Pacific Journal of
Mathematics

SEMIGROUPS AND THEIR SUBSEMIGROUP LATTICES

TAKAYUKI TAMURA




SEMIGROUPS AND THEIR SUBSEMIGROUP LATTICES

TAKAYUKI TAMURA

1. Introduction. Let S be a semigroup of order at least 2, and
L(S) be the system of all subsemigroups of S. Generally L(S), includ-
ing the empty subset, is a lattice with respect to inclusion. IL(S) is
called the subsemigroup lattice of S. A semigroup S contains at least
one nonempty subsemigroup besides S itself. In the previous paper
[4], as the first step towards the investigation of the structure of S
with a given type of L(S), we determined all the /"-semigroups,* namely,
the semigroups S’s in which L(S)’s are chains. In the present paper
we shall define /'*-semigroups as generalization of I/'-semigroups and
shall obtain all the types of I'™*-semigroups except for infinite simple
I'*-groups.

Since all the semigroups of order 2 are [™*-semigroups, we shall
treat non-trivial /'*-semigroups, namely, those of order =3 in the
discussion below. First, in §2 we shall prove that I'™*-semigroups of
order = 3 are unipotent, i.e., having a unique idempotent, and that
they are periodic; and hence a [™*-semigroup is determined by a group
and a Z-semigroup, i.e., a unipotent semigroup with zero. Accordingly,
in §3 we shall determine all the types of I™-Z-semigroups which will
have to be of order <5; in §4 we shall treat solvable /"*-groups and
prove that finite I'*-groups or non-simple [™*-groups are solvable;
finally in §5, unipotent I"*-semigroups which are neither groups nor
Z-semigroups will be discussed. It is interesting that there are no
infinite unipotent I"*-semigroups except groups.

For convenience, the results from the paper [4] are stated as
follows:

LEMMA 1.1. A semigroup is a I'-semigroup if and only if it has
one of the following types.® FKxcept for (1.8) they are all cyclic semi-
groups, i.e., semigroups generated by an element d. We show defining
relations below.

1.1) Z-semigroups:

(1.1.1) d* = d? (order 2)
(1.1.2) dt=d! (order 3)

Received February 21, 1962, and in revised form February 23, 1963. This paper was
delivered in the meeting of the American Mathematical Society in Seattle in June, 1961;
and the rapid report was published in [7].

1 The author called them /-monoids in [4].

2 As the trivial case, a semigroup of order 1 is also regarded as a ["-semigroup. This
remark will be needed for the definition of a I™*-semigroup.
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(1.2) Cyclic groups G(p™) of a prime power order: d = d*"+
(1.8) Quastcyclic groups [1]: G(p~), t.e.,

G(p") = 3, G(v")
where Q) CGPH < --- CGRH T -+, p being a prime.

(1.4) Unipotent semigroups of order n, the kernel (the least ideal)
of which s a group G(p™):

(1.4.1) iWf p=2 d? = d*"+? (order n = 2™ + 1)
1.4.2) if p+2

(1.4.2.1) d* = drm+? (order m = p™ + 1)
(1.4.2.2) d® = dr"+3 (order n = p™ + 2)

2. Preliminaries.

DEFINITION. A semigroup S is called a /'*-semigroup if every
subsemigroup different from S is a /-semigroup.

S is a I"-gemigroup if and only if the subsemigroup lattice L(S)
is a lattice satisfying

(2.1) Any subset which cantains the greatest element 1 is a sub-
semilattice with respect to join, equivalently to

(2.1') Let z, y be any elements of a lattice. Then

zxUy=xo0r yorl.

Notation. If X and Y are subsets of S, X| Y means either XS Y
or X2 Y;X|Y means that X and Y are incomparable, that is,
neither is contained in the other. ((X, Y, --:)) denotes the subsemi-
group generated by X, Y, .--. In particular, ((z)) denotes the sub-
semigroup generated by an element x, ((x, y)) the subsemigroup gener-
ated by elements « and %, while {%, x,, ---} is the set composed of
Lyy Lgy v

S is a I™*-semigroup if and only if any two subsemigroups A and
B satisfy the following condition: A|| B implies S = ((4, B)). Of
course a I'-semigroup is a I[*-semigroup. Since the homomorphic
image of a I'-semigroup is also a /-semigroup, we get easily

LEMMA 2.1. A homomorphic image of a I™*-semigroup s a I*-
semigroup.

LeMMA 2.2. A [*-semigroup is periodic.

Proof. Suppose there is an element % of infinite order. S con-
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tains an infinite cyeclic subsemigroup {z%; ¢ =1,2, ---}. Hence we can
consider a proper subsemigroup® T of S.

T={%1=1,2, .-}
which contains two incomparable subsemigroups 7, and T,:
T, ={«"%1=12 -}, T,={%1=12,+--}.

This contradicts the assumption of S.

By Lemma 2.2, we have seen that a /™*-semigroup has at least
one idempotent. However, we have

THEOREM 2.1. A [*-semigroup of order >2 is unipotent.

Proof. Suppose that a I'™-semigroup S of order >2 contains at
least two idempotents, say, e, f. First, since ¢ is a right identity
of Se, and f is a left identity of fS, we see easily that if Se = f8S,
then e = f. Second, we shall say that either both of Se and Sf or
both of ¢S and fS are proper subsemigroups. Suppose either of Se
and Sf is equal to S, say, Se = S. Then, by the above fact, /S S,
and so we have to show eSC S. Let us assume Se = eS = S. There
is a proper subsemigroup {e, f} of order 2 because ef = fe = f; but
{e, f} is not a I"-semigroup since ¢ and f are both idempotents. This
is a contradiction. Therefore eSc S.

Next, assume that both ¢S and fS are proper subsemigroups of
S. Since eS and fS are /[-semigroups with left identities, they are
groups by Lemma 1.1. We shall prove that {e, f} is a proper sub-
semigroup which is not a I"-semigroup, and then the contradiction
will be derived. For proof, the idempotency of ef and fe is shown
as follows:

(ef Nef) = (efe)f = (ef)f = e(ff) = ef
(fe)(fe) = (fef)e = (fe)e = flee) = fe

because e and f are two-sided identities of the groups eS and fS res-
pectively. Since efceS and fec fS, we have

ef =e, fe=f
whence {e, f} is a subsemigroup. We can have the same result, when

Sec S and Sfc S. Thus the proof of the theorem has been completed.

LEMMA 2.3. The tndex of an element a of a I'*-semigroup S
cannot exceed 3.

3 By ‘“a proper subsemigroup 7' of S’ we mean ‘“‘a subsemigroup T which is differ-
ent from S.”
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Proof. Let a have index greater than 1. Then ((a)) — {a} is a
I’-semigroup, so ((@?))|((a’)). Hence there is a positive integer = such
that either

a*=a or a®=a™.
This shows that a has index 2 or 3.
3. ['*-Z-Semigroups. In this section we shall determine the types
of I'*-Z-semigroups, i.e., unipotent /™*-semigroup with zero 0.
Let S be a [I'*-Z-semigroup with 0. Since S is periodic, every

element of S is nilpotent, that is, some power of the element is 0.
By Lemma 2.3,

=0 forall zeS.
LEMMA 8.1. x = xy tmplies € = 0; x = yx implies v = 0.

Proof. x = xy = x2y* = 2y* = 0; the proof of the second part is
obtained in a similar way.

LEmMmA 3.2. If 2* =0, then xy = yx = 0 for all y.

Proof. We may assume x # 0, let y = 0. If ((x))|((2y)), 2y =0
because of Lemma 3.1. If ((%))]|| ((xy)), then S = ((z, 2y)) and so y =
2w for some u.

xy =2*u =0.
The proof of yx = 0 is similar.

To determine the types of I™*-Z-semigroups, we consider the possi-
ble three cases:

Case I. 2= 0 for all z = 0.

Case II. There exists only one nonzero element % such that * =
0, 2+ 0.

Case III. There exist at least two nonzero elements « and ¥ such
that * =0, 2+ 0, ¥* =0, y* # 0.

THEOREM 3.1. S 4s a non-trivial I'*-Z-semigroup if and only if
S is isomorphic or anti-isomorphic to one of the following:

Case I. S =10, a, b} where xy = 0 for all z,y€S.
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Case II. S={0, a, a’} where a*=0. This is a I'-semigroup which
is isomorphic to (1.1.2).

Case 1II. S =10, a,b, c} where a*> =b* =¢, a’x = xa’ =0 for all
xeS.

Subcase 111, ab =ba = ¢

Subcase III, ab = ¢, ba = 0

Subcase 11I, ab = ba = 0

Proof.

Case I. Let @ and b be distinct nonzero elements of S. Since
(@) |1 ((®)), S = ((a, b)). By Lemma 3.2, we have ab = ba = 0. Hence

S =((e,b) =10, a,b}.

Case II. Let a be an element with index 3. Suppose that there
is be S — ((a)). In the present case we know b* = 0. By Lemma 3.2,
ab =ba = 0, whence A = {0, a? b} is a subsemigroup which does not
contain a, and hence A is a I'-semigroup. On the other hand, since
b + a®, we have ((@¢?)) || (()). It is impossible in a [I™*-semigroup S.
Therefore S = ((a)).

Case III. Let a and b be distinet nonzero elements, both of which
have index 3. Since (a?)? = (b*)* = 0, Lemma 3.2 gives us

3.1) a’b =ba’ =ba =ab>=0 and so a®b*=0a*=0.

Using (3.1) and Lemma 3.2 repeatedly, since (aba)’® = aba’ha = 0, we
have

(3.2) (ab)’ = (aba)d = 0
and hence
(3.3) aba =0 .

Similarly we get

(3.3") bab =0 .

Now we have two subsemigroups 7T = ((@% b%)) and U = ((ab, a?)):
T= (b)) ={0,0%, b} 3a

where we see a # b?, otherwise, @ = b would imply a® = 0; also

U = ((ab, @”)) = {0, ab,a’} »b .
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Accordingly both 7" and U are [-semigroups and so
(@) [((6")) and ((ab))|((a”)) .
The first implies (8.4); the second implies (3.5)

(3.4) a’=1"b
3.5) ab=a* or 0.

Similarly we have
3.5 ba =a* or 0.
Clearly ((@))]/((b)). By (8.1) through (3.5'),

S = ((a, b)) = {0, a, b, a?}

which consists of exactly four elements. Thus we have obtained the
three types for Case III. It is easy to show that the systems thus
obtained are /™*-Z-semigroups.

4, I*-groups. By Lemma 2.2, a group G is a ["*-semigroup if
and only if it is a I'*-group, i.e, every proper gubgroup of G is a
I-group. By Lemma 1.1, every /-group is of type G(p*),k < . In
this chapter we determine all solvable I™*-groups. We also show that
every finite I"*-group is solvable. The question whether infinite simple
I*-groups can exist remains open.

LEMMA 4.1. Let G be a non-abelian solvable I'*-group which ts
not also a I'-group. Then G contains a proper normal subgroup
N £ 1 and an element a not in N, such that

4.1) Nl ((a)), so that G = ((N, a))
4.2) a’e N for a prime number q .

Proof. Since G is solvable, it contains a proper normal subgroup
N such that G/N is abelian. N # 1 since G is not abelian. Since N
is a proper subgroup of G, it is a I'-group. Since G is not itself a
I'-group, there exist a and b in G such that ((e)) || ((b)), and then we
have G = ((a,b)). If N||((b)), then (4.1) holds with b instead of
a. To prove (4.1) suppose N|[|((8)). If N 2 ((b)), then N 2 ((a)),
since N is a I"-group; and ((a))]|{((b)), and N & ((a)) since otherwise
() = N < ((@¢)). Hence N}/ ((a¢)) in this case. If N & ((b)), then,
since G/N is abelian, aba™'b"'e N & ((b)), so aba™ € ((b))b < ((b)). Since
G = ((@, b)), we conclude that N’ = ((b)) is a normal subgroup of G,
and (4.1) holds with N’ instead of N. Hence N and a exist such
that (4.1) holds. Let k& be the least positive integer such that a* € N,
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and let k = k'q with ¢ a prime. Let @’ = a*'. Then (4.1) and (4.2
hold with a’ instead of a.

THEOREM 4.1. Let G be a solvable 1'™*-group which is not a [-
group. Then one of the following holds:

(4.3) G is a group of order pq, p and q primes excluding the
cyclic group of order p°.

(4.4) G 1s the quaternion group of order 8.

Proof. First let us take the case G abelian. If G were directly
indecomposable, it would be isomorphic with G(p*) for some k = o
(cf. Theorem 10, p. 22, [2]), and so would be a /'-group. Hence G is
directly decomposable: G = G, x G, where G, # 1, G, # 1. Let a; be
an element of G; of prime order p; (f =1,2). Then ((a))]|(a.)), so
G = ((a;, ay)) = {{a)) x ((ay)). Thus G has type (4.3).

Let G be non-abelian. By Lemma 4.1, G contains a proper normal
subgroup N # 1, and an element @ not in N such that NJ|((¢)) and
a?e N for some prime ¢. Since N is a proper subgroup of G, it is
isomorphic with G(p*) for some prime p and some k < . Hence a’
has prime power order p®, say.

If ¢ #+ p, then a, =a?" ¢ N, and a! = 1. If b is any element of
N of order p, we have ((a))||((h)) and hence G = ((a,, b)). Since
a,Na;' = N, and every subgroup of N is characteristic, a,((b))a;* < ((b)).
Hence G is an extension of the cyclic group ((b)) of order p by the
cyclic group {{(a,)) of order gq.

We may now assume ¢ = p. Since N & ((a)), there exists b in N
such that b* = a?. Let ¢ = a? = b®. Since ¢ commutes with @ and b,
and G = ((a, b)), ¢ belongs to the center C of G. If ¢ =1, then, as
in the above statements, G is an extension of the cyclic group ((b))
of order p by the cyclic group ((a)) of order p. Hence we may assume
that the order of ¢ is p” with n > 0.

Since ((b)) is invariant under @, we have aba™' ==b" for some
positive integer » > 1. Then

¢ =b"=ab’a = {aba™)’ = b =c¢",
whence » =1 + sp” for some integer s. Hence
aba™' =b"=bd or blaba'=d #1

where d = b*" = ¢**""' is an element of C of order p. As in the
familiar way,

(ab——l)p —_ dp(p—l)/iapb——p — dp(}’—l).’2 .
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If p is odd, we conclude that (ab™)» =1. Let @, =ab™*. Then a? =1
and this case is reduced to the previous case ¢ = 1. We are left with
the case »p = 2. Setting a, = ab™, we have a} =d. Let b, be an
element of N such that b2 = d. Then G = ((a,, b)), and ((b,)) is invariant.
under a,. Since b =1, and G is not abelian, we must have

aba = b,

Together with a! = b! = 1, this shows that G is the quaternion group
of order 8. Thus this theorem has been proved.

THEOREM 4.2. A finite I'*-group s solvable.

Proof. For I'-groups, the theorem is obvious. Let G be a finite
I'*-group which is not a /I-group. If G is of order p™ of a prime
power, then this theorem holds, since G has a normal subgroup of
order p™* by the familiar theorem of p-groups. So we may assume:
that the order of G has at least two distinct prime divisors.

First we shall prove that G has a proper normal subgroup. Let.
M be a Sylow subgroup of G, and consider the normalizer H of M.
If H=G, then M is normal; if M & HC G, then H is a I'-group, a
cyclic group. By Burnside’s theorem ([8], p. 169), G has a proper
normal subgroup N such that G = NH, NN H=1.

Since N is a proper subgroup, it is a /’-group, say, G(»*). Then,
suppose the order of the factor group G/N is

(4.5) pwzqﬂTy cee, O g 0: /8 % 1y v g 07 ce

which has a prime divisor ¢ # p. Since G/N has a subgroup of order
q, G has a proper subgroup of order p®q, which contains two incom-
parable subgroups, unless

(4.6) a=0p8=1.

Thus we have proved that the index of N is a prime gq.
THEOREM 4.3. A nonm-stmple I'*-group is solvable.

Proof. Let G be a non-simple I"*-group and N be a proper normal
subgroup of G. We may assume that G/N contains a proper subgroup:
H of prime order p, since G/N is a I'™*-group and so G/N is periodic.
Consider a coset N which is a generator of H and take an element
acxN. Then H = ((a)) is a group of order p, and there is a subgroup
K of G such that K/N = H. Clearly K = NH. On the other hand,
since N || H, we have G = (N, H)) = NH = K. Accordingly, G/N = H,
which is prime order. Thus the proof has been completed.
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Consequently, (4.3) and (4.4) of Theorem 4.1 give us all the types
of finite or non-simple /™*-groups which are not /I"-groups.

5. Unipotent /™*-semigroups.

1. In this chapter we shall discuss unipotent I'*-semigroups S’s
which are neither groups nor Z-semigroups. By Lemma 2.2 and Theorem
2.1 we see that a I"*-semigroup S of order >2 is a unipotent inversible
semigroup. By “inversible” we mean “for any element a of S there
is an element b such that ab = e¢ where ¢ is a unique idempotent.”
According to [5], [6], a unipotent inversible semigroup which contains
properly a group is determined by a group G (or kernel, i.e., least
ideal), and a Z-semigroup D (the difference semigroup of S modulo G),
and certain mapping of the bases of D into G: a — ea.

First of all we shall prove that the kernel is finite.

LEMMA 5.1. Let S be a unipotent inversible semigroup with the
kernel G of type G(p*), k being infintte or finite, and let d be an
element of S which is not in G such that ed generates G(p™), m < k,
and d7' e G(p*), d' € G{p*). Then there is a subsemigroup H of order
Pttt 4+ 1 —1 of S which contains two incomparable subsemigroups:
G(p™™) and {d'; 1 = 1}.

Proof. Let a =ed. As is easily seen (cf. [5]), we have
(5.1) a=ed=ded =a,iz=l
(5.2) xd = dx = xe = ax for every xeG.

Especially for z e G(p™""), xd = dx € G{p™**). Therefore the set union
H=G{p""Hu{d;l—1=1=1} is a subsemigroup of S; and the two
subsemigroups G(p™"’) and {d’;¢ =1} are incomparable, because
{d v = 1} < G{p™).

THEOREM b5.1. Let S be a unipotent tnversible semigroup which
is neither a group nor a Z-semigroup. If S isa [*-semigroup, then
S is finite.

Proof. The proper subgroup G is a I-group G{p=) or G(p"), and
the difference semigroup D = (S: G) of S modulo G in Rees’ sense [3]
is a I'*-Z-semigroup of order =<4 by theorems in §3. There is an
element 2z, outside G such that ze @, for example, we may take a
nonzero annihilator as z, (cf. [6]); and let m be a positive integer such
that ez, generates a subgroup G{p™). If S is infinite, then G is of
the type G(p~) and so S has a proper subsemigroup of order p™*' + 1,
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which contains two incomparable subsemigroups by Lemma 5.1. This
contradicts the definition of I"*-semigroups of S. Thus the theorem
has been proved.

Hereafter we shall determine the desired semigroups S in each
case according as the order of D.

2. The case with D of order 2.

Let G(p™) denote the kernel of S, and let d be a unique element.
outside G(p™). Of course d*c G(p™). G(p*) denotes the subgroup gener-
ated by a =ed. If k= n, then, by (5.1), we have

S={d5iz1, G@)={d;iz2

that is, S is a /"-semigroup of type (1.4.1) or (1.4.2.1).

If E<mn, then by Lemma 5.1 there is a subsemigroup H =
G(p**) U {d} of order p**'+ 1 which contains two incomparable sub-
semigroups, so that S = H and hence we have ¥ =n — 1. In other
words, a is a generator of G(p"~'); this a determines S and there is
a unique S to within isomorphism, independent of choice of generator
a (cf. [6]). Conversely, a semigroup S thus obtained is easily seen
to be a I'*-semigroup. In fact, by (5.1) we see that a proper sub-
semigroup incomparable to G(p™) is nothing but

G ) U {d} = ((@)) .

3., The case with D of type Case 1 of order 3.
Let S=G({®»")U{d,d,} where d.d,, d}, d dd, eG(p"). S is de-
termined by the two elements a,, a,, i.e.,

a, = ed, , a, = ed,

where a, and a, can be taken independently arbitrarily. The proper
subsemigroups G(p*) U {d,} and G(p") U {d,} are I'-semigroups of type
(1.4.1) or (1.4.2.1). We have already known that a, and a, are the
generators of G(p™), and

G Ud}=(d)), G@)U{d}=(d)).
We can easily prove that there are two possible distinet types
a; = Ay, a;, + a,

in all cases except for the case p = 2 and n = 1. They are immediately
seen to be I'*-semigroups.

4. The case with D of type Case II of order 3.
Let d be a generator of D: D =1{0,d,d%,d*=0, and let S =
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G(p™) U {d, d’}. We shall prove that a = ed generates G(p"). Suppose
that an element a generates G(p*), k < n. Then, since ed® = (ed)’ and
(d*)? e G(p™), ed® generates a subgroup G(p™), m < k, and a subsemigroup
K = G(p™*") U {d*} contains two incomparable subsemigroups by Lemma
5.1. K is a proper subsemigroup of S because

1<+ 2.

This contradicts the assumption of I'*-semigroup of S. Hence it has
been proved that G(p™) is generated by ed. Accordingly we get G(p*) =
{d*; v = 8} by (5.1), whence S is generated by d. In the same way
as the Case with D of order 2, we see that arditrary different gener-
ators of G(p*) give some isomorphic S’s.

The remaining thing to do is to testify the subsemigroup lattice

of such semigroups.
If p #+ 2, then ed® generates G(p"), and only a proper subsemigroup

between S and G(p") is
(@) = G(py U {d?} by (5.1)
and so S is a /'-semigroup of type (1.4.2.2).

If p = 2, then ed® generates G(2"?) and so, by Lemma 5.1, we
have a proper subsemigroup

G(2") U {d*

which contain. two incomparable G(2") and ((d*). Therefore, S is not
a ["*-semigroup.

5. The case with D of order 4.

Let S = G(p") U {d,, d,, d.} where d, = d; =d;. D has any one of
the types of Case III with elements denoted by d,, d,, d, instead of
a, b, ¢, respectively. Since the proper subsemigroups G(p") U {d,, d;}
and G(p") U {d,, d;} are both I'-semigroups of type (1.4.2.2), we have
by (5.1)

G Uldy, do} = ((d),  G(p") U{dy, di} = ((du))

where p # 2, and a, = ed, and a, = ed, are both generators of G(p™).
One the other hand, there are relations between a, and a, as follows:
(We called these relations the primary equations for D in [6], §3.)

a; = at in Case III,,
a, = a, in Cases III, and III,.

We see easily that ai = a? in G(p") implies a, = a, because p # 2.
Thus for G(p") and each D, there is a unique S to within isomorphism.
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As far as the subsemigroups containing G(p") are concerned, besides
((d,)) and ((d)), there is ((d,)) and we have

((dw) = ((d=)) N ((ds))

because p # 2. Accordingly it can be seen that S is a I"*-semigroup.
Thus we have

THEOREM 5.2. When G(p*) is givem, all the possible umipotent
I*-semigroups S whose kernel is G(p") and which are not I'-semigroups
are determined as shown below. Let ¢ be the unique idempotent of
S, and let D = (S: G(p™). We remark G(»°) =1, G(p™') = empty.

(6.3.1) In the case D of order 2, S=G(p")U{d}, n+0,
ed € G(p*™) — G(p"™’)

(56.8.2) In the case D of order 8, D s of Case I and
S = G(pn) u{d, dz}y n+0

(5.3.2.1) ed, = ed, e G(p™) — G(p"™")
(5.3.2.2) p"+# 2,ed, # ed,, and ed,ed,cG(p") — G(p ™)

(5.3.8) In the case D of order 4, S=G(p") U {d,,dy, d3}, di=di=d,,
n+0, p+2

(5.8.3.1) D of type Case 111,
(5.3.3.2) D of type Case 111, ted, = ed, € G(p") — G(p"7?) .
(5.3.3.3) D of type Case 111,

After all, under the given G(p"), if » # 2, then there are sixz types
of S; if p=2 and n # 1, then three typesof S; if p=2 and n =1,
then two types of S.
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