ON THE GENERATION OF DISCONTINUOUS GROUPS

Joseph Lehner
ON THE GENERATION OF DISCONTINUOUS GROUPS

JOSEPH LEHNER

In a paper in this Journal (v. 11, p. 675) M. I. Knopp remarked that $G(j)$, the principal congruence subgroup of level $j \geq 2$ of the modular group, can be generated exclusively by parabolic transformations if and only if it is of genus zero. The following natural generalization is easily proved:

Let Γ be a horocyclic group of genus g. Then Γ possesses a system of generators consisting entirely of parabolic and elliptic elements if and only if $g = 0$.

Knopp's result is a special case, since $G(j)$ has no elliptic substitutions.

For the proof we appeal to the classical result that Γ has a canonical fundamental region whose sides are conjugated by elliptic and parabolic substitutions and $2g$ hyperbolic substitutions $A_1, B_1, \ldots, A_g, B_g$ (cf. [1], p. 182 ff). These substitutions generate Γ. If $g = 0$, the hyperbolic ones are absent and the conclusion follows.

Conversely, let Γ be generated by elliptic and parabolic transformations T_1, \ldots, T_s. Let the domain of existence of Γ be, for example, the upper half-plane H. Denote by H^+ the union of H and the parabolic cusps of Γ. If $g > 0$ there exists an abelian integral of the first kind, that is, a function F regular in H^+ such that

\[(*) \quad F(Lz) = F(z) + C(L)\]

for all $L \in \Gamma$. Each T_i has a fixed point lying in H^+. Letting z tend to this fixed point in $(*)$, we see that $C(T_i) = 0, \ i = 1, \ldots, s$. Since

\[C(L_1 L_s) = C(L_1) + C(L_s),\]

and the T_i generate Γ, we have

\[C(L) = 0\]

for all $L \in \Gamma$. The abelian integral F has zero periods and is therefore an automorphic function on Γ. Since it is regular in the closed fundamental region, it is a constant. Differentiating, we conclude that there are no abelian differentials of the first kind except 0.

Received June 15, 1962.

1 A discontinuous group Γ is called horocyclic (Grenzkreisgruppe) if there is a fixed disk (or half-plane) preserved by each element of Γ and every boundary point of the disk is a limit point of Γ.
whence Γ is of genus 0. This completes the proof.

That a group of genus 0 cannot always be generated entirely by parabolic elements is shown by the following example, supplied by Morris Newman. Let H be the group generated by $G = G(3)$ and T, where $T\tau = -1/\tau$. Since T is of period 2 and commutes with G, we have

$$H = G + TG.$$

Now G is of genus 0, as is known. Let $f(\tau)$ be a univalent function on G with a simple pole at $\tau_0 \neq i$. Then $f(\tau) + f(-1/\tau)$ is univalent on H, which is therefore of genus 0. A parabolic element P of H cannot lie in TG, for P has trace ± 2 whereas $TG \equiv T (\text{mod } 3)$ has trace divisible by 3. Hence P is in G, and therefore every product of parabolic elements of H is also in G. It follows that H cannot be generated by parabolic elements alone.

Instead of $G(3)$ we could also have used $G(4)$ or $G(5)$.

Reference

Frantz Woodrow Ashley, Jr., *A cone of super-(L) functions* 1
Earl Robert Berkson, *Some metrics on the subspaces of a Banach space* 7
Felix Earl Browder and Walter Strauss, *Scattering for non-linear wave equations* .. 23
Edmond Darrell Cashwell and C. J. Everett, *Formal power series* 45
Frank Sydney Cater, *Continuous linear functionals on certain topological vector spaces* ... 65
John Douglas Dixon, *General group extensions* 73
Robert Pertsch Gilbert, *On harmonic functions of four variables with rational p_4-associates* ... 79
Irving Leonard Glicksberg, *On convex hulls of translates* 97
Simon Hellerstein, *On a class of meromorphic functions with deficient zeros and poles* .. 115
Donald William Kahn, *Secondary cohomology operations which extend the triple product* .. 125
G. K. Leaf, *A spectral theory for a class of linear operators* 141
R. Sherman Lehman, *Algebraic properties of the composition of solutions of partial differential equations* .. 157
Joseph Lehner, *On the generation of discontinuous groups* 169
S. P. Lloyd, *On certain projections in spaces of continuous functions* 171
Fumi-Yuki Maeda, *Generalized spectral operators on locally convex spaces* .. 177
Donald Vern Meyer, *E^3 modulo a 3-cell* .. 193
William H. Mills, *An application of linear programming to permutation groups* .. 197
Richard Scott Pierce, *Centers of purity in abelian groups* 215
Christian Pommerenke, *On meromorphic starlike functions* 221
Zalman Rubinstein, *Analytic methods in the study of zeros of polynomials* .. 237
B. N. Sahney, *On the Nörlund summability of Fourier series* 251
Tôru Saitô, *Regular elements in an ordered semigroup* 263
Lee Meyers Sonneborn, *Level sets on spheres* 297
Charles Andrew Swanson, *Asymptotic estimates for limit point problems* .. 305
Lucien Waelbroeck, *On the analytic spectrum of Arens* 317
Alvin (Murray) White, *Singularities of a harmonic function of three variables given by its series development* 321
Kôichi Yamamoto, *Decomposition fields of difference sets* 337
Chung-Tao Yang, *On the action of $\text{SO}(3)$ on a cohomology manifold* .. 353