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1. A meromorphic function of bounded characteristic in a disk
is the quotient of two bounded analytiec functions. This classical
theorem can be extended to open Riemann surfaces W as follows.
Consider the eclass MB of meromorphic functions w of bounded
characteristic on W, defined in terms of capacity functions on sub-
regions. Let L be the class of harmonic functions on W, regular except
for logarithmic singularities with integral coefficients. Then we MB
if and only if log |w| is the difference of two positive functions in L.
We shall construct these functions directly on W, without making use
of uniformization.

The proof offers no essential difficulties. If log |w]| is regular
at the singularity of the capacity functions, then the classical reasoning
carries over almost verbatim. In the general case we introduce the
extended class M, of locally meromorphic functions e***", we L, with
single-valued moduli. This class seems to offer some interest in its
own right.

2. The class O,,; of Riemann surfaces not admitting nonconstant
M,B-functions coincides with the class O, of parabolic surfaces.
Regarding the subclass MBc M,B and the strict inclusion relations
Ogz < Oyz < O, we refer to the pioneering work on Lindelofian
maps by M. Heins [2, 3] and M. Parreau [4], and the doctoral dis-
sertation of K. V. R. Rao [5].

§ 1. Definitions.

3. Let W be an arbitrary open Riemann surface. Given {e W
let 2, €2, be a relatively compact subregion of W whose boundary
B, consists of a finite number of analytic Jordan curves. The Green’s
function on £ with pole at { is denoted by g.(z, (). For 2,C 2 we
have g, = ¢o in 2, and lim,_; go(2, {) either =co or else = the Green’s
funetion g(z, ) of W. By definition, the class O, of parabolic Riemann
surfaces consists of those W on which no g(z, {) exists. An equivalent
definition of O, is that there are no nonconstant nonnegative super-
harmonic functions on W.
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4. The capacity function p.(z, () on £ with pole at { is defined
as the harmonic function with singularity

po(2,0) —log |z — L] —0
as 2z — { and such that
pg(z, C) = ]C_,_, = const. on Bg .

It is known [1] that k., = k., and the limit k; = lim k, is thus well-
defined. A necessary and sufficient condition for We O, is kg = oo,

5. Let M be the class of meromorphic functions w on W. The
proximity function of w is defined [7] as
-
(1) m(@, w) = m(Q, ) = o=\ log|w|dpi .
21 Jee

If B, is the level line p, = h, — < h < k,, and n(h, o) signifies the
number of poles of w in 2,: p, < &, counted with multiplicities, then
the counting function is defined as

— S’i(n(h, ) — m(— oo, o W)dh + n(—oo, )k, .

The characteristic function is, by definition,
T(Q) = T(Q, w) = m(Q, w) + N, w) .
The function w has at { the Laurent expansion
3 w() = ez — O + eanale — QM+ -0,
¢, # 0, and the Jensen formula reads [7, 8]
4) TR, w)= TR, w™") + log e, .

6. We shall need a class M, more comprehensive than M. We
introduce:

DEFINITIONS. The class L consists of functions u on W, harmonic
except for logarithmic singularities \; log |z — 2;| at z;, 1 =1,2, ++-,
with integral coefficients N;. The subclass of nonnegative functions
wn L will be denoted by LP.

The class M, is defined to consist of (multiple-valued) functions
of the form

5) w = e¥tivt uel .



ON LOCALLY MEROMORPHIC FUNCTIONS 711

The conjugate function u* has periods around z; and along some
eycles in W. Every branch of w is locally meromorphie, the branches
differing by multiplicative constants ¢ with |[¢| = 1. The modulus
[w] is single-valued throughout W.

The quantities m(2, w), N(2, w), T(2, w), and the Jensen formula
carry over to M, without modifications [7]. We further introduce:

DEFINITION. The class MB(or M,B) consists of functions w in
M (or M, with bounded characteristics,

(6) T(2) = 0(1) .

Explicitly, one requires the existence of a bound C < o« inde-
pendent of £ such that 7(2) < C for all 2 < W. That (6) is inde-
pendent of { will be a consequence of a decomposition theorem which
we proceed to establish.

§ 2. The decomposition theorem.
7. We continue considering arbitrary open Riemann surfaces W.

THEOREM. A mnecessary and suffictent condition for we M,B on
W is that
) log|lw|=u— v,

where u, ve LP,

The proof will be given in nos. 8-18. As a corollary we observe
that we MB on W if and only if (7) holds.

8. First we shall discuss in nos. 8-11 the case w({) = 0 or oo,

Suppose we M, B. We begin by showing that We¢ O, If w(() =
oo, then

T(2) =z N©Q, w) 2 n(—oo, )k, = kg .

From We O, it would follow that k, — o as 2 — W and consequently

T(2) — oo, a contradiction. We conclude that We¢ O, If w({) =0,
then in Jensen’s formula

T(Q, w) = T(Q 1 )+ o)

, —
w

we have
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and arrive at the same conclusion W¢ O,.

On the other hand, if condition (7) is true, the existence of
nonnegative superharmonic functions u, v implies W¢ O,. Thus either
condition of the theorem gives the hyperbolicity of W, and we may
henceforth assume the existence of g(z,{) on W if w() =0 or co.

9. The functions

(8) @(Z) — e/\(ﬂ(z ¢)+igr(z &) ,
¢)] wy(z) = w(z)P(z)
belong to M,. We shall show:

LeEMMA. A necessary and sufficient condition for we M,B 1is
that w, e M,B.

Proof. By definition,
(10) TR, ) = N2, 9) + m(2, 9) .

For >0 we have trivially N(Q, ™) =0, m(2, ™) =0, hence
T2, =0, and it follows from Jensen’s formula that T(2, ) =
O1). If <0, then N(2,9) = m(2,®) =0, and T(2, ») =0, hence
TR, ™" = 0(1). In both cases

(11) T, ») =01, T(Q, ™) =0(1) .
The inequalities

T(Q, w) < T(Q, w) + T(Q, ) = T(R, w,) + OQ),
T2, w) = T(Q, w) + T2, ) = T(2, w) + OQ)

yield
12) TR, w) = T(Q, w,) + OQ)

and the lemma follows.
10. The following intermediate result can now be established:

LEMMA. A mnecessary and sufficient condition for
(13) loglw|=u—v
with w, ve LP is that
(14) log|w,| = u, — v,
with u,, v, € LP,



ON LOCALLY MEROMORPHIC FUNCTIONS 713

Proof. We know that
(15) log |w,| =log|w]|+ Ag =log|w|+ (m — n)g,

where n,, n.. are the multiplicities of the zero or pole of w(z) at {. If
(138) is true, then

(16) log |w,| = (u + ng) — (v + 1.g)
and (14) follows. Conversely, (14) implies
(17 log | w]| = (4, + n.g) — (v, + neg) .

This proves the lemma.,

11. We conclude that Theorem 7 will be proved for w with
w(l) =0 or o if we establish it for w,. Since w({) # 0, «, the
proof for w, will also apply to w with this property. Explicitly, we
are to show that w,ec M,B if and only if log|w.| = u, — v, %;, v, € LP,

12. Let p.. be the capacity function in £ with pole at z. For
a harmonic function 4 on 2 it is known [7] that

(18) h(z) = _21? Lgh dps. .

Denote by a,, b, the zeros and poles of win W. Thosein W —
are the zeros and poles of w, in W. Suppose first there is no a,, b,
on B,. Then the function

(19) W) = log | w(2) | + 5, gule, au) — 3 gs(e, b)

v

is harmonic on 2. Throughout this paper the zeros and poles are
counted with their multiplicities. We set

+
(20) wale w) = ——| log |w,|dp3.
T By
(21) Yoz, w) = > go(z, b,) ,
byeER—L
and
(22) U2, W) = T2, Wy) + Yol2, W,) .
Then
(23) log | w,(2) | = ug(2, wy) — uglz, wi) .

Since all terms are continuous in a,, b,, the equation remains
valid if there are zeros or poles of w on B,.
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We observe that

(24) xQ(C’ wl) = m(‘Qr wl) ’
(25) Yol wy) = N(Q, wy) .

Here we shall only make use of the consequence

(26) un(c; wl) = T('Q’ wl) .
13. We next show:

LeMMA. For 2,C 2,

27 ufla(z’ wy) = Ue(2, wy) ,
@27 Ugy(2, W) =< ug(2, wi") .

Proof. By (23),

(28) log | wi(2) | < Ua(z, W)

for every 2. It follows that

Loy(2, Wy) = ig Uo(t, w)dp3,.
9
= |l w) — v t, wdps,
2m Jeg,

= Ug(2, W) — Yo (2, W) ,

because this difference is regular harmonic in 2,, We have reached
statement (27),

Lo, (2, W1) + Yo (2, W) < Uo(z, wy) ,

and inequality (27) follows in the same fashion.

14. From (26) and (27) we infer that T(2, w, increases with
2. We can set

(29) (W, w) = lim T(2, w,)
2w
and use alternatively the notations T'(2) = 0(1) and T(W) < oo,
15. The convergence of u, can now be established:

LEMMA. If T(W, w,) < o, then the functions

(30) u(z, w;) = lim ue(2, w,) ,
2-w



ON LOCALLY MEROMORPHIC FUNCTIONS 715
(30) w(z, wit) = lim ug(z, w)
LW

are positive harmonic on W except for logarithmic poles of wu(z, w,)
at the b,e W — { and those of u(z, wi*) at the a,€¢ W — .

Proof. By Harnack’s principle the limit in (80) is either identi-
cally infinite or else harmonic on W — {b,}. That the latter alterna-
tive occurs is a consequence of

lim u (&, w) = T(W, w,) .
Q-w
The statement for wu,(z, wi*) follows similarly from w.({, wi?) =
T2, w™ = T(Q, w) + O(1).
16. On combining the lemma with (23) we see that w,e M,B
has the asserted representation
(31) log [ w,(2) | = u(z, w) — u(z, wi’)

with the w-functions in LP. It remains to establish the converse.

17. Suppose
(32) log [ w,(2) | = w,(2) — v:(2)

where u,, v, € LP. The positive logarithmic poles of u,(z, w,;) are those
of log | w(z)| in 2, hence among those of wu,(z). Consequently u,(z) —

Ug(2, w,) is superharmonic in 2 and its minimum on £ is reached on
Be, where u,(z) — ug(z, w) = uz) — 11>g lw,(z)| = 0. One infers that

u,(2) = ug(z, wy) in 2. At { this means
(33) T2, w) = ug(l, wy) = uy(l) -

If u,({) < o, the proof is complete.

18. If u({) = oo, then
(34) uy(2) + N log |2 —
is harmonie at ¢ for some positive integer ),. We set
(35) w, = w, e~ e I
where g = g(z, {), and obtain
(36) log|w,| =log|w,| —Ng = (U, — Ng) — v,

The function u, — \,9, with g, = g.(2, ) is superharmonic on 2, hence
its minimum on 2 is taken on B,, where
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(37) Uy — MGy =%, =0,
From u, = Mg, on 2 it follows that

(38) Uy — Ng = lim (u; — Nyg) = 0
N-W

on W, On setting

(39) Uy = Uy — MG, V3 = U
one gets
(40) log |w,| = uy — v,

with u,, v,€ LP.

The positive logarithmic poles of u,(z, w,) are those of log | w,|
on 2, hence among those of #,. The minimum of the superharmonic
function u,(z) — uy(2, w;) on 2 is taken on B, where it is

min (v, — log |w,) 2 0 .
One infers that
(41) T(Q, wy) = uo(C, wy) = u(0) < o0,
that is, T(2, w,) = O1). The reasoning leading to (12) yields
(42) TR, w) = T(R2, w,) + 0Q),

and consequently 7(2, w,) = O(1).
We have shown that (32) implies T(W, w,) < o. The proof of
Theorem 7 is complete.

19. As an immediate consequence we see that the property
T2, w) = O(1) and thus the class M,B is independent of (.

§ 3. Extremal decompositions.

20. Consider an arbitrary we M,. In contrast with no. 12 we
now make no restrictive assumptions on w(¢) and form

#3) 5ule, w) = | log|w]|di.
2w Jea

(44) y!i(z’ w) :b%gg(z, bv) ]

(45) Uo(2, W) = To(z, W) + Yolz, W) .

It is seen as in no. 13 that u, increases with 2 and that
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(46) w(z, w) = lim u,(2, w)
20-w

is either identically infinite or else positive harmonic on W except
for logarithmic poles b,. The same is true of

47 w(z, w1 = lim uy,(z, w™)
Q-W

with singularities a,.
The functions (46) and (47) will now be shown to be extremal
in all decompositions (7):

THEOREM. If there is a decomposition
(48) log | w(z) | = u.(2) — us(2)

with u,, u, € LP, then also

(49) log | w(z) | = u(z, w) — u(z, w™)
and
(50) Uz, W) = U(?)

w@, w) = uy(2)

Proof. One observes that the positive logarithmic poles of
uy(z, w) are those of log |w(z)| in 2, hence among those of u,(z) in
2. The superharmonic function u,(z) — u.(z, w) in 2 dominates

min (u(2) — log | w(@) ) = 0

and we find that wu,(2) — w(z, w) = limg_;, (u,(2) — un(2, w)) = 0 in W.
Similarly, the superharmonic function u,(z) — u.(z, w™) = 0 on 2, and
u(2) = u(z, w™) on W. By virtue of Harnack’s principle, equality
(49) then follows on letting 2 — W in

(61) log | w(z) | = ue(z, w) — uy(z, w™) .

21. The extremal functions u(z, w), u(z, w™*) can in turn be
decomposed:

THEOREM. A function w on W belongs to M,B if and only if
(52) log {w| = (x(z, w) + Y(z, w)) — (@(z, w™) + y(z, w™),

where the functions & = 0 are regular harmonic and the functions
Yy = 0 have the representations
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Y(z, w) = 3 g(z, b,)

53
(53) Y(z, w™) = 39(z, au) .

Here the sums are extended over all poles b, and all zeros a, of w
on W respectively, each counted with its multiplicity.

22. Suppose indeed that we M,B. It is evident from the maxi-
mum principle that

(54) Yo, (2, W) = Yal2, W)
for 2, 2. We know that
(55) log|w|=u, —u,

U, U, € LP, and the superharmonic function wu,(2) — y.(z, w) on £
cannot exceed mingu, = 0. Hence y,(z, w) = u(2) on 2 and, by
Harnack’s principle,

(56) Y(z, w) = lim y,(2, w)

2-w
is positive harmonic on W except for logarithmic poles b,. Analogous
reasoning shows that

(57) Y(z, w™) = lim y,(z, w™)
Q-w
is positive harmonic on W — {a,}.

23. To prove (563) we must show that
(58) lim Zga(z b) = Z 9(2, b))

2-W 5y €

and similarly for X g(z, a,). First,

(59) > 002, b)) = 2 9(2, b)) = 3 9(2, b)),
byen by €N byEeEW

and we have

(60) lim 2,902, b)) = Z 9(z, b,) .

0-W bye

Second, for 2,C 2,
(61) ZG(z, b,) = hm Zgn(z b,) < lim Z 9oz, b,)

- by€

and a fortiori

(62) 2. 9(z, b,) = hm Z g(z b)) = lim 3 9u(2, b)) .

-w b€
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Statement (58) follows.

24, The convergence of x,(z, w) is obtained at once from
(63) To(z, W) = Ue(2, W) — Yoz, W) ,
and the limiting function is
(64) z(z, w) = uw(z, w) — Y&, w) .

The limit z(z, w™) of x.(z, w™') is obtained in the same way. Both
limits are obviously positive and regular harmonic on W.

Necessity of (52) for we M,B has thus been established. Suf-
ficiency is a corollary of the main Theorem 7.

§4. Consequences.

25. If only the z-terms in (52) are considered, the following
corollary of Theorem 21 is obtained:

THEOREM. If we M,B on W, then

(65) umg | log | w || dp < <o
9w JBg
Jor any C.

Here p, signifies, as before, the capaity function on 2 with
pole at . For the proof we have

+ + 1
©6) | lloglwlidps = | loglwldps + | log|1-|dps
Bo Ba Ba w
= zn(x!)(C1 w) + xﬂ(C; ’I/U~1)) ’
and this quantity tends to
(67) 2r(x(C, w) + 2(C, w™)) < oo .
The limit (65) thus exists.

26. A consideration of the y-terms in (52) gives:

THEOREM. Suppose we M,B. Then the sum 2Xg(z,z,), with z,
ranging over all poles and zeros of w, is harmonic on W — {a,} —
{b.}.

In fact,
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(68) 2.9(z, 2;) = lim 3 g(z, z,)
ZEW 2-W z;€Q2
= lim (3. 9(7, a,) + 3 9(, b))
QW ap€Q by€EQ

= > 9@, a,) + X 9(2,b,) .
auEW byEW

27. For a sufficient condition the first terms of both x- and y-
parts in (62) must be taken into account:

THEOREM. If for some Le W

+
(69) |, log 1wl dps = O(1)
Ba
and
(70) 59(2,b,) < o in W — {b},
bew
then we M,B and hence
(T1) ]imS |og | w || dpk < oo
2-W JBg
and
(72) 202, 0,) < o on W—{a,}
ap.GW
as well.

Indeed, the characteristic

T(‘Q) = u’:’)(C: w) = xﬂ(C, w) + y!)(Cy w)

+
= | log|wldps + 304, b)
2r Jeo by ER
is O0Q) if (69), (70) hold. Properties (71), (72) then follow from

w e M,B.
Another sufficient condition for we M,B is, of course, that

Sﬂ lgg | w™|dp, is bounded and Xg(¢, a.) < o in W — {a,}.
(] .

28. For “entire” functions in M,B the conditions simplify. Let
E.B be the class of such functions, characterized by w(z) #+ « on W.

THEOREM. A necessary and sufficient condition for we E,B on
W is that

(73) |, Jog 1 dpa = 0Q) .
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The proof is evident.

29. Consider the class H of regular harmonic functions - on W

and let HP be the subclass of nonnegative functions. Set };:
max (0, k).

THEOREM. A harmonic function h on W has a decomposition
(74) h=u —u,, Uy, Uy € HP

if and only if, for some (,

(75) |, hapi = 0w,

or, equivalently,

(76) limg b ldps < e .
Q-W JBp

Proof. The multiple-valued function w = ¢***" is in M,, and
w=#0, o on W. If (74) is given, then log |w| = 4, — u, and we M,B.
This implies

limg |10g\w]}dp;§':ﬁmg Bl dps < o
o-w JBo 2-W JBo

and consequently ! fadp*g = (0(1). Conversely, suppose the latter con-
8
dition holds, ’

|, toglwldps = 0() .
8o
Then we M,B and
h=log|w| = x(z, w) — x(z, w),

the y-terms vanishing because of the absence of zeros and poles of w.

It is known that functions u harmonic in the interior W of a
compact bordered Riemann surface and with property (76) have a
Poisson-Stieltjes representation (e.g., Rodin [6]). For further in-
teresting results see Rao [5].

30. It is clear that theorems on log|w| can also be expressed
directly in terms of |w|. Theorem 7, e.g., takes the following form:

THEOREM. we M,B of and only if



722 LEO SARIO

@ o) =| e

where e M.B and |n| <1 on W.

Proof. Suppose we M,B, hence

(78) log |w| = u(z, w) — u(z, w'),
ue LP. Set
(79) Nz, w) = exp [ —u(z, w™) — wu(z, w)*],

and (77) follows. Conversely, if (77) is given, then
(80) log |w| = log [7(z, w) | — log | 7(z, w™) |

is a difference of two functions in LP, and we have we M, B.
31. The counterpart of Theorem 21 is as follows:

THEOREM. we M,B if and only if

(81) lw | = P(z, Wp(z, w)
Pz, w)y(z, w?) |’

where ¢, ve M,B and @ +0 on W, |@| <1,|¥]|<1.

If we M,B, choose

@(z: 'LU) = €xXp [M x(zr w_l) - %x(z! w~1)*] ’

82
(62) ¥(z, w) = exp [— y(z, w™) — iy(z, w)*],

and we have (81). Conversely, (81) gives log |w| = u, — u, with u,,

U, € LP, hence we M,B.

32. We introduce the classes O,s and O, ; of Riemann surfaces
on which there are no nonconstant functions in MB and M,B re-
spectively. Similarly, let O,; and O, be the subclasses determined
by entire functions w(z) #+ © on W in MB and M,B. The problem
here is to arrange these four classes in the general classification

scheme of Riemann surfaces [1].
The inclusion relations

Ou,s € Oxs S Oys

83
®3) Ou,5 C Oz C Opy

are immediately verified.
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33. The smallest class in (83) is easily identified:

THEOREM. All functions in M,B on W reduce to constants if
and only if W is parabolic,

(84) Og = Ou,s -

Proof. If We¢O,, there is a Green’s function g(z, {), and
(85) w=e""""ecMB.

In fact, ¢ is bounded above in any W — 2, hence m(2, w) = OQ1),
and N(2, w) = 0 gives T(2) = O(1). Conversely, if there is a non-
constant we M,B on W, then log|w| = u, — u, where at least one
u; € LP is nonconstant superharmonic. This means that W¢ O,. The
same proof gives Oy = Op,p.

34, By the preceding theorem, every M, -function on a parabolic
W has unbounded characteristic. Even more can be said of M-functions
on the larger class O,z by comparing T(£2) with k, (no. 4):

THEOREM. On WeOy;z the characteristic T(2) of any we M
tends so rapidly to infinity that

(86) lim L > 1.

Q-wW 2

Proof. Let w({) =a. The counting function of w for a is, by
denfinition,

N@, @) = | (a(h, @) — n(—<o, a)dh + n(—eo, W)k,

where n(h, ) is the number of a-points of w in the set 2,: p, < h <
k.. We obtain from the first fundamental theorem [7] that

(87 T(@Q) + 0(1) = N(&, a) = n(—o0, a)k, ,

and (86) follows.
Thus (86) is obviously a property of every we M, w¢ MB, on
every W,

35. We also observe:

THEOREM. A function we M on We Oyp cannot omit a set of
values of positive capacity.
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More accurately, the counting function N(2, a) of we M on Oy,
is unbounded on any set E of positive capacity. To see this we dis-

tribute mass dg(e) >0 at a € E, with S de =1, and integrate
y
Jensen’s formula

88)  log|w(®) —a|= %Sﬁ log|w — a|dpi + N(Q, =) — N(2, a)

(w(§) # ) over E with respect to di(a). We obtain Frostman’s
formula on W:

®)  N@ ) == uedrs = | N@ opdua) — uw(),
T JBy B

where u(w) = S log |w — a | dt(a). For equilibrium distribution ap

it is known from the classical theory that w(w) = — log |w]| + O(),

and a fortiori Sﬁ uw(w)dpi = — 2r m(2, «) + O(1), where O(1) depends
2

on E only. Substitution into (89) gives

(90) T(Q) = S N(Q, a)du(a) + O(1).
B

This proves our assertion.

36. A comprehensive study of the role played by O,, in the
classification theory of Riemann surfaces is contained in the doctoral
dissertation of K. V. R. Rao [5].
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