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Let S, denote the symmetric group acting on a finite set X of
N elements, N = 3. Let ¢ and 7 be elements of Sy,. In a previous
paper [1] the following question was raised: If ¢ and = commute on
most of the points of X, does it necessarily follow that = can be
approximated by an element in the centralizer C(o) of ¢?

We define a distance D(c, 7) between two elements ¢ and 7 in Sy
to be the number of points g in X such that go # gr. (This differs
from the distance d(o,7) defined in [1] by a factor of N.) Then
D(o7, vo) is the number of points in X on which ¢ and 7 do not com-
mute. Let D,(7) denote the distance from = to the centralizer C(c)
of o in Sy. Thus

D7) = min D(z, \) .
A€0(0)

It will be shown that the determination of D,(7) is equivalent to the
optimal assignment problem in linear programming.

The question raised in [1] can be phrased thus: If D(o7t, 7o) is
small, is D,(7) necessarily small? If o is not the identity we set

D, = IQEZX) D,(7)]|D(oz, 70) .

Now D, is large unless ¢ is the product of many disjoint cycles, most
of which have the same length. Some examples of this are worked
out in detail in [1]. This leads us to study the case where ¢ is the
product of m disjoint cycles of length n, where N = nm and m is
large. In [1] it was shown that if m = 2, then

(a) if n is even, then D, = n/4, and

(b) if n is odd, » = 3, then

(n —1)/4 £ D, < n/4.

In the present paper it is shown that if # is odd, » = 3, and

m = n — 2, then

D, = (n — 1) /(4n — 6) .

1. Relation to linear programming. Let ¢ be an arbitrary ele-
ment of the symmetric group Sy. We write ¢ as the product of dis-
joint ecycles:

o=0(C,---C,,
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where C; is a cycle of length n,, and every point left fixed by o is
counted as a cycle of length 1. Then

Ny + Ny + ++« +n,=N.

Let g; be a fixed element of the cycle C;,1 < ¢ < m. Then every
element of the underlying set X is of the form g;0% wherel < ¢ < m
and 0 < a < n,.

Let A be an element of C(g), the centralizer of ¢ in Sy. Then
since

(9:09N = (9:\)o* ,

it follows that )\ is determined by its effect on the g;, and that A
permutes the cycles C;. Let X be the permutation of 1, 2, -+ -, m such
that ¢x =7 if X\ maps C; onto C;. We will call a permutation « in
S,. admissible if & = X for some Me C(g). It is easy to see that ais
admissible if and only if n; = n;,, 1 <4 < m. Let A denote the group
of all admissible permutations.

Let 7 be a second element of Sy. We wish to determine

D,(7) = min D(z, \),
)

AEC(o

where D(z, \) is the number of points ¢ in X such that gz +# gx.
Let E(z,\) denote the number of points 2 in X such that hz = kX,
and set

E.(t) = max E(z, \) .

A€C(0)

Then
D,(7) = N — max E(t,\) = N — E, (7).

A€C(0)

We shall show that the determination of E,(z) is equivalent to the
optimal assignment problem in linear programming.
The elements ) in C(o) are the permutations of the form

(gioa))\’ = giw0a+ri7 1 _S_ ’l’ 5— m, 0 g a < n; ,

where « is admissible and », 7y, +--, 7, are integers. Moreover
m 3
E(t,\) = Zl Fy(r;, ia) ,
&

where F(r, 7) is the number of solutions of
(1) (9:09)T = g0, 0= x < m; .

Set
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0 if m; #= n;

bij = max Fi(r, 5) if n; =m,;.

Thus b;; is the maximum number of points of C; on which an element
A in C(o), that maps C; onto C;, can agree with 7. We have

E.(7) = max E(7,\) = max max i Fi(r;, ),

A€EC(0) AEA 7] see.Tpy 1=1
or
(2) E,(t) = max 3 b .
€A 1=1
Now let 8 be an arbitrary permutation of 1,2, ---, m. There is

an a € A such that 1o = 18 for all © such that n; = n;5. Therefore,
since b;; = 0 if m; # m;, it follows that we can take the maximum in
(2) over the entire symmetric group S, instead of over the subgroup
A. Thus

(3) E,(r) = max 3,b,;5 .
BES,, i=1
The determination of a maximum of the form (3) is the optimal
assignment problem in linear programming—ordinarily expressed in
terms of m individuals to be assigned to m jobs, where b,; is a measure
of how well the ¢th individual can do the jth job. (See [2]; or [3],
pp. 131-136.) Von Neumann [2] has shown that this problem is
equivalent to a certain zero-sum two-person game.
The equality (3) can be rewritten in the form
(4) E.(7) = max 3 e;b;; ,
P i
where P is the set of all m x m permutation matrices (e;;). The set
P is clearly a subset of the set R of all real m x m matrices (¥;;)
such that

(5) ¥;=20,1=4,j=m,
(6) Sus=1, 1=j=m,
and

(7) Sys=1, l=iszm.

<
|
1A

The matrices of the set R form a convex bounded subset of real m’-
dimensional Euclidean space, whose vertices are the permutation
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matrices. (This result is due to Garrett Birkhoff. See [2], pp. 8-10.)
It follows that

E, () = max 3 e;;b;; = max 3, y;;b;; .
P 3 R .7

It is now clear that the determination of E,(7) is actually a problem
in linear programming. It is easy to see that the equalities (6) and
(7) can be replaced by inequalities (see [2], Lemma 1). Thus if Y is
the set of all real m x m matrices (y;;) satisfying (5),

(8) Suws1l, 1=j=m,
and
(9) gyﬁél, 1si=m,
then

E,(t) = max 3 ¥:;b;; .
Y 1,7
For our purposes this is the most useful formulation of the problem.

2. Blocks. By a block of length s,s =1, we mean a set of the
form go, ga?, - -+, go°, such that ¢ and © commute on go, gd?, - -+, go°%,
but do not commute on g and go®. The length of a block B will be
denoted by | B|. If ¢ and = commute on every point of the cycle C;,
then we say that ¢ and 7 commute on C;. In this case the cycle C;
contains no blocks. On the other hand if C; contains exactly q points
on which ¢ and 7 do not commute, ¢ = 1, then C; consists of exactly
q blocks, and each point of C; belongs to one and only one block.
Now D(oz, 7o) is the number of points in X on which ¢ and 7 do not
commute. It follows that D(o7, 7o) is equal to the total number of
blocks in all eycles.

If 0 and 7 commute on the points g, go, go?, ---, go°, then it
follows, by induction on @, that

(90)r =(g97)0”, O0=v=a-+1.

In particular if ¢ and ¢ commute on the cycle C;, and if g,z = g,07,
then

9.0°c = g;0"""

for all #z. Therefore, in this case, the number of solutions F(7, ) of
(1) is n;, so that b,; = n, = n;.
Now let C; be a cycle on which ¢ and = do not commute. Then
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C; is composed of one or more blocks. Let B be one of the blocks
of C;, and let B consist of the points

9:0°, 9;0°%, « v e, gt

Then |B| =s. Let g0t = g,0**". Since ¢ and 7 commute on g,0°"*,
0= p=<s—2 we have

9,0t = g;o0Y 0==v=s—1,

In particular n; = s. Moreover if n, = n;, then the number of solu-
tions Fi(r,5) of (1) is at least s, and hence b;; = s. It follows that
of n; = n;, then b;; is at least the length of the longest block of C; that T
maps into C;.

Moreover since ¢ and 7 do not commute on g,0°t*!, we have

9:0° 7T # g, 0" 7t = g0t
In particular if C; consists of the single block B, then s = n,;, and
9;0"t" = 9:0°T = g.0°T'T # g0t

It follows that s == m,. Therefore we must have #n; >s = n,. Thus
if C; consists of a single block B, then ¢ maps B into a cycle C; such
that n; > n;. This is a generalization of a result noted in [1]: If
the cycles C; all have the same length, then no cycle can consist of a
single block.

3. The case # odd. We now restrict ourselves to the case where
o is the product of m cycles of the same length %, n > 1, N = mn,
N =38, Thus we have n,=n,=+-- =mn, =n, and every permu-
tation in S, is admissible, so that A = S,,. Set

D, = max {D,(t)/D(oz, To)} .

Tg0(0)

It was shown in [1] that if » is even and m = 2, then D, = n/4. We
now show that if n is odd and m = n — 2, then D, = (v — 1)*/(4n — 6).
Without loss of generality we can take X to be the set of the first
N positive integers, and

0':(1,2,"',')’L)(’n—l-l,"',2’)7/)"'(N'—"n+1,"',N).
Thus for g in X we have

g+1 if ntg,
g =
g+1—mn if nlg.

We let C; denote the ith cycle:
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Ci=(mn—n+1,m—n+2 --+,1n).
We must show that
max {D,(t)/D(o7, t0)} = (n — 1)*/(4n — 6) .

T€0(0)

We break up the proof into two lemmas.

LeMMA 1. If n is odd and m = n — 2, then there exists a T€ Sy,
7 ¢ C(0), such that

D, (1) D(o7, 70) = (n — 1)*/(4n — 6) .

Proof. Suppose first that n = 3. Then
o = (123)456) --- (N— 2, N — 1, N) .

Here we take 7 = (12). Then oro 't = (132), so that ¢ and T com-
mute on all but three points, and D(o7, 7o) = 3. Moreover

0 ift#7,
b;; = 41 ifi=5=1,
3 ifi=9>1.
Hence

E(c) = max Syeby; = by =3m —2=N— 2.
P i, =1

Therefore D,(7) = N — E (t) = 2, and
D, (7)|D(o7, 7o) = 2/8 = (n — 1)*/(4n — 6) .

We can now suppose that » = 5. Setnw =2K + 1. Then K = 2,
and m = 2K — 1. Set ¢ =17,7,--+ Tg, Where

t,=r,n+r,2n+7vr,---, Kn—n+r, K+ r,
Kn+r,Kn+n-+7r,---,2Kn —2n+ 7).

Thus for g in X we have

g+nif g=pn+r,0=p=K-21=sr=K,
K+rifg=Kn—n+r,12r=K,
Kn+rifg=K+r,1r=<K,
g+nifg=m+r, K<p=2K—-3,1=r=<K,
rifg=2Kn—2n+r,1=r=< K,
g otherwise .

gt =
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The blocks of T are shown schematically in Figure 1.

G G Ck Cx 11 Cox-1

1 ntl Kn-n+1 Kn+1 2Kn-2n+1

to | to jpece to to ey to

K n+K Kn—-n+K Knt+K 2Kn—2n+K
K+l n+ K+1 7/ 4

to © /

2K /2“ /
/ n / / A

Figure 1

The permutation 7 maps the shaded blocks of Figure 1 onto them-
selves, and it maps the other blocks as indicated by the arrows. The
permutations ¢ and ¢ commute on the cycles C; with ¢ = 2K. Hence
these cycles contain no blocks and are not shown in the figure. Let
¢ denote the number of cycles on which ¢ and 7 commute. Thus ¢ =
m — (2K — 1). The number of points on which the identity I agrees
with 7 is

E(z,)=cn+ 1+ 2K —2)(K+1).

Clearly I belongs to C(s). On the other hand suppose that M is an
arbitrary element of C(g). If there exists a cycle C; such that = and
A do not agree on any points of C;, then

E(z,\)=cen+ 2K —2)(K +1).
If = and M agree on the point n, then
Ez,\)=en+1+ QK —2)(K+1).

If = and )\ do not agree on n, and if = and \ agree on at least one
point of every cycle C;, then there are at least K — 1 blocks of length
K + 1 on which 7 and A do not agree. Hence in this case

Et,\)=en+ (K—1)(K+ 1)+ K*
=en+1+QCK—2(K+1).

Therefore
E(t) = {re’?(f)E(T’ N)=E(r,[)=cn+ 1+ 2K —2)(K+ 1)
=(m— 2K + 1)n + 2K* — 1= N — 2K*
Hence

D7) = N — E(c) = 2K* = ¥(n — 1),
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We see from Figure 1 that the total number of blocks is
2@K—-2)+3=2n—3.
Since this is equal to D(o7, 7o), we have
D,(7)|D(oz, t0) = (n — 1)}/(4n — 6) .

This proves the lemma.

Lemma 1 establishes that D, = (n — 1)*/(4n — 6) if # is odd and
m=mn—2. Our other lemma, which establishes the opposite in-
equality, does not depend on the size of m.

LEmMMA 2. If n is odd and € Sy, v¢ C(0), then
D, (7)|D(o7, 70) < (n — 1)*/(4n — 6) .
Proof. As before we set n = 2K + 1. Let ¢ denote the number
of cycles C; on which ¢ and 7 commute, and let @, denote the total
number of blocks of length s. Since the cycles C; all have the same

length n, it follows from the last paragraph of §2 that there are no
blocks of length n. Hence

Doz, 70) = S Q. ,
8=1
since this sum is equal to the total number of blocks. Set

- _(n_1)2n—1
Gy =N-T—L50q,.

The desired result holds if and only if

E.(7) = G(7) .
By §1 it is sufficient to show that there exists a real m x m matrix
(y:,) satistying (5), (8), (9) and
(10) Zyiﬂ'bii = G(7) .

Case 1.
on+ 3, 8Q.n = G) .
s=1

In this case we set y,; = m;;/n, where m;; is the number of points of
C; which are mapped into C; by 7. Now (5), (6) and (7) hold for this
choice of (¥;;). Hence (8) and (9) also hold.

Suppose C; is a cycle on which ¢ and © commute. Suppose 7 maps
C; onto the cycle C,. Then
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1 if =2,
Y5 =1 if 9#2.

Moreover b;,, = n by §2. Hence
Z yijbij ="n,
72=1

and therefore

m

> 2 Yy = en
1

Jj=

-

where X, runs over those ¢ values of ¢ such that ¢ and = commute
on C,.

Next suppose that C; is a cycle on which ¢ and 7 do not com-
mute. Let C, be a cycle such that one or more blocks of C; are
mapped into C, by z. Let us denote these blocks by B, B,, -+, B,.
We may suppose that these blocks are numbered in such a way that
B, is the longest of them. Then b,, = |B,| by §2. Moreover

N, = |B,|+ |B,| + -+ + | B,],

and
Yibi. = mi | Bilinz 35 | Bulfn .

Hence

S Suibs 2 5 5Qn,

2 §=1

where the summation 3, is taken over those values of ¢ such that ¢
and 7 do not commute on C;. Combining these results we obtain

iz;_ Yisbi; = em + gsZQs/n = G(o),
which disposes of Case 1.
Case 2.
en + g 8Q,/m < G(7) .

Since the total number of points of X that do not belong to any block
is en, we have

N:cn—[—ngs.
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Therefore

(11) 6@ =en+ Ss0,— L= q,
and we have

(12) Sistn— )@, > M= 5,

The inequality (12) cannot hold for » = 3. Hence n = 5, K = 2.

Let q(¢) denote the number of blocks in the cycle C;. We denote
the blocks of C; by By, By, «++, By,.;, where we suppose the blocks
are ordered in such a way that

|B1i|§{Bzi|g g IBq(i).il .

We note that if ¢ and = do not commute on the cyecle C;, then
q(@) = 2,

1)
S IBul=n=2K+1,
w=1

and |B,;| < K for £ = 2. If 0 and 7 commute on the cycle C;, then
q(@) = 0.

We call C; a special cycle if ¢ and 7 do not commute on C; and
| B;| < K. Let d denote the number of special cycles. Since every
cycle that is composed of blocks and is not a special cycle contains
exactly one block of length at least K + 1, we have

c+ d+ Z Q.=m=N[n=c¢+ ZsQ/n

8=K+1
or
K n~—1
(13) nd — ;:]1 sQ, + =§‘+l (n—1s8)Q,=0.

We call the block B,; a special block if C; is a special cycle and either

(@) q(i) =3, or

0 q@t)=4and w £ 2.

The image Br of a block Bis a block of 7', We call Br a block
image. Let v(7) denote the number of block images in the cycle C;,
and let B}, By, - -+, Bl ; denote these block images. We can suppose
that

|B [> |B,|> cee = [Bv,(i).il'

We call the block image B.; a special image if it is a special block
of t7*. More precisely B.; is a special image if |B/;| = K and either
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(a) v(7) =3, or
) 2»(¢) =4 and w = 2.
If 0 and 7 commute on the cycle C; set

_ ;1 if = maps C; onto C;,
Y5 =10 otherwise .

If C, consists of blocks and is not a special cycle, then we set

B ;1 if 7 maps B,; into C; ,
Y5 =10 otherwise .

If C; is a special cycle we set
yi; = 2"(K — |B))(K—1),

where the summation X" runs over all special blocks B of C; that 7
maps onto special images contained in C;. Notice that replacing = by
77! has the effect of replacing the matrix (y;;) by its transpose.
Clearly y;; = 0 for all 7, 5. Moreover if the cycle C; is not special,
then

D Yii = 1.
=1
Now suppose that C; is a special cycle. Then

vi; = 2'(K—|BD)I(K—1),

M

il

J=1

where 3’ runs over all special blocks B of C;. Since C; is special
we must have ¢q(7) = 8. If ¢q(¢) = 3, then every block of C; is special,
Y'|B| =2K + 1, and

(K —|B)(K—-1)=@K—-2|B)(K-1)=1.

If ¢(¢) = 4, then
| Bi;| + | By | + |'By;| + | Bs| = 2K + 1,
so that
Y'|Bl=|By|l+|Bi|zK+1,

and

(K- |BD(K—-1)=@2K—-2Y|B)(K—-1)=1.
Finally if q(¢?) = 5, then C; contains no special blocks, so that

(K —|B)(K—1)=0.
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Thus we have

Ms=
<
IA
Lo
-
A
<o
IIA
3

=1

Thus conditions (5), (8), and (9) are satisfied. We must show that
(10) is satisfied also.

Let T, denote the total number of special blocks of length s.
Similarly let U, denote the total number of special images of length
s. Since there are exactly @, — U, block images of length s that are
not special images, it follows that there are at least

Ts_(Qs_"Us):Ts_I_ Us—Qs

special blocks of length s that are mapped onto special images by ~.
If 0 and 7 commute on the cycle C;, then

s

Yisbis = 1 .

J=1

If C; consists of blocks and is not a special cycle, then |B,|=
K+ 1, and

;1 Yiibi; = | Bu| .
If C, is a special cycle, then

z Yisbis = z S"(K — | B|)bis/(K — 1)
= ¥ B|(K — |B)(K —1),

where 3" runs over those special blocks B of C; that are mapped
onto special images contained in C; by 7, and 3* runs over all special
blocks B of C; that are mapped onto special images by z. It follows
that
> Yiibis = en + n}f sQ,
(1 4) . s=K+1
+ ES(TS + U, —Q)K —8)/(K—1).

To complete the proof of the lemma it is sufficient to show that (10)
holds. Suppose that (10) does not hold. Then

G(z) > ;} Yiibii .
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Using (11) and (14) this gives us

(n—1)“z—iQ

n—1
cn + ZLISQS 6 =

>ent 3 sQ+ ST+ U — QUK —s)(K—1),

or
Ss(Q, — (T, + U, — QYK — 5)|(K — 1}
(15) (n gy a
>&-1 ¥,

209

We multiply (16) by » — 3 and add (12). Since n — 3 =2(K — 1)

this gives as

nMN

{(2n——s~3)Q — 2T, + U, — Q,)K — s)}
(16) + 5 st — 9,
>4 -1 S Q. =2k 5 Q..

Now we multiply (18) by K — 1 and add (16). This yields

(17) (K—1nd — Vi— V,+ W, + W, >0,
where

V=23 sT (K~ ),

V=25 sU(K—3),

W, = S {s(@n — s — K — 2) + 25(K — 5) — 2K?Q,

o«
Il
-

Il

{s(3K — 8) + 2s(K— s) — 2K%Q,

Il

MN Ngle

— 8)(8s — 2K)Q, ,

o
Il
-

and

W= 5 (K =D =) + s(n — ) — 2K)Q.

s=K+

=% 5—1(K—s+DQ,.

s=K+1

The effect on (17) of replacing = by 7' is to interchange V, and V,.
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Now D(ot, 70) = D(o77*, 77%¢) and D,(z) = D,(z7"). Thus it is suf-
ficient to prove the desired result with = replaced by 7-'. It follows
that we can assume, without loss of generality, that V, < V,. Then
we obtain

(K—1)nd +~ W, + W,>V,+ V, =2V,
~ 43 sT(K —5),

or

(K — Dynd > S {(K — 8)@K — 35)Q, + 4s(K — s)T.)
(18) e
+ 3 (-1 —K-1)Q,.
s=g+1
Let Q! denote the number of blocks of length s in the cycle C,,
and let 7” denote the number of special blocks of length s in C,.
Then (18) can be written in the form

(19) (K—mm>§z,

where

K

Z;, = 5;} {(K — s)(2K — 38)Q{" + 4s(K — s)T "}

S s—1s— K—1QW.
s=K-+1

If ¢ and = commute on the cycle C; we have Q¥ = T = 0 for
all s, so that Z;, = 0.

If the cycle C; contains exactly two blocks, B;; and B,;, then we
set s'=|B,|, and we have ' < K,|B,;|=2K+1—-s8 =K +1,
T =0 for all s, and

Z,=(K—s)2K — 3s") + K — s')(K — &)
=4K-—-5Y=0.

Now suppose that C; is a cycle that is not special, but that con-
tains three or more blocks. Thus ¢(7) = 8, and | B;;| > K. Set f(z) =
(K — 2)(2K — 3x). The second derivative of the function f is positive,
so that f is a convex function. Now |B,|+ |B;|<n— |B,;|< K.

Therefore f(| B;; |/2 + | By |/2) > 0. Now for w =4, we have | B,;| < K/3
and f(| B,;|) > 0. Whence

Zoz 570 Bui) 2 5( Bal)
+ £ Byl) Z 2f( Bull2 + | B lj2) > 0.,



AN APPLICATION OF LINEAR PROGRAMMING TO PERMUTATION GROUPS 211

We have shown that Z;, = 0 for every 4 such that C; is not a
special cycle. Hence these terms can be dropped from the right side
of (19). Now there are exactly d special cycles. Therefore, by (19),
there is a special cycle C, such that

Z,<(K—1n=2K—-K—1.

Since C, is special we have Q = 0 for s > K, and so
200 2K*—K—1>17Z,= i {(K 82K — 3s)QY + 4s(K — s)T.\"}.

Now set ¢ = q(¢); and s, = | B,;|, 1 < w =< q. Then (20) can be written
in the form

(@1) oK' — K —1> >: (K — s,)H(w) ,

where

2K + s, if B, is a special block ,

H =
(w) 2K — 3s, if B,, is not a special block .

Since C, is a special cycle we have ¢ = ¢(f) = 3.
(A) Suppose ¢ = 5. Then C, has no special blocks, and (21) be-
comes

2K* — K — 1> 3 f(s.) ,

where f(2) = (K — 2)(2K — 3x) as before. Since f is a convex function
we have

3 F(60) 2 af (55./0) = 0 (n]q) .
Now f(x) is a decreasing function of z for # < 5K/6, and
nl/q = nlb = (2K + 1)/5 < 5K/6 .
Hence f(n/q) = f(n/5). Moreover
25f(n/5) = (5K — n)(10K — 3n) = (3K — 1)(4K — 3),
which is positive. Therefore
5(2K* — K — 1) > 5¢f(n]q) = 25f(n/5) = BK — 1)(4K — 3) ,
or
0>2K*— 8K+ 8 =2(K — 2),

which is impossible. This disposes of the case ¢ = 5. Hence ¢ =3
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or q = 4.

(B) Next suppose that ¢ = 3. Here all blocks of C, are special
blocks so that (21) gives us

2K — K —1> 3 (K — 8,)@K + s,)
(22) v

=2K§3;‘,1(K—sw)+ Z:sw(K—sw).

Now
S (K—5,)=8K— S 8,=8K—-n=K—1.
w=1 w=1

Wehave K=s8, =8, =28, =1,8 + 8, + 8, =2K + 1,and K > 2. Hence
s, < K. Therefore 1 =<s, < K — 1, and we have

S 5K — s.) = 8K —s)= K—1.
w=1

Substitution in (22) now gives us
2K*—K—1>2K(K—1)+K—-1,

a contradiction. Thus we have eliminated the case ¢ = 3. There re-
mains only ¢ = 4.

(C) Suppose finally that ¢ =4. Here B, and B, are special
blocks, B,, and B,, are not. Thus (21) gives us

(23) 2K*—~ K—1>L, + L,+ M, + M,,
where L, = (K — s,)(2K + s,) and
M, = f(s,) = (K — 8,)2K — 3s,) .

If n=5,thenK=2,8,=2,8,=8,=8,=1,L,=0,L,=5, M, =
M, = 1, which contradicts (23). Hence » =7 and K = 3.
Now set J =8, +8,=2K+ 1 — 8, —s, Then gince

$, =8 =8=S8,,
we have J < K. Since f(z) is convex we have
M, + M, = f(s) + f(s) = 27 (J[2) = 2K — J)4K — 3J)/2.
combining this with (23) we get
2K*> L, + L, + M, + M, = L, + L, + 4K* — 5KJ + 3J*2,
or

0> 2L, + 2L, + 4K* — 10KJ + 3J*.
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Since K = 3, we have 2K + 1 < 7K/3, and
J=TK|3 — s, — s,.

Since s, + s, > K, we have 7K/3 — s, — s, < 4K/3. Now 3z — 10Kx
is a decreasing function of « for # < 5K/3. Hence

3J* — 10KJ = 3(TK[3 — 8, — 8,)' — 10K (TK|3 — 8, — 8,)
= —TK* — 4K (s, + 8) + 3(s; + s5)*.

Combining inequalities we get finally

0>2L, + 2L, + 4K*® + 8J* — 10KJ
= 2K — 8)(2K + s)) + 2(K — s,)(2K + s,)
— 3K? — 4K(s; + 85) + 3(s, + s,)?
= 5K* — 6K(s, + 8;) + s? + 68,8, + s
=4K — s )(K — 8,) + (8, + 8, — K)*.

This is impossible since K = s, = s,. This contradiction completes the
proof of the lemma.

Lemma 2 shows that D, < (» — 1)}/(d4n — 6) if » is odd, regard-
less of the size of m. Combining this with Lemma 1 we obtain our
main result:

THEOREM. If o s the product of m cycles of length m, where n
18 odd, n =38, N =nm, and m = n — 2, then

(24) D, = (n — 1)}/(4n — 6) .
In the notation of [1], (24) becomes

(n — 1)
2n(2n — 3)

- =
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