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FORMAL POWER SERIES

E. D. CASHWELL and C. J. EVERETT

Introduction* It has been shown [2] that the set Ω of all arith-
metic functions a on N = {1,2, 3, •} to the complex field C is a
unique factorization domain under ordinary addition and the "arith-
metic" product:

(aβ)(n) = Σa(d)/3(nld) .

The proof was based on the obvious isomorphism between Ω and the
domain C[[xlf x2, •]] of formal power series over C, in countably
many variables, induced by the mapping

a

and the fact that the domain C[[x19 , xn]] of such series in any
finite number of variables is factorial (i.e., a unique factorization
domain).

Recently D. Buchsbaum [1] and P. Samuel [8] have shown that
the latter domains are factorial whenever C is a regular factorial
domain, in particular, a principal ideal ring.

It therefore seems appropriate to generalize our previous result
in the following way. We replace the integers n, which in standard
form are uniquely defined by their sequences au a2, of exponents,
by vectors α, finitely nonzero on an arbitrary set I of indices i, and
consider the corresponding ring Ω of functions defined on the set of
all such vectors to an arbitrary domain of integrity C.

The analogue of the above mapping establishes an isomorphism
between Ω and the ring P of formal power series over C in the
variables xif iel. We prove that these rings, Ω and P, are factorial
if and only if all domains C[[x19 ••-,#„]] are factorial.

It follows from the theorem of Buchsbaum and Samuel that P is
factorial whenever the coefficient domain is a regular factorial domain.
Specializing to the case of a countable set of indices, we see that the
ring of integer-valued arithmetic functions is factorial (cf. [9]; p. 36).
Indeed this is true if the complex field C is narrowed to the integral
domain R[Θ] of any algebraic number field provided R[Θ] is itself
factorial [7; p. 99].

These results appear as corollaries of a general theorem on Gaussian
semi-groups to which we devote the second part of the paper.

1. The ring Ω of functions* Let I be an arbitrary infinite set of
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46 E. D. CASHWELL AND C. J. EVERETT

"indices" i. We refer only to finite subsets of /, among which we
include the null set Θ.

The set E consists of the nonnegative integers 0,1, 2, , which
play the role of exponents.

An arbitrary function a on / to E which is nonzero on any finite
subset D{a) of / is called a vector. The set of all such vectors is
denoted by JV. For the zero vector, D(0) = Θ. The sum of two
vectors, defined in the usual way, is again a vector. We shall say
a vector a is inside F in case D(a)aF, otherwise, a is outside F.

Let C be an arbitrary domain, i.e., a commutative, associative
ring with identity element 1, satisfying the condition: x Φ 0 Φ y
implies xy Φ 0.

Finally, Ω is taken to be the set of all functions a on JV to C.
In Ω we define sum a + β and product aβ by the identities (for all
ceN):

(aβ)(c) = Σa{a)β{b) e C ,

where the summation Σ extends over all ordered pairs, α, b of vectors
such that a + b = c. Since c(i) = a(i) + b(i), it is clear that a and
b are inside D(c) and have values S φ) at each ie D(c). Hence only
a finite number of vector pairs α, b have sum c, and the above sum-
mation is well-defined in C.

Thus Ω is closed under the stated operations, and indeed we have

THEOREM 1. Ω is a domain.

A proof that Ω is a ring may be modelled in an obvious way on
that indicated in [2], The identity element ε of Ω is the function
defined by ε(0) = 1, ε(α) = 0 for all vectors a Φ 0. That Ω has no
proper divisors of zero will appear in §4 with less trouble than a
direct proof at this point.

2. The ring P of power series* Let P= C[[^; iel]] be the set
of all formal power series

A = ^α(α)/Iaj 4

β W ) ,

where the sum extends over all vectors a of N, a is any fixed function
on N to C, and for each α, the product extends over all iel.

If

B =

is another such series, and A + B and AB are defined formally, the
latter subject to the "collection of like terms", we obtain again series
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in P. In particular

AB = Σ(Σa(a)β(b))Πxi

c{i) ,

the first sum extending over all vectors c, the second over all pairs
α, b with α + b = c.

It is manifest that the correspondence

defines an isomorphism

β = P

so that the latter is also a ring. To be sure, we might deal through-
out exclusively with P; it is only for the sake of simplicity that we
suppress the dummy x{ and treat, for the most part, the ring Ω which
we have introduced.

3. The F'subrings of Ω. Let F be an arbitrary finite subset of
/, Θ included, and consider the totality ΩF of all those elements a of
Ω which are zero-valued for every vector a outside F. For example,
Ωθ consists of those functions a which are zero-valued for every
a Φ 0, and

Ω& s C

under the correspondence a—>α(0) on Ωθ to C.
If we return to the isomorphism

it becomes clear that the defining correspondence a —> A induces an
isomorphism between ΩF and a set of series which is itself isomorphic
to the domain C[[x19 ••-,#„]] of formal power series over C in n
variables, n being the cardinal of F. In case F = θ, we obtain of
course C itself. Thus we have

THEOREM 2. Under the correspondence

we have

Ω^

Moreover,

ΩF = C[[xu
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for every finite subset F of n elements.

Thus the sets ΩF are themselves domains under the operations of Ω.

4. The ^'projections. Once more, let F be a finite set of indices,
and for each a of Ω, define the "jF-projection" of a to be that element
F{a) of Ω such that F(a)(a) = a(a) for all vectors a inside F, and
F(a)(a) = 0 for all vectors outside F.

We devote the present section to deriving some formal properties
PO, , P7 of these operators. Obviously we have

PO. F(a) e ΩF.

It is easily seen that F(a + β) = ^(α) + F{β) by comparing the
values of these two functions at vectors c inside and outside F.

Similarly we establish

P I . F(aβ) = F(a)F(β).

For, (F(a)F(β))(c) = ΣF(a)(a)-F(β)(b) where a + 6 = c. For c
inside i*7, the summands a and 6 are also, and the latter sum becomes
Σa(a)β(b) = (aβ)(c), which agrees with F(aβ)(c). If c is outside i*7

and a + 6 = c, either α or & is outside i*7 and we have both sides of
P I zero-valued.

Thus we see that a —> F(a) defines a ring homomorphism: Ω ~ ΩF.
We obtain trivially at this point that Ω is a domain of integrity.

If a Φ 0 Φ β in Ω, there exist vectors α, b such that α(α) Φ 0 φ β(b)
in C. Let F = D(a)\jD(b). Since α and b are inside ί7,

F ( α ) ( α ) - a(a) ΦθΦ β(b) = F(β)(b) .

Thus F(a) and F(β) are nonzero elements of ΩF ^ C[[^, •••, a?J], a
well-known domain. Consequently (using P I ) , F(aβ) = F(d)F{β) Φ 0.
Then there is a vector c such that F(aβ)(c) Φ 0. Necessarily c is
inside F, and so (#/3)(c) φ 0. Hence α/3 ̂  0.

It is clear from the definitions of ΩF and F(a) that

P2. ae ΩF implies F(a) = a.

Moreover, we have the monotone property:

P3. For FaG, F(G(a)) = F(α).

For a vector outsidό ί7, both sides have value zero, while for c
inside F, we have F(a)(c) = α(c) and also F(G(α))(c) = G(α)(c) = a(c)
since D(a)czFc:G.

By a wm£ of a domain is meant a divisor of the identity. We
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prove the less trivial

P4. If Θ(a) is a unit of Ωθ, then a is a unit of Ω.

From the isomorphism a—>a(0) of Ωθ to C it is clear that
Θ(a)(0) = a(0) is a unit of C. We have to show the existence of an
element β in Ω such that aβ = ε, that is to say,

1 = ε(0) = (α/3)(0) - a(0)β(0)

0 = ε(c) - (aβ)(c) = Σa(a)β(b)

where a + 6 = c Φ 0,
We define β(c) inductively on the length \{c) = J φ ) . The only

vector of length zero is 0, and we define β(0) = l/a(0) in C. Suppose
β(c) already defined for all vectors c of length λ(c) < I, where i is
any fixed integer > 0. For each vector c of length I, define

β(c) = -β(Q)Σa(a)β(b)

summed over all α, b such that a + b = c and b ψ c. All such vectors
b are of length λ(δ) < λ(c) = i, so β(c) is well-defined, and the function
β so constructed satisfies aβ = ε.

We next note the uniqueness property

P5. // a,βeΩ> and K{a) = iί(/3) /or αi

Let a be an arbitrary vector and set K =z J\jD{a). Obviously
(

By a "sequence over J " we mean a function which assigns to
every finite set KZDJ a definite element δκ of Ωκ. Such a sequence
is called protective in case ίΓ(δz) = δ*7 whenever JcKaL. Our domain
β is complete in the sense of

P6. Every protective sequence δκ over J is of the form

δκ = K{δ)

for some 8 of Ω.

Define δ(a) = 8K(a), where K=J\jD(a). Fix LZDJ. Clearly
L(δ)(a) = δL(a) for α outside L, while for D(a)czL we have

χ = J{jD(a)(zJ{jL = L ,

so that

- δ(a) = δκ(a) = K(δL)(a) = δL(a) .

We shall require also the following analogue of P6 which asserts
the completeness of the system of associate classes.
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P 7 . For every sequence δF over Θ such that δF ~ F(δ0) in ΩF

for all FcG, there exists a δeΩ such that F(δ) ~ δF in ΩF for every F.

Here a ~ β signifies a — βv for some unit v of the indicated
domain. This well-known equivalence relation splits a domain into
disjoint classes [a] of "associates". For example [0] consists of the
single element 0, while the associates of the identity are precisely
the units of the domain.

If every δF = 0 in the given sequence the result is trivial with
δ = 0. For F(0) = 0 for every F by P2.

On the other hand, suppose some δJ Φ 0. We have then for every
KZDJ also that δκ Φ 0. For, J(δκ) ~ δJ Φ 0 in ΩJ and J(0) = 0. If
we exhibit a δefi such that K(δ) ~ δκ for all Kz)J, this will serve.
For if F is arbitrary and we set K= J\JF, we shall have

F(δ) = F(K(δ)) = F{vκδκ) = F(vκ)F(δκ) ,

where by assumption F(δκ) ~ δF in ΩF. Now vκ is a unit of Ωκ, and
from vκμκ = e follows F(vκ)F(μκ) = F(ε) = ε so that F{vκ) is a unit
of ΩF. Thus we shall have F{δ) ~ δF in ΩF for every ί7.

We have therefore to prove the following: Given a sequence δκ

over / such that, for every JczKcL, 0 Φ δκ = vfK(δL), where vf is
a unit of β^ dependent on the pair KaL, there exists a δ e Ω such
that K(δ) = i^S* for all #=)J, where v* is a unit of β κ .

We first note that the given units satisfy the transitivity condition

(Γ) v\ = vfK{vL

M) for JcKaLcM .

To see this, we substitute δL = v^L (S )̂ into the preceding equation
for δκ to obtain δ^ = v*K(ι>L

M)K(δM), using PI , P3. Comparing this
with the direct relation δκ = vf ^(δ^) and remembering that δκ, and
hence K(δM), is nonzero, we obtain (T) by cancellation.

In view of P6, it suffices to define a sequence v^ of units such
that the transformed sequence vκδκ is protective over J. For this a
sequence of units vκ over J satisfying

(Γ') v'yf - ίΓ(i;z) for JczKczL

will serve. For this would yield K(vLδL) = K{vL)K(δL) = v^

Our problem may therefore be regarded as that of obtaining from
a given "double sequence" of units v\ satisfying (T) a "single sequence"
vκ satisfying (Tf). Note that v£ = e from (T) so that (T") is trivial
for K = L.

We proceed to define the desired sequence vκ, Kz^J inductively
on the number of elements k by which the (finite) set K exceeds /,
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For K = J(k = 0), define vJ = ε. For a set iΓ of one more index
than J(k = 1), set vκ = v£. This is an element of ΩJcΩκ, and is a
unit of ΩJ, hence also of Ωκ. Note that all v* so far defined satisfy
(T% since J{vκ) = J(vJ

κ) = vJ

κ = εvJ

κ = v*vτ

κ.

Now let m be an arbitrary integer > 1, and assume vκ already
defined and satisfying (Tr) for all KZDJ with k < m. Let M be any
fixed set over J with m more indices than J.

We define vM at every vector α as .follows: For α outside M,
y*(α) = 0. For a vector α with fl(α)cl, set K = J[jD{a)c:J\jM = M.
If if = M, set ^(α) = 0. Finally, if if is a proper subset of M, vκ

is already defined, and we set vM{a) = {vκv^)(a).
The function vM thus defined is certainly in ΩM, and since

D(θ) - ©cM, and if = Ju@ - J

is a proper subset of M{m > 1), we have defined vM(0) as (vJ

This is clearly a unit of C, so (P4) vM is a unit of β, hence also of
Ω*. (Note: from vMμ = ε ί n f l follows i;MΛί(/i) = Λf(ε) = ε in Ω", by
PI, P2, P0.)

Verification of (T") at the m-level requires only that L(i;3ί)(α) =
(yLvL

M)(a) for each L over J which is a proper subset of M, vM being
the unit just defined. This is trivial for a outside L. Hence let
D(α)cL. We have then to show vM(a) = (vLvL

M)(a). Now

K= J{jD(a)czJuL = L ,

properly in M. We defined vM(a) = (vκvξ)(a). On the other hand, vκ

and vz are already known to satisfy (T"): vκvf = if(vz), and we are
given from (Γ) that vl - vfK(vl). Thus we see that K(»*»£) =
K{vL)K{vL

M) = vκvfK{vL

M) - j ^ v 5 . But

D(a)aK, so (v^5)(α) = ΛΓ(^

Thus (Tf) still holds at the m-level and all is proved.

5. Abstract foundation of the factorial problem* For simplicity
we have suppressed the "variables" xt of P and have derived certain
basic properties of the isomorphic domain Ω, which show that its
elements under multiplication constitute a system of the kind we now
discuss.

In introducing this abstraction, obviously suggested by the power
series case, we are motivated not simply by a striving for greater
generality, but by a natural desire for clarity and economy of means.

The type of system natural for the general problem of unique
factorization is the commutative semi-group [5; Ch. IV] with identity
and cancellation law. Since the i^-projection of nonzero elements of
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a power series ring may well be zero, it is preferable from our point
of view to study what we may call, for want of a name, binary
domains. These are trivially related to the more familiar semi-groups,
and a system of either kind is obtainable from the other in an obvious
way.

Let us say then that a set Ω of elements a is a binary domain
if it possesses a commutative, associative, binary operation aβ, an
identity e(εa = a) and a zero 0 Φ ε(0a = 0), and if, finally, it satisfies
the cancellation law: aβ = ay implies β = 7 whenever a Φ 0.

In such a system, a Φ 0 Φ β obviously implies aβ Φ 0. Moreover,
a subset of such a system, which is itself a binary domain under the
given operation, necessarily has for its zero and identity those of the
system itself.

The divisors of the identity ε in a binary domain Ω are called
units and constitute an abelian group T with identity ε. As usual
the relation a ~ β, meaning a — βv for some veΎ, defines disjoint
classes [a] of associates in Ω.

Let ά?~ = {F} be a directed set with null-element Θ, i.e., a partially
ordered set with an element Θ ̂  F for all F G ^ " , and having for
every pair F, G in ^ an element i ϊ e ^ such that H^Fand H^G.

Assume further that there exists an ^"-indexed class of subsets
ΩF of Ω, Fe ^ r , which are themselves binary domains under the given
operation. We denote the corresponding groups of units by TF.

Finally we suppose every Fe^ defines o n f i a specific mapping
F(a), so written for simplicity, such that the following axioms hold:

A0. F(a) e ΩF;

Al. F(aβ) = F(a)F(β);

A2. a e ΩF implies F(a) = a;

A3. FSG implies F(G(a)) = F(a);

A4. Θ(a) e Ύθ implies aeΎ;

A5. F(a) = F(β) for all F implies a = β;

A6. Every sequence dF e ΩF with F(δσ) = δF for all G^F^Θ
is of form δF = F(δ);

A7. For every sequence δF e ΩF with F(δG) ~ δF in ΩF whenever
G^F^Q, there exists a δeΩ such that F(δ) - δF in ΩF

for every F.
We shall prove the following

Principal Theorem. A binary domain Ω satisfying all of the
preceding conditions is factorial if and only if every ΩF is factorial.

Since the multiplicative systems of our power series domains have
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been shown to satisfy these conditions (the set ^ consisting of the
finite subsets F of the index set I) and since their subdomains ΩF

are (even ring-) isomorphic to the power series domains C[[xlf , xn]]
(cf. Theorem 2) we may cite the immediate consequences:

COROLLARY 1. The domain P of formal power series over a
domain of integrity C, in an arbitrary set of variables, is factorial
if and only if the series domains C[[xlf •••, xn]] are factorial for
every finite n.

COROLLARY 2. Every domain P of formal power series over a
regular factorial domain C is factorial.

For C[[xly ••-,#„]] is factorial whenever C is a regular factorial
domain [1], [8].

COROLLARY 3. The domain of ''arithmetic functions" with values
in any sub field of the complex field C, or in any factorial algebraic
number domain R[Θ] of degree n Ξ> 1 is factorial.

For these value domains are all principal ideal rings. [7; p. 99]
We turn to a proof of the principal theorem.

6* Immediate consequences of the axioms* We first derive some
simple lemmas.

LI. F(0) = 0 and F(ε) = ε for every F. For 0 and ε are in every
ΩF, as we have remarked, and so A2 suffices.

L2. ΩF n T = TF.
If aβ = ε, where aeΩF,βeΩ, then aF(β) = F(a)F(β) = F(aβ) =

F(ε) = ε by A2, Al, LI, and from AO, F(β) e ΩF. The opposite in-
clusion is immediate from the definition of units.

L3. If 7 Φ 0 in Ω, there exists a J such that K(y) φ 0 for all

If F(i) = 0 for every F, we have 7 = 0 from LI and A5. If
J(i) Φ 0 and K^J, then by A3, J(K(y)) - J(y) Φ 0, so K(y) φOby
LI.

L4. If βeT, then F(β) e YF for every F. If βeΩ and for some
F,F(β)eTF, then βeT.

From aβ = ε in Ω follows F(a)F(β) = ε by Al, LI, and F(β) e
TF by AO.

From aF(β) = ε with aeΩF follows Θ(a)Θ(β) = ε by Al, A3, LI.
Since Θ{β)eTΘ, βeT (A4).

L5. // K(a) = K{β) for all K^J then a = β.
For F arbitrary, take K^J,F< Then (A3) F(a) = F(K{cή) =
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F{K{β)) = F(β), and we cite A5.
Similarly we generalize A6. The reader may note that adopting

L5, L6 as axioms would have established direct connection with P5,
P6 of series domains. Although it involves a little extra work we
have preferred the simpler axioms.

L6. Every projective sequence yκ over J is of the form yκ = K(δ).

Let F be arbitrary, and take K ^ J, F. Tentatively, define
δF = F{ΊK). If also L ^ J, F, we see that F{ΊK) = F(yL). For take
M^ K, L. Since ΊK is projective over J, we have ΊK = K(yM) and

7z = i,(7*). From A3, we have F(jκ) = F(yM) = F(yL), since M^ K^
F, and M ^ L ^ F. Thus δ* is well-defined.

We show the full sequence δF is projective. For G ^ F, we have
to prove F(δθ) = δF. Take K^J,G. Since (? ^ F, also K^J,F.
Hence we may write both δF = i* 7^) and δ̂  = G(ΎK). From A3
follows F(δθ) = F(jκ) = δF. From A6, we have δF = F(δ) for all F,
δ fixed in Ω.

In particular, for K^ J, δκ — K(δ). Since K Ξ> J, K, we have
by definition (and A2) δκ = ^(7^) = 7 r . Hence 7^ = K(δ), K^Jy

and δ serves.
Finally we prove in analogous fashion the following consequence

of A7.
L7. If Ίκ e Ωκ is a sequence over J such that K(yL) ~ 7* in Ωκ

whenever L ^ K ^ J, ίΛ^^ ίΛ r̂β exists a δ e Ω such that K(δ) ~ j κ in
Ωκ for all K^J.

First suppose /, F g U, V ^ M. Then ^(7^) = VUΊU, V{ΊM) =
vryr, so by A3, Al, F{VU)F(ΊU) = F(ΊM) = F(vF)F(7F). Here ^ e Tu

and vF e Ύv. It follows from L2 and L4 that F(i^) and F{vv) are
units of β^ and hence F(yu) - F(7F) in ΩF.

Now for each F let Z7 = ^(i77) be any particular U^ J, F, where
we take t(K) = if in case iΓ ^ J, and define δF = F(yu).

For G ̂  F, set F - t(G) ^ J, G. Since V^J,F also, we have
from the first paragraph that F(yu) - F(yr) in i2F. Hence F(δ") =
F(G(ΎV)) = F(jv) - F(ΎU) = δ' in JF (A3). By A7, there is a δefl
such that F(δ) - δF in i3F for every F.

In particular K(δ) - <5* in ί?', K^J. But we defined £(if) = K,
so that <5* is by definition K(jκ) = yκ (A2), and K(δ) - 7 s, K ^ J.

7. The chain condition. An arbitrary binary domain is said to
satisfy the chain condition in case

AXIOM C. Every sequence 72117i 11 τ0 0/ proper divisors is finite.
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Here a\\y means 0 ^ 7 = aβ, where the (uniquely defined) β is
not a unit.

It is well-known that Ax. C implies
(F) Every nonzero non-unit element is expressible as a product

of a finite number (^ 1) of irreducible elements.

(An irreducible element π is a nonzero non-unit element such that
π = aβ implies a or β a unit.)

Returning to our domain Ω, we have

THEOREM 3. The chain condition holds in Ω if and only if it
holds in all ΩF.

If 0 φ y = aβ, where 7, a e ΩF and β is a non-unit of ΩF, then
β ί Y by L2.

If 0 ^ 7 = aβ, where τ,αGfl, and β is a non-unit of Ω, then by
Al, 0 Φ J(y) = J(a)J(β) where J is the index of L3, and J(β) $ TJ

by L4.
Thus a proper divisor chain in ΩF is such a chain in Ω, while a

chain in Ω induces one in the indicated ΩJ.

8* Uniqueness of factorization. An arbitrary binary domain is
called factorial in case it satisfies condition (F) of the previous section
and also

(U) // πλ πm — τx τn, where all factors are irreducible,
then m = n and the π{ are associates of the τ3- under some permutation.

Of the various conditions insuring (U) the simplest for our purpose is

AXIOM P. If 0 φ πy = aβ, where π is irreducible then π \ a or π \ β.

The well-known result on which we rely is therefore the equi-
valence of Axioms C and P in a domain with the propositions (F) and
(U).

Returning again to our system Ω, we note first the existence of
irreducibles of a very simple type.

L8. If ae Ω, and for some J, J(a) is an irreducible element of
ΩJ, then a is irreducible in Ω, and indeed K{a) is an irreducible
element of Ωκ for all K ^ J.

By definition, J(a) Φ 0, J(a) ί YJ, so that a Φ 0 and a g Y by LI,
L4. Suppose a = βy in Ω. By Al, J(a) = J(β)J(j) with factors in
ΩJ (A0); J(a) being irreducible in ΩJ, we have (say) J(β) e YJ. Then
β e Y by L4, and a is irreducible in Ω.

For K ^ J, we have (A3) J(K(a)) = J(a) Φ 0, whence K(a) Φ 0,
(LI). Since a$Y, K(a)$YK (L4). Suppose K(a) = βy; β, 7 e Ωκ.
Then (A3, Al), J(a) = J(β)J(y) with factors in β J (A0). Again we
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have (say) J(β) e TJ, whence β e Ύ f) Ωκ = Tκ (L4, L2).
From this it is easy to infer

THEOREM 4. If Axiom P holds in Ω it holds in every ΩF. Thus
all ΩF are factorial in case Ω is factorial.

Let 0 Φ πy = aβ; y,a, βe ΩF, π an irreducible element of ΩF.
By A2, π = F(π), and π is an irreducible element of Ω by the preced-
ing lemma. From Axiom P in Ω we conclude (say) a = πδ for some
δeΩ. Thus a = F(a) = F(π)F(δ) = πF(δ) by Al, A2, and F(δ) e ΩF

by AO.
Thus Axiom P holds in ΩF, and the theorem follows from the

appropriate part of Theorem 3.

9* The fundamental lemma. We have now established the easy
implication of the principal theorem, and turn to the converse. To
be sure, in view of Theorem 3, it would suffice to show that Axiom
P in all ΩF implies this axiom in Ω. Unfortunately we are unable to
follow so simple a course. Instead we shall prove, on the assumption
that all ΩF are factorial (satisfying Axiom C and Axiom P) that the
irreducible elements of Ω are necessarily of the simple type encountered
in L8. We state this fundamental lemma (proved in §11) and show
at once how it leads quickly to our final goal.

L9. If all ΩF are factorial, and y is an irreducible element of Ω,
then there exists an Ffor which F(y) is an irreducible element of ΩF.

Suppose this to be true, and let us deduce the final requirement
for the principal theorem:

THEOREM 5. If every ΩF is factorial, then Ω is factorial.

We need only verify Axiom P in Ω. Hence let 0 Φ yπ = aβ; a, β,
ye Ω, π an irreducible element of Ω. From L8 and L9 there exists
a J such that M(π) is irreducible for all Λf Ξ> J. Since 7 ^ 0 , we
have also (L3) a K such that M(y) Φ 0 for M ^ K. By the directed
set property, there is an L Ξ> J, K, and so we have for all M^ L,
0 φ M(π)M(y) = M(a)M(β) in ΩM, with M(π) irreducible in Ω*. Since
the latter is factorial, M(π) divides either M(a) or M(β) in ΩM, M^L.

Let C(ά) be the set of all M^ L for which the first eventuality
obtains, with C(β) similarly defined. These sets may well overlap
but their union certainly contains every M^ L. We claim at least
one of these two sets is co-final with ^ , that is to say, for every
Λf i> L there exists in this set a P ^ M. For, if each set fails in
this respect* there would be an R ^ L, not S any element of C(a),
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and an S ^ L, not ^ any element of C{β). But there is a T ^ R,
S ^ L , so Γ must belong to C(a) or C(β). If Γ e C(α), then R^T
contradicts the choice of R, with a similar contradiction if TeC(β).

Let us suppose then that C(a) is co-final with JΓ. For everi/
M ^ L, we have a P ^ M such that P(α) = P(π)δp where δ p e β p .
This implies M(a) = M(π)M(δp) in ΩM, by Al, A3, AO. We may there-
fore write for every M^ L, M{ά) = M(π)δM, where δM e ΩM.

We shall verify that δM is a protective sequence over L. For, if
P ^ M, it follows (by Al, A3) from P(a) = P(π)δp that M(a) =
M(π)M(δp). Since M(π) Φ 0 (it is irreducible in Ω"), we obtain δM =
Λf(<5P) for all P ^ Af ^ L. It follows from L6 that δM = M(δ), M^L,
for some δ e Ω. So we have M(a) = M(π)M(δ) = M(πδ), M^ L, whence
α = πδ by L5, which completes the proof.

10. A set theoretic principle. We shall appeal in the following
section to a theorem on sets for which we have no definite reference.
Perhaps its direct proof can best be based on an obvious rewording
of that given in [3] for a special case concerned with the representa-
tion of sets. An indication of such a proof may be found in the final
section. It may also be regarded as a consequence (with discrete
topology) of a theorem of Tychonoff [6; p. 19] to the effect that an
arbitrary product of compact spaces is compact. (In this connection
see also [4]). In any case, one seems to need Zorn's lemma or its
equivalent at this point.

Our only purpose here is to state the theorem in a form adapted
to immediate use.

Let [Mκ, T] be an indexed class of finite non-null sets Mκ, Ke T.
Let R be a collection of finite choice functions s = {s(K); S}, where
s(K)eMκ for all Ke SaT, S being a finite set of indices K, and
suppose that R is complete in the sense that

A. If s is in R, and S± is any subset of its domain S, then the
sub-function defined by s on S± is also in R.

B. Every finite set S of indices is the domain of at least one s
of R.

Zorn's lemma then implies the existence of a choice function
t = {t(K); T} defined for all indices Ke T such that, for every finite
set SaT, the sub-function defined by t on S is in R.

l l Proof of the fundamental lemma. The elements of a binary
domain are of four mutually exclusive kinds: zero, units, irreducible
elements, and composite elements. Thus a composite element 7 always
has a true factor, that is to say, a non-unit proper divisor. Since



53 E. D. CASHWELL AND C. J. EVERETT

all associates of a true factor of 7 are also true factors we may speak
of an associate class of true factors of 7. In the sequel we shall be
dealing with associate classes in the systems Ωκ and shall always mean
by [δκ] the set Tκδκ of associates of δκ e Ωκ in Ωκ.

Turning to L9, suppose all ΩF are factorial, and 7 is an irreducible
element of Ω. Since 7 ^ 0 there exists (L3) a J, hereafter fixed, such
that K(7) Φ 0 for all if ^ J. Moreover, ^(7) g TF for any F since
7 ί T (L4). Assume the conclusion of L9 false. Then for every F,
we have F(j) = 0 or F(y) e TF or F(y) composite in ΩF. Thus for
every if ^ /, if (7) is composite in Ωκ and this ring contains a class
[dκ] of true factors of if(7). The set Mκ of all such classes (con-
sidered as elements) is non-null and finite (since Ωκ is factorial). The
totality of these Mκ constitutes a collection of sets, indexed on the
set T of all K ^ J, of the kind introduced in §10.

Define R to be the set of all finite choice functions s = {s(K); S},
S finite c T , s(K)eMκ, which have the property

(P) for every pair of indices if, L in S for which K ^ L, there
exist elements δκ e s{K), δL e s(L) such that δκ = K(δL).

We show that R is complete in the sense of §10. Property (A)
is sufficiently obvious. For (B), let S = {if} be any finite set of in-
dices in T and take L ^ K for all Ke S. From the known factori-
zation L(y) = αz/2z into true factors αx, /9Z in ΩL, we deduce (A3, Al,
A0) for each KeS the factorization K(y) = ^ ( α 1 ) ^ ^ ) in β*, where
neither factor is a unit of β^ by L4, L2. Hence we define

s(K) - [iϊΓ(αz)] G Mκ, Ke S .

This is certainly a valid finite choice function on S. We verify (P).
If K and K' are in S, and K ^ # ' , we have iΓ(iΓ'(α£)) = if ( O by
A3. Thus the set R is complete.

We conclude from §10 the existence of a function t(K) = [yκ] e Mκ

which assigns to every K ^ J a class [7*] of true factors of K(j) in
Ωκ such that, in particular, for every pair of indices K ^ L, yκ ~K(yL)
in Ωκ. Here the ΊK is an arbitrarily chosen representative of the
class t(K), and property (P) gives us elements δκ = r*7*, <5Z = τz7z

with if (<5Z) = K(τL)K(ΎL) = δκ = TKΊK where τκ e Tκ, τL e Γz. Since
τLeTL = Tf]ΩLcir (L2), it follows from L4 that K(τL)eTκ and thus
7K — if (7Z) as stated.

We write if (7) = Ύκpκ in Ωκ for every if ^ J. From L7, there
exists a δ e β such that if (δ) = i 'VS v* e P , if ^ J. If μ* is the
inverse of vκ in Yκ> we have if (7) = K(δ)σκ in 42*, where σ* = μκpκ.

The sequence σ^ is protective over J. To see this, write L(y) — L(δ)σL

for L ^ if. This gives if (7) = if (δ)K(σL) by A3, Al. Since if (7) Φ 0
(^ ^ J), also if (δ) Φ 0 and we obtain if (σL) = α*. By L6, there exists
a <7 G β such that σ* = if (σ), if ^ J. Thus if (7) - if (δ)if (<j) = K(δσ),
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K ^ JΓ. By L5, 7 = δσ in β.
Now iΓ(δ) = 1^7* and iΓ(<7) = σκ = μ * ^ are non-units of J2*.

Hence δ and σ are non-units of Ω (L4). Thus 7 is composite in Ω.
This contradiction establishes L9.

12. Completion for elements* For the purposes of this and the
following section, let us call a binary domain satisfying all conditions
of §5 except possibly A6 and A7 an ^-domain, and consider in place
of A7 the following weaker condition.

A7*. For every sequence δF e ΩF such that δF ~ F(δG) in ΩF when-
ever Θ g F rg G, there exists a sequence of units vF e TF such that
vFδF is a protective sequence.

In the presence of A6 (and A3) this is trivially equivalent to A7.
Suppose now that Ω is an ^-domain and let us take β* to be

the set of all projective sequences {aF}, aF e ΩΈ', F(aQ) = aF for
all Θ ̂  F^ G. It is easily verified that £?* is closed, and indeed a binary
domain under the operation {ocF}{βF} = {ocFβF}. The zero and identity
are of course the "constant" sequences {0} and {ε} respectively, and
the units of β* are the projective sequences {vF}, vF e TF.

For example, the cancellation law may be established in the follow-
ing manner. If {aF} Φ {0}, aJ Φ 0 for some J, so for K^J, J{aκ) =
aJ Φ 0 implies also aκ Φ 0 since J(0) = 0 (LI). Hence from {aF}{βF} =
{aF}{ΊF} we have βκ = j κ , K^ J. For F arbitrary, take K^ J,F
and note that βF = F(βκ) = F(ΎK) = yF.

The subset Ω*κ of β* consisting of all i^-sequences of the form
{F(aκ)}, aκ arbitrary but fixed in Ωκ, is itself a binary domain and
the operations K{aF) = {F(aκ)}, K^Θ satisfy A0-A5.

For example, we note that the units of Ω*κ are the i^-sequences
{F(vκ)}, vκ e Tκ. From this remark (for K = Θ), A4 follows at once.

In addition, A6 holds in Ω*. Given a iί-sequence of elements
{F(aκ)}, aκ e Ωκ, such that K{F{aL)} = {F(aκ)}f K ^ L, we have for
each such pair K, L that F(K(aL)) - F{aκ) for all F. Thus the
^-sequence {aF} is projective by A5 and is therefore an element of
J2* such that K{aF} = {F{aκ)} for all K.

Finally we observe that the mapping (*) a —• {F(a)} is one-to-one
(A5) on all Ω to a subset (A3) of Ω*, preserves multiplication (Al),
and is a iΓ-operator isomorphism in the sense that K{ά) —> K{F{a)}.
Moreover, it is of interest for the general theory that each subdomain
Ωκ is isomorphic under (*) to all of the corresponding Ω*κ.

We summarize these remarks in

THEOREM 6. An ^-domain Ω with subdomains ΩF is always
embeddable, with preservation of ^-projection, in a complete (A6)
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^-domain whose subdomaίns Ω*F coincide with those of ΩF. More-
over A7* holds in 42* if and only if it holds in Ω.

The final statement is trivial from the isomorphism (*) and the
"finite character" of A7*. From the principal theorem of §5 follows
the

COROLLARY. An ^-domain Ω satisfying A7* is embeddable in
an Jf-domain 42* which is factorial if and only if all ΩF of Ω are
factorial. If such an Ω is factorial so is Ω*.

For we have shown in §§7, 8 that all ΩF of a factorial J^-domain
Ω are also factorial; no use of A6 or A7 was made in this part of the
proof of the principal theorem.

Finally, suppose Ω is an ^-domain satisfying A7* and has all ΩF

factorial. Then 42* provides a factorial extension of 42, and it is of
some interest to note the following relations between Ω and 42* (the
first two are true for any ^"-domain).

(1) If any aJ of a projective sequence {aF} is a unit (in ΩJ) then
{aF} is a unit of 42*.

For F arbitrary, take K^J.F. Since J{aκ) = aJ e TJ, aκeT
and aF = F{aκ) e TF (L4).

(2) / / any aJ of a projective sequence {aF} is an irreducible
element of ΩJ, then {aF} is an irreducible element of Ω*.

For then {aF} is a nonzero non-unit element of 42* and {aF} =
{βF}{yF} implies aJ = βJyJ, whence βJ or ΊJ is a unit of ΩJ. So (2)
follows from (1). (It is also clear that aκ is irreducible in 42* for all

(3) If {aF} is irreducible in Ω*, there exists a J such that a3

is irreducible in ΩJ.

For L9 applied to 42* says that there exists a J such that J{aF) =
{F(aJ)} is irreducible in 42*J. Hence aJ is irreducible in 42J under the
isomorphism (*).

(4) Every nonzero non-unit element of Ω is expressible as a product
of irreducible elements.

For Axiom C holds in all ΩF and so also in Ω, as we showed in

§7.
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(5) An irreducible element π of Ω remains irreducible in β* if
and only if it is finitely irreducible.

By this we mean that {F(π)} is irreducible in 42* if and only if
J(π) is irreducible in ΩJ for some J (cf. L9, L8), which is clear from
(2) and (3).

(We do not know an example of an irreducible element π with
F(π) composite in ΩF for every F.)

(6) If 0 φ 7Γ7 = ocβ in Ω, where π is an irreducible element of
the type in (5), then either F(π) \ F(a) for every F or F(π) \ F(β) for
every F.

For β* is factorial.

EXAMPLE. Let Ω' be the domain isomorphic with the power series
ring P ' = C[[xl9 xΛ, •••]] over the rational integers C in a countable
set of variables. Take Ω to be the subset of Ωf obtained from it by
deleting all units not in any Ω'F. This is tantamount to deleting from
P' all units involving an infinite number of xi% It is easy to verify
that Ω is an ^"-domain under multiplication which satisfies A7* but
not A6. Moreover we still have the finite subdomains ΩF = C[[x19 ,»»]].

13* Completion for classes* Let Ω be an .^"-domain satisfying
A6. In the present section all square brackets refer to associate classes
in Ω itself, that is, [a] means the set Ta, regardless of the nature
of a in Ω. Moreover, we define K[a] = [if(α)] = Y-K{a) and not
TκK(a).

First consider the set J2f of all associate classes of Ω. This is
obviously a binary domain under the well-defined operation [oc][β] =
[aβ], and corresponds to the more familiar concept of reduced semi-
group. The zero and identity are [0] and [ε] = T respectively, and
the latter is the sole unit element of Ω\

The subset Ωtκ of all 42-elasses [ccκ], aκ e Ωκ, is a subdomain of
β f whose only unit is [ε] (L2).

It should be noted at this point that for two elements aκ and βκ

of Ωκ, aκ - βκ in Ω if and only if aκ - βκ in Ωκ, and that the well-
defined correspondence [aκ]-+Yκaκ is an isomorphism between Ωtκ

and the internal classes of Ω*.
One easily verifies that Z-projection as defined above on ί2f satisfies

A0 — A5. Consider in particular A5. Suppose K[a] = K[β], i.e.,
K(a) - K(β) in Ω, for every K. If β = 0, thenK(β) = 0 = K(a) for
all K, and a = 0 also (LI, A5). Hence [a] = [β]. If β Φ 0, we have
(L3) K{β) Φ 0 for all K ^ J, and K(a) = vκK(β), where the unit vκ
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of Ω is necessarily in Tκ (A2, Al, AO, L2). If we write also, for
L ^ K, L(a) = vLL{β), and take if-projection of both sides, we see
that the sequence vκ, K^ J, is protective. By L6, we may write
vκ = K(v) for some veΩ, which is clearly a unit (L4). Thus K(a) =
K{v)K(β) = JGΓ(i4β), and so a = vβ (L5), whence [a] = [/3].

THEOREM 7. 27&e associate classes of an j^~-domain Ω satisfying
A6 form an Jβ~-domain Ω\ Moreover, 42r satisfies A6 i/ and only
if Ω satisfies A7*.

If Ω satisfies A7* (and so all the axioms) then A7 holds in Ω (cf.
Sec. 12). Let [δκ] be a protective sequence of classes in Ω\ i.e., for
every K^L, K[δL] = [δκ], so that K(δL) ~ δ* in Ω. As we just saw,
this implies K{δL) ~ δκ in Ωκ, so from A7 we have & δ £ Ω such that
K(δ) ~ δ* in Ωκ, hence also in β, for every K. Thus I φ ] = [δκ] in
β f.

Conversely, assume A6 in Ω\ and consider a sequence in β such
that K(δL) ~ δ^ in Ωκ (hence in β) for all K^L. From A6 in J21

follows the existence of a class [3] such that K[δ] = [δκ]. Thus K(δ) -
δ^ in β, and so in Ωκ, for all K. We therefore have A7 and A7* in Ω.

It may be noted here that our axioms AO — A7 were chosen simply
to insure that the reduced system J2T should indeed have the essential
properties AO — A6, which formed the real basis for the principal
theorem.

Finally, consider the case of an ^"-domain satisfying A6, but
not A7*. The ^-domain Ω^ then lacks A6 (A7* is trivially true in
ί2r). We may therefore embed Ω1 in the domain β f* of sequences {[#F]}
according to the procedure of §12. Thus we have the final

THEOREM 8. The domain ί2r of associate classes of an J^-domain
Ω satisfying A6 can always be embedded, with preservation of pro-
jection, in an ^-domain 42r* satisfying all the axioms, and whose
K-subdomains coincide with those of β f. Thus Ω^* is factorial if and
only if all ΩF of Ω are factorial.

This follows at once from the theorem of §12 and the isomorphism
between Ω^κ and the internal classes of Ωκ.

14 Proof of a theorem in set theory. For the sake of complete-
ness we indicate a proof of the theorem in §10, following exactly the
argument given in [3] for a special case. We are given a complete
set R of finite choice functions s = {s(K), S}. Call a function u =
{u(K); U}, u(K)eMκ, KeU (arbitrary)c Γ, universal (relative to R)
in case, for every finite set Sc T there exists in R a function {s(K); S}
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which agrees with u on Sf] U.
It is an easy matter to verify that the set of all universal func-

tions is a non-null partially ordered set P, every linearly ordered
subset L of which has an upper bound in P.

Here the order relation {u(K); U} ^ {u^K); Z7J is taken to mean
Ud Ux and u(K) = ux(K) for Ke U. The upper bound referred to is
obtained by taking for its domain the set union of all domains involved
in L, and defining its value at any index of this domain (unambiguously)
to be the value of any function of L whose domain includes this index.
It is trivial to verify that the function so constructed is itself universal.

That P is non-void may be obtained by the stratagem of the
"choice function defined on the empty set of indices", together with
the completeness property (B) of R, or by following the procedure
indicated in the final paragraph to construct universal functions on
domains of one index.

Zorn's lemma states that every partially ordered set P of the kind
described in italics contains a maximal element.

Now one can show, using the finiteness of the sets Mκ, that a
universal function u whose domain U does not exhaust T can be
extended (see last paragraph) to a universal function whose domain
is enlarged by an additional index. Thus the maximal element insured
by Zorn's lemma must have total domain T, and being universal, each
of its finite sub-functions is certainly in R.

To extend a universal function u = {u(K); U} to a domain Uλ =
UU {Q}, where Q ? U, we argue thusly: If no universal function
ux — {ux{K)) U^ Ξ> u = {u(K); U} exists, we should have, for every
choice uλ(Q) = q e MQ, the existence of a finite set S(q) (fix one) such
that every function s in R with domain S(q) disagrees with the pro-
posed {u^K); Z7i} on S(q)ΓiU1. Since u is universal, S(q) certainly
contains Q. Since MQ is a finite set and each S(q) is a finite set of
indices, so is the set union S — ΌS(q), q e MQ. But, u being universal,
there is some function s in R with domain S which agrees with u
(on UΠS). Since Q e S, s assigns to Q some element g* = s(Q) of MQ.
The sub-function s* of s defined by s on S(q*) is itself in R by pro-
perty (A), it assigns g* to Q, and it agrees with u on S(q*) Π U.
This contradicts the nature of S(g*), and hence shows that the uni-
versal function ux = {ux(K)\ UΊ} exists.
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