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In a previous paper [1] we established a condition (Theorem I) for
real numbers such that, in a linear space of dimension at least 2,
every point of a 2-bounded set can always be represented as a sum
of boundary points of the set, multiplied by these numbers. It is
natural to ask for the corresponding condition in the case of complex
numbers. Multiplication of a point by a real or complex number can
be regarded as a special similarity. A more general theorem in which
these similarities are replaced by linear transformations, or operators,
will be proved in the present paper.

DEFINITION. Let B be a real Banach space with conjugate space
B'. Let ScBand #eB’, ||2'|] =1. The «’-width of S is

w,(S) =xs:1£ (x — y)a', w,(¢) = —o0 .

The width of S is w(S) = inf w,.(S).

Let 2 be a linear transformation of B and UA* the adjoint operation
on B’ defined by x(x'%*) = (WA)x’. Then 2'A* =0 or we can define
oy = o' A*[|| 2" A* ||

In the following all sets are assumed to be in a real Banach space.

LemMmMa 1. (1) If S is bounded then w,(S) is a continuous
Sfunction of .

@2 w, (S+ T)=w,.(S)+ w,(T) (with the proviso that —oo
added to anything—even -+ co—is — ),

3) If S has interior points then w(S) > 0.

0 if wua*=0;
(4) ww’(s?l): VR N P 3k
we (S) -l @A || if &'U* 0.,

The proofs are all obvious.

LEMMA 2. Let T be a connected set so that no translate of — T
18 contained in the interior of S, then S+ T T+ bd S.

Proof. Let s€ 8, te T, then s + t — T contains s€ S but is not
contained in the interior of S. Hence (s +¢ — T) N bd S is not empty
and s+ T T+ bd S.
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LemMMmA 8. If S is bounded and —eclScint T then mo translate
of —clT s contained in int S.

Proof. For one-dimensional spaces this is obvious since the hy-
pothesis implies diam S < diam 7. If the lemma were false then
a —clTcint S for some point a. The mapping & — a — x leaves the
lines through a/2 invariant and the contradiction follows from the
fact that the inclusion is false for the intersection of the sets with
such lines [ for which [ Nint S # ¢.

LEMMA 4. Let w,(S) < o, let T be a connected set, and let
U=(S+ T)(T+ bdS), then

w,(U) = w.(S) — w.(T) .

Proof. If w,(T)= o then S+ Tc T+ bdS by Lemma 2. If
w,(T)< o let a =inf,cgs%’, b =sup,eys®’, ¢ =inf,e, @', d =sup,epta’.
If seS, te T so that (s + t)»’ < a + d then s + ¢t — T contains s in
S and inf, ¢, (s + ¢ — t,)2" < a so that s + ¢ — T contains points in the
complement of S. Since s+ t— T is connected it follows that
s+t—T)NbdS+#¢ or s+teT+ bdS. Thus inf,cp ux’ = a + d.

Similarly, if s€8S, teT and (s+t)x’ >b+c then s+t— T
contains s € S while sup,er (s + ¢ — ¢,)&" > b so that s + ¢ — T contains
points in the complement of S. Hence (s+t— T)NbdS +# ¢ and
s+teT+ bdS. Thus sup,ey ux’ < b + ¢, and hence

w,(U) =supux’ —infur’ <(b+¢)—(@a+d)y=(0b—a)—(d—c¢)

weT uely

= wz'(s) - wz(T) .

DEFINITION. Let S be a bounded connected set in B. The outer
set, oS, of S is the complement of the unbounded component of the
complement of S and the outer boundary, obd S, of S is the boundary
of 0S. Clearly obd Scbd S and if dim B = 2 then obd S is connected.

THEOREM 1. Let S, S,, -+, S, be bounded connected sets in B
with dimB =2 so that no translate of —cl oS, is contained in
intoS;(t =2, ---,n). Then

wxr((sl + Sz + e + Sn)\(obd Sl + Odez + ¢ + Obds,,,,))
= WA(S) — wal(S)) — -+ — wAS,) .

Proof. By repeated application of Lemma 2 we have S, + -+ +
S,co0S,+ -+« +0S,c0S,+obdS;,+ --+ +0bdS, and the theorem
follows from Lemma 4 where oS, plays the role of S and obdsS, +

- + obd S, that of T.
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COROLLARY. If S, ---, S, satisfy the conditions of Theorem 1
and in addition for each i there is an &} so that w, (S;) < S W, (S;)
then S, + --- + S,CobdS, + -+ + obd S,.

DEFINITION. Let B be a real Banach space with dimB =2, A
'gset of bounded linear operators 2, --., U, is admissible if for every
bounded set Sc B and every point pe S there exist outer boundary
points z,, ---, 2, € obd S such that

p=a + -+ 2,2, .
THEOREM 2. If a set U of operators A, ---, N, is admissible then

(i) W+ --- + A, = _7, the identity.
(ii) For each i there ewists an ' € B’, ' + 0 such that

A || = 211 «" A7
g7

If B is finite dimensional, dim B = 2, and N satisfies (i) and
(ii’) |2 || = S &"A7 ], t=1-n
for all x' € B’ then A is admissible.
Proof. The necessity of (i) and (ii) is nearly obvious. If ¥, 4
-+ A~ ~, let peB be a point which is not invariant under

A+ oo + A, and let S = {p}.
If S is the unit ball of B and

0=2%+ - +2f, |o|=-=|lz]=1
‘then
|22’ || = g] I 222" ||
or
oA || = ;}#Ilex"?l? Il
Now if inf,,,_, [|2%;|| = 0, then for every ¢ > 0 there exists an
z' with || #'|| =1 and || 2’} || < e and (ii) is trivial. If inf,,,., || 2] >0
then 2} is onto and we can pick «’ so that ||z’ || = ||« A || and

hence || @'UF || = Sl || 0" US || = Djous || £"AT ||

To prove the sufficiency of (i) and (ii’) we may restrict attentlon
to connected sets since we may consider the component of p in S.
Let S; = SU;. If for each S; there is an S; so that s+ and no
translate of —clS; is contained in int S; then according to Lemma 2
we have
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ScS+ -+ 8, coS + .-+ +08S,
cobdS;, + (oS, + «-+ + 08S,)
cokdS, +obd S, + (0S; + --- +0S,)C -
cobdS, + -+ +obdS, .

Since B is finite dimensional we have obd S; = (obd S)2; so that
S c (obd S)A, + --- + (obd S)U,

which was to be proved. We may therefore assume that —eclS; has
a translate in int S, for each § = 2, ---, n. Then according to Lemma 3
and Theorem 1

(1) W ((S; + «++ + S )\(obd S, + +«- + obd S,))
= W (S) — weA(S)) — -+ — woA(S,) .

Since S; has an interior 2, and hence A, are regular and we
can choose &' so that w, (S)= w(S) where x; = 2" U}/||2A¥|[. By
part (4) of Lemma 1 we have w,(S;) = w(S)-||#’¥;||. Thus (1) becomes.
w,((S; + +++ SIN\bd S, + +++ + obd S,)) = w(S)(J| 2'Af || — ; [ 2”25 1)

=0
go that (S, + -+« + S,)\(cbd S, + --- + obd S,) has no interior points

and is therefore empty since obd S, + --- + obd S, is closed. So we
have again

ScS + -+« +S8,cobdS, + +-- -+ obd S,
= (obd S)U, + +++ + (obd S)U, .

REMARK. The hypothesis that B is finite dimensional can be
dropped if we assume that the mappings 2; are onto. If the Y, are
similarities of B onto itself then (ii) and (ii’) have the same simple
form

(ii”) %11 < S 1% i=1-m.

We thus have the following:

THEOREM 2. A set of similarities U, ---, A, of a Banach space
B of dimension at least 2 onto itself is admissible if and only if it
satisfies conditions (i) and (ii”).

In the manner analogous to that used in [1] we can generalize the
validity of Theorem 2 to a class of linear spaces which we define as
follows.
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DEFINITIONS. Let B be a linear space and let &% be a family
of linear transformations of B onto itself so that & is transitive on
the nonzero elements of B. A B-space S is a linear subspace of a
(finite or infinite) direct product of copies of B that is closed under
simultaneous application of &% to the components of a point. If z,
yeS and y # 0 then {x + yF|Fe #} is a B-subspace of S. The B-
subspaces can be given the topology of B by the association x+yF —zF,
ze€ B, z #+ 0 where the choice of z is arbitrary due to the transitivity
of & . We can therefore define boundedness in B-subspaces (if bound-
edness is defined in B) and a set in S is B-bounded if through every
point of the set there is a B-subspace whose intersection with the set
is bounded.

THEOREM 3. Theorem 2 remains wvalid for B-bounded sets in a
B-space where B satisfies the conditions stated in Theorem 2. If B
18 one-dimensional then the same theorem holds for sets which are
2-bounded (im the sense of [1]) and satisfy the other conditions of
Theorem 2.

This is an immediate consequence of Theorem 2 if we consider
the bounded intersection of S with a B-subspace through a point p
of S.

Theorem 3 applied to the conditions of Theorem 2' subsums the
results of [1]. As one application we give the following:

THEOREM 4. Let f(z) be analytic in a proper subdomain D of
the Riemann sphere and continuous in clD. Let «,, «--, a, be complex
numbers satisfying

(i) W F e fa, =1
and
(i) |ai1§;j\aj]-

Then for every z,€ D there exist z,, ---, 2z, in bd D such that

F@) = af(z) + - + a,f(z,) .
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