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CHAPTER III

9. Tamely Imbedded Subsets of a Group

The character ring of a group has a metric structure which is
derived from the inner product. Let £ be a subgroup of the group
X. The purpose of this chapter is to state conditions on € and X which
ensure the existence of an isometry z that maps suitable subsets of
the character ring of { into the character ring of ¥ and has certain
additional properties. If a is in the character ring of € and ar is
defined then these additional properties will yield information con-
cerning a*(L) for some elements L of £. Once the existence of 7 is
established it will enable us to derive information about certain
generalized characters of X provided we know something about the
character ring of . In this way it is possible to get global infor-
mation about X from local information about &.

There are two stages in establishing the existence of 7. First we
will require that £ is in some sense “nicely” imbedded in X. When
this requirement is fulfilled it is possible to define a* for certain
generalized characters a of £ with a(l) = 0. In this situation a* is
explicitly defined in terms of induced characters of various subgroups
of X. Secondly it is necessary that the character ring of 2 have
certain special properties. These properties make it possible to extend
the definition of 7 to a wider domain. In particular it is then possible
to define a® for some generalized characters a of & with a(1) + 0.
The precise conditions that the character ring of € needs to satisfy
will be stated later. In this section we are concerned with the
imbedding of £ in X. The following definition is appropriate.

DEFINITION 9.1. Let & be a subset of the group X such that
9.1) AHsleN@ =2.

Let £, be the set of elements L in € such that C(LHYEE, and let
D= —g,.

We say that £ is tamely imbedded in X if the following conditions
are satisfied:

(i) If two elements of { are conjugate in X, they are conjugate
n £

(ii) If © is non empty, then there are non identity subgroups
O, ++, 9, of X, n =1, with the following properties:

803



804 SOLVABILITY OF GROUPS OF ODD ORDER

@) (%1, 19:) =1 for © # j;

(b) ; is a S-subgroup of N, = N(D:);
© R=9L8NN;) and H: N2 = 1;
@ (90, 1C(L))=1 for Le,;

(e) For 1 <14 =<n, define

={ U Cu(@D} -9t
EE%
Then Sft% is a non empty T. I. set in X and N; = N (ift.-).
(iii) If L,€%D, then there is a conjugate L. of L, in L and an
index 4 such that

C(L) = Co(L)-Co(L) S .

If &is a tamely imbedded subset of X then for 1 < ¢ < n, each of
the groups ; is called a supporting subgroup of 2. The collection
{9:11 =1 = n} is called a system of supporting subgroups of L.

In one important special case, the definition of tamely imbedded
subset of % is fairly easy to master. Namely, if © is empty, the
reader can check that  is a T. I. set.

If € is a tamely imbedded subset of X with 8 = N (51’) then in
this section _# (53) denotes the set of generalized characters of 8 which
vanish outside £ and "g(ﬁ) denotes the complex valued class functions
of $ which vanish outside €. Similarly, £ (@)( %(SE)) is the subset of
a (8)(%(8)) vanishing at 1. R. Brauer and M. Suzuki noted that if

£ is a T. I. set in X then the mapping 7 from %(8) into the ring
of class functions of X defined by

ar = a*

is an isometry ([24], p. 662). They were then able to extend this
isometry to certain subsets of %’(:‘3). Several authors have since then
used this technique and it has played an important role in recent
work in group theory.

In this chapter these results will be generalized in two ways.
First we will consider tamely imbedded subsets of %X rather than T.I.
sets in X. Secondly we will show that under a variety of conditions
T can be extended to various large subsets of %(@). The results
proved in this chapter are important for the proof of the main theorem
of this paper. However it is unnecessary in general to assume that
X has odd order or that ¥ is a minimal simple group.

The following notation will be used throughout this section.

For a tamely imbedded subset € of X let &= N(ﬁ) and for
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1<7=nlet $; and N; have the same meaning as in Definition 9.1.
Define $, = 1 and

& ={L|Le®D, C(L)=N} forl<t=n.
For Le&,0=i=<n let
©.2) W, = {LH|LH = HL, He $} = L{®: 0 C(L)} .

Since £ is tamely imbedded in % it follows from (9.2) and Definition
9.1 that for Le®, 01 n

(9.3) |CL)[=]CL)NE| |As] .
For ac %(@) and 1 < 7 < n define
a; = a|gag, .
Let a;, be the class function of M,/D; which satisfies

a; lgnm, =q;.

Let a;, be the class function of N; induced by a;. Define
(9.4) a’ = a* + 23 (a;, — an)* .

Ifae Z (ﬁ) then (9.4) implies that a* is a generalized character of X.
It is an immediate consequence of the definition of induced characters
that for 1 <t <n

a,(A) = a(L) for Le®;, Ae¥,;
(9.5) o, (A) =0 for Le®, AcA;,, A+ L
an(L) = |CL)N$:|a(L) for Le¥g,.

LEMMA 9.1. Suppose that & is a tamely imbedded subset of %.
If ae & (f!) let a* be defined by (9.4). Then a’(X) =0 ¢f X is not
conjugate to an element of U, for any Le CJ L, , while
=0

a(d) = a(L) for Ae¥A,LelJs;.

=0

Proof. If Ne,; then a complement of $; in (N is solvable.
Thus ([28] p. 162) for 1 < ¢ < n every element of R; is conjugate to
an element of the form HL = LH with LefnNN;,, He D;. Suppose
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that L is not conjugate to an element of f!’; then since ac¢ %(@),
(9.4) implies that a’(HL) = 0. This implies that a*(X) = 0 unless X

is conjugate to an element of %, for some Leg& .

Let Ae,, Leg for some ¢ with 0 <7 <mn. Suppose that
XLXe 532,- for some Xe€X and some § with 1 <4 =<n,7+# 3. Then
(19, 1€CL)))#*+1. Thus ©# 0 and Le ‘fé.-. Furthermore C(L) =
Co(L)Co(L). By assumption (|£:],|9;]) =1 and (|9, |Co(L)]) = 1.
Thus (| C(L)|, | D;|) = 1 contrary to the choice of L. Since ae % (2),
a; — a;, vanishes on N; — ?ﬁ‘}. Consequently (9.4) implies that

9.6) a(A) = a*(A) for 1 =0

) a’(A) = a*(A) + (@, —a;))*(4) for1lsi<n.
Since fft,- isa T. I. set in ¥ with N (52;) =N, we get that

(ay — ay)*(4) = (@, — a,)(4) .
Thus (9.6) yields that
9.7 a’(A) =a*(4) + (a,;, —az)(A) forl=i<n.
Assume first that A = L. Then a*(L) = | C(L) N ;| a(L). Hence

(9.5), (9.6) and (9.7) yield that a’(4) = a(L). If A # L, then a*(4) =0

and 1<7<n. Thus (9.5) and (9.7) yield that also in this case
a‘(A) = a(L). The proof is complete in all cases.

LEMMA 9.2. Suppose that isa tamely imbedded subset of X.
If ae &(®) let a* be defined by (9.4). Then for 1<i<n

a*(N) = ay(N) for NeR U D, .

Furthermore |y, i8 a linear combination of characters of N;/9D;.

Proof. If Ne 9, then by Lemma 9.1 and the definition of «a,
a’(N) = 0 = a,(l) = ay(N) .

If Ne E?E,;, and a’(N) # 0, then N is conjugate to an element A of
U, for some Leg,. Thus by (9.5) and Lemma 9.1 a*(N) = a,,(N) as
required.

Let 6 be an irreducible character of R; which does not have ©;
in its kernel. Then
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9.8 (@ g 6) = ——Zp,a (N)I(N) .

I?Rl

By Lemma 4.8 6 vanishes on %, — 52,- — ©; hence (9.8) and the first
part of the lemma yield that

@ |y, 6) = —— Zna(N)IN)

Iml

lm | Em. u(N)ﬁ(N) (@, 0) .

Since a«;, is a linear combination of characters of N,/D: this yields
that (a® |y, 6) = 0. The lemma is proved.

LEMMA 9.3. Suppose that g is a tamely tmbedded subset of X.
If ae &(8) and a* is defined by (9.4) then

(ar, lz)g = (@, 19,)9, .

Proof. Let €,C,, --- be all the conjugate classes of ¥ which
contain elements of . Let L, L,, -+ be elements in 0 ¥, such that
i=0

L;e€; N . The number of elements in % which are conjugate to
an element of ¥, , is easily seen to be

= _1%]
1€;1 [, = TCLY] 1%y, |

Thus by Lemma 9.1 and (9.3)

9.9) @, 1e = 37 STt | % 4T
1 |8]
= 2; L
72 Teay ne ) -

By assumption €, N @’, € n @’, -+- are the conjugate classes of  which
contain elements of ¥, Since € «(8) this yields that

8|
@19 = o7 Tay e

Therefore (9.9) implies the desired equality.

LemMmA 9.4. Suppose that Lisa tamely imbedded subset of X%.
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Let 8 be a generalized character of % such that for Le 08.-, 6 is
i=0

constant on UA;,. If a,Be % (ﬁ) and if ar, B are defined by (9.4)
then

(ar, 0)5 = (a’ elg)g
(@, B = (@, B)g .

Proof. Since # is constant on U, for Le L'j& it follows from
=0
Lemma 9.1 that
{aéls}t = a'é .
Thus by Lemma 9.3

(ar, 0)5 = (a’é, 1&)3 = (aélﬁi ]:2)9 = (a! Glg)ﬁ .

By Lemma 9.1 8° is a generalized character of ¥ which is constant

on A, for Le 08;. If now @ is replaced by B° in the first equation
i=0

of the lemma the second equation follows.

LEMMA 9.5. Suppose that 8 is a tamely imbedded subset of
X, Let © be a class function of X which is constant on UA; for

Le 0 ;. Let X, be the set of all elements in X which are conjugate
i=0
to some element of U; with Le _08;. Then

+=0

1

37 280 = L sue).

18]

Proof. Define ac %(fé) by

a(L) = 6(L) if Le®
a(L) =0 if Le® — &,

By Lemma 9.1

a’(X) = 6(X) if Xe%,
a’(X) =0 if Xek—%, .

Consequently Lemma 9.3 implies that
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"‘1_‘ ZEOO(X) = (a7, lg)g = (a’ 12)2 = | 1

H Toy =40

=1 5,
=18 SMO(L) .

Lemma 9.5 is of great importance. Even the special case in
which 6 =1, is of considerable interest and plays a role in section

26. In this special case, Lemma 9.5 asserts simply that |%,|/|%X| =
181181

10. Coherent Sets of Characters

Throughout this section let fbea tamely imbedded subset of the
group X¥. Let € = N(2) and let _#(2) be the set of generalized char-
acters of € which vanish outside €. Let = be defined by 9.4).

DEFINITION 10.1. A set .5 of generalized characters of £ is
coherent if and only if

(i) A *#0.

(ii) It is possible to extend 7 from _# (5°) to a linear isometry
mapping _#(5”) into the set of generalized characters of X.

(i) A£(A)sAR).

It is easily seen that if .&” is a coherent set and 7~ &£.%¥ with
F(77)# 0 then also .7 is a coherent set. It is more difficult to
decide whether the union of two coherent subsets of _# (f!) is coherent.
Examples are known in which & consists of irreducible characters of
€ and is not coherent though .%(<5°) # 0 [25]. In these examples )
is even a T. I. set in X¥. The main purpose of this section is to give
some sufficient conditions which ensure that a subset & of _# (@) is
coherent.

LEMMA 10.1. Suppose that Lisa tamely imbedded subset of X%.
Let & ={M[1=Z1%=n} with n =2, Assume that for 1<1=n, N\
18 an irreducidble character of 8. Furthermore \(L)= A(L) for
Le@ — . Then & is coherent. Furthermore, if 7, and 7, are
extensions of T to 7 then either T, =7T,0r | & | = 2 and A} = —\3,,
1=1,2.

Proof. For 1<4,j<n let a;=x —1\; then a;;c _#(%).
Thus % (5”) # 0 since n = 2. Furthermore «f; is defined. Since 7
is an isometry this yields that

(10.1) (a3, aiz) = (@, Qi) = 00 — 055 — Ogjr + 040 .
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In particular (10.1) implies that if i+ j then ||a};||* = 2. By Lemma
9.1 a;;(1) = 0, therefore «;; is the difference of two irreducible charac-
ters of %.

If » > 2, then it follows from equation (10.1) that (af, ai;) =1
if 1<4,7and ¢+ j. It is now a simple consequence of (10.1) that
there exists a unique irreducible character of ¥ which is not orthogonal
to any af; for 2 < i < n. Furthermore if 4, is chosen to be plus or
minus this character then it may be assumed that

(ai,4)=1 for2<1=<n.
Now define 4; by

ai,=4,— 4, 2=5i1=n.
This implies that

ai; = 4; — 4;.

Hence (10.1) yields that the generalized characters 4;,,1 <1 <mn are
pairwise orthogonal and that they each have weight one. It is easily
shown that a rational integral linear combination of the characters
n; of degree zero is a rational integral linear combination of the
generalized characters «,,. Hence if .&¥* is the set of generalized
characters 4,,1 < 1 < n, then the linear mapping sending ); into 4; is
an isometry. Thus, . is coherent and the extension of ¢ to &7 is
unique in this case.

If » =2, define 4; for ¢t =1,2 by ai, = 4, — 4,, where A4; has
weight one, Any rational integral linear combination of A\, and A, of
degree zero is a multiple of a,,. Thus, if 7, is any extension of 7 to
S, Mit=4; or Mt = — 4, ; for i =1,2. The proof is complete.

Before proving the main result of this section, another definition
is needed. The following notation is introduced temporarily.

Let & be a subset of _# (SAB) which consists of pairwise orthogonal
characters. If &£ £.97, let #(5%) denote the smallest weight of any
character in ¢ of minimum degree. If .5 and &~ are coherent
subsets of & and 7, and 7, are extensions of = to .%{ and .7 re-
spectively, define

(A, T T, Ts) = {a]

(i) ae #().

(ii) a° = 4, + 4,, where
(a) dezx(T ™),
(b) 4, is not orthogonal to _# (%),
©) N4l = 2(A))
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DEFINITION 10.2. Let .57 be a coherent subset of . and let z*
be an extension of v to .54. The pair (%4, t*) is subcoherent in &*
if the following conditions are satisfied: If .7~ is any coherent sub-
set of & which is orthogonal to .5¢ and if 7, and 7, are extensions
of T to &4 and & respectively, then

(i) .47 is orthogonal to 7 7,

(ii) If ae (%%, 11, 77, T,), then a® is a sum of two generalized
characters, one of which is orthogonal to .54* and the other is in
+H.

If (%, *) is subcoherent in &7, we also say that .&4 is subcoherent
in &2, which causes no confusion in case z* has been designated.

Hypothesis 10.1.

(i) R is a tamely imbedded subset of the group X%.

(ii) For 1<i<k, ¢={\|1<8=<n}is a subset of 7).

(iii) & = 0 S~ consists of pairwise orthogonal characters.
i=1

(iv) For any i with 1 < i <k, &, 1is coherent with isometry ;.
2 18 partitioned into sets &; such that each &; either consists of
trreducible characters of the same degree and | 5% | = 2 or (S, Tis)
%8 subcoherent in & where T;; = T, on ;.

(v) For 1<1<k,1=<8=n, there exist integers 4, such that

l=4=/4S S,
x‘s'n(]-) = /.'.)"11(1)7 /ﬂ | /h .

(vi) My t8 an irreducible character of L.
(vii) For any integer m with 1 < m =k,

-
&

m— '+ 2
(10.2) 4 >S9/
=1 ” Nis “, '

9
0
-

THEOREM 10.1. Suppose that Hypothesis 10.1 is satisfied. Then
&7 18 coherent. There is an extension t* of 7 to 7 () such that
either t* agrees with ©; on & or % = {\, Ny} and N3 = —A\;%; for
i=12,

Proof. The proof is by induction on k. If k=1 the theorem
follows by assumption.

k—
It is easily seen that Lj &% satisfies the assumption of the theorem.
i=1

k—1
Hence by induction it may be assumed that |J .54 is coherent. Let

i=1

k—1
7* denote an extension of = to |J &4, with the property that for
i=1
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1<i1=k—1,7* agrees with 7; on &4, or &%=\, \;} and \§" = — Afiy,
i=12.

Choose the notation so that \,, has minimum weight among the
characters in &4 of degree #4\;(1). Let %, be the subset .&%; which
contains A\, For 1 < 8 < n, define

B, = 4o dn — M,
Thus B, %4(5”) and B: is defined. Define the integer ¥ by
(10.3) ML B) =4 —v.
If ,)#(1,1)and 1 i<k —1,1=<t=mn, then by (10.3)

(7\'-: 1] Bl) - (/tk'll' ) (/A' k':t‘y B;)

(10.4)
= Ly — Y) — bibn = —Ylis .

Since \,, i8 irreducible and 7 is an isometry on % (%)

(10.5) 181" =4% + I M. * forl<s=<m,.
By (10.4)

k—1 %
(10.6) Bi=dMi —y 5> —L i+ 4

ST

where (4,\;;))=0 for 1=i<k—-1,1<8=<mn;. Equations (10.5)
and (10.6) now yield that

(10.7) 4 — =41+ Ml

lI ..II
If y # 0 then since y is an integer (10.2) and (10.7) imply that

0=24 — ) <Inull—114]*.
Therefore
(10.8) N4 <[ Ml if y#0.

We will show that y = 0. By Hypothesis 10.1 (iv), ¢ can be ex-
tended from % (%4) to a linear isometry 7, on _#(%%). Forl < s < n,
let 4, be the image of M., under this extension. If (4, 7:;) is sub-
coherent in .&¥, then 4% is orthogonal to UJ!=! 7. Suppose that
; consists of irreducible characters of the same degree. If $43i
is not orthogonal to Ui-!.54*", then there exists N €.94; and A\, €.57,
for some tand m with 1 <1 5 k — 1, such that (A"%3, \{") # 0. Assume
first that .4, consists of irreducible characters of the same degree.
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Then it may be assumed that A = A\, Nt € sy Mt = M 80Nd N, =
Niey Nig' € Sy Mis F Mo Thus N2 = e\l for suitable ¢ = =1, Hence

0= — A, Mf — M) =6+ (AL, M) .
Hence A\i,, = —&\t. Therefore
0 = (AL, — ML) = e(nid + NEN1) = 260 (1),

which is not the case as ||A**/|* = 1. Suppose now that .54, is sub-
coherent in .&”. Then .54 is orthogonal to .54* by definition. There-
fore, for 2 < 8 < n,,

109) (4, %24 —a,) = (81, D4 — 4,) = — L.

k1 k1 k1

Thus, 4 is not orthogonal to % (54,)°. If 5% consists of irreducible
characters this yields that || 4|[*= 1. Hence, ¥ = 0 by (10.8). Suppose
that (%4, 7..) is subcoherent in &% If y + 0, (10.8) implies that

(10.10) Bi=4+4

where 4¢e +.%1% and 4, is orthogonal to .&f*. By changing notation
if necessary it may be assumed that

(10.11) A= +4,
by (10.9). Now (10.9), (10.10) and (10.11) yield that
(10.12) 2l = 1(4, DI N4 N |

Hence, (10.8) and (10.12) imply that ¥y = 0 in all cases. Thus, (10.3)
becomes

(10.13) (L, B = 4 .

For 1<s=<m,,

Bo=Lep + (Len, = ).

i 1
Therefore, (10.13) implies that

(10.14) ML, B)=4.,, 1=s=mn,.
For 1 < 8 £ n,, define A\, by

(10.15) Bi = 4l — Ma,

and extend the definition to _# (%) by linearity. This implies that
Me = NF or A = {A, Npand A= —gE for ¢ =1,2. Hence, %47 is
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k—
orthogonal to L_J:.?.’ * and thus z* is an isometry on #(%°). The

proof is complete,

If & is a coherent subset of _# (@), then 7 will be used to denote
an extension of 7 to _#(5°).

Hypothesis 10.2.

(i) Lisa tamely imbedded subset of £ and O; is a supporting
subgroup of 2. N, = N(D.).

(ii) If 0 is any non-principal irreducible character of $; and
G is the character of N, induced by 6, then & is a sum of irreducible
characters of N;, all of which have the same degree and occur with
the same multiplicity in 8.

LEMMA 10.2. Suppose that Hypothesis 10.2 is satisfied. For any
character a of D; let &% be the set of irreducible characters of N
whose restriction to O; coincides with a. If € is a generalized
character of X which 1is orthogonal to _%(S4)* for all a with
(@,1) =0 then 6 is constant on the cosets of ; which lie in

R — i

Proof. We first remark that by Lemma 4.3 characters in &
vanish on N, — 93?,- — 9;, and so generalized characters in _#%(5%)
vanish on R; — E)'A?.-. Suppose that 4,, 8, are distinet characters in .
with (@, 1p) =0. By assumption (6, (6, — 6,)*) =0. Thus by the
Frobenius reciprocity theorem (Qm,’ g8, —8,)=0. Henc_e by Hypothesis
10.2 0% =4 + B, where 7 is a class function of R; induced by a class

function v of ; and B is a generalized character of N,/9:.. Thus
€(N) = B(N) for NeR, — ;. The proof is complete.

LEMMA 10.8. Suppose that Hypothesis 10.2 is satisfied. Let &
be a coherent subset of _# (§) which consists of pairwise orthogonal
characters of &. Assume further that & contains at least two
1rreducible characters, Then if e .S, \° 18 constant on the cosets
of : which lie in N; — 9.

Proof. Suppose that 6, 8, are distinct irreducible characters of
N, which do not contain ; in their kernel such that 0% = 0%‘. We
will show that ‘
(10.16) (M,m‘, 0,—6,)=0.

By Lemma 4.8 6, and 6, vanish on %, — ‘272,- — 9;. Since 52,- is a
T. I, set in ¥ and N; = N(N;) the mapping sending 4, — 4, into



10. COHERENT SETS OF CHARACTERS 815

(0, — 6.,)* defines an isometry on _%({6,, 6,}). By Lemma 10.1 this
can be extended to an isometry of _~#({8, 6.}). Let 6,86, be the
respective images of 4, 0, under this isometry. By assumption &
contains two irreducible characters X\, and \,. Since

AN — MDA, € ()
for j =1, 2, Lemma 9.2 implies that if (10.16) is violated then
O“:m,' 0,—6)+0 for j=1,2,
Thus by the Frobenius reciprocity theorem
N5, 0,—60) =05, (0, —60,)*)+0 for j=1,2.

Thus by changing notation if necessary it may be assumed that
A= +6; for j =1, 2, where the sign is independent of j. Hence

10.17) (MM — MDA, O, — 0) = (1) + A1) = 0.
Since M (LA, — A ()N € A4 (S°) Lemma 9.2 implies that
(DN — MM g, 6, — 65) = 0.
Thus by the Frobenius reciprocity theorem
(A — MDA, 6, — 6) = (DN — M, (6, — 6,)*) = 0
contrary to (10.17). Therefore (10.16) must hold. The result now

follows from Lemma 10.2.

LEMMA 10.4. Suppose that the assumptions of Lemma 10.3 are
satisfied. Let a be the least common multiple of all the orders of
elements in & I f A 18 an irreducible character in ¥, then &2,
contains all the values assumed by \.

Proof. By assumption .&” contains another irreducible character
M. Let o be any automorphism of &7 whose fixed field contains .
Then since (N — MU\, € A4 (S7) it follows directly from (9.4) that
ol (MmN — MONMF] = {M(D)o(h) — ML)}
= (DN — MDA} .
Therefore
MDo(V) — MLI(A) = MDA — MDA .

As ||AT P = ||Af|* = 1, this implies that o(A") = \*. As o may be an
arbitrary automorphism of &7 whose fixed field contains &7, the result
is proved. '
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LEMMA 10.5. Suppose that Lisa tamely imbedded subset of %.
Let A; have the same meaning as in (9.2) and let © be a generalized

character of X which is constant on U, for Le 08.-. Let & be a
=0

coherent subset of _# (@) consisting of irreducible characters. Then
there exist rational numbers b, c, and generalized characters B, of

& which are orthogonal to &¥ such that if L e ¥ then O(L) = bB(L)
if O is orthogonal to &7, and A (L) = ML) + ¢v(L) if O = A e 577,

Proof. 1t is an immediate consequence of Lemma 9.4 that if &
is orthogonal to 7° and if & = I\(1)\;,, where \; ranges over .57,
then

(10.18) 6(L) = b&(L) + b,8(L) for Lel

where b, b, are rational numbers and B, is a generalized character of
€ which is orthogonal to &% If & =\, then Lemma 9.4 yields that

(19.19) A(L) = ML) + e&(L) + esvi(L) for Le @

where ¢, ¢, are rational numbers and v, is a generalized character of
€ which is orthogonal to .2 There exists a generalized character &
of € which is orthogonal to .&” such that

§+& =pg.
Since o, (L) = 0 for L e & (10.18) and (10.19) imply respectively that

6(L) = —b&'(L) + b,8(L)
A(L) = ML) — e'(L) + er(L) .

The lemma follows by a suitable change in notation.

It is worth noting that if the hypotheses of Lemma 10.3 are
satisfied for every subgroup in a system of supporting subgroups of
@, then that lemma implies that \* satisfies the hypotheses of Lemma
10.5. This fact will be used later in this paper.

11. Some Applications of Theorem 10.1

In this section we are concerned with the problem of finding
conditions under which it is possible to apply Theorem 10.1. That
theorem will then allow us to conclude that certain sets of characters
are coherent. To clarify matters the main Hypothesis is stated
separately. This also serves to introduce the notation.
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Hypothests 11.1.

(i) 530 8 a tamely imbedded subset of the group %X and 8, =
N (@o) has odd order. 9, < % and 8 18 a union of cosets of O, Let
L = 8,/9, and let € be the image of 8,, n L,

(ii) 9 and & are normal subgroups of L such that D is nilpotent
and

(11.1) PcsycEHNS clcnce.
meHt

(iii) 7 is the set of all characters of & which are induced by
non principal irreducible characters of 8, each of which vanishes
outside & Then & consists of pairwise orthogonal characters.

(iv) There exists an integer d such that d|2:8||\M1) for v e &~.
Furthermore & contains an irreducible character of degree d|2:R|.

(v) Define an equivalence relation on &~ by the condition that
two characters in & are equivalent if and only if they have the
same degree and the same weight. Then each equivalence class of
&7 18 either subcoherent in 7 or consists of irreducible characters.

(vi) For any subgroup U of © which is normal in L let ¥ ()
be the subset of & consisting of those characters which are equiva-
lent to some character in &7 that has U in its kernel.

In the application to the main theorem of this paper (11.1) will
always be augmented by one of the following conditions.

(11.2) 9 =8=Rce.

(11.3) Pcl=Rce.

(11.4) vs U‘C(H)nR=§gRg8.
HE,@

THEOREM 11.1. Suppose that Hypothesis 11.1 s satisfied. Let
9, be a normal subgroup of & which is contained in D such that

(11.5) | 9:0.| > 4d*|8: 8+ 1.

If “(9.) 18 coherent and contains an irreducible character of degree
d|L:8| then & i8 coherent,

Proof. Let $, be a normal subgroup of £ which is contained in
$: and is minimal with the property that .$”(9,) is coherent. Suppose
that £, = . Choose 9; C D, such that 9,/D, is a chief factor of L.
Let .V(“p,) = ={\,|1=8=mn}, where A, is irreducible and
M(l) =d | 8: R| Let S, +-+ S be the subsets of P(D) — (D)
consisting of all characters of a given weight and a given degree. For
2=t =<k let 47;(1) be the common degree of the characters in &4,
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By Hypothesis 11.1 all the assumptions of Theorem 10.1, except possibly
inequality (10.2), are satisfied for <“(9;). We will now verify that
also inequality (10.2) is satisfied.

Let 4, 0, --- be all the irreducible characters of & which do not
have © in their kernel. Let #; denote the character of £ induced by
0;. Then each 4; is in & by Lemma 4.3. Furthermore if §; ranges
only over characters of $£/9, then

20,(1)0; = Pgig, — Paig -
Therefore

(11.6) 260,1)8; = Paip, — Poip -

If 8;+ 6; then (f;,4,) = 0. Suppose that for a given j there are a;
values of i such that §; = ;. Then (11.6) implies that

1.7 Z{0,(Masf 10,1 = 12:9:] — [2: 9]

where the summation in (11.7) ranges over the distinet ones among
the 4,. Since

(0.0 13:1F = 0,07 2: R a = 3,00, = A
(11.7) yields that

AL(1)? 2:9, e:
ZIIM.II’_' 0.1 —12:91,

where &4 = {\,,} or equivalently

* 42 2:8,] —18:9]
(11.8) 4 > | .
I = @IERT

Since 9 is nilpotent £,/9. is in the center of $/9,. Every irreducible
character of § is a constituent of a character induced by an irreducible
character of ©. Thus for 2 <m < k, Lemma 4.1 implies that

wmd |8: 8] = VI]O:0:]]8: 901,

or equivalently

(11.9) 5 < & iall/lu@ 2l

Suppose now that inequality (10.2) is violated for some value of m.
Then (11.8) and (11.9) yield that

|8:9,] — [2:9] _ 2|8 $>|1/|$? sl
a8 R
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Thus
{19:9.] -1} <24 |2: 8| V[9: 5,

or
19:9:'—2[9:0:1+1 =44 |8:R[9: D1 .

Since every term is an integer this implies that

(11.10) |D:9:]| —1=54d°|2: 8.

However $,S9,, thus |9:9,| = |9:9:|. Now (11.5) and (11.10) are
incompatible. Therefore inequality (10.2), and thus all the assumptions
of Theorem 10.1, are satisfied. Hence by that theorem .5#(9,) is co-
herent contrary to the minimal nature of ©,. This finally implies
that $, = 1). Therefore & = .5#(,) is coherent. The proof is
complete.

The remainder of this section consists of applications of Theorem
11.1. Lemmas 11.1 and 11.2 are closely related to Theorem 2 of [8].
By using the argument of that theorem the assumption that | 2| is
odd in the following lemmas can be replaced by suitable weaker as-
sumptions. However the stronger results are not relevant to this
paper and will not be proved here.

Hypothesis 11.2,

(i) Hypothesis 11.1 and equation (11.2) are satisfied. Thus
d=1.

(ii) | 8| i odd and /9’ 18 a Frobenius group with Frobenius
kernel /9.

LemMMA 11.1. Suppose that Hypothesis 11.2 is satisfied. If
[9:9']1>4(|8:9'+1

then & is coherent.

Proof. By Lemma 10.1 and 3.16 (iif) 57(9') is coherent. The
result now follows from Theorem 11.1.

Lemma 11.2. Suppose that Hypothesis 11.2 1s satisfied. Then
& 18 coherent except possibly if O is a mon abelian p-group for some
prime p and

|9:9' 1 =4[|8:9"+1.
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Proof. If © =9, X §,, where $, and 9, are proper normal sub-
groups of &, then

[£::9i|=1 (mod |8:H]) fori=1,2.
Since |£]| is odd, this implies that
19::911=2(2:91+1 fort=1,2.

Hence [9:9'1>412:9?+ 1 and .&” is coherent by Lemma 11.1. As
© is nilpotent this implies that & is coherent if  is not a p-group
for any prime p. Since [2] is odd

19:91-1-,
1z 8T e,

Thus by Lemma 10.1 .5 is coherent if  is abelian. The result now
follows directly from Lemma 11.1,

LEMMA 11.8. Suppose that Hypothesis 11.2 is satisfied and L is
a Frobenius group with Frobenius kernel . Assume that © is a
p-group for some prime p and [H:D(D)| = p*'. Then 7 i8 coherent.

Proof. 1If © is abelian Lemma 11.2 implies that .&” is coherent.
If © is not abelian then the second term of the descending central
series modulo the third is cyclic. Thus

p=1(mod|8:9]).
Therefore (p — 1) = 2|2:9]| as | 2| is odd. Hence
[9: 9| =p*>4|2:01'+1

and the result follows from Lemma 11.1.

LeMMA 11,4, Suppose that Hypothesis 11.2 is satisfied and L is
a Frobenius group with Frobenius kernel . Assume that O is a
p-group for some prime p and |D: D) | =" If

(11.11) p—1>2p|8:9|

then & 18 coherent.

Proof. If © is abelian Lemma 11.2 implies that & is coherent.
If © is non-abelian let ©, be a subgroup of D(H) such that D(D)/D,
is a chief factor of & As D is nilpotent D(9)/D. is in the center of
©/9.. Thus by Lemma 4.1 the degree of any irreducible character of
/9, is either 1 or p. Hence the degree of any character in (9,
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is either |2: 9| or |2:9|p. Let 54, 5 be the subsets of .S(9,) con-
gisting of all the characters of degree [2:9],|2:9|» respectively.
Let 1=1,4=p. By (11.11)

| &% = fs = >2 =24.

Thus by Theorem 10.1 .$7(9,) is coherent.
If |D(©):9.| =p or p*, then p=1 (mod |8:9]) or

PP—1=0 (mod|8:9]).
As (p* —1,p* — 1) = p — 1 this yields that in either case
p=1 (mod|8:9]).
Therefore p — 1= 2[|2:9|. Hence
19: 912 |9:D®)| =0 >4|2:9"+1

and .%” is coherent by Lemma 11.1. Suppose that |[D(9):9,]| = »°.
Then by (11.11)

|9: D=9 >4|2:9+1.

Since #(9,) is coherent the result now follows from Theorem 11.1.
The next two lemmas involve the following situation:

Hypothesis 11.3,

(i) Hypothesis 11.2 is satisfied.

(ii) There exist primes p, ¢ and positive integers a, b such that
|12:91=0%19:9'|=(0:D(®)| =¢*. Thus || is a power of g.

LEMMA 11.5. Suppose that Hypothesis 11.8 is satisfied and a = 2¢
is even. Then & 18 coherent except possibly if q¢° + 1 = 2p® ¢° s
the smallest degree of any non linear irreducible character of  whose
kernel contains [9, O] and for no subgroup 9, of © with O, + 9,
D, < € i3 /9, a Frobenius group.

Proof. Suppose that .57 is not coherent. Then by Lemma 11.1
I +1=¢% As (¢°+1,¢°—1)=2 it follows that 2p®|¢°+ 1 or
2p°|¢° — 1. If 2p® # ¢°+ 1 this implies that 4p* 4+ 1 < ¢° contrary
to what has been proved above. Therefore ¢°¢ + 1 = 2p°,

Let .77 = {6;;} be the set of non principal irreducible characters
X DD, '] of degree ¢'. Lemma 4.1 implies that .7; is empty for
i >c. Let &% ={\;} be the set of characters in .5¥ of degree ¢‘p’.
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Since | & = 2(¢° — 1) > 2¢°, it follows from Hypdthesis 11.1 and
c—1
Theorem 10.1 that U % is coherent. Suppose that |J .77 is non

i=1

empty. Then 3.15 1mp11es that

c—1
'Z;- ;‘ 0.1y = q* .
Therefore
c—1 qli - —l—c—l xi,_(l)’ _ _lc_l 0. 1 . 2 .
*‘g";llkull’ p* =o§s: WAl I‘%Hpnz':lz,-: o) > 20° .

Thus by Theorem 10.1

U209 9)

is coherent. Since
4|2: 9P+ 1=4p"+ 1< ¢ = |D:[H 911,

Theorem 11.1 implies that .5 is coherent. Thus it may be assumed
that ¢° is the smallest degree of any non linear irreducible character
of 9/[9, ']

Suppose now that ©' contains a subgroup 9, # © such that /9,
is a Frobenius group. Then $, may be chosen so that £/, is a chief
factor of €. Thus [, §'1= D, and by the earlier part of the lemma
every irreducible character of /9, has degree either 1 or ¢°. As.
¢ +1 = 2p%, ¢*is the smallest power of ¢ which satisfies ¢* = 1 (mod ).
Since '/, is a chief factor of € this implies that £/, is in the
center of /9, and |9: .| = ¢*. If 6 is an irreducible character of
/9, of degree ¢°, then the orthogonality relations yield that 6(H) =
for He /9, — 9'/9.. As every non linear character of /9, has degree
q° the orthogonality relations may once again be used. They imply
that

(11.13) |C(H)| =g¢* for He /9, — 99, .
However
<H, ¥'/%,) S C(H)

which contradicts (11.13). Thus £’ contains no subgroup 9, #  such
that 2/9, is a Frobenius group. All statements in the lemma are
proved.

LeEMMA 11.6. Suppose that Hypothesis 11.3 is satisfied. Assume
further that a is odd and p = 8. Then S ts coherent.
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Proof. Asaisodd and ¢° = 1 (mod 3), it follows that ¢ = 1 (mod 3).
Define the integer ¢ = 1 by

g=1(mod3), gq%1 (mod3+),

If b<ec, then ¢ =228+ 1. Thusif a #1,4-3% +1< ¢* and & is
coherent by Lemma 11.1, If ¢ = 1, then 9 is cyelic. Therefore &

is coherent by Lemma 10.1.
Suppose now that b >¢., Then since ¢°* =1 (mod 3’) we must

have a = 8"z for some integer x. Therefore
¢ = ().

Since ¢! =1 (mod 3*"), this yields that

(11.14) =1+ 2.3,

If 4.3®% + 1< ¢* then .&” is coherent by Lemma 11.1. Thus if & is
not coherent (11.14) implies that

43" + 12 ¢ 2 (1+ 237 > 880 + 1,

Therefore 3 > 2.83°. Hence b = 1 or b = 2. In either case this implies
that ¢* <43 +1< 7., As a =0 (mod3) we get that ¢ < 7. How-
ever ¢ =1 (mod3). This contradiction arose from assuming that .&¥
is not coherent. The proof is complete.

12. Further Results about Tamely Imbedded Subsets

In this section a fairly special situation is studied. Our purpose
here is to get some information about certain sets of characters which
may not be coherent.

Hypothesis 12.1,

(i) Let q be a prime and let L be a S,-subgroup of the group
X, Assume that QO = £ is tamely imbedded in % and & = N(Q) = Q
has odd order. Let 9, <8, Q,cQ and let Q= Q/Q,L=2Q,.

(ii) 2 is the set of all characters of & which are induced by
non-principal irreducible characters of Q. Define an equivalence
relation on ¥ by the condition that two characters are equivalent
1f and only if they have the same degree and the same weight, Then
each equivalence class of &~ 1is either subcoherent im & or conmsists
of irreducible characters.

(iii) Let 1 =9 < g --- be all the integers which are degrees
of irreducible characters of Q. Let n > 0 be a fized integer. For
0<i1=<n—1 let & be the set of all characters in & of degree
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g7t |R:2|. Assume that each & consists of irreducible characters.
Let & be an equivalence class in < consisting of characters of
degree ¢'»|8:Q|. Let & = UL, .

In case Hypothesis 12.1 is satisfied the following notation will be
used.

(12.1) 1Q: 8| =¢, |T:Q|=e>1.

Since |8]| is odd, | 4| =2 and A(S4)+# 0 for 0 =t =<n. Thus by
Lemma 10.1 .57 is coherent for 0 < i < n — 1.

For 0 < 7 < n let a; be the number of non principal irreducible
characters of Q of degree ¢’:. By Hypothesis 12.1 &/Q acts regularly
as a permutation group on the non principal irreducible characters of
degree ¢7i for 0 < ¢ < n. Since | 8] is odd, no non principal irreducible
character of Q is real. Thus a; is even. Therefore

(12.2) a,-sO(modZe),L%l=% for0si<n-—1.

Let j, = 0. Define j, inductively to be the largest integer not
Ja—1

exceeding n + 1 such that |J .57 is coherent. Suppose that

=351
0=7< "'<jt<jt+1=n+1.

For 0 < 8 <t, define

(12.3) J.= U S
i=Jg
and let m, = f;,. Define
(12.4) ¢, = Dua, V™ for0<s8=t,

where 7 ranges from j, to j,;; — 1. Define

(12.5) d,=qm ™ for0<s<t.
Then by Theorem 10.1 applied to 7, U %5,,,
(12.6) ¢, <2d, for 0<s<t.
By (12.2)

12.7) ¢, =0 (mod2) for0=<s8<t.
By 3.15

(12.8) 1+ ic,-q"‘i =0 (modg™s+) for 0=s8<t.
3=0
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LemMA 12,1, Suppose that Hypothesis 12.1 is satisfied. Assume
that

19:Q'|=¢* <42+ 1.
Then

@<e+1 Jor 0=s<t.

Furthermore if a is odd, ¢, < ¢ and ¢, £ 0 (mod q), then

%€ e —1.

Proof. We will first prove that
(12.9) 1+ Segmi<eg™ for0<s<t.
i=0

This is true if 8 = 0 since 1 < ¢. Suppose that s > 0. Then by (12.5)
and (12.6)

1+ Echﬁmi =<1+ 2e ‘5_“_1 gqrit®it
=0 i=o0
=1+4+2Q+q+ -+« + g™

§_1+2e(q,-'—_l)§1+e(q"ﬂl — 1) < eg’™s
(@-1

Assume now that the lemma is false and choose s minimum tc
violate the result. Let ¢=¢,, d =d,.
By (12.8) and (12.9)

q”""‘H < eqﬂm, + cqmn, .
Hence by (12.5)
(12.10) d<e+ec.

Inequalities (12.6) and (12.10) yield that d? < e + 2ed or d* — 2ed — e < 0.
This implies that

e—Vet+tesd=<e+Ve+e.

Consequently

(12.11) d=<e+Ve+e<3e.

Suppose that
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14 i c;q*™i = 3g*ms+t
1=0
Then by (12.9)
3g*msr1 < (e + c)g™s .
Hence by (12.7) 8d*',< e + ¢ < 3¢/2. Thus
d’e

e
— =< —<e—-1
c _2<

since e > 2. This contradicts the choice of s. Hence
1+ J2;:'.)¢:,q”"i < Bgmer

As ¢; is even for 0 < j < s, (12.8) implies that

(12.12) 1+ g, cig™™i = g,

The group L contains a normal subgroup &, of index ¢g**s+1, Every
irreducible character of Q/Q, has degree strictly less than g™+ and
the sum of the squares of the degrees of these characters is equal

to ¢**s+1, Hence (12.12) implies that every character of & whose
degree is strictly less than g™+ has Q, in its kernel. Thus L, is a
normal subgroup of € and £/Q, is a Frobenius group with Frobenius
kernel 2/Q,. Therefore

(12.13) g~ =d¢g™ =1 (mode),

and the center of Q/Q, has order at least ¢, Thus by Lemma 4.1
g™ < g™++1—%, This yields that

(12.14) ¢ =d.
Define the integer & by
(12.15) c+k=d.
By (12.10) k¥ < e and by (12.12) 0 < k. Thus
(12.16) 0<k<e.
Define the integer b by
(12.17) g™ = q¢** (mode), 0sb=sa-—-1.
Equations (12.7), (12.13), (12.15) and (12.17) imply that
(12.18) k=d'=¢""=¢q" (mode).
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If b =0, then by (12.16) and (12.18) k = 1. Thus by (12.15) ¢ =
d* — 1, hence by (12.7)

‘_1.’.6_.—_-LH'_1)E_=e+_e_<3+1
c c c )

If ¢ < ¢ and a is odd, then
d=c+1<e+1<qg™,

Thus by (12.18) d* = q*. However this is impossible as & is odd.

Assume now that b + 0. As d’is a power of ¢, (12.14) and (12.18)
imply that either d* = ¢*** or d* = ¢***. Since b # 0, the latter case
leads to '

d2 z qm+b — qlaqb > 4elq > 9e2 .
Hence d > 3e contrary to (12.11). Thus
(12.19) P =g, 2<a-—b.

The inequality follows from (12.17) and the fact that @ + b is even,
Now (12.11) and (12.19) yield that

’b=q_aj—.i d’ 26_’_<32.

qa—h qa—b q2
Thus 1 < ¢* <e. (12.16) and (12.18) imply that
(12.20) k=q¢q, b>0.

q

Equation (12.15) now becomes d* = ¢ + ¢°. Hence
¢=0 (modg).
Furthermore by (12.19)
ce=d'—¢"=¢@ —-1).

Consequently
dae qa+be qae e
— = = =€+ <e+1,.
¢ @ -1 ¢-—-1 ¢ -1

THEOREM 12.1. Suppose that Hypothesis 12.1 is satisfied. Assume
that for some j with 0= j<n — 1, €% and M€ S5, Define

a = qTitTiNn, — A,
Suppose that %< .7, and
a' = A + Al



828 SOLVABILITY OF GROUPS OF ODD ORDER

where 4,€ _#(7,) and 4 i8 orthogonal to _#(7,*). Then
14 se+ (M.
Furthermore if a is odd, ¢ = ¢, < 6 and ¢ # 0 (mod q) then
H4l'se+ M| —2.

Proof. Let 7 =7, If S5,.E7 then a'e _#(7) and
4 = 0. Thus the result is trivial in this case. Hence it may be assumed
that .5, Z.7. In particular, .&” is not coherent, hence < is not
coherent, so by Lemma 11.1 |Q: Q| < 4¢* + 1. Consequently Lemma
12.1 may be applied. Furthermore f;,, = m,,, and s < ¢ Thus 7
consists of irreducible characters. Let 7~ = {\,;|1 =<1 < n,}, where
the notation is chosen so that A, # X,; and M, (1) | N, ;1) for 1 < ¢ < m,.
Suppose that A, = \,,. Define the integer x by (a*, \f) = —&. Then
since a €. %4(5”) Lemma 9.4 implies that

(ar’ A':'i) = _x—}‘dl)— -+ 3;,,(1""“"’-" for 1 é ’I: é n, .

Ma(1)
Then
4= qUeTIng — @ :‘_511;" .
Therefore
14|*=llar [} — || 4 |]' = g*™err=72
(12.21)

1 __ 2 C _ amgg—1y 2 Aa(1) mei1—1§
+ I\ - S 9 i)+ w—xn(l)q oty

where ¢ = ¢, is defined by (12.4). Let d =d, be defined by (12.5).
Since A, (1) = ¢™ and A,.(1) = ¢77 (12.21) yields that

2
(12.22) N4 = ||\ + 22d — ﬁeﬁ.

As a function of =, 2rd — (2’c/e) assumes its maximum at x = ed/ec.
Thus (12.22) implies that
ed’ ed

e _ il + 2L
C

(12.23) N4l = 1+ 2= — =

As || 4] is an integer Lemma 12.1 and (12.23) imply that ||4|]’=<
lIn]]* + e. Furthermore if a is odd, ¢ < ¢ and ¢ # 0 (mod g), then

NI = linmi+e—2.
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The proof is complete.
13. Self Normalizing Cyclic Subgroups

Hypothesis 13.1.

(i) B is a eyclic subgroup of the group X with || = w odd.
Suppose that B = W, x W, where w; = |VW;|and w, =1 fori=1,2.
Let

D=0 BB,
For any non empty subset A of ®
(13.1) CA)=NRA=.
(ii) Let. Wy, Wy be faithful irreducible characters of WTB,, TW/TY,
respectively. Define
W;; = WHWH
Jor0zizsw,—-1,0=j57=5w,— 1.
If w,, w, in Hypothesis 138.1 are both primes then (13.1) follows from

the assumption that N(TW) = W. Thus the situation described above
is a generalization of this case.

LEMMA 18.1. Suppose that Hypothesis 18.1 is satisfied. Then
W is a T.1. set in X. There exists an orthonormal set {;;|0 < 1 =
w,— 1,0 < 5 =< w,— 1} of generalized characters of X such that for
0=ZiZw—1,0=75=<w,—1, the values assumed by 7,;, N, N; lie
M @y, o, &, TESPECLIVELY. Ny = 1 and

74 W) = 0 (W) for WeB,
(1 — 0% — @y + 05)* =1z — oo — Noj + Nis -

Furthermore every irreducible character of X distinct from all 7
vanishes on B.

Proof. 1t follows directly from Hypothesis 13.1 that WisaT. I
get in X, Define the generalized character «;; of T by
Q5 = (W — W)W — By5) .
Clearly a;; vanishes on T — ®. Thus
ax (W) = a, (W) for Wed,

(13.2)
(a:'kh a:;) = 1 + 8!" + 8:’: + aiaah
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for 1<4,8<w,—1,1=<j,t<w,—1. Therefore ||a%|'=4 and
(af,at)=2fori,5,t + 0,5 #t. It follows directly from the definition
of a;; that the values of a} lie in &,

For any algebraic number field % and any generalized character
a of a group let # () denote the field generated by & and all the
values assumed by a. Since &(a;;) = &(af;) we see that & (a}) =
&, for some v with v|w. If 4,7 # 0 then v = v,v,, where v,|w, and
v,>1 for s=1,2. By (13.2)

a?j':lgiexigaigsy

where 8,, 6, ©, are distinet irreducible characters of X%.
Suppose that «(6,) & &7, for k=1,2,8. Let

F = @(91; 02; 05) = Q’(Ol, 0” 03) .

Let & be the Galois group of & over &,. For k =1,2,3let G, be
the subgroup of @ whose fixed field is &, (6,).

Assume first that & =0, UG, U®,. By (13.2) 6,NnS, =1 for
1=8<t=8 If =@, for some k then «(6,) =&, contrary to
assumption. Let |@| =g and |G,| =g, for £ =1,2,8. Then it may
be assumed that ¢ >g,=¢9,=9,. Since g=g¢,+¢.+g,—1—-1—-14+1
we must have g, = g/2. Therefore

1=18,n6,]=2a0/2, 1=|6.nNG|=g/2.
Hence
g/2=g—gl=g2+ga_2! 93,03_5_2.

Therefore g < 4. ® is not cyelic as it is the union of proper sub-
groups. Hence & is the non cyclic group of order 4 and |8,| =2
fork=1,2,3. As v, is odd this implies that v,=8. For k=1,2,3
let @, = {g,)>, where the notation is chosen so that &, = &, (8)).
Therefore og(af;) = af;,. Hence 0,(8,) = 6,. Consequently &, (8,) =
&, (0,) as © is abelian. This implies that g, = g, which is not the
case. Thus 8 #6, UG, U G,.

If 06— G, UG, UG, then by (13.2) (a¥, o(a)) = 2. Hence by
choosing the notation suitably it may be assumed that ¢(@,) = 8,. If
(a¥, 8,) + (at, 0(0,)) then replacing ¢ by o' and 6, by 8, if necessary
we get that

aly =1, + {6, + 6, — (8} .

By (18.2) a(8,) # 6,, .. Hence also 0(8,) # 0%®,). Therefore
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2 < (o(ar),af) =1 — 1 + (8, + 6,, 0(8)) — 0'(8,)
= (6, + 6,,9(8) — (6, + 8,, 6%(6)))
<6,+6,06)) =1

" gince 0,, 0, 6(0,) and 0%, are all characters. This contradiction
establishes that (a}, 6.) = (a¥;, 0(8,)). Since a(1) = 0 we see that

(13.3) ay =1, + {6, + 0(8,) — 6.} .

Furthermore &, =@, and if ye® — G, U®, then 6, #v6,. By
definition @, # v(#,) for v ®, U @,. Therefore

6, + v, for ve®,

Suppose that v(8,) = 6, for some automorphism v of .&#. Then
v6(8,) = 0(8,) and (13.3) implies that (a}, v(a%)) = 3. Thus by (13.2)
Y(a¥) = at,. Consequently ¥(#,) = @, and so

(13.4) @S F =0, .
If now ve®*, v # 0,7 # ¢!, then (13.8) yields that
2= (an, v@y) =1+ (6,76)) .

Therefore v(8,) = 0, and v¢®,. Thus |G,|= |G| - 2. Since®, =6
and |®,|||®| we get that |G| < 4. If |G| =2then #F &«&,. Thus
(13.2) and (18.3) yield that 2 = (a};, o(af;)) =2 8. Since |&;: &7, | is
even we get that [@| = 4. Thus either v, =5 and & S &, or v, = 3.
In the latter case (13.2), (13.3) and (13.4) imply that 0(8,) = 8,. Thus
® = @, or equivalently «2(8,) S &, contrary to assumption.

Suppose now that v, = 5. Thus », # 5 and the previous argument
with v, and v, interchanged yields that (8,)S &, fork =1or k = 2,
Thus by (13.4) <)< 4, By (13.2) and (18.3) @ = (o). Thus
o*(#,) = 6, since (o*(a};), a¥;) = 2. Let v be in the Galois group of &,
over &,. Then 76%6,) =6, and 7 can be chosen so that

(af;, vo'a) =1.
Hence (13.3) yields that
(6, + 0(8,) — 6,,70%(6,) + 19*6,) — 6,) = 0.
Since 8, is not conjugate to &, this implies that
(©, + 0(8,), 70%(8,) + 70%6,)) = —1

contrary to the fact that 6,, 6(8,), v6%(8,) and v6%#,) are all characters.
Thus in any case there exists a non prineipal irreducible character
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6, of X such that (8, af)#0 and «(6,)<&,. Suppose that
«(0,) = &. Since w is odd

(a:na—:v = (ai.f; EG—J) = 1 .
Therefore

1=(1§i91+92i93,1gi91i§z——s)=2+(93i@3;§2i63)-

Hence
(01 =+ Os; éz + és) = —1 .

Since @, and 6, are characters this yields that 6, # 6, for k =2, 3.
Hence 6, = 6, and so 6, = 8,. Consequently (8, + 8,,8, + 6,) = +2,
which is not the case. Therefore

(13.5) @+ cO)Sa, .

Similarly there exists an irreducible character 6, of X with (€,, af) + 0
and & #+ &)= &,,. Thus by (18.5) 6, + 6,. Now (13.2) yields
that

(13.6) ali =1z — Ny — No; + Nij
for1<igw,—1,1<j=<w, —1. The +7;; are distinct irreducible

characters of X whose values lie in the required field. Suppose now
that

Neoisg = ‘Z; ;i0;; + AP

with @, = 0. Then by the Frobenius reciprocity theorem it follows
from (138.6) that

— Qi — Qoj + Q5 = _ao’t ’
wyi—1 wy—1 w11 wg—1

Neoigg = Zl W0 + 21 QoiWy; + z{ o 2{ Wy
= i= 3= i=
wy—1 wi—1 wa—1

+J_§a05§wu—’_§w.i+al’%

wy—1 wa—1 wg—1 w1—1 w3—1

= 'Z._laso%wu'i' J__Zlaoi ?;3(0;5- ,g:a)u"*‘ap
Consequently for We
7]:0( W) = - ’gi wu‘(W) = w.o( W) .

In a similar way it can be shown that 7, (W) = @, (W). Then it
follows from (13.6) that 7,(W) = w,(W) for We B,
This implies that if We 28 then
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ST 1M =5 3 oM =w=|cm)].

=0 5=0 =0 j=0

The orthogonality relations for the irreducible characters of % now
yield that every irreducible character of X distinet from all +7,;

vanishes on . This completes the proof of the lemma.

LemMA 13.2. Suppose that Hypothests 13.1 is satisfied. If 41is
a generalized character of X which vanishes on T then

w-1 g1
4=axly + Z.'.l o g}) Nii

w31 w1—1

wi~1 w3—1
+ El Qs é’?&:"—aw Z‘{ :’z::;vi}"*"do
where (4o, ;) =0 for 01w, —1,0<j<w,— 1.

Proof. Let

w1—1 wy—1

d=4,+ 3 3 @i,

= =
where (4,,7;;) =0for0 i =w, —1,0<j7=<w,— 1. By Lemma 13.1
4,1 — N — N + ) =0 for0si=w,—-1,0=<j=w,— 1.
Hence
Gy — iy — Qo5 + ;=0 for0s+1=w,—-1,0=55w,—1.
This implies the desired result.
Hypothesis 13.2.

(i) The group & = X satisfies Hypothesis 13.1.
(ii) L contains a normal subgroup & such that

L=8B, 2NW, =)
and if A is a non empty subset of W — LY, then
CA) =N =BB.
Since W, is a S-subgroup of T, Hypothesis 13.2 (ii) implies that
®, is a S-subgroup of . Also, if We %}, then C(W)N & = B,.

LEMMA 13.3. Suppose that £ satisfies Hypothesis 13.2, Then
W—W,isaT.l.setin8 For0=i=w —1,0=j=<w,—1 there
exist irreducible characters (;; of L such that
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wg—1 w11
Linge =T 05+ 3 a, 3, @, ,
t=0 =0

where {a,} is a set of integers depending on j and the sign depends
only on j.

Proof. Hypothesis 13.2 implies that I — W, is a T. 1. set in &.
For0<i,k=sw —1,0=<75=<w,-1,0,;— w,; vanishes on W,. Define

S ={w;|0£i=w, -1} for0<jsw,—1,.

Then by Lemma 10.1 .54 is coherent for 0 < j < w, — 1. Let u#;; =
+o};, where the sign is chosen so that y;;(1) > 0. Then

(@5 — 0)" = (Wi; — O)* = (s — [245)
for0<i,k<w,—-1,0j5w,—-1.

The Frobenius reciprocity theorem now implies the required result
since (w;; — w,;)* vanishes on ,,

LEMMA 13.4. Suppose that & satisfies Hypothesis 13.2, Let \ be
an 1rreducible character of &. Then there exists an integer a such
that

x'mBl = a‘of’ml 4

or

Mg, = T + 00g,
for some i, with 0 <i<w,— 1,05 w,— 1,

Proof. Let p,; be the characters defined in Lemma 13.3. If
A =,; for some ¢,7 with 0<i<w,—1, 0<j =< w,—1 then the
result follows from Lemma 18,3. Furthermore Lemma 18.8 implies
that

w1—1 wy—1

2 2 (W) =w=[C(W)| for WeD}.

i=0 j=o0
Hence if \ # g;; for all 4,7 we have that M(W) = 0 for We !. This
completes the proof of the lemma.

We will use the fact that Lemma 13.4 is valid over fields of
characteristic prime to ||, provided that A is absolutely irreducible.

LEmMMA 18.5. Suppose that L satisfies Hypothesis 18.2. For
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0<i1=w,—1,0=7=<w,—1 let p;; be the characters defined by
Lemma 138.8. Define

w1—1

&= Xty for0sjsw—1.

Then &; is induced by an irreducible character (; of K. Further-
more

Pisg = tojig=f; for0=i=w,—-1,0=j=w,—1.

Proof. By Lemma 13.4 the characters f,;,,0<71=<w, —1,0=
j =< w,—1 are the only irreducible characters of £ which do not
vanish on . Since each p, agrees on W, with a suitable linear
character of 2/f it follows from Lemma 18.1 that {¢£,|0 <1 < w, — 1}
is the set of irreducible characters of £/f. Therefore ft,t; agrees

with ££;; on ®. Hence Lemma 18.1 implies that g0, = ;. Con-
sequently if y; = ;o then

Pisig = tojig =5 for0<i=w,—1,0=j=w,—1.

Thus the Frobenius reciprocity theorem implies that t;; is a constituent
of pf for all values of ¢,j. Since

HO) = 0D = 3 #a() = &)
the lemma is proved.

LEMMA 13.6. Suppose that & satisfies Hypothesis 13.2, p is a
prime, and R is an extra special p-group with K =W, Let
|R:8| = p™. Then w, divides either p* + 1 or p — 1.,

Proof. 1t is easily seen that a faithful irreducible character of
& has degree p". Thus by Lemmas 13.4 and 13.56
p*=p(l) =aw, =1,

This proves the result.

LeEMMA 138.7. Suppose that £ satisfies Hypothesis 13.2. Let p;, &;
be defined by Lemma 13.5. Then an irreducible character of R
either induces an irreducible character of 8 or it induces &; for some
Jwith 07 <w,— 1.

Proof. The group B, acts as a2 permutation group on the conjugate
classes of 8. If We B, and W leaves some conjugate class of R fixed,
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then since T, is a Hall subgroup of £, W must centralize some element
of this conjugate class. Hence by assumption the only conjugate
classes of & which are fixed by any We B! are those containing an
element of W,. There are at most w, of these., The group W, also
acts as a permutation group on the irreducible characters of & There-
fore by 3.14 there are at most w, irreducible characters of & which
are fixed by any element We®!. By Lemma 13.5 the w, distinet
characters ¢;, 0 < j < w, are fixed by every We I, and these induce
£;,0 <7< w, Thus every other irreducible character of & induces
an irreducible character of . The proof is complete.

Hypothesis 13.3.

(i) & is a tamely imbedded subset of the group % and & = N(®)
has odd order.

(ii) L satisfies Hypothesis 13.2, and X satisfies Hypothesis 138.1
with the same group W.

(iii) 2 contains a mormal nilpotent subgroup O such that

®cops U cH)nRslcRce.

megpt
g =8UyUL'®L.
LEQ
(iv) There exist subgroups ,, --+, D, such that {,|1 <8 = n}
is a system of supporting subgroups of £ and 531. Let R, = N(D.,)
for 1<s8 = n.
(v) For 02i=w,—1,0=j3<w,—1 let n;, p;, & be defined
respectively by Lemmas 13.1, 13.83 and 18.5.
(vi) Let &7 be the set of characters of & which are induced by
non principal irreducible characters of K, each of which vanishes

outside 2.

LeMMA 18.8. Suppose that Hypothesis 18.8 is satisfied. Assume
that for some 4,5,k with 01w, — 1L 1=<j,k<sw,—1, ;1) =
(). Then p,; — s, vanishes in £ — 2 and

(5 — M)’ = 2 — D)

Proof. By Lemma 13.8 f,;, tt:. do not contain 2B, in their kernel,
thus they do not contain $ in their kernel. Hence by Lemma 4.3
Yy M vanish on & — L. By Lemma 13.3 Piivg, = Pinig, - Thus
M:; — M, vanishes on € — €, Hence || (¢4 — #4)7 ||’ = 2. By Lemmas
9.1 and 13.3
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{5 — )" (05 — M) W) =0 for We B .

¥

Thus the result follows from Lemma 13.1,

LEMMA 18.9. Suppose that Hypothesis 13.8 is satisfied. Choose
kwithl<kZw,—1. Let
A=E11=7=w, —1,8(1) = &)} .

Then & 18 coherent and
wl-l
§i=¢ Z_‘a i
18 an extension of T to 4 where either e =1 or e = —1,

Proof. Since |8| isodd &; # &;. Hence % (S4) # 0. By Lemma
13.5

§i— &= g{, (5 — ) -
Hence Lemma 13.8 yields that
Ei—&) = 'go + (D5 — D) -

By Lemma 9.1 (§; — £,)° vanishes on i@l. Thus Lemma 13.2 implies
that

w11

(13.7) & — g = =% Z.}) s — Nu)

Now define

wy—1

5§=i‘§)77ii

where the sign is the same as in (18.7). It is easily seen that risa
linear isometry on %4. Thus .54 is coherent.

LEMMA 13.10. Suppose that Hypothesis 138.3 is satisfied. Let .4
have the same meaning as in Lemma 18.9. Then (54, 7) 18 sub-
coherent in & where T is defined on & as in Lemma 13.9.

Proof. By Lemma 18.9 .57 is coherent. Let .7~ be a coherent
subset of .5 which is orthogonal to .&4. Let 7, be an extension of
T to 7.

Every generalized character in .&” vanishes on . Thus by Lemma
9.1 every generalized character in _%(.5”)° vanishes on W, If \is
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an irreducible character in .7, then A # \ as |8] is odd. Further-
more (A — \)'€.%(5”)" and thus vanishes on . Hence \? # +7:;
for 0w, ~1,0=<7<w,—1. Therefore A2 is orthogonal to
Fr. If ¢, e 7, thensince (672, (£, — [.)°) = w,, £72i8 a linear combination
of 7, and 7;, with 0 <4 < w, — 1. Hence £:2 is orthogonal to &".
Consequently .7 *2 is orthogonal to .&4°.

Suppose now that a € _%(&”) with a* = 4, + 4,, where 4,€ (7 ™),
4, is not orthogonal to % (%4°) and |4, w,. Let a* =TI + 4,
where 4 is a linear combination of the generalized characters 7;; and
rn)=0for0<t=w,—-1,0=<j7=w,—1. Let ¢ be the set of
integers s such that £,€.9. Lemma 13.8 implies that every gener-
alized character in .77 ** is orthogonal to #;; for 0 <1< w, — 1,j¢o0.
Let 4 = 4, + 4], where 4, is a linear combination of 7,, with s€ o and
4, 7.)=0for 0<i<w, —1,8e0. Then

(13.8) N4l = w, .

By changing notation it may be assumed that ¢,&,€.5 and
(4, & — €)>0. By Lemma 9.4

(41, 67 — sat)gg = (a, §] — E§)§ =(a, & — Ez)g .
Hence (41, &f — &) is a non zero integral multiple of w,. By (13.8)

L é — &y = |[alf]l& =& = 2ui.
Therefore

(13.9) 4,86 — &) =w,.
By Lemma 13.2

w1—1 wi—1

(13.10) 4i=¢ ‘go Qs + € ‘5::') {(@i + @i + (@io + @)W} + 47,

where ¢ is as in Lemma 13.9 and where (47, 7,) =0for0 =i < w, — 1,
t=20,1,2. Now (13.9) yields that a, —a,=1. Thus (13.8) and
(13.10) imply

w—1 wi—1

E,) ai, + g‘.) (@i + o) + (@i + G — 1} S w, .

Every term in the second summation is non zero. Thus a,, =0 for
0<i=w, —1. Hence ay,=1 or a, =0. Hence (13.8) and (13.10)
yield that 4] = & or 4, = —&;. This shows that (5%, 7) is subcoherent
in .~ and completes the proof of the lemma.

In the proof of the main theorem of this paper we will reserve
the letter = to denote the extension of 7 to &4 defined by Lemma
13.9. Thus (%4, 7) will always be subcoherent in &~
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DEFINITION. A Z-group is a group all of whose Sylow subgroups
are cyeclic.

Hypothesis 13.4.

(i) L=BRwithBNK =1, KL and & solvable. Furthermore
B 18 a cyclic S-subgroup of L and |L| is odd.

(ii) For Be®B, Cy(B) = Ce(B). Furthermore Cy(B)isa Z-group
and & # Cy(B).

(iii) 8 is faithfully and irreducibly represented on a vector space
7" over a field of characteristic mot dividing |8|. Z° contains a
vector space ¥, of dimension at most 1 such that if Be B, ve ¥
then vB = v if and only if ve 7,

LemmA 13.11. Suppose that Hypothesis 13.4 is satisfied. Then
R i3 nilpotent. Furthermore |B| is a prime and the representation
of & on 7" is absolutely irreducible.

Proof. Let )\ be the character of the representation of £ on 7
Let P be a S,-subgroup of & which is normalized but not centralized
by B. Then either Cy(®B) =1 or PB satisfies Hypothesis 13.2. Thus
by Lemma 13.4 only one absolutely irreducible constituent of Mg is
not linear. Hence \ is absolutely irreducible. Furthermore Lemma
13.4 and 3.16 (iii) imply that \g has py as a constituent. Thus |B|
is a prime.

The nilpotence of R is proved by induction on [®|. We assume
without loss of generality that the underlying field is algebraically
closed. If BCS F(®) then 8 < C(B) contrary to assumption. Thus by
3.3 BZC(F(). Let § be a minimal nilpotent normal subgroup of
£ which is not centralized by B. Then % is a p-group for some prime
p. Furthermore ' = D(%) and BE& C(D(F)). By Lemma 13.4 there
is exactly one non linear irreducible constituent of gy, Let

>"I3$=’Z=‘;pi+0’

where each y; is a linear character of ¥®B. Assume first that n + 0.
If v is an irreducible constituent of 6,5, then (v, 0 = 1. Since
V#E Mo for 1 <1 =mn, we have (Mg, F’ﬂ;}) =1. Since g is a sum of
conjugate characters this implies that § is abelian and the g; are
distinct. Thus ¥B = F, x B, where | F,| = p and F,B is a Frobenius
group. For Leg&let pi(X) = p(L*XL). If Lef such that pf = g,
for some 4, j then L e N(,) since ¥, is the kernel of each ;5. Since
£ permutes the constituents of :g transitively this implies that N(E,)
acts transitively on {¢, +-+, #1,}. Hence n is odd. Thus M1) == + |B]|



840 SOLVABILITY OF GROUPS OF ODD ORDER

is even contradicting the absolute irreducibility of . Therefore n = 0
and Mgy is irreducible.

By Lemma 18.4 this implies that A1) = |8 or A1) =2{B]| — 1.
If M1) = |B| then \, is reducible since (|B|,|R|)=1. As |B| is a
prime this implies that A\ is a sum of linear characters and & is
abelian. Thus we can suppose that A(1) =2 |8| — 1. By Lemma 13.4
X,g is irreducible. Thus if $ is any proper B-invariant subgroup of
& with FS 9 then BH satisfies the induction assumption and 9 is
nilpotent. If =P x H, with FSPB then since Ny is irreducible,
£.€Z®). If § is not a S,-subgroup of € then ¥R, is a proper sub-
group of & where R, is a B-invariant p-complement in &. Thus
& S Z(®) and & is nilpotent. Suppose now that § is a S,-subgroup
of &.

Since D(F) < C(B), D(F) is cyclic. Let %, be the subgroup of
index p in D(§). Then §/F, is a p-group of class 2 and hence is a
regular p-group. If F/®, does not have exponent p then there exists
a characteristic subgroup of % of index p which is normal in £ but
is not centralized by B contrary to the minimality of §. Thus F/F.
has exponent p. Therefore B acts without fixed points on F/D(F) as
C4(®) is cyclic and D(F) < C(B).

Let 8/9 be a chief factor of £ with &= 9. Suppose first that
B does not centralize /9. Then BRK/H is a Frobenius group which
is represented on F/D(%). As B has no fixed points on F/D(F) Lemma
4.6 implies that 8/ acts trivially on F/D(F). Thus & = FCol®) is
nilpotent. Assume now that 2/ is abelian. Then |8:9]=4¢ for
some prime q #= p. If BRI is represented faithfully on F/D(F), the
minimal nature of § implies that BK/H is represented irreducibly on
FID(E). Let R/9 =<(Q9). Then @ acts without fixed points on
B/D(F). Since Mg is irreducible, Z(F) S Z(8). Thus Q € C(Q(D(F))).
Hence Q € C(D(%)). We will now reach a contradiction from the fact
that Qe C(F). Let =% X .. Then , & Z(¥). Thus &/F is abelian.
Let £ be the linear character of £/F such that MH) = M1)p(H) for
He®,. Let vy=xp’. Then A1) =21)=2|B|—1 and A, is an
irreducible character of £/9,. The group 8/9, satisfies Hypothesis 13.2
where $9,/9, is the normal subgroup. Thus by Lemma 13.4 no
irreducible character of £/9, has degree 2|8| — 1. This completes
the proof of the lemma in all cases.

~ DEFINITION. Let U and B be subgrbups of a group € with B&
N@). We say that B is prime on U if

S Cy(B) = Cy(B) for Be B,

4
'

© If |®B]| is a prime then B is necessarily prime on A. ~ -+ - -
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LEMMA 13.12, Let 8 =UAB with A 1 L, A solvable, B cyclic,
(A, IB)=1 and |AB| odd. Suppose that B is prime on A and
Cy(®B) 18 a Z-group. If Cy(B)S WA then AIF(A) is nilpotent. If
Sfurthermore |B| i8 not a prime then A is nilpotent.

Proof. Let € be a counter example to the result for which [ |
has minimum order. Since (||, |B|) = 1 the hypotheses are satisfied
by all B-invariant factor groups of .

Suppose that |B| is not a prime. Let M be a minimal normal
subgroup of 8. Then M is a p-group for some prime »p and M <= A.
By induction A/M is nilpotent. If L is a B-invariant S,-group of A
for gen(N), ¢ +# p, then MO JAB and B has no fixed points on
2 — Q. If Ais not nilpotent then it is possible to choose ¢ so that
ML) is not nilpotent. Let L, = C(M). Then BY/Q, is faithfully
represented on M. Hypothesis 18.4 is satisfied with MM in the role
of #. Thus by Lemma 13.11 |8/} is a prime contrary to assumption.

Assume now that |®B| is a prime. Suppose that £ contains two
distinct minimal normal subgroups M, and MW,. For 72 =1, 2 let §;
be the inverse image of F(A/M,) in A. By induction A/F; is nilpotent
for ¢ =1,2. The result now follows from the fact that F() =
H N .. Thus it may be assumed that € contains a unique minimal
normal subgroup M. Then M < 0,(NA) = F(N) for some prime p. Let
D = D(0,(Y)). Then F/D) is a p-group. Thus the result follows
by induction if © # 1. Assume now that ©® = 1. Then Cy(I) = 0,(A).

Let A, be a B-invariant S, -subgroup of A. Then AMB is faith-
fully represented of M. Hypothesis 13.4 is satisfied with I in place
of 7 unless A, SCy(B). Thus by Lemma 18.11 A; is nilpotent or
A, S Cy(B).

Let %, = A/0,(N) and let B, be a B-invariant S,-group of A,. If
B, F(AU,) then A/P, is nilpotent since it is a p’-group and the result
is proved. Assume that ¥, & F(,). By induction %,/F () is nilpotent.
Hence B does not centralize P, by assumption. :

Let P be a p-group in A, which is minimal with the property
that B normalizes P but does not centralize B. Since F(,) is a p'-
group there is a prime ¢ # p such that P contains no normal p-sub-
group, where L is a S,-group of F(). Thus BP acts faithfully on
Q. Let M, = Cyy(B). As OB is faithfully represented on M Lemmas
4.6 and 13.4 imply that IR, # 1. Let O, = Cy(B). As PB is rep-
resented faithfully on Q/D(Q), Lemmas 4.6 and 13.4 imply that
Q,#1. Thus Cy(B) is a Z-group, T, < Cy(B) and pq || Cy(B)|.
Therefore ’ : ' : C

(13.11) p.= 1 (mod q)-.
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By 3.11 B is a special p-group and D(P)S Cyx(B). Thus D(P) is
cyclic. By Lemma 13.11 the representation of PB on Q/D(Q) has a
unique faithful irreducible constituent and this constituent is absolutely
irreducible. Let /¢ be the character of this constituent. If D(PB) # 1
then by Lemma 13.4 p, remains absolutely irreducible. Hence
g =1 (mod p) contrary to (18.11). Therefore P is an elementary
abelian group and BYP is a Frobenius group. Thus p#(1) = |B| is a
prime, If B is not cyeclic then ty is reducible in the field of ¢
elements as pp is faithful. Thus ¢ =1 (mod p) contrary to (13.11).
Therefore B is a cyclic group of order p and BP is a Frobenius group.
Hence

(13.12) p=1 (mod|BJ).

Let Q, be a BYP invariant subgroup of Q which is minimal sub-
ject to ‘,BQ_C%(D.‘,). Thus the representation of BP on O,/D(L,) is
irreducible. Therefore Q,% (Q,P)’. Since 0,(A) is elementary and
Cy(B) #1 we get that the hypotheses of the lemma are satisfied.
Thus the minimal nature of % implies that 2, = QP and O = Q,.
Therefore the representation of BOP on M is irreducible. Let L,
be a minimal normal subgroup of BOP which is not centralized by
B. Thus O, &Q. Then Q] = INY,) and BE C(D(Q)). Hence D(L)
is cyclic. Let A be the character of the representation of BL, on M.
By Lemma 13.4 )\ has exactly one irreducible constituent which does
not have (BL)) in its kernel. Let 6 be this constituent and let

A=SIn 4 6.
=1

Since each \; is a character of a group of exponent ¢ |B| it follows
from (13.11) and (18.12) that each A\, is absolutely irreducible. Thus
M(1)=1for 1 <4 =<n. By Lemma 18.11 6 is absolutely irreducible
in the field of p elements. By Lemma 13.4 6(1) < 2|8B| — 1. Since
|B|p is odd (B) and (138.12) yield that

(18.13) || = p* 2 p"B'.

Thus » + 0. Let 0\n, = 2j=1 V5, Where each y; is an irreducible char-
acter of Q,. Thus

(13.14) A = Z_,‘l xﬂnl + E{ Yi.

Since L, 4 Q,BYP, {)"Inl’ y;} is a set of conjugate characters. Since
n # 0 they are all linear, Thus Q) =1. Hence OB =L, X OB,
where Q.8 is a Frobenius group and |Q,| = ¢. Furthermore
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(13.15) m=0(1) =|3B|.

Since O, Skern; #Q, for 1 £1 =<7 we see that 7&.-,01 # y; for all
%, 5. Since v; # y; for © # j we get that no constituent of Mg, occurs
with multiplicity greater than one. Since {)“"ln} is a set of distinet
linear characters of Q, we get that » < ¢q. Now (13.13), (13.14) and
(13.15) yield that

pPEM)=m+ns|Bl+q.

This contradicts (18.11) and (138.12) since |B| pg is odd. The proof is
complete.






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RavLpu S. PHiLLIPS J. Ducunpax
Stantord University University ot Southern Califorma
Stantord, Calitorma Los Angeles 7, Califorma
M. G. Arsove LoweLL J. Paige
University of Washington Unmiversity of Caiitornia
Seattle 5, Washington Los Angeles 24, California

ASSQCIATE EDITORS

E. F. BECKENBACH D. DERRY H. L. ROYDEN E. G. STRAUS
T. M. CHERRY M. OHTSUKA E. SPANIER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY  UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STA'LE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY SPACE TECHNOLOGY LABORATORIES

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST S1ATION

Mathematical papers intended for publication in the Pacific Journal of Mathemuces should
be typewrittea (doubie spaced), and the author should keep a complete copy. Manuscripts may
be sent to any one of the four editors. All other communications to the editors should be addressed
to the managing editor, L. J. Paige at the University of California, Los Angeles 24, Calitornia.

50 reprints per author of each article are furnished free of charge; additional copies nray be
obtamned at cost in muitiples of 50.

The Pacific Journal of Mathematics 1s published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) 1s $18.00; single 1ssues, $5.00.
Spectal price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues
$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2 chome, Fupmi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
1he Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies



Pacific Journal of Mathematics

Vol. 13, No. 3 May, 1963

Walter Feit and John Griggs Thompson, Chapter I, from Solvability of

groups of odd order, Pacific J. Math, vol. 13, no. 3 (1963 ............. 775
Walter Feit and John Griggs Thompson, Chapter II, from Solvability of

groups of odd order, Pacific J. Math., vol. 13, no. 3 (1963 ............ 789
Walter Feit and John Griggs Thompson, Chapterlll, from Solvability of

groups of odd order; Pacific J. Math., vol. 13, no. 3 (1963 ............ 803
Walter Feit and John Griggs Thompson, Chapter 1V, from Solvability of

groups of odd order; Pacific J. Math., vol. 13, no. 3 (1963 ............ 845
Walter Feit and John Griggs Thompson, Chapter V, from Solvability of

groups of odd order; Pacific J. Math., vol. 13, no. 3 (1963 ............ 943
Walter Feit and John Griggs Thompson, Chapter VI, from Solvability of

groups of odd order, Pacific J. Math., vol. 13, no. 3 (1963 ............ 1011

Walter Feit and John Griggs Thompson, Bibliography, from Solvability of
groups of odd order; Pacific J. Math., vol. 13, no. 3 (1963 ............ 1029




	
	
	

