SIMPLE PATHS ON POLYHEDRA

JOHN W. MOON AND LEO MOSER
In Euclidean d-space ($d \geq 3$) consider a convex polytope whose $n(n \geq d + 1)$ vertices do not lie in a $(d - 1)$-space. By the "path length" of such a polytope is meant the maximum number of its vertices which can be included in any single simple path, i.e., a path along its edges which does not pass through any given vertex more than once. Let $p(n, d)$ denote the minimum path length of all such polytopes of n vertices in d-space. Brown [1] has shown that $p(n, 3) \leq (2n + 13)/3$ and Grünbaum and Motzkin [3] have shown that $p(n, d) < 2(d - 2)n^\alpha$ for some $\alpha < 1$, e.g., $\alpha = 1 - 2^{-19}$ and they have indicated how this last value may be improved to $\alpha = 1 - 2^{-16}$. The main object of this note is to derive the following result which, for sufficiently large values of n, represents an improvement upon the previously published bounds.

Theorem.

$$p(n, d) < (2d + 3)((1 - 2/(d + 1))n - (d - 2))^{\log 2/\log d} - 1 < 3d \, n^{\log 2/\log d}.$$

When $d = 3$ the example we construct to imply our bound is built upon a tetrahedron which we denote by G_0. Its 4 vertices, which will be called the 0th stage vertices, can all be included in a single simple path. Upon each of the 4 triangular faces of G_0 erect a pyramid in such a way that the resulting solid, G_1, is a convex polyhedron with 12 triangular faces. This introduces 4 more vertices, the 1st stage vertices, which can be included in a single simple path involving all 8 vertices of G_1. We may observe that it is impossible for a path to go from a 1st stage vertex to another 1st stage vertex without first passing through an intermediate vertex of a lower stage and there are only 8 such vertices available.

The convex polyhedron G_2 is formed by erecting pyramids upon all the faces of G_1. Of the 12 2nd stage vertices thus introduced at most 9 can be included in any single simple path since, as before, no path can join two 2nd stage vertices without passing through an intermediate vertex of a lower stage and there are only 8 such vertices available.

The procedure continues as follows: the convex polyhedron G_k, $k \geq 2$, is formed by erecting pyramids upon the 4.3^{k-1} triangular faces of G_{k-1}. Making repeated use of the fact that the method of construction makes it impossible for a path to join two vertices of the jth stage, $j \geq 2$, without first passing through at least one vertex of a lower stage we find that at most 9.2^{j-2} of the 4.3^{j-1} vertices of the

Received July 20, 1962.
jth stage, $j = 2, 3, \cdots, k$, can be included in a single simple path along the edges of G_k. This and the earlier remarks imply that G_k, $k \geq 1$, has $2 \cdot 3^k + 2$ vertices and at most $9 \cdot 2^{k-1} - 1$ of these can be included in a single simple path.

For any integer $n > 4$ let k be the unique integer such that

$$2 \cdot 3^k + 2 < n \leq 2 \cdot 3^{k+1} + 2. \quad (1)$$

Next consider the convex polyhedron with n vertices which can be obtained by erecting pyramids upon $n - (2 \cdot 3^k + 2)$ faces of G_k. Then, from considerations similar to those given before, it follows, using (1), that

$$p(n, 3) \leq 9 \cdot 2^k - 1 < 9((n - 2)/2)^{\log_2/\log_3} - 1. \quad (2)$$

This suffices to complete the proof of the theorem when $d = 3$ since the result is trivially true when $n = 4$.

In the general case the construction starts with a d-dimensional simplex. Upon each of its $(d - 1)$-dimensional faces is formed another d-dimensional simplex by the introduction of a new vertex on the side of the face opposite to the rest of the original simplex in such a way that the resulting polytope is convex. This process is repeated and the rest of the argument is completely analogous to that given for the case $d = 3$. It should be pointed out that the result of Grünbaum and Motzkin holds even for graphs all of whose vertices, but for a bounded number are incident with 3 edges, while in the polytopes described above the distribution of valences is quite different.

In closing we remark that the path length of any 3-dimensional convex polyhedron with n vertices is certainly greater than

$$(\log_3 n/\log_2 \log_2 n) - 1.$$

Suppose that there exists a vertex, q say, upon which at least $\log_3 n/\log_2 \log_2 n$ edges are incident. Let the vertices at the other ends of these edges be p_1, p_2, \cdots, p_t, arranged in counterclockwise order. Each pair, (p_i, p_{i-1}), $i = 1, \cdots, t - 1$, of successive vertices in this sequence determines a unique polygonal face containing the edges $p_{i+1}q$ and $q p_i$. Traversing this face in a counterclockwise sense gives a path from p_i to p_{i+1} involving at least one edge. Since these faces all lie in different planes it is not difficult to see that these paths may be combined to give a simple path from q to p_i to p_t whose length is at least $t \geq \log_3 n/\log_2 \log_2 n$. If there is no vertex upon which this many edges are incident then the required result follows from the type of argument used by Dirac [2; Theorem 5] in showing that the path length is at least of the magnitude of $\log n$ if only a bounded number of edges are incident upon any vertex.
BIBLIOGRAPHY

University of Alberta
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.