ON LOCALLY MEROMORPHIC FUNCTIONS WITH SINGLE-VALUED MODULI

Leo Sario
ON LOCALLY MEROMORPHIC FUNCTIONS
WITH SINGLE-VALUED MODULI

LEO SARIO

1. A meromorphic function of bounded characteristic in a disk is the quotient of two bounded analytic functions. This classical theorem can be extended to open Riemann surfaces W as follows. Consider the class MB of meromorphic functions w of bounded characteristic on W, defined in terms of capacity functions on subregions. Let L be the class of harmonic functions on W, regular except for logarithmic singularities with integral coefficients. Then $w \in MB$ if and only if $\log |w|$ is the difference of two positive functions in L. We shall construct these functions directly on W, without making use of uniformization.

The proof offers no essential difficulties. If $\log |w|$ is regular at the singularity of the capacity functions, then the classical reasoning carries over almost verbatim. In the general case we introduce the extended class M_e of locally meromorphic functions e^{u+iw^*}, $u \in L$, with single-valued moduli. This class seems to offer some interest in its own right.

2. The class O_{MB} of Riemann surfaces not admitting nonconstant M_eB-functions coincides with the class O_σ of parabolic surfaces. Regarding the subclass $MB \subset M_eB$ and the strict inclusion relations $O_{HB} < O_{MB} < O_{AB}$, we refer to the pioneering work on Lindelöfian maps by M. Heins [2, 3] and M. Parreau [4], and the doctoral dissertation of K. V. R. Rao [5].

§ 1. Definitions.

3. Let W be an arbitrary open Riemann surface. Given $\zeta \in W$ let $\Omega, \zeta \in \Omega$, be a relatively compact subregion of W whose boundary β_σ consists of a finite number of analytic Jordan curves. The Green's function on Ω with pole at ζ is denoted by $g_\sigma(z, \zeta)$. For $\Omega_0 \subset \Omega$ we have $g_{\sigma_0} \leq g_\sigma$ in Ω_0 and $\lim_{z \to \infty} g_\sigma(z, \zeta)$ either $\equiv \infty$ or else $=\text{the Green's function } g(z, \zeta)$ of W. By definition, the class O_σ of parabolic Riemann surfaces consists of those W on which no $g(z, \zeta)$ exists. An equivalent definition of O_σ is that there are no nonconstant nonnegative superharmonic functions on W.

Received December 6, 1962. Sponsored by the U. S. Army Research Office (Durham), Grant DA-ARO(D)-31-124-G40, University of California, Los Angeles.
4. The capacity function \(p_\Omega(z, \zeta) \) on \(\Omega \) with pole at \(\zeta \) is defined as the harmonic function with singularity
\[
p_\Omega(z, \zeta) = \log |z - \zeta| \to 0
\]
as \(z \to \zeta \) and such that
\[
p_\Omega(z, \zeta) = k_\Omega = \text{const. on } \beta_\Omega.
\]
It is known [1] that \(k_{\Omega_0} \leq k_\Omega \) and the limit \(k_\beta = \lim k_\Omega \) is thus well-defined. A necessary and sufficient condition for \(W \in O_\beta \) is \(k_\beta = \infty \).

5. Let \(M \) be the class of meromorphic functions \(w \) on \(W \). The proximity function of \(w \) is defined [7] as
\[
m(\Omega, w) = m(\Omega, \infty) = \frac{1}{2\pi} \int_{\beta_\Omega} \log |w| \, dp_\Omega^*.
\]
If \(\beta_h \) is the level line \(p_\Omega = h, -\infty \leq h \leq k_\Omega \), and \(n(h, \infty) \) signifies the number of poles of \(w \) in \(\bar{\Omega}_h \); \(p_\Omega \leq h \), counted with multiplicities, then the counting function is defined as
\[
N(\Omega, w) = N(\Omega, \infty) = \int_{-\infty}^{k_\Omega} (n(h, \infty) - n(-\infty, \infty)) dh + n(-\infty, \infty)k_\Omega.
\]

The characteristic function is, by definition,
\[
T(\Omega) = T(\Omega, w) = m(\Omega, w) + N(\Omega, w).
\]
The function \(w \) has at \(\zeta \) the Laurent expansion
\[
w(z) = c_\lambda (z - \zeta)^\lambda + c_{\lambda+1} (z - \zeta)^{\lambda+1} + \cdots,
\]
c\(_\lambda \neq 0 \), and the Jensen formula reads [7, 8]
\[
T(\Omega, w) = T(\Omega, w^{-1}) + \log |c_\lambda|.
\]

6. We shall need a class \(M_e \) more comprehensive than \(M \). We introduce:

Definitions. The class \(L \) consists of functions \(u \) on \(W \), harmonic except for logarithmic singularities \(\lambda_i \log |z - z_i| \) at \(z_i, i = 1, 2, \ldots \), with integral coefficients \(\lambda_i \). The subclass of nonnegative functions in \(L \) will be denoted by \(LP \).

The class \(M_e \) is defined to consist of (multiple-valued) functions of the form
\[
w = e^{u + i\pi}, \quad u \in L.
\]
The conjugate function u^* has periods around z_i and along some cycles in W. Every branch of w is locally meromorphic, the branches differing by multiplicative constants c with $|c| = 1$. The modulus $|w|$ is single-valued throughout W.

The quantities $m(\Omega, w)$, $N(\Omega, w)$, $T(\Omega, w)$, and the Jensen formula carry over to M_ϵ without modifications [7]. We further introduce:

Definition. The class MB (or $M_\epsilon B$) consists of functions w in M (or M_ϵ) with bounded characteristics,

\[(6) \quad T(\Omega) = O(1) .\]

Explicitly, one requires the existence of a bound $C < \infty$ independent of Ω such that $T(\Omega) < C$ for all $\Omega \subset W$. That (6) is independent of ζ will be a consequence of a decomposition theorem which we proceed to establish.

§ 2. The decomposition theorem.

7. We continue considering arbitrary open Riemann surfaces W.

Theorem. A necessary and sufficient condition for $w \in M_\epsilon B$ on W is that

\[(7) \quad \log |w| = u - v ,\]

where $u, v \in LP$.

The proof will be given in nos. 8-18. As a corollary we observe that $w \in MB$ on W if and only if (7) holds.

8. First we shall discuss in nos. 8-11 the case $w(\zeta) = 0$ or ∞.

Suppose $w \in M_\epsilon B$. We begin by showing that $W \notin O_\zeta$. If $w(\zeta) = \infty$, then

\[T(\Omega) \geq N(\Omega, w) \geq n(-\infty, \infty) k_\Omega \geq k_\Omega .\]

From $W \notin O_\zeta$ it would follow that $k_\Omega \to \infty$ as $\Omega \to W$ and consequently $T(\Omega) \to \infty$, a contradiction. We conclude that $W \notin O_\zeta$. If $w(\zeta) = 0$, then in Jensen's formula

\[T(\Omega, w) = T\left(\Omega, \frac{1}{w}\right) + O(1)\]

we have

\[T\left(\Omega, \frac{1}{w}\right) \geq N\left(\Omega, \frac{1}{w}\right) \geq n(-\infty, 0) k_\Omega \geq k_\Omega .\]
and arrive at the same conclusion $W \notin O_g$.

On the other hand, if condition (7) is true, the existence of nonnegative superharmonic functions u, v implies $W \notin O_g$. Thus either condition of the theorem gives the hyperbolicity of W, and we may henceforth assume the existence of $g(z, \zeta)$ on W if $w(\zeta) = 0$ or ∞.

9. The functions

$$\varphi(z) = e^{\lambda g(z, \zeta) + i \varphi(z, \zeta)},$$

$$w_1(z) = w(z)\varphi(z)$$

belong to M. We shall show:

Lemma. A necessary and sufficient condition for $w \in M_B$ is that $w_1 \in M_B$.

Proof. By definition,

$$T(\Omega, \varphi) = N(\Omega, \varphi) + m(\Omega, \varphi).$$

For $\lambda > 0$ we have trivially $N(\Omega, \varphi^{-1}) \equiv 0$, $m(\Omega, \varphi^{-1}) \equiv 0$, hence $T(\Omega, \varphi^{-1}) \equiv 0$, and it follows from Jensen’s formula that $T(\Omega, \varphi) = O(1)$. If $\lambda < 0$, then $N(\Omega, \varphi) \equiv m(\Omega, \varphi) \equiv 0$, and $T(\Omega, \varphi) \equiv 0$, hence $T(\Omega, \varphi^{-1}) = O(1)$. In both cases

$$T(\Omega, \varphi) = O(1), T(\Omega, \varphi^{-1}) = O(1).$$

The inequalities

$$T(\Omega, w) \leq T(\Omega, w_1) + T(\Omega, \varphi^{-1}) = T(\Omega, w_1) + O(1),$$

$$T(\Omega, w_1) \leq T(\Omega, w) + T(\Omega, \varphi) = T(\Omega, w) + O(1)$$

yield

$$T(\Omega, w) = T(\Omega, w_1) + O(1)$$

and the lemma follows.

10. The following intermediate result can now be established:

Lemma. A necessary and sufficient condition for

$$\log |w| = u - v$$

with $u, v \in LP$ is that

$$\log |w_1| = u_1 - v_1$$

with $u_1, v_1 \in LP$.
Proof. We know that
\[\log |w_1| = \log |w| + \lambda g = \log |w| + (n_0 - n_\omega)g , \]
where n_0, n_ω are the multiplicities of the zero or pole of $w(z)$ at ζ. If (13) is true, then
\[\log |w_1| = (u + n_0 g) - (v + n_\omega g) \]
and (14) follows. Conversely, (14) implies
\[\log |w| = (u_1 + n_\omega g) - (v_1 + n_0 g) . \]
This proves the lemma.

11. We conclude that Theorem 7 will be proved for w with $w(\zeta) = 0$ or ∞ if we establish it for w_1. Since $w_1(\zeta) \neq 0, \infty$, the proof for w_1 will also apply to w with this property. Explicitly, we are to show that $w_1 \in M_\varepsilon B$ if and only if $\log |w_1| = u_1 - v_1, u_1, v_1 \in LP$.

12. Let $p_{\varepsilon z}$ be the capacity function in Ω with pole at z. For a harmonic function h on $\bar{\Omega}$ it is known [7] that
\[h(z) = \frac{1}{2\pi} \int_{\beta_\varepsilon} h \, dp_{\varepsilon z}^+ . \]

Denote by a_μ, b_ν the zeros and poles of w in W. Those in $W - \zeta$ are the zeros and poles of w_1 in W. Suppose first there is no a_μ, b_ν on β_ε. Then the function
\[h(z) = \log |w_1(z)| + \sum_{a_\mu \in \partial - \zeta} g_\partial(z, a_\mu) - \sum_{b_\nu \in \partial - \zeta} g_\partial(z, b_\nu) \]
is harmonic on $\bar{\Omega}$. Throughout this paper the zeros and poles are counted with their multiplicities. We set
\[x_\partial(z, w_1) = \frac{1}{2\pi} \int_{\beta_\varepsilon} \log |w_1| \, dp_{\varepsilon z}^+ , \]
\[y_\partial(z, w_1) = \sum_{b_\nu \in \partial - \zeta} g_\partial(z, b_\nu) , \]
and
\[u_\partial(z, w_1) = x_\partial(z, w_1) + y_\partial(z, w_1) . \]
Then
\[\log |w_1(z)| = u_\partial(z, w_1) - u_\partial(z, w_1^{-1}) . \]

Since all terms are continuous in a_μ, b_ν, the equation remains valid if there are zeros or poles of w on β_ε.
We observe that
\begin{align}
(24) \quad x_o(\zeta, w) &= m(\Omega, w), \\
(25) \quad y_o(\zeta, w) &= N(\Omega, w).
\end{align}

Here we shall only make use of the consequence
\begin{equation}
(26) \quad u_o(\zeta, w) = T(\Omega, w).
\end{equation}

13. We next show:

Lemma. For \(\Omega \subset \Omega \),
\begin{align}
(27) \quad u_{o_0}(z, w_1) &\leq u_o(z, w_1), \\
(27)' \quad u_{o_0}(z, w_1^{-1}) &\leq u_o(z, w_1^{-1}).
\end{align}

Proof. By (23),
\begin{equation}
(28) \quad \log |w(z)| \leq u_o(z, w_1)
\end{equation}
for every \(\Omega \). It follows that
\begin{align*}
x_{o_0}(z, w_1) &\leq \frac{1}{2\pi} \int_{\partial_\Omega} u_o(t, w_1) dp_{o_0}^* \\
&= \frac{1}{2\pi} \int_{\partial_\Omega} (u_o(t, w_1) - y_{o_0}(t, w_1)) dp_{o_0}^* \\
&= u_o(z, w_1) - y_{o_0}(z, w_1),
\end{align*}
because this difference is regular harmonic in \(\Omega_0 \). We have reached statement (27),
\[x_{o_0}(z, w_1) + y_{o_0}(z, w_1) \leq u_o(z, w_1), \]
and inequality (27)' follows in the same fashion.

14. From (26) and (27) we infer that \(T(\Omega, w) \) increases with \(\Omega \). We can set
\begin{equation}
(29) \quad T(W, w) = \lim_{\Omega \to W} T(\Omega, w)
\end{equation}
and use alternatively the notations \(T(\Omega) = O(1) \) and \(T(W) < \infty \).

15. The convergence of \(u_o \) can now be established:

Lemma. If \(T(W, w) < \infty \), then the functions
\begin{equation}
(30) \quad u(z, w) = \lim_{\Omega \to W} u_o(z, w),
\end{equation}
(30) \[u(z, w_i^{-1}) = \lim_{\varphi \to w} u_{\varphi}(z, w_i^{-1}) \]

are positive harmonic on \(W \) except for logarithmic poles of \(u(z, w_i) \) at the \(b_j \in W - \zeta \) and those of \(u(z, w_i^{-1}) \) at the \(a_k \in W - \zeta \).

Proof. By Harnack's principle the limit in (30) is either identically infinite or else harmonic on \(W - \{b_j\} \). That the latter alternative occurs is a consequence of
\[\lim_{\varphi \to w} u_{\varphi}(\zeta, w_i^{-1}) = T(\Omega, w_i^{-1}) = T(\Omega, w_i) + O(1). \]

The statement for \(u_{\varphi}(z, w_i^{-1}) \) follows similarly from \(u_{\varphi}(\zeta, w_i^{-1}) = T(\Omega, w_i^{-1}) = T(\Omega, w_i) + O(1) \).

16. On combining the lemma with (23) we see that \(w_i \in M_eB \) has the asserted representation
\[\log | w_i(z) | = u(z, w_i) - u(z, w_i^{-1}) \]
with the \(u \)-functions in \(L_P \). It remains to establish the converse.

17. Suppose
\[\log | w_i(z) | = u_i(z) - v_i(z) \]

where \(u_i, v_i \in L_P \). The positive logarithmic poles of \(u_{\varphi}(z, w_i) \) are those of \(\log | w_i(z) | \) in \(\Omega \), hence among those of \(u_i(z) \). Consequently \(u_i(z) - u_{\varphi}(z, w_i) \) is superharmonic in \(\Omega \) and its minimum on \(\partial \Omega \) is reached on \(\beta_\varphi \), where \(u_i(z) - u_{\varphi}(z, w_i) = u_i(z) - \log | w_i(z) | \geq 0. \) One infers that \(u_i(z) \geq u_{\varphi}(z, w_i) \) in \(\partial \Omega \). At \(\zeta \) this means
\[T(\Omega, w_i) = u_{\varphi}(\zeta, w_i) \leq u_i(\zeta). \]

If \(u_i(\zeta) < \infty \), the proof is complete.

18. If \(u_i(\zeta) = \infty \), then
\[u_i(z) + \lambda_1 \log | z - \zeta | \]
is harmonic at \(\zeta \) for some positive integer \(\lambda_1 \). We set
\[w_2 = w_i \cdot e^{-\lambda_1(\varphi + i\theta^*)} \in M_e, \]
where \(g = g(z, \zeta) \), and obtain
\[\log | w_2 | = \log | w_i | - \lambda_1 g = (u_1 - \lambda_1 g) - v_i. \]
The function \(u_1 - \lambda_1 g_\varphi \) with \(g_\varphi = g_\varphi(z, \zeta) \) is superharmonic on \(\Omega \), hence its minimum on \(\partial \Omega \) is taken on \(\beta_\varphi \), where
From \(u_1 \geq \lambda g \) on \(\Omega \) it follows that
\[
(38) \quad u_1 - \lambda g = \lim_{\substack{a \to \infty}} (u_1 - \lambda g) \geq 0
\]
on \(W \). On setting
\[
(39) \quad u_2 = u_1 - \lambda g, \quad v_2 = v_1
\]
one gets
\[
(40) \quad \log |w_2| = u_2 - v_2
\]
with \(u_2, v_2 \in LP \).

The positive logarithmic poles of \(u_2(z, w_2) \) are those of \(\log |w_1| \)
on \(\Omega \), hence among those of \(u_2 \). The minimum of the superharmonic
function \(u_2(z) - u_2(z, w_2) \) on \(\overline{\Omega} \) is taken on \(\beta \), where it is
\[
\min_{\beta} (u_2 - \log |w_2|) \geq 0.
\]

One infers that
\[
(41) \quad T(\Omega, w_2) = u_2(\zeta, w_2) \leq u_2(\zeta) < \infty,
\]
that is, \(T(\Omega, w_2) = O(1) \). The reasoning leading to (12) yields
\[
(42) \quad T(\Omega, w_1) = T(\Omega, w_2) + O(1),
\]
and consequently \(T(\Omega, w_1) = O(1) \).

We have shown that (32) implies \(T(W, w_1) < \infty \). The proof of
Theorem 7 is complete.

19. As an immediate consequence we see that the property
\(T(\Omega, w) = O(1) \) and thus the class \(M_{\lambda}B \) is independent of \(\zeta \).

§ 3. Extremal decompositions.

20. Consider an arbitrary \(w \in M_{\lambda} \). In contrast with no. 12 we
now make no restrictive assumptions on \(w(\zeta) \) and form
\[
(43) \quad x_\alpha(z, w) = \frac{1}{2\pi} \int_{\beta} \text{log} |w| d\rho_\alpha^*,
\]
\[
(44) \quad y_\alpha(z, w) = \sum_{b_\gamma \in \beta} g_\beta(z, b_\gamma),
\]
\[
(45) \quad u_\alpha(z, w) = x_\alpha(z, w) + y_\alpha(z, w).
\]

It is seen as in no. 13 that \(u_\alpha \) increases with \(\Omega \) and that
(46) \[u(z, w) = \lim_{\varrho \to w} u_\varrho(z, w) \]

is either identically infinite or else positive harmonic on \(W \) except for logarithmic poles \(b_\nu \). The same is true of

(47) \[u(z, w^{-1}) = \lim_{\varrho \to w} u_\varrho(z, w^{-1}) \]

with singularities \(a_\mu \).

The functions (46) and (47) will now be shown to be extremal in all decompositions (7):

Theorem. If there is a decomposition

(48) \[\log |w(z)| = u_1(z) - u_2(z) \]

with \(u_1, u_2 \in LP \), then also

(49) \[\log |w(z)| = u(z, w) - u(z, w^{-1}) \]

and

(50) \[
\begin{align*}
 u(z, w) & \leq u_1(z) \\
 u(z, w^{-1}) & \leq u_2(z).
\end{align*}
\]

Proof. One observes that the positive logarithmic poles of \(u_\varrho(z, w) \) are those of \(\log |w(z)| \) in \(\Omega \), hence among those of \(u_1(z) \) in \(\Omega \). The superharmonic function \(u_1(z) - u_\varrho(z, w) \) in \(\Omega \) dominates

\[\min_{\beta_\varrho} (u_1(z) - \log |w(z)|) \geq 0 \]

and we find that \(u_1(z) - u(z, w) = \lim_{\varrho \to w}(u_1(z) - u_\varrho(z, w)) \geq 0 \) in \(W \). Similarly, the superharmonic function \(u_2(z) - u_\varrho(z, w^{-1}) \geq 0 \) on \(\Omega \), and \(u_2(z) \geq u(z, w^{-1}) \) on \(W \). By virtue of Harnack's principle, equality (49) then follows on letting \(\Omega \to W \) in

(51) \[\log |w(z)| = u_\varrho(z, w) - u_\varrho(z, w^{-1}) \].

21. The extremal functions \(u(z, w), u(z, w^{-1}) \) can in turn be decomposed:

Theorem. A function \(w \) on \(W \) belongs to \(M_cB \) if and only if

(52) \[\log |w| = (x(z, w) + y(z, w)) - (x(z, w^{-1}) + y(z, w^{-1})) \],

where the functions \(x \geq 0 \) are regular harmonic and the functions \(y \geq 0 \) have the representations
\[y(z, w) = \sum g(z, b_v) \]
\[y(z, w^{-1}) = \sum g(z, a_\mu) . \]

Here the sums are extended over all poles \(b_v \) and all zeros \(a_\mu \) of \(w \) on \(W \) respectively, each counted with its multiplicity.

22. Suppose indeed that \(w \in M_eB \). It is evident from the maximum principle that
\[y_{\partial\alpha}(z, w) \leq y_{\alpha}(z, w) \]
for \(\Omega_0 \subset \Omega \). We know that
\[\log |w| = u_1 - u_2 , \]
\(u_1, u_2 \in LP \), and the superharmonic function \(u_\alpha(z) - y_{\alpha}(z, w) \) on \(\Omega \) cannot exceed \(\min_{\partial\alpha} u_1 \geq 0 \). Hence \(y_{\alpha}(z, w) \leq u_\alpha(z) \) on \(\Omega \) and, by Harnack’s principle,
\[y(z, w) = \lim_{\partial \rightarrow W} y_{\alpha}(z, w) \]
is positive harmonic on \(W \) except for logarithmic poles \(b_v \). Analogous reasoning shows that
\[y(z, w^{-1}) = \lim_{\partial \rightarrow W} y_{\alpha}(z, w^{-1}) \]
is positive harmonic on \(W - \{ a_\mu \} \).

23. To prove (53) we must show that
\[\lim_{\partial \rightarrow W} \sum_{b_v \in \partial} g_{\alpha}(z, b_v) = \sum_{b_v \in W} g(z, b_v) \]
and similarly for \(\sum g(z, a_\mu) \). First,
\[\sum_{b_v \in \partial} g_{\alpha}(z, b_v) \leq \sum_{b_v \in \partial} g(z, b_v) \leq \sum_{b_v \in W} g(z, b_v) , \]
and we have
\[\lim_{\partial \rightarrow W} \sum_{b_v \in \partial} g_{\alpha}(z, b_v) \leq \sum_{b_v \in W} g(z, b_v) . \]
Second, for \(\Omega_0 \subset \Omega \),
\[\sum_{b_v \in A_0} g(z, b_v) = \lim_{\partial \rightarrow W} \sum_{b_v \in \partial} g_{\alpha}(z, b_v) \leq \lim_{\partial \rightarrow W} \sum_{b_v \in \partial} g_{\alpha}(z, b_v) \]
and a fortiori
\[\sum_{b_v \in W} g(z, b_v) = \lim_{A_0 \rightarrow W} \sum_{b_v \in A_0} g(z, b_v) \leq \lim_{\partial \rightarrow W} \sum_{b_v \in \partial} g_{\alpha}(z, b_v) . \]
Statement (58) follows.

24. The convergence of \(x_\Omega(z, w) \) is obtained at once from

\[
x_\Omega(z, w) = u_\Omega(z, w) - y_\Omega(z, w),
\]

and the limiting function is

\[
x(z, w) = u(z, w) - y(z, w).
\]

The limit \(x(z, w^{-1}) \) of \(x_\Omega(z, w^{-1}) \) is obtained in the same way. Both limits are obviously positive and regular harmonic on \(W \).

Necessity of (52) for \(w \in M, B \) has thus been established. Sufficiency is a corollary of the main Theorem 7.

25. If only the \(x \)-terms in (52) are considered, the following corollary of Theorem 21 is obtained:

Theorem. If \(w \in M, B \) on \(W \), then

\[
\lim_{\nu \to w} \int_{\beta_\nu} \log |w| \, dp_\nu^z < \infty
\]

for any \(\zeta \).

Here \(p_\nu \) signifies, as before, the capacity function on \(\Omega \) with pole at \(\zeta \). For the proof we have

\[
\int_{\beta_\nu} \log |w| \, dp_\nu^z = \int_{\beta_\nu} \log |w| \, dp_\nu + \int_{\beta_\nu} \log |\frac{1}{w}| \, dp_\nu^z
\]

\[
= 2\pi(x_\nu(\zeta, w) + x_\nu(\zeta, w^{-1})),
\]

and this quantity tends to

\[
2\pi(x(\zeta, w) + x(\zeta, w^{-1})) < \infty.
\]

The limit (65) thus exists.

26. A consideration of the \(y \)-terms in (52) gives:

Theorem. Suppose \(w \in M, B \). Then the sum \(\Sigma g(z, z_i) \), with \(z_i \) ranging over all poles and zeros of \(w \), is harmonic on \(W - \{a_\nu\} - \{b_\nu\} \).

In fact,
For a sufficient condition the first terms of both \(x \)- and \(y \)-parts in (52) must be taken into account:

Theorem. If for some \(\zeta \in W \)

\[
\int_{\beta}^{+} \log |w| d\mu_{\omega} = O(1)
\]

and

\[
\sum_{b \in W} g(z, b) < \infty \text{ in } W - \{b\},
\]

then \(w \in M_{e}B \) and hence

\[
\lim_{\omega \to W} \int_{\beta}^{+} \log |w| | d\mu_{\omega} < \infty
\]

and

\[
\sum_{a \in W} g(z, a) < \infty \text{ on } W - \{a\}
\]

as well.

Indeed, the characteristic

\[
T(\Omega) = u_{\omega}(\zeta, w) = x_{\omega}(\zeta, w) + y_{\omega}(\zeta, w)
\]

\[
= \frac{1}{2\pi} \int_{\beta}^{+} \log |w| d\mu_{\omega} + \sum_{b \in W} g_{\omega}(\zeta, b)
\]

is \(O(1) \) if (69), (70) hold. Properties (71), (72) then follow from \(w \in M_{e}B \).

Another sufficient condition for \(w \in M_{e}B \) is, of course, that

\[
\int_{\beta}^{+} \log |w|^{-1} d\mu_{\omega} \text{ is bounded and } \Sigma g(\zeta, a) < \infty \text{ in } W - \{a\}.
\]

28. For “entire” functions in \(M_{e}B \) the conditions simplify. Let \(E_{e}B \) be the class of such functions, characterized by \(w(z) \neq \infty \) on \(W \).

Theorem. A necessary and sufficient condition for \(w \in E_{e}B \) on \(W \) is that

\[
\int_{\beta}^{+} \log |w| d\mu_{\omega} = O(1) .
\]
The proof is evident.

29. Consider the class H of regular harmonic functions h on W and let HP be the subclass of nonnegative functions. Set $h^+ = \max(0, h)$.

Theorem. A harmonic function h on W has a decomposition

\begin{equation}
 h = u_1 - u_2, \quad u_1, u_2 \in HP
\end{equation}

if and only if, for some ζ,

\begin{equation}
 \int_{\beta_0} h^+ \, dp_0^\# = O(1),
\end{equation}

or, equivalently,

\begin{equation}
 \lim_{\Omega \to W} \int_{\beta_0} |h| \, dp_0^\# < \infty.
\end{equation}

Proof. The multiple-valued function $w = e^{h+i\zeta}$ is in M_{c}, and $w \not= 0, \infty$ on W. If (74) is given, then $\log |w| = u_1 - u_2$ and $w \in M_{c}B$. This implies

\[
 \lim_{\Omega \to W} \int_{\beta_0} |\log |w|| \, dp_0^\# = \lim_{\Omega \to W} \int_{\beta_0} |h| \, dp_0^\# < \infty
\]

and consequently $\int_{\beta_0} h^+ \, dp_0^\# = O(1)$. Conversely, suppose the latter condition holds,

\[
 \int_{\beta_0} \log |w| \, dp_0^\# = O(1).
\]

Then $w \in M_{c}B$ and

\[
 h = \log |w| = x(z, w) - x(z, w^{-1}),
\]

the y-terms vanishing because of the absence of zeros and poles of w.

It is known that functions u harmonic in the interior W of a compact bordered Riemann surface and with property (76) have a Poisson-Stieltjes representation (e.g., Rodin [6]). For further interesting results see Rao [5].

30. It is clear that theorems on $\log |w|$ can also be expressed directly in terms of $|w|$. Theorem 7, e.g., takes the following form:

Theorem. $w \in M_{c}B$ if and only if
(77) \[|w| = \left| \frac{\eta(z, w)}{\eta(z, w^{-1})} \right|, \]
where \(\eta \in M_eB \) and \(|\eta| < 1 \) on \(W \).

Proof. Suppose \(w \in M_eB \), hence

(78) \[\log |w| = u(z, w) - u(z, w^{-1}), \]
\(u \in LP \). Set

(79) \[\eta(z, w) = \exp \left[-u(z, w^{-1}) - iu(z, w^{-1})^* \right], \]
and (77) follows. Conversely, if (77) is given, then

(80) \[\log |w| = \log |\eta(z, w)| - \log |\eta(z, w^{-1})| \]
is a difference of two functions in \(LP \), and we have \(w \in M_eB \).

31. The counterpart of Theorem 21 is as follows:

Theorem. \(w \in M_eB \) if and only if

(81) \[|w| = \left| \frac{\varphi(z, w)\psi(z, w)}{\varphi(z, w^{-1})\psi(z, w^{-1})} \right|, \]
where \(\varphi, \psi \in M_eB \) and \(\varphi \neq 0 \) on \(W \), \(|\varphi| < 1 \), \(|\psi| < 1 \).

If \(w \in M_eB \), choose

(82) \[\varphi(z, w) = \exp \left[-x(z, w^{-1}) - ix(z, w^{-1})^* \right], \]
\[\psi(z, w) = \exp \left[-y(z, w^{-1}) - iy(z, w^{-1})^* \right], \]
and we have (81). Conversely, (81) gives \(\log |w| = u_1 - u_2 \) with \(u_1, u_2 \in LP \), hence \(w \in M_eB \).

32. We introduce the classes \(O_{MB} \) and \(O_{M_eB} \) of Riemann surfaces on which there are no nonconstant functions in \(MB \) and \(M_eB \) respectively. Similarly, let \(O_{EB} \) and \(O_{E_eB} \) be the subclasses determined by entire functions \(w(z) \neq \infty \) on \(W \) in \(MB \) and \(M_eB \). The problem here is to arrange these four classes in the general classification scheme of Riemann surfaces [1].

The inclusion relations

(83) \[O_{M_eB} \subset O_{MB} \subset O_{EB}, \]
\[O_{M_eB} \subset O_{E_eB} \subset O_{EB} \]
are immediately verified.
33. The smallest class in (83) is easily identified:

THEOREM. All functions in M_eB on W reduce to constants if and only if W is parabolic,

(84) $$O_e = O_{M_eB}.$$

Proof. If $W \in O_e$, there is a Green's function $g(z, \zeta)$, and

(85) $$w = e^{-g-i\varphi} \in M_eB.$$

In fact, g is bounded above in any $W - \Omega$, hence $m(\Omega, w) = O(1)$, and $N(\Omega, w) = 0$ gives $T(\Omega) = O(1)$. Conversely, if there is a non-constant $w \in M_eB$ on W, then $\log |w| = u_1 - u_2$ where at least one $u_i \in LP$ is nonconstant superharmonic. This means that $W \notin O_e$. The same proof gives $O_e = O_{eMB}$.

34. By the preceding theorem, every M_e-function on a parabolic W has unbounded characteristic. Even more can be said of M-functions on the larger class O_{MB} by comparing $T(\Omega)$ with k_α (no. 4):

THEOREM. On $W \in O_{MB}$, the characteristic $T(\Omega)$ of any $w \in M$ tends so rapidly to infinity that

(86) $$\lim_{W \to \Omega} \frac{T(\Omega)}{k_\alpha} \geq 1.$$

Proof. Let $w(\zeta) = a$. The counting function of w for a is, by definition,

$$N(\Omega, a) = \int_{-\infty}^{k_\alpha} (n(h, a) - n(-\infty, a))dh + n(-\infty, a)k_\alpha,$$

where $n(h, a)$ is the number of a-points of w in the set $\mathcal{O}_h: p_\alpha \leq h \leq k_\alpha$. We obtain from the first fundamental theorem [7] that

(87) $$T(\Omega) + O(1) \geq N(\Omega, a) \geq n(-\infty, a)k_\alpha,$$

and (86) follows.

Thus (86) is obviously a property of every $w \in M, w \notin MB$, on every W.

35. We also observe:

THEOREM. A function $w \in M$ on $W \in O_{MB}$ cannot omit a set of values of positive capacity.
More accurately, the counting function $N(\Omega, a)$ of $w \in M$ on O_{MB} is unbounded on any set E of positive capacity. To see this we distribute mass $d\mu(a) > 0$ at $a \in E$, with $\int_{E} d\mu = 1$, and integrate Jensen’s formula

$$\log | w(\zeta) - a | = \frac{1}{2\pi} \int_{\beta_{\Omega}} \log | w - a | d\mu_{\Omega}^{*} + N(\Omega, \infty) - N(\Omega, a)$$

($w(\zeta) \neq \infty$) over E with respect to $d\mu(a)$. We obtain Frostman’s formula on W:

$$N(\Omega, \infty) - \frac{1}{2\pi} \int_{\beta_{\Omega}} u(w) d\mu_{\Omega}^{*} = \int_{E} N(\Omega, a) d\mu(a) - u(w(\zeta)),$$

where $u(w) = \int_{E} \log | w - a | d\mu(a)$. For equilibrium distribution $d\mu$ it is known from the classical theory that $u(w) = -\log | w | + O(1)$, and a fortiori $\int_{\beta_{\Omega}} u(w) d\mu_{\Omega}^{*} = -2\pi m(\Omega, \infty) + O(1)$, where $O(1)$ depends on E only. Substitution into (89) gives

$$T(\Omega) = \int_{E} N(\Omega, a) d\mu(a) + O(1).$$

This proves our assertion.

36. A comprehensive study of the role played by O_{MB} in the classification theory of Riemann surfaces is contained in the doctoral dissertation of K. V. R. Rao [5].

BIBLIOGRAPHY

UNIVERSITY OF CALIFORNIA, LOS ANGELES
Pacific Journal of Mathematics
Vol. 13, No. 2 April, 1963

Rafael Artzy, Solution of loop equations by adjunction .. 361
Earl Robert Berkson, A characterization of scalar type operators on reflexive
Banach spaces ... 365
Mario Borelli, Divisorial varieties .. 375
Raj Chandra Bose, Strongly regular graphs, partial geometries and partially
balanced designs ... 389
R. H. Bruck, Finite nets. II. Uniqueness and imbedding 421
L. Carlitz, The inverse of the error function .. 459
Robert Wayne Carroll, Some degenerate Cauchy problems with operator
coefficients ... 471
Michael P. Drazin and Emilie Virginia Haynsworth, A theorem on matrices of 0’s
and 1’s .. 487
Lawrence Carl Eggan and Eugene A. Maier, On complex approximation 497
James Michael Gardner Fell, Weak containment and Kronecker products of group
representations ... 503
Paul Chase Fife, Schauder estimates under incomplete Hölder continuity
assumptions ... 511
Shaul Foguel, Powers of a contraction in Hilbert space 551
Neal Eugene Folland, The structure of the orbits and their limit sets in continuous
flows .. 563
Frank John Forelli, Jr., Analytic measures ... 571
Robert William Gilmer, Jr., On a classical theorem of Noether in ideal theory 579
P. R. Halmos and Jack E. McLaughlin, Partial isometries 585
Albert Emerson Hurd, Maximum modulus algebras and local approximation in
C^n ... 597
James Patrick Jans, Module classes of finite type ... 603
Betty Kvarda, On densities of sets of lattice points ... 611
H. Larcher, A geometric characterization for a class of discontinuous groups of
linear fractional transformations ... 617
John W. Moon and Leo Moser, Simple paths on polyhedra 629
T. S. Motzkin and Ernst Gabor Straus, Representation of a point of a set as sum of
transforms of boundary points ... 633
Rajakularaman Ponnuaswami Pakshirajan, An analogue of Kolmogorov’s three-series
theorem for abstract random variables ... 639
Robert Ralph Phelps, Čebyšev subspaces of finite codimension in C(X) 647
James Dolan Reid, On subgroups of an Abelian group maximal disjoint from a given
subgroup ... 657
William T. Reid, Riccati matrix differential equations and non-oscillation criteria
for associated linear differential systems .. 665
Georg Johann Rieger, Some theorems on prime ideals in algebraic number fields ... 687
Gene Fuerst Rose and Joseph Silbert Ullian, Approximations of functions on the
integers ... 693
F. J. Sansone, Combinatorial functions and regressive isols 703
Leo Sario, On locally meromorphic functions with single-valued moduli 709
Takayuki Tamura, Semigroups and their subsemigroup lattices 725
Pui-kei Wong, Existence and asymptotic behavior of proper solutions of a class of
second-order nonlinear differential equations ... 737
Fawzi Mohamad Yaqub, Free extensions of Boolean algebras 761