary and Lemma 3.6 and
its Corollary.

If a0 is the Boolean part of [0, a] then φφ) n &0 is Boolean with
respect to [0, α], a fortiori Boolean with respect to [0, φφ)]. Thus, 6X is
Boolean with respect to [0,6], If [0, b] has a Boolean part bQ then
ii ^ &0 and α0 U bλ <£ α0 U ί>0? hence [0, α0 U &i] has property π if [0, a0 U &0]
has it.

This proves all parts of Theorem 3.2.

REMARK. If & is a von Neumann ring then ^ has a unique
decomposition as a direct sum & — & 0 & such that R^ is the Boolean
part of R^ and R^ has a basis α̂ , x2, x3 with x2 ^ #i and x3 < Xi. Then
Theorem 3.2 and Corollary 2 to Theorem 3.1 apply and show that ^ ? 2

is a von Neumann ring if and only if &2 is a von Neumann ring (for
details see [2]).
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