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Introduction. Let H be a Hilbert space and P an operator with
{IP]] =1. Our main problem is to find the weak limits of P"x as
n — oo, This is applied to Markov Processes and to Measure Preserving
Transformations.

Markov Processes. Let (2, Y, 1t) be a measure space. Let x, be
a sequence of real valued measurable functions on 2 and:
1. (2, .€ANZ,a€B) = p(x,c ANz, B).
2. Conditional probability that x,c A given x, and x;, ©1 < j <k, 18
equal to conditional probability that x,e A given x,.
Let I(o) denote the characteristic function of o. Define P(n) by
linear extension of:
P(n) I(x, e A) = Conditional probability that x,€ A given x,.
Then:
1. PO =1
2'. P(m) = PQ)".
For details see [1] and [2].
We will study limits of

(PQ)" I(x, € A), I(x,€ B)) = ((x, ¢ ANz, € B) .

Many of the results here appear in particular cases in [1,][2] and [3].

1. Reduction to unitary operators. For every x¢ H
|| P**PEP gy — P x| < 2||P"x||* — 2 Re(P**P*P"xPx)
= 2(|| Pz |} — || P***z[) — 0
b. ||P¥*P**P*x — P x||* < || P**P*P"*x — P *z|]* — 0.

n—r0co

Therefore:
If weak lim P"x = y then P**P*y = P*P**y = y (here and elsewhere
n; or m; will denote a subsequence of the integers). This means
lyll = || P*y|| = || P**y||. Notice that if P*Px =2 then |/Pz|*=
(P*Px, z) = ||z||*. On the other hand

|| Pz|* = (P*Pa, ) < || P*Pa|| ||x|| < || since [|P| = 1.

Hence if ||Pz|| = ||z]|] then (P*Px,x)=|P*Px||||z| and thus

P*Px = x,

THEOREM 1.1. Let K = {x|||P*x|| = ||P**zx| = ||z||k=1,2, ---}
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then K 1is a subspace of H, invariant under P and P*. On K the
operator P is unitary. If x | K then

weak lim P*x = weak lim P*"x = 0 .

n—oco n—oo

Proof. It is only necessary to prove the last part. If 2 | K and
y = weak lim P*x then by the preceding remark y € K hence y = 0.
Now from the weakly sequentially compactness follows: weak lim
Prx =0,

This theorem is a consequence of Theorem 2 of [9] and was
reproduced here only because of the elementary proof.

If F is the selfadjoint projection on K and H is finite dimensional,
then F' is the spectral measure of the circumference of the unit circle
in the sence of Dunford’s spectral theory, with respect to P. This is no
longer true when H is infinite dimensional and P a spectral operator
(even a scalar type operator) in the sense of Dunford. These remarks
are proved in [4].

LeMMmA 2.1. Let y = weak lim Pz, Then ||y|]* < lim sup |(P"z, x)|.

Proof. Let x =u + v where we K and v | K. Then
y = weak lim P*u, lim sup |(P"x, x)| = lim sup |(P"u, #)]. Now

\(y, Pw)| = lim [(P™u, P*u)| = lim |[(P™~*u, u)]

since ue K. Thus
[l¥1]* = lim |(y, P™w)| < lim sup [(P"u, w)| .
This could also be written in the form

lim sup |{(P"%, ?)| = ||2|| lim sup |(P"x, x)['* .
DeriniTION A. Let H, = {z|lim (P"z, z) = 0}.

THEOREM 3.1. x ¢ H, if and only if weak lim P*x = 0, if and only
tf weak lim P**x =0, The set H,is a closed subspace of H containing
KL, If T commutes with P or with P* and x ¢ H, then Twxec H,.

Proof. The first parts of the theorem follow from Lemma 2.1
and Theorem 1.1. Now if TP = PT and P"z——s0 then P*Tx =
w
TP*x — 0.
Applications.

1. Markov processes,
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a. If limpr,cANx,cA)=0 then limpzx,cANz,cB)=0 and

n— oo n—oo

lim p(x,e AN 2, e B) =0 for every set B.

b. Let lim ¢(x, € A N x,€ A) = p(w, € A, Put o = I(x,€ A) — (x, € A).
(Provided that /#(2) < o« so that 1¢ L,).
Then

(PQ) =z, 2) = (I(z. € A) — pUx, € A), I(x, € 4) — (2, € A))
=pmx,cANwx,€A) — t(r, € A — 0.

Thus for every Borel set B:
lim (I(x, € A) — ((x, € A), I(x, B)) = 0
or
mx, e AN x,eB)— wx, e A) ({z, € B) .
Similarly

mr,e ANz, € B)— (e, € A) {(x, € B) .

2. Measure preserving transformations. Let ¢ be a M.P.T. on
K, 2,m. If wop™(4)n A)— 0 then

lim pe(p~(4) 0 B) = lim (A 0 ¢7(B)) = 0 .
if lim p(e(4) N A) = (A)* and ¢ (£2) < o then
t(e~(4) N B) — ((A)UB)
(A N p~"(B)) — MA)MB) .

3. Measure theory. Let /t be a positive finite measure on Borel
subsets of (0, 27). Define the operator P by Pf(¢) = e’f(¢#). Then H,
is the set of all functions f such that

| e 1) — 0.

Let fe H, and A, = {¢#||f(J)| = ¢}. Define g. = 1/f on A. and zero
elsewhere. Finally let

Th(H) = g(Hh() .
Then T. commutes with P and by Theorem 3.1

S ¢ I1(d3) — 0
4

where 4 = U A..



554 SHAUL R. FOGUEL

By taking unions of such sets one can prove:
There exists a set B such that for every h whose support is contained
in B a.e.

Sem | B() Pre(d5) — 0
and this holds only for such functions.

2. DPositive contractions. In this section we assume that H is the
real Hilbert space L,(2, ¥, ¢t) where ¢# = 0 and ©#(2) = 1. An operator
S will be called positive if:

a. If f=0 a.e. than Sf = 0 a.e.

b. S1=1.

c. |IS|l=1.

We will assume that P is positive. It is easily seen that so are
P*, P*P*" gnd P*"P~.

LEMMA 1.2. Let S be a positive operator on L2, X, 1t). The space
L ={f|Sf = f}

is generate by characteristic functions of a o subfield, X', of 3:
feL if and only if f is 2’ measurable.

Proof. Let 2 contain all o € 2 such that SI(o) = I(6). If Sf=f
then

WA = (SIFL D = 6SF A = AP

hence S|f|=|f| therefore if f, gc L so do max (f, g) and min (f, g).
This shows in particular that 2’ is a field and since L is closed it is

a o field.
Now if fe L so does f — ¢ for any constant, thus it is enough to

show that
{w|f(w) >0ed:

Let £, be the positive part of f, 2f. =|f|+f€ L. Thus e'min (¢, f*)e L
but as ¢ — 0 this converges to I{w|f(w) > 0}.
This Lemma was proved in [8].

THEOREM 2.2. The space K is generated by characteristic functions
of a o subfield X, of ¥. If oceZX then PI(o) = I(tr) where t€Z,,

similarly for P*.

Proof. The space K is the intersection of the space
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{FHpPfit=1ry FHe=rl=I1s1t n=1,2,---

By Lemma 1 each of this is generated by a ¢ subfield of 3. Thus
K is generated by the intersection of these subfields.

Now if €2, then ¢’ = 2 — o€ X, too. The functions P(I(g)) and
P(I(0")) are positive, bounded by 1 and (P(I(0)), P(1{a"))) = (P*P(I(0)),
I(0")) = (I(0), I(c")) = 0. Moreover P(I(0)) + P(I(¢')) =1, therefore,
both functions are characteristic functions. As K is invariant under
P these are characteristic functions of sets in X..

Let I(A) and I(B) belong to K. Then

P(I(4)-1(B)) = min {P(I(A)), P(I(B))} = P(I(A))-P(I(B)) .
‘On the other hand
P*[(P(I{A))- P(I(B))] = I(A)-I(B)
.0r
P(I(A))-P(I(B)) = P(I(A)-I(B)) .
"Therefore
P(I(A)-1(B)) = P(1(A))-P(I(B)) .

It could be shown that if f, g€ K and f-ge€ L, then P(fg) = Pf:Py.
Thus if Pf = af and Pg = Bg where |a|=|8|=1 then f,ge K
-and if f-g L, then P(fg) = aBfyg.
If Pf = af where || =1 let f =|f|h then:

WA = (LI D) =2 P F O = IFIP.
"Therefore, P|f| = |f| necessarily Ph = ah. It follows that
P(fIp") = a’|f|h*.

This is a Theorem of [8].
Following [1] let us define:

Doeblin’s Condition. There exists a positive finite measure v define
-on 3, and a positive ¢ such that: If v(o) < ¢ then for some m either

P (o) < (o)
o7
WP**(I(o *|| < (o) .

Using the same arguments as in Theorem 8.11 and its corollaries
-of [1] we conclude.
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THEOREM 3.2. If Doeblin’s condition holds then 2, = {o,, --+, 0,}
where o, are disjoint sets such that

1. .0, =0

2. P*(l(0)) = I(o;) = P*"(L(0)).

3. The operator P(P*) acts as a permutation on the o, sets.

4. For each f,¢9,€ L,

lim (P47, 9) = 30 | f(@ynido) | | g(@)ndo)

where P, denotes the set whose characteristic function is PY1(c;)).

Thus if %, is a Markov process and ¢(£2) = 1 then
lim 100 € A 0 20€ B) = 3 p0) 1w, € A 0 o), € B Plo) .

For detailed proves of these results and treatment of the case ((2) =
o in the case of Markov processes see [1] and [3].

Measure Preserving Transformations. Let @ be a measure pre-
serving transformation on (£, 2, £). The operator P is defined on
L2, 2, 1) by Pf = g where g(w) = f(®{(w)). It is a positive contraction.
Thus the space K is generated by all characteristic functions f
that satisfy ||P*"f|| = ||f||, for P is an isometry. Let the restriction
of P to K be denoted by U and let 2, be the Boolean algebra that
generates K. On 3, @ acts like a measure preserving invertable trans-
formation. (It maps X, onto itself).

We will use here the terminology of [5]

THEOREM 4.2. The transformation @ on X is ergodic, weakly
mixing or strongly mixing, if and only if, @ on X, is ergodic, weakly
mixing or strongly mixing, respectively.

Proof. It is clear that if P satisfies any of the requirements so
does U. Conversely:

a. Let U be ergodic. If P was not then for some nonconstant
function £, Pf = f. But then P*f = P*"f = f and feK, so U is not
ergodic.

b. Let U be weakly mixing. Given f = f, + f, where fic Kf, 1 K
then for every ¢

LS @ero-veo =8 @Eno- el

+ 1
n 7

S IPf 0) — (£ DL, 0 -
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The first term tends to zero because U is weakly mixing and g
can be replaced by the projection of g on K. The second term is equal to

1 n—1
= > (P’fy 9)|
n =0
for (f,, 1) = 0. Thus it tends to zero with (P"f,, 9).

c. Let U be strongly mixing. Put again f = f. + f. P"f, tends
weakly to (f, )1 =(f,1)1 and P"f, tends weakly to zero.

COROLLARY. The transformation ¢ is weakly mixing, if and only
if, P has on the unit circle no eigenvalue except for 1 which is a
stmple eitgenvalue.

This generalizes the ‘Mixing Theorem’ in [5] page 39.

Proof. The operator U satisfies the same condition and by the
‘Mixing Theorem’ is weakly mixing. By the previous theorem so is P.

3. The space H,.

DEFINITION. H, = {x|x € K and the set Prxn=1,2, -+ 18 con-
ditionally compact}.

The set H, is a subspace of H, invariant under P and P*, P"ix
converges for we K iff (P™x, P"ix) —.,, . e 2P This is equivalent
to (P*"ix, P*"ix) — ||2||* because P is unitary. Thus P could be replaced
by P* in the definition.

THEOREM 1.8. The following conditions are equivalent:
a. xz€ K and P"x contains a convergent subsequence.
b. There exists a subsequence m; such that x = lim P™ux,
¢. limsup|(P*x, x)| = |||

Proof.
a="0: Let P"x —y then
2 |* = [ly]]" = lim (P™, P"i-1x) = lim (P"i-»i-2, x)

because x € K.

Hence ||z — P i-ni-1z|| — 0.

b= c¢: obvious.

c=a: Let lim|(P*x, ) = ||z|* and weak lim P*x = y. Then
I(y, )] = ||2||* while ||y|| <||=|| hence y = ax where |a|= 1.
From [7] page 79 P*ixz converges strongly to ax. Finallif Ze H, then:
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(Z, ) = lima~(Z, P"xz) = lima~(P*"iZ, %) =0 .
It is clear that if x € H, then condition (a) is satisfied hence the:
other conditions. In particular H, | H,.
THEOREM 2.8. If xe€ H, and y = lim,_., P"ix then there exists a.
subsequence k; so that

¢ = lim Py ,

Proof Let k; be chosen so that
¥ = lim Pritkig |
Then
lim{|o — P*y|| = lim||P"x — y||=0.

4. Finitely many limits, Let « be such that the sequence (P*z, x)
has finitely many limits. Let these be ¢,, ¢, -+, ¢, where |¢;| < |¢;4y].

DEFINITION C. L = {2|P"z2 = z for some n}. If ze L then aze L.
If ze L and y€ L then:

Pz=z, Py=y=P"e+y)=z2+y.

Thus L is & linear manifold, also L ¢ H,.

If ze H let {}° be the set consisting of z alone and {z}* be the
set of all weak limits of P™y where y e {z}".

Let © = x, + x, where x,€ Hyx, | H,., Then

(anv x) = (ano, xo) + (P”xh xl)’ hm (anov xo).: 0 .

Thus we will assume that x 1 H,.
LEMMA 1.4. For some k {x}* N L =+ 0.

Proof. Let 0+ ye{x}' then for every n (y, P"x) is equal to one:
of the values ¢; and:

a. For every n =0 (P"y, y) can assume only the values ¢;
1<i=r.

Let (y,y) =|c:|. If for some k |[(P*y, y)| = (¥, ¥) then Pty = \y
with |A] =1. Thus A must be a root of one for (P*y, y) = \"(y, ¥)
assumes finitely many values. Therefore in this case ye L.

If |(P*y, )| < (y, y) for every n then

lin; sup [(Py, )| < (¥, 9) .
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Also limsup (P*y,y,) =0 for y | H,, Thus we may choose a
subsequence n; so that Py will converge weakly to z # 0. Now z
satisfies a and ||z]| < ||y|| by Lemma 2.1.

This procedure cannot be continued more than 7 times thus at
some stage we must get an element of L.

LEMMA 2.4. If u is the projection of x on L then w¢€ L.

Proof. Let 0+ ye{x}* N L. Then ye{u} + {x — u}*. NowyelL
ande —w | L. Also L is invariant under P and P* hence {x — u}* | L
and y e {u}*. By Theorem 2.3 u ¢ {P"y} which is a finite set in L.

THEOREM 3.4. If the sequence (P"x,x) has finitely many limits
then ©x = x, + x, where x,€ H, and x, ¢ L.

Proof. Let x, = u + v where we L (by Lemma 2.4.) and v | L.
Now (P™v, v) = (P™x,, ) — (P™u, u) has finitely many limits and by
Lemma 1.4 cannot be orthogonal to L unless it is zero.

If limit (Pz, ) exists then Px, = x,.

If L is one dimensional (for instance ergodic transformations) then
the conditions of Theorem 3.4 imply that Pz, = x,.

THEOREM 4.4. Let A = {x the sequence (P"x, x) has finitely many
limits}. If linear combinations of elements of A are dense in H, then
the eigenvalues of P on the circumference of the unit circle, are roots

of 1.

Proof. Let Px = xx where [N =1. Let x,€6 A and y = Za;x;
where ||x — y|| < 1/2]]]|.
Since z | H, we may assume that for some integers k; Pz, = x,.
Hence for k = kk, --- k, we have Pty = y. Thus
Nemg = Prmy = ¢y + P*™(x — y) .
Therefore
P — 1zl < [IVre -yl + |y — 2] < |[=]] .

This equation cannot be satisfied for all values of m unless \* is a
root of 1.

5. Semi groups of contractions. Let P(t) be a strongly continuous
semi group of contractions 0 < ¢t. For every o > 0 P(0) defines the
subspace K(0) as in Theorem 1.1.

LEMMA 1.5. z € K(0) if and only if
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NPl = |P@)* x| =zl 0=t<eco.

Proof. Trivially the condition is sufficient. If x€ K(9) and ¢ =
no then

lz]] = || P(nd)z|| = || P(nd — t) P(t)z|| = || P(O)x]| = ||| .
Thus ||P@®t)x|| = ||2]|] and similarly ||P@)*z|| = {|«]|.
Thus all the spaces K(5) are the same and will be denoted by K.
THEOREM 2.5. The space K is invariant under P(t) and P(t)*

for all t. On K P(t) is unitary. If x | K then
weak lim P(t)x = 0

t—ro0

and by symmetry

weak lim P(t)*x =0 .

t—o0

Proof It was shown that K = K(¢) hence by Theorem 1.1 K is
invariant under P(¢) and P(t)* and P(t) is unitary on K.
Let # | K and let ye H and ¢ > 0 be given. Choose 7 so that

|P(s)e — x|l <e if s=<7.
Choose 7, so that
[(Pn)e, y)| <e if n=mn,.
This is possible by Theorem 1.1. If
(n+1nz=tzny>ny
then

(P, y)| = [(P(n)x, y)| + [(P(t)z — P(n)), y)| .

The first term is less than ¢ because n > n,. The second term
is bounded by

gl P — Py || = [ly [ || P(n)) (P — n))z — @) ||
=yl P — nn)r — x|l = [lylle

for 0 =t—nn =7
This is proved also in [9] Theorem 4.
Let us assume in this section:
(*) For some t, > 0 the operator P(t,) P(t,)* is the sum of a compact
operator and an operator of norm less then one.
This is equivalent to:
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(**) For some 0 <t, the point 1 1is isolated im the spzactrum of
P(t,) P(t,)* and the space of eigenvectors «corresponding to it is finite.

It is clear that (**) implies (*). Now if 1 is not an isolated point
of the spectrum, with finite eigenvectors space, there is a sequence
of orthonormal vectors x, such that

P (t) P(to)*@s — @a|l — 0 .
(We use here the fact that P(¢,) P(t,)* is self adjoint). Let
P(,) P(t)*=A+ B
where B is compact and ||A|| < 1. Then
|| Az, + Bz, — x,||—0 .
But B is compact hence Bz, — 0 hence
|Az, — || — 0

and 1 is the spectrum of A contrary to assumption.
It is easily seen that P(¢) P(¢)* satisfy, also, the condition if t >ty
P@) P(t)* = P(t — t)P(t)P(t,)*P(t — t,)*. Let

K(t) = {=|l| P@®)*x|| = |||} = {z| PO)P(t)*x = «} .
Then K(t,) c K(t,) if ¢, >t, and K(¢) is finite dimensional when
t =%,

For some s > 0 dim K(s) is minimal hence K(s) = K(s + h) for all
h = 0. Let us denote K(s) by K.

LeEMMA 3.5. The space K is invariant under P(h)* and P(h) for
all b > 0.

Proof. If xe K then xe K(s + h) hence
[|P(s + h)*z|| = ||=]|
hence
|l = [[P(s)*P(h)*x|| = || P(h)* @] < |||

or P(h)*xz € K.

Now on the finite dimensional space K, the operator P(k)* is norm
preserving and therefore onto.

If e K then for some ye K P(h)*y =« and ||z|| = ||y|l. Thus
P(h)x = ye K.

We may assume that s = ¢,

The subspace K*' is also invariant under P(t) and P(¢)*. Now
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P(s) P*(s) is quasi compact on K and
(P(s) P*(s)x, ) <1 zeK*.

Hence on K* ||P(s)||=c < 1:

The operator P(s) is quasi compact on H (in the sense of (*).
Let A be the infinitesimal generator of P(t) then:
1. On K the operator (1/2)A is self adjoint.
2. On K+

o(A) T {M| Re\ < @y}
where
w, = limt*log || P(®)|| .
t—oo
See [6] corollary to Theorem 11.5.1
Now

w, = lim(ns)™ log || P(ns)|| < lim(ns)™*log || P(s)||" < s'logec < 0.

n—roco
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