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1. Preliminaries from cyclotomic fields. In this paper we denote
the rational number field by @, and its subring of all rational integers
by Z. All algebraic quantities are to be contained in a “sufficiently
large” cyclotomic field over Q. We also denote by &, an unspecified
primitive mth root of unity.

If p is a prime ideal, « an integer #0 of a cyclotomic field Q(¢,),
then the b-component of « is, by definition, the power of p which
exactly divides @. If a is an ideal #0 of Q(¢,), then the a-compo-
nent of « is defined as the product of the p-components of & extended
over all prime ideal divisors of a.

Theorem 1 below will be frequently used later, and is essentially
based on the well-known theorem in the theory of cyclotomic fields:
The set of all integers of the cyclotomic field Q(¢,) is identical with
the ring Z[¢,].

Let C be a number-theoretic function, whose values are contained
in the ring Z[¢,]. We define the difference operator 4(po) by

A)C(1) = C + p) — C() .

Here p is a rational number not necessarily an integer. But we
make the convention that C(0) = 0 if p is not an integer, so —4(o)
will be an identity operator if p is not an integer. . We say that C
is a periodic function with a period » if 4(n)C(¢) = 0 for all <.

THEOREM 1. Let n = pl ... pls be the prime-power decomposition
of n. Let m be relatively prime to n, C be a periodic number-
theoretic function, with period n whose values C(1) are integers of
the cyclotomic field Q(,.), and f(x) = Szt C(v)x'. Moreover let d be
a divisor of n and a be an integer of Q(C,).

Then, in order that f(&7) = 0 (mod ) for all divisors r of d, it
18 necessary and sufficient that

ph - plsd(nprt?) - - - Admpyts)C(E) = 0 (mod @)
for all © and for all t,, ---,t, such that pi--- ps|d.

Proof. (1) We can assume s >0, so we first consider the case
s=1. Put n =79’ d =p* and we proceed by an induction on u.

Now we have
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f(&,) = ! glg C(t + piy)giret ™l

pll-1p-1
= 3 5(CG + p) — CONEE™

by using the fact that ¢2'' = ¢, is a primitive pth root of unity, or
that >?20¢5 = 0. The p'*(p — 1) integers ¢i*?"™% for 0 <1 < p*,
1 <75 < pforma Z[¢,]-basis of the ring Z[¢,..], and we have f(£,) =0
(mod «) if and only if C(% + p**j) — C(%) = 0 (mod «) for all choices
of 7,7 above. This condition is equivalent to

Anp™)C(#) =0 (mod a)

for all 2. This shows the validity of our assertion for u = 0.

(2) Assume therefore s =1, # > 0 and assume the validity of
the assertion for smaller values of . Now we -have

pl—1 N L 2 S . )
f@) =" Cwr = 5 (X C6 + p) Jo (mod1 — o) .
As was proved in (1) above, it follows from f(¢,) =0 (mod @) that
C() = C(t + ) (mod ). Thus if we define

1—-1_

9@ =p 3, COa",
then
f@) = g@) (moda,1—a").

The condition f(¢2') =0 (moda) for all ¢ such that 0 <t =< u is
equivalent to f(£2") = 0 (mod &) and ¢(¢2) = 0 (mod «) for all ¢ such
that 0 < ¢ <u — 1. The last is equivalent to, by the induction hypo-
thesis, that p’4(p*~*)C(¢) = 0 (mod &) and p*+4(p'**"*)C(¢) = 0 (mod &)
for all 0 <t <wu — 1, namely to p'4(p'~**)C(z) = 0 (mod &) for all ¢
such that 0 £t < wu. This shows the validity of the theorem for
s=1.

(3) Now assume s >1 and assume the validity of the theorem
for smaller values of s. Put n =nmn', n, = ph, »' = pk.-. pls, d =
dd, d, = (n,d), d = @',d). Any divisor r of d is written uniquely
as r = r,r' where r,|d,, r'|d’. For a given ¢ there are j, k such
that

1=n'"] +nk (modmn),

and 7, k are determined (mod 7,) and (mod n’) respectively. Hence

n

@ =55

C(n'y + nk)x'i*m* (mod 1 — x*),

<,
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FE) = 3 S Cg + nlesign
= 3 CHEw, 5)
i=0
where

C*(w,9) = 3, COs + ' .

Now {2 = £ is a primitive n,th root of unity and {3t = 7 4s a primi-
tive n’'th root of unity. And the condition f(£;,) =0 (mod«a) for
some ¢, implies of course the same congruence for all primitive nth
roots of unity. Thus f({}) = 0 (mod ) for some ¢, implies that

z C*, HEY = 0 (mod a)

for all primitive n,th roots of unity &€ and for all n’'th roots of unity
7. Note that C*(7", j) are integers of Q(.., 1) = Q€ nr) With (mn', n) =
1. Applying the already established case s =1 of the Theorem to
the polynomial 3\/1,' C*(%”, 7)a?, we see that f({}) = 0 (mod «) for all
r such that r|d if and only if

pidi(npr)C*(n7, 7) = 0 (mod @)

for all ¢, such that pi*|d, and for all ' such that »'|d’. Here 4;(0)
denotes the difference operator to apply on the argument j. The
above condition may be stated as

P S, Ai(npt)C @] + makyy = 0 (mod )

for all ¢, and 7’ such that pit|d, and »'|d’. Now we can apply the
induction hypothesis to the polynomial pir >'7 5" 4;(n,pr ) C(n'5 + n k)",
because the coefficients are integers of Q(¢,.), (m,n') =1 and %’ has
s — 1 distinct prime divisors. Thus we see that the last condition is
true if and only if

pipit - - pedi(npr T AWy ) - e 40D T)C (G A k)
= pit e Plsd(npr™) - - dnp;ts)C (1) =0 (mod @)
for all 4 and for all ¢, ---, ¢, such that pir.-- pls|d.
COROLLARY. Under the same motations as in Theorem 1, let
Surthermore S be a set of divisors of m such tnat reS and ' |r

implies v € S. Then in order that f(&;) =0 (mod @) for all reS,
1t 18 mecessary and sufficient that

pit o e ped(nprt™) -+ dnpytsC(E) = 0 (mod )
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for all © and for all pir-.. pis =reS.

2. Difference sets. Let D = {a,, ---,a,} be a (v, k, \)-difference
set. We denote the quantity ¥ — N by n. We associate with D its
generating polynomial gp(x) = g(x) defined by g(x) = Vi, %, which
is determined (mod 1 — x°). As is well known the condition

(*) g@)g@ ) =n+ ML+ 2+ -+ + 2°%) (mod1l — 2)

characterizes the difference set property of the set D. The above
implies that

(1) 9@)9E) =mn

for all vth roots of unity { #+ 1, where v denotes the complex conju-
gation of the field Q((,)/Q. As is easily verified, the condition (1)
implies conversely the relation (*). This is the reason why the two
parameters v and » are the most fundamental to a number-theoretic
study of difference sets. If v is even, then n is a square as seen
from (1) for £ = —1. Also k is determined by the quadratic equation

(2) k(v — k) =n(v — 1),
and ) by
(3) My —2n—AN)=n(n—1).

From (3) follows that n + (n — 1) =v—2n <n(r — 1) + 1 or
(4) n—1=v=n*+n+1.

The two extreme cases v =4n — 1 and v = n* + n + 1 correspond to
the difference sets of Hadamard type and to the difference sets of
projective planes.

If we fix n then there are z(n)r(n — 1) ways of choosing parame-
ters (v, k, \) satisfying the relations k(k — 1) = (v — I)vand k — X =
n, where 7(m) denotes the number of divisors of m. Similarly, if
we fix v, then there are 2°®™ ways of choosing these parameters,
where w(m) denotes the number of distinct prime divisors of m.

The difference set D will be called nontrivial if » > 1 and » > 1.
We consider nontrivial difference sets exclusively in this paper.

There are several difference sets closely related to a given
difference set D. If D is a (v, k, \)-difference set, v and B are
integers such that (8,v) =1, then D+ u ={a, + %, ---, a;, + u} and
BD = {Ba,, ---, Ba,} are (v, k, \)-difference sets, similar to D. The
difference set (—1)D will be denoted by —D. Furthermore the re-
sidual set D* ={0,1,---,v—1} — D of Dis a (v,v — k, v — 2n — \)-
difference set, which is called the residual difference set of D. Note
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that D* has the parameters v* =, k* =v —k, \* =v — 2n — ),
n* = m, and that the relations (2) and (3) may be written as kk* =
n(v — 1), \W* = n(n — 1) together with &k + k* = v, A + \* = v — 2n.
As for the generating polynomials we note that

Ip+u(®) = 2gp(2) (mod1 — 2%),
(5) 9ep(®) = g5(2) (mod 1 — 2%),
9o(®) + gp(@) =1+ 2+ -+ + 27 (mod1l — av).

In particular we see that for any vth root of unity ¢ +# 1 that

(6) 9-0(8) =050, 9p(0) = —90(0) .

Besides the generating polynomial g,(x) = g(x), it is sometimes
useful to consider the d-generating polynomial g,(x) for a divisor d
of w. This is, by definition, the generating polynomial g(x) reduced
(mod 1 — x%), or

0.(2) = 5, C@w' (mod 1 — o),

where C(7) is the number of elements a; of the set D satisfying
a; =1 (mod d). It is to be noted that

(7) Oémﬁé%

for all 4. The congruences (5) are true when g(x) are replaced by
d-generating polynomials, and the modulus by 1 — 2% Similarly the
equations (6) remain true when g¢(x) are replaced by d-generating
polynomials, for any dth root of unity & = 1.

3. Decomposition field of a difference set. Let » be a prime, p
be any prime ideal divisor of p in Q(¢,)/Q. Then the set of all
automorphisms 6 of Q(¢,)/Q satisfying p° = p constitutes the decom-
position group 3, of p. Because Q(¢,)/Q is an abelian extension, the
group 3, is the same for all p, called the decomposition group of p
in Q()/Q, and denoted by 3,. It is generated by the set of all
Frobenius automorphisms F = (¢, — ¢%) where v = p'v' (v', p) =1,
the effect of F' on ¢, being arbitrary. The subfield K, corresponding
to 3, is called the decomposition field of p in Q(&,)/Q. If d is a
divisor of v, then it is known that the decomposition field of » in
Q(£,)/Q is equal to the intersection K, N Q(&,).

If D is a (v, k, \)-difference set, then the intersection B of all
decomposition groups 8, in Q(¢,)/Q with p|n will be called the decom-
posttton group of the difference set D, the subfield of Q(¢,)/Q corre-
sponding to it the decomposition field of D, Note that these concepts
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are completely determined by the parameters v and %, so are the
same for all difference sets similar to D, and also for D*.

THEOREM 2. Assume that there exists a (v, k, \)-difference set
D. Let p be a prime divisor of n, d be a divisor of v such that
d+1, (p,d) =1 and that the decomposition field of p in Q(&,)/Q is
real. Then the exponent of the p-component of n is even.

Proof. The complex conjugation 7 of Q(£,)/Q belongs to the
decompostion group 3, of » by assumption. Namely p° = p for all
prime ideal divisors p of p. This means that ¢(¢,) and ¢(&;)° have
the same p-component for all these prime ideal divisors p of p, and
so they have the same p-component, say b. Since d # 1 it follows
from (1) that the p-component p° of n is =b** = b2, Therefore b is
divisible by all the prime ideal divisors p of » with the same exponent.
But because p is unramified in Q(&,)/Q, b is a power of (p) and e is
even,

COROLLARY 1. If there exists a (v, k, N)-difference set with real
decomposition field, then m must be a square.

Proof. The decomposition group B, of » in Q(&,)/Q contains the
complex conjugation 7 for all prime divisors p of n and for all divisors
d of v. Thus if v has a divisor d such that (d, p) =1, d #+ 1, then
it follows from Theorem 2 that the p-component of = is a square.
If on the contrary v is a power of p, say p’, then from (2) or
(" — 1)n = k(p' — k) follows that k is divisible by p. Therefore if
p™ is the p-component of k, then [ > m and both & and p' — %k have
the same p-component p™, so the p-component of » is p*™.

REMARK. The condition in the hypothesis of Theorem 2 is that
p is a prime divisor of n, d a divisor of v such that d #+ 1, and that
there exists an exponent % such that p* = —1 (mod d).

COROLLARY 2. Assume that there exists a (v, k, N)-difference set.
Define for an odd integer q, q* = (—1)“"%. If p is a prime, p°
the p-component of n, and if q is an odd divisor of v, then

0= (£5)

for all rational prime spots r, the symbol being the Hilbert norm
residue symbol. Or, then there exists a monzero solution for the
Diophantine equation
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o 4 (—1) gy = 22,

Proof. Because of the relation (q,9,)* = q¥qF for odd integers
qi, ¢;, and of the bihomomorphic property of the Hilbert residue
symbol, we can assume that ¢ is an odd prime divisor of v. The
symbol ¥(r) =1 except possibly » = p. (the rational infinite spot),
r=2 r=p and r =¢q. Now ¥(p.)=1 since p > 0. Moreover
x(@) =1 or =(p/q) with the Legendre symbol according as p = q or
not. The Legendre symbol represents —1 only for p which is a
quadratic nonresidue of ¢. But in this case p" ™2 = —1 (mod ¢) and
e must be even by Theorem 2. We have seen that y(p.) = x(q) = 1.
Now if p = 2, then we have ¥(2) = 1 by the product formula of the
Hilbert symbol. If p # 2, then we have x(2) = 1 since ¢* = 1 (mod 4).
So we have (in case p # ¢q) that y(p) = 1 by the product formula.

THEOREM 3. (1) Under the same assumptions as Theorem 2,
let furthermore p° and p' be the p-components of n and v. Then
we have p** < (v/d)p~.

(2) Assume that there exists a (v, k, \)-difference set. Let p be

a prime divisor of m, p° and p' be the p-components of n and v. If
e 1s even, then we have p** < vp~™.

Proof. Put w = dp* in (1) and put w = p' in (2). Denote the
generating polynomial of D by g(x). Then the decomposition group
of p in Q(&,)/Q contains the complex conjugation 7 of Q(£,)/Q, be-
cause the restriction of 7 in Q(&)/Q is a power of the Frobenius
automorphism F of Q(£,)/Q, as was shown in Proof of Theorem 2.
This means that any prime ideal divisor p of p in Q(£,)/Q is invariant
under 7, and the p-component b of ¢g(¢,), being invariant under ,
satisfies (p°) = b'** = b* as seen from (1). It follows from Theorem 2
that ¢ is even under assumption of 1), and e is assumed even for (2).
This implies in particular that g(¢,) = 0 (mod p°*). The same is true
for all divisors » #= 1 of w, because the decomposition group of p in
Q(¢,)/Q contains the complex conjugation. We have seen that g(¢) =
0 (mod p°?) for all wth roots of unity & = 1.

On the other hand ¢g(1) = k& is not necessarily divisible by 2
But we see from (2) that k(v — k) = 0 (mod p°), or at least one of
the two numbers g,(1) = k£ and ¢g,.(1) = v — k is =0 (mod p°?). Thus,
by replacing D by D* if necessary, we can assume that g(¢) =0
(mod p**) for all wth roots of unity ¢.

Consider the w-generating polynomial g,(x) = S C(2)x* of D.
Since ¢,(8) = g(¢) = 0 (mod p*?) for all wth roots of unity &, we can
apply Theorem 1. Thus we conclude, if d = ¢it--- ¢ir is the prime-
power decomposition of d in (1) that
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gl - e qird(wgrt) < Awgr ) A(wp)C(E) = 0 (mod p?) .

Because (d,p) =1 and because 4(wq;'i™') for j=1,.--,r are all
identity operators, we have A(wp~)C(%) = 0 (mod p°?) for all ¢. In
the case (2) the last congruence follows immediately from Theorem 1.

Now 1 assert that there is an < such that 4(wp™)C(z) # 0.
Indeed, if 4(wp~)C(2) = 0 for all 7, then we would have

A(wq7?) «++ Mwg;)A(wp™)C(2) =0

for all ¢, which implies, again by Theorem 1 (by taking « = 0), that
94(&w) = 9(¢,) =0, and » = 0 by (1), a contradiction. This applies to
the case (1), and the same argument is applies to the case (2).

We have seen that C(7 + wp™) — C(¢) = 0 (mod p*%), but #0 for
some ¢. Then it follows from (7) that

P <|CGE +wp™) — CO)| = = == p~

A
d
for the case (1), and we have only to take d =1 in the above for
the case (2).

COROLLARY. The decomposition field of a nmontrivial difference
set camnot be real.

Proof. This follows immediately from Corollary 1 to Theorem 2
and the assertion (2) of Theorem 3.

Similarly it is proved that if there exists a (v, k, \)-difference
set, d is a divisor #1 of v, p, ---,p, are distinct prime divisors of
n such that p; t d and that the decomposition fields of p; in Q(&,)/Q
are real, then p{*... p/* < v/d, where p%i are the p,-components of n.

ExAMPLE. There does not exist a difference set for, which both
v and n are powers of the same prime. For instance (16, 6, 2)-,
(64, 28, 12)- and (256, 120, 56)-difference sets.

REMARK. If @ and m are relatively prime integers 0, then the
order of a (mod m) is the smallest positive integer z such that a* =1
(mod m), and is denoted by z = ord,, . Theorem 2 implies in particular
that if there exists a (v, k, M)-difference set, and if ¢ is an odd prime
divisor of v, p is a prime such that ord, p is even, then p is contained
in n with an even exponent. The same is true if 4|v and if ord, » =
2 or p= —1 (mod4). The criterion is useful for smaller »’s since
we can use the tables in [4] for ord, », ¢ < 1000. The assertion (1)
of Theorem 3 may be stated as: If there exists a (v, k, \)-difference
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set, d #1 a divisor of v, and if p is a prime such that p* = —1
(mod d) for some h, then p°? < (v/d)p~!, where p° and p' are the
p-components of n and v.

Hall [2] listed 12 choices of (v, k, \) such that 3 < k < 50, k < v/2,
for which the existence of corresponding difference sets had not been
decided by the method of multipliers. For all of these Theorem 3
establishes the non-existence very simply.

4. Difference sets with imaginary quadratic decomposition fields.
In view of Theorem 3 and its Corollary, it would be a natural step
to consider next those difference sets whose decomposition fields may
be imaginary quadratic.

THEOREM 4. Let q be a prime divisor of v such that g = —1
(mod 4), ¢* be the g-component of v. Assume that any prime divisor
p of n satisfies

(i) ord,» =0 (mod 2),

(ii) ord,p=144¢"(¢—1), or

(i) p=gq.

If there exists a (v, k, \)-difference set D, then the Diophantine
equation

dn=u*+qy*, 02, O

IA
A
IA

Y y T+ Y

0] 2v
7 a
has a solution.

Proof. Denote by o a generator of the Galois group of Q(¢,)/@Q,
and by ¢g(x) the generating polynomial of D. Denote the p-component
of g(&,) by b,. If p satisfies (i), then it follows from Theorem 2 and
Remark to it that b, is rational, b, = (p)° for some positive integer
e. If p satisfies (ii), then p is decomposed into a product of two
different prime ideal divisors p, p° in Q(&,1)/Q, and the decomposition
group of p in Q(&,)/Q is equal to {6%}. Thus ¢* leaves p and p° fixed,
and so b, fixed. The last statement is true for the case (iii), too.

Summarizing we have that bs* = b, for all prime divisors p of =.
This means that if we put v = g(&;) then (7)) = (7), or Y =7 is
a unit of Q(&,)). We have 7'*7 = y1-090+0 — yUt0a-0h — pi-o® — 1 op
|7| = 1. Because Q({,)/Q is totally imaginary and abelian, this im-
plies that 7 is a root of unity in Q(&.), or » = & for some j, where
e=1or =—1.

Now I assert that e = 1. Indeed if we put N = ¢*~%(¢ — 1) then

1 = 771+o-‘~‘+-..+g-N—2 — eN-—? Cgl(1+q2+...+o-N—2)

shows firstly that ¢¥/* = ¢ since 4 N is odd, and secondly that ¢ is a
¢'th root of unity, therefore ¢ =1, Moreover if &5 = & for an



346 KOICHI YAMAMOTO

integer s, then the above shows also that (1 — s¥),/(1 — s%) 7 = 0 (mod ¢%).
This implies that there is an integer u such that —7 = (1 — s)u
(mod ¢¥). In fact 1 — s*= 0 (modq) if ¢ # 3, and if ¢ = 3 then the
3-component of 1 — s* and 1 — s¥ are 8 and 3 respectively, so 7 =0
(mod 3) and there is an integer # such that —j = (1 — s*)u (mod 3%).

Replace the difference set D by D + . Then 7 = (9(&n))"" is
replaced by ((ug(C)) =" = ¢t~y = ¢4+ = 1. Namely we can
assume that g(&u)”" = g(&,u), by replacing D by D + u if necessary.
Then ¢(¢;) = v is an integer of the quadratic subfield Q(V'—q) of
Q(¢,:) and n = ¥+ is the norm of an integer v of Q' —q).

More precisely there exist integers a,b such that v =a + b,
where @ = (—1 4+ 1V —¢q)/2, so we have 4n = (2a — b)* + gb®. Note
that g,4(&) = —a — bow, g () =a + bw* =a — b — bw, g_p(&) =
—a + b+ bw, as seen from (6). Thus we can assume a = 0 and
b = 0, by replacing D by D*, —D, or —D* if necessary. We know
that » is a Gauss’s sum

0 =S =+ Svon.

where (%) = 1 or 0 according as 7 is a quadratic residue or nonresidue
of g, ¢, is a suitably chosen primitive qth root of unity, and the sign
+ is that of (j/q) for the j such that {47 =&, If ga(x) = 3¢5 C @)t
is the g'-generating polynomial of D, then g,(x) — (@ & b 302 yr(2)x? %)
has a zero point z = ¢, so applying Theorem 1 (by taking a = 0),
we obtain

C(0) — a = C(¢"*0) F by(?) (t=1,---,¢—1).
In particular C(0) — a = C(¢*™") F b = C(—¢*"). Comparing this with
(7) we find @ <vg', b <wvg . Note that a similar treatment on

g p(&p)=—a+ b+ bw yields [a —b| < vg”*. The Theorem is now
proved by taking x =|2a — b|, y = b.

REMARK. The condition (ii) in Theorem 4 is the same as ord, p =
3(g— 1) if p** # 1 (mod ¢*).

COROLLARY. If v=¢' q being a prime with q¢ = —1 (mod 4),
and if any prime divisor p of m has an even order or the order
3(q — 1) (mod q), p** %= 1 (mod ¢*), then a nontrivial (v, k, \)-difference
set exists only if l=1, ¢ >3, 1.e., v=q > 3. In this case there
are exactly two difference sets with the parameters v=q, n = }(q + 1),
namely the set of all quadratic residues of q, and its residual set,
in the sense of similarity.

Proof. The Diophantine equation 4n = #* + ¢y*, 0 <2, 0 < y < 1,
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% + y =< 2 has only one solution x =y =1, and » = }(¢ + 1). Then
q >3 from n > 1. From (4) follows that ¢ =v = n*+n + 1 =1/16
@+ 69 +23)<q* or Il =1. Also if g(¢,) =a + bw as in Proof of
Theorem 4, then there are four possibilities for a, b, of which we
have only to consider the case @ =0, b = +1 such that we would
have ¢(,) = +w = S22t (@)¢. Then C(0) = C(z) — (¢) for 7 =
1,.--,9—1or C0) =0, C@) = (), since C(¢) and +-(¢t) are non-
negative. Thus D is the set of all quadratic residues of ¢, and any
difference set with the parameters v =¢q, n = $(¢ + 1) is similar
either to D or to D*.
In the following two Theorems, » is necessarily a square.

THEOREM 5. Let q and r be distinct prime divisors of v, ¢° and

r™ be the q-components and r-components of v respectively, and let
= —1 (mod 4), (p(q"), p(r™)) = 2. Assume that any prime divisor

p of n satisfies one of the conditions:

(i) ord,» =0 (mod2) and ord,p = 0 (mod 2), =0 (mod 4),

(ii) ord:p = 3 9(¢") and ord,~ p = p(r™),

(iii) p=q and ordnp = @(r™).

If there exists a (v, k, \)-difference set D, then there is a solution
for the Diophantine equation

2v , T+Y= dv .
ql/rm ql/rm

n=2"+qy’, 0=z, 0=y

A

Proof. (1) Denote the generating polynonial of D by g(x) and
put w = ¢'r™. Then Q(¢,)/Q is the direct composite of Q(¢:) and
Q(&,m) over @, and the Galois group of Q(£,)/Q is generated by two
automorphisms ¢ and p such that o is a generator of the Galois group
of Q(&,)/Q acting as an identity on Q({,»), and p is a generator of
the Galois group of Q(¢,=)/Q acting as an identity on Q(&;:). Now if
p satisfies (i), then p* = —1 (mod w) for some z, and the p-component
b, of g(¢,) is rational by Theorem 2. If p satisfies (ii), then ord, p
is the LCM of ord,: » and ord,» p, which is =3 @(w) by assumption.
The decomposition field of p in Q(£,)/Q is the quadratic field Q(V/ —gq).
This means that any prime ideal divisor p of p in Q(¢,) is originated
in Q(V'=q). Finally if p satisfies (iii), then » = ¢ = ¢**" in Q(£.)/Q
for the prime ideal divisor q of ¢ in Q(£,)/Q. The g-component b, of
9(&,) is rational, since it is a power of q and the g-component of n
is a square by Theorem 2.

(2) Summarizing we see that for any prime divisor p of =, b, is
an ideal originated in Q(V'—gq), and so is the ideal (¢(¢,)). If we put
v = g(¢,) then v'=°" = y and v = 0 are units of Q(¢,). Then 7'** =
¢'** =1, or 1 and ¢ are roots of unity in Q(¢,), just as in Proof of
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Theorem 4. Hence 7*~? is a ¢'th root of unity and 6" is an r"th
root of unity. But both are =v"°"9 and we see that 7'~ =
6" =1, or that 7 is a root of unity in Q(¢:) and 6 is a root of
unity in the subfield K fixed by ¢®. K is the composite of Q(¢,») and
Q(1—q), of absolute degree 2¢(r™), and 6 is a root of unity in Q(&,m)
except for the case ¢ = 3; 6 if ¢ = 3, may be a 6r"th root of unity.
We have seen that » = efi, 6 = &'¢% (for q #+ 3) or 0 = &'tint? (for
q = 3), where 1, 7, a are integers and ¢, ¢’ are either 1 or —1. Just
as in Proof of Theorem 4, we verify that ¢ = 1, and that by replacing
D by D + ur™ for some u if necessary, we can assume 7 = 1. This
process does not affect 4, and again by replacing D by D + u'q* for
some %’ if necessary, we can assume also that 6 = ¢’ (for q # 3) or
0 = &'ty (for q = 3).

(8) First consider ¢ #3. I assert that ¢ = 1. Indeed from
=o' =1, v» = ¢’ = +1 follows that 7> belongs to Q(v'—q). If we
put O = Z[¢,], 0= Z[w], @ =(—1+1V"—¢q)/2, then vO =D for
some ideal ¢ of o, since ¥O was originated in Q(1“—¢). On the other
hand ¥Y*€ 0 and so ¢ = 7’0 is a principal ideal of o, which implies that
¢ itself is principal, because the class number of @1/ —¢q), an imaginary
quadratic field of a prime discriminant, is odd. Thus if ¢ = v, v, €0,
then ¥* = v¥, for a unit 7, of Q(1'—¢). Such a unit must be 1.
But 7, = —1 is screened out, since otherwise vv;' = V'—1 belongs to
Q(&,), which is impossible. So 7, = 1 and v = +7, belongs to Q(1/—q).

(4) Next let ¢ = 3. Then * satisfies %" =1, ¥4 =g, 1
assert first that ¢ = 0 (mod 3). Indeed otherwise 7’ determines a
subfield K over Q(v/—q) of degree 3. Note that this is possible only
for r = 1 (mod 8). Moreover K is uniquely determined as the subfield
of Q(&,)/Q(&;) of relative degree 3. A relative basis of integers of
K with respect to Z[¢&,] is furnished by the three integers &, £, &’
where £ = SWor-v-1¢%  The condition (v)'* = ¢;* implies that +°
has the form ~° = ay(€ + £ + FE") = a,d, a,€ Z[¢,], where A =
g+ g7 + g’ is the Lagrange resolvent of Q(¢,,)/Q(&,). It is known
that A*** = r. Thus we would have %n? = ¥*** = aj**r, which is im-
possible because (n, r) =1 was assumed in (i), (i), (iii).

We have seen that 7* belongs to Q(/—3). But in fact v itself
belongs to Q(1V—3). Indeed if we put o= Z[&], O = Z[&,], then
we know in (2) that vO = c¢O for some ideal ¢ of . Butcis a
principal ideal because the class number of Q(1V—3) is 1. Thus we
have YO = 7,0 for 7v,€0. On the other hand v*e€o, and v* = v, for
some unit 7, of 0. %, is a 6th root of unity, and 7}* = vv;* is a root
of unity in Q(¢,). This is possible only when 7, is a third root of
unity. This means that v = 7{*v,e Q(V'—3).
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(5) We have seen that v = g(¢,) is an integer of Q(V/—q). If
¥ =a + bw, where ® = (—1+ 1 —q)/2 is the Gauss’s sum, and if
9.(x) = S35 C(3)x* then the polynomial g,(x) — (@ &= b 0=t ap(d)a? 7™
where (2) = % ((¢/q) + 1) has a zero point z = ¢, and it follows from
Theorem 1 that

C0) — a = Clg"'r™i) T by(i) = C(@'r™") — Clar™ + ¢~r™)

for e =1,---,9g—1;7=1,--.,7»— 1. By comparing with (7) we see
that |a| < 2v/w, |b| < 2v/w, and also |a — b| =< 2v/w by a similar
consideration on —D. Thus we have 4n = 47" =2’ 4 qy* 0 = z,
0=y =2vw, ®+y < 4v/w for x =|2a¢a — b|, y =|b]|.

COROLLARY. If im particular v = ¢'r™ wm Theorem 5, then we
have only one possibility v = 21, n = 4. D 1s stmilar to {1, 2, 4, 7, 14}
or its restdual set.

Proof. If we consider that n is a square =4, the Diophantine
equation in Theorem 5 implies =38, y=1, n=4, ¢q =17, v =21,
We may assume a = —1, b =1 in Proof of Theorem 5 above. Thus
9C)=7=—-14+w= -1+ + &+ &, from which it follows that
D=11,2,4,17,14}.

THEOREM 6. Let q and r be prime divisors of v such that q =
—1 (mod 4), » =1 (mod4), (¢/r) = —1 and that (p(¢*), (r™)) = 2 for
the q-component q' and the r-component r™ of v. Assume that any
prime divisor p of n satisfies etther (i) ord, » = 0 (mod 2) and ord, p =
0 (mod2), #0 (mod4), or (ii) ordyp = @(¢") and ord,np = @(r™).
Then, if there exists a (v, k, \)-difference set D, there is a solution
to the Diophantine equation

2v x4y < 4v
qlq,.m

n=o'+qry’*, 0=z, 0=y=

Proof. (1) Let g(x) be the generating polynomial of D and put
w = ¢'r™. Then the p-component b, of g(£,) is rational for p satisfying
(i), by Theorem 2. If p satisfies (ii) then the decomposition field of
p in Q&.,)/Q is Q(V ' —qr) by the assumption. The Galois group of
Q(¢,)/Q is generated by o and p such that o generates the Galois
group of Q(s)/@ acting as an identity on Q({»), and © generates
the Galois group of Q({,~)/Q acting as an identity on Q(&,:). Thus if
we put v = 9(§,), then 7 = v'~°° gatisfies 7'~ = 1 and hence is a root
of unity in Q(¢,). Moreover we can assume 7 = *=1 by replacing D
by D + uqg' + u'r™ if necessary. By the same argument as in Proofs
of Theorems 4 and 5, it is easy to verify that v~ = +"*" = 1. This



350 KOICHI YAMAMOTO

means that ¥* belongs to the subfield of Q(&,)/Q fixed by {a? 0 gp},
ie. to QW —gqr).

(2) I assert that v itself belongs to Q(1/—qr). Indeed otherwise
y=o* = —1, and v = 4 (cV'—q + d1V/ r) for some rational integers ¢, d
such that ¢ =d (mod2). Then 4n = 4v*** = gc* + rd? which is im-
possible since 7 is a square and (¢/r) = —1 by assumption. Now <
belongs to Q(1"—qr) and v =a + bw for some a, b where w =
1(—1+ Vv —gqr). Note that w is the Gauss’s sum 377! (4)&i, for
¥(t) = 3 ((¢/qr) + 1) where (i/qr) is the Jacobi symbol, and ¢, is a
suitably chosen primitive ¢rth root of unity. If we denote the w-gener-
ating polynomial of D by g,(x), then g,(x) — (@ £ b S r(2)x? ™)
has a zero point = £,,. We can apply Theorm 1 by taking a = 0.
Note that the coefficients of the last polynomial are not necessarily
integers, and we must apply Theorem 1 to the twice of this polynomial,
but the conclusion is of course the same because @ = 0. We have

C(0) — a — (C(g"'r™i) — %)
= C(¢'r™'j) — 4 — (C(g"'r™ + ¢'r™J) F by(ri + ¢4))

or
C00) —a+ 1— C(g*'r™)
= C(g'r™j) — C(¢'r™i + ¢'r™'3) F by (r1 + qJ)
fore=1,---,9g—1;57=1,.-.,»r — 1. Comparing with (7) we see

that |a — 1| = 2v/w, |b] = 2v/w, By considering D* we have also
| —a — 1| = 2v/w, or |a| = 2v/w — 1. Similarly |[a —b| = Qv/w) — 1
by considering —D. Thus 4n =4y =2+ qy, x =|20 — b|, y =
|b]|, for which 0 £ %, 0 =<y < 2v/w, 2« + ¥y < 4dvjw — 2.

COROLLARY. If in particular v = ¢'r™ in Theorem 6, then ¢
and r are twin primes, | = m = 1, and the difference set D is similar
to the Stamson-Sprott difference set [5], consisting of all ¢ such that
0<1<qr, (i/gr) = 1 and of all multiples lying between 0 and qr — 1
of the larger of the twin primes q,r, or to its residual set.

Proof. (1) The only solution of the Diophantine equation in
Theorem 6, for which » > 1 and (n,qr) =1, is given by 2 =y =1,
4n =qr +1. In view of the fact that n is a square, say »? the
above is pssible only when ¢ and r are twin primes ¢, = 2v — 1,
r, = 2v + 1 in some order.

Now I assert that qr is the only value of v, which is a multiple
of gr and for which (8) has integral solutions. Indeed v =
2n 4+ N+ nn — vt =0 (mod ¢,r,) implies that » =n (modg,) or
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A =mn—1 (modgq,), and similarly » = % (mod 7,) or » = n — 1 (mod 7,).
Then we must have M =mn (modgq,r) or » =n — 1 (mod q,r), i.e.,
Ar=mnorrx=n—1 For »=mn (modg,) and A =n — 1 (mod »,) im-
plies that » =n + }(r, + 1)¢, (mod ¢,7,) hence \ > m, and similarly
N > m, which is impossible since AM\* = n(n — 1). We have seen that
AN =2n—-1, v=4m—1=qr, ie.,, Il =m=1.

(2) Besides * =y = 1, we can even assume that a =0, b = +1
in Proof of Theorem 6 in such a way that ¢(¢,) = o = 321 4 (?)¢,
or that

(8)  CO)+ 1+ Crad+ quj) — ¥(ri + ¢.9) = C(ra) + C(q.9)

fori=1,---,¢,—1;5=1,---, 7 — 1. Define C*(z) = 3}5,' C(¢ + ¢.9),
C.(7) = %' C(j + 71). These are the coefficients of the ¢,- and 7,-
generating polynomials of D. Applying Theorem 2 we find that
(9,,(&,)) is rational and hence (g,(&,)) = (v) or ¢,(5,) =0 (modv).
By Theorem 1 it follows that C*(2) = C*(0) (mod v) for all ©. Similarly
C.(7) = C.(0) (modv) for all 5. By making summations of (8) over
4=1,---,¢,—1or over =1, ---, 7, — 1 respectively we find that

(r, — 1)(C(0) + 1) 4 (C*(ryg) — C(r1)) — 4 (r,— 1)

= (r, — D)C () + C*(0) — C(0),
(. = DCO) + 1) + (Cul:d) — C(@h)) — 2 (@ — 1)

= (¢: — DC(q:9) + C(0) — C(0) .

Recalling », —1 =0, ¢, — 1 = —2 (mod v), and C*(¢) = C*(0), C,(J) =
C,(0) (modv), we have that

CC(r) = C(0) (mody),  C(qy) = C(0) + 1 (mody),

from which it follows immediately that C(0) =0, C(¢q.J) =1, C(rt) =
0, C(ra+ q9) = y(rt +qJ) fore=1,---,¢,—1;, j=1,---,7r, — 1.
This means that the set D consists of all 4 such that (¢/q,r,) = 1 and
of all nonzero multiple of ¢q,, the smaller of the twin primes. The
Stanson-Sprott difference set is precisely —D*,.

NUMERICAL DATA. There are 373 choices of v, n such that 2 <
n < 50, and that (2) has a solution. In 273 of these, Theorems 2 to
6 establish the nonexistence of the corresponding difference sets, and
in 58 of these examples of the corresponding difference sets are
known. The remaining 42 case are not convered by our Theorems,
and in fact have decomposition fields of higher degrees than 2.
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