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Introduction. The purpose of the present work is to introduce a
new type of algebraic varieties, called Divisorial varieties. The name
comes from the fact that the topology of these varieties is determined
by their positive divisors. See §3 for a more detailed discussion of
the above statement.

In the first two sections we lay the groundwork for our study.
The result obtained in Proposition 2.2 is new, and constitutes a natural
generalization of a well known result of Serre. (See [3], page 235,
and Lemma 2, page 98 of [5]).

Section 3 is devoted to the study of the categorical properties of
divisorial varieties. We prove that locally closed subvarieties of divi-
sorial varieties are divisorial, and that products and direct sums of
divisorial varieties are divisorial. Furthermore we give a characteri-
zation of divisorial varieties which shows how such varieties are a
natural generalization of the notion of projective varieties.

We show in §4 that all quasi-projective, and all nonsingular
varieties are divisorial. A procedure is also given for constructing a
large class of divisorial varieties which are neither quasi-projective
nor nonsingular, both reducible and irreducible ones.

In §5 we study the additive group of equivalence classes (under
linear equivalence) of locally linearly equivalent to zero divisors of a
divisorial variety. We show that such group is generated by the
semigroup of those classes which contain some positive members. As
a matter of fact the statement of Corollary 5.1 is more general than
the one above, but we omit the details here for brevity’s sake. The
results of §5 are a generalization of the operation of ‘‘adding hyper-
surface sections,” well known to the Italian geometers for projective
varieties.

Finally, in §6, we give one instance of a theorem which is known
to be true for either quasi-projective or irreducible and nonsingular
varieties, and show that it holds for divisorial varieties. The theorem
considered, which we refer to as the polynomial theorem of Snapper,
is Theorem 9.1 of [6], generalized by Cartier (See [1]) to either quasi-
projective or irreducible and nonsingular varieties.

We believe that the notion of divisorial varieties represents a
natural extension of the notion of quasi-projective varieties.

Our notation and terminology are essentially those of [3]. The
word sheaf always means, unless other-wise specified, algebraic coherent
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sheaf. The symbol = is used to denote all sorts of isomorphisms, and
the type has not been specified, unless there is danger of confusion.
Whenever the expression a®a® --+ ® a, m times, is meaningful,
we shall denote it by a™. When we refer to, say, Theorem 3.2,
without any further designation, we mean Theorem 3.2 of the present
work, to be found as the second theorem of the third section.

1. We wish to review briefly some of the ideas and theorems
concerning the functorial properties of line classes; for a more detailed
treatment see [6], §81 to 5, and [7].

Let X denote an abstract algebraic variety, defined over an
algebraically closed groundfield k. Let ~”; denote the sheaf of local
rings of X, and 2% the sheaf (not algebraic) of units of ~”;. The
elements of the (multiplicative) first cohomology group H'(X, %) are
called the line classes of X.

Let fe H(X, &%) and let % = (U,;, I) be an indexed open cover-
ing of X which admits a 1-cocycle b with values in ~£*% which repre-
sents f. We shall briefly say that the system (27, b) represents f.

If F is an algebraic sheaf over X, there exists a uniquely defined
(up to 7 z-isomorphisms) algebraic sheaf K, and local isomorphisms
u;: K| U,— F| U, such that, for every z€ U;NU; and a€ F,,

(waui)(@) = [b(i, 5)(@)]-a .

The sheaf K depends only upon F' and f, while, of course, the
local isomorphisms u; depend upon the choice of the system (%,b).
We denote the sheaf K by f(F).

In this way f can be looked upon as a functor from the category
of (classes of 7 ;-isomorphic) algebraic sheaves and (classes of equi-
valent) ¢ y-homomorphisms into the same category. Such functor is
covariant and exact. Furthemore, if F and G are two algebraic
sheaves over X, and f and ¢g are two line classes of X, then

F(F)Q 0:9(G) = f9(F Q 0xG) ,

where fg denotes the product in the group of line classes.

Since F and f(F') are locally isomorphic sheaves, if F' is of finite
type or coherent so is f(F'), and conversely. Furthermore the stalk
of f(7x) over any point x€ X has a unique maximal submodule,
which we shall denote by =,, corresponding to the unique maximal
ideal m, of ~,, x.

2. Sections of f(Zz); We shall keep the same notation as in
the previous section. Furthermore, for every sheaf F' over X, and
any subset U of X, we shall denote by I'(U, F') the set of sections
of F over U.
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ProPOSITION 2.1. Let X be an abstract algebraic variety, f a
line class of X, and se I'[X, f(<”x)]. Then the set

X, ={xeX|s(x)¢n,)

is an open subset of X.

Proof. Let(Z,b) be a system representing f, where % = (U, I).
Let u: f(Zx)|Ui— x| U, be the local isomorphisms as in §1.
If ze U; then, by the definition of =,, xe X,N U, if, and only if,

(ui OS)("L‘) e m,

or, equivalently, if, and only if, (u;0s)(x)e <%, X. Since 72 is open
in ©4, and since the w, is a local homeomorphism, X,N U, is open in
U.. This proves the proposition.

The following proposition generalizes Proposition 5 of §43 of [3],
as well as Lemma 2, page 98 of [5].

PROPOSITION 2.2. Let X be an abstract algebraic variety, f and
g two line classes of X, U an open subset of X. Letsel'[X, g(Z )]
and te I'lU, f(<x)] be given, such that X,C U. Then, for a sufficient-
Iy high integer =, there exists a section s* € I'[X, fg*(<”x)], such that
s* =t s™ on X,.

Proof. Let v = (U, I), % = (V,, A) be open affine coverings
of X which admit 1-cocycles with values in #¢ representing f and ¢
respectively. We may assume that <7~ is a refinement of %/. Let

#; and v, be the usual local isomorphisms. Since X,c U we have that
te I'X,, f(5)]. Let:

lo = ,0;1(1) ’ fw = 40t
Si = u,_l(].) ; g, = uiOS

Let V,cU;. Observe that g; is regular on U,, and that
X.NU; ={ze U|gix)gm,} .

Since V, is affine and f, is defined on X,N V,, we see by Lemma 1
of §65 of [3] that there exists a sufficiently large integer m, and a
section

hwer(vou ﬁx)
such that
hw wa'gz"“

on V,NX, Since X is compact (we do not include T, in the defini-
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tion of compactness) we may assume all m)s to be equal, and denote
their common value by m.
Let now s, e I'[V,, fg™(c7x)] be defined as follows:

S:r - hw'(tw ®87(lm)) .

Clearly s, —s3 =0 on V,NVsNX,. Hence, since g; is regular on
V.N Vs, we have that the section

(s — sp) @ s [ Vu Vi, fg" (P x)]

is 0 on V,N Vi Therefore the system of sections s, @ s defines a
unique section s* of fg™*(~”x) over X. On V,N X, we have:

s =8, 08=hlyt,Qs™Rs
= ggn'fw'tw®sém) ®S = t®8(m:4)

which finishes the proof.

COROLLARY 2.1. Let X be an abstract algebraic variety, g a line
class of X, sel'[X, 9(Z5)], b a regular function on X,. Then, for
a sufficiently high integer n, the section h-s'™ can be extended to X,

Proof. Let f=1, t=h, U= X, in the above proposition.

REMARK. Let X be an irreducible, normal algebraic variety, with
constant sheaf (not coherent) of rational functions denoted by E.
There exists a group isomorphism between the multiplicative group
H'(X, %) and the additive group of equivalence classes (under linear
equivalence) of locally linearly equivalent to zero divisors of X. If g
is a line class of X shall denote by | g | the equivalence class of divisors
which corresponds to it. Then there exists an isomorphism between
I'[X, g(E)] and |g|. Sections of g(<”x) over X correspond to the
positive members of |g|. See [6], §6 for the proof of the above
statements.

The geometrical meaning of Proposition 2.2 is then the following:
if D is a locally linearly equivalent to zero divisor of X, such that the
variety of its negative components is contained in the variety of some
positive divisor (also locally linearly equivalent to zero), say P, then,
for a sufficiently high integer n the divisor D + »P is locally linearly
equivalent to zero and positive.

ProPosITION 2.3. Let X be an abstract algebraic variety, Y a
locally closed subvariety of X. Then there exists a homomorphism

Pt H‘n(X’ ﬂg)__)Hn(Y’ ﬂ?), ,”/:0’1!“'
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and, for every fe HY(X, %), there exists a homomorphism

pr: U'X, f(@)] — LY, p(f N7 5)]
such that, for every se I'lX, f(~4],
YNX, =Y,

!ﬁf(S) .

Proof. There exists a unitary ring epimorphism ¢: 74| Y— 75,
hence a sheaf homomorphism ¢": ~°%| Y — #72. This proves the exis-
tence of the homomorphisms @,.

Let now fe H(X, ~%). Let (%, b) be a system which represents
Jf, where ¥ = (U,, I). The system (%, V'), where %' = (U;NY,I)
and b'(¢, j) = @'ob(z, j), represents @,(f). Let

u: f(Zx)|U;— 2| U;
ui: PN YNU,— 75| YNU;

be the usual local isomorphisms. Let sel'[X,f(cx)]. We define
@,(s) by the formula:

PAS)x) = (ui opou;os)(x) re YNU,.

We easily verify that ¢(s)() does not depend on the index <. We
now assert that ¢.(s) does not depend on the particular system (7, b)
chosen to represent f. Let therefore (377, ¢) be another such system,
where 97~ = (V;, J). We proceed in steps.

Case 1. 97 is a refinement of %/, the mapping ¢: J — I is such
that ¢ = t*(b). From [6], Case 1 of Proposition 2.1 we know that the
usual isomorphisms v;: f(7x)| V;— x| V; can be chosen in such a
manner that u,; = v, on V,. The system (9#”,c'), where %' =
YNV, J) and ¢'(4, 3") = P'oc(d, 7'), clearly represents ®,(f), hence we
can furthermore choose the isomorphisms

vit PN YN V= YNV,

in such a manner that u,(j) = v; on YN V,.
Hence, if xe€ YNV, we have

(i50P0Uy 5 08)(%) = (Vi oPov;os)(x)
which finishes the proof of Case 1.
Case 2. 7 = 2#~, b and ¢ cohomologous. Hence there exists a
0-cochain ¢ of 7, with values in 222, such that b~'c is the coboundary

of e. We can hence choose the isomorphisms »; in such a manner that,
if e U,, then u; = e(i)(z)-v;, on the stalk of f(<;) over z. Let
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¢’ = ¢fe). Then it is easily seen that b'~'¢’ is the coboundary of ¢,
hence, if xe YN U, u; = e'(1)(x)-v;, on the stalk of o,(f} ) over x.
Hence we have that v, = e'(¢)(x)-u;™, and a trivial computation now
finishes the proof of Case 2.

Case 3. The systems (%, b) and (977, ¢) are arbitrary. Let o7
be a common refinement of 2 and 9#°. Hence there exist two
cohomologous 1-cocycles of 97’ with values in 2°%, say ¢ and h, such
that the systems (577, ¢9) and (9%, h) represent f, and the pairs (b, g)
and (c, ), with their respective coverings, fall under Case 1. Further-
more the pair (g, #) falls under Case 2, and this finishes the proof of
Case 3.

The map @, is now easily seen to be a homomorphism.

It remains to prove that YN X, =7, e From the definition of @,(s)
we see immediately that, for x ¢ Y, u,[s(x)] ¢ m, implies @ (s)(x)u;7*(m}),
where m, denotes the unique maximal ideal of #7, . Hence YN X, is.
contained in Y, . Conversely, if we have [uiop/(s)|(z)¢&m:, then
(pou,os)(x) ¢ m}, and since @~*(m}) = m,, we have (u,08)(x) ¢ m,. There-
fore Y, ., CYNX, which completes the proof of the proposition.

3. Divisorial varieties. Let X be an abstract algebraic variety,
and let Gy denote the collection of open subsets of X. We define

By ={UeGx| U= X,,sel'X, 9(Z:)], 9 H(X, Z3)}

DEFINITION 3.1. An abstract algebraic variety X is called divisorial
if By constitutes a base for the topology of X.

REMARK., Keeping in mind the remark of the previous section,
the geometrical meaning of our definition becomes clear. If Y is
irreducible and divisorial, then, for every point £ € X and every closed
subset Y of X, not containing %, there exists a positive divisor of X,
which is locally linearly equivalent to zero and whose variety contains.
Y but not z. In other words the topology of X is entirely determined
by the positive, locally linearly equivalent to zero divisors. This justi-
fies our terminology.

We now begin the study of the categorical properties of divisorial
varieties.

THEOREM 3.1. Let X be a divisorial algebraic variety, and Y a
locally closed subvariety of X. Then Y is a divisorial algebraic

variety.

Proof. Let U’ be an open subset of Y and let xe U'. Let U
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be an open subset of X such that U’ = YN U. Since X is divisorial
there exist a line class f of X and a section se I'[X, f(£«)] such that
ze X,cU. By Proposition 2.3 the section ®,(s) of the sheaf @,(f )
over Y is such that

Y, (s)=YnX,.

Hence ze Y, (s)c U’, which proves the theorem.
THEOREM 3.2. The direct sum of divisorial varieties is divisorial.

Proof. Let X be the direct sum of X, X,, ---, X,. It is easily
seen that

Hl(Xy ﬁ;) = ;!_—:IIHI(X,,;, ﬁ;i)

where the product on the right hand side is direct. Furthermore, if
fre H(X,, 2%)), and s, e I'[X,, f(Zx)], then the rule

s(x) if ve X,
s(x) = )
0 otherwise

defines a section of (1 X1 X +++ X f, X +«- X 1)(Z5) over X such
that X, = X,. This proves the theorem.

Before proving that the category of divisorial varieties is a category
with product, we need to prove the following very useful characteri-
zation of divisorial varieties.

THEOREM 8.3. Let X be an abstract algebraic variety. A meces-
sary and sufficient condition for X to be divisorial is the following:
there exists an open affine covering 7z = (U,;, I) of X, line classes
G G5+, On of X, and sections s;eI'[X,9/(Z%), =12, -+, m,
such that the collection of open sets {X, ” 7=1,2, ..., m} constitutes
a covering of X which refines 7/ .

Proof. The condition is obviously necessary, as it suffices to
consider any open affine covering of X, and then use the fact that
B; is a base for the topology of X, and that X is compact.

To prove the sufficiency, let x€ X, and let Y be a closed subset
of X, not containing x. Let xe¢ X, and X, CU;. Since U; is affine,
there exists a section h of ~7; over Xsp such that

hx)gm,; hlyem, yeYNX, .

By Corollary 2.1 there exists a sufficiently high integer » such
that the section h-s® extends to a section sx of g7(2”y) over X.
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Since s,(z) ¢ n,, and h(x) ¢ m,, we have

sk(x) = h(x)-sy"(x) € n),
where 7/, denotes the unique maximal submodule of [¢i(Z”x],. Further-
more, if ye YN X,

s¥(y) = My)-s;"(y) e n, .

Finally, n can be chosen high enough so that, if y ¢ Xsp, then sx(y) € n),.
Hence x¢ X,.c X — Y, and the proof is finished.
The above proof immediately yields the following corollary.

COROLLARY 3.1. A necessary and sufficient condition for X to
be divisorial s that there exists a finite number of line classes of

X, saY g1, 95 ***y 9u, Such that the collection of open sets {X,}, where
s ramges among the sections over X of 9gu%), 7=1,2,---,m; n=
1,2, .-, form a base for the topology of X.

Proof. The condition is obviously sufficient. If X is divisorial,
the proof of the above theorem shows that the line classes given by
the criterion in the theorem satisfy the condition stated.

REMARK. Corollary 3.1 shows that the notion of divisorial variety
is an extension of the notion of quasi-projective varieties in a natural
way. In fact every quasi-projective variety satisfies the condition
stated in the Corollary, with only one line class, namely the line class
p of hyperplane sections, (sections of p*(¢”z) over X correspond to
hypersurface sections) which was introduced by Serre in [3], §54, page
246.

We believe that a slight modification of the condition stated in
Corollary 3.1, with only one line class, will yield a characterization
of quasi-projective varieties.

The above reasoning already shows that every quasi-projective
variety is divisorial. We shall give another proof of the same state-
ment in the next section.

Let X, Y be abstract algebraic varieties. There exists a natural
monomorphism

p: H(X, %) —> H(X X Y, & %xr)
and, for every gec HYX, ~2%) a monomorphism
Ly IX, 9(& )] — IX X Y, M9 xxx)]

such that
(X x Y)Mg(s) = Xs X Y'
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The proof of the above statements is entirely straightforward,
and we omit it here for brevity’s sake. In what follows we will
identify HY(X, %) and I'[X, g(¢75)] with their images in H(X x ¥,

$«r) and I'[X % Y, (g) (& x«r)] respectively. Similarly for Y.

THEOREM 3.4. The product of divisorial varieties is a divisorial
variety.

Proof. Let X, Y be divisorial varieties. We shall use the criterion
of Theorem 3.3. Accordingly, let 2 = (U, I), 91, 92, ***y Gy S1y S2y ** *+Sm
and %7 = (V;,J), by by o+, b, t, t,, -+, t. be the affine open cover-
ings, line classes and sections satisfying the condition of Theorem 3.3
for X and Y respectively. Observe that:

(X X V), 0, = (X x V), 0(X x Y),
=X, x NN x Y)=X, xY,

for all values of » from 1 to m and of ¢ from 1 to 7.
Hence the open affine covering

(U; x Vi, I xJ)

of X x Y, the line classes g,h, and the sections s, Qt, p=1, -, m
and ¢ =1, ..., r, satisfy the condition of Theorem 3.3 applied to
X x Y. Hence X x Y is divisorial.

4, Existence of divisorial varieties. As we have already seen in
the previous section, all quasi-projective varieties are divisorial. We
shall show in the present section that the category of divisorial
varieties also includes all nonsingular varieties and lots more.

We call an abstract algebraic variety factorial if the local ring
of every one of its points is a unique factorization domain. As Zariski
has shown in [9], all nonsingular varieties are factorial.

In what follows, if h is a rational function on an irreducible
variety X, we shall denote by (k) the divisor of the function  on X.

THEOREM 4.1. Ewvery irreducible factorial variety is divisorial.

Proof. Let X be an irreducible factorial variety, whose function
field we shall denote by E. For every irreducible subvariety W of
X, we denote by &, the local ring of W in E.

Let U be an open subset of X, and let x€ U. We proceed in
steps.

Case 1. W= X — U is an irreducible subvariety of X. Since
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x¢ W, it follows that ~7,Z7,. Let hence h e E be such that he 27,
and h ¢y, Let (h) = D, — D,, where D, and D, denote respectively
the zeros and poles of the function A. Since he”,, we have
x ¢ Var(D,), where Var (D) denotes the variety of the divisor D.
Furthermore y € W implies % ¢ <7, hence, since X is normal, ¥ € Var (D,).
Therefore WcVar(D,). Since X is factorial, D, is locally linearly
equivalent to zero, i.e. there exists an open covering # = (U;, I) of
X and rational functions %, € E, such that h; is regular on U; and
() =D, on U,. Hence, since X is normal, (h;/h;) =0 on U;NU;
implies that the system h;/h; defines a 1-cocycle of 2/ with values in
2%. Let g be the line class of X represented by the system (%, h;/h;),
and let u;: 9g(2%)|U;— &% | U; be the usual isomorphisms. If we
define s(y) = (ui'oh;)(y), for ye U,, we clearly obtain a section s of
9(x) over X such that

Xsn Ui = Ui h Var(Dg) .
Hence ze€ X, = X — Var(D,)c U.

Case 2. W= X — U is arbitrary. Let W, W,, --., W, be the
irreducible components of W. From Case 1 we know that there exist
line classes g,, -+, g, of X and sections s;e I'[X, g(Z)]i=1,+--,D,
such that xe X, c X — W,. We easily verify that the section

S=Sl®82®"'®Sper[Xyglgz"'gp(ﬁx)]

is such that X, = N X,

hence x€ X,C U. This finishes the proof
of the theorem. :

i?

THEOREM 4.2. Ewery factorial variety is divisorial.

Proof. By definition, every unique factorization domain is an
integral domain. Hence every factorial variety is the direct sum of
its irreducible components, which, by Theorem 4.1, are all divisorial.
Then we apply Theorem 3.2.

THEOREM 4.3. Every quasi-projective variety is divisorial.

Proof. Projective space is nonsingular, hence divisorial. Then
we apply Theorem 3.1.

THEOREM 4.4. There exist divisorial varieties which are neither
quasi-projective nor nonsingular, of any dimension > 3.

Proof. There exist nonsingular, nonprojective varieties of any



DIVISORIAL VARIETIES 385

dimension > 2. (See [2]). We use any singular, quasi-projective variety,
and apply Theorem 3.4.

ReEMARK. The above theorems provide us with a large class of
divisorial varieties. It is not settled at the moment, though, whether
there are divisorial surfaces which are not projective. Such surfaces
must necessarily be singular, as it follows from the fact that every
nonsingular surface is quasi-projective (See [8]).

For an example of a normal, nonprojective surface see [2], page
492,

5. The group of line classes of a divisorial variety. Let X be an
abstract algebraic variety. As in [6], §4, we shall call regular any
line class g of X such that, for some sel[X, g(~:)], X, # ¢. Let
2 be a fixed point of X. A regular line class ¢ is called free at x if,
for some seI'[X, g(x)], € X,. The set of line classes which are
free at x is easily shown to form a subsemi-group of HY(X, Z°%),
which we shall denote by L,.

The following proposition generalizes the well known operation
of ‘‘adding hypersurface sections.” (See [6], Proposition 8.2.).

Let X be a divisorial algebraic variety, and let

W = (Uu I)y Gy ***3Gmy Sy ***y Sm

be the open affine covering, line classes and sections satisfying the
criterion of Theorem 3.8.

ProposiTION 5.1. Let X be a divisorial algebraic variety, f a
line class of X,z a fixed point of X. Then, for a sufficiently high
integer =, and for some integer p between 1 and m, the line class
Jor is regular and free at =.

Proof. For a suitable open subset U of X, containing x, we can
find a section te'[U, f(¢?x)] such that #(x)¢n,. By Corollary 3.1
there exist an integer p, with 1 < p <m, and a sufficiently high
integer ¢ such that the sheaf gi(<”x) has a section s over X with
xe X, U.

Applying Proposition 2.2 to the line classes f and ¢%, and their
respective sections ¢t and s, we see that, for a sufficiently high integer
q’ the section ¢ @ s’ extends to a section s* of fgi¥' (<) over X.
We have:

§%(%) = t(2) @ 5" (w) ¢

where 7!, denotes the unique maximal submodule of [f9%¥'(Zx)]..
Hence z € X,.,, which finishes the proof of the proposition.
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COROLLARY b5.1. Let X be divisorial, and xe€X. The group
generated by L, in HY(X, %) 1s H(X, 2%).

Proof. By the above proposition, for any fin HY(X, £9), f9 <€ L,.
Clearly gre L,.

6. The polynomial theorem of Snapper. Let A be an additive
sheaf function, i.e. a function defined over the category of sheaves,
with values in an arbitrary abelian group G, and such that the exact
sequence

0 b i F v 0

implies MF') = MEF") + MEF"'). (See [5], §4, page 105, or [1], §3.).

The following theorem is an extension to divisorial varieties of the
polynomial theorem proved by Snapper in [6], Theorem 9.1, as well as
the more general form given by Cartier in [1], §4.

THEOREM 6.1. Let A be an additive sheaf function, and X a
divisorial algebraic variety. Then, for every sheaf F over X and
every finite set of line classes fi, «++, f, of X, the expression

ALST e S (F)]

is & polynomial in m,, -+-, m, of degree at most dim (Supp F').

Proof. The theorem is an immediate consequence of the follow-
ing lemma, which generalizes the theorem given in §3 of [1]. The
formal algorithm used in §4 of the same paper, identically repeated,
proves our theorem. Therefore we limit ourselves to the proof of the
lemma.

LeMmMmA 6.1. Let X be a divisorial algebraic variety, n an addi-
tive sheaf function, g any line class of X. If MF) =0 for every
sheaf F such that dim (Supp F') < 7, then MEF') = \g(F)] for every
sheaf F with dim (Supp F) = 7.

Proof. We proceed in steps.

Case 1. We assume dim (Supp F') < r. Since F and g(F) are
locally isomorphic we have dim (Supp g(F')) < 7, hence
ME) = 0 = NMg(F)] .

Case 2, We assume Supp F'CS, where S is an irreducible closed
subset of X, and dimS =< ». Let x¢S. Since X is divisorial, by
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Corollary 5.1 we can write g = fi/f,, where f,cL, 1=1,2. Let
therefore s;e I'lX, f(7x)] be such that ze X, i=1,2. We now
define

w;: F—— f(F) 1=1,2,
as follows:
(@) =aPs(y) ack,.

Since x € X, we see that s;(») genefates the stalk of fi(<”x) over =z,
hence ®; induces an isomorphism on F,. Therefore Supp (ker w,) and
Supp (coker w;) are proper closed subsets of S, hence

M(ker w;) = M(coker w;) = 0 .
Since N\ is additive, the exact sequence
0 — ker w, — F'— f(F') — coker w; —— 0

shows that MNF') = A[fi(F)]. Let F’ = g(F). Then F and F’ are
locally isomorphie, hence Supp F' = Supp F’. Hence, by the above
proof applied to F’, we obtain:

Mo(F)] = ME") = MAEF)] = MAg(F)] = MAE)] = MF) .

Case 3. We only assume dim (Supp F') < r. Let S; be the irre-
ducible components of Supp F, and let T be the union of the closed
sets S;NS;, for 1+ 5. We have dimS; <7, and dim 7 < r. From
[4], page 11, we know that there exist sheaves F), G, such that
Supp F;CS;, and Supp G T, and that there exists an exact sequence

0 G F S F 0;

where the sum at right is direct. Applying Case 2 to each pair
(F,, S;)) we get M(F;) = A\[g(F)], and from the exact sequence

0— g(G) —> g(F) —> g(X F)) — 0
we get \g(F)] = Mg(Z, F))]. Hence:

MF) = M F) = Z2MF) = X Mg(F)]
= M2 9(F)] = Mg(X F)l = Ma(F)] -

This finishes the proof of the lemma.

Final Remark. We wish to point out the following question,
which stems from the above study of divisorial varieties:

If a divisorial variety X has a line class ¢ such that, for any
finite set of points P, --., P, of X, there exists an open affine subset
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X,, sellX, g(<y)], containing them, is then X quasi projective?

The above question is more restrictive, in a natural way, than
the original one asked by Chevalley, (See [2], footnote to Introduction),
and we believe the answer to be in the affirmative.

BIBLIOGRAPHY

1. Pierre Cartier, Sur un Théoreme de Snapper, Bull. de la Société Mathématique de
France, t. 88, 3 (1960), 333-343.

2. Masayoshi Nagata, Existence theorems for nonprojective complete algebraic varieties,
Illinois Journal of Math., 2, No 4A, (Dec. 1958), 490-498.

3. Jean-Pierre Serre, Faisceaux Algébrique Cohérents, Annals of Math., Series 2, t. 61
(1955), 197-278.

4. ————, Sur la Cohomologie des Variétes Algébriques, Journ. de Math. pures et
appliquees, t. 36 (1957), 1-16.
5. ————, et Armand Borel, Le Théoreme de Riemann-Roch, Bull. de la Societe Ma-

thematique de France, t. 86 (1958), 97-136.

6. Ernst Snapper, Multiples of divisors, Journ. of Math. and Mech., t. 8 (1959), 967-992.
7. Andre Weil, Fibre spaces in algebraic geometry, (Notes by A. Wallace), Chicago,
(1952).

8. Oscar Zariski, Introduction to the problem of Minimal Models in the theory of
Algebraic Surfaces, Publications of the Mathematical Society of Japan, (1958).

9. —————, The concept of a simple point of an abstract algebraic variety, Trans.
Amer. Math. Soc., 62, No. 1, (July 1947), 1-52.



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
Ravrpu S. PuiLuies J. Ducunpit
Stanford University University of Southern California
Stanford, California Los Angeles 7, California
M. G. ARrsove LoweLL J. Paige
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH D. DERRY H. L. ROYDEN E. G. STRAUS
T. M. CHERRY M. OHTSUKA E. SPANIER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY  UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY SPACE TECHNOLOGY LABORATORIES

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may
be sent to any one of the four editors. All other communications to the editors should be addressed
to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues
$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2.chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics

Vol. 13, No. 2 April, 1963

Rafael Artzy, Solution of loop equations by adjunction........................... 361
Earl Robert Berkson, A characterization of scalar type operators on reflexive

Banach spaces .. ........ ... o 365
Mario Borelli, Divisorial varieties . ........... .o 375
Raj Chandra Bose, Strongly regular graphs, partial geometries and partially

balanced desSigms ........... ..ot e e e 389
R. H. Bruck, Finite nets. Il. Uniqueness and imbedding . ......................... 421
L. Carlitz, The inverse of the error fURCtion ..............ouiiieiiiiinennnnnn.. 459
Robert Wayne Carroll, Some degenerate Cauchy problems with operator

COCSfICIONLS . . . oo e ettt e e et et et e 471
Michael P. Drazin and Emilie Virginia Haynsworth, A theorem on matrices of 0’s

ANA 1S« 487
Lawrence Carl Eggan and Eugene A. Maier, On complex approximation . .. ........ 497
James Michael Gardner Fell, Weak containment and Kronecker products of group

FEPTESENIATIONS . . . ..ottt ittt e et e e e e e et e e 503
Paul Chase Fife, Schauder estimates under incomplete Holder continuity

ASSUMPLIOTIS . . . oot i ettt et e e ettt e e e et 511
Shaul Foguel, Powers of a contraction in Hilbert space .......................... 551
Neal Eugene Foland, The structure of the orbits and their limit sets in continuous

JOWS e e e 563
Frank John Forelli, Jr., Analytic measures...............c.ouiiiueeeniieeennnnns 571
Robert William Gilmer, Jr., On a classical theorem of Noether in ideal theory ... ... 579

P. R. Halmos and Jack E. McLaughlin, Partial isometries. . . ...
Albert Emerson Hurd, Maximum modulus algebras and local a
O
James Patrick Jans, Module classes of finite type..............
Betty Kvarda, On densities of sets of lattice points . ...........
H. Larcher, A geometric characterization for a class of disconti
linear fractional transformations . ......................
John W. Moon and Leo Moser, Simple paths on polyhedra . . . ..
T. S. Motzkin and Ernst Gabor Straus, Representation of a poin
transforms of boundary points ............... .. ... ...,
Rajakularaman Ponnuswami Pakshirajan, An analogue of Kolm
theorem for abstract random variables . .................
Robert Ralph Phelps, Cebysev subspaces of finite codimension i
James Dolan Reid, On subgroups of an Abelian group maximal
SUDGTOUD . oottt
William T. Reid, Riccati matrix differential equations and non-
for associated linear differential systems ................
Georg Johann Rieger, Some theorems on prime ideals in algebr:
Gene Fuerst Rose and Joseph Silbert Ullian, Approximations of
L
F. J. Sansone, Combinatorial functions and regressive isols . . . .
Leo Sario, On locally meromorphic functions with single-value
Takayuki Tamura, Semigroups and their subsemigroup lattices .
Pui-kei Wong, Existence and asymptotic behavior of proper sol
second-order nonlinear differential equations. ...........
Fawzi Mohamad Yaqub, Free extensions of Boolean algebras . .



http://dx.doi.org/10.2140/pjm.1963.13.361
http://dx.doi.org/10.2140/pjm.1963.13.365
http://dx.doi.org/10.2140/pjm.1963.13.365
http://dx.doi.org/10.2140/pjm.1963.13.389
http://dx.doi.org/10.2140/pjm.1963.13.389
http://dx.doi.org/10.2140/pjm.1963.13.421
http://dx.doi.org/10.2140/pjm.1963.13.459
http://dx.doi.org/10.2140/pjm.1963.13.471
http://dx.doi.org/10.2140/pjm.1963.13.471
http://dx.doi.org/10.2140/pjm.1963.13.487
http://dx.doi.org/10.2140/pjm.1963.13.487
http://dx.doi.org/10.2140/pjm.1963.13.497
http://dx.doi.org/10.2140/pjm.1963.13.503
http://dx.doi.org/10.2140/pjm.1963.13.503
http://dx.doi.org/10.2140/pjm.1963.13.511
http://dx.doi.org/10.2140/pjm.1963.13.511
http://dx.doi.org/10.2140/pjm.1963.13.551
http://dx.doi.org/10.2140/pjm.1963.13.563
http://dx.doi.org/10.2140/pjm.1963.13.563
http://dx.doi.org/10.2140/pjm.1963.13.571
http://dx.doi.org/10.2140/pjm.1963.13.579
http://dx.doi.org/10.2140/pjm.1963.13.585
http://dx.doi.org/10.2140/pjm.1963.13.597
http://dx.doi.org/10.2140/pjm.1963.13.597
http://dx.doi.org/10.2140/pjm.1963.13.603
http://dx.doi.org/10.2140/pjm.1963.13.611
http://dx.doi.org/10.2140/pjm.1963.13.617
http://dx.doi.org/10.2140/pjm.1963.13.617
http://dx.doi.org/10.2140/pjm.1963.13.629
http://dx.doi.org/10.2140/pjm.1963.13.633
http://dx.doi.org/10.2140/pjm.1963.13.633
http://dx.doi.org/10.2140/pjm.1963.13.639
http://dx.doi.org/10.2140/pjm.1963.13.639
http://dx.doi.org/10.2140/pjm.1963.13.647
http://dx.doi.org/10.2140/pjm.1963.13.657
http://dx.doi.org/10.2140/pjm.1963.13.657
http://dx.doi.org/10.2140/pjm.1963.13.665
http://dx.doi.org/10.2140/pjm.1963.13.665
http://dx.doi.org/10.2140/pjm.1963.13.687
http://dx.doi.org/10.2140/pjm.1963.13.693
http://dx.doi.org/10.2140/pjm.1963.13.693
http://dx.doi.org/10.2140/pjm.1963.13.703
http://dx.doi.org/10.2140/pjm.1963.13.709
http://dx.doi.org/10.2140/pjm.1963.13.725
http://dx.doi.org/10.2140/pjm.1963.13.737
http://dx.doi.org/10.2140/pjm.1963.13.737
http://dx.doi.org/10.2140/pjm.1963.13.761

	
	
	

