ON UNIMODULAR MATRICES

Isidore Heller and Alan Jerome Hoffman
ON UNIMODULAR MATRICES

I. HELLER AND A. J. HOFFMAN

1. Introduction and summary. For the purpose of this note a matrix is called unimodular if every minor determinant equals 0, 1 or −1. I. Heller and C. B. Tompkins [1] have considered a set

\[S = \{u_i, v_j, u_i + v_j, u_i - u_{i+1}, v_j - v_{j+1}\} \]

where the \(u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n \) are linearly independent vectors in \(m + n = k \)-dimensional space \(E \), and have shown that in the coordinate representation of \(S \) with respect to an arbitrary basis in \(E \) every nonvanishing determinant of \(k \) vectors of \(S \) has the same absolute value, and that, with respect to a basis in \(S \), the vectors of \(S \) or of any subset of \(S \) are the columns of a unimodular matrix. For the purpose of this note the class of unimodular matrices obtained in this fashion shall be denoted as the class \(T \).

A. J. Hoffman and J. B. Kruskal [4] have considered incidence matrices \(A \) of vertices versus directed paths of an oriented graph \(G \), and proved that:

(i) if \(G \) is alternating, then \(A \) is unimodular;

(ii) if the matrix \(A \) of all directed paths of \(G \) is unimodular, then \(G \) is alternating. The terms are defined as follows. A graph \(G \) is oriented if it has no circular edges, at most one edge between any given two vertices, and each edge is oriented. A path is a sequence of distinct vertices \(v_1, v_2, \ldots, v_k \) of \(G \) such that, for each \(i \) from 1 to \(k - 1 \), \(G \) contains an edge connecting \(v_i \) with \(v_{i+1} \); if the orientation of these edges is from \(v_i \) to \(v_{i+1} \), the path is directed; if the orientation alternates throughout the sequence, the path is alternating. A loop is a sequence of vertices \(v_1, v_2, \ldots, v_k \), which is a path except that \(v_k = v_1 \). A loop is alternating if successive edges are oppositely oriented and the first and last edges are oppositely oriented. The graph is alternating if every loop is alternating. The incidence matrix \(A = (a_{ij}) \) of the vertices \(v_i \) of \(G \) versus a set of directed paths \(p_1, p_2, \ldots, p_k \) of \(G \) is defined by

\[a_{ij} = \begin{cases} 1 & \text{if } v_i \text{ is in } p_j \\ 0 & \text{otherwise} \end{cases} \]

The class of unimodular matrices thus associated with alternating graphs shall be denoted by \(K \).

I. Heller [2] and [3] has considered unimodular matrices obtained...
by representing the edges (interpreted as vectors) of an n-simplex in terms of a basis chosen among the edges (in graph theoretical terms: the edges and vertices of the simplex form a complete graph G; a basis is a maximal tree in G, that is, a tree containing all vertices of G), and has shown that:

(i) the matrix representing all edges of the simplex is unimodular and maximal (i.e., will not remain unimodular when a new column is adjoined);

(ii) the columns of every unimodular matrix of n rows and n(n + 1) columns represent the edges of an n-simplex.

The class of (unimodular) matrices whose columns are among the edges of a simplex shall be denoted by H. H can also be defined as a class of incidence matrices: A matrix A belongs to H if there is some oriented graph F without loops such that A is the incidence matrix of the edges of F versus a set of path in F. That is,

\[a_{ij} = \begin{cases} 1 & \text{if edge } e_i \text{ is in path } p_j \\ -1 & \text{if } -e_i \text{ is in } p_j \\ 0 & \text{otherwise} \end{cases} \]

In [2] it has further been shown that:

(iii) there exist unimodular matrices which do not belong to H;

(iv) the classes H and T are identical.

The purpose of the present note is to show that the class K is identical with the set of nonnegative matrices of H.

2. Theorem. If a matrix A of n rows and m columns belongs to K (i.e., A is the incidence matrix of the n vertices of some alternating graph G versus a set of m directed paths in G), then A belongs to H (i.e., there is some n-simplex S and a basis B among its edges such that the columns of A represent edges of S in terms of B). Conversely, every non-negative matrix of H belongs to K.

3. Notation. An oriented graph is viewed as a set

\[R = V \cup E, \]

where V is the set of vertices \(A_1, A_2, \ldots, A_n \), and E is the set of oriented edges \(e_e \), that is certain ordered pairs \((A_i, A_j) \) with \(j \neq i \) of elements of V, such that at most one of the two pairs \((A_i, A_j) \), \((A_j, A_i) \) is in E.

For brevity of notation we define

\[[A_i, A_j] = \{(A_i, A_j), (A_j, A_i)\}. \]

The origin and endpoint of an edge \(e \) are denoted by \(\rho e \) and \(\sigma e \):

\[\rho(A, B) = A, \quad \sigma(A, B) = B, \]
If A and B are vertices of R, the relation $A < B$ (\(A\) is immediate predecessor of B), also written as $B > A$, is defined by
\begin{equation}
A < B \iff (A, B) \in R.
\end{equation}

Similarly, if a, b are edges of R,
\begin{equation}
a < b \iff \sigma a = \rho b.
\end{equation}

A subset V' of vertices of R defines a subgraph of R
\begin{equation}
R(V') = V' \cup E'
\end{equation}
where $(A, B) \in E' \iff A \in V', B \in V', (A, B) \in E$.

4. \textit{Proof}. Using the graph-theoretical definition of the class H, the first half of the theorem shall be proved by showing that to each alternating graph G there is an oriented loopless graph F such that the K-matrices associated with G are among the H-matrices associated with F.

A column of a K-matrix is the incidence column K_p of the vertices of G versus a directed path p in G; a column of an H-matrix is the incidence column H_q of the edges of F versus a path q in F. For given G it will therefore be sufficient to show the existence of an F such that
\begin{equation}
to each directed path p in G there is a path $q = \varphi(p)$ in F such that $K_p = H_q$.
\end{equation}

This will be shown by constructing an F and a mapping φ of the set of vertices of G onto the set of edges of F in such a way that φ satisfies (4.1), or equivalently, that φ preserves the relation defined in (3.4) and (3.5), that is, for any two distinct vertices A, B of G,
\begin{equation}
A < B \text{ (in } G) \implies \varphi(A) < \varphi(B) \text{ (in } F).
\end{equation}

The construction of F and φ shall now be carried out under the assumption that G is connected. If G is not connected, the same construction can be applied to each component of G, yielding an F with an equal number of components.

If G has n vertices, take as the vertices of F a set of $n + 1$ distinct elements P_0, P_1, \ldots, P_n.

The n edges e_1, e_2, \ldots, e_n of F are defined successively as follows.

First, choose an arbitrary vertex A_1 in G, define
\begin{equation}
\varphi(A_1) = e_1 = (P_0, P_1),
\end{equation}
and note that:
\begin{itemize}
 \item[(i)] the subgraph $G_1 = G(A_1)$, consisting of the one vertex A_1 of G, is, trivially, connected;
\end{itemize}
(ii) the graph \(F_x = \{P_0, P_u(P_0, P_x)\} \) is connected;
(iii) with respect to \(G_x \) and \(F'_x \), \(\varphi \) trivially satisfies (4.2).

Then, assuming \(A_v \in G \) already chosen and \(e_v = \varphi(A_v) \) defined for \(v = 1, 2, \ldots, k \) in such a manner that \(G_k = G(A_1, A_2, \ldots, A_k) \) and \(F_k = \{P_0, P_1, \ldots, P_k, e_1, \ldots, e_k\} \) are each connected and \(\varphi \) satisfies (4.2) with respect to \(G_k \) and \(F_k \), choose \(A_{k+1} \in G \) such that

\[
(A_i, A_{k+1}) \cap G \neq 0
\]

for some \(i \leq k \) and define

\[
\varphi(A_{k+1}) = e_{k+1} = \begin{cases}
(\sigma e_i, P_{k+1}) & \text{when } (A_i, A_{k+1}) \in G \\
(P_{k+1}, \rho e_i) & \text{when } (A_{k+1}, A_i) \in G
\end{cases}
\]

noting that this definition depends on the choice of \(i \) since more than one \(i \) may satisfy (4.4).

Obviously, \(G_{k+1} \) and \(F_{k+1} \) are each connected.

To show that \(\varphi \) satisfies (4.2) with respect to \(G_{k+1} \) and \(F_{k+1} \), let \(A_r < A_s \) in \(G_{k+1} \).

If \(r \leq k \) and \(s \leq h \), (4.2) is satisfied according to the induction's hypothesis.

For \(\{r, s\} = \{i, k + 1\} \), (4.2) is satisfied by definition (4.5). Namely: for \(r = i \), \(s = k + 1 \), (4.5) defines \(e_{k+1} = (\sigma e_i, P_{k+1}) \), hence \(\sigma e_i = \rho e_{k+1} \), which by (3.5) means \(e_i < e_{k+1} \); similarly for \(s = i \), \(r = k + 1 \), (4.5) defines \(e_{k+1} = (P_{k+1}, \rho e_i) \), hence \(\sigma e_{k+1} = \rho e_i \), which means \(e_{k+1} < e_i \).

There remains the case \(\{r, s\} = \{j, k + 1\} \), \(j \neq i, j \leq k \), with

\[
(A_j, A_{k+1}) \cap G_{k+1} \neq 0,
\]

that is either \(A_j < A_{k+1} \) or \(A_{k+1} < A_j \) in \(G_{k+1} \).

In this case \(A_{k+1} \), which by (4.4) has an edge in common with \(A_i \), now also has an edge in common with \(A_j \neq A_i \), thus connecting these two distinct vertices of \(G_k \) by the path

\[
(A_i, A_{k+1}, A_j)
\]

in \(G_{k+1} \) but outside \(G_k \).

On the other hand, by the induction's hypothesis, \(G_k \) is connected. Hence \(A_i \) and \(A_j \) are connected by a path in \(G_k \)

\[
(A_i, A_{i_1}, A_{i_2}, \ldots, A_{i_\lambda}, A_j)
\]

(\(\lambda = 0 \) not a priori excluded).

The paths (4.7) and (4.8) combine to the loop

\[
(A_{k+1}, A_i, A_{i_1}, A_{i_2}, \ldots, A_{i_\lambda}, A_j, A_{k+1})
\]

in \(G_{k+1} \), which is obviously also a loop in \(G \).
Since \(G \) is alternating, the loop (4.9) must be alternating. This implies that the number of vertices is even, hence \(\lambda = 2v + 1 \), and that the orientation is either

\[
A_{k+1} < A_i > A_{t_1} < A_{t_2} > \cdots < A_{t_{2v}} > A_{t_{2v+1}} < A_j > A_{k+1}
\]

or the opposite.

Now assume first

\[
A_{k+1} < A_j ,
\]

which implies the orientation (4.10), and consider that part of the loop which is in \(G_k \), namely the path (4.8)

(4.10) and the induction’s hypothesis that, relative to \(G_k \) and \(F_k \), \(\varphi \) satisfies (4.2), imply

\[
e_i > e_{t_1} < e_{t_2} > \cdots < e_{t_{2v}} > e_{t_{2v+1}} < e_j ,
\]

hence

\[
\rho e_i = \sigma e_{t_1} = \rho e_{t_2} = \sigma e_{t_3} = \cdots = \rho e_{t_{2v}} = \sigma e_{t_{2v+1}} = \rho e_j .
\]

The definition (4.5) of \(e_{k+1} \), in conjunction with \(A_{k+1} < A_i \) from (4.10), implies

\[
\sigma e_{k+1} = \rho e_i .
\]

This together with (4.13) yields

\[
\sigma e_{k+1} = \rho e_j , \quad \text{that is} \quad e_{k+1} < e_j ,
\]

which proves that assumption (4.11) implies (4.15).

Similarly, the assumption \(A_{k+1} > A_j \) yields \(e_{k+1} > e_j \), by reversing the relation \(<\) and interchanging \(\rho \) and \(\sigma \) in the above argument.

This completes the proof that to any connected alternating graph \(G \) there exists a connected oriented graph \(F \) and a mapping \(\varphi \) of the edges of \(F \) onto the vertices of \(G \) that preserves the relation \(<\), that is, for any two edges \(a, b \) of \(F \)
(4.16) \[a < b \implies \psi(a) < \psi(b) . \]

This is achieved by the following simple construction.

If \(F \) has \(n \) edges \(e_1, e_2, \ldots, e_n \), choose a set of \(n \) elements \(A_1, A_2, \ldots, A_n \) as the vertices of \(G \), define \(\psi \) by

(4.17) \[\psi e_i = A_i , \]

and define the edges of \(G \) by

(4.18) \[(A_i, A_j) \in G \implies e_i < e_j , \]

that is, \(G \) shall have an edge oriented from \(A_i \) to \(A_j \) if and only if \(\sigma e_i = \rho e_j \).

Obviously \(\psi \) preserves the relation \(< \), since (4.18) is equivalent to

(4.19) \[A_i < A_j \iff e_i < e_j . \]

Note that \(< \) is also preserved by the inverse of \(\psi \), that is, in the transition from \(G \) to \(F \).

Note further that \(G \) is oriented (in the sense of the definition given in [4] and cited in §1 of present note), that is:

(a) each edge of \(G \) is oriented, since the edges of \(G \) have been defined by (4.18) as oriented edges;

(b) \(G \) has no circular edge, since \((A_i, A_i) \in G \) for some \(i \) would imply \(e_i < e_i \), or equivalently \(\sigma e_i = \rho e_i \), that is, \(e_i \) a circular edge in \(F \), contradicting the assumption on \(F \);

(c) \(G \) has at most one edge between any given two vertices: \((A_i, A_j) \in G \) and \((A_j, A_i) \in G \) for some pair \(i, j \), would imply \(e_i < e_j \) and \(e_j < e_i \), that is \(\sigma e_i = \rho e_j \) and \(\sigma e_j = \rho e_i \), hence \(e_i \) and \(e_j \) would form a 2-loop (with the vertices \(\rho e_i, \sigma e_i \)), again contradicting the assumption on \(F \).

Finally, to show that \(G \) is alternating, note that, by (4.17) and (4.19), \(G, F \) and \(\psi = \psi^{-1} \) satisfy the condition (4.1). Thus the incidence matrices (of vertices versus directed paths) associated with \(G \) are among the incidence matrices (edges versus paths) associated with \(F \), and hence unimodular. Especially then, the incidence matrix of the vertices versus all the directed paths of \(G \) is unimodular, which, by the Hoffman-Kruskal Theorem (Theorem 4 in [4], cited in §1 of this note), implies that \(G \) is necessarily alternating.

This completes proof of the theorem.

It is worth noting that the last part of the proof (namely that \(G \) is alternating) can easily be established without using the result of [4] (which contains more than is needed here).
REFERENCES

STANFORD UNIVERSITY
IBM RESEARCH CENTER
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Tsuyoshi Andô, *On fundamental properties of a Banach space with a cone* 1163
Sterling K. Berberian, *A note on hyponormal operators* .. 1171
Errett Albert Bishop, *Analytic functions with values in a Frechet space* 1177
(Sherman) Elwood Bohn, *Equicontinuity of solutions of a quasi-linear equation* 1193
Andrew Michael Bruckner and E. Ostrow, *Some function classes related to the class of convex functions* ... 1203
J. H. Curtiss, *Limits and bounds for divided differences on a Jordan curve in the complex domain* ... 1217
P. H. Doyle, III and John Gilbert Hocking, *Dimensional invertibility* 1235
David G. Feingold and Richard Steven Varga, *Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem* 1241
Leonard Dubois Fountain and Lloyd Kenneth Jackson, *A generalized solution of the boundary value problem for y'' = f(x, y, y')* 1251
Robert William Gilmer, Jr., *Rings in which semi-primary ideals are primary* 1273
Ruth Goodman, *K-polar polynomials* ... 1277
Israel Halperin and Maria Wonenburger, *On the additivity of lattice completeness* ... 1289
Isidore Heller and Alan Jerome Hoffman, *On unimodular matrices* 1321
Robert G. Heyneman, *Duality in general ergodic theory* 1329
Charles Ray Hobby, *Abelian subgroups of p-groups* .. 1343
Kenneth Myron Hoffman and Hugo Rossi, *The minimum boundary for an analytic polyhedron* ... 1347
Adam Koranyi, *The Bergman kernel function for tubes over convex cones* 1355
Pesi Rustom Masani and Jack Max Robertson, *The time-domain analysis of a continuous parameter weakly stationary stochastic process* 1361
William Schumacher Massey, *Non-existence of almost-complex structures on quaternionic projective spaces* ... 1379
Deane Montgomery and Chung-Tao Yang, *A theorem on the action of $\text{SO}(3)$* 1385
Ronald John Nunke, *A note on Abelian group extensions* 1401
Carl Mark Pearcy, *A complete set of unitary invariants for operators generating finite W^*-algebras of type I* ... 1405
Duane Sather, *Asymptotics. III. Stationary phase for two parameters with an application to Bessel functions* ... 1423
J. Śladkowska, *Bounds of analytic functions of two complex variables in domains with the Bergman-Shilov boundary* ... 1435
Joseph Gail Stampfli, *Hyponormal operators* .. 1453
George Gustave Weill, *Some extremal properties of linear combinations of kernels on Riemann surfaces* ... 1459
Edward Takashi Kobayashi, *Errata: “A remark on the Nijenhuis tensor”* 1467