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1. Introduction. In 1934 Schauder [6], [7] obtained a priori
pointwise estimates for solutions to general second order linear elliptic
differential equations. These estimates have been generalized and
simplified by many authors, but by far the most general estimates
of this type so far are the interior estimates of Douglis and Nirenberg
[3] and the estimates up to the boundary of Agmon, Douglis, and
Nirenberg [2]. In the latter paper the boundary-value problem

L(z, Dy = f in a domain < ,
Bi(x, D)v = @; on a portion of the boundary
g(j:]ﬂzy "'ym)y

is considered, where L is uniformly elliptic of order 2m and the B;
satisfy the “complementing condition” with respect to L. Roughly
speaking, under certain smoothness assumptions on the coeflicients of
L and B;, on <7, and on the functions u, f, ®;, a priori bounds on
certain derivatives of u and their Holder difference quotients are
obtained in terms of the maximum values in < (or <) of certain
derivatives of f and @; and their Holder difference quotients. As a
byproduct at one stage near the beginning, an estimate is obtained
(their Theorem 2.2) for the case of constant coefficients and a half-
gpace domain, in which no Holder difference quotients occur. This
estimate leads to a maximum principle. The history of this latter
kind of estimate is also extensive, but maximum principles of greatest
generality seem to have been obtained by Agmon [1].

The present paper explores the possibility of obtaining a priori
pointwise estimates involving Holder difference quotients not with
respect to all, but only with respect to some of the independent
variables z;. With a few exceptions, the argument follows in basic
outline the argument in [2]. Also the notation of [2] is preserved
where possible. Throughout the paper » + 1 denotes the number of
independent variables, and ¢ of them (0 < ¢ < n + 1) are distinguished
from the others in that relevant functions are considered to be Holder
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continuous only in the distinguished variables.

The first step is the derivation of certain potential theoretic re-
sults in § 2. Results of this nature go back to Hoilder, Petrini, Korn,
and Lichtenstein (see the survey in [5]). These are applied in §3 to
functions given by convolutions with a fundamental solution to an
elliptic operator as kernel, and in § 4 to solutions of the basic boundary
value problem with compact support when the operators have con-
stant coefficients and < is a half-space. These results are in the
form of sufficient conditions on the operator P(D) in order that P(D)u
may be estimated in terms of certain derivatives and “distinguished”
Holder difference quotients of Lu and Bu. Also a necessary con-
dition on P(D) for such estimates to hold is given. Let L and ]§j
denote the operators obtained from L and B, respectively by deleting
all differentiations with respect to distinguished variables, and # a
solution to the basic boundary-value problem with L and B; replaced
by L and B;. As a corollary it is found (in the constant coefficient,
half-space case) that # and 4 differ by a function whose appropriate
derivatives have estimable Holder difference quotients in all variables.

In §§5 and 6 the results are extended to a class of problems
with variable coefficients and domains with curved boundaries by the
method [2, 3]. The distinguished variables are now certain local
curvilinear coordinates. When ¢ < n this method appears to be in-
applicable to the general class treated in {2, § 7]; in addition to the
assumptions made there, we must impose the requirement that co-
ordinate transformations exist which map small neighborhoods adjoin-
ing <r into hemispheres and which transform L and B; into operators
L' and B such that, on the flat boundary of the hemisphere, E’(x, D)
= Mx)L(D) and B;(x, D) = B,-(x)ﬁjo(D) (the notation L', B; is explained
above). In §6 the case ¢ = n is given special attention. It is shown
that essentially every result in the area of the usual Schauder esti-
mates (¢ = » + 1); i.e., every result in §§1-7 of [2], has its analog
with ¢ = n. In particular, existence and uniqueness occurs in the
classes of functions corresponding to ¢ = n exactly when it occurs
in the classes corresponding to ¢ =% + 1. In §§5 and 6 the coef-
ficients in the operators I and B; are assumed to be completely
Holder continuous.

The author expresses his gratitude to Professor L. Nirenberg
for his suggestions.

2. Potential theory. Let & be a point in n-space. We shall
distinguish its first ¢ (0 = ¢ = n) from its last n — ¢ coordinates and
write « = (%, £), where % = (2, +--,%,) and Z = (%4, *++, %,). If
g=n we write =%, and if ¢ =0, =2%. The concern in this
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section will be with functions u(x, t) defined in the (n + 1)-dimensional
half-space t > 0 by a singular integral

@) u@, ¢) = | K@ — v; oty -

In certain cases u may be extended to be a continuous function in
the closed half-space ¢t = 0; then we shall use the notation wu(zx, 0)
without further explanation. Our object is to exhibit conditions on
the kernel K under which certain boundedness and/or continuity
properties of % will be implied by similar properties of g.

Explicitly, we assume K(x;t) to be continuous except for x =1t
= 0, and that there is a constant C, such that

@.2) D#K(w; ) > Ci| ]t + ty-ermore (2 =0,1)

where here and below D* denotes any pth order derivative. We
also assume that

(2.8a)

|, K@tas| = G+ ey
y—space

fl1sg<sn—1,

(2.3b) [K(%; 1) | < Ct(| & |* + ¢2)~ W2 msD

if ¢ =0, and

(2.3c) ]S, K tdy| < C, for all & >0
yi>

if ¢ =mn. In certain important cases the integral in (2.8a) will van-
ish; then we shall simply say that C, = 0.

Concerning g(x) we assume that it is in L.., has compact support,
and is uniformly Holder continuous for some exponent a (0 < a < 1)
with respect to the variables  (in case g > 0); i.e.,

2.4) lab JI&, 03) — 9@ 8|

53w | & — &' |~

It will be convenient to use the norm

[9]¢ = true max |g| + the above 1l.u.b. for ¢ > 0;
= truemax |g| for ¢ =0.

THEOREM 2.1. Under these assumptions the norm [u]l exists for
all t =0 and

(2.5) [u]i < CJlgls, 0=g=mn,
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where C, depends only on C,, C,, 1, q, and «.
If in addition C, = 0, then u(x,t) is Holder continuous in all
variables including t, and

e, ) — wl@, )] _ q
(2.6) a}:}}tbt.’ (lx—a' P+ [t — ') = [u], = CJlgl, .

This theorem, in the case ¢ = n, yields the results proven in [2,
§ 3] (under slightly different hypotheses on K). Its proof is trivial
in the case ¢ =0, so we assume g > 0. We shall employ the rep-
resentation

@7 ue, t) = |ag\ K@ — v; Dlow) — 9@, DA
+ |dio@, )| K@ — v; a7,

which is equivalent to (2.1). If ¢ == it is understood that the
symbols Sd@ and ¥ are to be omitted where they occur. Let z =
(%, %) and &' = (¥, #’') be any two points in x-space. Let 6 = |z — &’|,
S the set of points y with | — #| <23, |9 — &' < 20, and E the
exterior of S. Then using (2.7) we write

u(x9t)mu(x’yt):Il+ e +I7y

where

I~
I

K(x —y; l9(y) — 9(&, Didy ,

S

L= —| K@ — v Olsw) — 96 w)ldy

[K(x — y; t) — K(&' — y; D]lgly) — 9Z, 9)]ldy ,

E

L = _S ~ A
ly—z’
—SI

&~
Il
ey

dilo@, ) — @, DI\ K@ — v )7,

dile@, 9) — 0@ D] . K@ —v;dy,

1>
A A ~
y—x']|< 1y—a’|

1. = |aslo@, 9 — 0@, DK@ — 5 ay,
1 = a3 9@, D[ K@ — ;) — K’ — ; 0)1d7

In case ¢ = n we set I, = 0 and disregard the integration with re-
spect to 7 in I,_,.

Since | g(y) — 9@, 9| = [9ls |7 — 2 |* < [9]i |y — 2|, it follows that
| I,| < const. [g]i0*. Using (2.2) again we see by the usual argument
that I, and I, are subject to the same estimate. I, and I; may be
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estimated by (2.3a):
L1 1 L] = Clglio*t|( 31 + £ '2dg < const. [g1o"

To estimate I, we set » = |§ — @'| so that | K(z' — »)| < C,r™", and

obtain, if ¢ < n, | I;| < cont. [g]‘;B‘”S o Cpentaeidy < const. [g]io®. If
ly=a"1<28J8
g =n we use (2.3c) to obtain the same estimate.

The estimates obtained so far tell us that
(2.8) |u(we, t) — w(x’, )| < const. [g]s|x — o' |* + | L] .

Now I, will vanish provided that either (¢) C, =0, or (b) x and «’
differ only in their first ¢ components; i.e., z = (%, %), &' = (&', Z).
Condition (b) is sufficient because

IK@ — 2 t) — K6 — v )y = |K@ — 7, & — 5 )y
- SK(%'—g,ae—g;t)dgzo.

Now assume condition (b) to hold, so that the last term in (2.8)
does not appear. Taking the l.u.b. of the left side, (2.5) is proven
for the case 1 < g < n. It is easily extended, however, to the case
q = 0 by using (2.1) and (2.3Db).

To prove the second part of Theorem 2.1 we assume condition
(a); i.e., C, =0, so that again the last term in (2.8) disappears. The
only thing left to prove is Holder continuity with respect to ¢. Let
t, t' be two numbers such that 0 <t < t'. Since the last integral in
(2.7) also vanishes we may write

u(w, 1) — (e, ) = [d3((] Ko — o 907 Jlow) — 9@, D7 .

Again (2.2) tells us that this integral is absolutely convergent, so we
write it as

[\ K@ —volow) — 0@, 9)dydz = L+ L,
where

I = H . dydz
le—yi<t’—t

t

and

Ig = St'g “ee dydz- .
le—yi>t'—t

t
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Setting 0 = |x — y|* + 7%, we may estimate
28—t
|11 = const [l pdp < const [ghl@)* — = + (&' — 1)°]
t
< const [g]% [¢" — ¢]*,
and
|1,] < const [g]2| ¢’ — ¢ |S°° rdr < const [g]L | ¢ — t|* .
t/—t
Combining these results with (2.8), (2.6) is easily obtained, completing
the proof of Theorem 2.1.

Since the above constants do not depend on ¢ or t’, this last
argument yield an immediate corollary:

COROLLARY 2.1: Let
O, t) = |ag| K@ — v; o) — 9@, 917 ,

the first term in (2.7). Then U may be extended as a completely
Holder-continuous function to the closed region t = 0, in which it
satisfies the estimate (2.6).

3. Interior-type estimates. In using Theorem 2.1 to obtain Scha-
uder estimates the kernel K will be interpreted as a derivative of a
fundamental solution or of a Poisson kernel for an elliptic boundary
value problem. In this section we treat the case when K is a de-
rivative of a fundamental solution.

The following norms and pseudonorms will be employed extensive-
ly. They refer to functions defined in the half-space ¢ >0 (or on
the hyperplane ¢t = 0). The differentiability properties needed for
the quantities below to be well-defined will be obvious. These norms
and pseudonorms will correspond to those in [2, § 5]. Subscripts will
always denote the order of differentiation, and superscripts the in-
dependent variables with respect to which the Holder difference
quotients are to be taken.

[(p]‘{+w = Lu.p. 'qu)('%’! {X"\y t) _ Dl@(%’y ﬁ’ t)l + l.u.b. IDZQDI ,

~~ Mo |
z x’,x,t lx X I

(3.1a)

,Dl¢((f’ &;\, t) _ Dl@(&j,v 9?, t’)l + l.u.b. ‘ Dl¢| ,

e = Lu.b.
(I P N (2 2 o KA T

byt

where, as before, & = (x,, ---, z,). In particular

= Lub, [22@ %) — D'o@, t)| 1 | D,

0,t
[P]ie PR [t — 2|
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(3'1b) [g)]?+w = 1-u°b' IDZQ)I ’

and
[#]t% = [P]Ha = [Pliva

in the sense the latter is used in {2], for instance. Of course, in
all of these the l.u.b. is taken over all derivatives of order . Also
we define

l
|Pllie = 2 Lub. | Die| + [Plifa,
(8.1c) i=o

4
[?ll4e = 2 Lub. | Dip| + [P]l4s .

Corresponding to these norms we define #7,, as the class of
functions @ defined in the half-space ¢ > 0 with continuous and
bounded derivatives of order < [, and piecewise continous and bounded
derivatives of order ! which are uniformly Holder continuous in Z%.
The class = 2¢, has an analogous definition.

The symbol D* will denote any derivative of order X\, at least
one of whose differentiations is with respect to a component of Z%;
i.e., D* = (9/ox;) D>, where © < q.

REMARK: Let M be any integer = 1. Assume f(x) has absolutely
continuous derivatives of order n — 1, that ¢ > 0, and that [f1ii. ts
finite. Then every derivative D*f is Holder continuous with respect
to all variables, and

(3.2) [D*]2 < C@)]f it »

where C depends only on «.

Proof. It is sufficient to consider the case x=1,¢g=1,%n = 2,
for the general case may be reduced to this case by freezing all but
two of the independent variables and replacing f in the proof by
some D*f, By assumption, then % and % have single components;
call them « and y for simplicity, so that f = f(x, ). The absolute
continuity guarantees the identity

|1 v+ 1) — e, wde = [T + b ) = fil, iy

to hold for all values of x,y, h, and k. It follows that

+k

Mo, + 1) — £ 0] = | A + ) — e Wy

N7 1e v+ B — Ly + RlaE +
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s+h

|1, v — Silo, vz
The first term on the right is bounded in absolute value by kh®[f]:e,
and each of the other two by

/ol @)% = R

Dividing through by hk” and setting o = h/k, we have the estimate

£,y + 1) = £, 16 = [Fla(07 + =2 —0°)
1+«

for all values of o. Taking the l.u.b. of the left over all z, ¥, and
k, and the g.l.b. of the right over g, we have [f,]2 < C(@)[f]:a.
As mentioned, this generalizes immediately to (3.2).

The following lemma will constitute an application of Theorem
2.1 to the case when K(x — y;0) is a fundamental solution of an
elliptic differential operator in the wvariables # with constant coef-
ficients, and containing only derivatives of order 2m. The constant
H will be defined as an upper bound for the ellipticity constant of
L, and for the coefficients of L. It is shown in [4] that a fundamental
solution I'(x) to L always exists having the property

3.3) | D*(z) | < eonst |z [ %1 + |log|z]]),

the log term being omitted unless 7 is even and 0 < k < 2m — n.
THEOREM 3.1. Assume 1 =< qg =n. Let 1l be any number = 2m,

and let f(x) have derivatives of order 1-2m which are uniformly

Holder continuous with respect to . If 1 >2m we also assume

the derivatives of order I — 2m — 1 to be absolutely continuous, and

if 1 =2m, f(x) is to be inlegrable. (That derivatives D'*"f are

iwntegrable for | > 2m follows from the absolute continuity assump-
tion.) Also we assume f to have compact support. Then if

(3.4 o@) = |1 — 9@y ,
every derivative D exists and
(3.5) [DWw]r < const [£i—sm+a -
The constants here depend only on H,n,m,l, and «.
Proof. The case ¢ = n is a well-known result, so we take 0 <

q¢ =< n — 1. Differentiating equation (3.4) I — 1 times while integra-
ting by parts if necessary we have
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(363) ﬁz—qv — Sﬁ 2m—1[7( % — y)D‘"z’”f(y)dy .

Now let %' be a point, all except one of whose coordinates are the
same as those of x. We shall derive the following representation for
the corresponding difference quotient:

D=w(x) — D'v(x")
|o — o'
:Sﬁmvwﬁw—ﬁWTw—w[
|w — o]
— D'nf (@, §)ldy -

Let x; be the component of & with respect to Whigh a differentiation
occurs in the operator D' in (3.6a), so that D' = (§/dx,;)D* .
Then, since D, I"(x —y) = — D, (v — y),

(3.6b)

D= f(y)

|15 @ = ) — D1 — w)ldy;
= —lim [D*™*(x — y) — D™ ["(x' — y)]

y oo

+ lim [D™*(x — y) — D™ "' —y)] =0,

Y jo—oo

as can be seen from the behavior of I” at infinity indicated in (3.3)
{using also the mean value theorem in the case n = 2). It follows
immediately that

Di=w(x) — Dw(a)
[z — |
_ Srdyg EZm—-—lF(m . y) _ DZMAI['(xI . ’IJ)
o — a'|

[D'="f(y) — D*"f (&, §))dy; ,

where de signifies integration with respect to all variables except

y;. But this integral is absolutely convergent, as can be seen by
applying the mean value theorem to the difference quotient in the
integral, using (3.3), and recognizing that the integrations with re-
spect to components of ¥ may be considered as only over a finite
range (since f(y) has compact support); the order of integration is
therefore immaterial and (3.6b) is valid. Defining D’ as the deriva-
tive in the direction from z to ' and D = D’D*' we subtract
the absolutely convergent integral

gﬁwmeHW@—DMwaww
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from each side of (3.6b), obtaining on the right an integral which is
bounded in absolute value by const.|x — &' |*[f)/-smte. This last
estimate is obtained by the usual process of splitting the region of
integration into the sphere |y — 2| < 2|2 — #’| and its exterior, and
applying the mean value theorem in the latter region. Now letting
2’ — , this bound vanishes, and furthermore the left side of (3.6b)
approaches D'w(z). Hence

3.7 D = 852’”1” @ — YLD f(y) — D' f (&, 9)] .

This integral is reminiscent of the first term on the right of (2.7);
and in fact we shall apply Corollary 2.1 directly in proving the theo-
rem., We identify K(x — y;0) with D*»I"(x — y) and g(y) with D=
f(y); then according to Corollary 2.1, (3.5) will follow from (2.6) if
the hypotheses (2.2) and (2.3a) with ¢ = 0 are true. But (2.2) follows
from (8.3) and (2.3a) from our representation of K as a derivative.
Theorem 3.1 is thereby proved.

4. Boundary-type estimates. In this section L(D) will again be
an elliptic differential operator with constant coefficients containing
only terms of order 2m; but now it will be an operator in the n + 1
variables «, - -+, %,, t. Similarly, let B{D)(j =1, ---, m) be operators
with constant coefficients and only terms of order m;. We assume
L and B; to satisfy the root condition and complementing condition
stated in {2, §1]. The concern here will be with the boundary-value
problem

L(D,, D)yu = f(x, ?) (t > 0)

(4.1) B(Dyu = 9,(z) (t=0,=1,--+,m).

We initially assume all functions to be infinitely differentiable and
to have compact support; this restiction will be removed at the end
of the section (Theorem 4.6).

First we review some important results from [2] concerning rep-
resentations of the function w(z,?). Let [ be any integer with
l = max (2m, m;), and P(D) a differential operator, each term of which
is of degree I. Then

(4.2) P(D)u(z, t) = P(D)v(z, t)
+ £ (PO — v Dle,0) — w0y,

where (z, t) = Sf(w —y,t — ) fuly, D)dydr, 'z — y, t — 7) is a funda-
mental solution for L, fy is a sufficiently smooth extension of f(x, y)
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to the whole space such that fy has compact support, +;(x) =
B,(D)v(z, t)|,-, and K; are Poisson kernels given explicitly in [2].

Section 3 was concerned with estimating the first term on the
right of (4.2) in terms of properties of f. We shall now consider
the other terms and develop estimates for functions given by

(4.3) wiz, 1) = | K@ — v Op,@)dy = Ko, (t>0).
It is proved in [2] that

4.4) [w]iie = ClPiltmyra - ‘ (= mj)
(for the notation see (8.1)). Also it is proved in [2] that

(4.5) [P(Dyw]; = ClPs]i-n

provided P(¢, 7) (obtained from P(D) by replacing 0/0x; by & and
0/0t by 7) is of the form

P(Ev T) = égl—ijj(S’ T) ’

where & stands for any monomial of degree [ — m; in the variables
&, alone.

(4.4) corresponds to the case ¢ = n; (4.5) to the case ¢ = 0. Our
primary aim in this section will be to supplement these estimates
by (1) extending them to intermediate values of ¢, 0 < ¢ < m, and
(2) deriving, for ¢ < m, a necessary condition on P(¢, z) for such
estimates to hold.

First we shall review and develop certain properties of the
Poisson kernels. The kernels are given by

(4.6)  Kj(x;t) = 447K (=, B) ,

(e t) = b, Ny, o)(x-€ + to)ms*e
Ko@) bmglel=18~/ M+, 1)

(log i—f—:ﬁ— + cj,s>df .

Here b, , and ¢;, are appropriate constants; M*(¢, 7) = [Ir.(z — 7/ (£))
where 7/(§),k =1, .-+, m are the m roots of L(, ) = 0 with positive
imaginary part (L(&, 7) is the polynomial obtained by replacing 8/6zx;
by & and 6/t by t in L(D,, D,); the contour v surrounds the m
roots 7{(§) and lies entirely above the real axis; N;(&, ) are poly-
nomials in = such that

Ni(gy T)Bk(éy T) ~— 5.
@) L D) e = b,
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In (4.6) and elsewhere below, if » =1 then X dw, is to be
l&1=1
understood as ..

We shall state three lemmas concerning integrals such as oceur
in (4.6).

LEMMmA 4.1. Let F(&) be a function of the real vector & con-
tinuous on the sphere |£| =1. Let 7, be a complex constant with
Im 7,0, and k an integer = 1. Then

ISIEI=1F(5)(£B'$ + try) o, | = C(lx [P + )7,

C depending on 7, k, and max | F'|.
The proof of this lemma is given in Appendix 1 of [2]. This
same estimate will clearly hold if the integrand is replaced by

SVF(E, N + tr) e,

where v is a finite contour in the complex 7-plane bounded away

from the real axis, and F(&, 7) is continuous for rev, |&] = 1.
LeMMA 4.2, If v=m; +s + 1,

(4.8a) | D*K; | < C(|@|* 4 t)emimgrs=n

If D is any derivative of order N = 0 in the variables x, then

(4.8b) | | DB (D)K(%; t)| < Ct(j o |* + 5D mymmie—n=r=t |

If k+j, »=m; —m, + s, then

(4.8¢) | DIB.K; (2, t)] < Ct(jx|* + )W my—mpte—a-t

In all these, C depends only on the ellipticity comstant, bounds for
the coefficients in L and B;, the complementing condition constant,
and all integers mentioned.

Proof. These estimates follow from Lemma 4.1 and the properties
of N; and are given in [2] (egs. (2.13), (2.15)).

LEMMA 4.3. Let the first ¢ (0 < g < n — 1) coordinates of n-space
be distingwished as in § 2, and write x = (&, &), £ = (§,8). Writing
L, 7) = LE, &, 7), let the polynomial L, 7) = L(0, &, 7), and simi-
larly BJ&, ) = By0, &, 7). Let K;, be the Poisson kernels correspond-
ing to L and B; in (n — q + 1)-space. Let P(D) be a homogeneous
differential operator of order >m;+ s+ q and P the operator
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obtained from P by omitting all differentiations with respect to com-
ponents of ¥. Then

(4.9) . PDK, (@i)d7 = P(DR;.: ) .

This lemma is proved in Appendix A.

The following is an interesting consequence of Lemma 4.3 and
the results of §2. In this and the other theorems of this section,
C denotes a constant depending only on the quantities listed in Lemma
4.2,

THEOREM 4.1. Corresponding to the function w(x) given by (4.3)
define
K& — 9, yps(®, §)d7 ,

A

y—space

(w, t) = Rynpi(a) = |

so that % appears only as a parameter in the function @;. Also de-
Jine W(x,t) =w — w. Then if | = m;,

/\
(4.10) [Wlo < AP, ba »

A
where the symbol |.]., ts defined as is [.]}), ewcept that the
quantity inside brackets is considered a function of % alone (and
dependence on T is ignored).

This means that w and @ differ by a function whose appropriate
derivatives have estimable Holder difference quotients with respect
to all n — ¢ + 1 variables Z,t. Actually the proof will show that
-only those derivatives whose order with respect to components of %
is greater than [ — m; need be excluded.

Proof. Let D' be any derivative of order ! in the variables 2
and t. We assume | — m; to be even; a similar proof goes through
for the odd case. Applying (4.6) and integrating by parts, as is done
in [2], we have

.(4.11) Dw = Dsz*¢j — DLA(l/?)(n+sal+m1)Kj’s*A(1/2)(l—m;)@j .

From (4.8a) we know that (2.2) holds for the kernel D'4%/»®rs—timp .
80 we may decompose the convolution into two terms as in (2.7):

Dw =1+ I,
‘Wwhere

Il = gd?/jSDlA(llg)(”+s_l+mj)Kj-8(x - y; t)

. [A(I/Z) (Z—mj)¢j(y) _ A(1/2) (l-ml)¢j(y) ';:;]dg
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and satisfies
[L]2° < CIPilinjia

(according to Corollary 2.1); and

I = (S~ Digumets=timp K qx)sx JUDC-mPp () [~ |

a—space
which, according to Lemma 4.8, is simply
Dld/\(llz)(ﬁ+s—l+m_j)Kj's*A(112)(l—-’mj)¢j|;.=; =L+ 1,
where
I, = DUfumntetim) K, s Jum=mp (%, §) ,
and
I = DZ‘AA(IN)(’IL+S—Z+MJ)KJ,.S*AA(1/2)(l—mj)q)j(%’ 7) = D‘I%,-*QD]-(O?, 9) = DYi(z, t) ,

the operators 4 and 4 denoting the Laplacian in # and % respec-
tively. Now (3.2) yields the estimate

(4.12) [40120=m99,(%, §)]2 < ClPi-m,ta

hence the usual boundary estimates ([2], or Theorem 2.1 with ¢ = n)
indicate that

(4.13) [L) < ClPdinyra -

But since D'W = I, + I, (4.10) is proven.

We are now ready to develop the two principal theorems of this:
section. The complementing condition states that for every & + 0,
the m operators B,(&, 7) are, as polynomials in 7, linearly independent.
modulo M*(¢, 7). It follows that every polynomial P(¢, ) admits a
decomposition of the form

(4.14) P ) = ag, DM, 7) + z a 8By, 7)

where a(£,7) is a polynomial in z, but a(%,7) and a;j&) are not
necessarily polynomials in &.

THEOREM 4.2. (Sufficient condition.) Let the polynomial P(E, )
be normalized and homogeneous of degree | = max[m;]. Let q be in
the range 0 =< q = n — 1.* If there exists a polynomial AL&, 7) and
polynomials ay; (&) (of degrees | — m;) such that

* If ¢ =n we know from [2] that (4.16) holds for every p of degree [.
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@15)  P0,§7) = AE ILO, &) + Rew@Bi0, &7,
then

(4.16) [P(D)w]; = ClPsli-my+a -

THEOREM 4.3. (Necessary condition.) Again let 0 <g=<=n — 1.
A mecessary condition on P(£,7) (normalized and homogeneous of
degree 1) in order that the estimate (4.16) hold for all @; infinitely
differentiable and with compact support is that there exist a poly-
nomial A&, ) and functions a,;¢),1<j=<m, with ay;(—&) =
(—=1)™a,;) such that (4.15) holds.

The difference between the two conditions is that only in the
first case are the a,;(¢) assumed to be polynomials. The author is of
the opinion that the condition in Theorem 4.2 is necessary as well as
sufficient. Theorem 4.3 is proved in Appendix B.

Proof of Theorem 4.2. The case ¢ = 0 is essentially the above-
mentioned result (4.5) obtained in [2]. Therefore assume 1 =< ¢ =<
7n — 1. From (4.15) it follows that

P, 7) = A, OLE 9 + S au@BiE 0 + 46 ),

where @ is a polynomial every term of which contains as factor
some component of &, We write

PDyw = W,+ W,,
where (using (4.3), (4.6)),
W, = A(D, D)L(D)Kxp; + ay(D)B;K;*@; ,
W, = (3, au(D)B; + QD)4 "9 K; xp; .
(Here s is an integer of the same parity as n such that » + s + m;
—1>0.) Since LK; =0, we may write
W, = B,Kxa,(D)p; .

Also, writing R = >;»; @y:B; + Q, we follow the procedure in [2] and
write
I/I/'Z — R(D)Aﬂ/?) (n+8+mj—l)K]_ 3*4(1/2)(l—m1)@j

if | — m; is even, and

w=>3 R(D)—ai—d(”” (ntotmyt=D | aa A0 =myn gy
% Y

k Y.
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if I —m; is odd. For simplicity we consider only the even case.
Theorem 2.1 may now be applied by identifying the u in it with W,
or W, g with a,@; or 49 ™p, and K with B;K; or R4 ®+sm;—0
K;,. Conditions (2.2) and (2.3a) must be verified. The first follows
from (4.8a), and for (2.3a) we use Lemma 4.3 and (4.8b):

[BiKdz | = |BR,| < Ctap + oyom s
also, using (4.8c) and the fact that Q(0,£,7) =0,

’SRAu/z)<n+s+m1—z)Kj’8d55 = | R(0, D, D,))Jemwtatm=0 . |

< ;; I aoi(ﬁ)AAﬂm("+s+mrl)§i12j.s| < Ct(| & 2 + )@ nta-n

This establishes Theorem 4.2.

COROLLARY 4.2. If D' is any derivative of order 1| involving
at least one differentiation with respect to a component of %, then

(4.17) [D'w]s* = ClP N myta -

Proof. The operator D' is a particular case of the type treated
in the theorem but in this case W, =0 and R(0, ﬁ, D,) =0, so that
in applying Theorem 2.1 we see that C, = 0 and the second statement
in that theorem holds.

We shall now return to the system (4.1). Our object will be to
find operators Q(D) such that Q(D)u will be estimable in various
senses in terms of f and @;. Our first result is an immediate con-
sequence of Theorems 8.1 and 4.2. For these we shall think of ¢ as
the (» + 1)-st component of z, ¢t = x,.,, and let [&]}/; denote

| Du(a,) — D'u(w,) |

[@]2 = Lu.b. | D'u(x) | + Lu.b.
| % — @,]”

where the l.u.b.’s are taken over points z, %, %, in the domain of
definition of %, and over derivatives D' which involve at least one
differentiation with respect to a component of Z%.

THEOREM 4.4. Let the mnormalized polynomial P(E, ) of degree
l = 2m satisfy (4.15) and wu,f, and @; of compact support satisfy
(4.1). Then

(4.18) [PDyuli = CLfli-sm+a + 2 1Pill-mya) -

Furthermore if 1 > max [m,] and g > 0, then
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(4'19) [u]?-:; é C([f]?—2m+w + Z [q)j]tll—m.’ﬂv) .
. J

Proof. We use representation (4.2). Theorem 3.1 yields
[?’7]?&; é c[f]?~2m+w ’
and

lv]7+w é C[f]?—2m+w .

The latter is obtained directly for derivatives D'v containing at least
one differentiation with respect to a component x,(1 <7 =mn) by
setting ¢ = n; but we may differentiate Lv = f | — 2m times with
respect to x,,, and solve for 0'v/éx.,, in terms of such, thus obtain-
ing the estimate in general.

Thus it follows that

["1’.7']?—-m,+w é C[f]?~2m+w
and
[Viltmyra = CLSli—omsa (for 1 > m;) .

The former, together with Theorem 4.2, yields (4.18). To derive
(4.19) we represent

D'Kjxp; = D™ KjxD'"mip;
then apply Theorem 4.2 with ¢ = n to obtain (4.19).

THEOREM 4.5. All the interior and boundary-type estimates
proved so far (t.e., Theorems 3.1 and 4.-4.4) remain true when the
smoothness requirements of the functions involved are relaxed to the
extent that they have only the differentiability and boundedness
properties i1mplied in the statement of the corresponding estimate.
For example, (4.18) 1s true if only UE Fiw, [€EF T smia, and
@jegg——mrkw-

Proof. The theorem follows from the fact that every function
Ppe i, may be approximated by functions @, € &~ in such a way
that lim., | ®|{16 = | ?|{+w. The @, may, for example, be defined by
P(x) = J(x)*p(x), where j. is the Friedrichs mollifier, j.(z) = e*j,(z/¢),
Ji(x) being a function in &% with Sjl(w)dle, and 7, =0 for
|z| > 1. Then it is an easy consequence of the “smearing” action
of j. that |@.|s =< |®[5. Also it is seen that at every point x where
@ is continuous, @ (x) — @(x). Since for every 6 we can find such a
point of continuity « with |@(@)| >|®|3— 4, it follows that



528 PAUL FIFE

lim, ,inf |®@. | = |®[5. Combining the two inequalities, we have
lim,.,|®. 5 =|®|}.. But the same reasoning may be applied to de-
rivatives and difference quotients of @, since these processes commute
with the convolution. Hence

lslnol [ Pe l‘lI+w = ! P l‘{+w

as stated. Now in treating a typical Theorem such as 4.4, we first
continue % a short distance into the region ¢ < 0 as a function with
the same smoothness properties as it has for ¢ > 0, then define u. =
Je*u, fo = Lu,, and @;, = Bu,|,~,. Then the theorem is true for wu,,
fe’ Pes but [Pus]gp — [P’Ll,], [fE]?—2m+w - [f]?—2m+w, and [(Pje]gm.ﬁw -
[P jtas SO it is true as stated.

5. Variable coefficients. The foregoing results concerning equa-
tions with constant coefficients in a half-space permit the derivation
- of certain similar results for more general domains and variable coef-
ficients. The procedure we shall use is basically that in [2, §7];
however, the arguments here will be more involved, and in the case
g < #, the results are much less general.

Let < be a domain in (n + 1)-dimensional space with boundary
T , and consider the problem

L(x, Dyu = f(=) , xe T,

(6.1) Bj(z, Dyu = @,(x) re .

L(z, D) is assumed to be uniformly elliptic in <& with ellipticity
constant E, and to satisfy the root condition of [2]. Also the B;
are to satisfy the complementing condition of [2] with “determinant
constant” 4.

As before let ¢ be an integer, 0 < ¢ < n, and ! an integer with
l = max [2m, m;]; but now we permit the = sign in this latter in-
equality to hold only in the case m; < 2m for all 5. Let (, = max
[1,7 — 2m] and p; = max[1,] — m;]. We assume the coefficients of
L and B; to belong to classes &ifl(=2) and &l =) respectively,

and to have |- [if, and |- |27}, norms bounded by the constant H.
In addition to these assumptions on L and B;, we shall require
that coordinate tranformations may be introduced which, at least
locally, flatten out the boundary <7, and such that the operators L
and B; transform into operators of a special type. This special type
is that in which the coefficients of all derivatives of order 2m in L
and those of order m; in Bj;, which involve only differentiations with
respect to “undistinguished” variables, be constant on the new flat
boundary. As will be shown in § 6, this assumption involves no loss
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of generality when q = n (this is the case when there is one “undis-
tinguished” direction, and it is normal to <r). However for ¢ < n
it limits substantially the generality of the results. There is one
exception however: the case when m =1,B,=1,¢ =0, and ® =1 or
2. In this case such transformations as required above are always
possible; however in this case the same a priori estimates may be
obtained much more easily by use of the known maximum principle
for second order elliptic equations.

Theorem 5.1 treats the case when the domain <7 is the half-
space %,., >0, and L and B; are of the special type. Theorem 5.4
indicates the same results to hold if L and B; may be transformed
locally to operators of the special type, <7 at the same time being
flattened locally. Theorem 5.2 treats the case when L and B; are
of special type throughout <r; then the full Holder continuity of f
is no longer required.

Constants appearing in this and the following section which
depend only on E, 4, H, m, m;, @, and | will all be denoted by the
letter C. Whenever an operator appears with a tilde (~) over it, it is
to be understood that every term of the operator involves at least
one differentiation with respect to a component of % or in a “dis-
tinguished direction.”. Symbols such as |- %71, where <, is a sub-
domain of <7, simply mean the same as |- |%.., except that the func-
tion in brackets is considered to have only <, as its domain of defi-
nition. We shall also use the symbol |% |} as defined on page 526.
An operator Q(x, D) with variable coefficients is said to be normalized
if the L.u.b. of all its coefficients for all # in its domain of definition
is one.

THEOREM 5.1. Let L(x, D) and Bz, D) satisfy the above condi-
tions, and in addition assume L and B; to be of the forms

(5.2) L(x, D) = L(D) + L(x, D) + L%, D) + lower order terms ,
(5.3) By, D) = B;(D) + B;(x, D) + lower order terms '

where L, and B;, have constant coefficients, and L, has coefficients
which vanish for x,., = 0. Let w(x), f(x), and p,(x) satisfy (5.1) in
the half-space x,,, > 0, and have smoothness and boundedness prop-
erties which will guarantee the norms tn (5.5) and in the proof of
the theorem to ewist. Let P(x, D) be any homogeneous normalized
operator of degree | with coefficients in & 7f, whose | - |}ii norms are

! Terms of the form R(z, D)B:i(z, 0) (¢ #+ 7), R an operator of degree m; — m;, would
also be permissible in the expression for Bj; but if they are present we may replace
B; by B;— RB; and ¢; by ¢; — R(x, D)p;, obtaining an equivalent boundary-value
problem in which they no longer appear.
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bounded by H, and which may be represented in the form

(5.4) P(x, D) = Az, D)L(D) + 3.a,(=, D)B;(D) + P(x, D) + Pyx, D) .

where P, vanishes for x,., =0, ond the a; involve mo diﬁ‘erentil-
ations with respect to %,,,. Then

(6.58) | P@, Dult < C{ Flitnia + 3195 nyra + [0l

G.55) [ @[E S OIS e + 35195 fongra + [0}

Proof. The proof will employ the following two lemmas, the
first of which is contained in the results of [2].

LEMMA 5.1. Let €€ ilia)f€E 1 Himiar Pi€ Ei-m, be solutions
to (5.1) wn an arbitrary domain & with smooth enough boundary.
Then

(5.6) [u it = C{Sf 1 nse + 21 Pili-m, + lua} .

Proof. If | > max|[2m, m;] this follows directly from [2, Theorem
7.8]: there &7 is identified with &, [ is replaced by I — 1, and the
inequalities | f [ 1ia = | f [ Hin-14e a0d | @; 11700, < |95 l°-m, are em-
ployed. The other possibility is that max [m;] < 2m and ! = 2m. Let
S; and S, be concentric balls with radii 1 and 2 respectively, and center
in 7. Let a be some number such that the hyperplane xz, = a in-

tersects S,. Define Fi(x) = lef (&, g -+, ,,)dE (We may need to ex-
tend f outside <» for this to be defined), and Fz =0 for 8 > 1. Then

Theorem 9.3 of [2] is applicable: set p =2m — 1 and & = S,. The
conclusion of that theorem is:

|u [i2iat = C{Z | Fg[a*"52 + Z | P i1 e + [0 [0}

But | F, 252 < 4| f|»** and Fy = 0,8 >1, so (5.6) holds in this case
also if a superseript S, is adjoined to the norm on the left. But it
does not appear on the right and its center is arbitrary, so (5.6) is
valid as written.

LEMMA 5.2. Consider again the case when the domain < is
the halfspace %,., > 0. Let b(x) be a function tn &i. such that
b(x) =0 for x,,, =0, and |b|}i2 < H. Then for every derivative of
order 1,

(6.7 |6@)D " 27 = CUf [Fdmra + 2| P fiomy + [0}
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Proof. Let v — b(x)u. Then
L(z, Dyv = bf —i—OSkSEZ_:,n_lck(x)D"u = F(x),
B Lo = @D 0 = 04(0)
It follows from Lemma 5.1 that
| F e < O e + 5193 oy + [0l
and
195l yra = CUS N + 20195 fiomy + T 3}
Hence from the main boundary estimate of [2] (Theorem 7.3),
lvlie = Cllf[i5ma + %I@l?w, +lul+ (v} .
But since for every derivative D' we have
bD = D' + lower order terms

and since the lower order terms may be estimated by (5.6), and also
since || =< Clul}, (56.7) follows.

Now to proceed with the proof of Theorem 5.1, let &, be the
class of homogeneous operators of degree ! which have a representa-
tion of the form (5.4), and whose coefficients

(1) are in &2 and have | |2™ norms bounded by H; and

(2) have first derivatives with respect to «,., in &% with norms
| +|»** bounded by H. Let & be the subclass consisting of those
operators in &, with coefficients in 27/, whose |- |/l norms are
bounded by H. Let 6 be a fixed number, 0 < <1, which will be
defined later. We define the number M as

M =45~ héb | Q(w, Dyu s + héb | Q(z, Dyu s + [@]a
0

with the lub’s taken over all operators Q(x, D)c &, and & respec-
tively. Then from the definition of |- |% there is a point ¥ and an
operator Q(x, D)e &, or in &, or a derivative Dt, such that one of
the following four quantities is > §M:

U, = 46~|Q(y, Du(y) |,
U, = 19¢ D) — Qy, Duy) |
(5.8) |Z—7l
U, = |Du(y)|,
_ | D'uw(z) — D'u(y) |
lz —yl|”

(for some z with 2 = %),

U, (for some 2z),
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with -U, and U, missing if ¢ = 0. We shall carry out the proof first
under the assumption that U, > 1M. The proof for other cases will
then require only slight additional arguments. Therefore we assume
9¢>0,Qe®, and U, > M. It may be assumed that |z —y| =0
since if not, the quotient U, will be < 26| Qu |5, and there will be
a point ¥y’ such that

U = 40~ |QW', Dyu(y’)| > 20~*1Qu} > U, > &M .

The argument thus reduces to the case when the first of the four
quantities in (5.8) is > M, which case is treated separately.

Let {(t) be a & .. function of a single variable such that {(t) =1
for [t| <1 and {(¢) = 0 for |£]| > 2. Define

(5.92) w(x) = c( & = y )u(x)

if both ¥ any z are further than 20 from Z; i.e., both % and 2z have
{(n + 1)-st component = 2J; and

(5.9b) w(x) = C(—%y—’*)u(x)

if either  or z is nearer than 2 from 9; here y; is the projection

of y onto &7, so that if y =(y, - Y1), Y5 = Y1, -+ *, Yu, 0).

Let us assume the latter alternative (5.9b) to be the case; the
proof for the former is similar. First, on the basis of (5.4), also
considering (5.2) and (5.3), we may express Q(y, D) as

(5.10) Q(y, D) = Qu(y, D) + @y, D),
where @, vanishes for ¥ on < and

@y, D) = Ay, D)L/(y5, D) + 3 as(y, D)Bi(ys D) + Ay, D),

where L’ and B} are those parts of L and B; consisting of highest
order terms only. Let us decompose the quotient U, as follows:

61 gy < LEDUO YU DMO] < 7y 4 1,4

where

Tl = Q(z’ DN) _ E)(yv D) u(Z) ,
|2 — g
T, = Q.(y, Dyu(z) — Q:(y, Dyu(y) |
7= ’
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T, = 19, D)u(z) — Quy, D) | |
|2 —7l

Owing to the smoothness of the coefficients of @ and to the definiton
of ¥, we have

(6.12) T, = Co**1lub | Q(x, Dyu(x) |5 = CoM .
ee&

Theorem 4.4 (4.18), with Theorem 4.5 may be invoked to estimate
T,. In view of the definition of @, that theorem tells us the follow-
ing (where we have used w(y) = w(y), u(z) = w(z); notice also that
condition (4.15) “neutralizes” Q,):

6.13) T, = 1@ DwE) — Q(y, Dyw(y)|
|2 — 7|
= C{IL' (Y5, DYw()]7—sm+a + 57:, [Bi(¥s, D)w]‘g_mﬁw} .

(ys, of course, is to be considered a constant when the norms on the
right are computed.) To further estimate the terms on the right,
we introduce the symbol S; to denote the sphere of radius 60 about
Yy First, for any derivative D™,

(5.14) D'"L'{(ys, Dyw = (D™*"L/(ys, Do + 3, 7u(@)(D*) D" .

From (5.1), (5.2),

(5.15) D!™L'(ys Dyu(x) = D'*"L(%, Dyu(x) 4+ Di=*"(L(ys D)
— L(x, D))u(x) — D**»L(x, Dyu(x) + Lo.t.
= D" f(x) + Q@*(x, Dyu — Ly(x, D)D" *™u(x)
+ l.o.t.,

where
Q*(w, D) = (I(y5, D) — L(x, D)D" .
Also
(5.16)  [ED""F@)]2 < [f T omsa + 0L P osw = COLToamia -

Now since the coefficients of I are in &%/}, Q* is a combination of
derivatives of the form D' with coefficients bounded in |- |*! norm
by 6Ho, for x € S;. Since also | |2t < C6~, we have

[EQ*(x, Dyul; = C([a]}.o + o*[a]}) .
By a standard calculus lemma (see for example [2, §5]),

[a]; < e[@]ta + Cle) [w
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for arbitrarily small ¢. Choosing ¢ = 6%, we have

(5.17) [£Q*u)z < COM + C@G)|uls .

Lemma 5.1 easily yields

(5.18) [£-(lower order terms)]; < C{|f[i-on + 2 ®;l1-m, + |3} .
For the same reasons

D@ DD W)z = CONI S ll-nyra 22| P [l-smra + [0 [}

Combining this result with (5.14-18), we find
[L' (Y5, D)W} smia = COM + CON| f1i-smia + 2|1 Pil1-m, + [0}
+ [(Ly(z, D)D" ul; .

In exactly the same way one obtains

[B/(Ws5, Y0l jia < COM A CONI F llorm + 319511 ea + 1018}
Combining these results with (5.18), (5.12), and (5.11), we have
(5.19) M= COM + CON S smia + 2| Pillom e + 1013

+ [CL(z, D)D" ul, + Ty,

with C, independent of 6. The last two terms may be estimated
with the use of Lemma 5.2. We shall illustrate the method by
estimating 7,. By hypothesis the coefficients of @, are in &7/l and
vanish for #,., = 0; hence we may take out a factor x,,, from each
and have left a function in &2+, More specifically, define b(%,.,) to
be an infinitely differentiable function with |b |}/ < H assuming the
values

b( ) o H Y (0 é L1 é 1/2) ’
Puia) = 1 1= @) -

Then b may be factored out, and we have
Qz(x’ D) = b(wn+1)Q4(m9 -D)

where the coefficients of Q, are in %™ with | |** norms bounded
by H. Since b satisfies the hypotheses of Lemma 5.2,

0, )Quy, Dyu(@) 57 = C{ S [Mimsa + X1 @iy + T fi)

But since 2,., = ¥,.., We may write

5.20) T, — L0000, D) — by, )Qy, Diu)|
Y
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— 16(01)Quy, Dyul2) — b(¥a+1)Qu(y, D)u(y) |

1z2 -7l
é |b(xn+1)Q4(y! D)u(x) ]z+1 é C{‘f’?j;m%-w + 2 , @J' (l)—mj + lu ‘g] .

The same estimate holds for the next to last term in (5.19), so that
in all,

(6.21) M= COM + CONISfitomsa + 2| @5 l1-myra + [}

If any one of the other three quantities U, U,, or U, in (5.8) is
assumed to be > {M, then an inequality similar to (5.21) with other
constants C,, C,, C,, all independent of 6, may be derived, In the
case U, > 1M, then we define w again according to (5.9) (forgetting
about z). T, will be missing from (5.11) and 7, and T, are no longer
quotients, but rather 40—*|Q.(y, D)u(y)| and 46| Q,(y, D)u(y)| re-
spectively. Theorem 4.5 again yields (5.13) except for an extra
factor 0-® on the right. Repeating the argument from this point
on, we obtain (5.21) with C,0M replaced by C*M. U, and U, may
be treated in similar manners.

Now the definition of ¢ is clear:

(5.22) é = min [(2C)) "%, (2C), (2C))7%, (2C) 1],

so that C0'* <1/2, and C;0 <1/2 (1 =2, 8,4). Putting all terms in
M on the left, (5.21) now implies (5.5a). Also since |%|}fs = | % |70
@ < M + |%|7*L, and since the last term here may be estimated
with Lemma 5.1, (5.5b) is deduced and the theorem proved.

The condition (5.2) imposed on L is really only a condition on L
at the boundary z,.,; consequently the full Holder-continuity of f is
needed for the estimate (5.5). The following theorem will only utilize
f’s Holder continuity with respect to %; but as a price for it a con-
dition on L analogous to (5.2) is imposed throughout the domain; and
also the class of operators which are estimable is reduced.

THEOREM 5.2. Let L, B;,w,f, and @; satisfy the hypotheses of
Theorem 5.1, except that f is required merely to be i ZF I smia, and
L(z, D) is of the form

(5.23)  L(x, D) = L(D) + L(», D) + lower order terms.
Then
(5.24) [ [3a = Cll fliamra + 2 Pillomjra + [0} -

Proof. The proof is the same in outline as that of Theorem 5.1;
the following are the only differences. The pseudonorm [i#]}{; takes
the place of M, so that U, and U, are missing from the list in (5.8).
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Taking the case U, = 1/8[#]%"2, Theorem 4.4 (4.18) is again invoked
to yield (5.22). Again this takes the place of (5.13) and the argument
is the same, except that the superscripts » in (5.16-19) are to be

replaced by ¢, and last two terms in (5.19) are now missing. This
proves the theorem.

Theorems 5.1 and 5.2 were based on the assumption that <7 is,
or may be mapped onto, a half-space in such a manner that the
transformed operators L and B; satisfy certain properties. The fol-
lowing theorem serves to indicate that such a transformation property
of <z, L, and B; need only be local; i.e., we assume only that every
point in & near the boundary has a neighborhood which may be
mapped onto a hemisphere, L and B; being transformed under this
mapping in the desired manner.

Specifically, we assume that some portion I", of the boundary 9
(it may happen that I, = <) is covered by a network of ¢ families
of “distinguished curves,” each of class ="'l with no two curves
of the same family intersecting each other, and no two curves from
any two families tangent at any point. Then there will be g curves,
one from each family, passing through each point in 7). It is
along these curves that we shall assume certain functions to be Holder
continuous. If I, + 9, we speak of another portion I, with I, U I, =
<7, and I', overlapping I', so that the boundaries I', and I', are
bounded away from each other by some number d, > 0. We also
assume these ¢ families may be extended in some manner to cover a
subdomain &7, adjacent to I',, &, having the properties that _@'1 N
< =TI, every point of <7, is nearer than 2d, to I",, and every point
of &r-<7, is further than d, from I',-I,.

QOur smoothness assumptions on <7 will be very much the same
as those made in [2, Theorem 7.3]. First of all, we assume I", to be
of class &' 7/2 and to satisfy the other requirements which are imposed
in Theorem 7.3 of [2] on the boundary portion I" spoken of there,
Next, concerning [, and <r,, we suppose there is some number
d =< d, such that evey point ye <, has a neighborhood N, whose
boundary contains a portion of /', and which may be mapped by a
one-to-one Z’7{; mapping .7, onto the hemisphere 57~ (|Z]| =1, %,4,
> 0) of radius 1 and center at origin in (» + 1)-dimensional Z-space
in such a manner that the following conditions are fulfilled:

(1) The image of y is closer than 1/3 to the origin.

2) Ny N <r is mapped onto the flat portion %.’0 of the boundary
of 5#. Also, denoting the image of N, N &, by 57, the distin-
guished curves in N, N &, are to be mapped onto line segments in
5#°1, which are parallel to the first ¢ coordinate axes. In accordance
with our usual practice, the first ¢ coordinates of a point Z in 57,
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will be grouped together in Z, and the others in z (these will not
be defined outside 57,,).

(8) L and B; are transformed into new operators L, and B;,
with the same smoothness, ellipticity, and complementing conditions
as the original ones. We assume the same constant H will serve for
the transformed operators independently of .

(4) The transformed operators L, and B;, may be expressed, in
&7, in the form:

(5.25) L@, D) = \(®)Lo(D) + L&, D) + L.,(%, D)
+ lower order terms,

where D denotes differentiation with respect to the #, L, is an
operator with constant coefficients, INJM, vanishes on ﬁ:.’o(i.e., for z,,,=0);
and for Z e 57, each term of L, involves a differentiation with
respect to a component of Z (this with be true of all operators below
with a “~"). Also for %,,, = 0,

(5'26) BJ’y(Er B) = Bu(x)Bjoy(D) -+ Eiy(x’ D) + I-O't'

Note that the ellipticity and complementing conditions guarantee X,
and G, to be bounded away from zero by a constant depending on H.

Referring back to the original coordinate system, let & be the
class of operators P(x, D) defined in < with coefficients in &1,
whose | - |2 norms are bounded by H, with the property that when
subjected to any transformation .7,, P assumes the form

(527) Py('/f’ D) = Ay("‘?; D)LOV(D) + Zdj(f, E)Bjoy(l—)) + Py(fy D) + Pw(f, D),

where P, and P,, have the same properties as L, and L,. Let &
be the subset of & consisting of those P which assume the form

(5.28) P&, D) = P&, D)

with each transformation < ,. Of course for points & in =2-<2,
there are no distinguished directions and consequently there is no
condition (except smoothness) imposed on P(x, D) there.

The symbol [y(x)]¢.Z1 will be used below to denote

(5.29)  [¥112' = lub| Dy(s) | + lub [ 20 = D) |

| @, — @, ]"
where the first lub is over all points ¢ € <, and derivatives of order
l; the second, over all derivatives D’ and points x,, x,€ <, such that
whenever x,€ N, the images #, and ¥, have the same components z
(i.e., #; and x, may be joined by a curve pieced together from portions
of distinguished curves). A similar meaning is attached to | |22
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THEOREM 5.3. Let L, B;, and & satisfy the above conditions.
Let u, f, and @; satisfy (5.1) and have the differentiability prop-
erties implied below. Then if P(x, D)e &,

(6.31) | P(@, Dyuls? < C{ f|itdnia + 219 1505 + 2@, 1002,
+ [}

Furthermore, if Pe &, then

(6.82) | Pulit = C{lfIMmia + T 10500 + Tl FFnle + [w i)

Proof. We first define a third class &, consisting of all oper-
ators P(x, D) with the same properties a those in &, except that
the coefficients need not be differentiable in any tangential direction.
Nevertheless, they are to be in 2*'. In other words, when subjected
to any .7 ,, the coefficients are to be in Z**' and to have Holder
continuous derivatives with respect to #,,,. The corresponding norms
are to be bounded by H. Let 0 be a number to be defined later,
and define

(5.83) M = 46—=lub | P(z, Dyu [??1 + lub | P(x, Dyu |%°* + lub | Pu [+,
&, g Z

Then there is a point y€ &7 and an operator Q(x, D)e & (or &,) or
an operator Q(x, D)e ¥ such that one of the following four quan-
tities is > 3 M:

(5.34) U, = 46~ | Q(y, Dw(y) |,
U, = | Q(z, D)u(z) — Q(y, Dyu(y) |
[z —yl|”

(for some ze 2, with z = 7 for every transformation .57),

U, = | @y, D) | ,
U, = 189G, Dyu(z) — Qly, Dyu(y) |
lz—yl®

(for some z¢ &) .

If y¢ &, U, and U, are missing from the list, and if ¢ = 0, U, and
U, are missing.

First we assume ¢ > 0,y &2,Q¢ &, and U, > }M. It may be
assumed that ze N, and that [z —y| <0 (see the proof to Theorem 5.1).
Subject the coordinates to the transformation .77,. Then |Z — 7| <
o' = (1/k)0, where k¥ is the minimum expansion coefficient for the
transformations .7,. We assume ¢ to be small enough so that ¢’ <
4. Define
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T =G\
(5.352) W(E) = c( = )u(ac) ,
if both 7 and Z are further than 20’ from S#,; and
(5.35b) w(E) = c( — Vs )u(x)
357

if not (here 7, is the projection of 7 onto 2%;). Since || < 4 and
|y — z| =% it follows that w always has support in 2.

We assume alternative (5.35b) as the proof for the other is similar.
It is seen from (5.25), (5.27) that after transformation the operator
€ may be written as

(5.36) Q, D) = Q(¥, D) + Q.#, D),

‘where

Q7 D) = A((y’ 1)7) Ly(@s D) + 3 J(?é' 1;) B, D) + G4, D),

‘where L, and B!, are those parts of L, and B;, consisting of high-
est order terms only, and @, vanishes for %,., = 0. Then

(5.37) tM<T,+ T.+ T,,

-‘where

7, = 1(QZ D) — Q@ Dw(@)|

lz —yl"
|z =gl
7, — 1, Du(z) — Qu(F, Dyu(@)]
2 =71

‘The smoothness of the coefficients of operators in & tells us
{5.38) T, < CM.
Theorem 4.4 (4.18), with the aid of (5.36), may be applied to yield

|z —¥ l‘”
= ClLFa DYwli-smro + S [BjuFar D10} -

Let S; be the sphere of radius 6J’ about ¥, so the support of w is
in S;. As in (5.14), we have

D" Li(§s, Dyw = (D" Li(#», Dyu + = 7@E(D*)D ",
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and from (5.25),

DL Li(§s, DYu(®) = Ny(Fs)((@)) D" Ly(®, Dyu + Qx(%, Dyu(z)
(5.40) + M(Fs)0(®)) " Lyy(F, D)D"~ u(Z)
+ lower order terms ,

where
Q4@ Dy = {Ly(@s, D)D" — M (@)M@) " L,(@ DD} .

Since L,(Z, D)yu = f(Z) and A, is estimable from above and below in
terms of H, the first term on the right in (5.40) makes a contribution
to DL (¥, D)w which is estimable in [-]2 norm by C(0)|f |/ smia
(as in (5.16)). Now Q*(%, D) is clearly the image under .7, of an
operator in &, and furthermore this operator has coefficients bounded

in |+|2** norm by C6 for some C depending only on H. Therefore, as.

in (5.17),
[£Q*@, D@z < COM + C() |u ).
Thus by continuing the reasoning we obtain

(5.41) | Ly(@s Dywli-smsa < COM + CON S ismra + 21 Psl1om, + |4 [}
+ [OM(@)((E) " Ly(@, D)D" uls .

In the same manner we obtain

(5.42) [B}y(ar D)0, va < COM + COMIFlan + 3| 2:(@) 150,
+luly

In this latter we use the fact that

| @) 11 %00 < Clo; 15555 + |25 1200k

then combine (5.41) and (5.42), estimate T, and the last term in
(5.41) by Lemma 5.2, define 0 to be small enough so that all terms.
involving M may be transposed to the left side of the inequality,
and (5.31) is proved for this case. A similar proof goes through if
the other alternative in (5.35) holds or if U, U,, or U, is >tM and
ye <7,. Finally, if y ¢ &, the boundary estimates of Agmon, Douglis,.
and Nirenberg [2, Theorem 7.3] may be applied directly to estimate
U, and U, in terms of |f|}*13: and 3 |®;|i"n 2. This completes the
proof.

6. The case ¢ = n. In this section we shall see that somewhat
more concerning equations with variable coefficients may be said when
q¢ = n than when ¢ < n. In fact, most of the properties of solutions
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of elliptic boundary value problems which are true under complete
Holder-continuity assumptions (¢ = 7 + 1) of the functions involved
are also true (or analogs of them are true) under assumptions cor-
responding to the case ¢ =n. Assuming ¢ =n we shall be able (1)
to demonstrate improved versions of Theorems 5.1 and 5.3, and (2)
to prove an existence theorem concerning problem (5.1).

First we consider the problem when <7 is the half-space z,,, > 0.
‘The assumption ¢ = % means that all functions concerned are Holder
continuous in all directions except possibly that of the z,,,-axis.

THEOREM 6.1. Let L and B; satisfy the ellipticity, complement-
ing, and smoothness conditions stated as hypotheses to Theorem 5.1,
If ’LL(%) € (g?-(»w f(x) € (g?—mﬁwﬂ @J(x) € g?~mj+m satisfy (5-1) fO’l‘ L1 >
0, then

6.1)  |ulle + 18 + = S lnmsa + 295 [myra + [}

Proof. We shall first show that without any further hypotheses,
L and B; may be put into the form (5.2), (5.3), and that the corre-
sponding set & includes all derivatives D’. Then an estimate of
the form (6.1), with, however, |f|/li... replacing |f|f,... on the
right, clearly follows immediately from (5.5). With no loss of gener-
ality we may assume the coefficient of 8*"/6x%", in L(x, D) to be identi-
cally 1. Then setting L(D) = 0*"/ox>", and L, = 0, (5.2) is obtained.
Since the complementing condition assures us that in each B; there
is a derivative 9™i/0x,/, with non-vanishing coefficient, we do the
same thing here (B;, = 0™i[0x,i,). Also every derivative D’ is trivially
of the form (5.4) with, in fact, P, = 0 and a; = 0, so is contained
in &.

Lastly we must show that (6.1) is correct as it stands, rather
than with | f|/3.+« on the right. To do this we refer to the proof
of Theorem 5.1, in particular to (5.19). At that stage the proper
superscript n appears on the right, but it is changed to » + 1 when
the last two terms are estimated (by means of Lemma 5.2). In the
present case, however, these last two terms are absent (we have
mentioned that L, = 0, and T, is absent because @, = 0 in (5.10)), so
that the superscript # remains, and (6.1) is valid.

We now pass to the analog of Theorem 5.3. In that theorem
q families of distinguished curves were assumed to cover <7, a
portion of <r. It will be more convenient in the present case to
speak of a one-parameter family of n-dimensional hypersurfaces cover-
ing <7, the boundary portion /I, = 91 n g being one of this family.
This amounts to the same thing, and the proof is unchanged; moreover
this permits the inclusion of the important case when I7, = < but
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<7 may not be covered with an n-parameter family of curves with
the required regularity properties holding everywhere (for example,
when &7 is a sphere in 3-space). Along with this change in point
of view, assumption (2) preceding Theorem 5.3 should be changed to
require that these n-dimensional hypersurfaces be mapped onto hyper-
planes Z,., = const. We shall discard hypothesis (4) altogether.
Lastly we define a new domain &7, with the properties that <, U
D=, D, N T = I, I =o,I=0and &, is an interior
domain.

THEOREM 6.2. Let &, &, &, L, and B; satisfy the hypotheses
of Theorem 5.3, with the above modifications, and excluding (5.25),
(5.26). Then if w(x), f(x), p; satisfy (5.1) and have the required
smoothness properties,

6.2) 1l 4+ Jum S CUf e + 2+ S b2 e+ u ) -

Proof. Since ¢ =mn, any operators L and B; automatically sat-
isfy (5.25) and (5.26); and in fact with L,, = 0. Also clearly any
derivative D' is in &, and any such directional derivative involving
a differentiation in a direction tangent to a distinguished hypersurface
is in &. Hence (6.2) would immediately follow from Theorem 5.3 if
the first two terms on the right were replaced by |f|*'4.+w. But as
in Theorem 6.1, the fact that L,, = 0 and that P,, is not needed in
(5.27) results in our not having to require D'~"f to be Holder con-
tinuous in the one undistinguished direction, for points in <-,.
This completes the proof. This theorem is analogous to Theorem 7.3
of [2].

The domain <7, was introduced not only for greater generality,
but also because in general such a domain would be needed for
topological reasons; it is not always possible to cover the entire domain
<7 with a regular family of hypersurfaces, one of which is <. It
is therefore important that such a covering be resticted to <=,.
However the theorem may be improved to the extent that f still
need not be fully Holder continuous in <2, If there is a second
family of distinguished hypersurfaces covering <, in a regular man-
ner, and not necessarily fitting in with the first family in &2, N &,,
then the second term on the right of (6.2) may be replaced by
If |;”_ﬁa,,, which is of course to be understood as defined with re-
ference to the second family. The proof offers no difficulties but we
shall not give it.

Our final task will be to prove that a solution to the basic prob-
lem (5.1) may be expected to exist under the smoothness hypotheses
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corresponding to ¢ = n, provided one exists under the stronger hy-
potheses corresponding to ¢ = n + 1. But first we consider questions
of uniqueness. It is clear from the remark on page 517 that if
fe# V=) (and p;€ &7, jW(Q )) then any solution u € &7, (=)
N &2, to (5.1) is in &1i(=). For any lth order directional
derivative D'u written in terms of local coordinate system, which
involves a differentiation in a distinguished direction is completely
Holder continuous; but then the only derivative D’ not involving
such a direction is also completely Holder continuous, for it may be
expressed by means of the differential equation in terms of f and
derivative D'. Hence under the hypotheses of Theorem 6.2, if problem
(5.1) has at most one solution in & (<) for every fe &1 (D),
then it has at most one solution u e &7, (2) N €A, for every
fE€E  smia N E 1 amsa ).

THEOREM 6.3. If uniqueness holds in problem (5.1) with q¢ = n,
then the term |u |, may be omitted from (6.2).

Proof. If this were not true, there would be a sequence u’ of
functions in &} (=2, N €1u=2,) with | Lw }‘f;ﬁrj, | Lu ]Lﬁﬂw, and
| B;w® U”_'Z,w bounded, but |»*|} and |% |75 or |u m%‘leoo_ Define the
new sequence #° = u’/|u’|}. Then

—y (7 —y 1n+1 D —y In y
L [t 50+ | L 2022 + S B r 2, — 0,

but |%” |3 = 1, and according to (6.2), | @ |52 and |@#* |2+ are bounded.
From this last fact we know the derivatives of the form D%’ to be
equicontinuous, and there is a subsequence #* — # with D'a* — D'z,
and D' — DMi, » <1 — 1, all these convergence processes being
uniform. Write L in terms of local coordinates z, where % =
(@, ---,%,). Then if a(x) is the coefficient of 6*"/6%%", in this ex-
pression, we have 8@*/0%.,, = 3 (coeffs.) D'i* + lower order terms +
(a(x))y~ (@ /ox. 2™y Lu*. Since the last term approaches 0 as k— oo,
'u*/0x,., converges uniformly to a function, which will therefore be
0'u/0x. .., and # will satisfy

Li=01in &,
Bii =0 on & .
But # = 0, which contradicts the uniqueness assumption, and the

theorem is proved.

THEOREM 6.4. Let &, =,, &, L, and B; satisfy the hypothe-
ses of Theorem 6.2. Suppose the problem (5.1) has a unique solution
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UE T D) for every fe B D) and @;e fg?_m,m(éf)- Then
it has a unique solution uc &t (D) N EHAD,) for every fe
E l-tmrl D) N E 130 Z5) amd ;€ E P-myra D).

Proof. Given any f€ &7 omia D) N @14 1a( ), let the family
Sf(x) be made up of functions in ¥ H,...(<) such that as ¢—0,
DX, — D, n =1 — 2m, for every point in <& at which the latter
derivatives are continuous; and |f; ?_%,JM-—» | f ]I‘_'?,}M. For example,
we could set fux) = joxf with j, as defined in the proof to Theorem
4.6. By assumption and Theorems 6.2, 6.3, for each ¢ there is a

unique (%) € €1(=2) such that

Lu, = f, in &,
Bu, = @; on Q,

and

[T 1227+ [ 12 < CUL e + | o 072 4+ 31 95 1y
Hence the norms WEIﬁ;“@ and |u. |7 form bounded sets. We shall
show that the set of functions %, is compact in &% (=). The
boundedness of the norms |, |}, shows the set of derivatives Du,
to be equicontinuous. Denoting by <, the portion of <7, that remaing
after a o-neighborhood of every point of discontinuity of D'*™f has
been deleted, it is clear that the D'*"f, will be equicontinuous in
's. Solving the differential equation for #u./(d%,,,)', the only Ilth
order derivative not of the form D'u,, we see that it, hence all Du,,
are equicontinuous in <7;, and a subsequence of the u. converges to
a function u; which satisfies the differential equation Lu; = f in =,
and the boundary conditions Bu; = ®; on 7. Now taking a sequence
of positive numbers d, — 0 and a diagonal subsequence of the u., we
find that the latter converges to a function u € &7 () N E 1A Z,)
which satisfies (5.1).

APPENDIX A. Proof of Lemma 4.3. What we shall show spe-
cifically is that if the contour v and funection F'(¢, 7) are as in Lemma
4.1, &k >q, and F is differentiable with respect to & for t€v, |&| =
1, then

(A1) ggﬁsmdﬁg qdwegyzf(g, & 7Y + £ + tr) e

161
_ @ri)(k—q—1)!
(k — 1)

: g . dwgg F,& )&-& + tr)*+dr .
1§i=1 Y

With this established, (4.9) will follow as a special case, in view of
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(4.6) (see the definition of b;, in [2]). The lemma tells us nothing
new in case ¢ = 0. First we prove it for the case ¢ =1,% = x,; an
obvious iteration process will then yield the result for the general
case. First we recognize that

defgyF(g, )£ + tr)Hdr

=20 0] Lpg o+
1—Fk 6:131 lefl’;l weyél (S,T)(ib’f—l- Z') T,

where “PV” indicates that the integral is taken in the principal
value sense. This is easily checked by forming the derivative as the
limit of difference quotients. Letting I denote the left side of (A.1),
it follows that

Z)=+00

A2 = 1 . {g:;;ldwegy%l F(&, & o) & + tz‘)l"‘dz'}

z)=—00

Now let {s(&) be an infinitely differentiable function depending on a
small parameter ¢ > 0, such that

Cs(6) =0 for |&| >1—0
Go(6) =1 for [&]<1—20.

The principal value integral (A.2) may be converted into an ordinary
integral by subtracting from the coefficient of £ in the integrand
any even smooth function of & which takes on the same value as
the original coefficient when & = 0. For this function we choose

F(0, 81 — &)7% )& — &)@ -E(L — &) + to) -

Carrying out the subtraction in three parts, we obtain I = I + I, +
I, where

. {S _ dwsg F(6,&7) — F(0, 51 — &) 0)4s(6)(1 — gr)t-nar
1¢1=1 v

1:____

1—k &
(x-& + t‘z‘)l"‘olz'}xli°° ,

— 1 (1 _ £2)—2/2. ~ . E2)(—n+3)[2,

1= {] dof Fo 0 - g e -
J@eg ) — (@ + BB — )TV rt)‘“"dr}M ;
& -

— 1 £(1 _ £2)-1/2. AN (—n+d)/2,

L= Al dof PO &0 o onea - o

@+ BB — £ 4 oty — (3B — &) + tr) olr}+°° .
&

—oc0



546 PAUL FIFE

The coefficient of (---)""* in the integrand of I, is a continuous and
bounded function of & on [é]| = 1; hence by Lemma 4.1 the integral
is bounded by C(|z|* + t*)"* (C possibly depending on 4), which
approaches 0 as #, — +o. Hence I, = 0.

Next we use the mean value theorem to write the fraction in
the integrand of I, as

A== Lotk — Dot + 280 - )7 + 1),

and observe that

a- 5‘2‘”2 —L g for & < 1/2.

It is then easy to see that for x, large enough and & = ||~ the
integrand of I, is bounded by C(&, t)|.|™¥* independently of & and
z. Also for &, = |, |7"* and @, large enough the integrand is bounded
by C@, %, t)|x& ™" < CO, %, t)| x| (since k=2). Both of these
bounds approach zero as x, — oo, so we conclude that I, = 0.

To analyze I, we use the fact that

[, G bdo, = | de] 6. &0 — e —a)erde;,

and obtain, after rearranging terms,

A

1§1=1

1
A3) I=1I-=
(4-8) 1—k§
k

S @&+ || aes + oy

dm&ﬂ&&ﬂ{

zy=-4oo
zy=—

dr .
Now changing to a new integration variable u = .&,,

| oee + oy rsepds, = | @+ &8 + toyau

—3

B xlgie |>1—zs[1 - CB(Sl)](xlél + 56\5 + tf)r~kd€1 .

First we estimate the last integral. For x, large enough, [& | >1—
20, |4k + & + tr| > x,/2, so that the integral is less in absolute
value than 20x,(x,/2)* = Cox;™**, For r < k — 1 this vanishes as
%, — oo, and for » = k — 1 it remains bounded by Cé. As for the
first integral,

x

m+@é+www]‘=o

-y

. “1 PP _ . 1
1 S . try *du = lim ————
mlirilm~x1(u+x§+ Ty ~Fdu 1mr+1_k

for r <k —1. For r =k — 1 the same integral



SCHAUDER ESTIMATES UNDER INCOMPLETE HOLDER 547

= limlog St &+ _ ooy
1—koo —%, + X:&+ tT

Hence all terms of the summation in (A.3) vanish except the one
with » =k — 1, and

I= kzml S ) dwgg F(0, & 0)(&, & + to)—*dr + 0() .
—1 = Y

But since 0 may be arbitrarily small, the term here of order ¢ is
really zero, and we have proven (A.l) for the case ¢ = 1. But if
q > 1 the above procedure may be iterated by integrating successively
with respect to ,, ---, 2,. Thus Lemma 4.3 is proved.

APPENDIX B. Proof of Theorem 4.3. We shall prove that a
necessary condition for (4.16) to hold is that in every representation
(4.14), the a;(¢) satisfy

(B.1) 50, — &) = (=1)"a;(0, &) .

That this implies the condition stated may be demonstrated by setting
a,/(8) = a,(0, ) and showing that there is a polynomial A&, r) such
that

a0, &, T)M*(0, &, 7) = A(&, 7)L(0, &, 7) .
Since
P(—¢, —7) = (=1)P(,7), M (¢, =) = (—1)"M (¢, 7)

where M+(S; T)M—(Ev 7'.) = L(é’ T)y and Bi(-—sa _T) = (_1)7"]'39(5? T)r we
have from (4.14) and (B.1)

(0, &, 7)M*(0, &, 7) + > a0, 8B,(0, &, )
= P(0,&,7) = (—1)'P(0, —&, —7)
= (=1*"a(0, —&, —7)M (0, &, 7) + T a,(0,4)Bi(0, &, 7) .
Hence
(—1y"a(0, —&, —7)M~(0, &, 7) = a(0, &, )M *(0, &, 7) .

But for & # 0, M*(0,&,7) and M~(0, &, z), as polynomials in 7, have
no factors in common; hence M (0, &, 7) must divide a(0, &, 7):

a(0, &, 7)M*(0, &, 7) = A&, D)M-M* = A, 7)L(0, §, 7) .

Now we proceed to show that (B.l) is necessary. Assume, on
the contrary, that there is a value & =&, such that a;(0, — &) #
(—=1)""ia(0, &). We shall construct a family of functions ®5(x) such
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that [@5]i-.,+s are bounded as ¢ — 0, whereas [Pw*]! are not (here w*
is defined in terms of @5 by (4.3)). We may rotate the coordinate
system so that &, is directed along the x,-axis; also since the a; are
homogeneous of degree I — m;, it may be assumed that |&,| =1: &, =
©, ---,0,1).

Define

N(s) =0 for s < —e¢,

=8 ™ for s=¢,

and smooth it off in the range —e¢ < s < ¢ so that it is an infinitely
differentiable function whose derivatives of orders <! — m; are mono-
tonically increasing in —e < s <¢. Our sequence @5 will be

Pi(@) = 7@ 2 ),

where {(s) is a & .. function with { =0 for |s| >1 and { =1 for
|s| < 1/2. It is easily checked that (3'~™i/ox. ™i)@%(x) is bounded in-
dependently of ¢; hence so is [¢5]; .. s+as  We shall show that P(D)w*
may be made arbitrarily large by choosing ¢ and ¢ small. We assume
l — m; to be even; the proof for odd case is similar. At this point
we apply representation (2.7) to (4.3) after integrating by parts as
before; and for this purpose we redefine ¥ = (%, .-+, %,_,), % = 2,.
Hence

P(D)ws = PA““)(n-;—S*L'ij)Kj,s*[A(Z—mj)12903'(?/) - Auumj)lz@i(xly ey Ly, y'n)]
+ r AU ENDE(Ly o e By Yu) K (@0 — Y )Y,
where
K*(x,; t) = Sr Pgemmts—timp K. (x, t)de, - -+ dx,_, .

Since the behavior of @5 with respect to the variables z;, ---, 2,
is essentially independent of ¢, the bracketed expression in the first
term on the right is certainly bounded by const. |z — y|¥, where the
constant is independent of ¢. Hence by the methods of Theorem 2.1,
this first term and its Holder difference quotients are bounded by a
constant independent of e. Also Lemma 4.3 with (4.6) and (4.14)
tell us

* . — P(07 En, T)Nj(O’ én’ z.)
K*(2,; t) = const. ng,ﬂgy e Gt g

— P(Oy En! T)Nj(oy Sn! T) -1
= const. egﬂgy M0, 2 0 [(%.&, + t7)

— (%,&, + try)']dT +
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+ const. 3, (0.6, + tro)*S a(0, &,, T)NKO, &,, 7)

4 2a:0, En)B 0, &, DIN:0, 6w 7) g
M*(0, &, 7)

where 7, is a point on v and on the imaginary axis: 7, = 7|7,|. The
first term on the right may be written as

"N (5,6, + to)do

const. > tS d'cg
Y

§p=x1

hence estimated (Lemma 4.1) by const. {(x% + t*)~*. By virtue of the
properties of N;, the final term may be expressed as
2 l(w,fn + tz) (0, £,) = a;(0, I{(z, + tr) ™ + (—, + 7)™

— (—=, + 7)) (a;(0, 1) — a;(0, —1))
_ 2a40, 1)zt n Ada;
2%+ |7, [t? %, — Tt

’

where Aa,,- = aj(O, 1) - aj(O, —'1). Thus

Aaj

K*(x,; t) = K¥(x,; t) + const.
r, — Tt

where |Kj| < const. t(x) + t)~'. Therefore, using the fact that
S_ [t/(%, — ¥.)* + t9)]dy, is bounded independently of ¢ and x,, and
4W2t-mdpe () is bounded independently of &, we have (setting & = 0)

Pw(0, x,)

~ W + const. (da)|__C(vs ) &0 W) s, —

d 1—mj yn) - tz—D]—ldyn ’

where | W¢| < const. (independent of ¢). Now this last integral may be
written as I, + I, the two parts corresponding to the ranges —e <
Y, < 1/2 and 1/2 < y, < 1 (the integrand vanishes for y, < —¢ and
¥, > 1). At this point we set , = 0. Then since (d*™i/dy*~™))*(y.,)
=( —m;)! for y, >¢ and |y, — tr,|™* < 4 for y, > 1/2, I, is easily
estimated as

| I(0, t) | < const. (I — m;)!

For I, we obtain

const. 1,(0, t) = (AaJ)S D [—y, — tr]"dy,
= —(da;)(D* "N (¥,)) log (—y, — tz))]s +
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+ (40| "Dy log (—y. — tzady,
— —(da)(t — m,)! log (~1/2 — tz)
+ (o) D=mir(y,) log (v, — te)dy, -

The first term in the last expression is independent of ¢ and t. By
construction, D!=™i*'p*(y,) is a nonnegative function vanishing for

|Y,] > ¢ sueh that Se Dritipdy, = (I — m;)!. Since 7, is imaginary,

—Relog (—y, —tt,) = §[log (v + [z, [) [ = 4 |log (¢" + ¢*[ 7y [)) |

for ¢ and ¢ small enough and |y,| < e. Therefore the last integral
in the expression for (0, t) is unbounded as ¢ and ¢ approach 0, and
the theorem is proved.
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