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1. Introduction. In this note we shall investigate the solutions
of the four dimensional Laplace equation,

o OH= 3\ H.,, =0,

by means of the integral operator approach as developed by S.
Bergman and some others ([1] [2] [3] [4] [6] [7] [8] [9] [10] [11]). In
particular, we shall use the operator which transforms analytic fune-
tions of three complex variables into solutions of (1) [7] [10].

®  HD=p(;2:X) =~ e oE L,
where
T= x1<1 + %) + 'ix2<1 - _7;1?> + x3<_é_ — _717_> + ’5904<% + _177_> ’

X —X°| <e X = (24, %, x,), X° = (2, 23, 3, ©7)

where <7 = C x I' is the product of a contour C in the &-plane and
a contour I” in the 7-plane, and ¢ >0 is taken to be sufficiently
small. The domain & is further restricted for a particular choice of
f(z,m, &) so that the integrand is absolutely integrable [3] [13]; in
this case the double integral may be regarded as an iterated integral,
and the orders of integration may be interchanged.® The function
f(z, 7, & is called the p,associate of H(X).

The operator p,(f) was first introduced by R. Gilbert [7]; how-
ever, certain improvements in the notation, which are employed here
are due to E. Kreyszig [10]. Kreyszig has also obtained an inverse
operator for p,(f), and investigated in detail the representation of
harmonic polynomials generated by this operator.

In order to understand how the operator p, transforms analytic
functions into harmonic functions it is useful to consider the powers
of 7, which act as generating functions for the homogenous, harmonic
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1 Tt is also possible to give a meaning to p. in the case where the integrand is not
absolutely integrable, but one of the iterated integrals exists.
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polynomial [5] [7] [10]

ol )l 3ol 2) 2]

= [Y-(- z1 + zxL + Y*—l—] = Hii'l(X)E"‘v" )
£ Vi ¥10=0

i3
where
3) H: (X)) = HbY(x,, oy %5, ) = H,o(Y, Y*, Z,Z%),
and

Y =2 + iz, Z=2,+ 12,
Y* =@ —ix, 4% = —(x, — i2,) .

The H:YX) are linearly independent polynomials, which form a com-
plete system. From (8) it is clear then that there are just (n + 1)?
independent, homogeneous, harmonic polynomials of degree n. These
polynomials have an integral representation (in view of (3))

k1 . _____1__ Nyl —~1£l—1
(4) Hn (X) - 47 glfl=1gml=1f 7 E d77d§ !

where k,l are integers from 0 to n. Because of this representation
it is clear that we must consider a special class of analytic functions.
{f(z,n, &}, which are transformed into harmonic functions H(X).
For instance, as Kreyszig points out both the functions

S

5) Feng= 35 aumere,
and

©) FE1Y =3 St e,
are transformed into the harmonic function

@ HX) =3 3, HX) -

Following the notation of Bergman [4], Kreyszig [10] refers to (6)
as the mormalized associated function of H(Z) with respect to p,.
Kreyszig [10] also give an inverse operator for p, (which is similar
to Bergman’s [4] inverse of p;), that maps H(Z) back onto its nor-
malized associate f(z, 7, &).

2 The introduction of the variables Y, Y*, Z, Z* is due to Kreyszig. In this form
Laplace’s equation may be written as Hyy+ = Hp+.
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® &7, 8 =) = | | e H)dads,
where the subscripts — denote partial derivatives,
H= H'(z(1 — a)(1 — B), T&B(1 — ), T7e(1 — B))
and H(Y, Z, Z*) is H(Y, Y*, Z, Z*) restricted to the set
E{at + 22 + 23 + 23 = 0} .

2. A class of harmonic vectors in four variables. It is possible
to introduce an integral operator which generates a class of harmoniec

vectors % = (4y, Uy, Uy, ;) (Wwhere [Ju, = 0), from analytic functions
of three complex variables. Let {f(z, %, &)} be the class of analytic
function described earlier, and let us define the components of u as
follows,

= e gm 1S|51 1f(T 7 §)<1 >——7717——§é ’
©) b Zl%gm 18151 1f(T T S)<l %)%f‘ ’
= g ol OG5
"= 4; Sm 15151 o 8( £ %)%%é ’

then it may be shown that w satisfies the four dimensional analogue
of the vanishing of the curl and divergence. (This property is simiar
to that given by Prof. Bergman [3] in the case of three dimensional
harmonic vectors). By direct computation it follows that >'i_.0u,/6w,
= 0. As a generalization of the curl of ﬁ, we introduce the skew-
symmetric tensor

(10) L
ox

8
where ¢,,,,. 18 a permutation symbol, and we are using the summa-

tion convention for repeated indices. The components of the four-
vector 4 may be expressed as

=1 dy df
a1 w(X) =~ s oMo, 2L E
where N, is the rth component of
o _ 1, 1y 1 1 /1, 1Y),
an N ilio ) g le )
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consequently, 0u,/0x, has the representation

ou, 1 dn dg

(13) o = || e N AR
—_ 1 Ay dé
= - L[ e nomN, e

since 7 may be written as the scalar product of X and N. It follows
from (13) that

(14) P, =0.

The class of harmonic vectors, whose components are defined by
(11) play an interesting role in the development of a residue calculus
for harmonic functions of four variables. This aspect will be presented
in a later paper.

3. Integral representations for harmonic functions with rational
associates. The introduction of the operator p, allows a simple method
for constructing harmonic functions with standard singularities. For
example, let us suppose that the p,-associate f(z, 7, & of H(X) is a
rational funection, that is f(z, %, & = (7, 9, &)/q(r, 1, E) where p and
q are polynomals. It is convenient for some of our formulae and no
real loss in generality to assume further, that q(z,%, &) =17 —
s(m, Eyp~E". In order to investigate the harmonic, function-element

-1 =78
(15) H(X) = 47:2”9 e — g0, B

and the connection between the branches of the whole harmonie
function it is useful to consider the singularity manifold of the in-
tegrand,

(16) Z*= E{rén — ¢(1, &) = 0}
= B{Yne + 2 + 26 + Y* — 61,8 = 36X’ = 0},

where 7 is the degree of (7, &) in £. Alternately, one might represent
the singularity manifold as

Z'=E{E=A(X;));v=1,2 ---,7},

where the A,(X;7) are algebraic functions of X and 7. We choose
an initial point X° (about which we define our harmonic function
element) and a domain of integration <, such that

Eg=AX Nz =0, forv=12.--,m.
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Suppose <z = C x I (where C, I" lie in the &% planes respectively),
and let 7° be a fixed value of ne/'. Furthermore, let us suppose
that the denominator 7°€q(z, 7, &) = Q(X; 7°, £) vanishes for g roots,
£,&, -, &, inside of C, that as » varies about I" the ¢ roots do not
cross over or meet C, and as 7 returns to 7° after a circuit over I”

the new roots &,,&,, -+, &, are simply a permutation of the
&, &, -+, E. In this case the integral may be evaluated as follows
[12]
an __1_g p(, ', 8 dE _ __1__S P(X:: 77:, £) gg

A Je q(z°, 1, §) 7€ 47 Je Q(X% 7, &)

_ 1 (PX%57%8 , ..., PEX%7,E)
2y <Q¢-(X°; 7, &) * * QX% 7, SM)> ’

and hence one may write

a8 Hx) =L (PEEREE) .y BT ED) ) gy

2mt Ir\ Q(X°. 1, £(1)) QX" 1, £.(1)
(19) 1 S PX* 7, En) 4, - 1 S P(X" 7, &) dn
21 Jvur QX' 7, E(1)) 211 Y + Z°% — (1, )’

where the individual terms in (18) correspond to different circuits
about 7" in (19). This expression is thus seen to be equivalent to a
period of an Abelian integral [14].

We next consider the domain of definition of the function element
defined by p.((p/9), &r, X°). Certainly

oyy . 1 P(X; 7, &) _ 1 P(X; 9, §)dn
@m0 = - || G dedn = 5 Lz PN

will be valid for all points X, which may be reached by continuation
along a contour (X)) originating at X° provided that at no time
2 point of ¢~(X) corresponds to a singularity of P(X; 7, §)/Q(X; 7, &)
on <. The domain of definition <2 of the function element is then
seen to contain at least the points X whic may be reached from X°
along <°(X) such that

(21) E{Xe Z(XNNEQX;7,8=0018e2)=0.

Certainly .<#¢ may be enlarged to include a point X' on the set
A= E{Q(X; 7, & =0; (n, & e =} if it is possible to deform <& con-
tinuously so as to not pass over a point of

(22) E{Xe 2(X') c 2} N E{RX;7, &) =0}.

However, there are instances where the integral representation (20)
for HY(X) is defined for X* € 4%, and in these cases it may be possible
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to continue the function element H°(X) along a contour &(X) which
passes through X*'. This is the case, when the intersection E{Q(X?;
7, &) =0} N < consists only of isolated points and these points are
inessential singularities of the first kind for P(X%;7, &)/Q(X*; 7, &)
whose pole-like behavior is of order one.® [13] We are now in a posi-
tion to consider the representation

0 _ 1 P(X;7, &) —
HY(X) = —— Sgg Qg e, Z=CxTy,

under general circumstances. As before we assume that the singu-
larity manifold Z* = EF{f = A(X;7);v=1,2,:---,7} has n branches;

then for a particular 7°e I" there will be £ roots £, &, ---,inside C
and n — ¢ roots &,.,, Eurs, -+ -, &, outside C. If the diseriminant,
(23) II [A(X; 7)) — Au(X; 7] # 0

0SK<VEN

the branches of the singularity manifold are unique. Now if X is
some point in a neighborhood of X°, N(X°), such that

(24) X¢B® = E{()S}LI<IVQ[AV(X; 7 — A(X; )] =0;nel},

then as % transcribes I the branches & = A.(X;7) move in the &
plane and may cross C, but no point £, C can be more than a first
order pole of the integrand. Furthermore, if & = C x I has been
chosen such that C N E{g, = A X;7); ne '} consists only of isolated
points the integral (20) is defined, and we may write

wer_ 10 POG7E e 1 &T P(X:7En)
(25) HYX) =~ SS-@Q(X; N R = #=1SruQe(X; 7 Eum)”

where I', is that subset of I for which &, = A.(X;7) lies inside
of C.

7

4, TIllustrations of integral representations.

ExaMPLE 1. Let us consider the double integral

I ¢ dédn

(26) HX) =45 SS.@Y77§+Z7/+Z*$+ Y*—a
| dédy
T 4r Sggra}n —a’

where a is a complex constant, & = C x I" and C, I" are unit circles.
in the & 7 planes respectively. H(X) may be rewritten as the

8 If these points are inessential singularities of the second kind they do not have:
a pole-like behavior.
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iterated integral,

(@7 H(X) =~ 41:2 Sr Yn(ﬁ] Z §o<g Nz -C?Y* — a) ’
Yp+ Z*

which is absolutely integrable providing, that the linear transformation

__Z+ (Y —a)
o8 B) =~

(for 4 = ZZ* — YY* + Ya + 0)

does not map the unit circle | 7| = 1 into itself. This may be seen
to happen only when Y = ia, if =z, %, «,, £, are taken to be real.
One may readily evaluate integral (27) by realizing how the trans-
formation (28) maps the unit circle |7| =1. We distinguish three
case:

(i) &) | =1 for all el ={|n|=1}
29) (@) g =1 for all " "
(ili) |&(m)| <1 for some subset I'c I, and [EM) | = 1

for 7 a point of the complement of I" with respect to I. Since,
(28) is a linear transformation it maps circles into circles, and if the
image cirele of || =1 touches |&]| =1 at all it must do so in two
points or be tangent to | £| = 1. If it touches in two points we shall
call these points &%), &(,), and they will be the images of 7, 1, going
around |7 | =1 in a positives sense. In case (i) the integral may be
evaluated as follows,

1 .| Z
7 ‘f|?|<1’

e | Z
0, if | == 1,
1lyl>

_ 1 dn
(80) H(X) = 2mi Sr Yn+ Z*

undefined, if ]él =1.
Y

In case (i) H(X) =0, and in case (iii)
1 S an 1 S’?Z an
: X) = =
@D HX) 2me Jr Ynp 4+ Z* 2re Y Jnm=1m + Z*|Y

1 Y7, + Z* }
= l { y
ori e\ Yy, + Z

providing that Z/Ye Tl .

ExamPLE 2. Picard and Simart [14] give some interesting cases
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of double integrals with higher than first order inessential singularities,
and evaluate the residue by using infinitesimal domains of integra-
tion. We shall apply some of these methods below to evaluate in-
tegral representations for harmonic functions. Let us consider the
harmonic function element

1 dédn
H(X) = —
(32) (X) i SS-@[TEO + fE Dcén + 9(€, )]

-1 1 .
T 4m ug[[ym} + Zn + Z*E+ Y* + f(E )]
) dgdny ]
[Y7E + Zn + Z*E + Y* + g(&, n’

where <7 shall be specified below.
For a fixed X = (Y, Y*, Z, Z*), let us assume that

(i) Yne+2Zn+ Z*6+Y*+f(E =0,
(i) Yne+Zn+Z*6+Y*+g9E =0,

(33)

are two curves which intersect in a simple manner at the point
E=a,n=6. We now choose a suitably small contour 7" about £,
such that for ne " there correspond points £(7), £&(») near &, which
satisfy equations 33(i), (ii) respectively. We choose for the contour
C a suitably small circle about £,(7) such that as » traverses I', £(n)
remains inside C and &() remains outside. One then obtains from
the &-integration,

1 S dé

47 Jo(vn + )€ + 9)

1 1
T 2mi [Y) + Z* + fuE DIYDE + Zn+ ZE + Y* + 9, )]

With the 7-integration we have

1
Y+ Z* + fu&,7)
1

[¥e+ 7+ a6 + S0+ 20 + 0t )|

H(X) =

where

dé, _ _ Y&+ Z+ fiE, 1)

dn YN+ Z* + fu&,m)

from which it follows that,
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1
(Y +Z* + fNYE A+ Z+g,) — (YE+ Z+fNY)+Z* 4 g.) =

h=p
_ 1 .
34  HEX)= [(m + Z* + fula, B)(Ya + Z + g, B))

H(X) =

] |
— (Yo + Z + fola, BNYB + Z* + gula, B)1
ExaMPLE 3. As another illustration we consider the integral

__ 1 dédn
©5)  HX) =75 “9 nE + £(1, &)
1 S S dEdy
Am* e Yng + Zy + Z*E+ Y* + f(n, &)

where YNE+ Zn + Z*E+ Y* + f(n,€) =0 has a double point at
E=a,n=p. As before, we choose a suitably small contour I" such
that for e " there correspond two roots £(%), &%), with & inside
and &, outside of C; one has then

if

_ 1 a7
36) H(X)=
(36) HX) =2~ SrYr;+Z*+fe(§1[77],77)

1
= { ZEI Fel& [0, ) + Y + fe(& [7], 77):}5=“
77 1=

_ 1
VY = FaE 00, DT — Fe& 0], D Fn(E ] 1) i

=0
n=g

since d&[7]/dn satisfies the equation

dé,
di +fm=0.

37 (o)t 27+ )

5. Singularities of harmonic functions with Rational p, associates.
In an earlier paper [7] this author proved the following theorem.
THEOREM 0. Let Z* = E{S(X; n, £) = 0} be the singularity mani-
sfold of (1/n&)f(z, 7, &), then
_ 1 gg dn dE
HX)= — — oy 4s
@ = = = || s oS

is regular at XeC* (where C* is complex, four-dimenional space)
providing

Xe BIS(G 7,8 = 00 B{Z-8X: 7, 9 + w() 28X 7, 8 = 0]
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where & = w(y) 1s an arbitrary analytic function of 7.

The set of points, however, which are contained in the above
intersection may consist of a four dimensional region. Consequently,
this is hardly a restriction on the possible singularities of H(X). In
order to locate the singularities more accurately we consider the case
where f(z,7, £) is a rational function, that is

1 _ 0z,1n,8 _ PX;7,8
TR e s

where P and @ are polynomials. Now, a singularity of the interand
occurs for a value of Xe F{Q(X;7, & =0}. If & =Cx1TI, then for
a fixed P’ eI, Q(X; 7, £) has the decomposition

(88) QAX; 7, &) = [£ — AX; )]™[E — A 7)™ - -+ [€ — AL )],

where the m, are integers =0, and m, + m, + -+ + m, = degree
of £ in Q. The criteria for an m, > 1 is that 9Q/0& = 0, for some
& = A,(X;n"); this is equivalent to a multiple pole singularity of the
integrand.

Since, £ = n(») is an analytic function of 7, and furthermore,
since only poles of order equal to or greater than two are non-in-
tegrable on &7, X is a regular point providing

69 XeBQ(G7H=00EB{EL + 7 FL = o} nm{FL}

- 0Q 0Q)
= E{Q(X;7, &) = E{_z } E{——z }
{RIX;7,8) =0nN o N 2%
By interchanging the roles played by % and & in the above
theorem (either may be considered independent), and by considering
the decomposition

QUX; 7, &) = [1 — B(X; &))" - -+ [ — B(X; &)

(where the k; are integers =0, and k + k, + -+ + k, = degree 7,
E¢e(C is fixed) one sees that n = B,(X; &) is a multiple pole of the
integrand if and only if {(9/))Q(X; 7, E)}N{y = B(X; &)} = 0. In this
case we realize that X is a regular point providing it does not lie on

E{Q =0} n E{N’(é)% + % =o}n E{% = o}

EE{onmE{%?—: }mE{%—%—=0},

since 7 = AM§) is analytic. From this we have the following result.
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THEOREM 1. Let

L _ P9
AR

X, 1, &)
be a rational function of t,7, & then
_ 1 P(X;7,8)
20 =~ || G g e

18 regular at Xe C*, providing

X¢ B{Q(X; 7, &) = O}nE{% = O}nE{%‘g—: b

To illustrate this result let us consider the representation

In this case we may take the singularity manifold to be
Zt=FE{mg—a=Yng+Zn+ Z*E+ Y* —a = 0}.
We may eliminate by computing the intersection
E{Yng+Zn+Z*%6+Y* —a=0NE{(YE+ Z=0NE{Y)+Z*=0}
= E{YY* - ZZ* =aY}.
If «, %, %, ., are real this is seen to become

E{(x, — a) + (x; — b)) + 23 + o} = o* + b} N E{bx, + ax, = 0},

104 .
— =q + b .
5 +

The proceding theorem also gives us an insight into the singu-
larities of the harmonic function

B = | - L S e
Ar* J)o Tt — « A7* irYn + Z 05_|_Z7]+Y —«a
Y+ Z*

which we discussed in the last section. The linear transformation

_ —Znta—Y*
&) Y+ Z°

is a one-to-one mapping of the 7-plane onto the &-plane if and only
if 4=7ZZ*—YY*4 Ya+0. If 4=0, then this transformation
reduces to a constant, that is the entire 7-plane is mapped into
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&= (a— Y*)Z*. The singularities of the integrand are at most first-
order, pole-like, inessential singularities. It is clear then, that if
X'¢ E{4 = 0} there exists a domain & = C x I, for which the in-
tegral representation of H(X") is defined, that is it is possible to
choose & in such a manner that no line segment of < is contained
in the set E{pé —a =0; X = X} H(X) may be defined at points
X in the neighborhood of X°, N(X°) providing that N(X°) c E{4 =+ 0},
and that no line segment of < is contanined in SycyxyF{mNE —
= 0}. (S denotes the topological sum.) Furthermore, H(X) then may
be continued to any point X, which can be reached by a contour
#(X) originating at X°, and which lies entirely within E{4 =+ 0},
providing no set of singularities for the integrand corresponds to a
line segment of < for any value of Xe ¥ (X). It is possible, how-
ever, to extend this region of definition for H(X) to include other
points X’ if < may be continuously deformed so as to not have a
line segment lie on E{né — a = 0; X = X'} for any stage of the
deformation. Such a deformation is always possible if X'¢ E{4 = 0}.
When X'e E{4 = 0}, however, the entire 7-plane is mapped onto
£ =(a— Y*)Z* by &%), hence for all valuesof ye ", & = (a« — Y*)|Z*
will be a singularity of the integrand in the &-plane. In this case
it is impossible to deform < in a continuous manner so as to pass
over the singularities of the integrand without it at some time hav-
ing a line segment corresponding to E{tn{ —a =0; X = X'}, With
this we have obtained

Result 1. The harmonic function

200 =~ \lomds

18 regular at X, providing Xe¢ E{ZZ* — YY* + Ya = O}

6. An inverse for the operator. As mentioned earlier, Kreyszig
[10] gave an inverse operator for p,. (see expression 8). In an earlier
paper the present author introduced an operator which was not an
inverse for p, but did generate a function of three complex varia-
bles closely related to the normalized associate. This was done by
using the orthonormal property of the spherical harmonics on the
unit hypersphere. Since, there are distinct advantages to inverse
operator of both types we shall develop an inverse for p, which

4 It is interesting to consider the three categories, | Z/Y | < 1, > 1, =1, of expression
(30) in view of this result. On E{|Z|24+ | Y |2— aY = 0} (x1, @2, s, x+ real) these cate-
gories become respectively | Y| > |a /2, < |al/2, =]al/2. Y = «/2, was seen to coincide
with the case where &%) maps the unit circle into itself and this corresponds to the
third category, | Y| =] a|/2.
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depends on the orthonormal property.

The variable 7 used in this paper is somewhat different than the
original variable

(40) ¢ = iy1<1 — 5—177) - zyz(—éla— + %) + y(é — %) + y4<1 + 771-§> ,

and was a modification of Kreysig’s®, which lead to a more unified
presentation of formulae. The original variable ¢ is, however, useful
because of its connection with the surface harmonics, Skti(7, 6., ®),

[5]

(41) tr = 3 (R)orst0,, 0, Pnre
where p, 6, 0,, p are the hyperspherical coordinates defined by
Y, = pcosb,,
= 0 sin 6, cos 0, ,
(42) fsin 0, ¢0s 0y
Y; = Psind, sinf,cos @ ,
Y, = psind, sinf,sinyp ,
and

0=0,0=<0,<rt(j=12),0=p=2r.
We construct the kernel
(&)
u8) Ko, 0 &0,9) =3 5+ 125 0prSEes opE
!

which because of the orthogonality relations over the hypersphere,

i swestva = s L)
(44) L[] saseran = onauos,
k

(where df = sin®#, sin 6,d0,d6,dp) may be used to generate to nor-
malized, p,-associate of a harmonic function H(X). For instance,
suppose

H(X*)

i

V(p, 0y 0 9) = 3 5 anu(p)0"S5055 9)

n=0ll=0

nMs

i: i HEo(X),
k 1=0

5 Kreyszig’'s form and mine are related by the permutation and reflection of coordi-
nates, X*T = X:

Y1~ X2, Y2 > — X4, Y3 = X3, Y —> X1 .
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where
Hy(X*T7) = HEY(X),

then one may generate the p,-associate,
flo,n,8 = Z;. ;.z Qi O"NE
by the integral operator

@) fO.7.0 =\ || Vo 7 Pk 7, 8 0, 90

One may sum the series formally for the kernel K(op, 7, & 0;, ®)
as follows. The term

_]._Z(n—l)!l!: I'n—1+1)I'1+1)
()

m

may be replaced by

(m+ 1| e - oyde
Hence, one has
K(op,7, & 05, 9) = 3 31 | (1 — 0/d5(} )n + D00y SEOs; Py7'E
50+ 0 ae] S eoor(rig) (R)sros o,

H

= 3 @+ D syrds
where
(46) @1 = 35 (3 )rss(@;, oy,
and
r=top\ = —2*

BL—-0

If |s(¢)| < 1, then we may interchange the orders of summation and
integration, and formally sum the series. One has in this case

@7 K(op,7, & 6, 9) = | 3 (n + srdt
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G e laty e

If the representation (40) is denoted by #(X*;7n, & then we may
express

(0 = (X7, 75 ) b0 = o ACCE + BXT,
where

A(X™) = (1 + 18) + (& — 1) — wu€ + 1) + v.(1 — %E),

48
( ) B(X*)=§(—W,77"’b?/2+?/3+?/47])-

When |0 | < 1/| A + B| (i.e. | s| < 1), the expression for the kernel
is itegrable and one obtains

K(op, 7,60, 9) = —— | AT

B(20~ — A — 2B)
oo — B — B — Ay

Hence we have the result.

THEOREM 2. Let H(X*) be a harmonic function regular at the
origin, and let V(o,0;, ¥) be the function obtained by replacing
Y1, Yo Ys, Ysy DY the hyperspherical polar coordinates then

_ 1 V(0,0;, #)B(20~ — A — 2B)
50)  f(o,7,8 = 2m 0.0 23— 42D a0,

where the integration s over the unit hypersphere.

There are two particular uses for this type of inverse operator,
(i) obtaining integral solutions to boundary value problems, and (ii)
formulating necessary and sufficient criteria for singularities of
H(X*).

Occasionally it is useful to extend the arguments of H(X*) to
complex values; if we introduce the complex, hyperspherical, polar
coordinates

u]_:_yl_’
0
Y,
Uy = e,
1/2_ 2
51) %
v = /Yot Wi

Ys — s
o=+Vyit+yi+uyi+uyi,
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which reduces to u, = cos ., u, = cos 8,, v = ¢, for y,, ¥, ¥s, Y. real,
we may represent p;'(H) as a Cauchy integral. Indeed, since
@A + s)(1 — s)* is analytic in u,, u,, v, ¢ for |s| < 1, K(op, 7, | U, s, v)
is analytic in %, u, v, (u; = 1, v+ 0) for |p| sufficiently small.
The integral (50) may then by expressed as a triple-Cauchy integral

SSS U(Aoy Uy Uy, ’U)B(2O'_1 —A-— 2B)
r=y;xvx8 00 — B)(0™* — B — A)*

i
| (52) f(o,1,8 = o
V1 —u dulduzd—v ,
v

where the domain of integration is a product of contours, v, X v, %X 6,
in the wu,, u,, v-planes respectively; 7,7, are paths joining +1 to-1,
and J is a closed loop encircling the origin in the wv-plane.

Since (25) is a Cauchy integral we may deform the product of
contours continuously providing we do not pass over a third-order
pole of u;, or v. (We note that the integrand has branch-point like
singularities only at w; = 41, which corresponds to points on the
boundary of <#). Let us start with an initial point of definition
for f(o,7, & say the origin P =& =0 =0, and let us choose &
such that p;'(H) is absolutely integrable. f(o,7,£& will then be
defined in some neighborhood of the origin N, providing that all
points (0,7, §) = ¥ e N, lie on a curve &(2) originating at the origin
and such that no point of <~(X) corresponds to a third order pole
of the integrand on the domain of integration etec. Having thus
established a domain of definition for f(o, 7, £) we may extend this
region by continuously deforming <2z according to the usual precau-
tions. We recognize, however, that the singularities of the integrand
are of a more complicated type than occur for the operator p.(f).
For instance, there are singularities of the kernel, which move as
we continue along a curve (%), and there are the fixed singularities
of the harmonic function H(X*). The singularities of the kernel
are those points Y, which lie on

(53) E{g"—B=0)UE{c"— B— A=0}.

Both A and B are linear in ¥, %,, ¥,, ¥,, hence the zeros of (67 — B)
and (67— B — A) are first order for u,,u, or v, where ever the
transformation of coordinates (51) is a one-to-one, that is for u; = +1,
v #= 0. The kernel is then seen not to have a pole-like singularity of
third order unless A(X*) = 0, and in this case one has

2B(X™)
7o — B

(54) K(op, m, &| Uy, Uy, v) =

Now we may continue f(o, 7, &) along () as long as it is possible
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to deform <Z so that it does not cross over a third-order, pole-like
singularity of (54). This may always be accomplished except when
the singularities of (54) coincide with the fixed (third-order, pole-like)
singularities of H(X™*) [8] [6] [7] [12]. Hence, we have proved the
following result.

THEOREM 8. Let H(X*) be a wmeromorphic harmonic function
regular at the origin, and let U(p, u,, u,, v) be the function obtained

by replacing Y., Yy, Ys, Y by the complex, hyperspherical coordinates,
then

1 U(p, Uy, Uy, 4;)BRo™ — A — 2B)
rene =<1, et R A

V1 = du,du, dug
u,

is regular at X = (0,1, ) providing this point does not lie on

- )0 528 - )]

E{A(X*) = 0} n Efo — B(X*)} N [L:JE{ gf

j
where

F(p! u’l! u2! u3)

U(p,ul,ug,ug)z G(P Y u)

18 a decomposition of U into entire functions.
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