AN APPLICATION OF LINEAR PROGRAMMING TO
PERMUTATION GROUPS

WILLIAM H. MILLS
AN APPLICATION OF LINEAR PROGRAMMING
TO PERMUTATION GROUPS

W. H. MILLS

Let S_N denote the symmetric group acting on a finite set X of N elements, $N \geq 3$. Let σ and τ be elements of S_N. In a previous paper [1] the following question was raised: If σ and τ commute on most of the points of X, does it necessarily follow that τ can be approximated by an element in the centralizer $C(\sigma)$ of σ?

We define a distance $D(\sigma, \tau)$ between two elements σ and τ in S_N to be the number of points g in X such that $g\sigma \neq g\tau$. (This differs from the distance $d(\sigma, \tau)$ defined in [1] by a factor of N.) Then $D(\sigma\tau, \tau\sigma)$ is the number of points in X on which σ and τ do not commute. Let $D_\sigma(\tau)$ denote the distance from τ to the centralizer $C(\sigma)$ of σ in S_N. Thus

$$D_\sigma(\tau) = \min_{\lambda \in C(\sigma)} D(\tau, \lambda).$$

It will be shown that the determination of $D_\sigma(\tau)$ is equivalent to the optimal assignment problem in linear programming.

The question raised in [1] can be phrased thus: If $D(\sigma\tau, \tau\sigma)$ is small, is $D_\sigma(\tau)$ necessarily small? If σ is not the identity we set

$$D_\sigma = \max_{\tau \in C(\sigma)} D_\sigma(\tau)/D(\sigma\tau, \tau\sigma).$$

Now D_σ is large unless σ is the product of many disjoint cycles, most of which have the same length. Some examples of this are worked out in detail in [1]. This leads us to study the case where σ is the product of m disjoint cycles of length n, where $N = nm$ and m is large. In [1] it was shown that if $m \geq 2$, then

(a) if n is even, then $D_\sigma = n/4$, and
(b) if n is odd, $n \geq 3$, then

$$(n - 1)/4 \leq D_\sigma \leq n/4.$$

In the present paper it is shown that if n is odd, $n \geq 3$, and $m \geq n - 2$, then

$$D_\sigma = (n - 1)/(4n - 6).$$

1. **Relation to linear programming.** Let σ be an arbitrary element of the symmetric group S_N. We write σ as the product of disjoint cycles:

$$\sigma = C_1C_2 \cdots C_m,$$

Received October 22, 1962.
where C_i is a cycle of length n_i, and every point left fixed by σ is counted as a cycle of length 1. Then

$$n_1 + n_2 + \cdots + n_m = N.$$

Let g_i be a fixed element of the cycle C_i, $1 \leq i \leq m$. Then every element of the underlying set X is of the form $g_i\sigma^a$, where $1 \leq i \leq m$ and $0 \leq a < n_i$.

Let λ be an element of $C(\sigma)$, the centralizer of σ in S_n. Then since

$$(g, \sigma^a)\lambda = (g, \lambda)\sigma^a,$$

it follows that λ is determined by its effect on the g_i, and that λ permutes the cycles C_i. Let $\bar{\lambda}$ be the permutation of $1, 2, \cdots, m$ such that $i\bar{\lambda} = j$ if λ maps C_i onto C_j. We will call a permutation α in S_m admissible if $\alpha = \bar{\lambda}$ for some $\lambda \in C(\sigma)$. It is easy to see that α is admissible if and only if $n_i = n_{i\alpha}$, $1 \leq i \leq m$. Let A denote the group of all admissible permutations.

Let τ be a second element of S_n. We wish to determine

$$D_\sigma(\tau) = \min_{\lambda \in C(\sigma)} D(\tau, \lambda),$$

where $D(\tau, \lambda)$ is the number of points g in X such that $g\tau \neq g\lambda$. Let $E(\tau, \lambda)$ denote the number of points h in X such that $h\tau = h\lambda$, and set

$$E_\sigma(\tau) = \max_{\lambda \in C(\sigma)} E(\tau, \lambda).$$

Then

$$D_\sigma(\tau) = N - \max_{\lambda \in C(\sigma)} E(\tau, \lambda) = N - E_\sigma(\tau).$$

We shall show that the determination of $E_\sigma(\tau)$ is equivalent to the optimal assignment problem in linear programming.

The elements λ in $C(\sigma)$ are the permutations of the form

$$(g, \sigma^a)\lambda = g_i\sigma^{\alpha + r_i}, 1 \leq i \leq m, 0 \leq a < n_i,$$

where α is admissible and r_1, r_2, \cdots, r_m, are integers. Moreover

$$E(\tau, \lambda) = \sum_{i=1}^m F_i(r_i, i\alpha),$$

where $F_i(r, j)$ is the number of solutions of

$$1 \quad (g, \sigma^x)\tau = g_j\sigma^{x+r}, 0 \leq x < n_i.$$

Set
Thus b_{ij} is the maximum number of points of C_i on which an element λ in $C(\sigma)$, that maps C_i onto C_j, can agree with τ. We have

$$E_\sigma(\tau) = \max_{\lambda \in C(\sigma)} E(\tau, \lambda) = \max_{\alpha \in A} \max_r \sum_{i=1}^{m} F_i(r, i\alpha),$$

or

$$E_\sigma(\tau) = \max_{\alpha \in A} \sum_{i=1}^{m} b_{i, i\alpha}.$$ \hspace{1cm} (2)

Now let β be an arbitrary permutation of $1, 2, \ldots, m$. There is an $\alpha \in A$ such that $i\alpha = i\beta$ for all i such that $n_i = n_i\beta$. Therefore, since $b_{ij} = 0$ if $n_i \neq n_j$, it follows that we can take the maximum in (2) over the entire symmetric group S_m instead of over the subgroup A. Thus

$$E_\sigma(\tau) = \max_{\beta \in S_m} \sum_{i=1}^{m} b_{i, i\beta}. $$ \hspace{1cm} (3)

The determination of a maximum of the form (3) is the optimal assignment problem in linear programming—ordinarily expressed in terms of m individuals to be assigned to m jobs, where b_{ij} is a measure of how well the ith individual can do the jth job. (See [2]; or [3], pp. 131–136.) Von Neumann [2] has shown that this problem is equivalent to a certain zero-sum two-person game.

The equality (3) can be rewritten in the form

$$E_\sigma(\tau) = \max_{P} \sum_{i,j} e_{ij} b_{ij}, $$ \hspace{1cm} (4)

where P is the set of all $m \times m$ permutation matrices (e_{ij}). The set P is clearly a subset of the set R of all real $m \times m$ matrices (y_{ij}) such that

$$y_{ij} \geq 0, 1 \leq i, j \leq m, $$ \hspace{1cm} (5)

$$\sum_{i=1}^{m} y_{ij} = 1, \hspace{1cm} 1 \leq j \leq m, $$ \hspace{1cm} (6)

and

$$\sum_{j=1}^{m} y_{ij} = 1, \hspace{1cm} 1 \leq i \leq m. $$ \hspace{1cm} (7)

The matrices of the set R form a convex bounded subset of real m^2-dimensional Euclidean space, whose vertices are the permutation
matrices. (This result is due to Garrett Birkhoff. See [2], pp. 8-10.) It follows that
\[
E_\sigma(\tau) = \max \sum_{i,j} e_{ij} b_{ij} = \max \sum_{i,j} y_{ij} b_{ij}.
\]

It is now clear that the determination of \(E_\sigma(\tau) \) is actually a problem in linear programming. It is easy to see that the equalities (6) and (7) can be replaced by inequalities (see [2], Lemma 1). Thus if \(Y \) is the set of all real \(m \times m \) matrices \((y_{ij}) \) satisfying (5),
\[
\sum_{i=1}^n y_{ij} \leq 1, \quad 1 \leq j \leq m,
\]
and
\[
\sum_{j=1}^n y_{ij} \leq 1, \quad 1 \leq i \leq m,
\]
then
\[
E_\sigma(\tau) = \max \sum_{r,i,j} y_{ij} b_{ij}.
\]
For our purposes this is the most useful formulation of the problem.

2. Blocks. By a block of length \(s, s \geq 1 \), we mean a set of the form \(g\sigma, g\sigma^2, \ldots, g\sigma^s \), such that \(\sigma \) and \(\tau \) commute on \(g\sigma, g\sigma^2, \ldots, g\sigma^{s-1} \), but do not commute on \(g \) and \(g\sigma^s \). The length of a block \(B \) will be denoted by \(|B| \). If \(\sigma \) and \(\tau \) commute on every point of the cycle \(C_i \), then we say that \(\sigma \) and \(\tau \) commute on \(C_i \). In this case the cycle \(C_i \) contains no blocks. On the other hand if \(C_i \) contains exactly \(q \) points on which \(\sigma \) and \(\tau \) do not commute, \(q \geq 1 \), then \(C_i \) consists of exactly \(q \) blocks, and each point of \(C_i \) belongs to one and only one block. Now \(D(\sigma\tau, \tau\sigma) \) is the number of points in \(X \) on which \(\sigma \) and \(\tau \) do not commute. It follows that \(D(\sigma\tau, \tau\sigma) \) is equal to the total number of blocks in all cycles.

If \(\sigma \) and \(\tau \) commute on the points \(g, g\sigma, g\sigma^2, \ldots, g\sigma^a \), then it follows, by induction on \(a \), that
\[
(g\sigma^\nu)\tau = (g\tau)\sigma^\nu, \quad 0 \leq \nu \leq a + 1.
\]
In particular if \(\sigma \) and \(\tau \) commute on the cycle \(C_i \), and if \(g_i\tau = g_j\sigma^r \), then
\[
g_i\sigma^r\tau = g_j\sigma^{r+s}
\]
for all \(x \). Therefore, in this case, the number of solutions \(F_i(r, j) \) of (1) is \(n_i \), so that \(b_{ij} = n_i = n_j \).

Now let \(C_i \) be a cycle on which \(\sigma \) and \(\tau \) do not commute. Then
C_i is composed of one or more blocks. Let B be one of the blocks of C_i, and let B consist of the points

$$g, g\sigma, g\sigma^{b+1}, \ldots, g\sigma^{b+s-1}.$$

Then $|B| = s$. Let $g, g\sigma^{b+r}$. Since σ and τ commute on $g, g\sigma^{b+r}$, $0 \leq \mu \leq s - 2$, we have

$$g, g\sigma^{b+r} = g, g\sigma^{b+r} \tau, 0 \leq \nu \leq s - 1. $$

In particular $n_i \geq s$. Moreover if $n_i = n_j$, then the number of solutions $F_i(r, j)$ of (1) is at least s, and hence $b_{ij} \geq s$. It follows that if $n_i = n_j$, then b_{ij} is at least the length of the longest block of C_i that τ maps into C_j.

Moreover since σ and τ do not commute on $g, g\sigma^{b+s-1}$, we have

$$g, g\sigma^{b+s-1} \neq g, g\sigma^{b+s-1} \tau \sigma = g, g\sigma^{b+s-1}. $$

In particular if C_i consists of the single block B, then $s = n_i$, and

$$g, g\sigma^{b+r} = g, g\sigma^{b+r} \tau \neq g, g\sigma^{b+r+s}. $$

It follows that $s \neq n_j$. Therefore we must have $n_j > s = n_i$. Thus if C_i consists of a single block B, then τ maps B into a cycle C_j such that $n_j > n_i$. This is a generalization of a result noted in [1]: If the cycles C_i all have the same length, then no cycle can consist of a single block.

3. The case n odd.

We now restrict ourselves to the case where σ is the product of m cycles of the same length n, $n > 1$, $N = mn$, $N \geq 3$. Thus we have $n_1 = n_2 = \cdots = n_m = n$, and every permutation in S_m is admissible, so that $A = S_m$. Set

$$D_{\sigma} = \max_{\tau \in \mathcal{O}(\sigma)} \{D_{\sigma}(\tau) / D(\sigma\tau, \tau\sigma)\}.$$

It was shown in [1] that if n is even and $m \geq 2$, then $D_{\sigma} = n/4$. We now show that if n is odd and $m \geq n - 2$, then $D_{\sigma} = (n - 1)/(4n - 6)$. Without loss of generality we can take X to be the set of the first N positive integers, and

$$\sigma = (1, 2, \cdots, n)(n + 1, \cdots, 2n) \cdots (N - n + 1, \cdots, N). $$

Thus for g in X we have

$$g\sigma = \begin{cases} g + 1 & \text{if } n \nmid g, \\ g + 1 - n & \text{if } n \mid g. \end{cases} $$

We let C_i denote the ith cycle:
We must show that
\[\max_{\tau \in \mathcal{O}(\sigma)} \{ D_\sigma(\tau) | D(\sigma \tau, \tau \sigma) \} = (n - 1)^2/(4n - 6) . \]

We break up the proof into two lemmas.

Lemma 1. If \(n \) is odd and \(m \geq n - 2 \), then there exists a \(\tau \in S_n \), \(\tau \not\in C(\sigma) \), such that
\[D_\sigma(\tau) | D(\sigma \tau, \tau \sigma) = (n - 1)^2/(4n - 6) . \]

Proof. Suppose first that \(n = 3 \). Then
\[\sigma = (123)(456) \cdots (N - 2, N - 1, N) . \]

Here we take \(\tau = (12) \). Then \(\sigma \tau \sigma^{-1} \tau^{-1} = (132) \), so that \(\sigma \) and \(\tau \) commute on all but three points, and \(D(\sigma \tau, \tau \sigma) = 3 \). Moreover
\[
\begin{align*}
0 & \quad \text{if } i \neq j , \\
1 & \quad \text{if } i = j = 1 , \\
3 & \quad \text{if } i = j > 1 .
\end{align*}
\]

Hence
\[E_\sigma(\tau) = \max_r \sum_{i,j} e_{ij} b_{ij} = \sum_{i=1}^m b_{ii} = 3m - 2 = N - 2 . \]

Therefore \(D_\sigma(\tau) = N - E_\sigma(\tau) = 2 \), and
\[D_\sigma(\tau) | D(\sigma \tau, \tau \sigma) = 2/3 = (n - 1)^2/(4n - 6) . \]

We can now suppose that \(n \geq 5 \). Set \(n = 2K + 1 \). Then \(K \geq 2 \), and \(m \geq 2K - 1 \). Set \(\tau = \tau_1 \tau_2 \cdots \tau_K \), where
\[
\tau_r = (r, n + r, 2n + r, \cdots, Kn - n + r, K + r , K + n + r, \cdots, 2Kn - 2n + r) .
\]

Thus for \(g \) in \(X \) we have
\[
g^\tau = \begin{cases}
 g + n & \text{if } g = pn + r, 0 \leq p \leq K - 2, 1 \leq r \leq K , \\
 K + r & \text{if } g = Kn - n + r, 1 \leq r \leq K , \\
 Kn + r & \text{if } g = K + r, 1 \leq r \leq K , \\
 g + n & \text{if } g = pn + r, K \leq p \leq 2K - 3, 1 \leq r \leq K , \\
 r & \text{if } g = 2Kn - 2n + r, 1 \leq r \leq K , \\
 g & \text{otherwise} .
\end{cases}
\]
The blocks of τ are shown schematically in Figure 1.

Figure 1

The permutation τ maps the shaded blocks of Figure 1 onto themselves, and it maps the other blocks as indicated by the arrows. The permutations σ and τ commute on the cycles C_i with $i \geq 2K$. Hence these cycles contain no blocks and are not shown in the figure. Let c denote the number of cycles on which σ and τ commute. Thus $c = m - (2K - 1)$. The number of points on which the identity I agrees with τ is

$$E(\tau, I) = cn + 1 + (2K - 2)(K + 1).$$

Clearly I belongs to $C(\sigma)$. On the other hand suppose that λ is an arbitrary element of $C(\sigma)$. If there exists a cycle C_i such that τ and λ do not agree on any points of C_i, then

$$E(\tau, \lambda) \leq cn + (2K - 2)(K + 1).$$

If τ and λ agree on the point n, then

$$E(\tau, \lambda) \leq cn + 1 + (2K - 2)(K + 1).$$

If τ and λ do not agree on n, and if τ and λ agree on at least one point of every cycle C_i, then there are at least $K - 1$ blocks of length $K + 1$ on which τ and λ do not agree. Hence in this case

$$E(\tau, \lambda) \leq cn + (K - 1)(K + 1) + K^2$$

$$= cn + 1 + (2K - 2)(K + 1).$$

Therefore

$$E_*(\tau) = \max_{\lambda \in C(\sigma)} E(\tau, \lambda) = E(\tau, I) = cn + 1 + (2K - 2)(K + 1)$$

$$= (m - 2K + 1)n + 2K^2 - 1 = N - 2K^2.$$

Hence

$$D_*(\tau) = N - E_*(\tau) = 2K^2 = \frac{1}{2}(n - 1)^2.$$
We see from Figure 1 that the total number of blocks is
\[2(2K - 2) + 3 = 2n - 3. \]
Since this is equal to \(D(\sigma, \tau) \), we have
\[D_\sigma(\tau)/D(\sigma, \tau) = (n - 1)^j/(4n - 6). \]
This proves the lemma.

Lemma 1 establishes that \(D_\sigma \geq (n - 1)^j/(4n - 6) \) if \(n \) is odd and \(m \geq n - 2 \). Our other lemma, which establishes the opposite inequality, does not depend on the size of \(m \).

Lemma 2. If \(n \) is odd and \(\tau \in S_n, \tau \in C(\sigma) \), then
\[D_\sigma(\tau)/D(\sigma, \tau) \leq (n - 1)^j/(4n - 6). \]

Proof. As before we set \(n = 2K + 1 \). Let \(c \) denote the number of cycles \(C_i \) on which \(\sigma \) and \(\tau \) commute, and let \(Q_s \) denote the total number of blocks of length \(s \). Since the cycles \(C_i \) all have the same length \(n \), it follows from the last paragraph of § 2 that there are no blocks of length \(n \). Hence
\[D(\sigma, \tau) = \sum_{i=1}^{n-1} Q_s, \]
since this sum is equal to the total number of blocks. Set
\[G(\tau) = N - \frac{(n - 1)^2}{4n - 6} \sum_{s=1}^{n-1} Q_s. \]
The desired result holds if and only if
\[E_\sigma(\tau) \geq G(\tau). \]
By § 1 it is sufficient to show that there exists a real \(m \times m \) matrix \((y_{ij})\) satisfying (5), (8), (9) and
\[\sum_{i,j} y_{ij} b_{ij} \geq G(\tau). \]

Case 1.
\[cn + \sum_{s=1}^{n-1} s^q Q_s/n \geq G(\tau). \]
In this case we set \(y_{ij} = n_{ij}/n \), where \(n_{ij} \) is the number of points of \(C_i \) which are mapped into \(C_j \) by \(\tau \). Now (5), (6) and (7) hold for this choice of \((y_{ij})\). Hence (8) and (9) also hold.

Suppose \(C_i \) is a cycle on which \(\sigma \) and \(\tau \) commute. Suppose \(\tau \) maps \(C_i \) onto the cycle \(C_\sigma \). Then
\[y_{ij} = \begin{cases} 1 & \text{if } j = z, \\ 0 & \text{if } j \neq z. \end{cases} \]

Moreover \(b_{iz} = n \) by § 2. Hence
\[\sum_{j=1}^{m} y_{ij} b_{ij} = n, \]
and therefore
\[\sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij} b_{ij} = cn, \]
where \(\Sigma_1 \) runs over those \(c \) values of \(i \) such that \(\sigma \) and \(\tau \) commute on \(C_i \).

Next suppose that \(C_i \) is a cycle on which \(\sigma \) and \(\tau \) do not commute. Let \(C_z \) be a cycle such that one or more blocks of \(C_i \) are mapped into \(C_z \) by \(\tau \). Let us denote these blocks by \(B_1, B_2, \ldots, B_u \).

We may suppose that these blocks are numbered in such a way that \(B_\lambda \) is the longest of them. Then \(b_{iz} \geq |B_1| \) by § 2. Moreover
\[n_{iz} = |B_1| + |B_2| + \cdots + |B_u|, \]
and
\[y_{iz} b_{iz} \geq n_{iz} |B_1|/n \geq \sum_{\mu=1}^{u} |B_\mu|/n. \]

Hence
\[\sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij} b_{ij} \geq \sum_{s=1}^{n-1} s^2 Q_s/n, \]
where the summation \(\Sigma_2 \) is taken over those values of \(i \) such that \(\sigma \) and \(\tau \) do not commute on \(C_i \). Combining these results we obtain
\[\sum_{i,j} y_{ij} b_{ij} \geq cn + \sum_{s=1}^{n-1} s^2 Q_s/n \geq G(\tau), \]
which disposes of Case 1.

Case 2.

\[cn + \sum_{s=1}^{n-1} s^2 Q_s/n < G(\tau). \]

Since the total number of points of \(X \) that do not belong to any block is \(cn \), we have
\[N = cn + \sum_{s=1}^{n-1} s Q_s. \]
Therefore

\[G(\tau) = cn + \sum_{s=1}^{n-1} sQ_s - \frac{(n - 1)^2}{4n - 6} \sum_{s=1}^{n-1} Q_s , \]

and we have

\[\sum_{s=1}^{n-1} s(n - s)Q_s > \frac{n(n - 1)^2}{4n - 6} \sum_{s=1}^{n-1} Q_s . \]

The inequality (12) cannot hold for \(n = 3 \). Hence \(n \geq 5, K \geq 2 \).

Let \(q(i) \) denote the number of blocks in the cycle \(C_i \). We denote the blocks of \(C_i \) by \(B_{i1}, B_{i2}, \ldots, B_{q(i),i} \), where we suppose the blocks are ordered in such a way that

\[|B_{i1}| \geq |B_{i2}| \geq \cdots \geq |B_{q(i),i}| . \]

We note that if \(\sigma \) and \(\tau \) do not commute on the cycle \(C_i \), then \(q(i) \geq 2 \),

\[\sum_{w=1}^{q(i)} |B_{wi}| = n = 2K + 1 , \]

and \(|B_{wi}| \leq K \) for \(\mu \geq 2 \). If \(\sigma \) and \(\tau \) commute on the cycle \(C_i \), then \(q(i) = 0 \).

We call \(C_i \) a special cycle if \(\sigma \) and \(\tau \) do not commute on \(C_i \) and \(|B_{i1}| \leq K \). Let \(d \) denote the number of special cycles. Since every cycle that is composed of blocks and is not a special cycle contains exactly one block of length at least \(K + 1 \), we have

\[c + d + \sum_{s=K+1}^{n-1} Q_s = m = N/n = c + \sum_{s=1}^{n-1} sQ_s/n , \]

or

\[nd - \sum_{s=1}^{K} sQ_s + \sum_{s=K+1}^{n-1} (n - s)Q_s = 0 . \]

We call the block \(B_{wi} \) a special block if \(C_i \) is a special cycle and either

(a) \(q(i) = 3 \), or

(b) \(q(i) = 4 \) and \(w \leq 2 \).

The image \(B\tau \) of a block \(B \) is a block of \(\tau^{-1} \). We call \(B\tau \) a block image. Let \(v(i) \) denote the number of block images in the cycle \(C_i \), and let \(B'_{i1}, B'_{i2}, \ldots, B'_{v(i),i} \) denote these block images. We can suppose that

\[|B'_{i1}| \geq |B'_{i2}| \geq \cdots \geq |B'_{v(i),i}| . \]

We call the block image \(B'_{wi} \) a special image if it is a special block of \(\tau^{-1} \). More precisely \(B'_{wi} \) is a special image if \(|B'_{wi}| \leq K \) and either
(a) \(v(i) = 3 \), or
(b) \(v(i) = 4 \) and \(w \leq 2 \).

If \(\sigma \) and \(\tau \) commute on the cycle \(C_i \) set
\[
y_{ij} = \begin{cases}
1 & \text{if } \tau \text{ maps } C_i \text{ onto } C_j, \\
0 & \text{otherwise}.
\end{cases}
\]

If \(C_i \) consists of blocks and is not a special cycle, then we set
\[
y_{ij} = \begin{cases}
1 & \text{if } \tau \text{ maps } B_{ij} \text{ into } C_j, \\
0 & \text{otherwise}.
\end{cases}
\]

If \(C_i \) is a special cycle we set
\[
y_{ij} = \sum (K - |B|)/(K - 1),
\]
where the summation runs over all special blocks \(B \) of \(C_i \) that \(\tau \) maps onto special images contained in \(C_j \). Notice that replacing \(\tau \) by \(\tau^{-1} \) has the effect of replacing the matrix \((y_{ij}) \) by its transpose.

Clearly \(y_{ij} \geq 0 \) for all \(i, j \). Moreover if the cycle \(C_i \) is not special, then
\[
\sum_{j=1}^{m} y_{ij} = 1.
\]

Now suppose that \(C_i \) is a special cycle. Then
\[
\sum_{j=1}^{m} y_{ij} \leq \sum (K - |B|)/(K - 1),
\]
where \(\sum \) runs over all special blocks \(B \) of \(C_i \). Since \(C_i \) is special we must have \(q(i) \geq 3 \). If \(q(i) = 3 \), then every block of \(C_i \) is special, \(\sum |B| = 2K + 1 \), and
\[
\sum (K - |B|)/(K - 1) = (3K - \sum |B|)/(K - 1) = 1.
\]

If \(q(i) = 4 \), then
\[
|B_{1i}| + |B_{2i}| + |B_{3i}| + |B_{4i}| = 2K + 1,
\]
so that
\[
\sum |B| = |B_{1i}| + |B_{2i}| \geq K + 1,
\]
and
\[
\sum (K - |B|)/(K - 1) = (2K - \sum |B|)/(K - 1) \leq 1.
\]

Finally if \(q(i) \geq 5 \), then \(C_i \) contains no special blocks, so that
\[
\sum (K - |B|)/(K - 1) = 0.
\]
Thus we have

$$\sum_{j=1}^{m} y_{ij} \leq 1, 1 \leq i \leq m .$$

By interchanging τ and τ^{-1} we obtain

$$\sum_{i=1}^{m} y_{ij} \leq 1, 1 \leq j \leq m .$$

Thus conditions (5), (8), and (9) are satisfied. We must show that (10) is satisfied also.

Let T_s denote the total number of special blocks of length s. Similarly let U_s denote the total number of special images of length s. Since there are exactly $Q_s - U_s$ block images of length s that are not special images, it follows that there are at least

$$T_s - (Q_s - U_s) = T_s + U_s - Q_s$$

special blocks of length s that are mapped onto special images by τ.

If σ and τ commute on the cycle C_i, then

$$\sum_{j=1}^{m} y_{ij} b_{ij} = n .$$

If C_i consists of blocks and is not a special cycle, then $|B_{ii}| \geq K + 1$, and

$$\sum_{j=1}^{m} y_{ij} b_{ij} \geq |B_{ii}| .$$

If C_i is a special cycle, then

$$\sum_{j=1}^{m} y_{ij} b_{ij} = \sum_{j=1}^{m} \Sigma''(K - |B|)b_{ij}/(K - 1) \geq \sum |B|(K - |B|)/(K - 1) ,$$

where Σ'' runs over those special blocks B of C_i that are mapped onto special images contained in C_i by τ, and Σ' runs over all special blocks B of C_i that are mapped onto special images by τ. It follows that

$$\sum y_{ij} b_{ij} \geq cn + \sum_{s=K+1}^{n-1} sQ_s$$

(14)

$$+ \sum_{s=1}^{K} s(T_s + U_s - Q_s)(K - s)/(K - 1) .$$

To complete the proof of the lemma it is sufficient to show that (10) holds. Suppose that (10) does not hold. Then

$$G(\tau) > \sum_{i,j} y_{ij} b_{ij} .$$
Using (11) and (14) this gives us
\[
\begin{align*}
&cn + \sum_{s=1}^{n-1} sQ_s - \frac{(n-1)^2}{4n-6} \sum_{s=1}^{n-1} Q_s \\
&> cn + \sum_{s=K+1}^{K} sQ_s + \sum_{s=1}^{K} s(T_s + U_s - Q_s)(K-s)/(K-1),
\end{align*}
\]
or
\[
\begin{align*}
&\sum_{s=1}^{K} s(Q_s - (T_s + U_s - Q_s)(K-s)/(K-1)) \\
&> \frac{(n-1)^2}{4n-6} \sum_{s=1}^{n-1} Q_s .
\end{align*}
\]
We multiply (15) by \(n-3\) and add (12). Since \(n-3 = 2(K-1)\) this gives as
\[
\begin{align*}
&\sum_{s=1}^{K} s[(2n-s-3)Q_s - 2(T_s + U_s - Q_s)(K-s)] \\
&+ \sum_{s=K+1}^{n-1} s(n-s)Q_s \\
&> \frac{1}{2}(n-1)^3 \sum_{s=1}^{n-1} Q_s = 2K^3 \sum_{s=1}^{n-1} Q_s .
\end{align*}
\]
Now we multiply (13) by \(K-1\) and add (16). This yields
\[
(K-1)nd - V_1 - V_2 + W_1 + W_2 > 0 ,
\]
where
\[
\begin{align*}
V_1 &= 2 \sum_{s=1}^{K} sT_s(K-s), \\
V_2 &= 2 \sum_{s=1}^{K} sU_s(K-s), \\
W_1 &= \sum_{s=1}^{K} [s(2n-s-K-2) + 2s(K-s) - 2K^2]Q_s \\
&= \sum_{s=1}^{K} [s(3K-s) + 2s(K-s) - 2K^2]Q_s \\
&= \sum_{s=1}^{K} (K-s)(3s-2K)Q_s ,
\end{align*}
\]
and
\[
\begin{align*}
W_2 &= \sum_{s=K+1}^{n-1} [(K-1)(n-s) + s(n-s) - 2K^2]Q_s \\
&= \sum_{s=K+1}^{n-1} (s-1)(K-s+1)Q_s .
\end{align*}
\]
The effect on (17) of replacing \(\tau\) by \(\tau^{-1}\) is to interchange \(V_1\) and \(V_2\).
Now \(D(\sigma \tau, \tau \sigma) = D(\sigma \tau^{-1}, \tau^{-1} \sigma) \) and \(D_\sigma(\tau) = D_\tau(\tau^{-1}) \). Thus it is sufficient to prove the desired result with \(\tau \) replaced by \(\tau^{-1} \). It follows that we can assume, without loss of generality, that \(V_1 \leq V_2 \). Then we obtain

\[
(K - 1)nd + W_1 + W_2 > V_1 + V_2 \geq 2V_1
\]

\[
= 4 \sum_{s=1}^{K} sT_s(K - s),
\]
or

\[
(K - 1)nd > \sum_{s=1}^{K} [(K - s)(2K - 3s)Q_s + 4s(K - s)T_s]
\]

\[
+ \sum_{s=K+1}^{n-1} (s - 1)(s - K - 1)Q_s.
\]

Let \(Q_s^{(i)} \) denote the number of blocks of length \(s \) in the cycle \(C_i \), and let \(T_s^{(i)} \) denote the number of special blocks of length \(s \) in \(C_i \). Then (18) can be written in the form

\[
(K - 1)nd > \sum_{i=1}^{m} Z_i,
\]

where

\[
Z_i = \sum_{s=1}^{K} [(K - s)(2K - 3s)Q_s^{(i)} + 4s(K - s)T_s^{(i)}]
\]

\[
+ \sum_{s=K+1}^{n-1} (s - 1)(s - K - 1)Q_s^{(i)}.
\]

If \(\sigma \) and \(\tau \) commute on the cycle \(C_i \) we have \(Q_s^{(i)} = T_s^{(i)} = 0 \) for all \(s \), so that \(Z_i = 0 \).

If the cycle \(C_i \) contains exactly two blocks, \(B_{si} \) and \(B_{1i} \), then we set \(s' = |B_{si}| \), and we have \(s' \leq K, |B_{si}| = 2K + 1 - s' \geq K + 1, T_s^{(i)} = 0 \) for all \(s \), and

\[
Z_i = (K - s')(2K - 3s') + (2K - s')(K - s')
\]

\[
= 4(K - s')^2 \geq 0.
\]

Now suppose that \(C_i \) is a cycle that is not special, but that contains three or more blocks. Thus \(q(i) \geq 3 \), and \(|B_{si}| > K \). Set \(f(x) = (K - x)(2K - 3x) \). The second derivative of the function \(f \) is positive, so that \(f \) is a convex function. Now \(|B_{si}| + |B_{3i}| \leq n - |B_{si}| \leq K \). Therefore \(f(|B_{si}|/2 + |B_{3i}|/2) > 0 \). Now for \(w \geq 4 \), we have \(|B_{wi}| \leq K/3 \) and \(f(|B_{wi}|) > 0 \). Whence

\[
Z_i \geq \sum_{w=2}^{q(i)} f(|B_{wi}|) \geq f(|B_{si}|)
\]

\[
+ f(|B_{si}|) \geq 2f(|B_{si}|/2 + |B_{3i}|/2) > 0.
\]
We have shown that $Z_t \geq 0$ for every i such that C_t is not a special cycle. Hence these terms can be dropped from the right side of (19). Now there are exactly d special cycles. Therefore, by (19), there is a special cycle C_t such that

$$Z_t < (K - 1)n = 2K^2 - K - 1.$$

Since C_t is special we have $Q_s^{(t)} = 0$ for $s > K$, and so

$$(20) \quad 2K^2 - K - 1 > Z_t = \sum_{s=1}^{K} [(K - s)(2K - 3s)Q_s^{(t)} + 4s(K - s)T_s^{(t)}].$$

Now set $q = q(t)$; and $s_w = |B_{wt}|$, $1 \leq w \leq q$. Then (20) can be written in the form

$$(21) \quad 2K^2 - K - 1 > \sum_{w=1}^{q} (K - s_w)H(w),$$

where

$$H(w) = \begin{cases} 2K + s_w & \text{if } B_{wt} \text{ is a special block}, \\ 2K - 3s_w & \text{if } B_{wt} \text{ is not a special block}. \end{cases}$$

Since C_t is a special cycle we have $q = q(t) \geq 3$.

(A) Suppose $q \geq 5$. Then C_t has no special blocks, and (21) becomes

$$2K^2 - K - 1 > \sum_{w=1}^{q} f(s_w),$$

where $f(x) = (K - x)(2K - 3x)$ as before. Since f is a convex function we have

$$\sum_{w=1}^{q} f(s_w) \geq q f(\Sigma s_w/q) = q f(n/q).$$

Now $f(x)$ is a decreasing function of x for $x \leq 5K/6$, and

$$n/q \leq n/5 = (2K + 1)/5 < 5K/6.$$

Hence $f(n/q) \geq f(n/5)$. Moreover

$$25f(n/5) = (5K - n)(10K - 3n) = (3K - 1)(4K - 3),$$

which is positive. Therefore

$$5(2K^2 - K - 1) > 5q f(n/q) \geq 25f(n/5) = (3K - 1)(4K - 3),$$

or

$$0 > 2K^2 - 8K + 8 = 2(K - 2)^2,$$

which is impossible. This disposes of the case $q \geq 5$. Hence $q = 3$
or \(q = 4 \).

(B) Next suppose that \(q = 3 \). Here all blocks of \(C_t \) are special blocks so that (21) gives us

\[
2K^2 - K - 1 > \sum_{w=1}^{3} (K - s_w)(2K + s_w)
\]

(22)

\[
= 2K \sum_{w=1}^{3} (K - s_w) + \sum_{w=1}^{3} s_w(K - s_w).
\]

Now

\[
\sum_{w=1}^{3} (K - s_w) = 3K - \sum_{w=1}^{3} s_w = 3K - n = K - 1.
\]

We have \(K \geq s_1 \geq s_2 \geq s_3 \geq 1, s_1 + s_2 + s_3 = 2K + 1, \) and \(K \geq 2 \). Hence \(s_3 < K \). Therefore \(1 \leq s_2 \leq K - 1 \), and we have

\[
\sum_{w=1}^{3} s_w(K - s_w) \geq s_3(K - s_3) \geq K - 1.
\]

Substitution in (22) now gives us

\[
2K^2 - K - 1 > 2K(K - 1) + K - 1,
\]

a contradiction. Thus we have eliminated the case \(q = 3 \). There remains only \(q = 4 \).

(C) Suppose finally that \(q = 4 \). Here \(B_{1t} \) and \(B_{2t} \) are special blocks, \(B_{3t} \) and \(B_{4t} \) are not. Thus (21) gives us

(23)

\[
2K^2 - K - 1 > L_1 + L_2 + M_3 + M_4,
\]

where \(L_w = (K - s_w)(2K + s_w) \) and

\[
M_w = f(s_w) = (K - s_w)(2K - 3s_w).
\]

If \(n = 5 \), then \(K = 2, s_1 = 2, s_2 = s_3 = s_4 = 1, L_1 = 0, L_2 = 5, M_3 = M_4 = 1 \), which contradicts (23). Hence \(n \geq 7 \) and \(K \geq 3 \).

Now set \(J = s_3 + s_4 = 2K + 1 - s_1 - s_2 \). Then since

\[
s_1 \geq s_2 \geq s_3 \geq s_4,
\]

we have \(J \leq K \). Since \(f(x) \) is convex we have

\[
M_3 + M_4 = f(s_3) + f(s_4) \geq 2f(J/2) = (2K - J)(4K - 3J)/2.
\]

Combining this with (23) we get

\[
2K^2 > L_1 + L_2 + M_3 + M_4 \geq L_1 + L_2 + 4K^2 - 5KJ + 3J^2/2,
\]

or

\[
0 > 2L_1 + 2L_2 + 4K^2 - 10KJ + 3J^2.
\]
Since $K \geq 3$, we have $2K + 1 \leq 7K/3$, and

$$J \leq 7K/3 - s_1 - s_2.$$

Since $s_1 + s_2 > K$, we have $7K/3 - s_1 - s_2 \leq 4K/3$. Now $3x^3 - 10Kx$ is a decreasing function of x for $x \leq 5K/3$. Hence

$$3J^2 - 10KJ \geq 3(7K/3 - s_1 - s_2)^3 - 10K(7K/3 - s_1 - s_2)$$

$$= -7K^2 - 4K(s_1 + s_2) + 3(s_1 + s_2)^2.$$

Combining inequalities we get finally

$$0 > 2L_1 + 2L_2 + 4K^2 + 3J^2 - 10KJ$$

$$\geq 2(K - s_1)(2K + s_1) + 2(K - s_2)(2K + s_2)$$

$$- 3K^2 - 4K(s_1 + s_2) + 3(s_1 + s_2)^2$$

$$= 5K^2 - 6K(s_1 + s_2) + s_1^2 + 6s_1s_2 + s_2^2$$

$$= 4(K - s_1)(K - s_2) + (s_1 + s_2 - K)^2.$$

This is impossible since $K \geq s_1 \geq s_2$. This contradiction completes the proof of the lemma.

Lemma 2 shows that $D_\sigma \leq (n - 1)^2/(4n - 6)$ if n is odd, regardless of the size of m. Combining this with Lemma 1 we obtain our main result:

THEOREM. If σ is the product of m cycles of length n, where n is odd, $n \geq 3$, $N = nm$, and $m \geq n - 2$, then

(24) $$D_\sigma = (n - 1)^2/(4n - 6).$$

In the notation of [1], (24) becomes

$$d_\sigma = \frac{(n - 1)^2}{2n(2n - 3)}.$$

REFERENCES

YALE UNIVERSITY,
INSTITUTE FOR DEFENSE ANALYSES
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frantz Woodrow Ashley, Jr.</td>
<td>A cone of super-(L) functions</td>
<td>1</td>
</tr>
<tr>
<td>Earl Robert Berkson</td>
<td>Some metrics on the subspaces of a Banach space</td>
<td>7</td>
</tr>
<tr>
<td>Felix Earl Browder and Walter Strauss</td>
<td>Scattering for non-linear wave equations</td>
<td>23</td>
</tr>
<tr>
<td>Edmond Darrell Cashwell and C. J. Everett</td>
<td>Formal power series</td>
<td>45</td>
</tr>
<tr>
<td>Frank Sydney Cater</td>
<td>Continuous linear functionals on certain topological vector spaces</td>
<td>65</td>
</tr>
<tr>
<td>John Douglas Dixon</td>
<td>General group extensions</td>
<td>73</td>
</tr>
<tr>
<td>Robert Pertsch Gilbert</td>
<td>On harmonic functions of four variables with rational p4-associates</td>
<td>79</td>
</tr>
<tr>
<td>Irving Leonard Glicksberg</td>
<td>On convex hulls of translates</td>
<td>97</td>
</tr>
<tr>
<td>Simon Hellerstein</td>
<td>On a class of meromorphic functions with deficient zeros and poles</td>
<td>115</td>
</tr>
<tr>
<td>Donald William Kahn</td>
<td>Secondary cohomology operations which extend the triple product</td>
<td>125</td>
</tr>
<tr>
<td>G. K. Leaf</td>
<td>A spectral theory for a class of linear operators</td>
<td>141</td>
</tr>
<tr>
<td>R. Sherman Lehman</td>
<td>Algebraic properties of the composition of solutions of partial differential equations</td>
<td>157</td>
</tr>
<tr>
<td>Joseph Lehner</td>
<td>On the generation of discontinuous groups</td>
<td>169</td>
</tr>
<tr>
<td>S. P. Lloyd</td>
<td>On certain projections in spaces of continuous functions</td>
<td>171</td>
</tr>
<tr>
<td>Fumi-Yuki Maeda</td>
<td>Generalized spectral operators on locally convex spaces</td>
<td>177</td>
</tr>
<tr>
<td>Donald Vern Meyer</td>
<td>E^3 modulo a 3-cell</td>
<td>193</td>
</tr>
<tr>
<td>William H. Mills</td>
<td>An application of linear programming to permutation groups</td>
<td>197</td>
</tr>
<tr>
<td>Richard Scott Pierce</td>
<td>Centers of purity in abelian groups</td>
<td>215</td>
</tr>
<tr>
<td>Christian Pommerenke</td>
<td>On meromorphic starlike functions</td>
<td>221</td>
</tr>
<tr>
<td>Zalman Rubinstein</td>
<td>Analytic methods in the study of zeros of polynomials</td>
<td>237</td>
</tr>
<tr>
<td>B. N. Sahney</td>
<td>On the Nörlund summability of Fourier series</td>
<td>251</td>
</tr>
<tr>
<td>Tôru Saitô</td>
<td>Regular elements in an ordered semigroup</td>
<td>263</td>
</tr>
<tr>
<td>Lee Meyers Sonneborn</td>
<td>Level sets on spheres</td>
<td>297</td>
</tr>
<tr>
<td>Charles Andrew Swanson</td>
<td>Asymptotic estimates for limit point problems</td>
<td>305</td>
</tr>
<tr>
<td>Lucien Waelbroeck</td>
<td>On the analytic spectrum of Arens</td>
<td>317</td>
</tr>
<tr>
<td>Alvin (Murray) White</td>
<td>Singularities of a harmonic function of three variables given by its series development</td>
<td>321</td>
</tr>
<tr>
<td>Kôichi Yamamoto</td>
<td>Decomposition fields of difference sets</td>
<td>337</td>
</tr>
<tr>
<td>Chung-Tao Yang</td>
<td>On the action of SO(3) on a cohomology manifold</td>
<td>353</td>
</tr>
</tbody>
</table>