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A CHARACTERIZATION OF SCALAR TYPE
OPERATORS ON REFLEXIVE BANACH SPACES

EARL BERKSON

Introduction. The main purpose of this paper is to characterize
scalar operators on reflexive Banach spaces. This is accomplished in
4.2 and 4.4. However, most of the results are not limited to re-
flexive spaces.

We give a fundamental decomposition theorem for scalar operators
in § 2, and show in § 3 that this decomposition is unique.

In what follows, all spaces are over the complex field, all Banach
algebras have an identity of norm 1, and an operator will be a bounded
linear transformation with range contained in its domain. This under-
standing will also cover material quoted from other sources.

l Preliminaries. In this section we reproduce some machinery
from [4] and [7] which will be needed in the sequel.

The definitions and results of this paragraph are taken from [4].

DEFINITION. Let X be a vector space. A semi-inner-product on
X is a mapping [, ] of X x X into the field of complex numbers such
that:

( i ) [x + y, z] = [x, z] + [y, z] for x,y,ze X.

(ii) [Xx, y] = X[x, y] for x,yeX,X complex.

(Hi) [x, x]>0 for xφO.

(iv) I [x, y] |2 ^ [x, x][y, y].

We then call X a semi-inner-product space (abbreviated s.i.p.s). If X
is a s.i.p.s., then [x, xf'2 is a norm on X. On the other hand, every
normed linear space can be made into a s.i.p.s. (in general, in infinitely
many ways) so that the semi-innner-product is consistent with the
norm—i.e., [x,x]112 = \\x\\, for each xeX. By virtue of the Hahn-
Banach theorem this can be accomplished by choosing for each xeX
•exactly one bounded linear functional fx such that \\fx || = ||α?|| and
fx(x) = || x ||2y and then setting [x, y] = fy(x), for arbitrary x,yeX.

DEFINITION. Given a linear transformation T on a s.i.p.s., we
denote by W(T) the set, {[Tx, x] | [x, x] = 1}, and call this set the
numerical range of T.
An important fact concerning the notion of numerical range is the
following:
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1.1 Let X be a Banch space and T an operator on X. Although
in principle there may be many different semi-inner-products consistent
with the norm of X, nonetheless if the numerical range of T relative
to one such semi-inner-product is real, then the numerical range rela-
tive to any such semi-inner-product is real. If this is the case, we
call T a hermitian operator.
Also important is the result:

1.2 If X is a s.i.p.s., complete with respect to the induced norm
on X, and T is a linear transformation on X, bounded with respect
to the induced norm, then | W(T) | ^ || T\\ ̂  4 | W(T) |, where | W(T) \,
denotes the quantity sup { |λ | |λe W(T)}.

In [7], I. Vidav introduces the following notion of hermiticity:

DEFINITION. An element h of a Banach algebra A with identity
e will be called hermitian if and only if for a real, ||β + ίah\\ =
1 + o(a) as a —» 0.
It is shown in [4; § 9] that an operator T on a Banach space X is a
hermitian operator if and only if it is hermitian in the sense of
Vidav's definition—i.e., if and only if || / + iaT\\ = 1 + o(a) for a real,
where / is the identity operator. Thus we have at our disposal two
equivalent formulations of the notion of hermiticity for operators on
Banach spaces.

The result of [7] very important for our considerations is the
following:

1.3 Suppose A is a Banach algebra with identity e. Let H be
the set of hermitian elements of A (i.e., H — {he A | || e + iah || =
1 + o(a), for a real}). We assume that: (a) every aeA has a rep-
resentation a = u + iv, u, ve H (b) if he H, then there is a rep-
resentation h2 = u + iv such that u, v e H and uv = vu. Then there is
an involution on A and a new norm equivalent to the given norm such
that in terms of this involution and the new norm A is a C*-algebra.
It is well known that the Gelfand representation of a commutative
C*-algebra with identity is an isometry onto C(^^), the algebra
of all continuous complex-valued functions on the maximal ideal space
^ (see, for example, [3; §26A]). Hence we can state:

1.4 Let A be a commutative Banach algebra with identity, and
let H be the set of hermitian elements of A. If every aeA has
a representation in the form a = u + iv, where u, v e H, then the
Gelfand representation of A is a bicontinuous isomorphism of A onto

2. A fundamental decomposition. Throughout the rest of this
paper X will be a fixed Banace space with norm || ||, and X* will be
its dual. Throughout this section S will be a fixed scalar operator
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on X, and E will be its resolution of the identity (see [1] for this
terminology). For given xeX, $*eX*, we shall denote by var
x*E( )x the quantity sup Σ \ x*E(σi)x |, where the supremum is taken
over all finite sequences {σj of disjoint Borel sets in the complex
plane p.

It is shown in [1; see proof of Theorem 17] that there is a con-
stant K such that

2.1 v a r x*E{ )x<LK\\x\\ || a?*||, x e X , x* e X* .

We now show:

2.2 LEMMA. For each xe X, define \x\ by

\x\ = sup var x*E( )x .

Then I \ is a norm on X equivalent to \\ \\.

Proof. It is straightforward to verify that | | is a seminorm.
With K as in 2.1 we have that | x \ S K \\ x ||, for x e X. Given xe X,
choose # * e X * so that ||a?*|| = l and x*(x) = \\x\\. Then \\x\\ =
\x*(x)\ = I x*E(p)x I £ I x |. This completes the proof.

2.3 LEMMA. Relative to the norm | | defined in 2.2, E(σ) is a
hermitian operator, for each Borel set σ.

Proof. We shall also use the symbol | | to denote the norm of
an operator relative to | |. We shall show that if σ is a Borel set,
and E(σ)Φ0, then

2.4 I / + iaE(σ) | = 11 + ia |, for a real .

For arbitrary x e X, x* e X*, with || x* || = 1, real a, and arbitrary finite
sequence σu σ2, -- ,σn of disjoint Borel sets, we have:

Σ I x*E{σ3){I + iaE{σ))x \

= Σ I x*E(σd)[E(σ')x + (1 + ia)E(σ)x]\,

where σr is the complement of σ.

^ έ I x*E(σί)E(σ')x \ + 11 + ia \ Σ I xi"E{σj)E{σ)x \

g 11 + ia I var x*E( )x, since the sets σΎC\σ\ , σn Π σ\

Oiΐλ o, " ' , ^ [ 1 ^ are disjoint.

g 11 + ia I I a? I .
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Hence

I (7 + iaE(σ))x | ^ 11 + ia \ \ x \ .

So

I I + iaE{σ) I S 11 + ia \ .

On the other hand, if y is in the range of E(σ), with | y \ = 1, then
I (I + iaE{σ))y \ — \ y + iay \ = | 1 + ia |. Thus 2.4 is established.
Since 11 + ia | = 1 + o(a), the desired conclusion follows.

2.5 THEOREM. There are operators R and J such that:
(1) S = R+iJ.
( 2 ) RJ= JR.
(3) Relative to some norm on X equivalent to \\ ||, RmJn are

hermitian operators for m, n — 0,1, 2, .

Proof. We write

2.6 S = ί Re\dE{\) + i f /mλcZE'ίλ), where "Λβ" and l4/mM denote

"real part of" and "imaginary part of," respectively .

We now set R=[ ReλdE(X) and J = ί ImXdE(X). Clearly (1) and

(2) hold. For the proof of (3) we use the norm | |, as defined in
2.2. By (2.3), E(σ) is a hermitian operator relative to | |, for each
Borel set σ. It is clear from the definition in 1.1 that a sum of real
multiples of hermitian operators is a hermitian operator, and so is a
limit in the uniform operator topology of hermitian operators. The
conclusion in (3) is now clear from the fact that for arbitrary positive
integers m, n,

R™ = f (ReX)mdE(X)

Jn = [ (ImX)ndE(X)

RmJn = [ (ReX)m(ImX)ndE(X) .

REMARK 1. It is not known, in general, if a product of com-
muting hermitian operators is hermitian, or even if the powers of a
hermitian operator are hermitian. Consequently it is not known if part
of property (3) of 2.5 is superflous.1

REMARK 2. We shall show in § 3 that the decomposition described
1 See note added in proofreading.
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in 2.5 is unique. Thus the representation of S given by 2.6 is characte-
rized by properties (1), (2), and (3) of 2.5. In [2; § 5], Foguel has
introduced the representation 2.6, but has characterized it differently,
without the notion of hermitian operator. In accordance with his
terminology, we call t ReXdE(X) and \ ImXdE(X) the real and imagi-
nary parts of S, respectively.

3 Uniqueness of the decomposition in 2 5 In this section we
show that the decomposition given in the statement of 2.5 is unique.
At first glance it might seem that uniqueness is immediate from 1.2;
however, given two pairs of operators, each pair satisfying (l)-(3)
of 2.5, we do not assume that the norms given in (3) are the same
for the two pairs.

Some additional items will be needed. Given an element a of a
Banach algebra A, we shall denote by spA(a) the spectrum of a in A.
We shall denote by [X] the Banach algebra of all operators mapping
X into itself. We shall use the fact that if x is a hermitian element
of the Banach algebra A, then spA(x) is real. This is shown in [7;
Lemma 2].

3.1 THEOREM. Let R and J be any two operators on X satisfy-
ing conditions (2) and (3) of 2.5, and let A be the Banach sub-
algebra of [X] generated by R, J, and I. Further, let T — R + iJ,
and define the functions fx and f2 on spίxΛ(T) by

/i(λ) = ReX, f2(X) = ImX .

Then there is a bicontinuous isomorphism of C(spίJn(T)) onto A such
that the image of fx is R and the image of f2 is J.

Proof. We shall assume throughout the proof that X has been
renormed with an equivalent norm, ||| |||, chosen according to con-
dition (3) of 2.5, and likewise that [X] and A have been renormed
with the corresponding operator norm, which we also denote by ||| |||.
We shall also introduce a semi-inner-product on X (denoted by [, ])
consistent with ||| |||. We first show that A satisfies the hypotheses
of 1.4. It is clear that if QeA, then Q is the limit in the uniform
operator topology of a sequence {Pn} of polynomials in R and J with
complex coefficients. For each n, Pn can be written in the form
Pn = Un + iVn. where Un and Vn are polynomials in R and J with
real coefficients. Thus Un and Vn belong to A and are hermitian
operators on X. For arbitrary positive integers m and n, and for
arbitrary xe X with ||| x \\\ = 1,

\[(Um - Un)x, x] + i[(Vm - Vn)x, x]\ - |[(Pm - P J s , x] I ̂  \\\Pm~Pn\\\.
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Since [(Um — Un)x, x] a n d [(Vm — Vn)x, x] a r e r e a l ,

\[(Um- Un)x,x]\ ^ | | | P m - P J | | a n d | [ ( F w - Vn)x, x]\ ^\\\Pm-Pn\\\ ,

Hence by 1.2,

| | | £ / w - £ 7 J | | ^ 4 | | | P m - P J | | and ||| Vm - F J | | ^ 4 || | Pm - P J | | .

It follows that {Un} and {Vn} converge to hermitian operators U and
V, respectively, which belong to A. Therefore Q = U + iV. Since
U and V are hermitian operators lying in A, they are (by § 1, para-
graph 3) hermitian elements of the algebra A. Thus 1.4 holds.

To complete the proof we show that there is a one-to-one map-
ping ψ of ^?, the maximal ideal space of A, onto spm{T) such that
if R and J denote the Gelf and representatives of R and J, respectively,
then R (ψ-\\)) = ReX and /(^"'(λ)) = 7mλ, for each λ e sp m (T). To
accomplish this, we identify ^£ with the space of all homomorphisms-
of A onto the complex numbers. We then define ψ as follows:

3.2 ψ{h) = h(R) + ih(J), for each homomorphism h e ^£,

Since spA(R) and spA(J) are real, and since R, J, and / generate Ar

it is clear that ψ is one-to-one. The range of ψ is obviously the
range of the Gelf and representative of T, and hence is spA(T). Since
the Gelfand representation of A is a one-to-one map of A onto C(^#),
it is clear that the commutative Banach algebra A is semi-simple and
completely regular. Hence (see [6; Corollary (3.7.6)]), spA(T) = spίxl(T).
The desired conclusions about R and J are obvious by virtue of 3.2.

3.3 THEOREM. Let S be a scalar operator on X. The operators
R and J of 2.5 are uniquely determined by (l)-(3).

Proof. Let R and J satisfy (l)-(3) of 2.5. Then (in the notation
of 3.1) there is a bicontinuous isomorphism Φ of C(spLxl(S)) onto A
such that Φ(fi) = R and Φ(f2) = J. Let ^ be the class of Borel sets
in 8pίxl(S). By [1; Theorem 18], the adjoint of every operator in A
is a scalar type operator of class X, and there is a spectral measure
G in X* of class (&,X) such that

3.4 φ{fγ = \ /(λ)dG(λ), for each / e C(spίxl(S)) .
JsP[χ](S)

r
In particular, S* = \ λcίG(λ). By [1; Lemma 6], the resolution

of the identity for S* (call the resolution of the identity F) is given
by

F(σ) = G(spm(S) Π σ) .
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Thus, using 3.4, we have

R* = [ Re\dF{\) and J* = [ ImXdF{\) ,

where F is the resolution of the identity for S*.

So the adjoints of R and J are uniquely determined, and hence so
are R and J.

4. Characterization of scalar type operators on reflexive spaces.
The first theorem of this section is the converse of 2.5 under the
additional hypothesis that X is reflexive. The second theorem con-
tains a summary of preceding results for the special case when X
is reflexive.

4.1 THEOREM. Let X be reflexive, and let T be an operator on
X. Then T is a scalar type operator of class X* if there exist
operators R and J satisfying

(1) T= R + iJ.
( 2 ) RJ= JR.
(3) Relative to some norm on X equivalent to \\ \\, RmJn are

hermitian operators for m, n — 0,1, 2,

Proof. By 3.1 the Banach subalgebra of [X] generated by R, J,
and / is equivalent to C(sp[x](T)). The desired conclusion is now
immediate from [1; conclusion (iv) of Theorem 18], which states that
if an algebra of operators on a reflexive Banach space F is equivalent
to the algebra of all continuous complex-valued functions on some
compact Hausdorff space, then this algebra of operators consists en-
tirely of scalar type operators of class Y*.

REMARK 3. It is a consequence of 2.5 and 4.1 that a spectral
operator on a reflexive Banach space Y is automatically of class F*.
This is also easy to see directly, since, in the reflexive case, it follows
from the Hahn-Banach theorem that a total linear manifold in F*
is dense in the norm topology of F*. Thus for a reflexive space F,
the terms "spectral operator'' and "spectral operator of class F*"
are equivalent.

4.2 THEOREM. Let X be reflexive, and let T be an operator on
X. Then T is a scalar type operator if and only if there exist
operators R and J satisfying conditions (l)-(3) of 4.1 If this is
the case, R and J are uniquely determined.

It is desirable to replace condition (3) occurring above by a con-
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dition which involves only the original norm on X rather than some
equivalent norm. The author wishes to express his appreciation to
G. Lumer for communicating to him the essence of the next theorem,
which accomplishes this purpose.

4.3 THEOREM. Let X be an arbitrary Banach space with norm
|| ||, and let R and J be commuting operators on X. Further, let
Sf be the set of all polynomials in R and J with real coefficients.
In order that there exist a norm on X equivalent to \\ || and relative
to which RmJn are hermitian operators for m, n = 0, 1, 2, , it is
necessary and sufficient that the set {eίP \ P e s/} be a bounded subset
of [X].

Proof. Suppose that X can be renormed with an equivalent norm,
III HI, relative to which the operators RmJn are hermitian. Then
each Pejy is clearly a hermitian operator relative to ||| |||, and so
by [7; Lemma 1] | | | e < p | | | = 1. Since the renorming is an equivalent
one, {|| eiP \\ \ Pessf} is bounded.

Conversely, suppose that the positive number K is an upper bound
for {|| eip || | Pe s/}. Define ||| ||| on X as follows:

HI x HI — s u p || eiPx || .

Clearly HI α? HI ^ # 1 1 a ||. Also ||α;|| = \\e~iPeiPx\\ ̂  K\\\x\\\. Since ||| |||
is obviously a seminorm, we can conclude that it is a norm equivalent
to || ||. For arbitrary QeJϊf and arbitrary xeX, we have:

I eiQx HI =suv\\e
i{p+Q)

Since s*f is obviously a real algebra, it is clear that as P ranges
through sf, so does P + Q. Hence |||βίρa?|ll = III # III, and each oper-
ator eiq, for Q 6 j ^ , is an isometry relative to ||| |||. Thus if Q e sf\
the operators eitQ> for real t, form a one-parameter group of isometries
(relative to ||| | | |). Since the families {eitQ} and {e~ίtQ}, with t > 0,
are (in particular) semi-groups of contraction operators, we have by
[5; Theorem 3.1] that the generators iQ and — iQ are dissipative;
hence Q is a hermitian operator relative to ||| |||. In particular, each
operator of the form RmJn> where m and n are nonnegative integers,
belongs to Sz? and so is a hermitian operator relative to ||| |||.

Using 4.2 and 4.3, we have:

4.4 THEOREM. Let X be reflexive, and let T be an operator on
X. Then T is a scalar type operator if and only if there exist
operators R and J such that:
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(2) RJ=JR.
(3) If sf denotes the set of all polynomials in R and J with

real coefficients, then {eiF \Pe sf] is a hounded subset of [X].
If this is the case, R and J are uniquely determined.

Note Added in Proofreading. G. Lumer has recently shown that
the powers of a hermitian operator are not in general all hermitian,
even on a reflexive space. This and other matters of interest to
readers of this paper will be found in his forth-coming paper, Spectral
operators, hermitian operators, and bounded groups, to appear in
Acta Sci. Math., (Szeged).
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