ABELIAN SUBGROUPS OF p-GROUPS

CHARLES RAY HOBBY
ABELIAN SUBGROUPS OF \(p \)-GROUPS

CHARLES HOBBY

Let \(G \) be a finite \(p \)-group where \(p \) is an odd prime. We say that \(G \) has property \(A_n \) if every abelian normal subgroup of \(G \) can be generated by \(n \) elements. Further, if \(G_n \) denotes the \(n \)th element in the descending central series of \(G \), we say that \(G \) has property \(A_n(G_n) \) if every abelian subgroup of \(G_n \) which is normal in \(G \) can be generated by \(n \) elements. If \(G \) has property \(A_1 \), then \(G \) is cyclic. N. Blackburn [1] found all of the groups which have property \(A_2 \). It follows from the work of Blackburn that if \(G \) has property \(A_2 \) then the derived group of \(G \) is abelian and every subgroup of \(G \) has property \(A_2 \). We shall show that if \(G \) has property \(A_2 \) then every subgroup of \(G \) has property \(A_3 \).

We shall use the following notation: \(p \) is an odd prime; \(G = G_1 \supseteq G_2 \supseteq \cdots \) is the descending central series of \(G \); \(Z(G) = Z_1(G) \subset Z_2(G) \subset \cdots \) is the ascending central series of \(G \); \(G^{(k)} \) is the \(k \)th derived group of \(G \); \((H, K) \) is the subgroup of \(G \) generated by all elements \((h, k) = h^{-1}k^{-1}hk \) for \(h \in H, k \in K \); \(N \triangleleft G \) means \(N \) is normal in \(G \); \(N \subseteq G \) means \(N \) is properly contained in \(G \); \(C_o(N) \) is the centralizer of \(N \) in \(G \); \(H^p \) is the normal subgroup of \(G \) generated by \(H \); \(\varphi(G) \) is the subgroup generated by \(p \)th powers of elements of \(G \). \(\Omega(G) \) is the subgroup generated by all elements of order \(p \) in \(G \); \(\varphi(G) \) is the Frattini subgroup of \(G \); \(|G| \) is the order of \(G \).

If \(A \triangleleft G \) and \(A \subseteq C_o(A) \), then there is a subgroup \(B \) of \(C_o(A) \) such that \(B \triangleleft G \) and \([B; A] = p \). It follows that if a normal subgroup \(A \) of \(G \) is properly contained in an abelian subgroup \(C \) of \(G \), then \(A \) is properly contained in some abelian normal subgroup \(B \) of \(G \).

Lemma 1. Suppose \(A \triangleleft G \) and \(A \subseteq C \) where \(C \) is an elementary abelian subgroup of \(G \). Then \(G \) contains an elementary abelian normal subgroup \(B \) such that \(A \) is a subgroup of index \(p \) in \(B \).

Proof. Suppose \(G \) is a group of minimal order for which the lemma is false. Then \(C \subseteq G \), so there is a subgroup \(M \) of index \(p \) in \(G \) which contains \(C \). It follows that \(M \) contains an elementary abelian normal subgroup \(B_1 \) such that \([B_1; A] = p \). Set \(D = M \cap C_o(A) \). Then \(B_1 \triangleleft D \triangleleft G \).

Received May 29, 1962.
Since \((D, B_λ) \leq A\) and \((A A) = 1\), we have \(B_1 \leq Z_2(D) \triangleleft G\). Therefore \(B_2^g \leq Z_2(D)\). But \(Z_2(D)\) is a regular \(p\)-group for \(p > 2\), so \(B_1^g\) has exponent \(p\). Let \(B\) be a subgroup of \(B_1^g\) which is normal in \(G\) and which contains \(A\) as a subgroup of index \(p\). Clearly \(B\) is elementary abelian, so the lemma is true for \(G\).

Theorem 1. If \(G\) has property \(A_3\) then every subgroup of \(G\) has property \(A_3\).

Proof. Suppose \(G\) is a group of minimal order for which the theorem is false. Then \(G\) contains an elementary abelian normal subgroup \(A\) of order \(p^3\), and there is a subgroup \(M\) of index \(p\) in \(G\) which does not have property \(A_3\). It follows that \(M\) contains an elementary abelian normal subgroup \(D\) of order \(p^4\). Let \(N\) be a subgroup of order \(p^2\) in \(A\) which is contained in \(M\) and which is normal in \(G\). If we let \(C = C_0(N)\), then \([G: C] \leq p\), hence \([D: D \cap C] \leq p\). Thus we may suppose that \(N \leq D\), since otherwise we could choose a new subgroup \(D_i\) in \((C \cap D)N\) such that \(N \leq D_i \leq M\) and \(D_i\) is elementary abelian of order \(p^4\).

Since \(G\) has property \(A_3\) it follows from Lemma 1 that \(A\) contains the only elements of order \(p\) in \(C_0(A)\). Therefore \(N = D \cap C_0(A)\). It is easy to see that \([C: C_0(A)] \leq p^2\), thus \(C = DC_0(A)\). Therefore, if \(d \in D, g \in G\), then \(g^{-1}dg = d_c\) for some \(d_c \in D, c \in C_0(A)\). We recall that \(D\) is an abelian normal subgroup of \(M\), and that \(M \triangleleft G\). Thus \(D\) and \(g^{-1}Dg\) generate a group of class at most two; hence for \(p > 2\) the group generated by \(D\) and \(g^{-1}Dg\) has exponent \(p\). Thus it follows from \(g^{-1}dg = d_c\) that \(c^p = 1\), whence \(c \in A\). Therefore \(AD \triangleleft G\). But \(A \cap D = N\), so \([AD: D] = p\). Since \(D\) is not normal in \(G\), we must have \(AD = D(g^{-1}Dg)\) for some element \(g \in G\). Therefore \(D \cap g^{-1}Dg\) has order at least \(p^4\) and is contained in \(Z_2(AD)\) which is normal in \(G\). Thus \(AD\) must contain an element of order \(p\) which centralizes \(A\) and which does not belong to \(A\). This is a contradiction.

Theorem 2. If \(G\) has property \(A_n\) then \(G_n\) can be generated by \(n\) elements.

Proof. Suppose \(G\) is a group of minimal order for which the theorem is false. Then \(G_n\) is not abelian, so \(\phi(G_n) \neq 1\). Let \(Z\) be a group of order \(p\) in \(Z_1(G) \cap \phi(G_n)\). Then \(G_n\) and \((G/Z)_n\) have the same number of generators, so \((G/Z)_n\) must contain an elementary abelian subgroup \(B/Z\) of order \(p^{n+1}\) which is normal in \(G/Z\). Let \(B\) be the preimage of \(B/Z\) in \(G\). Then \(B \triangleleft G\), \(B\) has order \(p^{n+2}\), and \(B^{(1)} \leq Z\). Thus \(B\) has class at most two, hence is regular for \(p > 2\). But \(\gamma(B) \leq Z\), so \(\Omega(B)\) is a group of order at least \(p^{n+1}\) which is normal in \(G\). Thus there is
a subgroup A of $\Omega(B)$ such that $A \triangleleft G$, $\sigma(A) = 1$, and A has order p^{n+1}. Let N be a subgroup of index p in A which is normal in G. Then $|N| = p^n$ and $N \triangleleft G$ imply $N \subseteq Z_s(G)$, whence $N \subseteq Z_t(G)$. Therefore A is abelian, a contradiction.

Corollary. Suppose G has property $A_n(G_n)$, where G_n has exponent p^m. Let k be an integer such that $2^k \geq n$. Then $G^{(k+m)} = 1$.

Proof. By Theorem 2, G_n can be generated by n elements. Therefore [3, Theorem 2] $\phi(G_n) = \Omega(G_n)$. It follows that $G_n^{(m)} = \langle 1 \rangle$ [4, Theorem 2]. In any p-group, $G^{(1)} \subseteq G_n$. Therefore $G^{(k)} \subseteq G_n$, whence $G^{(k+m)} = \langle 1 \rangle$.

References

University of Washington
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Tsuyoshi Andô, *On fundamental properties of a Banach space with a cone* 1163
Sterling K. Berberian, *A note on hyponormal operators* 1171
Errett Albert Bishop, *Analytic functions with values in a Frechet space* 1177
(Sherman) Elwood Bohn, *Equicontinuity of solutions of a quasi-linear equation* .. 1193
Andrew Michael Bruckner and E. Ostrow, *Some function classes related to the class of convex functions* ... 1203
J. H. Curtiss, *Limits and bounds for divided differences on a Jordan curve in the complex domain* ... 1217
P. H. Doyle, III and John Gilbert Hocking, *Dimensional invertibility* 1235
David G. Feingold and Richard Steven Varga, *Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem* 1241
Leonard Dubois Fountain and Lloyd Kenneth Jackson, *A generalized solution of the boundary value problem for y'' = f(x, y, y')* 1251
Robert William Gilmer, Jr., *Rings in which semi-primary ideals are primary* 1273
Ruth Goodman, *K-polar polynomials* ... 1277
Israel Halperin and Maria Wonenburger, *On the additivity of lattice completeness* .. 1289
Isidore Heller and Alan Jerome Hoffman, *On unimodular matrices* 1321
Robert G. Heyneman, *Duality in general ergodic theory* 1329
Charles Ray Hobby, *Abelian subgroups of p-groups* ... 1343
Kenneth Myron Hoffman and Hugo Rossi, *The minimum boundary for an analytic polyhedron* ... 1347
Adam Koranyi, *The Bergman kernel function for tubes over convex cones* 1355
Pesi Rustom Masani and Jack Max Robertson, *The time-domain analysis of a continuous parameter weakly stationary stochastic process* 1361
William Schumacher Massey, *Non-existence of almost-complex structures on quaternionic projective spaces* ... 1379
Deane Montgomery and Chung-Tao Yang, *A theorem on the action of SO(3)* 1385
Ronald John Nunke, *A note on Abelian group extensions* 1401
Carl Mark Pearcy, *A complete set of unitary invariants for operators generating finite W*-algebras of type I* .. 1405
Duane Sather, *Asymptotics. III. Stationary phase for two parameters with an application to Bessel functions* ... 1423
J. Śládekowska, *Bounds of analytic functions of two complex variables in domains with the Bergman-Shilov boundary* ... 1435
Joseph Gail Stampfli, *Hyponormal operators* ... 1453
George Gustave Weill, *Some extremal properties of linear combinations of kernels on Riemann surfaces* ... 1459
Edward Takashi Kobayashi, *Errata: “A remark on the Nijenhuis tensor”* 1467