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Introduction. The variation of characteristic values and functions
of the differential operator L defined by

5 = %S){—%[p(s)%ﬁ—] + qGs)e )

will be studied when the domain of L varies because of a change of
boundary conditions. The basic interval is an open interval w_<s< w..
on which % is positive and piecewise continuous, p is positive and
differentiable, and ¢ is real-valued and piecewise continuous. For a
closed subinterval [a, b] of the basic interval, our purpose is to obtain
estimates for the characteristic values ., and characteristic functions
Yo of regular Sturm-Liouville problems on [a, ] when a,b are near
w_, w,. Such results have been obtained by the author [6] in the case
that both w_ and w, are limit circle singularities in H. Weyl’s classi-
fication [2, p. 225]. Here the analogous results will be derived in the
limit point case and the mixed case (one singularity of each type).
To avoid repetition of the preliminary material in [6], we shall usually
adhere to the notation and numbering system of [6] without further
comment.

6. Basic problems in the limit point and mixed cases. Asin §2,
the limits of ¢, as e — w_,b— @, are supposed to exist, and ac-
cordingly we shall assume that characteristic values N of suitable
singular Sturm-Liouville problems for L on (w_, w,) exist. These
singular problems are described as follows when both w_, w, are limit
point singularities [4].

Let L, be the differential operator L — [, Iml,+ 0. According
to a theorem of Weyl [4, p. 45] there exist linearly independent so-
lutions ¢_, . of L = 0 such that

(6'1) ¢+ € %muq_ ’ ‘P-— € %m_w » [@_,_@_](S) = 1

for any w satisfying w_ < w < w.. These solutions are uniquely
determined from the normalization condition [¢.@,](s)) = ¢ at some
point s,, to remain fixed in the sequel. (Compare (6.1) with the choice
(2.1) of ¢_, @, in the limit circle case.) Let ' be the set of all z=
in the basic Hilbert space © (described in § 1) which have the follow-
ing properties: (a) x is differentiable on (@w_, ®,) and «’ is absolutely
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306 C. A. SWANSON

continuous on every closed subinterval of this interval; and (b) Lz € 9.
The basic characteristic value problem in the limit point case is then

(6.2) Lz =Nz , xedD .,

In this case, x is not restricted by any boundary conditions at
and w,.

Our main assumption is that there exists at least one character-
istic value ) of this problem. It will be supposed that a correspond-
ing characteristic function x has been selected with ||z || = 1.

In the limit circle case, no special assumptions on L at w_ and
®, had to be imposed, but the generality of the boundary operators
U, and U, [See (1.5), (2.4)] had to be sacrificed in order to ensure
that ¢, — ) as [a, b] — (0_, @,). In the limit point case herein under
consideration, the situation is quite different. Some additional restric-
tions on L as s— w. are clearly needed to get a point spectrum at
all, but then very general boundary operators U,, U, will permit con-
vergence of (t,, to . The following notation will be used:!

(6.3) 0, = p-(@)p(a); 0, =P.b)p(b);

64) & =[z@)p(@]lloslle; & = [2®)e-O)]|lP-1;

(6.5) g =olleillas & =olle-|;

(6.6) 7. = Up |Up.; 1= Upi/Up_;

6.7  0,=(Ux|Up)lP:lla; 0, = Uz Up )| 2-1";

(6.8) 0 =0l Pelles 05 =0 llo-1";
o_<a=a,, b=b< w,.

The assumptions below turn out to be sufficient for f,, — X\ and
| Y — z|[2 to be o(1) as [a, b] — (0, ®,).

ASSUMPTIONS. (w_ and @, limit point singularities)
(i) The singularities w_ and @, are not accumulation points
of the zeros of @, and

(6.9) & =o01) and & =o01) asa—w_;
(6.10) & =o01) and & =o1) as b— ..

(ii) The boundary operators U,, U, are restricted only by the
boundedness of the quantities

1 The abbreviations || ¢ ||a, || ¢ || are used for || ¢ ||2+, || ¢ _, following the con-
vention of §1.
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P ) Up-[p()U,p,; P a)Uafe(@)Up, ;
P_(0) Uyp|P+(0) Uyp_ ; P_(b) Uya/a(b) U,p—

i some neighborhoods w_ < a < a,, b, < b < W, of ®_, W, respectively.

(6.11)

According to (6.3)—(6.8), these assumptions imply
(6.12) o, =o(l), n, = o(l), 0, = o(1), 0¥ =o(l) as s— 0, .

The weaker assumptions 0, = o(1), 65 = o(1) in (6.12) are actually suf-
ficient for Theorem 4, while the stronger assumptions (6.9)-(6.11) are
needed for the uniform estimate of Theorem 5.

It follows from (6.3), (6.6), (6.11), and (6.12) that there exist
constants a,, b,, and C such that

(6’13) |Ual§1,]06,§17|77a]éclo‘ulylvbléclgbl
provided w_ < a < a,, b, < b < w,, and

flo.] =lo.] it w-<a=ss=a;

6.14
614 lo,| = o,] ifb<s=b<w,.

Condition (ii) above (6.11) is only a slight restriction on the boundary
operators U,, U,. Compare (2.4) and (5.2) for limit circle problems of
class 1 and 2 respectively. Sufficient conditions for the validity of
(ii) when w_ is a regular singularity or an irregular singularity of
finite rank are stated in [5, p. 840, p. 844]. In particular when
w_ =0 is a regular singularity of L, with real, distinct exponents,
then a sufficient condition for (ii) is that lim[—aaya)/a(a)] (@ — 0)
exist (finite or o) and be different from the smaller exponent.

We shall now describe a basic problem of the mixed type. It is
enough to consider the case that w_ is a limit circle singularity and
w,. is a limit point singularity. Then there exist solutions @, of L,p = 0
which satisfy

(615) P E ‘@7 P € %w,w: [@—@—](—) = 07 [¢+¢—](S) = 1 ’

where w_ < w < w,, and these solutions will be determined once and
for all by the fixed (but arbitrary) normalization [¢,9,](s) = 7
(w- < sy < w;). Thus @, is described by (6.1) and ®_ is described by
(2.1) in the mixed case.

Let ©° be the basic domain described above (6.2) and let D' be
the set of all xe€®* which satisfy the end condition [zp_](—) = 0.
The basic characteristic value problem in the mixed case is then

(6.16) Lo =x¢, «ed.

In the mixed case, assumptions (6.10) and the second of (6.11) are in
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effect at w, together with the first assumption (2.4) at w_.

Asymptotic estimates for the difference ¢, — A between character-
istic values of (2.5) and (6.16) when a,b are near w_, ®, will be
obtained in §9. The limit circle case has already been treated in §§ 3, 4
and the limit point case, when (6.2) replaces (6.16), will be treated
in §7. Also uniform estimates for the difference ,,(s) — 2(s)on a =
s < b will be obtained under slightly stronger assumptions in §§8 and
10. From these results, asymptotic variational formulae for character-
istic values will be derived in § 11.

7. Asymptotic estimates in the limit point case at both endpoints.
When both @w_ and w, are limit point singularities, the basic problem
is (6.2) and (2.5) is regarded as a perturbation of (6.2) arising from
adjoining the boundary conditions U,y = U,y =0 at s = a and s = b,
The assumptions (6.9)-(6.11) are used in this section.

Let G, (s,t) denote the Green’s function for the differential
operator kL, associated with the boundary conditions U,y = Uy = 0,
and let G,, denote the linear integral operator on $,, defined by the
equation

(7.1) Gurtl(s) = | Gus, ()L, v e o

It is well-known [4, p. 20] that for any piecewise continuous function
v on @ =8=b, the function w = G,v is the unique solution in 9,
[see (2.5)] of the differential equation Lw = v.

Let A be a characteristic value of the basic problem (6.2) and let.
2 be a corresponding normalized characteristic function satisfying (6.9)-
(6.11). Define a function f on [a, b] by the equation?

(7.2) f=2—~vG,x, where vy=x-—1,.

Then f is the unique solution of the boundary value problem L,f = 0,.
U, f= Uz, Uf = U, which has the following representation in terms.
of the functions @_, ¢, described by (6.1):

£5) = (2 ) (22l —2.09))

7.3) U[va]¢+ N — 1
+ < Ub;ﬁi > (%‘P;}iij)b : Qi—(s)> .

It follows from (6.7), (6.8) that
AU = 1Y — 2.2 |7 (| Ut/ Usps | 165 | 4 10, ] + | U/ Upp— | | 0% ] + |60, ]

2 The function on [a, b] which coincides with x on this interval will also be denoted.
by z.
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According to (6.12), 7, = 0(1), 8, = o(1), 6F = o(1) as a — w_ and 7, =
o(1), 8, = 0(1), 0¥ = o(1) as b— w,. Hence there exists a rectangle R,
and a constant’ C on R, such that |7,7,| = £ for [a, b] € R,, and

(7.4) Iflle = C(0.] + 106,]) for [a,b]eR,.

It follows from (7.2) and (7.4) that for any characteristic function x
associated with the characteristic value A,

(7.5) e — G lls = C(10.| + [0 ) [ ]] .

Let P(9) (0 > 0) be the projection from %,, onto the subspace
Bas(0) spanned by all characteristic functions y* of (2.5) whose cor-
responding ¢ lie in the interval | g* — A | < 0. Then according to the
fundamental lemma of § 2,

|z — POl = A+ |710)]|& — vGuw |z .

The proof appears in [1]. With the aid of (7.5), we see that there
exists a constant C on R, such that

le — P@) |z = (C/20)(1 0. + | 0:]) | @ |la

provided [a, b]e R,. With the choice 6 = C(|0,| + |0,]) we conclude
that P(C|60,| + C|6,)x = 0 implies that # = 0 on [a, b]. Hence there
exists at least one characteristic value g = f,, of (2.5) such that
|ty — M| = C(10,| + 10,]) if [a,ble R,. The proof that there is ex-
actly one follows that in the limit circle case and will be omitted.
[6, § 3] The following analogue of Theorem 3 is therefore valid:

THEOREM 4. If both singularities w_ and . of the differential
operator L are of the limit point type, under the assumptions (6.9)-
(6.11), (or even under the weaker assumptions 0, = o(1), 6 = o(1) as
s— .) then for every basic characteristic value N of (6.2) there
exists a rectangle R, and a constant C on R, such that a unique (,,
satisfies | My — M| = C(10.] +10,]) whenever [a,b]le R,, There are
normalized characteristic functions x,y,, associated with \, tt, 7re-
spectively such that ||y, — x||5 < C(6.] + |0, )).

8. Uniform estimates in the limit point case. In order to obtain
uniform estimates for ¥,,(s) — #(s) on a < s < b, following the method
of §4, we need stronger assumptions than (6.9)-(6.11). It will be
supposed in addition that the following are bounded on w_ < s < w,;

8.1) P =15 p-(s) P+l

3 C will be used throughout as a generic notation for a constant on E,.
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Let a,, b, be the fixed numbers in (6.11)~(6.14) and let P.(s) be
defined by

Pu(s) = |@u(s)]| if - <8< a,b<s< o,

8.2
(8.2) =1 if a,<s=<b,.

We assert that there exists a constant C, independent of a, b as well
as s, such that

(8.3) [7.2:(8) | =CP_(s) ona=s=ba=a;
(8.4) 17,2 (s)| S CP.(s) ona=s=bb<b.
These inequalities are obvious on the fixed intervals a, < s < b, To

complete the proof of (8.4), we deduce from (6.3), (6.13), and (6.14)
that

|7.9-(8)| = Clowp(s)| = Clop(s)] = C|p(s)]

on b, <s<b< w,;. Since |0,]=]|p_(s)pi(s)]<1onw_< s=a,by
(6.13), it follows that |7,9_(s)| < C|@.(s)|on w_ < a < s < a, as well.
Thus (8.4) is valid on the whole interval @ < s < b. The proof of (8.8)
is similar and will be omitted.

The Green’s function G,,(s, t) for L on 9,, (associated with the
boundary conditions U,y = U,y = 0) is given by

Gu(s,t) = Q7 (t)yu(s) fast=s=b,

(8.5) = QW) fa<s<t<bh,
where

Q/f'a(s) = @—(S) Ua¢+ - @.;_(S) Ua@— s
(8.6) Po(8) = P_(s) U, oy — @1(8) Uy,
Q2= Uagj— Ub¢+ - Uu@-)- Ub@-— .

Let G,, denote the Green’s operator (7.1). It will first be shown that
vG.,%(s) is uniformly close to y(s) on ¢ < s=<b when a,b are near
w_, .. The following lemma will be needed in the proof.

LEMMA 2. The positive function g¢,, defined by
b
g2 = |1 Guals, ) (1)t
1s uniformly bounded on a < s < b provided a = a,, b, = b.

Proof. According to (6.6), (8.5), and (8.6), g,;(s) has the following
explicit representation



ASYMPTOTIC ESTIMATES FOR LIMIT POINT PROBLEMS 311

9in(s) = |1 — 0.0 | [(| 9:P—(8) — P+ (8) | [| P— — Py [[2)?
+ (| P(8) — 7.2 (s) ‘l | 7:P- — @, |97 .

It then follows from (8.3), (8.4) that there exists a constant C such
that

(8.7)

ga(8) = 11— 77, 7 CLP() 1 P- 1) + (@) [ 9F [12)°]

Since {7,7,| £ % on w-< a =< ay, b, < b < 0., the conclusion of Lemma
2 is therefore a consequence of the hypothesis (8.1).
The Schwarz inequality for ¥., yields

[ 9a(8) — (v — 1)Go(8) | = | Gau[(#as — L)Yur(8) — (W — L)a(s)] |
< 9 Mas — Lol 1 Yas — @15 + ] oy — M2 ]]) .

Hence Lemma 2 and Theorem 4 show that there exists C such that
(8.8) [Yu(8) — (W — 1)Goa(s) | = C(10,] + [6:1),

a =<8 = b whenever a = a,, b, = b.
The solution f(s) of the boundary value problem L,f =0, U, f =
Uz, Uf = U is given by (7.2) or (7.8). The function F defined by

F(s) = (v — L)Gox(s) — o(s) + f(s)

satisfies L,F = 0, U, F = U,F = 0, and hence F'is the zero function on
o <s=<b, The following uniform estimate is then an immediate
consequence of (8.8):

©.9) Yur(8) = @(s) — f(s) + O(8,) + 0(6,) ,
a<ss=bhw - <aZta,b=b<w,.

THEOREM 5. If both singularities w_ and w,. of L are of the
limit point type, under the assumptions (6.9)-(6.11), (8.1), the perturbed
characteristic function ¥,, associated with the characteristic value [ty
of Theorem 4 has the uniform representation (8.9).

9. Asymptotic estimates in the mixed case. In this section, .
is supposed to be a limit circle singularity and @, a limit point
singularity. The basic problem is (6.16) and the assumptions are (6.10),
the second of (6.11), and the first of (2.4).

Proceeding as in § 7, we obtain the representation (7.3) and the
inequality below (7.8) where @, are described by (6.15) in the mixed
case. According to (6.12), the following relations hold in connection
with the limit point singularity w,: 7, = 0(1), 8 = o(1), and U/ U,p- =
0(6,) = o(1) as b— w.. Since w_ is a limit circle singularity, it is a
consequence of (3.6) that
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9.1) 0 = (Up-|UP:) |9+l =01); 7 = 0(1) as a— w_.
In addition to (6.3)-(6.8) we shall use the notation
9.2) 0. = Uz .

It follows from the postulated end condition [x@_](—) =0 that for
xe D, o, = [zp_]J(@)[1 + 0o1)] = o(1) as & — w_, and from (3.6),

0, = (U2 Ups) || P+l = O(0.), 0- < a = a .
The analogue of (7.4) in the mixed case is therefore

IFlle = Cl o] +16,1)

The proof of the following theorem is then identical with that of
Theorem 4.

THEOREM 6. If w_ ts a limit circle singularity and w, is a
limit point singularity of L, then under the assumptions (6.10), (6.11),
and the first of (2.4), for every N of the mixed problem (6.16) there
exists R, and a constant C on R, such that a unique (t,, of (2.5) lies
in the interval |, — N| = C(|p.| + | 0,]) whenever [a, b]e R,. There
are normalized characteristic fumctions x,y,, associated with X\, !,
respectively such that

Y — || = C(| 0| + [6:]) .
10. Uniform estimates in the mixed case. To obtain uniform

estimates for characteristic functions on @ < s < b in the mixed case,
we assume instead of (8.1) that the following are bounded

(10.1) ®.(s) on w_<a=a; P.(s)||e-lIF on w_<s< w,.

Equation (8.7) holds also in the mixed case, and 7, = o(1) as a— w_
by (9.1) as well as 7, = o(1) as b— w,. Since ||p, || exists by (6.15),
there exists a constant C such that

|- —np|ls £ Cllo- ||,

10.2
(10.2) 179 — 24 L = C 7| |9 | = o

and 0} = o(1) as b— w,. Since @.(s) are bounded on w_ < s < b, by
(10.1), 9.,(s) is bounded on a < s < b,. To show that g,,(s) is bounded
also on b, < s = b < w,, we obtain as in the proof of (8.8), (8.4) that

[2.2:6) | = Clo-(8) |,  [n@p(8)| = Clpi(s)]
and hence by (8.7), (10.2),
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9a(8) = |1 = 2.7, [ Gl 2+ () | | 2= 1) + (| 72-(8) | | - 1I°)]
=1 =227 C (e | |2~ 1)

for some constants C,, C,. Then g,(s) is bounded by the hypothesis
(10.1). The following analogue of Theorem 5 is then valid.

THEOREM 7. If w_ is a limit circle singularity and w, is a
limit point singularity of L, then under the assumptions (6.10), the
second of (6.11), the first of (2.4), and (10.1), the characteristic
SJunction y,, associated with the characteristic value ft,, of Theorem
6 has the following uniform asymptotic representation:

Yar(8) = (s) — f(5) + O(p.) + O(0,)

10.3
(10.3) a<s=b, o< a=a, by < b < w,

where f is given by (7.2).

11. Asymptotic variational formulae for characteristic values.
The purpose here is to derive formulae for the change g, — N of
characteristic values under the perturbation ®'— ®,,, valid for a,b
in neighborhoods of w_, w, respectively.

Let z, ¥y denote the normalized characteristic functions associated
with A, ¢¢ as described in Theorems 4 and 5. Let f be the solution
(7.3) of the boundary value problem

Lof: 0 ’ Ua,f: anv Ubf: be .

We conclude from the boundary conditions U,y = U,y = 0 that [zy](a) =
[f¥]l(a) and [zy](d) = [fyl(b). Then application of Green’s formula

(La, y): — (2, Ly). = [2y](b) — [»y](a)

to the differential equations Lx =z, Ly = ¢y, and Lf = [,f on |a, b]
leads to

(11.1) =)@, ) = (b — O, ¥) 5
(11.2) [F2](0) — [fz](@) = (o — M, @) .
We obtain as a consequence of Theorem 4 that ¢ =\ + o(1) and
| (@, 9o — (@, @) | = [l2]l|ly —a]ls = o(1)
as a,b— w_, w,. Hence
(@, y)=1+01), aboo_, o,
and (11.1) yields
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(11.3) A== (L — M, vll + o(1)] .
We now appeal to the uniform estimate (8.9) to obtain
(s )i = (f, )0 — (F, 1) + (6. + 6:,)(f, DO() .

The following asymptotic variational formula is then a consequence
of (11.2) and (11.3):

A — o = [f2](0) — [fol(@) + (b — M, )i + (0. + 6,)(f, 1)20Q) .

In various problems of practical interest (see [5], [6] for detailed
references) the first two terms on the right dominate the other terms,
and the asymptotic relation

(11.4) A=t ~ [f2](0) — [f2](a)

is valid for a,b— w_, .. In some cases, » = 0 is not a character-
istic value and it is permissible to replace I, by 0. Then f can be
taken as a real valued solution of Lf = 0.

ExamMpPLE 1. The Hermite operator L given by Lx = —z" + s
will be considered on the interval —o < s < . In this example,
k(s) = p(s) = 1,q(s) = s*, w_ = —, and W, = . Both singularities

are limit point, and the basic problem (6.1) has characteristic values
A™ = 2n -+ 1 and normalized characteristic functions

2,(8) = T2 (nl) exp (—Y2)H,(s), m=0,1, -

where H,(s) denotes an Hermite polynomial. The well-known [3]
asymptotic behavior of x,(s) as s— o is

(11.5) X,(8) ~ T2V )2gm oxp (—8%2) .

The perturbed problem to be considered is Ly = tty, y(a) = y(b) = 0.
In this case I, can be replaced by 0, and the solutions @, and @_ of
L@ = 0 have the asymptotic behavior

log . (s) ~ ié—sz as s — —oo ;

14

We then obtain from the representation (7.3) of f(s) that f'(a) ~ ax(a)
as @ — —o. Since #'(a) ~ —x(a), [xf](a) ~ 2a2*(a). Similarly [4£](b) ~
2bx*(b). Then (11.4), (11.5) give the asymptotic variational formula

W o~ 2n + 1 4 77202 (n]) [0 exp (— ) — @™ exp (—a?)]
a,,b-—>~oo,oo; n:(),l’z’....

ExaMPLE 2. Consider the confluent hypergeometric operator L
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given by

Lx:s[-ﬂ+ﬁ+l<g_ﬂlx]’ 0<s< oo
ds® 4 s’

in which j is a nonnegative integer. This is related to the Laguerre
differential equation, which arises in .he gquantum mechanical theory
of the Hydrogen atom [3]. In this example, k(s) = 1/s, p(s) = 1, and
q(s) = j(§ + 1)s® + 1/4. The singularity @, = o is in the limit point
case, and w_ = 0 is in the limit point or limit ecircle case according
as =1 or j=0. If j =0, the singularity is a class 1 limit circle
gingularity (§5) and it can be verified that the variational formula
(11.4) is still valid. The basic problem (6.2) has characteristic values
MY =mnnz=j5+1=1,2, ---) and normalized characteristic functions

31
wl) = —[0n — § = DI + D50 LEH(6) |

where L}(s) denotes the associated Laguerre polynomial, with the
asymptotic behaviour

(11.6) w,i(s) ~ (=17 [(n + N [(m — g — DI s"e*, s— oo
(AL.7) 2,i(s) ~ [(n + DT[(n — 7 — D225 + D787, s— 0.
The normal solutions of L@ = 0 have the asymptotic behaviour

log@t(s)~$—;—sinlogs (s— ).

For a perturbed problem with boundary operators U,x = x(a),
Uy = x(b), the representation (7.3) gives f'(b) ~ x(b)p_(b)/»_(b), or
JF'(b) ~ 3x(b) as b— . Similarly f'(a) ~ —jz(a)/a as a — 0. Hence

[2f (@) ~ —(27 + Da~'a*a) ;  [af](b) ~ 2*(b),
and (11.4), (11.6), (11.7) yield the asymptotic formula

o g o 25+ De + e bre
m—g—=DHECF+DI (n+-D—35—1)

a—0, b—ow, j+1=n=12 ...

To solve the perturbed problem

Py [3 _JG+ 1 ] _ _ _
we transform the differential equation into the form Ly = pty of ex-
ample 2 by the change of variables
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S = us/2, A = pa/2, B= /2, v = —1/1

and obtain the result

L 2 (wp—n) (A—0;B—ow).

v — ™~
v n

REFERENCES

1. H. F. Bohnenblust, C. R. DePrima, and C. A. Swanson, FElliptic operators with
perturbed domain, To be published.

2. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, Mc-
Graw-Hill (1955).

3. P. M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill (1953).

4. F. Rellich, Spectral theory of a second order ordinary differential operator, New
York University (1953).

5. C. A. Swanson, Differential operators with perturbed domains, J. of rational mechanics
and analysis, 6, 6 (1957) 823-846.

6. —————, Asymptotic estimates for limit circle problems, Pacific J. Math., 11 (1961),
1549-1559.

THE UNIVERSITY OF BRITISH COLUMBIA



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RavpH S. PHILLIPS
Stanford University

Stanford, California

M. G. Arsove

University of Washington
Seattle 5, Washington

J. DucunpJr

University of Southern California
Los Angeles 7, California

LoweLL J. PaiGe

University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH D. DERRY
T. M. CHERRY M. OHTSUKA

H. L. ROYDEN E. G. STRAUS
E. SPANIER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo Japan



Pacific Journal of Mathematics

Vol. 13, No. 1 March, 1963

Frantz Woodrow Ashley, Jr., A cone of super-(L) functions................ 1
Earl Robert Berkson, Some metrics on the subspaces of a Banach space . . .. 7
Felix Earl Browder and Walter Strauss, Scattering for non-linear wave

CQUATIONS . . .o v vttt e et e e et e e e 23
Edmond Darrell Cashwell and C. J. Everett, Formal power series . ......... 45
Frank Sydney Cater, Continuous linear functionals on certain topological

VECIOF SPUACES . . v v v e e et e et e e et e ettt e ettt 65
John Douglas Dixon, General group extensions .......................... 73
Robert Pertsch Gilbert, On harmonic functions of four variables with

FAtioNal Pa-ASSOCIALES . ... ..o vttt 79
Irving Leonard Glicksberg, On convex hulls of translates . ................ 97
Simon Hellerstein, On a class of meromorphic functions with deficient zeros

And poles . ....... ... e 115
Donald William Kahn, Secondary cohomology operations which extend the

triple product . . ... e 125
G. K. Leaf, A spectral theory for a class of linear operators............... 141
R. Sherman Lehman, Algebraic properties of the composition of solutions of

partial differential equations .................oiiiiiiiieiinniiin.. 157
Joseph Lehner, On the generation of discontinuous groups . ............... 169

S. P. Lloyd, On certain projections in spaces of continuou

Fumi-Yuki Maeda, Generalized spectral operators on loc

SPUACES e v vttt e e
Donald Vern Meyer, E> modulo a 3-cell ................
William H. Mills, An application of linear programming t

GEOUDPS « oottt
Richard Scott Pierce, Centers of purity in abelian groups .
Christian Pommerenke, On meromorphic starlike function
Zalman Rubinstein, Analytic methods in the study of zeros

polynomials .......... ... i
B. N. Sahney, On the Norlund summability of Fourier seri
Toru Saitd, Regular elements in an ordered semigroup. . .
Lee Meyers Sonneborn, Level sets on spheres...........
Charles Andrew Swanson, Asymptotic estimates for limit

Problems .......... ..
Lucien Waelbroeck, On the analytic spectrum of Arens . ..
Alvin (Murray) White, Singularities of a harmonic functi

variables given by its series development . ..........
Koichi Yamamoto, Decomposition fields of difference sets
Chung-Tao Yang, On the action of SO(3) on a cohomolog


http://dx.doi.org/10.2140/pjm.1963.13.1
http://dx.doi.org/10.2140/pjm.1963.13.7
http://dx.doi.org/10.2140/pjm.1963.13.23
http://dx.doi.org/10.2140/pjm.1963.13.23
http://dx.doi.org/10.2140/pjm.1963.13.45
http://dx.doi.org/10.2140/pjm.1963.13.65
http://dx.doi.org/10.2140/pjm.1963.13.65
http://dx.doi.org/10.2140/pjm.1963.13.73
http://dx.doi.org/10.2140/pjm.1963.13.79
http://dx.doi.org/10.2140/pjm.1963.13.79
http://dx.doi.org/10.2140/pjm.1963.13.97
http://dx.doi.org/10.2140/pjm.1963.13.115
http://dx.doi.org/10.2140/pjm.1963.13.115
http://dx.doi.org/10.2140/pjm.1963.13.125
http://dx.doi.org/10.2140/pjm.1963.13.125
http://dx.doi.org/10.2140/pjm.1963.13.141
http://dx.doi.org/10.2140/pjm.1963.13.157
http://dx.doi.org/10.2140/pjm.1963.13.157
http://dx.doi.org/10.2140/pjm.1963.13.169
http://dx.doi.org/10.2140/pjm.1963.13.171
http://dx.doi.org/10.2140/pjm.1963.13.177
http://dx.doi.org/10.2140/pjm.1963.13.177
http://dx.doi.org/10.2140/pjm.1963.13.193
http://dx.doi.org/10.2140/pjm.1963.13.197
http://dx.doi.org/10.2140/pjm.1963.13.197
http://dx.doi.org/10.2140/pjm.1963.13.215
http://dx.doi.org/10.2140/pjm.1963.13.221
http://dx.doi.org/10.2140/pjm.1963.13.237
http://dx.doi.org/10.2140/pjm.1963.13.237
http://dx.doi.org/10.2140/pjm.1963.13.251
http://dx.doi.org/10.2140/pjm.1963.13.263
http://dx.doi.org/10.2140/pjm.1963.13.297
http://dx.doi.org/10.2140/pjm.1963.13.317
http://dx.doi.org/10.2140/pjm.1963.13.321
http://dx.doi.org/10.2140/pjm.1963.13.321
http://dx.doi.org/10.2140/pjm.1963.13.337
http://dx.doi.org/10.2140/pjm.1963.13.353

	
	
	

