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' CHAPTER IV

14. Statement of Results Proved in Chapter IV

In this chapter, we begin the proof of the main theorem of this
paper. The proof is by contradiction. If the theorem is false, a
minimal counterexample is seen to be a non cyclic simple group all
of whose proper subgroups are solvable. Such a group is called a
minimal simple group. Throughout the remainder of this chapter,
® is a minimal simple group of odd order. We will eventually derive
a contradiction from the assumed existence of ®.

In this section, the results to be proved in this chapter are summar-
ized. Several definitions are required.

Let 7* be the subset of 7(Q) consisting of all primes p such that
if P is a S,-subgroup of @, then either .#Z_+#;(P) is empty or P
contains a subgroup A of order p such that Css(ﬁ) =Y X B where B
is cyclic. Let m¥ be the subset of #* consisting of those p such that
if P is a S,-subgroup of ® and a is the order of a cyclic subgroup
of N(P)/PC(P), then one of the following possibilities occurs:

(i) a divides p — 1.

(ii) *B is abelian and a divides p + 1.

(iii) |PB| = »* and a divides p + 1.

We now define five types of subgroups of ®. The basic property
shared by these five types is that they are all maximal subgroups of
®. Thus, for =1, I1, III, IV, V, any group of type « is by definition
a maximal subgroup of ®. The remaining properties are more detailed.

We say that I is of type I provided
(i) M is of Frobenius type with Frobenius kernel .
(ii) One of the following conditions is satisfied:
(a) DisaT. I set in G.
(b) (D) S =t
(e¢) 9 is abelian and m(@)
(iii) If pex(M/D), then m,,(im) s 2 and a S,-subgroup of M is
abelian,

The remaining four types are by definition three step groups. If
©isa three step group, we use the followmg notatlon

@=@'QB1, @'n%,—l C’g'(%l) , .

Furthérmore, § denotes the maximal normal nilpotent S-subgroup of
&. By definition, § & & so we let U be a complement for $ in &',
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In addition to being a three step group, each of the remaining four
types has the property that if B, is any non empty subset of
BB, — B, — B, then Ng(T,) = W, W,, by definition. The remaining
properties are more detailed.

We say that & is of type II provided

(i) N +#1 and U is abelian.

(ii) Ng) £ &.

(iii) Ng¥A) =& for every non empty subset A of &* such that
Co(A) + 1.

(iv) |TW,| is a prime.

(v) For every prime p, if %, A, are cyclic p-subgroups of U
which are conjugate in & but are not conjugate in &, then either
Co(Ug) =1 or Cy(A) = 1.

(vi) $C(®) is a T. 1. set in G.

We say that & is of type III provided (ii) in the preceding defi-
nition is replaced by

(iiy NgW) S6,
and the remaining conditions hold.

We say that © is of type IV provided (i) and (ii) in the definition
of type II are replaced by

)y w=+1,

(i)" Ng) £,
and the remaining conditions hold.

We say that & is of type V provided
(i) u=1,
(ii) One of the following statements is true:
(a) & isaT. I set in 6.
(b) & =P x &, where &, is cyclic and P is a S,-subgroup of
& with pen?®.

THEOREM 14.1. Let G be a minimal simple group of odd order.
Two elements of a nilpotent S-subgroup D of & are conjugate in &
if and only if they are conjugate in N(D). Either (i) or (it) is true:

(i) Ewvery maximal subgroup of ® is of type I

(i) (8) ® contains a cyclic subgroup W= W, x W, with the
property that N(B) =B for every non empty subset T, of W—W,—W,,
Also, B, +1, 1 =1,2.

(b) @ contains maximal subgroups & and T not of type I
such that

S WS, T =BT, en®, =1, TNny,=1,
GNT=1W.
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(¢) Ewvery maximal subgroup of ® s either conjugate to S or
< or 18 of type I

(d) Either & or T 18 of type II.

(e) Both & and T areof type II, III, IV, or V. (They are
not necessarily of the same type.)

In order to state the next theorem we need further notation. If
€ is of type I, let

8=8=Ucym,
zeH
where $ is the Frobenius kernel of 2.

If 8 is of type II, III, IV, or V, we write L=8'8, ¥NW, = 1.
Let © be the maximal normal nilpotent S-subgroup of £, let Ul be a
complement for $ in &' and set W = Cy(W), W, =WN L, W= —
B, — W,.

If 8 is of type II, let

L= U Cy(H).
HeHE

If 8 is of type III, IV, or V, let
L=g.
If 8 is of type II, III, IV, or V, let
{=8UULBL.

LEQ

We next define a set &7 = () of subgroups associated to 8.
Namely, Me o7 if and only if M is a maximal subgroup of & and
there is an element L in & such that CLYZL Q and C(L) S M. Let
Ry, -+, N,} be a subset of .o~ which is maximal with the property
that N, and N, are not conjugate if 1+ 5. For 1 <7<, let D; be
the maximal normal nilpotent S-subgroup of %,.

THEOREM 14.2. If £ is of type I, II, III, IV, or V, then & and &,
are tamely imbedded subsets of ® with

N®) =N&)=2¢.

If o7 (R) is empty, € and 8, are T. 1. sets in ®. If o7(Q) is non
empty, the subgroups ,, «-+, . are a system of supporting subgroups
for £ and for L,

The purpose of Chapter IV is to provide proofs for these two
theorems.
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15. A Partition of 7(®)

We partition 7(®) into four subsets, some of which may be empty:
m, = {p|A S,-subgroup of @ is a non identity eyclic group.}
7, ={p|1l. A S,-subgroup of ® is non cyclic.
2. ® does not contain an elementary subgroup of order 2°.}
7w, = {p|1l. © contains an elementary subgroup of order p°.
2. If P is a S,-subgroup of @, then U(P) contains a non
identity subgroup.}
m,={p|l. ® contains an elementary subgroup of order 7
2, If B is a S,-subgroup of &, then U(P) contains only
<D}
It is immediate that the sets partition #(®). The purpose of Lemma
8.4 (i) is that condition 2 defining m, is equivalent to the statement
that 2 4 (P) is empty if P is a S,-subgroup of &. Lemma 8.5
implies that 3¢ m, U m..

16. Lemmas about Commutators

Following P. Hall [19], we adopt the notation YAB = [¥, B},
THUABH = [vAB, B, n=1,2, ---, and 7UABE = [, B, €].

If X is a group, #57(X) denotes the set of normal abelian
subgroups of X.

The following lemmas parallel Lemma 5.6 of [27] and in the
presence of (B) absorb much of the difficulty of the proof of Theorem
14.1,

LEMMA 16.1. Let B be a S,-subgroup of & and U an element of
A DB). If § is a subgroup of & such that

(i) <%, B> is a p-group,

(i) ¥ centralizes some element of Z(P) N A¢,
then Y'FU = (1),

Proof. Let Ze C(F) N Z(P) N A*, and let € = C(Z). By Lemma
7.2 (1) we have A S 0, ,(€) = . As P is a S,-subgroup of €, P, =
BN is a S,-subgroup of . Since A < B, so also A < PB,, and since
9 is abelian, we see that Y'9W* < 0,.(€). Since < €, we have
YFA S  and so V*FA* S 0,.(€). Since <A, F) is assumed to be a p-
group, the lemma follows.

If P is a non cyclic p-group, we define Z7(P) as follows: in case
Z(P) is non cyclic, % (*P) consists of all subgroups of Z(B) of type
(p, p); in case Z(P) is cyclic, Z(P) consists of all normal abelian
subgroups of P of type (v, p).

LEMMA 16.2, Let B be a non cyclic S,-subgroup of ®, A € 42¥7(P),
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and let ¥ be a subgroup such that . N

(i) <%, 3> is a p-group,

(ii) A contains a subgroup B of Z(P) such that 580—0,8(%)$<1>
If p =5, then YA = (1), while if p =8, then Y*FA* = (1>. Also,
if W=UAN2ZP) and p = 5, then Y¥FA: = 1>, -

Proof. If B, S Z(P), the lemma follows from Lemma 16.1. If
B, £ Z(P), then B, = Cy(B,) is of index p in P so is of index at most
P in a suitable S,-subgroup P* of C(B,) = €. In particular, B, < P*.

Let =0, ,C€), P¥r=P*NH, and P, = B, N . Since B, < B*,
so also B, < P¥. Hence YPrA S PN H S P, and so »PrA* = 1), A
being in A (B,). If p = 5, we conclude from (B) that A & 9, and
so Y’QU* S 0,.(€). Since TYFA S H, the lemma follows in this case.
(Since P, centralizes A,, we have V*FA = {1D.)

Suppose now that » = 3. If Pr = P, then ¥PrA* = (1), and so
by (B), A =  and the lemma follows. If PBF + B, then P* = PP,
since [ P*:P,| = p. In this case, letting A = AH/D, P* = B*H/D, we
see that A e _+.7($*) and so A S 0, ,(€/9), that is, AS 0, ,, (€)=
f. Hence, YFAS R and since A < P*, we see that ¥FA* S0, ,.,(C),
and so YU < . Continuing, we see that *FUA‘ < 0,.(€)P, and so
YFU < 0,(€), from which the lemma follows.

LeEMMA 16.8. Let  be a S,-subgroup of & and let € e Z(P).
Let ¥ be a subgroup of & such that

(i) <%, €> is a 3-group.

(i) €, = C(@) # <.
If ¥F€* = (1), then v*FC* = €,, and €, = 2(Z(P)).

Proof. First suppose €, & Z(P). Let D = C(€) 2 <P, F>. Since
B is a S,-subgroup of ©, (B) implies that € S 0, (). Setting P, =
Dy (D) N B, we have 0, (D) = 0,(D)B.. If €= Z(P), then € & Z(P)
and so 7'FE? S 0,(D) N <G, € = 1), since {F, €) is a 3-group. If
€ &£ Z(P), then the definition of Z/(P) implies that ¥'FE* S €,0,(9),
so if 7FC? # (1), we must have 'FC*= H'C.H for suitable H in
0:(9). By definition of it follows that H-'€.H = €,.

We can suppose now that €, & Z(). In this case, the definition
of Z/(P) implies that € =D, €D, where D = Q(Z(P)). Let B, =
Cy(C,) and let P* be a S;-subgroup of o= C(€,) containing P, and
let B = B* N0y 4(D). Since P, is of index at most 3 in P* and since
B, centralizes €, we have V*P*E* = (1), and so € & PB;F. If Py S B,
it follows that v’C* < 0,(D) N <€, F> = {1)> and we are done. Hence,
we can suppose that P} & B,. In this case, it follows that P* = B, P7,
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since | B*:B,| = 8. We also have D(B}) S%B,, and so €S Cyx(D(B) =
€. If €< P, we have € & Z(€), and since Z(€) char € char By, it
follows that v'F€* S 0,(9) N <€, F> = (1> and we are done. We can
therefore suppose that € & Z(¢). Choose E in G — Cg(€). Since P*
centralizes €, it follows that E does not centralize ® = (D). Consider
[D,E]l=F+1. Now €< Z(P) < P* and so FeZ(P). On the
other hand, F lies in D(}) since both £ and D are in PF. Since
E€@, it follows that E centralizes F. Since {$,, E> = P*, it follows
that F'is in Z(P*). But F is of order 8 and €, = 2,(Z(P*)), since
Z(B*) is eyclic. It follows that {F') = €,, and so E normalizes € and

with respect to the basis (D, F') of € has the matrix ((]5 %) On the

other hand, P possesses an element which normalizes € and with

respect to the basis (D, F') has the matrix G 2) Since these two

matrices generate a group of even order, we have the desired con-
tradiction which completes the proof of this lemma.

17. A Domination Theorem and Some Consequences

In view of other applications, Theorem 17.1 is proved in greater
generality than is required for this paper.

Let P be a S,-subgroup of the minimal simple group ¥ and let
%A be an element of . %Z_+"(P). Let ¢ be a prime different from ».

THEOREM 17.1. Let Q,%, be maximal elements of W; q).

(i) Suppose that Q is not conjugate to O, by any element of C4().
Then for each element A in A%, either Cp(A) =1 or Cp(4) =1.

(i) If AeFAZA5(P), then L and O, are conjugate by an
element of C(N).

Proof. The proof of (i) proceeds by a series of reductions. If
A = 1, the theorem is vacuously true, so we may assume A # 1,

Choose Z in Z(P), and let T* be any element of WU(A; q) which
is centralized by Z. By Lemmas 7.4 and 7.8, if £ is any proper
subgroup of %X containing AQ*, then V* & 0,.(2).

Now let 2* denote any element of U(¥; ¢) and let £ be a proper
subgroup of X containing AQ*. We will show that Q* & 0,.(8). First,
suppose Z(P) is non cyclic. Then QV* =<{Cy(Z)|Ze Z(P)*), so by
the preceding paragraph, Q* S 0,(%). We can suppose that Z(*B) is
cyclic. Let Z be an element of Z(P) of order p. We only need to
show that [Q*, Z] < 0,.(%), by the preceding paragraph. Replacing
Q* by [Q*, Z], we may suppose that Q* =[Q* Z]. Furthermore,
we may suppose that U acts irreducibly on Q*/D(Q*).

Suppose Z€0,. (8. Then Q* =[Q* Z] & 0, (%) N Q* S 0,(2)
and we are done. If U is cyclic, then Z is necessarily in 0, ,(2),
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since AN O, () #1. Thus, we can suppose that A is non cyeclic.

Let A, = Cy(V*) = Cy(V*/D(V*)), so that A/A, is cyclic and
Ze¢U,. We now choose W of order p in U, such that {Z, W) <.

Suppose by way of contradiction that Q* £ 0,.(2). Then by Lemma
7.8, we can find a subgroup £ of AC(A,) which contains AQ* and
such that Q* £ 0,.(R). In particular, Q* £ 0,.(C(W)). Thus, we
suppose without loss of generality that € = C(W). Let P* be a S,-
subgroup of ¥ which contains ‘IS =PNC(W). If P*= ?ﬁ, then
Ze0, 4,2), by Lemma 1.2.3 of [21], which is not the case. Hence,
ﬂNS is of index p» in P*. Clearly, i’Ig‘E and Ze Z(‘:ﬁ). Hence,
[B*, Z] = Z(B)<A. Let B = PB* N 0, ,(2) so that Py is a S,-subgroup
of 0, ,(8). Then [P, <2, 0*] & [A, L*]N 0, ,(8) S V* N O, 5(B), s0
that [BF, <2), 0*] £ 0,(8). Let B=0,.,(8)/0,(8) and let T, = Cx(V*).
The preceding containment implies that [8,{Z)>] < ®B,. Let B,=
Ng(®B,). Then Z acts trivially on the Q*¥A-admissible group B,/B,.
Hence, so does [{Z), Q*] = Q*, that is, B, &S B,. This implies that
B = B, is centralized by O* so O* S 0,(¥). We have succeeded in
showing that if Q* is in U(; ¢) and £ is any proper subgroup of %
containing AQV*, then Q* S 0,.().

Now let &, -+, &, be the orbits under conjugation by C(®) of
the maximal elements of WU(;q). We next show that if Qe
L, €4 and 1 # j, then LN, = 1. Suppose false and <, 7, Q, L, are
chosen so that | Q N L, | is maximal. Let Q* = Ny(Q N Q) and Qf =
Np, (RN Ky). Since O and L, are distinet maximal elements of U(%; q),
QN Y, is a proper subgroup of both Q* and VF. Let L = N(Q N Q).
By the previous argument, {Q*, Q> € 0,(8). Let R be a S,-subgroup
of 0,(2) containing O* and permutable with % and let R, be a S,-
subgroup of 0,.(8) containing L} and permutable with %A, The groups
R and R, are available by D,, in 20,(8). By the conjugacy of Sylow
systems, there is an element C in 0,.(¥)A such that A’ =AY and
R°=R,. As U has a normal complement in 0,.(), it follows that
C centralizes 9. Let O be a maximal element of U(; q) containing
R,. Then OND,20:>QNQ, and so Ve Also, QN2
Q* 5 (Q N Q) so that Qe and i = j.

To complete the proof of (i), let Q, Q, be maximal elements of
U(; ) with Q€ &, 0, € ;. Suppose A e A* and C(4)+#1, Cp(A)+1.
Let € = C(A), let R be a S,-subgroup of 0,(8) containing C,(4) and
permutable with %, and let R, be a S,-subgroup of 0,.(%) containing
Cp,(4) and permutable with . Then R’ = R, for suitable C in C(N).
Let Q* be a maximal element of W(;q) containing R,. Then
QN 2C(A)#1 50 Q*ea;. Also, R*NYV° 2 (C(4)° #1 so
Q*e«, and © = 5. This completes the proof of (i).

As for (ii), if Ae .= 4;(P), then there is an element A in A
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such that Cg(A4) # 1 and Cp,(4) # 1. By (i), Q and £, are conjugate
under C(Y).

CorOLLARY 17.1. If pem, U7, P 18 a S,-subgroup of & and
WAe A& MN;(P), then for each prime q + p and each maximal element
L2 of U(Y; q), there is a S,-subgroup of N(N) which normalizes Q.

Proof. Let Ge N(Y). Then QFf is a maximal element of U(¥; q),
since any two maximal elements of U(2; q) have the same order, so
f = QF for suitable C = C(G) in C(Y). Hence, GC normalizes Q.
Setting I = N(Q) N N(A), we see that I covers N()/C(A), that
is, N(Q) dominates 2A. Now we have JC(A) = N(A) and I contains
A Since CA) =A X D where D is a p’-group, we have N) =
SCRA) =JAD =3P, and & contains a S,-subgroup of N() as required.

COROLLARY 17.2. If penUm, P 48 a S,-subgroup of
G, Ae AZ(P) and q i3 a prime different from p, then P
normalizes some maximal element Q of W; q). Furthermore if G
18 an element of & such that A = P, then A¢ = A¥ for some N in
N(Q).

Proof. Applying Corollary 17.1, some S,-subgroup $* of N(A)
normalizes L,, a maximal element of U(¥; ¢g). Since P is a S,-subgroup
of N(), P = PB** for suitable X in N(A), and so P normalizes O =

¥, a maximal element of U(; g).

Suppose Ge® and A¢ = P. Then A° normalizes O since P does,
so A normalizes O '. Now 0F ' is a maximal element of M(%; q)
since any two such have the same order. Hence, Q' = Q° for some
C in C(Y), by Theorem 17.1 and so CG = N is in N(Q). Since ¥ =
A% = A9, the corollary follows.

COROLLARY 17.8. If pex,P i3 a S,subgroup of & and
Ae A5 N;(B), then U(A) i8 trivial.

Proof. Otherwise, U(%; q) is non trivial for some prime q # p,
by Lemma 7.4, and so U(®B; ¢) is non trivial, contrary to the definition
of «,.

Hypothesis 17.1.

(i) pem, P is a S,-subgroup of & and A e & A;(P).

(i) q is a prime different from p, W, q) 18 non trivial and Q
s a maximal element of U(A; q) normalized by P.
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REMARK. Most of Hypothesis 17.1 is notation. The hypothesis
is that pem, for in this case a prime ¢ is available such that (ii) is
satisfied. Furthermore, we let

B = Viecelg(A); P), N=N(E), and N, = N(Z(D)).

LEmMMA 17.1. Under Hypothesis 17.1 if Ge@ and A = B, then
A¢ =AY for some element N in N(Q) N N(B).

Proof. By Corollary 17.2, UA¢ = A* for some element X in N.
Since N is solvable, Lemma 7.2 (1) and Corollary 17.2 imply that
N = 0,,(N) - Ny(B), so we can write X = NN where N,€0,(%) and
Ne Ny(B). Now A" is in B, so in particular is in P. Also A¥ = Y~
is in PB. Hence, if A is in A, then A~ . A*" =[A, N|J¥ is in P,
and in particular is a p-element. Since [4, N|] is a p’-element, we
see that N, e C(). Hence A" = A¥, and the lemma follows.

LemMMmA 17.2. Under Hypothesis 17.1, N, = 0*(N).

Proof. Since Z(B) char B, and B is weakly closed in P, N,
contains N(P), so Theorem 14.4.1 of [12] applies. We consider the
double cosets I, XP distinet from MN,. Denote by K(X) the kernel of
the homomorphism of 8 onto the permutation representation of P on
the cosets of M, in NXP. Let P= P(X) be an element of P such
that &(X)P is of order » in Z(P/K(X)).

Suppose we are able to show that P can always be taken to lie
in A. In this case, we have [U, P,P]=1 for all U in P. Since
p =8 and ® is simple we conclude from Theorem 14.4.1 in [12] that
N, = 0°(N).

We now proceed to show that P can always be taken to lie in 2.
The only restriction on the element X is that Xe N, that is, we
must have £(X) = P.

Now A S B, so Z(B) centralizes A. Since Ac .1 (P), we
have Z(B) & A. It follows that N, contains C (V).

It suffices to show that A £ KX). For if AL K(X), choose A
in A so that (K(X) N WA is of order p in Z(P/R(X) N A). It follows
that R(X)A is of order p in Z(P/R(X)).

Suppose by way of contradiction that A & £(X). Then A S NF
so A = P** for P* a suitable S,-subgroup of RN,. But P* = P for
some Y in N,. Setting X;= YX, we have N, XP=N.X,P and A = P*:.
Hence, ¥ <P, so by Lemma 17.1, AXKi = A” for some W in
NN N(EB). Since N(B) = N,, we have A = A"T1and WeNRNN,. Let
WX, = X,. Since WeR, we have B, X,P = N X, 3.

Since X; normalizes A, A normalizes Fs ' By Theorem 17.1,
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Q%' = Q7 for some C in C(Y). Hence X;C~* = X;* (this defines X,)
normalizes Q. Since X, and C normalize ¥, we see that X;e N N NX).
Since C centralizes 2 and C(NA) = N,, we have N X, P = N X;B.

We now write X, = X]X,, where X;e NN N(B) and X, €0, (N).
Such a representation is possible since X;e M. Consider the equation
X, = X!7'X,. Since N(B) =N, we have RXP=NXP. If Ae¥,
then [4, X'] is a p'-element since X,€0,(N). But [4, X;'X]] =
[A, X!][A, X; %, an identity holding in all groups. Since X; e N(B),
[4, X!]€®B. Since X,e N(¥), [4, X;1cASDY, so [4, X;']%:eB, a
p-group. Hence

[4, X7 =[4, X' X;]=1.

Since A is an arbitrary element of 2, we have X,e C(A) S N,. Now,
however, we have

m1X§B = m1X1$ = leﬂs = 9}xAYlﬂs = 921X,§B = ml ’

so XeN,, contrary to assumption.

LemMmA 17.8. Under Hypothesis 17.1, M, = 0,.(N) - (R, NN), and
N = 0*(N).

Proof. We must show that R contains at least one element from
each coset €=0,.(N)W, WeR,, from which the lemma follows directly.

Let $ =P N0, ,(N), & = Ny, (9), and CA) =A X D, D being
a p-group. Notice that ® £ 0,.(0N,) by Lemma 7.4 together with
C) < N,. (This was the point in taking Z(B) in place of B.)

By Sylow’s theorem, £ contains some element of €, so suppose
Wef. Since U is contained in © by Lemma 7.2 (1), we have
A" < S P, and A" normalizes O. Hence, A normalizes V¥ ' and
by Theorem 17.1, Q' = Of for some S in C(A). Write S=AD
where A, De®, so that OF = Q?, since A normalizes Q. Hence,
DW normalizes Q. But DWe€, since DeO0,(R,), so DWeRNNR,
and N contains an element of €.

LEMMA 17.4. Under Hypothesis 17.1, if © is a subgroup of B
which contains A, then N(D) = N,.

Proof. Let Ge N(D). Since P normalizes Q, so does . Hence,
9% normalizes L. But £¢ = 9 and O containg A, so A normalizes.
£°. By Theorem 17.1, Q¢ = Q° for some C in C(Y). Let GC*'=
NeN. Now N = N,N, where N,€0,(N) and N,eNNN,. Consider
the equation GC'N;? = N,. Let Ze Z ().

We have GC*N;ZN,CG™* = GZ,G™, where Z, = Z*° is in Z(B);
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hence, Z'GC'N;"ZN,CG™* = [Z, N,CG™] = Z7'GZ,G™ is a p-element
of , since Z,eZ(B)<SAS D, so that GZ,G'eGHG*=9H. But
Z'N,ZN;*€0,(N). Hence, [Z, NCG*]=[Z, N/ ]=1. Since Z is
an arbitrary element of Z(B), it follows that N, centralizes Z(8), so
N, is contained in RN,. But now the elements N;, N, and C normalize
Z(B). Since G = N,N,C, the lemma follows.

LEmMMA 17.5. Under Hypothesis 17.1, if & is a proper subgroup
of @ which contains B, then T = 0, ,(R).

Proof. 1f By =P N0, (), and & = Ng(P), it suffices to show
that B & P,.. By Lemma 7.2 (1), we have A = P, and so by Lemma
17.4, & S N,. Thus it suffices to show that B < 0,. ,(R,). By Lemma
17.8, it suffices to show that B & 0,.,(N). However, this last contain-
ment follows from Lemma 7.2 (1) and Corollary 17.1.

LEMMA 17.6. Under Hypothesis 17.1, if & is a proper subgroup
of ©, and P, is a S,-subgroup of R, then V(ccly(N); B) S 0,,,(R).

Proof. Suppose false, and that £ is chosen to maximize |&|, and
with this restriction to minimize |8],. Let P, = BN 0, ,(R). By
minimality of |®|,, we have P, << & By maximality of |®],, P, is a
S,-subgroup of N(*B,). We assume without loss of generality that
B & P. In this case, Lemma 7.9 implies that A = P,. Since A = P,
by Lemma 17.4 we have £ & N;; by Lemma 17.5, B = 0, ,(R,), soin
particular, V(cclg(¥); B,) S P, as required.

18. Configurations

The necessary E-theorems emerge from a study of the following
objects:

1. A proper subgroup & of ®.

2. A S,-subgroup P of K.
©)

3. A p-subgroup % of G.

4, B= V(ccl@@l); P), M = [0,.,, »(R), 9], B = 0,,,(R)/0,(R).

DEFINITION 18.1. A configuration is any 6-tuple (&, B, %; B, M, W)
satisfying (C). The semi-colon indicates that B, M, W are determined
when R, B, A are given.

DEFINITION 18.2.

(@ = {A|
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(i) U is a p-subgroup of @.
(ii) for every configuration (&, B, A; B, W, W),
(a) N centralizes Z ().
(b) If Z(W) is cyclic, then WM centralizes Z,(W)/Z(W).}

DEFINITION 18.3.
FEN D)= UFZAN(B), #ZO)=UZ®D),

B ranging over all S,-subgroups of & in both unions.

LEmMA 18.1. If p = 5, then Z/(p) U A& A5(p) S Z ().

Proof. Let Aez/(p)U FZ . A45(p), and let (], B, A; B, M, W) be
a configuration. Suppose by way of contradiction that either I fails
to centralize Z(BW) or Z(W) is cyclic and M fails to centralize
Z,(B)|Z(). Since 0,.,,(R) centralizes both Z(W) and Z,(W)/Z (W), it
follows that some element of I induces a non identity p’-automorphism
of either Z(T) or Z,(W)/Z(W), so in both cases, some non identity
p’-automorphism is induced on Z,(TW) by some element of M. By 3.6,
some non identity p’-automorphism is induced on 2,(Z,(TW)) = W, by
some element of M. Let W, = 2(Z(W)) & W, and let W_, = .

Let M, =ker(0,,p,,(R)—AutBW,), M,=ker (0, , ,(K)—Aut (TW,/TW,)).
By definition of M, M is contained in M, if and only if BV acts trivially
on 0, , ()M, 2 =0 or 1. Suppose that B does not act trivially on
0,5 (R)/M,. Let B=U° be a conjugate of A which lies in L and
does not centralize O,., ,(&)/; (B depends on ¢). In accordance with
3.11, we find a subgroup R; of 0, , ,(R) such that N,/M; is a special
g-group, is B-admissible, and such that B acts trivially on D,/
irreducibly and non trivially on Ri,/®,, where ®; = D(R, mod W,). Let
B; = ker (B — Aut (R,/MM,)), so that B; acts trivially on N,/M. and
B/B; is cyclic.

Let %; be a subgroup of B,/W,_, of minimal order subject to being
BN,-admissible and not centralized by N,. The minimal nature of X,
guarantees that B, acts trivially on %,, If B,B; is a generator for
B/B,;, then (B) guarantees that the minimal polynomial of B; on X; is
(x — 1) where r =7, = |3B:%;]|.

Suppose 7 = 0. Since X, is a p-group, while 0,.(®) is a p’-group,
we can find a p-subgroup 9, of & such that £, and X, are incident,
and such that 9, is B-admissible. In particular, B, centralizes 9,.
Let PB* be a S,-subgroup of N(B), so that P* is a S,-subgroup of G.
If B, N Z(P*)* is non empty, we apply Lemma 16.1 and have a contra-
diction. Otherwise, Lemma 16.2 gives the contradiction.

We can now suppose that Z() is cyclic. In particular, B, is of
order p. Since ¥, is of the form 9),/, where ), is a suitable subgroup
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of W, we can find a p-subgroup 9, of K incident with 9, and B-
admissible.

Choose B in B,. Since B, centralizes ¥),/T, and since W, is of
order p, it follows that 9, = Cg (B) is of index 1 or p in $,. If
B, N Z(P*)* is non empty, application of Lemma 16.1 gives 7*9,B° = (1D,
and so 7B = (1), the desired contradiction. Otherwise, we apply
Lemma 16.2 and conclude that 79,8 = (1>, and so ¥*$,B° = {1), from
which we conclude that |8:%8,| = 5. In this case, however, setting
B=ZP*)NB, we have B =B, 3), and so the extra push comes
from Lemma 16.2 which asserts that 9.8 = {1}, and so v'$,8' = (1),
completing the proof of the lemma.

19. An E-theorem

It is convenient to assume Burnside’s theorem that groups of
order p°¢® are solvable. The interested reader can reword certain of
the lemmas to yield a proof of the main theorem of this paper with-
out using the theorem of Burnside.

If p,gqen,Um, we write p ~ ¢ provided @ contains elementary
subgroups & and & of orders p* and ¢® respectively such that {€, §>C®.
Clearly, ~ is reflexive and symmetric.

Hypothesis 19.1.
(i) pemyUnm,qen(®) and p +q.
(ii) A S,-subgroup B of ® centralizes every element of WU(P; q).

LemmA 19.1. Under Hypothesis 19.1, if B e Z/(p), then B central-
izes every element of U(B; q).

Proof. Suppose false, and that Q is an element of U(B; ¢) minimal
with respect to Y8Q # {1>. From 8.11 we conclude that B centralizes
D(L) and acts irreducibly and non trivially on £/D(X)), so in particular,
Q=708 and B, = ker (B— Aut Q) # {1). Let € = C(B,), let P be
a2 S,-subgroup of N(B), and let B, = CB)NP. Since BeZ(p), Bo
is of index at most p in a S,-subgroup P, of €, and so P, < P.. Hence
BB = P,. Since P, centralizes B, we have TP,B* = 1), so
BEO0,,(€)=8 Let 2=0,(6). Since BSRE, OB !, so
KBS RN S Since Q =708, we have QL & L.

By Lemma 8.9, B is contained in an element A of .F&_4;(P).
Since U centralizes B, we have A S P,. Let D = AL, and observe
that € is a normal p-complement for U in ©. By Hypothesis 19.1
ii), Theorem 17.1, Corollary 17.2, and D,, in ®, ¥ centralizes a S,-
subgroup of ®, so D satisfies E, and every p, g-subgroup of D
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is nilpotent. But OB S D, and QL =7QB =), so OB is not
nilpotent. This contradiction completes the proof of this lemma.

Hypothesis 19.2.

(i) p,gemUm, and p # q.

(iil) p~aq.

(iii) A S,-subgroup P of G centralizes every element of WU(PB; q)
and a S,-subgroup L of O centralizes every element of W(Q; p).

THEOREM 19.1. Under Hypothesis 19.2, & satisfies E,.

We proceed by way of contradiction, proving the theorem by a
sequence of lemmas. Lemmas 19.2 through 19.14 all assume Hypothesis
19.2. We remark that Hypothesis 19.2 is symmetric in » and gq.

LEmMA 19.2. U, B> G, whenever ez (p) and Be Z(q).

Proof. Suppose (U, B) = RC @, where Ac Z(p), Be %(q), and
& is minimal. By D,, in &, it follows that & is a p, g-group.

By the previous lemma A® centralizes O,(®) and B# centralizes
0,(R). Since B and A are abelian, K/A* and K/B® are abelian, so &
centralizes 0,(8) X O, (R) = F(!). Hence & S Z(F(®)) by 3.3.

Let & be a chief series for &, one of whose terms is &', and
let €/D be a chief factor of 7. If & & D, then €/D is obviously a
central factor. If € S &', and €/ is a p-group, then B centralizes
€/D, and since €/D is a chief factor, A must also centralize €/D, sc
€/D is a central factor. The situation being symmetric in » and g,
every chief factor of & is central, and so & is nilpotent, and & =
A x B,

Let N = N), let M be a S, ,-subgroup of N with Sylow systen
B, Q, B being a S,-subgroup of @, since Ae % (p). By D,,in N, B, =
BY = Q for suitable N in N. Let M, be a maximal p, g-subgroup of
S containing M, with Sylow system B, Q, where L Q,. Let Q
be a S,-subgroup of & containing Q,. Finally, let B = V(cclgy(B); L)
and observe that B, & B. By Hypothesis 19.2, B centralizes 0,(IN,)
By the previous lemma, 8 centralizes 0,(I).

We next show that 8 & F(IMM,)). Consider 0, ,(IM,), and let P, =
BNO,,(WM). Since P centralizes O,(IM,), so does PB,, so O, (M) =
By X O,(WM,) is nilpotent. But now L centralizes P,, and so Lemm:
1.2.3 of [21] implies that ¥ < O,(IM,). It follows that B < W,. Since
B is weakly closed in a S,-subgroup of M, it follows that MW, is
S,..-subgroup of ®.

Again, P centralizes 0,(I,), and now L), centralizes 0,(IM,) botl
assertions being a consequence of Hypothesis 19.2 (iii). It follow:
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readily that every chief factor of I, is central, and so I, is nilpotent.
Since we are advancing by way of contradiction, we acecept this lemma.

LEMMA 19.83. If Ae Z/(p), then either C(N) is a ¢'-group or a
S,-subgroup € of C(X) is of order q, and € has the property that it
does nmot centralize any B € Z/(q).

Proof. Let & be a S,-subgroup of C(), and suppose € # {1).
By Lemma 19.2, no element of G* centralizes any Be Z(q). Let {
be a S,-subgroup of & containing & and let Be Z(LQ). Then Cy(B)
is of index 1 or ¢ in Q and is disjoint from €, |E&| = ¢ follows.

Lemmas 19.2 and 19.3 remain valid if » and ¢ are interchanged
throughout. In Lemmas 19.4 through 19.14 this symmetry is destroyed
by the assumption that » > ¢ (which is not an assumption but a choice
of notation).

We now define a family of subgroups of @, #F = & (p). First,
& is the set theoretic union of the subfamilies .# (P), where P
ranges over the S,-subgroups of @. Next, & () is the set theoretic
union of the subfamilies . (¥U; P), where A ranges through the
elements of 4= 4;(B). We proceed to build up F (A; P). Form
V() = V(eclg(A); P). Consider the collection 7" = 7 (A) = # (¥, q)
of all p, g-subgroups & of & which have the following properties:

1. P K.

(K) 2. V) SO0, ,(R).

3. Every characteristic abelian subgroup of B N O, ,(]) is eyelic.

If %Y, q) is empty, we define & (A; P) to consist of all
subgroups of o of type (p, p). If (¥, ¢) is non empty, we define
F (U; P) to consist of all subgroups of A of type (p, ») together with
all subgroups of PN O,,,(R) of type (v, p) which contain 2,(Z(P N O, (D)),
and £ ranges over . (¥, q).

Notice that .# (p) depends on ¢, too, but we write Z (p) to
emphasize that its elements are p-subgroups of &. The nature of
& 1is somewhat limited by

Lemma 194. If U, W, e &2, B 18 a S,-subgroup of
S, 7 (A) and 2#(N,) are non empty, and if ;¢ % (W), 1=1,2,
then PN 0,,,(]) = BN O,,(K,).

Proof. Let P,=PNO,,(R),2=1,2. Then P, PB,2=1,2.
From 3.5 and the definition of £ (p), we have cl(B) =2,i=1, 2.
Hence ¥*B,P:= 1> and Y*B.P! = ). From (B), we conclude that
B S B, and P, & PB,, as required.

Using Lemma 8.9 and Lemma 19.4, we arrive at an alternative
definition of & (P), B being a S,-subgroup of @. If " (N) is empty
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for all A e A& 4;(P), & (P) is the set of all subgroups B of P of
type (p, p) such that B¥ is abelian. If .92°() is non empty for some
e A2 4:(P) and Re 7 (NA), then F (P) consists of all subgroups
of type (p, p) in O, ,(R) N P which contain 2,(Z(0,,,(R) N P)), together
with all subgroups B of 0, ,(®) NP of type (p, ) such that B® is
abelian. Here we are also using (B) to conclude that 0,,(®) NP
contains every element of 2%+ (P).

LEMMA 19.5. Let 8¢ % (N), where Ne P& 45(P) and P is a
S,-subgroup of . Let B, = BN O, ,(R). If M is any proper subgroup
of © containing P, then B0, (W) < M.

Proof. Since *PPi=1, it follows from (B) that B,=P N 0, (M) =
P, say. By Sylow’s theorem, I = 0, (M)Ny(P,), so it suffices to
show that By, < Ngp(PB) = N. Choose Nin RN. Then [P, B, Bo, Bo)=1.
Since B, S P, & P < &¥, it follows from (B) applied to KY that
B, & PY, so that P, = P, as required.

LEMMA 19.6. Let € .27 (), A e A& 4;(P), B being a S,-subgroup
of ®, and let 8 be a subgroup of index p in B, = 0,,() N P. Then
B = Vieclg(R); B) S BN O, (R).

Proof. Since & _45(P) is non empty, (B) implies that € is non
abelian. Now 2,(Z(%)) is of order p and is contained in £ By 3.5
R/2(Z(*B)) is abelian.

Let 8¢ = g, be a conjugate of € contained in P, Ge@, First,
suppose that (2.(Z(P)))° = 8 is contained in P,. Then Cg(B) =€, is
of index 1 or » in PBy. Set €, = C(8). By Lemma 19.5, with €, in
the role of I, P¢ in the role of P, P in the role of P, we see that
Y€, = (1), and it follows that *$,8 =<1>, so by (B), & & P,
(Recall that p = 5.)

Thus, if £ £ By, but £, S B, then 3L B,. But &, normalizes P,
so BN < &. Since &, is of index p» in TE, any non cyclic normal
subgroup of £, contains 8. Hence, P, N &, is cyclic and disjoint from
8. If now Q%) is extra special of order p**', we see that 2,(8)
contains an extra special subgroup ¥ of order p*~' which is disjoint
from T

Consider now the configuration (&, P, &; B, M, W), and observe
that W = P,. T is disjoint from %P, so is faithfully represented on
F=0,,5 (&)/0,,,(8]), a g-group. Furthermore, ¥ is faithfully represented
on 2,(W)/2(Z(BW)), which makes sense, since 0, ,(]) acts trivially on
2,(B)/2(Z(W)). Let ¥, be the subgroup of ¥ which acts trivially on
Q2(Z(®)), which also makes sense, since 0, () acts trivially on
Q2(Z(®)). Then F/F, is cyclic and T acts trivially on F/F, since p >q.
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Since £ is a p-group, T acts faithfully on ¥, so acts faithfully on
SIDE). If | : D@D | =g, then |T| divides (¢"—1)(g**—1)---(g—1),
and so [¥| < ¢*, by Lemma 5.2,

On the other hand, ¥, acts faithfully on 2,(8)/2,(Z()), and trivially
on 2,(Z(W)), so ¥, is isomorphic to a subgroup of the symplectic group
Sp(2r, p). Hence, || divides |Sp(2r,p) |, = (" —1) -+ (p* — 1) [6],
so by Lemma 5.2 (ii), | .| < »'. Combining this with the previous
paragraph, we have (T |=9p""'<¢" = |{| < P, a contradiction,
completing the proof of the lemma.

We can now translate this information about £ to the general
P, g-subgroup of &. To do this, we let <“(p) be the set theoretic
union of sets <Z(P), B ranging over the S,-subgroups of &. F(P)
is the set of all subgroups € which can occur in the previous lemma.
Formally, <2 () is the set of all subgroups of index » in P N O, ,(R),
where &€ 277 (N), and A e FAZ_+;(D).

LemMma 19.7. If e #(p) and D is a p, g-subgroup of ©, then
B, = V(ccl@(g); 'b) S 0«.9(%)-

Proof. Let (9, P, &; B, M, W) be a configuration. The lemma is
clearly equivalent to the statement that LS 0, (D). Let B, be a
S,-subgroup of & containing B, and let &, = £¢ be a conjugate of L
contained in PB,. Since 8, e L (p), we have 2 e (P, for some S,-
subgroup P, of 8, Now P, = P& for some X in @, and so 8 & P,
By Lemma 19.6, we have 7*P(8%)*=<1), and so 7*$,8 = 1); in
particular, Y*P,2 = (1), so (B) and »p = 5 imply this lemma.

LemmA 19.8. If e A& 45(D), then B S O, ,(8]) for every con-
Siguration (8, B, A; B, M, W) for which & is a p, g-group.

Proof. Suppose false, and that & is chosen to maximize B, and,
with this restriction to minimize |®|,. It follows readily that 0,(R)
is a S,-subgroup of O, ,(®) and that P is a S,-subgroup of every
p, g-subgroup of & which contains f.

By Lemma 18.1 and the isomorphism O0,(R) = 0,,,(R)/0(8) = B,
we conclude that I centralizes Z(0,(f)). By minimality of |®],, we
also have & = PM.

If P* is a S,-subgroup of & containing P, we see that Z(P*)
centralizes 0,(f), and so Z(P*) & Z(0,(!)), by maximality of P. It
now follows that ® centralizes Z(P*), and maximality of P yields
B = P*,

Since L does not act trivially on O, , (R)/0,.,(®), and since p > g,
it follows that I contains an elementary subgroup of order ¢®. But
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M centralizes Z(0,(®)) = 8 and if 8 is non cyclic, then 3 contains
an element of Z/(*B), in violation of Lemma 19.3. Hence, 8 is cyclic.
In this case, we conclude from Lemma 18.1 that a S,-subgroup of M
centralizes Z,(0,(8)) = 2,. But 3, contains an element of Z/(P), so
once again Lemma 19.3 is violated. This contradiction completes the
proof of this lemma.

LemMMA 19.9. If 8e &£ (p) U P& 1,(p), then & S 0,(R) for every
P, g-subgroup & of & which contains L.

Proof. By Lemmas 19.7 and 19.8, it suffices to show that £
centralizes 0,(8R). If e & +;(p), Theorem 17.1, Corollary 17.2 and
Hypothesis 19.2 imply that £ centralizes O,(R). If e <2(p), then
Le 2 (P) for some S,-subgroup P of ®. In this case, if A e A= 15(P),
the definition of &“(B) implies that A N L = Y, is non cyclic. Hence,
O/R) is generated by its subgroups C(4) N O(R) as A ranges over
A¢. By the preceding argument, A is contained in 0,(K,) for every
P, g-subgroup &, of C(A) which contains 2. Lemma 7.5 implies that
2, centralizes O,($f). In particular, 2,(Z(B)) centralizes O(&).

Consider C(2,(Z(P))) 2 (B, 0,(R)). Since LS 0,(K,) for every
P, g-subgroup &, of (B, 0,(8)> which contains € by (B) and Hypothesis
19.2, a second application of Lemma 7.5 shows that 8 centralizes 0(8),
as required.

LeEMMA 19.10. If Be Z# (p), then B centralizes every element of
U@; q).

Proof. Suppose false, and L is chosen minimal subject to
LeU(B; q) and QOB =+ (1), so that we have Q=708 and B, =
ker (B — Aut Q) # {1)>. Let € = C(B,). Since Be . # (p), we have
Be F(P) for a suitable S,-subgroup P of @. By definition of F# (P),
either C(B) contains an element U, of #Z_7;(P) or else C(B) contains
a subgroup P, of index » in PN 0,,(}), Re F (N) and A e FZ_4;(P).
Let  be a S, ,-subgroup of € containing 2, in the first case, and P,
in the second case. Lemma 19.9 implies that A, & 0,(9) in the first
case and P, S 0,(D) in the second case. In both cases, we have
B S 0,9). Now let $, be a S, ,-subgroup of € containing BY. By
Lemma 7.5, we have B < 0,(D,) and so QB S 0,(H) N Q = 1),
contrary to assumption.

LEmMA 19.11. If Be F (p), Ae % (q), then G = (¥, B).

Proof. Suppose <A, B> =8RG, and A and B are chosen to
minimize 8. By the minimal nature of , R is a p, g-group. By the
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previous lemmas, 2® centralizes 0,(), and B® centralizes 0,(®). It
follows readily that £ is nilpotent, so = %A x B. But now C(N)
contains B in violation of Lemma 19.8, with » and ¢ interchanged.
This interchange is permissible since Lemma 19.3 was proved before
we discarded the symmetry in p and gq.

LemMmA 19,12, If D is a p, q-subgroup of & and if D possesses
an elementary subgroup of order p°, them a S,-subgroup of D is
normal in D,

Proof. Case 1. D contains a S,-subgroup P of &. Let Q be a
S;-subgroup of D, let O, = QN O, (D), let 2 be a S,-subgroup of &
containing Q, let Be (L), and Q, = Cp,(®B). Then L, is of index
1or qinQ,

Next, let & = 0,(D), and assume by way of contradiction that
fcP. By the preceding lemmas, & contains V(cclyx(N); P) for every
e A& 4;(P). By the preceding lemma, no element of Qf centralizes
any element of & (p).

If ® contains a non cyclic characteristic subgroup €, then every
subgroup of € of type (p, p) belongs to & (), and so Cx(Q) is cyelic
for @ €L,. This implies that 7= #;(Q,) is empty, and if Q, possesses
a subgroup of type (q,q), then » =1 (modq). However, if ® does
not contain any non cyclic characteristic abelian subgroup, then every
subgroup of & of type (», ) which contains 2(Z(f)) lies in F (P),
and we again conclude that & _#;(Q,) is empty, and if O, is non
cyclic, then p =1 (mod q).

Now Q, = 0,,(D)/t admits a non trivial p-automorphism since
RcCP, so 2 4:(Q) is non empty, by Lemma 8.4 (ii) and p > q.
Hence, L, is non cyclic, being of index at most ¢ in Q,, and this
yields » =1 (mod ¢). We apply Lemma 8.8 and conclude that »p =
14+ g+ ¢ and L, is elementary of order ¢°. This implies that any
two subgroups of Q, of the same order are conjugate in ®, Since
at least one subgroup of £, of order ¢ centralizes B, every subgroup
of Q, of order g centralizes some element of Z/(g). Since at least
one subgroup of L, of order ¢ centralizes some element of .&# (P),
every subgroup of Q, of order ¢ centralizes some element of & (p).
This conflicts with Lemma 19.11.

Case 2. ® does not contain a S,-subgroup of ®. Among all D
which satisfy the hypotheses but not the conclusion of this lemma,
choose D so that | D N 2(Y)| is a maximum, where A ranges over all
elements of S22 #;(p), and with this restriction, maximize |D|,.

Let ®, be a S,-subgroup of D, and let P be a S,-subgroup of &
containing D,.
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First, assume D, centralizes 0,(®). In this case, 0,(D) is a S,-
subgroup of 0, ,(P). By maximality of |D|,, D, is a S,-subgroup of
N(0,(D)). This implies that D, contains every element of .7 1;(P).
To see this, let A e A2 15(P), and let A, =AND,. Since 0,(D) is
a S,-subgroup of 0,,,(D), it follows that AN D, = 0,(D). If A, were
a proper subgroup of U, then P, would be a proper subgroup of
Ny,(0:(D)). Since this is not possible, we have A = A,. But now,
Vicelg(); D) < D, and by maximality of |D},, D, =P follows, and
we are in the preceding case,

We can now assume that D, does not centralize 0,(D). Suppose
D, contains some element B of F (p). By Lemma 19.10, B centralizes
0,(D). Since D, does not centralize 0,(D), |0,(D)| > ¢, and so Lemma
19.11 is violated in C(Q), Q@ being a suitable element of 0,(P). Thus,
we can suppose that D, does not contain any element of & (p). In
particular, ® N 2,(A) is of order 1 or p for all Ae A= _7;(p). Let
Bez(P), and D, = Cp(B). Since & #;(D) is non empty by
hypothesis, ®, is non cyelic. Let & be a subgroup of ®, of type
(p, p). Since BZL D,, <&, B> is elementary of order at least p*. If
& does not centralize 0,(®), then there is an element E in &* such
that € does not centralize C(E)N 0,/(D). But in this case, a S,
subgroup of C(F) is larger than ® in our ordering since B = C(E),
C(E) possesses an elementary subgroup of order 7% and a S,-subgroup
of a S,,-subgroup ¥ of C(¥) is not normal in . This conflict forces
every subgroup of D, of type (p, p) to centralize 0,(®). Thus, 2(D,) =
D* centralizes 0,(D), since D* is generated by its subgroups of type
(p, ). However, we now have N(D*) 2<D,B,0,(D)> and a S,,
subgroup 3, of N(D*) is larger than D in our ordering, possesses an
elementary subgroup of order p°, and has the additional property that
its S,-subgroups are not normal in %, This conflict completes the
proof of this lemma.

Lemma 19.12 gives us a fairly good idea of the structure of the
P, g-subgroups of &. The remaining analysis is still somewhat detailed,
but the moves are more obvious.

For the remainder of this section, ¥ denotes a S,-subgroup of &,
£ a S,subgroup of N(P), and Da S,-subgroup of @ which contains Q.

LEMMA 19.13, SA4&° 45(RQ) i8 non empty.

Proof. We apply Hypothesis 19.2 (ii) and let ® be a maximal
p, q-subgroup of @ which contains elementary subgroups of order p*
and ¢°. By Lemma 19.12, D, 19D, D, being a S,-subgroup of D,
Since D is a maximal p, g-subgroup of &, D, is a S,-subgroup of ©,
80 D, = P¢ and the lemma follows.
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We now choose B in 2/(Q) and set O, = C(B).

LEMMA 19.14.

(i) SFAZ 1R, is empty.

(ii) Q contains 2(Z(D)).

(i) »p=1 (modgq).

(iv) £F contains an element Y which centralizes an element of
F (B), and has the additional property that Cy(Y) contains an
elementary subgroup of order ¢.

(v) If XeQt and X centralizes an element of # (P), then X
does nmot centralize any element of Z(Q), and C(X ) does not contain
an elementary subgroup of order ¢'.

Proof. Let @ be an elementary subgroup of Q of order ¢° and
choose & in L, if possible. If 3 possesses a non cyclic characteristic
abelian subgroup €, then some element of € has a non cyclic fixed
point set on €. Since every subgroup of € of type (p, p) lies in
Z (P), (iv) is established in this case.

If every characteristic abelian subgroup of P is eyelic, then some
non cyclic subgroup &, of & centralizes Z($3). Since any non cyclic
subgroup of P which contains 2,(Z(P)) is normal in P, by 3.5, some
element of @, centralizes an element of # (P), so (iv) is proved.

If € €L, then Lemma 19.11 is violated in C(E), E € &*, E central-
izing an element of & (P). Hence, (i) is proved.

On the other hand, % _#:(Q) is non empty, so L, possesses a
subgroup F¥, of type (¢,¢). If »p #1 (modq), then some element of
. is seen to centralize an element of % (PB). Since this is forbidden
by Lemma 19.11, (iii) follows.

We now turn attention to (v). In view of Lemma 19.11, we only
need to show that if X in Q! centralizes an element of .# (P), then
C(X) does not contain an elementary subgroup of order ¢‘.

Let A be an element of .# (P) centralized by X, let  be a S, ,-
subgroup of C(X) and let & be a maximal p, ¢g-subgroup of & containing
9. By D,,in ¢(X), A, =A< $ & &, for some G in C(X). Suppose
by way of contradiction that C(X) contains an elementary subgroup
of order ¢'. By D,, in C(X), $ contains an elementary subgroup of
order ¢*; thus, & contains such a subgroup.

We first show that a S,-subgroup of & is not normal in & Suppose
false. In this case, since & is a maximal p, ¢-subgroup of @, a S,-
subgroup of & is conjugate to P, and so K is conjugate to PL.
However, (i) implies that £ does not contain an elementary subgroup
of order ¢!, since |Q:Q,| =g, so & does not contain one either.

We now apply Lemma 19.12 and conclude that & does not possess
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an elementary subgroup of order p°. It follows directly from Lemma
8.13 that £ has p-length one. Let &, be a S,-subgroup of & containing
A, and let B, = Vieely(W,); &;). By Lemma 19.10, B, centralizes O,(R).
Since £ has p-length one, B, < £ But then N(L) = RN contains S,-
subgroups of larger order than |&,|, and M also contains &, contrary
to the assumption that £ is a maximal p, g-subgroup of &. This
contradiction proves (v).

We now turn to (ii). Choose Y to satisfy (iv) and let € be an
elementary subgroup of Cy(Y) of order ¢°. If QI(Z(ﬁ)) = ), were
not contained in €, then (€, 2,> would contain an elementary subgroup
of order ¢*, and (v) would be violated. This completes the proof of
this lemma.

We remark that Lemma 19.2 and Lemma 19.14 (ii) imply that
VA (ﬁ) is eyelic.

Theorem 19.1 can now be proved fairly easily. We again denote
by € an elementary subgroup of {Q of order ¢°, and we let Y be an
element of €* which centralizes an element of & (). Let & = Cg(®B).
Since 92, = QI(Z(:@)) centralizes B, 2, does not centralize any element
of Z7(P), by Lemma 19.2, and so does not centralize P. Thus, we
can find an element E in G! with the property that 2, does not
centralize Cyx(E). Consider € = C(E). We see that € contains both
Y and B. Since Y does not centralize B, {Y, B> is a non abelian
group of order ¢° with center 2,. Let £ be a S, ,subgroup of €
which contains (Y, B)>; since £ contains B, € does not contain an
elementary subgroup of order p°. Since £, is contained in the derived
group of <Y, B), 2, is contained in ¥'. We apply Lemma 8.13 and
conclude that 2, centralizes every chief p-factor of 8 It follows
that v*82F = (1) for suitably large =, and so 2, & 0,(2). But now
if © is any S, .-subgroup of € which contains 2,, we have 2, S 0,(9),
by Lemma 7.5, and so [2,, Cs_B(E)] is both a p-group and ¢-group, so
is {1), contrary to construction. This completes the proof of Theorem
19.1.

COROLLARY 19.1. If p,qem,U7m, P+ q, and p ~ q, then either
PET, O QET,.

Proof. 1f & satisfies E;,, then both p» and ¢ are in w,. Other-
wise, Hypothesis 19.2 is violated and the corollary follows.

20. An E-theorem for 7;

Hypothesis 20.1 p,qem, p# ¢q, and p ~ q.
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THEOREM 20.1. Under Hypothesis 20.1, @ satisfies E, ,.

The proof of this theorem is by contradiction. The following

lemmas assume that Hypothesis 20.1 is satisfied but ® does not satisfy
E,,.

LemMA 20.1. If B is a S,-subgroup of @ and Q is a S,-subgroup
of @, then either P normalizes but does not centralize some q-subgroup
of ®, or L nmormalizes but does mot centralize some p-subgroup of .

Proof. This lemma is an immediate consequence of Hypothesis
20.1, Theorem 19.1, and the assumption that @ does not satisfy E,,.

We assume now that notation is chosen so that B, a S,-subgroup
of @, does not centralize Q,;, a maximal element of U(PB; q). Let O*
be a S,-subgroup of N(L;) permutable with P, and let Q be a S,-
subgroup of & containing Q*.

LEMMA 20.2, O,(PL*) # <.

Proof. Suppose false. Let 2 be an element of % #;(Q). By
Lemma 7.9, we have ¥ & 0,(PL*). We apply Lemma 17.4 and conclude
that N(Q,)) & N(B), where 8= Z(8), B = V(cclgx(%); Q), and so &
satisfies E,,, contrary to assumption.

Let B, = 0,(%9*).

LEMMA 20.3. Q* i3 a S,-subgroup of every proper subgroup 8
of ® which contains P,Q*.

Proof. Let ¥ be a S, subgroup of & with Sylow system LQ,, B,
where Q*S Q, and B, =P, and let F(T)=2T, x T,, where T,=0,(T),
T = Oq(z)-

We first show that T, & P,. Suppose by way of contradiction
that £, N P, T,. Since O* and P, both normalize T, N P, and both
normalize ¥,, setting T¥ = Ny (T, N P,), we see that TIV*P, is a
group, and that Q*P, normalizes T¥. Let T*/T, N P, be a chief factor
of TFQ*P, with T* = T, Since P, < PV*, it follows that P, central-
izes T*/T, NP, that is YT*P, & T, N P,. In particular T* normalizes
P.. Now PQ* is a maximal p, g-subgroup of & by Lemma 7.3, so
Q* is a S,-subgroup of N(B,). A second application of Lemma 7.3
yields that 9P, is a S,-subgroup of 0,(N(P,). But PB,T* is normalized
by {*, so a third application of Lemma 7.8 yields B,T* & O, (N(B))),
so T* & B,, contrary to our choice of £*. Thus, T, & P..

We next show that %, £ Q*. To do this, it suffices to show that
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B, centralizes ¥,, for if this is the case, then T, S C(B) = N(B),
and so ¥,Q* is a g-subgroup of N(B,). Since L* is a S,-subgroup of
N(B), £, < Q* follows.

To show that 93, centralizes ¥,, we first show that P, centralizes
Cq,(R4). By definition, Q* is a S,-subgroup of N(Q,), and since
0*Cq, (D) is a g-subgroup of N(L,), we have Cq,(Q) S Q*. Hence,
[Ce, (), BIS LN, BJS TNP, =<1). Suppose that P, does
not centralize ¥, and that T, is a PB,Q,-invariant subgroup of T,
minimal subject to the condition 7%,P, # <1>. By minimality of I,
we have T, =7TP. Since I, is a g-group, 7T, T, and so
TEPB, = 1), Since vO,P, = (1), we also have V'QB,E, = (1)>. The
three subgroups lemma now yields v*$,3.Q, = (1), so L, centralizes
YB3, = F,. By what we have already shown this implies that P,
centralizes ¥,. This conflict forces 7B,T, = .

We next show that &, & T,. To do this, consider C(¥,) = € C T.
Since T, & Py, we see that O, & €. On the other hand, Z($P,) central-
izes both ¥, and I,, so Z(P,) & I,, by 3.3. Hence, € & Cx(Z(P)) S
C(Z(P)) & N(Z(P)). Since L, = 0(PL*), Lemma 7.5 implies that
0, 20,€) char € 4 F, and s0 Q, £ T,.

Consider finally C¢(%,). Since Q, S T,, we have Cg(T,) & Cx(Q) S
C(Q,) &S N(R,). Since P, =0,(PQ*), Lemma 7.5 implies that
P, S 0,(Cx(T,)) char Cx(T) <, and so P, S I,. Since we have
already shown that , & P, we have T, =B, < &, and so Q* is a
S,-subgroup of ¥, as required.

To prove Theorem 20.1 recall that Q is a S,-subgroup of & con-
taining Q*. Choose U in AZ_45(L), and let A* = A N Q*. We first
show that A*cC A. Suppose by way of contradiction that A* = A,
Then 2 normalizes ¥B,. Lemma 7.3 and the previous lemma imply
that 9B, is a maximal element of MU(¥; p). By Corollary 17.1, N(,)
contains a S,-subgroup of &, and ® satisfies E,,. Since we are
advancing by contradiction, we have 2* < 9.

We next show that A* N O, = {A). To do this, we observe that
WNY, AL s0if A*XNQ, =W, then A* N, NZEQ*) #D). In
this case, however, C(A* N L, N Z(L*)) contains B, and also contains
Q*A, contrary to the previous lemma. Thus, A* N Q, = {1>. Since
A* and O, are both normal in QO*, we have YA*Q, = (1.

Let %A, = Ny(L*), so that A* A, S A Observe that +AL* S
*NACHA, and so O* normalizes A,. Let B be any subgroup of A,
which contains UA* properly. Since [B, QA*] S A*, we see that B
normalizes Q,A* = O, X A*. Since O* normalizes B, O* also normal-
izes Cgp,(B) = D, say. If D # (1), then DN Z(V*) # {1). But then
the previous lemma is violated in C(® N Z(X2*)). Hence, D = {D.
Since C(A) N O,A* 2 A*, we have C(B) N QA* = A*.
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Since B normalizes Q, X A*, B also normalizes (T, x A*) = Q.
Since B has no fixed points on ! by the above argument, Q, is
abelian. But now Q,2* and B are normal abelian subgroups of {Q,, B),
so (&, B) is of class two, so is regular. It follows that if Be®,
Q€ Q,, then [B% Q] = [B,Q°] = [B,Q]°. But B is an arbitrary subgroup
of %, which contains A* properly, so we can choose B such that
JY(B) & A*. For such a B, the element B centralizes J*(X,). It now
follows that Q, is elementary.

We take a different approach for an instant. ¥ does not centralize
the elementary abelian group Q,, and N(X;) has no normal subgroup
of index p, by Lemma 17.3. It follows that {Q, is not of order gq.

Returning to the groups A* and B, since B has no fixed points
on Q,, if Be®B, Be¢A*, then the mapping ¢5:Q, — A* defined by
$5(Q) = [B, Q], @ in L, is an isomorphism of Q, onto a subgroup of
A*. Hence, A* is not cyelic.

From the definition of 2A*, we see that A* contains Z(L). We
wish to show that 2* contains an element of 2/(Q). This is immediate
if Z(Q) is non cyclic, so suppose Z(Q) is cyclic. If 2A* does not
contain any element of (X)), then the element B above can be taken
to lie in some element of Z/(Q). However, [Q, Blec 2,(Z(L)), so ¢4
could not map L, onto a subgroup of order exceeding q. We conclude
that 2* containg Z(X) and also some element of Z/(Q).

We will now show that for each element Z of Z(Q)*, we can find
a p-subgroup 9H(Z) in U(X; p) which is not centralized by Z. Namely,
A* is faithfully represented on P, since A* N, = 1) and A* is a
normal abelian subgroup of Q*. We first consider the case in which
Z(Q) is non cyclic. Let & be a subgroup of Z(Q) of type (g, ¢) which
has non trivial intersection with {Z, that is let & contain 8, = 2,({(Z)).
Since 3, acts non trivially on P, B, acts non trivially on Cg(E) for
suitable F in &*, Let € = C(F), and let R be a S,-subgroup of €
permutable with Q. It is easy to see that 3, does not centralize
0, (QR) e W, p).

If Z(Q) is eyclic, we use the fact that U* contains an element
U of 27(Q). We can find an element U in ¥ such that 3, = 2(Z(Q))
does not centralize Cg(U). Let € = C(U). By (B), it follows that
1 S 0, 4€), and so [8,, Cp,(U)] S 0,(€). Thus, € contains an element
of U(; p) which 3, does not centralize.

It now follows from Theorem 17.1 and the preceding argument
that if 9 is a maximal element of M(Q; p), then Z(Q) is faithfully

represented on ?'fS If ‘fS is a S,-subgroup of N (‘E) permutable with
£, then Lemma 20.2 is violated with » and ¢ interchanged. This
completes the proof of Theorem 20.1.
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21. A C*-theorem for 7y, and a C-theorem for T,

It is convenient to introduce another proposition which is “between’
C, and D,

C*: % satisfies C,, and if ¥ is a mw-subgroup of ¥ with the
property that |¥|, = |%X|, for at least one prime » in m#, then ¥ is
contained in a S,-subgroup of %.

THEOREM 21.1 If p,qem, and p ~ q, then ® satisfies CrX,

Proof. We can suppose p + q. We first show that @ satisfies
C,.. By Theorem 20.1, ® satisfies E,,. Let $ be a S, -subgroup
of @ with Sylow system P, Q, where P is a S,-subgroup of &. We
assume notation is chosen so that [PB| > |Q|. Then 0,9) # 1> by
Lemma 5.2. Lemma 7.3 implies that 0,(D) is a maximal element of
HUEQ; p). If 9, is another S, -subgroup of @ containing Q, then 0,(9.)
is also a maximal element of U(Q); p). From Section 17 we conclude
that 0,(9) = G'0,(D)G for suitable G in &. Hence, GG and
both normalize 0,(D) so are conjugate in N(0,(D)).

Turning to CJ,, we drop the hypothesis |P| > |{|, and let T
be a maximal p, g-subgroup of & containing . Let  be a S, ,-subgroup
of & containing .

First, assume that 0,(%) # 1. In this case, 0,%) is a maximal
element of U(P; q). If 0,(9H) #+ 1, then 0,(D) is also a maximal element.
of U(%PB; ¢). Thus, Theorem 17.1 yields that 9 is conjugate to T.
(Here, as elsewhere, we are using the fact that every maximal element.
of U(PB; ¢) is also a maximal element of U(¥; q) for all A in A& 15(B).)
Thus, suppose 0,(9) = 1. In this case, if A e FA&_4;(P), then B P,
B = V(celx(A); B), by Lemma 17.5, so |B|, = | N(B):C(B)|,. But
N(0,(%)) dominates B, 80 | N(0«(X)) |, > |S|,, which is absurd.

We can now suppose that 0(%) = 1. We apply Lemma 17.5 and
conclude that B q T, where B = V(cclgx(A); B), and A e FA&4;(P).
Let Q, be a S,-subgroup of . Since ¥ is a maximal p, g-subgroup
of ®, L, is a S,-subgroup of N(J).

Let © be a S, subgroup of ® containing P and let Q be a S,-
subgroup of . Let Q,=0,(9). If {, =), then S N(B), by
Lemma 17.5, and we are done. Otherwise, $ = O,Ny(®B), again by
Lemma 17.5, and we assume without loss of generality that Ny(B) & T.

Assume that Ng(B) N L, # <1). Then in particular, T N Y, # {1,
contrary to Oy(T) = {1)>. Hence, Nx(B) N L, = .

We will now show directly that Ny(B) =. Since Ng(B) S I,
it suffices to show that | Ng(B)|, = [T[;. Now N(L,) = 0,(N(Q)))-
(N(2,) N N(B)), by Lemma 17.1, and since Ng(B) N L, = (1), it follows
easily that | No(®B) |, = | N(Q,) N N(B) |..
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Let !, = N(Z(B)). By Lemma 17.3 we have R%,=0,.(RN)-(N(Q) NN,).
Let M= NQ)NN,. Since M contains P, 0, (W) = 0,.(N) N M. By
Lemma 17.5, we now have ¢ = (0,.(N,) N M) - (N(B) N M), which yields
RN, = 0,,N) - (N(Q) N N(B)). Now RN, contains T and TN O, N) =
<1), since O,(%) =<1)>. Thus, Q, is mapped isomorphically into
R,/0,.(R) = (N(R) N N(B))/(0,(R) N N(Qy) N N(B)), and it follows
that | N(Q) N N®)|, = | Q| = |Z|,, as required.

Since Ny(®B) = %, it follows that T & 9, proving the theorem.

THEOREM 21.2. Let o be a subset of m,. Assume that ® satisfies
E,, for all p, q in 0. Then & satisfies C,.

Proof. By the preceding theorem, we can assume that o contains
at least three elements. By induction on |o|, we assume that &
satisfies C, for every proper subset 7 of o.

Let 0 ={p, -+, 0.}, n =38, and let 6, =0 — p;, 0;; =0 — p; — p;,
1=4,5=mn,1+#J. Let & be a S, -subgroupof @, 1 << <n. Then
the S, ,-subgroups of &; are conjugate to the S, -subgroups of &;.

For ¢ +# j, let m;; ={0,(&;)|. Note that by C,, m.; depends
only on 7 and 7 and not on the particular S, ,-subgroup of & we choose.

Fix 4,5,k i # 5 # k #1, let P; be a S,-subgroup of ®, let S}
be a S, ,-subgroup of @ containing PB; and &; be a S, -subgroup of
® containing PB;, chosen so that SN &S} is a S,j'k-subgroup of &
which is possible by C,M, C,j and C.,.

Let Bi; = 0,(8}), Bi = 0,(S}). Suppose that B;; N By = <.
‘With this assumption, we will show that m;; < m;,. We can assume
that 1 =1, =2, k=38, that B, NP, =<1, and try to show that
My = My,

Let B, R, Ry, .-+, R, be a Sylow system for SF NS¥, and let
By, Ry, -+, R, and B, R, R, ---, R, be Sylow systems for S} and S
respectively. Here R, is a S, -subgroup of @, ¢ =2, .-+, n.

Since ., is the S, -subgroup of F(&), the condition P,, N Py = D
says that PB,, is faithfully represented as automorphisms of F(&;). Now

FEH)=F&)NPx FEHNR, x F&S)NR, x --- x F&)NR,,

where P, = F(©S})NP,. Since Ly, and P, are disjoint normal subgroups
of B, P, centralizes P,;. If 4 <s<n, then (B,, FISHNR> =9,
is clearly contained in &} N &F and so P, and F(SF) N R, are disjoint
normal subgroups of 9,, and so commute elementwise. But P, is
faithfully represented as automorphisms of F(&}), so is faithfully
represented as automorphisms of F(&}) N R,. It follows from Lemma
5.2 that m,; < m,,.

Returning to the general situation, if 0,,(S;) N 0,,(8,) =<1,
whenever i + j # k # 1, and &;N S, is a S, ,-subgroup of ®, then
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m;; < m;,.. Permuting 1, 7, k cyclically, we would have m;; < mj; <
my; < m;;. The integers m,;, m;, m,; being pairwise relatively prime,
we would find m;; =1 for all 2+ 5. This is not possible since a
S.,-subgroup of @ is solvable.

Returning to the groups &} and &f, we suppose without loss of
generality that P, N P = Dy # ). Since Dy & P I S5, Dys
commutes elementwise with 0,,(&7}). Similarly, D,,, commutes element-
wise with 0,,(&;). Hence (B, 0,(&7), 0,,(})> = £ is a proper sub-
group of @ normalizing D,;;. By Lemma 7.5, both 0,,(57) and 0,(S7)
are S-subgroups of 0,,(8); in particular, 8 has a normal p,-complement.
Since £ has a normal p,-complement, we can find an element C in Co(P)
such that 0,(&;) is permutable with C-'0,(S})C. For such an
element C, let M = <0,,(S;), C~'0,,(S;)C>.

We will now show directly that for each ¢ in o, N(IR) contains.
a S,-subgroup of ®&. This is trivially true if M = (1), so suppose
that M + 1), Let M, ---, M, be a Sylow system for M which is
normalized by P,, where IM; is an S, -subgroup of M, i =2, .-+, n,
We remark that by C; ,,, each IR; is a maximal element of U(P; p.).

Let | ;| = p# and let |@{,, = p/*. By Lemma 17.5 and C;; ,, we
see that p/[~* =|N(B):C(B)|,, where B = V(ccly(A); P), B=P,
and A € FSELA5(P).

Let N, = N(Z(B)). Let € be a coset of 0,(N) in N,. Then €
contains an element N of N(ZB) by Lemma 17.5. Hence, ¥~ = M7,
1 =2,+--,m where C,,--+,C, all lie in C(N). Let & = P, W|,,- --,M,,
Cy +++,C,>. Since Dy N Z(P,) # 1, and since & centralizes D3N Z(B),
we have 8C ®. Let £ = 0,.(8) (p = p,) so that 8P = & by Lemmas
7.3 and 7.4. Hence, & contains both M and M**, and since B
normalizes M, A normalizes both M and M* ™. By C;,,1 =2, -+, n,
M is a S-subgroup of 8. By the conjugacy of Sylow systems in AL,
there is an element C in QA such that A=A, M = M, Since
2A has a normal p-complement, CeC¥) & 0,(N), so € contains
CNe N(IY),

Thus, if T =N, N N(), we have N, = 0,(N)T. Since P& T,
we have 0,(%) = T N 0,(N,). Hence T = 0,.(T)Ng(B) by Lemma 17.5,
so that &, = 0,(N)Ng(B). Thus Ny (B) maps onto N(B)/C(B). Since
N (B)NM centralizes B, it follows that [T:T N M|, = pli™%,
1=2,.-+,n. Hence |TM|, =|B|,,, as required.

If now M + (1>, then N(M) G and so O satisfies E,.

We now treat the possibility that It = <1>. In this case, both
F($}) and F(PY) are p-groups. By (B), both groups contain 2. By
Lemma 17.4, both 8} and %} are contained in N(Z(B)), so once again
O satisfies E,.

It remains to prove C,, given E, and C. for every proper subset
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7 of o.

Let  and $, be two S,-subgroups of & with Sylow systems
By, -+, Bo and L, - -+, Q, respectively, PB; and L, being S, -subgroups
of @ 1=1=n.

If F(9) and F(9,) are p,-groups, we apply Lemma 17.4 and conclude
that  and 9, are conjugate in N(Z(B)), where B = V(cclx(A); By,
Ne A= A;(PB) and we have normalized by taking P, = Q..

If F(9) is a p-group, then C, , for i =2, ---, n imply that F()
is a p,-group. Thus, we can assume that neither F($) nor F(D,) is
a p-group for any prime p.

Let m; = |0,,(9) |, mi = |0,(9)], 1 =1 =n. For each 7, we can
choose G; in © so that Q4 =P, 1 5= n, 1+ 5. Let & = 9f,
t=1, -+, n, so that DN R; contains a S, -subgroup of .

Suppose 0, (%) N 0, () = 1) for some 1, j, i # j. Then 0, (R.)
is faithfully represented on F(9), since 0,,(R;) S . But in this case,
0,,(&;) centralizes 0, (9) and also centralizes 0,,(9) for k + . Hence,
0, ,(R.-) is faithfully represented on 0,,(9), and so m; < m; by Lemma
5.2. For the same reasons, m; < m;, since 0,(9) is faithfully repre-
sented on F(R,). If forall 4,5,1<4,5<m,i#J], 0,(R)N 0, (D) =
{1, we find m; < m; < m), and so m}; = m; = 1. This is not possible
since  and 9, are solvable.

Hence, we assume without loss of generality that 9, =
0,,(8,) N 0,(D) # <1>. We will now show that 0,(&,) is conjugate to
0,(9). To see this, we first apply Lemma 7.4 and C,,,, to conclude
that 0,(®,) and 0,(9) have the same order. Since 2D, centralizes
both 0,,(®,) and 0,(9), it follows that £ = (B, 0,/(Ry), 0,(9)) < S.
By Lemma 7.4, it follows that <0,/(&,), 0,;(9)) < 0,(2). By Theorem
17.1 and C3,,, 0,(®,) and 0,(D) are S-subgroups of 0,(%), so are
conjugate in £, being of the same order. Since O’i(@ # 1), C,
follows immediately.

22. Linking Theorems

One of the purposes of this section is to clarify the relationship
between 7, and =,.

Hypothesis 22.1.
(i) pem, gen(®).
(i) A S,-subgroup P of ® does not centralize every element of

U(®; o).

THEOREM 22.1. Under Hypothesis 22.1, if Q, is a mazximal
element of U(B; q) and Q is an element of X, of order q, then Cqp(Q)
contains an elementary subgroup of order ¢°. In particular, ge m,Ux,.
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Proof. Choose € char Q, in accordance with Lemma 8.2, and set
€, = 2,(€). From 3.6 and Lemma 8.2, it follows that  does not
centralize €,. Since cl(€) < 2, €, is of exponent q.

Since N(€,) 2 N(L,), Lemma 17.3 implies that O?(N(€,)) = N(E)).
Since N(E€,) has odd order, this in turn implies that €, is not generated
by two elements. Consider the chain #:€,2v€,Q,27€0!2 ---.
Since P does not centralize €,, P does not stabilize &, so we can
find an integer n and subgroups «A,, ¥; such that »"'COM S A &
A, & €, Qr and such that B = A,/YA, is a chief factor of N(L,) and
with the additional property that ¥ does not centralize B. Since
N(Q) =0*(N(Q,)), we also have N =0°3), where RN=
(N(B) N NEQY)/(C(B) N N(Ly)). Since | N(Q,)| is odd it follows that
|B| = ¢*. Since YA, S U, it follows that | Cy,(@)| = ¢*. If Co(Q)
did not contain an elementary subgroup of order ¢°, then we would
necessarily have @ €%, since 2, is of exponent ¢. Since |Cy,(Q)| = &,
the only possibility is that Cy,(Q) is the non abelian group of order
¢* and exponent ¢. But in this case Qe Cy (Q) S Z(€,), and Cq(Q)
contains an elementary subgroup of order ¢° since L, does, by Lemma
8.13, Lemma 8.1, and the equation N(Q,) = O°(N(Q)).

Hypothesis 22.2.

(i) B is a S,-subgroup of ® and penx,.

(ii) q, ren,Un,; B does not centralize every element of W(B; q)
and P does not centralize every element of VU(P; 7).

THEOREM 22.2. Under Hypothesis 22.2, q ~ r.

The proof of this theorem is by contradiction. The following
lemmas assume that g ~ 7.

Since Hypothesis 22,2 is symmetric in ¢ and r we can assume
that ¢ > r, thereby destroying the symmetry.

Let Ae & 45(P). Let Q,, R, be maximal elements in U(P; q),
U(B; r) respectively.

LEMmA 22.1. If © is an A-invariant q, r-subgroup of ©, and
if a S,~subgroup D, of O 1s non cyclic, then 9, < 9.

Proof. Let O, be a S,-subgroup of  normalized by . Since
q + r, either FEA7(D,) or FZ NP, is empty. If FLZ 459,
is empty, application of Lemma 8.5 to  yields this lemma.

Suppose FF.45(D,) is non empty. Then FZ A4YD,) is empty,
so  has g¢-length one. Thus, it suffices to show that 9, centralizes
0,(9). We suppose without loss of generality that 2 normalizes 9,.
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Then by Corollary 17.2 $, is contained in a conjugate of Q,, so C(H)
possesses an elementary subgroup of order ¢* for H in ,, H of order
g, by Theorem 22,.1. We will show that 2,(9,) centralizes 0,(9). Since
9, is assumed non cyclie, 2,(9,) is generated by its subgroups & which
are elementary of order ¢? so it suffices to show that each such &
centralizes 0(9). If & does not centralize 0.(9), then & does not
centralize 0,(D) N C(E) for suitable E in &, By Lemma 8.4,
FZA5(0,9) N C(E)) is non empty for such an E, so q + r is violated
in C(E).

Since 2,(9,) centralizes 0.(9), it follows that & 4 (0.(D)) is
empty, since ¢+ r. Hence, 9, centralizes 0.(9) by Lemma 8.4, as
required.

We define 27" as the set of ¢, r-subgroups of WU(A) which have
the additional property that no S,- or S,-subgroup is centralized by 2,

LEMMA 22.2. <S¢ 18 non empty.

Proof. Suppose that YOQ,A = 1). If we also had YRA = 1),
then ¢ + r would be violated in C(X). Hence, YR,A # {1, and we
can find R, S R,, R, # (1), such that R, = YR,A and such that A, =
Cy(R,) #= <1). Consider C(¥,) 2<A, Q, R,>=28. By Lemma 17.6,
A 20, (2 and it follows readily that £ possesses a normal comple-
ment 9, to A, We can then find C in Cy(A) such that $ = {0, R
is a ¢, r-group. By Lemma 22.1 and the fact that Q, is a maximal
element of U(; q), we have Q, | D. But now R{ & N(Q,) = O°(N(Q))).
Since ¢~ r, if &, is a S,-subgroup of N(L,), then & 4:(S,) is
empty. By Lemma 8.13 N(Q,) centralizes every chief »r-factor of
N(Q,)). It follows that 2 centralizes R?, contrary to construction, so
we can assume that vYQ,% # {1).

Suppose YR, A = 1). Since A possesses an elementary subgroup
of order p°, we can find A in %A such that Cg(4) is non cyelic.
Consider C(4) 2 <%, Cy(A4), ®)>. By Lemma 17.6 we can assume that
$=<C(A),R> is a q,r-group. Then Lemma 22.1 implies that
S, < 9, &, being a S-subgroup of . Enlarge  to ®, a maximal
A-invariant ¢, r-subgroup with Sylow system &, R,. Lemma 17.6,
Lemma 22.1 and maximality of & imply that &, is a maximal element
of U(Y; q), contrary to g « 7.

We can now assume that vQ,% # (1) and YR,A + {1,

Let Q, be an U-invariant subgroup of L, of minimal order subject
to 7O,U # {1). Let R, be an U-invariant subgroup of R, of minimal
order subject to YRUA # {1>. Let «A =ker(A —AutQ,), A =
ker (A — Aut R,). Since A acts irreducibly on Q,/D(Q,) and on R,/D(R,),
it follows that A/A; is eyelic, 1 =1, 2. Since A e FZ 4(P), w. N WA, =
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", # {1). An W-invariant S, ,-subgroup of <%, L, R,> S C(V,) satisfies
the conditions defining %", by Lemma 17.6 and D,,, in <{¥, Q,, R,).

Let & be a maximal element of %", with Sylow system &, &,,

chosen so that U normalizes both & and &,, & being a S,-subgroup
of &.

LEMMA 22.8. R, i8 cyclic and O(8R) = {1).

Proof. Suppose £, is non cyclic. Then Lemma 22.1 yields &, < £.
The maximal nature of £, together with Lemma 17.6, imply that
&, is a maximal element of U(¥;q), so is conjugate to Q.

By Lemma 17.3, N(R,) =N = 0*(N). Since g+~ r, N(], does
not possess an elementary subgroup of order 7°. Now R = 0°(RN) and
Lemma 8.13 imply that v&,% = (1), contrary to construction. Hence,
K, is cyclic.

If 0(R) #= (1), then 2(0,(8)) = 2(R,) < 8. The maximal nature
of £ now conflicts with Lemma 17.6 and Theorem 22.1 proving this
lemma.

We choose C in C() so that & & R,; since K is also a maximal
element of 92", we assume without loss of generality that £, & R..

LEMMA 224,

(i) 8, ts non abelian.

(ii) No mon identity weakly closed subgroup of R, is contained
n 0(R).

(iii) O.(R) contains an element of Z(R), R being any S,-subgroup
of ® containing a S,-subgroup R* of N(R).

Proof. We first prove (ii). Suppose T # {1, ¥ is weakly closed
in &, and L& 0,(R). Then T < &, so the maximal nature of &
together with Lemma 17.6 imply that &, = R,.

Since N(R) = O*(N(R)), so also N(T) = O°(N(Z)). Since g~ r,
Lemma 8.13 implies YAR, = {1, contrary to construction, proving (ii).

If & were abelian, then 0(8) =<1) and Lemma 1.2.3 of [21]
imply that &, = 0,(f), in violation of (ii). This proves (i).

Suppose r € ;.  In this case, C¥, implies R* =R, and since R|=1),
it is clear that R, contains an element U of Z(R). Since K, =
N@O () N R, it follows that U N Z(R) = K, and so by (B), UNZR) &
0,(R). It now follows that 1 £ &,, and so U & 0,(R), again by (B).
Next, suppose that rex,. In this case, since R|+# (1>, R* contains
an element B of Z(RN), R* being a S,-subgroup of N(R)). Since B
centralizes 0,(PR*), by Lemma 19.1, we have B = R,. Since BES R,
BNZA)S K, and so by (B), BNZR) = 0(R). It follows that
B < 0,(R). This proves (iii).
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To prove Theorem 22.2 we will now show that &£, centralizes
Z(0R®)) = 8. Suppose by way of contradiction that this is not the
case. We can choose € € 7(r) such that € & &, but € £ 0,(R®). Since
&, is cyclic €, = € N 0,(R) is of order ». From (B), we then have
7 18E T = ().

If =5, we apply Lemma 16.2 and conclude that *3€* = (1),
contrary to the above statement. Hence =8, and by Lemma 16.3
we have ¥*36€* = @,; in particular, €, & 8. Now apply Lemma 16.3
again, this time with O,(&) in the role of &, and conclude that
7'0,(R)E* = €,.

Let T = 70(R)!,. By Lemma 8.11, we have T =vIR,, and so
€, & 2(Z(X)). Hence by (B), &, acts trivially on ¥/2,(Z (X)), and this
implies that T = 2,(Z(¥)), so that T is elementary.

The equality 7’R€* = €, and (B) imply that an element of € — €,
induces an automorphism of ¥ with matrix J,. Since |®,| divides 3°—1,
we have |[®,| = 13.

By definition of .2~ we have p/12 = | Aut &;]. Since p # r =3,
we have a contradiction, completing the proof that £, centralizes 3
in all cases.

Now Z(R,) centralizes 0.(8), so by maximality of &, we have
Z(R)SK, and (B) implies that Z(R)=Z(0(R)). Hence, R&EN(Z(R,)=
R,. But R, = 07°(R,) and since g #* r, N, does not possess an elementary
subgroup of order ¢°. Lemma 8.13 implies that v& % = (1), contrary
to construction, completing the proof of Theorem 22.2.

For p in m, U, let 97°(p) be the set of all subgroups T of &
of type (p, p) such that every element W of T centralizes an element
B of Z7(p). We allow B to depend on W.

Hypothesis 22.8.
(i) pem, gen(®).
(i) p+aq.

THEOREM 22.8. Under Hypothesis 22.3, if & t8 a p, g-subgroup
of O and if & contains an element of 7 (p), then a S,-subgroup of
& is normal in K.

Proof. Let 57 be the set of subgroups of & satisfying the
hypotheses but not the conclusion of this theorem and let .24 be the
subset of all & in .7~ which contain at least one element of Z/(p).

We first show that .9 is empty. Suppose false and & in .24 is
chosen to maximize |®],. Let &, be a S,-subgroup of R, and let
B = V(celgy(B); K,) where Be 7 (p) and B < R,.

Since p + q, Hypothesis 22.1 does not hold. Hence, Hypothesis
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19.1 holds. Apply Lemma 19.1 and conclude that B centralizes O,(R).

Suppose &, is a S,-subgroup of ®. Then &, centralizes O,(8R).
By Lemma 17.5 and Hypothesis 22.8 (i), if A e = #;(R],), and B, =
V(celg(A); R,), then B, = 0,,,(R). Since &, centralizes O(R), it follows
that B,S0,(R), and so B, K. By Lemma 17.2, N(Z(B,))=0"(N(Z(B,))).
Since p ~ q, N(Z(%B,)) does not possess an elementary subgroup of
order ¢°, so Lemma 8.13 implies that &, < &, contrary to the definition
of 24. Hence,, in showing that .9 is empty, we can suppose that
£, is not a S,-subgroup of &.

Since ¥ centralizes 0(8&), we have &, - 0,(8) & N(B). Since B is
weakly closed in £, and £, is not a S,-subgroup of ®, ®, is not a
S,-subgoup of N(B). Maximality of ||, implies that &, < &, - 0(R),
and so O,(&) is a S,-subgroup of O, ,(&).

Let P be a S,-subgroup of & containing &,, and let A € .2&_4;(B).
Since O,(8) is a S,-subgroup of O, .(R), it follows from (B) that
ANK, =ANO0,(R). By maximality of |R],, &, is a S,-subgroup of
N(O,(8)) and it follows readily that U & 0,(R). But in this case,
L, = V(cclg(N); 8,) < &, by Lemma 17.5. Since &, is not a S,-subgroup
of @, it is not a S,-subgroup of N(8,), and the maximality of &, is
violated in a S, ,subgroup of N(%B,). This contradiction shows that
% is empty.

Now let & be in .27 with | ® |, maximal. Let WS K,, We 22 (p).
If YRO(R) # (1), then W does not centralize C(W) N O,(R) for suitable
W in B¢, But in this case a S, ,subgroup of C(W) contains an
element of Z/(p) and also contains non normal S,-subgroups, and 2%
is non empty. Since this is not the case, T centralizes 0,(8), and
so B, = V(celx(W); ®,) centralizes O,(K), W being an arbitrary element
of 7 (p) contained in ®,. Since £, is not a S,-subgroup of @, it is
not a S,-subgroup of N(,), so maximality of ||, implies that &,
centralizes O,(R). Hence, 0,(8) is a S,-subgroup of O, ,(®). Since
R, is a S,-subgroup of N(0,(R)) in this case, Z(PB) S 0,(R]) for every
S,-subgroup P of @ which contains ,. It follows that &, contains
an element of Z2/(p). This contradiction completes the proof of this
theorem.

If pen,Ur, we define m(p) to be the set of primes ¢ such that
p ~ q, and we set 7,(p) = 7(p) N 7,.

THEOREM 22.4. If p,qem, and p ~ q, then m(p) = m(q).

Proof. We only need to show that if rex, and p~r, then r~gq.
Apply Theorem 21.1, let & be a S, ,-subgroup of & with Sylow
system P, Q, and let € be a S,,-subgroup of @ with Sylow system

B, R.
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If Hypothesis 22.2 is satisfied, Theorem 22.2 applies and yields
this theorem. Hence, we suppose without loss of generality that P
centralizes O, ($).

Let Ae A2 4;(P), B = V(celg(A); B). Apply Lemma 17.5 and
conclude that B < K.

If P also centralizes 0,(2), then we also have B L, and ¢~ r
follows from consideration of N(¥). We can suppose that B does not
centralize 0,(2).

. Suppose we are able to show that N(0,(®)) contains a S,-subgroup

of C(P). Apply Lemma 17.3 and conclude that N(Z(B)) =N, =
0,(R) - N, NN, where N = N(0,(2)). Let Q, be a S;-subgroup of C(P)
which is contained in M. Since P centralizes O(R), it follows that
L, is a S,-subgroup of 0,.(N,). Let N} be a S,-subgroup of 0,.(N,),
so that 0,(N,) = NQ,. Hence,

ml=0,/(§R1)'§nlnm=%f&'%lnm=§Rf*§nlnm,

since Q, S N, NN. Since N, contains a S,-subgroup of &, so does
NNN. But N contains a S,-subgroup of & as well, and so q¢ ~ 7.

Thus, in proving this theorem, it suffices to show that N(0.(R))
contains a S,-subgroup of C(%3).

We wish to show first that some element A of ' centralizes a
subgroup W of 97 (r) with B S 0.(8). If D(0.(R)) = D is non cyelic,
then every subgroup of ® of type (r,r) is in 92°(r) and since A
possesses an elementary subgroup of order p° an element A is available.
Suppose then that D is eyclic. If D = (1), then of course P centralizes
D. If D+ 1), then N(D) = 0°(N(D)) and once again P centralizes
D. It now follows that 2A* contains an element A whose fixed-point
set on 2,(0,(%))/2,(D) is non cyclic, and this implies that C(A) N 0,(Y)
contains an element of 977(r).

For such an element A, let © be a S, ,-subgroup of 0,.(C(A)) which
is A-invariant and contains O,(R). Then Lemma 17.5 implies that
contains an element of 97°(r). Apply Theorem 22.8 and conclude that
9, <19, O being a S,-subgroup of . If H* is a maximal element
of U(Y; g, r) containing $, then Theorem 22.3 implies that 9 < H*,
9F being a S,-subgroup of $*. By maximality of H*, O is a maximal
element of U(A; r). Since  contains a maximal element of UX; q),
namely, O,(8), so does $*. It follows that N(0,(2)) contains a maximal
element O* of U(P*; q¢) where P* is a suitable S,-subgroup of N(0,(2)).
But B S N(O,(?), and so P = P** for some N in N(0(R)), and so
Q*Y =0, is a maximal element of WU(PB; q) normalizing 0,(8). By
Lemma 17.4, L, is a maximal element of U(Y; q).

Now P centralizes 0,(®), and O,(f) is a maximal element of U(P; q).
It follows that N(O(R))/C(0,(R)) is a p’-group. Since Q, and O,(K)
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are conjugate by Theorem 17.1, it follows that N(Q,)/C(Q,) is a »'-
group, and so P centralizes L,. By C},, it follows that Q, is a S;-
subgroup of C(P), completing the proof of this theorem.

THEOREM 22.5. If pem,, then @ satisfies C. ).

Proof. By Theorem 22.4, if q, r € m,(p), then ¢ ~ r. By Theorem
20.1, ® satisfies E,, for ¢, r € m(p). By Theorem 21.2, ® satisfies C,,).

Hypothesis 22.4. .

(i) pem, gemUnm,

() If P is a S,-subgroup of ®, then P contains a normal
subgroup € of type (p, ) which centralizes at least one maximal
element of V(B; q).

LEMMA 22.5. Under Hypothesis 22.4, € centralizes every element
of U(E; q).

Proof. Suppose false and O is an element of WU(E; g) minimal
with respect to YQE # {1>. Then Q = YQ€ and & = Cx(Q) # .
Let © = C(€,). Then 9 contains an element A of & _+;(PB) with
G <= A. By Lemma 17.5, A = 0, (D), and so O = YQF is contained
in 0,.(9). If Q* is an W-invariant S,-subgroup of 0,.(9), it follows
readily that vQ*G = (1>. If L is a maximal element of M(Y;q)
containing Q*, then & does not centralize L. Let 9, be a maximal
element of U(PB; q) centralizing €. Since Q, is also a maximal element
of U(¥; q), we have Q, = & for suitable C in C(¥) S C(E). Since &
does not centralize fl, @? = € does not centralize L, This contradiction
completes the proof of this lemma.

The next theorem is fairly delicate and brings =, into play ex-
plicitly for the first time.

Hypothesis 22.5.
(i) pem, qem,
(i) p~aq.

THEOREM 22.6. Under Hypothesis 22.5, if P 18 a S,-subgroup
of @ and Q, is a maximal element of WU(P;q), then O, + ). If
L, 18 a Sisubgroup of N(Q,) permutable with P and Q; 18 a S,-
subgroup of & containing L, then L, contains every element of
FEN (). Furthermore, 0,(BL,) = 1.

Proof. By Theorem 19.1, P does not centralize £, so in particular
2, # {O.
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Suppose that L, contains an element B of %/(Q,). By Lemma
19.1, B centralizes 0,(PLY,) and since B is a normal abelian subgroup
of Q, (B) implies that B < 0,(PL,). Let A be an element of
GEN5(L,) containing B, Let D = N(B) 2 (O, 0,(PL,)). Since
q €T, 0,(9) = 1), and (B) implies that A S 0,(9). Hence,
[A N Qy, 0,(BY)] S 0(D)NO,(PLY,) =<1), and by (B), AN, &
0, (PLY,;), and so ANQ, S O0,(PLY,), that is, AN, =ANLY,. If
ANLY, A, then AN Y, < Ny(Q,), contrary to Ny(Q)S AN, =
ANLY,. Hence, A SN, Since gem, Corollary 17.3 implies that
W(A; p) is trivial, so 0,(PL,) = (1). By Lemma 7.9, it follows that
L, contains every element of $%%_#"(XQ;), and not merely . This
proves the theorem in this case.

We can now assume that Q, does not contain any element of
Z(2;), and try to derive a contradiction.

Since L, is a S,-subgroup of the normalizer of every non identity
normal subgroup of PL, if D(Q,) # (1), then Ny (D(L,)) contains an
-element of Z/(X;), and since Np (D(Q,)) = L, in this case, O, contains
an element of Z/(Q;), contrary to assumption. Hence, D(Q,) = <1).

Let QF = 0, (B N ;. Since [QF, Q] = [0, (PL), 1] 4 BYO,,
and since every element of Z/(Q;) normalizes [QF, ,], we conclude
that O, € Z(Q}). Since D) N Y, is normalized by every element
of ZZ(Q,) and also by <0,(BLQy), PL, N N(QF)) = P, we have
DR NQ, =). This implies that QF =0, x § for a suitable
subgroup § of Q.

Since Z(L,) € L, we have Z(Q,;) S QF, by (B). Since Q, contains
no element of Z/(X,), Z(XQ,) is cyclic. For the same reason, Z(Q,) N1, =
<1>, since otherwise, 2,(Z(L;)) & L, and every element of Z/(Q,)
normalizes £,. In particular, Q, is a proper subgroup of QF. This
implies that 0,(PQ,) # {1)>. More exactly, L, = Cp*(0,(BLY)).

Let Be 7(9;) and let O, = Cg(B), so that [D,: Q.| =gq.

Suppose 0,(BL,) is non cyelic. In this case, a basic property of
p-groups implies that 0,(PL,) contains a subgroup € of type (v, »)
which is normal in PB. Since L, is a maximal element of W(P; q),
Hypothesis 22.4 is satisfied. Since £, is of index ¢ in ©,, Theorem
22.1 implies that Q, # {1>. Hence, (B, > is a proper subgroup of
® centralizing Q,. Choose B, € ccly(B) and €, € cclkx(€) so that & =
<%, € is minimal. By D,, in &, it follows that & is a p, ¢-group.
By Lemma 19.1, B¢ centralizes 0,(®) and by Lemma 22.5, G centralizes
0,(R). It follows that & = B, x €. Let % = N(B,). Since ger,, F(N)
is a g-group. By Lemma 22.5, &, centralizes F(N) so 3.3 is violated.
'This contradiction shows that 0,(PL,) is cyeclic.

Since L, = Cp*(0,(PL)), it follows that F is cyclic of an order
dividing » — 1.
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Let B = 2,(QF) = Q, X (), and let $, = Ngp (B). We see that
PO, = DI0,(PL,), H: N 0,(PLy) = <1). Let M = N(B), !, = C(B). It
is clear that IM, N PO, = Q}, since WM, N 0,(PL,) = (1), and since OF
is a S,-subgroup of 0, ,(PL,).

Let & = 0,(Pmod M,). We see that 8 N PO, = QF, again since
L} is a S,-subgroup of 0, (PL,). We observe that since L} contains
Z(2y), WM contains every element of 2/(Q;), and so contains B. By
Lemma 7.1, & contains B. Hence, 2 D> M,.

We next show that &/, = £ is elementary. If D(R) # <1), then
by a baASic property of g¢-groups, C%(D(f‘,)) is of order at least ¢’
Hence, L, = Cs(D(®)) N Q, # (1)>. But in this case, :ﬁl is normalized
by <0,($Qy), D> = P, and is centralized by D (L mod ), and so
L, is not a S;-subgroup of N(Q,). This is not possible, so D() = (1.
We have in fact shown that if 8 < I, and M, C &, = &, then Cx(L)
is of order q.

Since & is abelian, € normalizes [B, B] = 2(Z(Q,). It follows
that C(®) = 2.(Z(,)).

Let & =(B®, MD, and let B, = B¥, McM. Since B and B,
are conjugate in M, [B,B,] is of order ¢ and is centralized by 2. It
follows that [B, B,] = 2,(Z(Q,)). Since 2 is abelian, and since BMW
covers /M, = 8, it follows that [B, 8] = 2(Z(Qy). Let |Q,] =¢~,
and |, :M,| = q~. Since each element of 2! determines a non trivial
homomorphism of B/2,(Z(X,)) into 2,(Z(L,)), it follows that m < n.
Since Cx(8) = 2(Z(L)), it also follows that m = n. Hence, m = n.
This implies that &, = £, since any g-element of Aut B which centralizes
€, is in ¥, by 3.10. Here we are invoking the well known fact that
L, is normal in a S,-subgroup O of Aut DB and is in fact in %7 1" (Q).
(This appeal to the “enormous” group Aut B is somewhat curious.)

Returning to £, let B* be a S,-subgroup of &, and let W = 2,(B*).
Since UY(B*) < Z(B*), and Z(B*) is cyclic, it is easy to see that
QZ(BW)) = 2(Z(Q,)), and that T/2(Z(W)) is abelian. Hence, W is
an extra special group of order ¢**' and exponent q.

We next show that 9, is a p’-group. Since M, S C(L,), it suffices
to show that no non identity p-element of N(XQ,) centralizes 8. This
is clear by D,, in N(Q,), together with the fact that no non identity
p-element of PO, centralizes B.

Since M, is a p'-group, so is L. Since L g M, we assume with-
out loss of generality that Ng(®) normalizes B*.

Let € e & 4:(P), and set €, =€n Nyg(B). Since P =
0,(PQy,) - Ny(B) and 0,(PY,) is cyclic, €, is non cyclic. Since €, is
faithfully represented on B, it is faithfully represented on T = 2,(8*).
Since p > g, €, centralizes 2,(Z(2V)).
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We can now choose C in €} so that €, does not centralize o, =
Cx(C). Let B, =[T,E]. We will show that T, is non abelian.
To do this, we first show that 8, is extra special. Let We 2, —
2(Z®)). Since C centralizes W, C normalizes Cwi(W). Since p > g,
C acts trivially on W/Cyx(W), and so C centralizes some element of
B~ Cx(W). 1t follows that Z(BW,) = Z(W), so that W, is extra
special. We can now find B, & B, so that B, = BB, and B, N B, &
Z(B); in fact, we take W, = Cy (T,). By the argument just given,
B, is extra special. Since T, is, too, it follows that LW, is extra special,
hence is non abelian.

For such an element C, let T = C(C) 2 <€, W,>. By Lemma 17.5,
€ S0, ,(¥). Since W, =[W,, €], by Lemma 8.11, it follows that
R, € 0,(%). It follows now that U(C; q) contains a non abelian group.
But now Theorem 17.1 implies that the maximal elements of U(C; q)
are non abelian. Since ), is a maximal element of U€; q) and Q,
is elementary, we have a contradiction, completing the proof of this
theorem.

THEOREM 22.7. If p, gem, and p ~ q, then w(p) = x(q).

Proof. Suppose p ~r. By Theorem 22.4, we can suppose that
rem, Proceeding by way of contradiction, we can assume that a
S,-subgroup Q of & centralizes every element of U(Q; ), by Theorem
22.1. By Theorem 19.1, a S,-subgroup P of & does hot centralize
every element of WU(PB;r). Applying Theorem 22.2, we can suppose
that P centralizes every element of U(P; g).

Let £, be a maximal element of U(P; ¢) and let R, be a maximal
element of U(P; ). Let R, be a S,-subgroup of N(R,) permutable with
B and let R, be a S,-subgroup of @ containing R,. Let A e .S _1+;(P).
By Theorem 22.6, 0,(BR,) = 1), so A does not centralize R,. We
can then find A in A* such that R} = [Cy (4), A] = 1)

Suppose L, is non cyelic. Then by C},, Q, contains an element
of (). Let 9 9=CA 2R, Q> =2, and let & be an UA-
invariant S, ,-subgroup of 0,.(¥) with Sylow system &,, Q,. By Theorem
22.3, ©, < ®. Since N(Q,) = 0*(N(L,)), it follows that YAK, = 1>
by Lemma 8.11 and the fact that N(Q,) does not contain an elementary
subgroup of order »°. This violates the fact that R} = YRIA £ {1,
by D,, in ©. Hence, Q, is cyclic.

Since YO,P = 1D, B, = 0,(PLX,) # (1), where L, is a S,-subgroup
of ® permutable with ¢ and containing {Q,, which exists by C},.
Since N($) = OY(N(P,)), it follows that Q, & Z(L,), L, being a S,-
subgroup of 0, (N(B)).

Let B = V(cclg(A); PB), and N, = N(Z(B)). By Lemma 17.3, N, =
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0,MR)- N, N N®R,). Since Q, is a S,subgroup of 0,(N), it follows
readily that 2, N N(R,) contains an element of 9#°(¢). In particular,
N(R,) contains an element of 9%#7(q). If & is a S,,-subgroup of N(R)
with Sylow system &,, £, then £, < &, by Theorem 22.3. By Theorem
22.6, R, containg an element € of .4%Z_+;(R,). By Corollary 17.3,
NE) is trivial. Since {,€WU(€), we have a contradiction, completing
the proof of this theorem.

23. Preliminary Results about the Maximal Subgroups of &

Hyopothesis 23.1.
(i) ©w 18 a non empty subset of ..
(ii) For at least one p in w, w = n(p).

We remark that by Theorem 22.7, Hypothesis 23.1 (ii) is equivalent

(i) n(p) = w for all p in w.

Under Hypothesis 23.1, Theorem 22.5 implies that & contains a
Sg-subgroup 9. Since D also satisfies K, for all subsets v, of w,
is a proper subgroup of @ by P. Hall’s characterization of solvable
groups [15]. This section is devoted to a study of $ and its normalizer
M = N(®). All results of this section assume that Hypothesis 23.1
holds. Let w={p, -+, p.},n =1, and let B, ---, B, be a Sylow
system for 9.

LEmmA 23.1. M 18 a maximal subgroup of & and is the unique
maximal subgroup of @ containing 9.

Proof. Let £ be any proper subgroup of & containing . We
must show that & & IR. Since & is solvable we assume without loss
of generality that £ is a w, g-group for some q¢ w. Let P, ---, P,,
£ be a Sylow system for &. It suffices to show that P, < P.2.

Since g¢w, P.%*¢q. Theorem 22.1 implies that P, centralizes
0,(PBL). By Lemma 17.5, B < P, where B = V(cely(A); B) and
WNe A= ;(P). By Lemma 17.2, N, = N(Z(B)) = 0°1(N)). Since N,
does not contain an elementary subgroup of order ¢° Lemma 8.13
implies that P, centralizes every g-factor of P,Q and so P, K PO,
completing the proof of this lemma.

LEMMA 23.2. If p; € n(F(D)), and U, € & AH:(P.), then C(A)SMM.

Proof. We can assume that i =1. By Cj,; © contains a S, -
subgroup of C(A,) for each 7 =2, «--,n. Thus, it suffices to show
that if g¢ w, and Q is a S,-subgroup of C(%,) permutable with P,
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then Q € IN.

By the preceding argument, P, < B,Q. Since P, normalizes C(A,)=
A x D, D being a pi-group, it follows that PO = P, x Q.

Since F(D) NP, # <1, it follows that M = N(F(D) N B,), since
F(®) NP, char & <M and M is the unique maximal subgroup of &
containing . The lemma follows since N(F(O)NP) 2 CFO)NP) =2 Q.

LEMMA 233. Let 1<1<n, and let UA,e = H4:(B), B,=
Vieelg(2s); B). If CA) <=M, then N(B,) S M.

Proof. We can assume that 1 =1, If F() is a p-group, then
Lemma 17.5b implies that B, < $ and so B, < M, since B, is weakly
closed in F(9) N P,.. In this case, N(B,) = M and we are done.

We can suppose that F(D) is not a p,-group, and so T = 0,.(9) #*
{>. Let %, --+,%, be a P,-invariant Sylow system for T, where Z;
is a S,,-subgroup of T and we allow Z;=<1>. By C;,, T; is a
maximal element of U(P,; p;).

Let Ne N(B,). Then by Theorem 17.1, ¥ = ¥¢ where C,, -+, C,
are in C(Y;) S M. Since T char O 4 M, each TY¢ is contained in T
and so T¥ =T, Since T = 1), M = N(T) 2 N(B)), as required.

LEMMA 23.4. Let 1=t=n, A;€ & A4:(P), B; = Vieclyg(¥); B).
If LC(W), N(B)) & M, then M is the unique maximal subgroup of
® containing P,.

Proof. We can assume that 1 =1. Let £ be a g¢-subgroup of
© permutable with P,. It suffices to show that Q & M.

Since O = 0,(B,L) - N (B)), it suffices to show that Q, = 0,(BLO) S
M. If Q is centralized by PB,, then by hypothesis Q S M. Otherwise
we apply Theorem 22.1 and conclude that g€ w. By Theorem 17.1,
L7 €  for suitable Ce C(A,) & M, and the lemma follows.

LEMMa 23.5. For each 1 =1, --+,n, if WU, e A& 45(PB.), then
CU) S M, and M is the unique mazimal subgroup of ® containing P;.

Proof. First, suppose p; € #(F(9)). Then C,) & M, by Lemma
23.2. Then by Lemma 23.3, N(ZB;) S M, B; = V(ccly(Us); Bs), and then
by Lemma 23.4, this lemma follows. We can suppose that p; ¢ 7(F(9)).

We assume that ¢ =1. Let C(U) =%, X D, where D is a p}-group.
It suffices to show that for each ¢q in #(D), M contains a S,-subgroup
Q of . If gew, this is the case by C;,, 80 we can suppose that
qew.

Since p, ¢ n(F(9)), U, does not centralize F($). If F(D) were cyclic,
and p = max {p, -, P.}, then a S,-subgroup of  would be contained
in F(9) and so be cyclic. Since this is not the case, F(9) is non cyclic,
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so we can assume that F(9) N P, is non cyeclic. We can then find 4
in A so that C(4) N F(D) N P, contains an element of % (p,), say .

Let 8* =D, B, A S C(A), and let £ be a S, ,,subgroup of
£* with Sylow system &,, %,, £, where %, < €, and Q & &,. Since
A & 0,,,(8*) by Lemma 17.5, it follows that ,0,,(8*)/0,(2*) is a
central factor of *. Hence, ¥, is a S, -subgroup of £* and so &* =
QII'OPi(g*)'

We apply Theorem 22.83 and conclude that €, <8 If $isa
maximal element of U(Y,; p,, ¢) containing &, -2, it follows that 8 ,< g,
where 8,,’ is a maximal element of WU(¥; »). By constructlon, ¢
contains £). By Theorem 17.1, there is an element C in C(,) such
that 82, = 0,(P,B,). Since O normalizes 7, it follow that N(0,,(B,%B,)
contains a S,-subgroup of C(). But p,en(F(9)), so by what is
already proved, we have N(0,,(B,%,)) S M, and so M contains C(U,).
We apply Lemmas 23.3 and 28.4 and complete the proof of this lemma.

24, Further Linking Theorems
LEMMA 24.1. If pern,qen,Un, and q ~ p, then n(q) S n(p).

Proof. If ¢ = p, there is nothing to prove, so suppose ¢ # p.
Corollary 19.1 implies that gen,. Let r~q,r #q,r #+ p. We must
show that r ~ p.

If ren,and O is a S,-subgroup of &, then L does not centralize
every element of U(Q; p) and Q does not centralize every element of
U(Q; r). By Theorem 22.2, we have p ~ 7.

If rem, then since also gex, we have r ~ p, by Theorem 22.7.
This completes the proof of this lemma.

If pe 7, and p, € 2(p), », # p, let n(p,) = {p, Dy, + - -, ».}. By Theorem
22.7 and Lemma 24.1, #n(p) = 7(p;),1=1%,5=<n. It follows from
pem, that p;em, 1 <7 <n. By Theorem 22.5, ® satisfies C,,,. Let
D be a S,y -subgroup of @. Clearly,  C @ since p ¢ my(p)).

It is easy to see that F(9) is non cyclic. Choose 7 so that the
S,,subgroup of F(9) is non cyclic. Let %P, :--, P, be a Sylow system
for O, P; being a S, -subgroup of . Thus, P; N F(P) is non cyeclic,
so that P, N F(D) contains a subgroup B of type (p, p) which is normal
in PB;. Let A be an element of A= #;(PB;) which contains B. Let
B, be a maximal element of UX; p). By Lemma 24.1 and Theorem
22.6, [y = ). Let C(A) =UA x D, D being a p-group.

THEOREM 24.1. (%, 0,,(D), D) is a pi-group.

Proof. Let & be the set of U-invariant subgroups B, of B, such
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that <., 0,/(0), DD G. Since <0,(9), D)SC(P), it follows that
e A

Suppose e &, and T = <’1~3o. 0,,(9), D). Since A normalizes
T, ATD=AT =8cCS. By Lemma 17.6, ASO0,,,(2).

Let %A be the image of %A under the projection of 0;;,(2) onto
0, ,(8)/0, (2) Since % = A, we see that U is a self centralizing sub-
group of O,, ,,‘(8)/0 (8), and it follows readily that 0,;.,(8)]0,,(2) is
centralized by SB,,, O,'(«b) and ®. By Lemma 1.2.8 of [21], we have
<%, 0 »(D), DS 0,,(2) and hence T = 0,(®) is a pi-group.

Let &, -+, %, be an W-invariant Sylow system of T, T, being a
S,,-subgroup of ZT. If g;e{p, -, p.}, it follows from C} , , that %;
is a maximal element of WU(X; q;). Since D&, this implies that
0,.(9) is a S-subgroup of . If q; # »,q;€{p,, -, P}, then Theorem
22.1 implies that 2 centralizes T;, so that ;S D, Finally, if ¢; = p,
then there is an element D of D such that T? &P, by Theorem 17.1.

Let & be a fixed S,-subgroup of <D, 0,,(9)>. By the preceding
paragraph, & is a S,-subgroup of ¥, and B, N T is a S,-subgroup of
2. Since FS B, N T, it follows that <P, |Pe &> = B* is permu-
table with £ so that B*K is a proper pl-subgroup of @. This means
that & contains a unique maximal element. Since Cyx/(B) is A-in-
variant for each Be®!, since P, ={Cy(B)|BeB*, and since
{Cx(B), 0,(9), D> C(B)c G, the theorem follows.

THEOREM 24.2. Let R = <Py, 0,(9), D), and M = N(R). Then
M contains D, M is a maximal subgroup of & and WM is the only
maximal subgroup of & containing P,.

Proof. Since PB, # <{1), M is a proper subgroup of . We first
show that I contains P;. Let QO be an W-invariant S,-subgroup of
R, so that £ is a maximal element of U(; q), either by virtue of
q € n(p;), or by virtue of ¢ ¢ m(p;) so that A centralizes . For P in
B;, QF = QP for some D in ® by Theorem 17.1 together with C(A) =
A x D. Since DS R, OF is a S,-subgroup of N. Hence, R* SR, and
so R” = R. Thus, P.=M.

To show that $SM, we use the fact that = 0,(9) Ny(®),
where B = V(cclg(¥); B,). Since 0,(H) SR, it suffices to show that
Ng(B)S M. We will in fact show that NEB)SM Let Q be a B-
invariant S,-subgroup of . If Ne N(B), then A" " =B, so that A"
normalizes Q. Hence, A normalizes QY = OP, De D, and we see that
R¥ = R. Thus, IM contains  and N(B).

Let M, be a maximal subgroup of ® containing M. 1t is easy
to see that R = 0,,(M,) by Lemma 7.3, so that L, =M, and M is a
maximal subgroup of &.
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Let & be any proper subgroup of ® containing ;. To show that
S M, it suffices to treat the case that & is a ¢, p,-group. Let R,
be a S;-subgroup of £ permutable with P,. Since N(B)<S W, it suffices
to show that 0,(®) S M. This is clear by C;, if ge{p, ---,p,}. If
g = p, this is also clear, by Theorem 17.1, since C(Y) &M and P, < M.
If g¢{p, »), - -, p.}, then P; centralizes O,(B.K,) by Theorem 22.1, and
we are done, since C(UA)= M.

If gem,Um, and O is a S,subgroup of @&, we define
SHR2) = {0, | QW ELQ, L, contains some element of & 4;(Q)},

Q) = {9 | W EQ, O, contains a subgroup L, of type (g, q)
such that C(Q) € 9% (Q) for each @ in Q,},71=2,3,4.

LEMMA 24.2. If qem, U7, and Q is a S;-subgroup of ®, then
every subgroup L, of O which contains a subgroup of type (q, q, 9)
18 in 5% (Q).

Proof. Let BeZ/(Q), Of = Cy(B), so that VY is non eyclic.
Let O, be a subgroup of QF of type (¢, ). If Qe Q,, then Cy(Q)2B.
Since B is contained in an element of Y& 4;(X), it follows that
Cy(Q) is in (D).

THEOREM 24.3. If gqem, X is a S,isubgroup of @, and Q is
contained in a unique maximal subgroup of ®, then each element of
S () 18 contained in a unique maximal subgroup of ®.

Proof. Let MM be the unique maximal subgroup of & containing
L. We remark that if this theorem is proved for the pair (2, ),
then it will also be proved for all pairs (Q¥, M) where Me M. This
prompts the following definition: &4*(Q) is the set of all subgroups
2, of O such that L, contains €* for some € in FZ_#;(Q) and
some Me M. Clearly .94(Q)<S *(Q).

Suppose some element of .4*(Q) is contained in a maximal sub-
group of & different from M. Among all such elements O, of 4*(Q),
let || be maximal. By hypothesis, Q,c Q. Let I, be a maximal
subgroup of ® different from I which contains O, and let QF be a
S;-subgroup of M, which contains Q,. If O, Qf, then O, C Nes(Qy).
Since Q,C Ng(Q,), maximality of |Q,| implies that Ng(Q) S, so
that N;(Q,) S Q¥ for some M in M. Since M, # M, so also MY = M.
But Nna(ﬁo)"_’e S *(Q), and maximality of |2, | is violated. Hence,
L, is a S,subgroup of M,.

Let € e & _4;(X) be chosen so that €S Q, for some Mec M.
Since every element of M(€) is contained in M, every element of



24. FURTHER LINKING THEOREMS 889

UE¥) i3 contained in M¥ =M. Hence O (M)SM. If V=
V(cclg(@); L), then L, C Ny(B), so Ny (B)S M, by maximality of
|8 ]. Since M, = Op.(M,)- Ny (B) by Lemma 17.6, we find that M, = I,
contrary to assumption. The theorem is proved.

THEOREM 24.4. Let gqem,Um,, and let Q be a S,-subgroup of ®.
If each element of 74 (Q) i8 contained in a unique maximal subgroup
M of ®, then for each i = 2, 8,4, and each element Q, of (L), M
18 the unique maximal subgroup of & containing L.

Proof. For i =2, 8,4, let & *(Q) be the set of subgroups L,
of L such that Q, contains a subgroup L, of type (g, ¢) such that Cq(Q)
contains an element of .97 *(Q¥) for some M e M and all Q€ Q,. Here
7 *(QY) denotes the set of Q¥, Qe ¥ *(Q). Suppose 1 =2,3, or 4
is minimal with the property that some element of .97 *(X) is con-
tained in at least two maximal subgroups of &. This implies that
S4(QY) does not contain any elements which are contained in two
maximal subgroups of ®, M being an arbitrary element of M. Choose
£2, in *(Q) with |LQ,| maximal subject to the condition that L, is
contained in a maximal subgroup M, of & with W, = M. We see
that L, is a S-subgroup of M,. Let L, be a subgroup of O, of type
(g, 9) with the property that Cy(Q) contains an element of .974* (%)
for suitable M in M, and each @ in L,. (We allow M to depend on
@.) Since 0,.(IM,) is generated by its subgroups 0,.(M,) N C(Q), Q € L},
it follows that 0,(MM,) =M.

Let € be an element of & #;(X). Then €L, or we are
done. Let £ =N 0p (M,). Since {,NE=,nE by (B), it
follows that Nn(ﬁ.):)ilo. Hence, N(Q,) S M, by maximality of | O, |.
Since M, = o,,(m)-Nm(ﬁ.,), we have I, S M, completing the proof
of this theorem, since &(Q)S . *(Q),7=2,3,4.

THEOREM 24.5. If germ, and L 18 a S,-subgroup of ®, then Q
is contained in a unique maximal subgroup of ©.

Proof. If m(g)Em, this theorem follows from Lemma 23.5.
Suppose pen(g) N7, Let n(g) = {p, », -+, p,}, where ¢ =p, and
let © be a S, ,,-subgroup of @ containing Q. If VLN F(P) is non
cyclic, we are done by Theorem 24.2, so we suppose that QN F(9)
is cyeclic.

Let Dt be the unique maximal subgroup of @ containing . Suppose
we are able to show that C(€) &M for some € in & _#;(X). Since
F(®)NLQ is eyelic, F(M) N Q is also cyclic. Hence, 0,(M) +1. If
B = V(ccly(€); Q), then N(B) normalizes O, (M), by Theorem 17.1,
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together with C(€)SM. Since & = 0,(R): Ng(B) for every proper
subgroup 8 of & which contains L, it suffices to show that every
element of U(Q) is contained in M. This follows readily by Cisp
Theorem 22.1 and C(€)< M.

Thus, it suffices to show that C(€) =M. Choose ¢ such that §;,,
a S,-subgroup of F(9), is non cyclic, and let %P; be a S, -subgroup of
9 permutable with Q. It suffices to show that Cg,(C)e 24(PB;) for
some Ce@*f by Theorems 24.8 and 24.4 together with the fact that
M is the unique maximal subgroup of ® containing %B,.

Let & = 0,,(0%;), so that §Ff is a maximal element of U(T; ;).
By Lemma 17.3, Q& N(§!). Since %B; is contained in M and no
other maximal subgroup, Q<M. Thus, if 2,(Z.(F;)) is generated by
two elements, then © centralizes Z,(¥;) and we are done. If Z(§)
is non cyclic, then every subgroup of Z(%.:) of type (p;, ;) is contained
in 7 (%B;). Since € contains a subgroup of type (q, g, ¢), C(C) N Z(F:)
is non eyclic for some C in ¢! and we are done in this case. There
remains the possibility that Z(%;) is cyclic, while 2,(Z,(3;)) is not
generated by two elements. Since every subgroup of 2,(Z(g:)) of
type (p;, p;) which contains 2,(Z(%F;)) is contained in .4 ($P;), by Lemma
24.2, and since C(C) contains such a subgroup for some C in €}, we
are done.

The preceding theorems give precise information regarding the
S,-subgroups of the maximal subgroups of & for ¢ in 7.

THEOREM 24.6. Let gem, and let WM be a mawimal subgroup of
®. If Q 1is a Ssubgroup of M and QO is not a S,-subgroup of S,
then O contains a cyclic subgroup of index at most q.

Proof. Let Q* be a S,-subgroup of ® containing Q, let Be Z(L*)
and let Q, = C(B) so that |V:Q,| =1 or ¢g. If Q, is non eyelic,
then Q,e 7 (Q*), and so O, is contained in a unique maximal sub-
group of @, which must be W, since Q, S WM. But Q* &M, a con-
tradiction, so L, is cyclie, as required.

Theorem 24.6 is of interest in its own right, and plays an important
role in the study of =, to which all the preceding results are now
turned.

Hypothesis 24.1.
1. 3erm,.
2. B 18 a S;-subgroup of ®.
3. 8 is a proper subgroup of & such that
(i) P
(ii) If D = 04(R), there i3 a subgroup € of D chosen in
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accordance with Lemma 8.2 such that Z(€) is generated by two ele-
ments.

THEOREM 24.7. Under Hypothesis 24,1, P 1is contained in a
unique maximal subgroup M of G, and M centralizes Z(P).

Proof. Let £ be any proper subgroup of & containing P. We
must show that £ centralizes Z(P).

By Lemma 8.2, ker(f — Aut€) is a 3-group, so is contained in
$. It follows that Cg(€) = Z(€) and in particular Cs(€) = Z(C).

Suppose € S 0,(8). Then Z(04(8)) < Cx(€)< Z(€), so Z(04(2)) is
generated by two elements. Since |®| is odd, a S;-subgroup of £
centralizes Z(04(2)), so centralizes Z(P). Since B also centralizes Z(P),
we have £< C(Z(B)).

Suppose € L 0,(8). Since Z(€) is a normal abelian subgroup of P
we have Z(€)S 04%). Since Y*PE*S Z(€), we conclude that €<
0, 5(2%). By the preceding paragraph, N(P N 0, (8)) centralizes
Z(B). Thus, it suffices to show that P0,.(8) = L, centralizes Z(P).
Since 8, = Ng (04(8)€)-[0,,(%), €], and since P normalizes O(B)€, it
suffices to show that [0,.(8), €] centralizes Z(P). Let 3 = Z(0«(2)),
so that 3 contains Z(). Since 8 is a normal abelian subgroup of PB,
(B) implies that 3 S 04(f). Hence, ¥’38* =1, which implies that
[0s,:(2), €] induces only 8-automorphisms on 8, and suffices to complete
the proof.

Hypothesis 24.2,

1. 3enm,.

2. B is a S,-subgroup of ®.

3. If R is any proper subgroup of & containing B, and if =
O«(R), then every subgroup € of © chosen in accordance with Lemma
8.2 satisfies m(Z(C)) = 8.

ReMARK. If 3em, then Hypothesis 24.1 and Hypothesis 24.2
exhaust all possibilities.

LEMMA 24.8. Under Hypothesis 24.2, B contains an element B
of 7z(B) such that the mormal closure of B in C(2(Z(P))) is abelian,

Proof. If Z(P) is non cyclic, every element of Z7(P) satisfies
this lemma. Otherwise, set £ = C(2(Z(P))), and let A be a non
eyelic normal abelian subgroup of . Since A < P, A contains an
element B of %/(PB) which meets the demands of this lemma.

THEOREM 24.8. Let pex, and let P be a S,-subgroup of &, If
» = 8, assume that Z7(P) contains an element B such that the normal
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closure of B in C(2(Z(P))) is abelian. If p =5, let B be any ele-
ment of Z(P). If & is any proper subgroup of & such that
0,(R) =1 and if &, is a S,-subgroup of &, then & = 8- Ny(B), where
B = V(cclgy(B); 8,), and L is the largest normal subgroup of & which
centralizes Z(8,).

Proof. Observe that £ contains 0,(R).

Since 0,(R mod &) = 2-(8, N 0, (& mod L)), maximality of & guaran-
tees that € =0,(8mod ). If B L, then Sylow’s theorem yields
this theorem since UV is weakly closed in € N &,.

Suppose by way of contradiction that 8Z 8, Let £ = 0,. (R mod ).
By Lemma 1.2.3 of [21], 788, L &.

Let B, =R,NL, and let &, =8 n Ng(B,). Let B, be the normal
closure of ¥ in Ng(®p,). Suppose &8, S C(Z(R,)). Since &8, < Ng(B),
and since £ = £:Ng(®P,) by Sylow’s theorem, we see that LEB, < 8.
Maximality of € implies that &%, < 2. In particular, Y& 8< 2. Since
e =288, by Sylow’s theorem we have B< 0, (& mod &), which is not
the case. Hence, 78,8, Z C(Z(R,)). Since Z(B,) 2 Z(K,), we also have
'YSEIQSI%C(Z(EB,)). Since {8, §1>§N(Z(SBI)), the identity [X, YZ] =
[X, Z][X, Y]}* implies that B, contains a conjugate B, = B¢ of B such
that v28, & C(Z(B)). Since &, < Ny(B,), application of Theorem C of
[21] to 23151/551 N C(Z(P,) yields a special g-group Q = /L, N C(Z(P))
such that B, acts irreducibly and non trivially on Q/D(Q). Since Q
is a p'-group, and O does not centralize Z(P,), O does not centralize
W = 2(Z(P,)). Furthermore, W = W, x BW,, where W, = Cx (L) and
W, = vYBQ, and BW; is invariant under B,Q, 7 =1, 2.

Since 2B, is a p-group and W, # 1, we have BW; # 1, where W, =
C,(B,) and B, = ker (B, — Aut Q) # 1. If p = 5, Lemma 18.1 gives
an immediate contradiction. If p = 8, and v*%W,B: = 1, we also have
a contradiction with (B), since Y®;Q # 1. If Y BB+ 1, Lemma
16.3 implies that Z(P) is eyclic, and that B, = 2(Z(P¢). However,
the normal closure of B, in C(2,(Z(P°))) is abelian, and so VBB =1,
the desired contradiction, completing the proof of this theorem.

REMARK. Except for the case » =38, and the side conditions
0,(8) =1 and & &, Theorem 24.8 is a repetition of Lemma 18.1.

Hypothesis 24.3.

1. pem,qen(p),q+p.

2. Q is a S,subgroup of ®, P, is a maxrimal element of U(X; D),
and B, 18 a S,-subgroup of N(P,) permutable with Q.

8. P i3 a S,-subgroup of G containing PB,, and B € Z(P), where
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Jor p =3, the normal closure of B in C(2(Z(P))) is abelian.
4, B = V(cclg(.‘B); B).

THEOREM 24.9. Under Hypothesis 24.3, either Ny(®B) contains an
element of () or Co(Z () contains an element of 4 (Q). Further-
more, P, = P and & satisfies C,,.

Proof. Let £ be the largest normal subgroup of & = N(P,) which
centralizes Z(Py)). Then ® = L. Ng(B), by Theorem 24.8. Since £ < &,
LN If £NQ is non cyclie, then &€ N Qe ().

Suppose £ N L is a non identity eyelic group. By Lemma 17.6,
LS &. Since a Sylow g-subgroup of  is eyelic, it follows that R
centralizes QN L-8/%, where & = 0.(%), and so QNS Z(Q). If
B centralizes LN 8-L/T, then Ng(B) contains a S,-subgroup of K.
In this case, O normalizes B~ for some K in & Let {Q, P!> be a
S, ;-subgroup of £ containing QVBX, with BX = PF. By the conjugacy
of Sylow systems in £, we have P}5 = B, OQFr = Q for suitable K,
in 8 Hence, T normalizes BX%: gnd V1< P,. Since B is weakly
closed in B, B = B==: and we are done. If B does not centralize
2NL LY, then N(B)NL is a ¢'-group, since LN L is eyelic. In
this case the factorization, & = 2. Ny (B), together with Q N LS Z (D),
yvields that Q =Q N ¢ x L, for some subgroup O, of L. This in
turn implies that every non cyclic subgroup of Q is in ¥ (Q).

Since & = - Ng(B) and € N Q is cyclic, the S,-subgroups of Ny(B)
are non cyclic. Hence,  contains a non cyelie subgroup £, such that
£, normalizes BF for some K in &. By the conjugacy of Sylow
systems, we can find K, in & such that B=X:1 = P, and QXS Q. Since
LB is weakly closed in P, B = BEXE, and we are done, since every non
cyclic subgroup of L is contained in .%4(Q).

Suppose 2N =<1>. Then 8 is a ¢-group. From & = 8- Ny (),
we conclude that Q normalizes BX for some K in & and the conjugacy
of Sylow systems, together with the fact that B is weakly closed in
B, imply that Q normalizes B. This completes the proof of the first
assertion of the theorem.

If PP, then P, Ng(B). Since every element of ¥ (Q) is
contained in a unique maximal subgroup M of &, by Theorem 24.3,
if N(B) contains an element of .7(%), then B, is not a S,-subgroup
of M. But P,Q is a maximal p, g-subgroup of ®, by Lemma 7.3. If
C(Z(P,)) contains an element of .4({), then since Z(B,)=2Z(P) by
(B) and Theorem 22.7, we see that C(Z(P)) contains an element of
¥ (Q). Hence, P=M. Thus, in all cases, PSM. Since M also
contains a S, -subgroup of ®, ® satisfies E,,. Since Q is contained
in M and no other maximal subgroup of G, @ satisfies C,, as required.
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Hypothesis 24.4.

1. 3erm,.

2. B i3 a S;-subgroup of G.

3. P contains a subgroup A which is elementary of order 27
with the property that V'C(A)N* =1 for all Ae AP,

Hypothesis 24.5.

l. penm,

2. A S,-subgroup P of ® is contained in at least two maximal
subgroups of ©.

LEMMA 24.4. Assume that Hypothesis 24.5 18 satisfied and that
if p =3, Hypothesis 24.4 i3 also satisfied. If p =5, let A be an
arbitrary element of & A43(B). If p=38, let A be the subgroup
given in Hypothesis 24.4. Let B be the weak closure of N in P, and
let B* be the subgroup of P generated by its subgroups B such that
BS A and N°/B is cyclic for suitable G in @. Let M be a proper
subgroup of @ containing P, with the properties that M i3 a p, q-
group for some prime q and M has p-length at most two. Let (%, %)
be any one of the pairs (Z(P), W), (Z(W’*), W), (Z(BV), W*). Then M =
MM, where WM, normalizes £ and WM,/Cyy (%) i8 a p-group, and I,
normalizes 9.

Proof. Let O be a S,-subgroup of M, and let $ = 0,(M). Then
P2 <M. The lemma will follow immediately if we can show that
vQ%) normalizes ¥ and induces only p-automorphisms on X,

Suppose by way of contradiction that either some element of YQ)
induces a non trivial g-automorphism on X%, or ¥QY) does not normalize
X, IfPY =2, we can find B = A*< Y such that either some element
of vYOB induces a non trivial g-automorphism of X or else YOB does
not normalize X. Similarly, if 9 = B*, we can find B&Y and G in
& such that BS A¢, A¢/B is cyclic and such that either some element
of YQB induces a non trivial g-automorphism of Z(P) or else vYOB
does not normalize Z ().

Let © = Q9/9, so that vOB = (YOB)9/D. Since ¥OB is gener-
ated by the subgroups vQ,8 which have the property that B acts
irreducibly and non trivially on Q,/D(Q,), we can find O, = Q,9/9
such that vQ,8 either does not normalize % or some element of v, %B
induces a non trivial g-automorphism on %, and with the additional
property that B acts irreducibly on <,/D(Q)).

Let B, = ker (B — Aut Q,) = ker (B — Aut Q./D(Q,)), so that B/B,
is cyclic. Let M, = HBY,, and , = 0,(IM,). Since HB S P, and since
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Z(P)S 9, it follows that Z(P) <= Z(D,). Also, since Z(TW*) is a normal
abelian subgroup of B, we have Z(TW*) < .

Suppose that X = Z(P). If p = 8, then since AY/B, is generated
by two elements, it follows that B, # {(1>. Hence, Z(9,)< C(%B,).
Since the normal closure of A¢ in C(B,) is abelian, we have Y*Z(9)B* =
<1>, and (B) implies that a S,-subgroup of $Q, centralizes Z(9,), so
centralizes Z ().

Suppose p = 6. ‘We first treat the case that 9, N U # {1) for some
Nez(P°), NS A, Then {Z(H), A*>=SC(®,NN) =€ and P°NE is
of index at most pin P°. If PB* is a S,-subgroup of € containing B N €,
then PN E < P*. Hence, YP*BS yP*AS PN E, and so vP*B* =
). It follows that B< 0,(€). (Note that 0,.(€) = (1) since A° S €.)
Hence, vZ(9,)8 < 0,(€), and so vZ(9,)B* = 1), so that a S,-subgroup
of X, centralizes Z(9,) and so centralizes Z(P).

We can now suppose that ,NU = 1> for all U such that
Nez (P9, NS A, In this case, since A¢/B, is generated by two ele-
ments, there is a normal elementary subgroup € of B¢ of order »* such
that E<A°. Hence, €NB, # {1>. Since ENB,SCEN P, we can
find E in €N 9L Consider C(E)2<Z(D,), Cys(E)). Since AYB is
cyclie, if Ue Z7(P°) and US A%, then BNU=U, = 1). Let Uelll.
Let B* be a S,-subgroup of C(E) containing Cg;s(E), so that
| P* : Cpe(E) | =1, por p’. We have v$*B'S Cye(E), and so v'P*B' =
{1>. This implies that B=0,(C(E)). Let Ze Z(9); then [Z, Ule
0,(C(E)), so that [Z, U, U, U]e Cge(E). Since Uel,SUe z/(P°), it
follows that [Z, U, U, U, Ule Z($¢). Since H, N U =), and since
[Z,U,UUUle Z(PB)N D, we have [Z, U, U, U, U] =<1). This shows
that a S,-subgroup of O, centralizes Z(9,) and so centralizes Z(%P).

Suppose now that X = Z(W*), so that P =BW. In this case,
B = A, Hence, B,S W*, since B/B, is cyclic. Since Z(W*) is con-
tained in 9,, if B* denotes the normal closure of B, in HBY,, then
Z(T¥*) centralizes B*, B* being a subgroup of TW*,

Let €* = C(B*)N , so that €* is normal in $BY,. If p =3,
we have Y€*B* = (1), since B, # {1), and it follows that a S,-sub-
group of M, centralizes €*, Namely, if €* =€} >E€}F> ««. is part
of a chief series for M, then P, centralizes each €}/C%,, so that a
S,-subgroup of M, centralizes each €¥/€,,, so centralizes €*, If p =5,
then B, N U # (1) for some Ue Z(Pf), USB, and we have Y'E*B* =
{1>, and we are done.

THEOREM 24.10. Under Hypothesis 24.5, p =3 and =(3) = {3}.
Furthermore, Hypothesis 24.4 18 not satisfied.

Proof. Suppose that either » = 5 or Hypothesis 24.4 is satisfied.
Let A be any element of & 45(P) in case p = 5 and let A be the
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subgroup given by Hypothesis 24.4 in case p = 8. Let T, B* be as
in Lemma 24.4. Let R, = N(Z(P)), R, = N(BW), N, = N(Z(W*)), and
let © be any proper subgroup of & containing P. Then by Lemma
24.4and Lemma 7.7, wehave § = (D NT)ONW) = O NRNONR,) =
GNRYONN,). Taking = N, we get N, SN, R, S NN,. Taking
P=R, we get WLNN, N SNN,. Taking $=N,, we get N, &
NR, RS NN,. By Lemma 8.6, we conclude that NN, is a group
and so DS NN, for every proper subgroup $ of G containing P. If
NN, = G, then 0,(N,) is contained in every conjugate of N,, against
the simplicity of &. Hence, NN, is the unique maximal subgroup of
@ containing PB.

We can now suppose that p = 3 and that Hypothesis 24.4 is not
satisfied. Suppose gem(8),q #3. Let X be a S,-subgroup of &
permutable with 8 and let M be the unique maximal subgroup of &
containing Q. If 9 =0,(M) and € is a subgroup of P chosen in
accordance with Lemma 8.2, then Theorem 24.7 yields that m(Z(€)) = 8.
Let & be a subgroup of & of type (¢,¢,¢9) and let 2,(Z(€)) =
€, x ++- X €,, each €, being a minimal G-invariant subgroup. If &
centralizes Z(€), then any subgroup of Z(€) of type (38,3,38) will
serve as A. This is so, since in this case, C(4)SM for all A in A,
Otherwise, [€;| =27 for some ¢, and since @/Cg€,) is cyclic,
Cs(€)) € 4 (R), so we let U be any subgroup of €; of type (3,3, 3).
The proof is complete.

25. The Isolated Prime

Hypothesis 25.1.

1. 3em,

2. A S;subgroup B of O is contained in at least two maximal
subgroups of ®. :

THEOREM 25.1. Under Hypothesis 25,1, there is a q-subgroup
Q of ® permutable with P such that if = PQ and if P, O are
the images of P, O respectively in D/0(D), then B =1 is cyclic, P

18 faithfully and irreducibly represented on O/D(Q), and L does not
centralize B = 2,(Z(0«9))).

Proof. There is at least one proper subgroup of ® containing P
and not normalizing Z(*f), since otherwise N(Z(P)) is the unique
maximal subgroup of ® containing P. Let © be minimal with these
two properties. Then $ = PO for some g¢-group L. Since e,
0,9) = 1. Since & 4(Q) is empty, © has g-length 1. Hence,
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O(H)Q < . By Lemma 8.13, P is abelian. By minimality of $, P
acts faithfully and irreducibly on Q/D(Q). If =1, then P <« D,
and O normalizes Z(%B), which is not the case.
Since L does not normalize Z(P), O does not centralize Z(04(9))
80 does not centralize 2,(Z(0.(9))). The proof is complete.

We will now show that Hypothesis 24.4 is satisfied. PO is rep-
resented on B = 2,(Z(0,9))), and it follows from (B) that the minimal

polynomial of a generator of P is (x — 1)"3'. Hence, there is an ele-
mentary subgroup % of B of order 27 on which 3 acts indecomposably.
Let B, = Cx(¥) and let € = 2,(Z(P,)) so that A < €. Choose Ae AL,
and set € = C(A). Let P* be a S;-subgroup of € containing B, (It
may occur that P = P* but this makes no difference in the following
argument.) If B, = P*, then V€A’ = 1. Suppose | P*:B,| = 8. Then
<{B, P*> = N(Bo), so that (P, P*> normalizes &. Since P and P* are
conjugate in N(B,), any element of P* — B, has minimal polynomial
{ —1)® on G,

Let 8 =04(€). Then [R: 8NP,/ =1 or 3, so that YRE & B,
and R =1. By (B), €< If RSP, then €< Z(R), and
YEW*=1. Suppose [K:8NPy|=3. Then D) S P, so that
€< Co(D(R). If Co(D(R) S Py, then € S Z(Ce(D(R))), and once
again Y€U' = 1. Hence we can suppose that Cg(D(R)) contains an
element K of & — &N Py. Since & S L*, it follows from the preceding
paragraph that the class of Co(D(R)) is at least three. On the other hand,
if X and Y are in Co(D(R)), then [X, Y] e Co(D(R))NK’. Since & S D(R),
we have [X, Y, Z] =1 forall X, Y, Z in Co(D(R)). This contradiction
shows that Y6A* =1 for all A in A*. Combining this result with
the results of Section 24 yields the following theorem.

THEOREM 25.2. If pem, and P is a S,-subgroup of ®, then P
18 contained in a unique maximal subgroup of ©.

THEOREM 25.8. Let pen, and let P be a S,-subgroup of &. Then
each element of (P) is contained in a unique maxrimal subgroup of &.

Proof. First, assume that if p = 8, then Z/(P) contains an ele-
ment B whose normal closure in C(Z(P)) is abelian, while if p =5,
B is an arbitrary element of Z/(B).

Let MM be the unique maximal subgroup of & containing B. Let
% *(P) be the set of subgroups B, of P such that P, contains € for
suitable € in A& 45 (P), M in M. Suppose by way of contradiction
that some element PB, of 4*(P) is contained in a maximal subgroup
M, of @ different from M, and that |B,| is maximal. It follows
readily that P, is a S,-subgroup of M,. Since P, contains €* for
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suitable € in SZA(R), M in M, 0,(M) = 1. Thus the hypotheses
of Theorem 24.8 are satisfied, IR, playing the role of & and B, the
role of &,, B = V(celg(B); Po). Since Nyp(B) O Py, and since P,2E* 2
Z(P) (€* being self centralizing), we conclude from the factorization
given in Theorem 24.8 and from the maximality of P, that W, < M.

There remains the possibility that for every B in Z(P), the
normal closure of B in M = C(Z(P)) is non abelian, and p = 8.

Let © = O,(M). If 9 contains a non cyclic characteristic abelian
subgroup A, then A contains an element B of Z(PB), and B is abe-
lian. Since we are assuming there are no such elements, every
characteristic abelian subgroup of © is cyelic. The structure of o is
given by 8.5. If € is any element of % 4#;(B), then € = 9, by
(B), so €e FZ . 4:5(D).

As before, let Be .4*(P) be chosen so that LB, is contained in
a maximal subgroup M, of & different from M, with |PB,| maximal.
Then P, is a S,-subgroup of M, and O, (M) = 1.

Let £ = 0,(M,). Since v"TE* =1, (B) implies that TN E = [, N €.
Since B, = Ng,(SI) by maximality of 3,, we conclude that €= I, We
need to show that D & P,. Consider DN P, = .. Since YPOI S
2(Z(P)), we conclude that 9, S 0, ,(IM,), and maximality of |B,}
implies that N(P, N Oy (M) S M so it suffices to show that I, =
P05, (M) S M, and it follows readily from T, = Ng (TDy) - 7D:0s,5 (M)
that it suffices to show that 79,0;.(IM,) = M. Since € & T, we have
Z(%) S €, so that *Z(R)9; =1, and 79,0;,: (M) induces only 3-auto-
morphisms on Z(T), so centralizes Z(P), and M, = M follows in case
9 C 9.

Suppose $=B,. If DNTDOE, then 2(Z(P)) < T, and since
YIS Q(Z(P) & T & D), (B) implies that D & T. In this case,
2(Z)) = 2(Z(P)) < WM, so M, & M. There remains the possibility
that §N T = E.

If T =€, then Y39*=1 and (B) is violated. Hence, TDOE, so
that ¥+ 1. Hence, T NZER)#1. If 2(Z(P)) E T, then V"I = T’
and we are done. If Q(Z(P)) £ T, we conclude that $ centralizes
T NZE), since T NZE®) SC. This is absurd, since 2,(Cy(D)) =
2.(Z(P)) by (B) applied to IM, completing the proof of this theorem.

Before combining all these results, we require an additional result
about =«,.

THEOREM 25.4. Let pem, let P be a S,~subgroup of & and let
MM be the unique maximal subgroup of ® containing PB. Then P S M.

Proof. Let €e Pz 4;(P), and suppose G in & has the property
that €°< B. Then € SM¢™'. By Theorem 25.3, we have M ' =M,
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so that GeIM. Hence B = V(ccly(€); P) = Vicely(€); B). By (B)
and pem, € < 0,(M) for each M in M. Hence, B < M, so maxi-
mality of M implies M = N(V). By uniqueness of M (or because B
is weakly closed in 3), we have M 2 N(P). Furthermore, by Theorem
25.8, if M~ M, then € £ M¢. Thus, € is not in the kernel K@)
of the permutation representation of ¥ on the cosets of P in MGDP,
We can then find C in € such that &(G)C has order p in Z(P/K(G)),
so Theorem 14.4.1 in [12] yields this theorem.

We are now in a position to let 7, and 7, coalesce, that is, we
set 7, =m, U,

THEOREM 25.5. Let I be a maximal subgroup of &. If pem,
and M, is a S,-subgroup of M, then either M, is a S,-subgroup of
S or M, has a cyclic subgroup of index at most p, and M, ¢ S (P)
Sor every S,-subgroup P of ®. If w s the largest subset of m, with
the property that M contains a Sy-subgroup & of G, then S I M,
and S & .

Proof. Let P be a S,-subgroup of & containing M,. Suppose
M, < P. Then M, ¢ . (P), by Theorems 24.3, 24.5, and 25.8. Thus,
if Be Z(P), then C(B) N M, is cyclic. Since |WM,:CAB)NWM,| =1
or p the first assertion follows.

Let &, be a S;,-subgroup of & for ¢ in w. (If & is empty there
is no more to prove.) If gem, then &, & MW by uniqueness of MW
and Lemma 17.2, If gem,, then &, S M’ by uniqueness of IM and
Theorem 25.5. Hence, @ £ W'. If ren(M), r¢ v, then W central-
izes every chief r-factor of I, by Lemma 8.13. Since & = WM, we
conclude that & < M.

THEOREM 25.6. =, is partitioned into mon empty subsets o,, ---
0., n =1, with the following properties:

(i) If t &=, then ® satisfies E. if and only if 7 <& o, for
some 1 =1, .-, 7.

(ii) If ©: i3 a S,-subgroup of ®, then N; = N(D.) is a mazimal
subgroup of ®, D, S N, and ;N Of is of square free order for
each GEG —-NR;, 1=1,---,m.

(i) If p.eo; and B; 18 a S,-subgroup of 9;, and if P, N P =
D+ 1 for some Ge® — N, then D; is of order p; and Cy (D) =
D; x &, where €, is eyelic, 1 =1,2, -+, n.

Proof. By Lemma 8.5, m, is non empty. By Corollary 19.1,
Theorems 24.3, 24.4, 24.5, 25.2 and 25.3 ~ is an equivalence relation on

7, and if o, ---, 0, are the equivalence classes of 7, under ~, then (i)
holds.
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Let $=9; be a S, -subgroup of & and let P =P, be a S, -
subgroup of  for p = p;€d,. By Theorem 25.5, N() = RN is a maxi-
mal subgroup of G, and & W.

Suppose GG — N and PN P =D # 1. If P, is any non identity
characteristic subgroup of 9, then either N(D) N Pe (P) or
N(®) N P ¢ (P, by Theorems 24.8, 24.4, 24.5, 25.5 and 25.3. Since
N(D(®)) contains every element of both Z/(B) and Z(P?), we con-
clude that 9 is elementary of order p» or p'. Suppose |D| = p*. If
D contains 2,(Z(P)) then N(D) contains an element of Z/(P), so that
NONPe A(P). If © does not contain 2,(Z(P)) then N(D) NP
contains an elementary subgroup of order o) so once again
N®)NPe F(P). The same argument applies to P, so that PP N.
Hence P¢ = PB* for some N in N. Hence GNe N(P) SN, so GeNR,
contrary to hypothesis. Hence, ® is of order p.

If Cy(D)e A (P), then N(D) SN, so that P°NNDOD, contrary
to the fact that BN P* has order 1 or p for all N in N, by the
preceding paragraph. Hence, Cy(®D)¢ M (P). If BeZ(P), and
Cx(®) N Cy(B) = €, then € is of index at most p in Cyx(D) and € is
disjoint from D, since Cyx(D)¢ M (P). Hence, Cp(D) = D x €. This
proves (iii), the eyclicity of € following from Cy(D) ¢ (). The proof
is complete.

26. The Maximal Subgroups of &

The purpose of this section is to use the preceding results, notably
Theorems 25.5 and 25.6, to complete the proofs of the results stated
in Section 14.

LEMMA 26.1. If pem Um, and P is a S,~subgroup of ®, then
P <= N(P)Y.

Proof. If P is abelian, the lemma follows from Griin’s theorem
and the simplicity of ®. If P is non abelian, P is not metacyelic,
by 8.8. Also, p = 5, as already observed several times. Thus, from
3.4 we see that 2,(P) is a non abelian group of order p°. The hypo-
theses of Lemma 8.10 are satisfied, so f & N(2(Z(P)))Y by Theorem
14.4.2 in [12] and the simplicity of &. Since N(P) & N(2,(Z(P))), and
since N(2,(Z(B))) has p-length one, the lemma follows.

LEMMA 26.2. If pem, and P is a S,-subgroup of ®, then P 1is
abelian or is a central product of a cyclic group and a non abelian

group of order p* and exponent p.

Proof. We only need to show that P is not isomorphic to (iii)
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in 3.4. Suppose false. Let P, = 2,(P), and let & be a fixed S,-
subgroup of N(P). Set & = R/Cx(P). The oddness of | N(P)| guar-
antees that R, is abelian.

Let & be a chief series for P, one of whose terms is P, and
which is f-admissible. Let a; be the character of & on the ith term
of & modulo the (¢ + 1)st, where ¢ =1, --.,7+ 8, and [ P: P,| = »~
Since PB/P, is eyelic, a;, = +-- = ;. From 8.4, we see that a, = a ;.
Furthermore, a..,=a@a,, and a,;=a,,a,,. Combining these
equalities yields a,, =1, so @, =1, and Lemma 26.1 is violated.

If B normalizes A we say that B is prime on A provided any
two elements of B* have the same fixed points on A. If |B| is a
prime, B is necessarily prime on 2. If U is solvable, then B is prime
on %A if and only if for each prime p, there is a S,-subgroup A, of
A which is normalized by B and such that B is prime on 20,.

The next two lemmas are restatements of Lemma 13.12.

LEMMA 26.3. Suppose A 18 a solvable m-group, and B is a cyclic
w'-subgroup of Aut(¥A) which is prime on A. Assume also that
19| B| 8 odd. If |B| is not a prime, if the centralizer of B in
A 18 a Z-group, and if B has no fived points on AW/, then A i3
nilpotent.

LEMMA 26.4. Suppose U i3 a solvable n-group and B i8 a ='-
subgroup of Aut(N) of prime order. Assume also that |A|-|B| s
odd. If the centralizer of B in A is a Z-group, and if B has no
fized points on Y/A’', then U/F(A) is nilpotent.

&#° denotes the set of all proper subgroups of &, 27 denotes
those subgroups 2 of & such that, for all pex, A does not contain
an element of .94(PB) for any S,-subgroup P of G; 27 = 2 — 23.
# denotes the set of maximal subgroups of @, # = _# N 23 i =
0, 1.

If & € 25, then & does not contain an elementary subgroup of order
p* for any prime p, so & is nilpotent. Furthermore, if 7(®) ={p,, -+, Da}
Py > D> o+ > D, then & has a Sylow series of complexion (p,, « -, D,).

Suppose pem, and P, is a subgroup of type (», ») with P, € 23
Let PB,, ---, P, be the distinet S,-subgroups of & which contain L,.
Since B, ¢ (B, 1 <1 < n, it follows that B, 2 2(Z(%B,)), and that
N(B,) — C(B,) contains an element of order p centralizing 2,(Z(%.).
Since N($B,)/C(Po) is p-closed, this implies that 2,(Z(B:)) = 2(Z(B,)),
1 <1, j<n. This fact is very important, since it shows that the
p + 1 subgroups of P, of order » are contained in two conjugate
classes in ®, one class containing 2,(Z(%,)), the remaining p subgroups
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lying in a single conjugate class.

If Me_+, HEN) denotes the largest normal nilpotent S-subgroup
of M. Note that by Lemma 8.5, H(I) + 1. More explicitly, z(H(IN))
contains the largest prime in #(IM). Note also that H(IMN) is a S-sub-
group of @.

If Pe._#, H(N) denotes the unique S,-subgroup of I, where
o = o(M) is the equivalence class of 7, under ~ associated with M.
That is, pe o if and only if pex, and IR contains a S,-subgroup of
@®. Or again, peo if and only if M contains an elementary subgroup
of order p*. Or again, p<co if and only if pexm, and M contains an
element of () for some S,-subgroup P of G.

Suppose Me_#, gen(M) — o(IN) and a S,-subgroup L of WM
centralizes H,(IM). Since M is the unique maximal subgroup of &
containing H (M), it follows that N(Q) S M, so that O is a S,-sub-
group of &. Then by Lemma 26.1, O & WM. Since the derived group
of M/H,(AN) is nilpotent, we have QO <t M. Thus, if 7 is the largest
subset of m(IM) — (W) such that some S.-subgroup of WM centralizes
H,(M), then M contains a unique S.-subgroup E,(WM), E,(WM) is a
normal nilpotent S-subgroup of M, E, (M) is a S-subgroup of &,
and the structure of the S,-subgroups of E,(IM) is given by Lemma
26.2. We set H)=<{E,(I), H(M)>=E (M) x H(WM). Since E(M)M
and E,(I) centralizes H,(IM), and since M is the unique maximal
subgroup of ® containing H,(IM), it follows that E,(IM) is a T.I. set
in @.

If pem,N7* and P is a S,-subgroup of &, then the definitions
of m, and #* imply that 2.(Z(P)) is of type (p, p). In this case, we
set T(P) = Cu(2(Z,(P))), and remark that T(P) char B, |P: T(P)| =
p. Furthermore, if P is an element of order » in T(P), then Cy(PY
contains an elementary subgroup of order . If gexm, — w*, set
T(Q) = Q, Q being any S,-subgroup of &. The relevance of T(X)
lies in the fact that if @ is any element of 7(Q) of order g, then
C(Q) is contained in only one maximal subgroup of &, namely, the
one that contains Q. This statement is an immediate consequence of
the theorems proved about .27 (L), explicitly stated in Theorem 25.5.

If Ae 2, then A is contained in a unique maximal subgroup M
of @, so we set M(A) =M. The existence of the mapping M from
25 to _# is naturally crucial.

If Me. #, set fI(i)ﬁ) = HM)*. If Me_ #, let f!(im) consist of
all elements H in H(IM)* with the property that some power of H,
say H, = H" is either in E(I)* or is in T(Q)* for some S,-subgroup
2 of M with g € w(H(IM)).

Let genm, and let Q be a S,-subgroup of & with T(Q)cCQ; let
7 (Q) denote the set of subgroups Q, of O of type (g, ¢) such that
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L,y = 2(C(Q)) for some element Q in O, If O e.7(Q), then Q2
2(Z(XQ)). Furthermore, if gem, and Q, is a subgroup of & of type
{9, 9), and if Q, is contained in at least two maximal subgroups of
@, then Q,€. 7(Q) for every S,-subgroup Q of & which contains Q.

LeEMMA 26.5.
(i) If Me A, then HER) is a T.I. set in O,
(i) If Me _#, then HIM) is a T.I. set in ©.

Proof.

(i) HERY is cyclic and normal in IR, by Lemma 26.2. Hence,
if He HY* N HER®Y* for some G in &, then N(KH)) 2 {It, M*),
S0 GeM, as required.

(i) It is immediate from the definition that IAI(‘.IR) is a normal
subset of M, so ﬁ(am) is a T.I. set in M. Suppose Ge® and
He ﬁ(‘m) N ﬁ(ﬂ'ﬁ)". Choose n so that K = H" is in either E,(IMM)* or
T()* for some S,-subgroup & of H(M), and such that K is of prime
order. If Ke E(IN)}, then since (| E (M), | H(M)|) =1, it follows
that Ke E,(M)*. Hence C(K) =2 <{H(I), H(M)*), and so GeM.
Suppose Ke H(M)*. Then Cy(K)e ¥(L) and so C(K) S M. This
implies that H,(I) N H(IMM)? contains non cyclic S,-subgroups. By
Theorem 25.6 (ii), we again have Ge M. The lemma is proved.

With Lemma 26.5 at hand, it is fairly clear that the one remaining
obstacle in this chapter is #*. In dealing with 7*, we will repeatedly
use the assumption that |®| is odd.

LEMMA 26.6. Let pem, let P be a S,~subgroup of &, and let
WM = M@P). If B, is any non identity subgroup of T(P) and P, is
contained in the p-subgroup P* of ®, then N(P*) & M.

Proof. In any case, P* & M, by Theorem 25.6 (iii). If P* is non
cyclic, then N(2,(PB*)) contains an element of .¥(P,) for some S,-
subgroup B, of WM and we are done. Otherwise, 2,(P*) = 2,(B)), so
N(2,(P*)) contains an element of (%), and we are done.

LEMMA 26.7. Suppose p,qem,UT,, P+ q, L is a S,-subgroup
of & and P is a S,-subgroup of N(XQ). If P is cyclic, then P i3
prime on L.

Proof. Suppose false. Then ¢ = +1 (mod p), and every p,¢q-
subgroup & of ® is g-closed. Also 2,(P) & Z(P*) for some S,-subgroup
P* of @, by Lemma 26.2 and || > ». If P* is cyclic, or if P* is
non abelian, then P S N(2(P))’, by Lemma 26.1. Since every chief
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g-factor of N(2,(P)) is centralized by N(Q(D)), it follows that B
centralizes C(2,()) and we are done.

If P* is abelian and non ecyclic, then P* normalizes some S,-
subgroup L* of N(2(%)). Since the lemma is assumed false,
Co(2(B)#1, so Q*=+ 1, If & is a maximal p, g-subgroup of &
containing P*Q*, then & is g-closed, so contains a S,-subgroup of ©.
This violates the hypothesis of this lemma.

LemMMA 26.8. Let pem, qen(®) and suppose that gexw, Ux, or
p¥*q. If & is any p, g-subgroup of & and & contains an element
of M (P) for some S,-subgroup P of ©, then & is p-closed.

Proof. Let MM = M(RK). The hypotheses imply that »| H,(IN)|
and gt | H(M)|. The lemma follows.

LEMMA 26.9. Let perm, qecn(®) and suppose that gem, Um, or
p+q. If Q 18 a g-subgroup of & which is normalized by the cyclic
p-subgroup P of O, then P is prime on L.

Proof. If |B| = p, the lemma is trivial. Otherwise, the lemma
follows from Lemma 26.8, since N(2,(P)) contains an element of
S(%B,) for some S,-subgroup B, of G.

LEMMA 26.10. Let IMMe _, and let P be a S,-subgroup of M for
some prime p. If P 18 non abelian and B & W', then [ does not
contain a cyclic subgroup of index p.

Proof. We can suppose that Pe .25 for if Pe .2, then M =
M(@P) and P & W by Theorem 25.6 (ii). Hence, proceeding by way
of contradiction we can suppose that B = gp{P, P,|P" = PF =1,
P'P,P, = P+ where n = 2. Note that P = {(P"™.

If P is nilpotent, then P < W, so M = N(P') by maximality of
M. This implies that P is a S,-subgroup of @ which is not the case.
Hence, ' is not nilpotent. In particular, Me . It follows that
p # q for all ¢ in 7(H(IN)).

We first show that E,(M) = 1. For %' centralizes E,(IM), so if W,
is an element of _# containing N(¥¥'), then E,(It) normalizes some
S,-subgroup B, of W, with L = B,. It follows from Lemma 8.16 that
E() centralizes B,. If E, (M) # 1, then P, & M, which is not the
case, so E,(M) = 1.

Choose ¢ in m(H()) and let O be a S,-subgroup of W normalized
by 3. We can now choose % & 7(Q) such that % is normalized by
2,(P), is centralized by some non identity element P of 2,(B), but is
not centralized by 2,(B). For otherwise, 2,(P) centralizes T(XQ), and
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N(Q,(P)) & M, which is not the case. For such a choice of ¥ and
P, let & be a S, -subgroup of C(P) which contains A2,(P). By Lemma
26.7, there is a S,-subgroup &, of & which contains 2 and is contained
in M. Since 2:(PB) does not centralize A, and since p+~gq, a S,-
subgroup £, of & is contained in .25, by Lemma 26.8.

We wish to show that & < & This is clear if £, contains an
element of ¥ (X*) for some S,-subgroup Q* of &, by Lemma 26.6.
Otherwise, Lemma 8.5 implies that &, < &, since ¢ > p. By Lemma
26.6, & = M, so WM contains a S,-subgroup of C(P). This implies that
(P> # (P>, Since the p subgroups of P of order p different from
(PP are conjugate in P, and since ﬁ(WZ) is a normal subset of N,
we can suppose that P = P,.

Let B* be a S,-subgroup of & containing P and let B = Q(Z,(T*)),
so that BN P = (PP"™, or else pem, It follows that P,W central-
izes P, for some W in . But I contains a S,-subgroup of C(P)),
so C(P)NIM contains an element of order equal to that of P,W.
Since P,W and P, have the same order, a S,-subgroup of C(P) N W
has exponent ", which is not the case. The proof is complete,

LevmMa 26.11, Let Me _# and let P be a S,-subgroup of M for
some prime p. If P is non abelian, then P S WM.

Proof. First, suppose pem, If Pe .27, we are done. Other-
wise, P contains a cyclic subgroup of index » and we are done by
the preceding lemma.

We can now suppose that pen,. If I is nilpotent, the lemma
follows readily from Lemmas 26.1 and 26.2. We can suppose that
T is not nilpotent and that P & WM'. Since P is non abelian, Lemma
26.2 implies that 2,(P) is of order p°, or else P is metacyclic. In the
second case, we are done by the preceding lemma.

We first show that E, () = 1. Since 2,(Z(B)) centralizes E,(IM),
it follows readily that N(E,(IM)) dominates P, by Sylow’s theorem.
If EI?) + 1, then M = N(E,(IM)), and so P S W, by Lemma 26.1,
and we are done,.

Let £ be a S,-subgroup of M which is normalized by P, with
g € 7(H(M)).

We show that Q = T(Q). For otherwise, P’ centralizes Q, by
Lemma 8.16, so that N(P') < M. By Lemmas 26.1 and 26.2, P S
N(P'Y, contrary to P £ W'. Hence, O = T(Q).

Let 8 = Z(2,(P)). We next show that 3 has no fixed points on
., Let 9, =0NC(3), and suppose by way of contradiction that
2, #1. Let 8 = N(38), and let £ be the maximal normal subgroup
of € of order prime to ng. Let 8,, £, be permutable Sylow subgroups of
L P, O, 8. Since &, < ¥, it follows that & is not contained
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in any conjugate of M. This implies that £, .23 This in turn
implies that 2, centralizes every chief g-factor of £, by Lemma 8.13.
Hence, 8, <1 2,2, and it follows that N(2,) covers 2/¢%,. Since
NE&) &S M, by Lemma 26.6, we have a contradiction. Hence, Q, = 1.

We next show that if PeQ,(P) — 3, then C(P) = M. This is
clear if C(P) N Q is non cyclie, since O = T(Q), so suppose C(P)N ] =
L, is cyclic. We remark that L, # 1, an easy consequence of the
preceding paragraph.

Let M, be a maximal subgroup of & containing C(P), and let
* be a Si-subgroup of M, containing Q,. If QO* is non cyclic, then
L0* is contained in a unique maximal subgroup MM¢ of G, GeG,
and since Q* S M,, we have M, = M. Since MNM?* 2 Q,, and
since Q, £ T'(Q), we have MM = M, Thus, we can suppose that Q*
is eyelie.

Since 3 acts regularly on Q,, we can suppose that a S,-subgroup
P* of I, normalizes O* and that {P, 8> = P*.

If 9] is nilpotent, then 2,(V*) < M,. Since 2,(T*) = 2,(Q)), we
have M = IMM,. Hence, we can suppose that MM} is not nilpotent.

Choose r in w(H,(M))), and let R be a S,-subgroup of M, normalized
by B*Q*. Since [* is cyclic, g # r. Since g % r, Q* does not cen-
tralize R. It follows from Q* S (P*Q*) that R = T(R), by Lemma
8.16. Since 0*3 is a Frobenius group, it follows that R, = RN C(8) #
1. Let € = N(3).

Let & be a S,,,-subgroup of € which contains R, and P*, and
let &, be a S,-subgroup of £ containing R,. If & is non cyeclie, then
K, e.2, 80 K& M. If &, is cyelic, then in any case &, S IM,, since
R = T(R). Let &, be a S,-subgroup of & If P* does not centralize
R, then » > p, and so &, < &, and once again & & M,. If P* cen-
tralizes R, and R, 4 &, then K, < K. Since the structure of &, is
determined by Lemma 26.2, and since R, centralizes P*, it follows
that R, centralizes ®,, so that 2(R,) < & and once again £ & M,.
Thus, in any case, we see that £ £ I,. This implies that 3 & I,,
so 8 centralizes every chief ¢-factor of I,. This is absurd, since
BQ* is a Frobenius group. We conclude that C(P) & M for every P
in 2(P) — 3.

We will now show directly that N(2,(P))=IM. Choose N e N(2.(P)).
Then 2,(P) normalizes Q and Q. Since 8 has no fixed points on
QF, QF is generated by its subgroups QY N C(P), Pc 2,(P) — 3. By
the preceding paragraph, we conclude that Q¥ & M. Since M” is the
unique maximal subgroup of & containing QF, we have I = MWM¥,
so Ne. By Lemma 26.1, B < N(2(P)), so PS WM. The proof is
complete.

LEMMA 26.12. Suppose Me _# and P is an abelian, non cyclic
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S,-subgroup of M for some prime p. Suppose further that a S,-
subgroup of ® is non abelian. Then P =B, X P,, where |P,| = »,
B, centralizes H(IN), PLH(MN) is a Frobemius group with Frobenius
kernel H(IM) and P, contains ,(Z(P*)) for every S,-subgroup P* of
® which contains PB.

Proof. Let P, be a S,-subgroup of & containing B. If pemx,
then 2,(P)e.77(P,), and if ¢ is any automorphism of P, of prime
order s, then 8 < p, by Lemma 8.16. The same inequality clearly
holds if pem,.

Choose ¢ in w(H(IM)) and let O be a S,-subgroup of W normalized
by PB.

Let 8 = 2,(Z(%)). We will show that Q8 is a Frobenius group.
Let € = N(3) and suppose by way of contradiction that O, =QNE#1.
First consider the case that pexw, Let M = M(€), and let By, be a
S,-subgroup of M, normalized by L, with PSS Pw. Then [Q, P] S
QN Pw =1, so Q, centralizes P. Since 2(P) & .7 (By), it follows
that Q, centralizes B,. Thus, if ¢e a(E(M) or T(Q) =L, we con-
clude that B, S M, which is contrary to hypothesis. Otherwise,
T(R)CQ, or genm, U, so that ¢ > p, or P centralizes L. But in
these cases, we at least have N(Q,) S M, so O, + Q, which yields
q > p, and so a S,-subgroup of M N M, is non cyclic, and centralizes
Pw. Again we conclude that P, S IR, which is not the case. Hence,
we can suppose that pem,.

Let & be a S, subgroup of € containing PQ,, PSS K,, O, & K,,
and let 8* be a maximal p, g-subgroup of & containing &, &, & &;,
R, € &, where &; is a S,-subgroup of &* and & is a S,-subgroup
of &*. Since P, is a S,-subgroup of G, &, = K* is a S,-subgroup of
®. If & contains an elementary subgroup of order ¢°, then & < &%,
and maximality of £* implies that &* is contained in a conjugate of
M, contrary to hypothesis. If KF does not contain an elementary
subgroup of order ¢°, then either ¢ > p or P centralizes Q,. If ¢ > p,
then & < &*, so once again &* < ¢ for some Ge®. If ¢ < p, then
K  &*, and since L, centralizes B, O, centralizes £}, by Lemma
26.2. In this case, O,(R*) # 1. If O,(8*) is non cyclic, then &* & IM?,
either by Lemma 26.6, in case q € ,, or because Q <] M in case g€ 7,.
If 0,(8*) is cyclic, then Q, < &*. In this case N ()P is conjugate
to a subgroup of £*, since K* is a S-subgroup of N(Q,). Since
K < &*, it follows that P centralizes N;(L,) so that N(L,) centralizes
some S,-subgroup of N(Q,). If q € n(E,(M)), this is not possible. But
if qen(H,(MM)), then Ny(L,) is non cyclic, so N(Ny(Qy)) S M. Thus,
in all these cases, M contains a S,-subgroup of ®&. Since this is not
possible, 80 is a Frobenius group, and so SH(IM) is a Frobenius
group.
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Suppose Me _#,. We will show that if 3, is any subgroup of
P of order » with C(8,) N HIN) = 1, then C(8,) S M. Let M e #
with C(8,) & M,. First consider the case M, = M?, for some G in
S. Let L, be a non identity S,-subgroup of C(3,) N H(IM) and let
L, be a S;-subgroup of C(3,) N H(WM,) containing Q,. If Q, CQ,, then
Lemma 26.2 implies that Q, is a S,-subgroup of . In this case,
since M, and I are conjugate and since P is a S,-subgroup of W, P
contains a subgroup of order » which centralizes the S-subgroup of
M. Since BH(M) is a Frobenius group, this implies that if 3, is
any subgroup of P of order p, then either B,H, (M) is a Frobenius
group, or 3, centralizes H,(I), the S,-subgroup of M. This violates
the choice of Q,. Hence, Q, =Q,. If a S,-subgroup of & is abelian,
then L, < R, M, so M = M,. If some S,-subgroup of & contains
2,(L,) in its center, then by Lemma 8.10, It = M,. Hence, we can
suppose that L), is of order ¢ and Q, & Z(H(IN)). In this case,
N@EQ) NW, is of index ¢ in M, and N(Q) N M is of index g in WM,
and N(Q,)) N WM, contains C(3,).

Let £ = N(Q). If 8 is contained in a conjugate of 9, then
NER)NHE) < 8 so & S M, since N(Q,) N HER) < M,. Similarly,
L < M, and we are done. If R is contained in an element of _#;, then
since 3H(M) is a Frobenius group, we see that N(Q) N HR) < &, DD,
and 2 & M.

Hence, in showing that C(3,) & M, we can suppose that C(3,)
is contained in an element MM, of _#. Since 3:(C(Z,) N H(IM)) is a
Frobenius group, this implies that 3 & M|. Since P is a S,-subgroup
of M, we conclude that P is a S,-subgroup of MW,. By what we have
already proved, BH(I,) is a Frobenius group. This implies that
(C(By) N HEM))H(M,) is nilpotent, so C(B,) N H(M) centralizes H,(I,).
Since M, is the unique maximal subgroup of & containing H, (M), it
follows that H(IM) centralizes H,(M,), so that M & M,, which is absurd
since Me _#, M e . We conclude that C(3,) S M.

We next show that if Me_~ and C(B,) contains an element of
H®@), then C(2,) S M. Here, as above, R, is a subgroup of P of
order p. Let £, be a P-invariant S,-subgroup of C(3,) N M with
QNH®) +# @. From Lemma 26.7, we conclude that C(8)NM
contains a S,-subgroup L, of C(&,), and we can assume that Q, = Q..

Let Me 7, C(B)ESE M. If M =M then MNW, 29, so
WM =MWM,. If M is nilpotent, then by Lemma 26.7, we see that
M, N M contains a S,-subgroup L, of WM, which is B-invariant. Since
8Q, is a Frobenius group, Q, < M, and so M, = WM. We can suppose
that 9 is not nilpotent, and that MM, = M. In particular, W, e .
It follows that P is a S,-subgroup of I, so that SH(I,) is a Fro-
benius group, and so L, centralizes H(IN), and M = W, follows.
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Thus, M = M, in all cases.

Suppose now that P contains two distinet subgroups 3,, B, such
that C(3) N H@) #+ @ and C(8)N HID) + @. We can choose P in
P, such that 8, =8F. If Me_#, we get an easy contradiction.
Namely, C(8) S MNM?, and so M =M? and PeMN P, =B, so
that 3, = B,, contrary to assumption.

If M e _#,, then M N M? contains C(8,) N H(M). If H(M) contains
an abelian S;-subgroup Q with C(3,)NQ #1, then C(8)NLQ < (M, WM,
and M = M?, which is the desired contradiction. Otherwise, if Q is
a S,-subgroup of H(IM) with C(8,) N =1, # 1, then N(Q,) N M is of
index ¢ in M and N ) NIM? is of index ¢ in M?, while both
N N HD) and N(Q,) N H(DF) are S-subgroups of N(Q,). Further-
more, since a S, .subgroup ¥, of N(Q,) is g-closed, it follows that
PN N HE@) and PN(Q,) N H(RF)) are S-subgroups of N(Q,).
Furthermore, 3 has a normal complement in N(Q,), since gex,, and
no element of P* centralizes N(Q,) N . By the conjugacy of Sylow
systems in N(Q,), we can therefore find CeC(P)N N(Q,) such
that (N(Q) N HEIRP)) = N(Q) N HR).  Since (N(Q,) N HEARD))Y =
NE) N HER), and N(Q) N HEAR) M, we conclude that Pt = M7e,
so PCe M, which is not the case, since C is in M and P is not.

Hence, there is exactly one subgroup 3, of # of order » which
has a fixed point on ﬁ(s.m), 80 B, centralizes H(IM). Since P = 3, x P*,
where P* 2 3, the lemma follows.

Lemma 26.12 is quite important because, given M, (and the
hypothesis of Lemma 26.12) it produces a unique factorization of 2,(B).
Namely, exactly one subgroup 3 of P of order p is in the center of
a S,-subgroup of &, and exactly one subgroup 8, of P of order p
centralizes H(IR), and 8 # 8,. This is a critical point in dealing
with tamely imbedded subsets. Furthermore, Lemma 26.12 shows
that H(IN) is nilpotent, a useful fact.

LEMMA 26.18. Suppose Me _»# and P is an abelian, non cyclic
S,-subgroup of MM for some prime p. Suppose further that a S,-
subgroup of ® 1is abelian. Then the following statements are true:

(i) P is a S,-subgroup of G.

(ii) C((P) s M.

(iii) If P and P, are elements of ® which are conjugate in G
but are not conjugate in M, either C(P)N H(I)=1 or C(P)NHI)=1.

(iv) FEither M dominates 2,(B) or C(2,(P)) N HEIY) = 1.

(v) Omne of the following conditions holds:

(a) P&
(b) N(PB) S M for every non identity subgroup B, of B such
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that C(B,) N HM) + 1.

Proof. If pem, then Pe 27 and all parts of the lemma follow
immediately. We can suppose that pem,.

In proving this lemma, appeal to Lemmas 8.5 and 8.16 will be
made repeatedly.

If 2.(B) centralizes H(IMM), then M = N(2(P)) and all parts of
the lemma follow immediately. We can suppose that 2,() does not
centralize H(M). This implies that HI) N P = 1.

We first prove an auxiliary result: if & is any p, ¢-subgroup of
@ containing 2,(P) and if & N H(M) # 1, then K is g-closed. To see
this, let 2 be a S,-subgroup of & N H(M), and let P, be a S,-subgroup
of R N M which contains 2,(P). Let &, be a S,-subgroup of & con-
taining ) and let &, be a S,-subgroup of & containing P,. If &, € .23,
then & € M for some G in @ and so & < K. If &, € 25 then K does
not contain elementary subgroups of order 2®or ¢°, so either &, < & or
<8 IR IR, and K, 4K, then p >q. Suppose gem, Um,. Then
P centralizes the S,-subgroup Q, of M. There is no loss of generality
in supposing that £ is a maximal p, ¢-subgroup of &. It follows
from this normalization that O/(R) is a S,-subgroup of ®, and &=
!,x8®,. Hence, we can suppose g<m,. Since & P R, & ¢ .25 If
O,(R) is not of order ¢, then & is contained in a conjugate of I, by
Lemma 26.7, and we are done. Hence, we can suppose that Q=
O,/8) is of order q. But now N(Q) N M contains S,-subgroups of
order exceeding ¢, so that S, ,-subgroups of N(X) are g-closed. Since
! < N(Q), R is g-closed

(i) is an immediate application of the preceding paragraph, since
some element of P centralizes an element of H(IR)E.

We turn next to (iv). Suppose C(2,(P) N HEIR) +1, and L, is

a non identity PB-invariant S,-subgroup of C(2,(P)) N H(M). Let L,
be a S,subgroup of N(2(%P)) permutable with P. By the first
paragraph of the proof, P normalizes Q,, so by Sylow’s theorem
N(Q,) dominates £2,(P). Suppose for some 7 =1, P normalizes Q,
and L, dominates 2,(P). Let L,., be a Sisubgroup of N(LQ,)
permutable with . Then P normalizes Q,;, and so L,., dominates
2,(B). Since O, S, & ---, we see that some S,-subgroup of &
dominates 2,(P) and is normalized by P. It follows that the normal-
izer of every S,-subgroup of MM dominates 2,(P*) for some M in IR,
and so MM dominates 2,(°B). (iv) is proved.

Notice that if C(2,(P)) N H(AM) # 1, then by (iv), elements of P
are conjugate in € if and only if they are conjugate in M. Thus,
in the case, it only remains to prove (ii). We emphasize that in any
case (i) and (iv) are proved.
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Since P S W, if Me_#, then P M and the lemma follows.
We can suppose that Me_#. Let qen(H (M) and let O be a P-
invariant S,-subgroup of M. If 2,(P) centralizes T(L), then (ii)
follows immediately. Thus, we can choose P in 2,(P)* such that 2,(B)
does not centralize TRQ)NCEP)=Q,. If O, €27 then C(P)S M,
so that (ii) holds. If O, € .25 then L, is eyclic, by Lemma 8.16, and
the containment P & WM'. Hence 2,(P) = (P> X P,, where P, is a
Frobenius group.

Let € = C(P). If & is nilpotent, then Q, = 0,(€), so by Lemma
26.7, € S M, and (ii) follows. Suppose €’ is not nilpotent. Hence,
€ contains an elementary subgroup of order »* for some prime r. If
ren(H(IM)) then € S M for some G in G. Since MNP 2O,
we have I = M? and (ii) follows. Suppose r ¢ 7(H(WM)). In this case,
2,(PB)Q, normalizes a S,-subgroup R of €. Since P centralizes R
and PO, is a Frobenius group, and since ¢ « r, it follows that
RNCEMDPB) #+1. Let M = M(C). By (iv) applied to M, we get
PSM. Since O, N HI) =1, and since the derived group of
IM/H(M,) is nilpotent, P centralizes L,, which is a contradiction.
Hence, C(P) S M, and (ii) holds. The lemma is proved in case
CR,(PB) N H) + 1, and (i) is proved in all cases.

Throughout the remainder of the proof, we assume

(26.1) CRMP)NHIY 1
Suppose B, is a non identity subgroup of P and
(26.2) CPB)NHD) #1,

There are three cases:
(a) Me.# and CHF)NHD) + 2.
(b) Me A and C(PB)NHI) =2

(c) Me._#,.
In each of these cases, we will show that
(26.3) N®B)s I

Case a,. N(P,) is nilpotent.

Choose g so that C(P,) N H(M) contains an element of order g,
and let O, be a P-invariant S,-subgroup of C(P,) N H(M). By (26.1),
0, E N, s0 QS O,(N(B)). If gen(H(M), we conclude that
N(O/(N(By)) S M, by Lemma 26.7. If gem(E(WM)), then O,(N(%,))
centralizes H(IM)? for some G in @, and so N(Q,) 2 (H,(M), H,(M)*,
and G e M follows.

Case a,. N(P,) is not nilpotent,

In this case, N(%,) contains an elementary subgroup of order »*



912 SOLVABILITY OF GROUPS OF ODD ORDER

for some prime r. If rex(H(IM)), then M(N(P)) = M¢, for some G
in . Since M N HIY) # @, we have M =W, If ¢ n(H(M)), let
R be a S,-subgroup of N(P,) normalized by Q,(P)LX, where L, is a
non identity S;-subgroup of C(PB,) N H(M), as in Case a,. Let 2,(P) =
£2(B,) x B, so that O,P, is a Frobenius group by (26.1). If PR is a
Frobenius group, then Q, centralizes R, and R < M. This is not the
case, since r + r, for all r, € 7(H,(IM)). Hence, P, has a fixed point
on R*¥, so 2,(P) has a fixed point on H(M(R)). By (iv) applied to
M(R), it follows that 2(P) S M(R), and so 2,(P) centralizes L,
which is not the case. Thus (26.3) holds in case (a).

In analysing case (b), we use the fact that E,(IR)* = ﬁ(%é), and
that if B is any subgroup of H(IM) which is disjoint from iz(m),
then B is of square free order and gem, N =* for every ¢ in 7(B).

Let Q be a non identity P-invariant S,-subgroup of C(P,) N H(M).
so that |Q| = q. Suppose that (26.3) does not hold.

We will show that O is contained in a maximal subgroup W,
of ® such that MM is not nilpotent, and such that IR, is not conjugate
to I,

Case b,. N(B,) & M° for some G in G.

Consider N(X)). Since N(Q) N WM and N(Q) N WM have non cyclic
S,-subgroups, and since M += M7, it follows that N (L) is contained in no
conjugate of M. Let Q, be a P-invariant S,-subgroup of N(Q) N H(WM).
If N(QY is nilpotent, then Q, S 0,(N(Q)), and so N(Q)S M by
Lemma 26.7. This is not the case, since N(Q) N M has non cyelic
S;-subgroups. Hence, N(LQ)' is not nilpotent, so we take IR, =
M(N Q).

Case b,. N(P,) is nilpotent, but N(P,) is not contained in any
conjugate of IN.

Since 0 S N(B)', QLE ON(By)). If O(N(Py)) is not of order g,
then N(B,) & M¢ for some G in @. Suppose that O = O(N(P,)) is
of order q. Let N, = N(X), so that R, N M has non cyclic S,-subgroups
and N(B,) S N,. Since N(P,) is contained in no conjugate of I,
neither is N,. If N! is nilpotent, then a S,-subgroup of N, N WM is con-
tained in 0,(MN,), by (26.1) and so N, = M, which is not the case.

We apply (iv) to M,. If C(2(P)) N HA) + 1, then P S M, so
that P centralizes L, which is not the case. Hence, (26.1) holds
with T, replacing M. Let P, be any subgroup of P of order p
different from 2,(B,). Then P is a Frobenius group. Choose
ren(H,(M)) and let R be a S,-subgroup of M, invariant under PL.
If © does not centralize T'(R), then C(B) N T(R) # 1, so that case
(a) holds with M, replacing M, P, replacing P,.

Suppose then that QO centralizes T(R). Then N(Q)&S M, so a
Ssubgroup L, of N(Q) N M is contained in M,. We suppose without
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loss of generality that Q, normalizes R. If now P, is any subgroup
of P of order p which does not centralize L,/Q, then since Q, does
not centralize T(R), we conclude that C(P.) N T(R) += 1.

Thus, in all cases, if P, B, ---, B are the distinet subgroups
of P of order p which have fixed points on I}(EIRI), then n = p, so
that n =p or p + 1.

Choose Ne N(2,(B)). Then there are indices 7, 7, not necessarily
distinet, such that B} = P3¥. If 4 = j, then Ne M, by (a). If 7+ 7,
then N(P}) S T, NIMY, so that HOL) NTF = @ and W, = MY,
Hence, N(2(P)) S M,, so 2,(P) S M], and 2,(P) centralizes O, which
is not the case. Hence, (b) implies (26.3).

We will now complete the proof of this lemma in case Me ;.

Since some element of 2,(B)* has a fixed point on I?(EIR), (ii) holds
by (26.3). Also, by (26.8), alternative (v)b holds. It remains to prove
(iii). Suppose P,, P, are elements of P which are conjugate in @,
but are not conjugate in I, and that C(P)N HI) =+ 1,71 =1,2,
"Theorem 17.1 is violated.

We next verify (26.8) under hypothesis (c).

Suppose by way of contradiction that (26.8) does not hold. Let
£ be a non identity PB-invariant S-subgroup of C(PB,) N H(W). We
will produce a subgroup £ of ® such that & is not nilpotent, and
such that QP = &. Once this is done, then it will follow as in case
b, that » of the p + 1 subgroups of P of order » have fixed points
on HM(®))!, and (26.3) will follow.

Suppose M, is a maximal subgroup of & containing N(B,). If
M, is nilpotent, then L = O,(M). If O,(IM) is non abelian, then
M, = M for some G in &. Furthermore, from (26.1) and the fact
that Q is not a S;-subgroup of @, we conclude that < = 0,(IM) N C(B,).
Hence, N(X) contains C(P,). Let M, be a maximal subgroup of &
containing N(Q). If T is nilpotent, then WM, = M and (26.8) holds.
Hence, M, is not nilpotent, so we can take & =M,. If O,(M,) is
abelian, then I = M, and (26.3) holds. Thus, (26.3) holds in all cases.

The completion of the proof that (26.3) implies this lemma is a
straightforward application of Theorem 17.1.

LEMMA 26.14. Suppose M e _# and P i3 a non abelian S,-subgroup
of M. Then N(R(Z(P) S M. Furthermore, one of the following
conditions is true:

(@) QuZ(P)) centralizes H(IMN).

(b) NB) S M for every non identity subgroup B, of B.

(© P < HI.

Proof. Suppose pem,. If Pe.2, then M = M(P), and so
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NQ(Z(P))) < M. Since P = H(M), the lemma is proved. If Pe .27,
then P contains a cyclic subgroup of index p. Since P is assumed to
be non abelian, P is a non abelian metacyclic group, so B L W, by
3.8. Lemma 26.10 is violated.

Through the remainder of the proof, we assume per,.

Let 3 = 2(Z(P)), so that 3 is of order », by Lemma 26.2 and
Lemma 26.10.

If T is nilpotent, then B <{ M, and all parts of the lemma follow.
We can suppose that ¢’ is not nilpotent. In particular, Mec _#. We
can further assume that p ¢ x(H(IN)).

Since B is non abelian, 3 centralizes E,(IM).

Choose q € n(H,(IM)) and let O be a P-invariant S,-subgroup of M.
If gen*, then 3 centralizes Q.

Thus, if 7 = 7(E(M) U (z* N a(H(M))), then B centralizes a S;-
subgroup of M. If ¥ = w(H(IM)), all parts of the lemma follow.

Let ren(HY)) — & and let R be a S,-subgroup of MM normalized
by P, and such that 3 does not centralize R. If there are no such
primes r, we are done.

Let 9B, be any subgroup of P of order p different from B. We
will show that N(PB) = IN.

Since 8 does not centralize R, R N C(B) £ C(B). Set R, =Rn C(PB).
If R,e25 then N(P) S M. Otherwise, R, is a non trivial cyclic
subgroup of R, and 38R, is a Frobenius group.

Let M, be a maximal subgroup of ® containing N(P). If M| is
nilpotent, then R, < 0,(M), so M, = M, by Lemma 26.6. We can
suppose that IR is not nilpotent and that I, is not conjugate to M.
If a S,-subgroup of I, is non abelian, then 3 centralizes R,, which is
not the case. Hence, a S,-subgroup of AN, is abelian and non cyclic.
We can apply Lemma 26.12 to I, and a S,-subgroup L* of T, which
contains PB,.3. We conclude that SH(IN,) is a Frobenius group. Since
B8R, is a Frobenius group, R, centralizes H(M,), and so M = M,. We
conclude that MM contains N(P,) in all cases.

Now let P, -+, B, be the distinect subgroups of P of order p
different from 3. Here n = p* + p. Let ¥ be any proper subgroup
of @ containing 2,(P). Let & = 0,(2). Since ¥, is generated by its
subgroups C(PB,) N 8, 1 <1< n, we have &, S IM. Let &, =2 N N(Q(D)),
and choose L in £, We can then find indices ¢, j, not necessarily
distinct, such that P! = P;. Hence, N(PB;) & M N WME,  Since N(P;)
contains an element of ®* S H(IN), we have M = M-, Hence, L S M,
so in particular, N(B) & .

Let P, be any non identity subgroup of P. If P, is non cyelic,

then N(P)S N@B)SM. If B, is cyclic, then N(2(By) S M. The
proof is complete.
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LemMMA 26.15. Suppose Me _#,A is a cyclic S-subgroup of W
and ANW =1. Then A is prime on HWM), and CN) N HIN) is a
Z-group.

Proof. Suppose U is prime on H(IWM), but that T is a non cyclic
S;subgroup of C(A) N H(WM). Choose pen(WA) and let A, be the
S,-subgroup of UA. Since NX,) £ M, it follows that Qe 2. Thus,
if gem,, Q is a S,-subgroup of &, while if g€, O is also a S,-subgroup
of ®, by Lemma 8,12, Since ) € 25, we have g € 7, so that M = N(Q).

Let M, be a maximal subgroup of @ containing N(,). If a
S,-subgroup of ® is cyclic, then MM = N(L) dominates ¥A,, which is
not the case, since A, NP =1. Hence, pen,Ux,. Let A* be a
S,-subgroup of M, permutable with Q. If A} is a S,-subgroup of G,
then O normalizes ;. Otherwise, L normalizes A} since A, < Ak,
and Lemma 8.5 applies to QA;.

Let & be a maximal p, ¢g-subgroup of ® containing QA*, and let
8, be a S,-subgroup of & Then &, < &, so that £, is a S,-subgroup
of @. Let M, be a maximal subgroup of & containing N(R,).

If £ were non abelian, then M = M, by Lemma 26.14, which is
not the case. Hence, Q is abelian. If pex, then by Lemma 26.13,
we have N(2,(Q)) & M, since O centralizes A, = 1. Since this is
impossible, we see that pem,.

If A, £ R, then by Lemma 26.1, together with the fact that
N(Q) covers N(&,)/8,C(R;), we see that A, N W # 1, contrary to
hypothesis. Hence, %, & &;,. Since A, = C(Q) N &,, this implies that
&, is a non abelian group of order p* and exponent p.

Since some element of O has a non identity fixed point on H(I,)?,
and since T centralizes O, we see that T’ & M,, by Lemma 26.13.
Since N(2,) & M, and since A, N W’ = 1, it follows that M & M,, the
desired contradiction.

Thus, in proving this lemma, it suffices to show that % is prime
on H(I).

First, suppose that ¥ is a p-group for some prime p. We can
clearly suppose that |%| = p?, and that C(2,(20)) N H(M) + 1.

Case 1. pem, Letqen(E(M)), sothatgen, Un,, Lemma 26.9
applies. Let g € 7(H,(IM)). Then p ~ ¢ since AN W = 1. Lemma 26.10
applies. If Me_#, Lemma 26.9 applies.

Case 2. pem, and a S,-subgroup of & is abelian,

If g en(E(M)), or qen(H(M)) and M e _~;,, Lemma 26.7 applies.

Let q e m(H,(IM)), and let O be an A-invariant S,-subgroup of IN,
If A centralizes O, we have an immediate contradiction. Hence, %
does not centralize Q.

We can suppose by way of contradiction that [C(2,(2)) N L, A] # 1.
If C(2,() N Qe 25 M contains a S,-subgroup of &, which is not the



916 SOLVABILITY OF GROUPS OF ODD ORDER

case. Otherwise, ¢ > p, so every p, g-subgroup of ® is g-closed, and
I contains a S,-subgroup of ®, which is not the case,

Case 8. pem, and a S,-subgroup of @& is non abelian.

Here, A & N(2,(A)), by Lemma 26.2. Since C(2:()) N HIN) e 75,
the lemma follows,

Case 4, pem. In this case, also, we have ¥ & N(2,(¥)), and
the lemma follows.

Next, suppose that W = A, x A, where ¥, is a2 non identity p,-group,
©+=1,2. Suppose by way of contradiction that Q is an U-invariant
S,-subgroup of H(IN) and that A is not prime on Q. We can suppose
that %, does not centralize 0. N C(2,(A)) = 2N CHA) = 2,

Let M, be a maximal subgroup of & containing N(2,(%,)). Then
N, is not conjugate to M, either because A, is not a S-subgroup of
M, or because A, S M. Let L, be a S,-subgroup of M N M, which
contains L, and is A-invariant.

Suppose £, < Q,. Then A, £ H(A), since [Ty, A +# 1, and
g ¢ T(H(W,)). Furthermore, Q, is non cyclic. Suppose ¢ €x,. In this
case, ¢ > p,, 80 a §,-subgroup U of M, normalizes some S-subgroup
of M, and it follows that A} normalizes some S,-subgroup of &, This
implies that 2, is a S, -subgroup of . But in this case A, & N2,(A,))
so that U, centralizes Q, and so Q, = £,. Suppose gen, If O, 2],
then N(2,(2)) & M, which is not the case. Hence, Q,€ 2 so that
q > . Once again we get that Q, = Q,. Hence, we necessarily have
Q, = L, in all cases.

Since ¥, is prime on H(IM), from the first part of the lemma, we
conclude that Q, is eyclic.

We next assume that IR is nilpotent.

Suppose 2,(0,(M,)) = 2,(V,). Since L, is a S,-subgroup of MW, N M,
it follows that gex, and Q, is a S,-subgroup of ®, so that I = M,.
Since O, = [Q,, ;] £ 0,(M,), we can suppose that 0,(IM,) is non cyeclic.
In this case, however, 0,(I) is a S,-subgroup of & and M, is conjugate
to M, which is not the case.

We can now suppose that IR; is not nilpotent.

Suppose p, ¢ 7(H,(IM,))). Let & be a complement for H,(MWM,) in W,
which containg Q2. Then & is nilpotent and so [Q,, U.] & 0.(€).

Case 1. gem. In this case, ¥, is a S,-subgroup of @, and L,
dominates A,. This violates A, N W = 1.

Case 2. gem, and a S,-subgroup of @ is abelian. In this case,
22y, %)) = 2,(0,(€)), so once again U, is a S, -subgroup of G and
M dominates A,.

Case 3. qem, and a S,subgroup of ® is non abelian. Since L,
is cyclic, we have ¢ > p,, so some S,-subgroup &, of € normalizes
some S,-subgroup of ®. But now MM dominates U, since every »,, ¢-
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subgroup of & is g-closed, and & dominates 2A,.

Case 4. gqem, If gen*, then every p, g-subgroup of & which
contains a S, ,-subgroup of I, is g-closed, so once again M dominates
A, and A, is a S,-subgroup of &, Hence, g¢n*. Since MW, is not
conjugate to M, it follows that if Q, is a S,-subgroup of & containing
£,, then Q; € 225, which implies that Q, is eyclie, and Q, < M. Hence,
Q, = 1, since ¥, centralizes Q,. But now Q, = [Q,, U] < €, so & = M.
Thus, once again ¥, is a S, -subgroup of @ and M dominates A,.

All these possibilities have led to a contradiction. We now get
to the heart of the matter. Suppose p, € 7(H,(IM,)).

We will show that p, ¢ r*.

Let P, be a S,-subgroup of H,(IY) containing A, and invariant
under A,Q,. Suppose that

(26.4) NI, Q) s

We will derive a contradiction from the assumption that (26.4) holds.

If g e m,, (26.4) is an absurdity, since N([2,, O,]) =M. Ifqenm, U,
then a S,-subgroup of N([2,, O,]) N P is non eyclie, so g € 7, as already
remarked. If ¢ < p,, then ¥, centralizes a S,-subgroup of M, so L,
is a S,-subgroup of ®. In this case, however, [U,, O] < M, an absurdity,
by (26.4). Thus, if (26.4) holds, then gex, and ¢ > p,.

Since (26.4) is assumed to hold, it follows that Q, is a S,-subgroup
of M N N(IYU, £,]). Hence, L, is non cyclic. We have already shown
that Q, is eyclic, We conclude that (26.4) does not hold.

If p,exn*, then [, O,] centralizes P,, by Lemma 8.16 (ii), so
{(26.4) holds. Hence, p, ¢ 7*.

Since (26.4) does not hold, and since p,¢x*, C([;, LD NP, is
cyelic. It follows that C(,) NP, is non eyelic. This implies that
NE) < M, since CAL)N P, € Z5. Since p, ¢ 7(H(I)), and since ¢ > p,,
it follows that a S,, ,~subgroup of I,/H(IR,) is g-closed. This in turn
implies that some S,,-subgroup of 9% normalizes some S,-subgroup of
@®. Since %, is a S,,-subgroup of M, U, is forced to be a S,,-subgroup
of @. But N®) & M, and A, & NY, so A, centralizes L,. The
proof of the lemma is complete in case w(¥A) = {p,, p.}.

If |7(A)| =38, the lemma follows immediately by applying the
preceding result to all pairs of elements of w(%).

LEMMA 26.16. Suppose M e _# and H(M) is not nilpotent., Then
(P W | i3 @ prime and W 18 a S-subgroup of M,

Proof. Let pen(M/IM') and let A, be a S,-subgroup of M. By
Lemma 26,11, %, is abelian. Suppose 2, is non cyclic, If a S,-subgroup
of ® is non abelian, then H(IN) is nilpotent, by Lemma 26.12. Hence,
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we can suppose that a S,-subgroup of & is abelian. By Lemma 26.13
A, is a S,-subgroup of &. By Griin’s theorem, the simplicity of ®,
and Lemma 26.15, %, contains elements A4,, 4, which are conjugate in
S but are not conjugate in M. If 2,(CA)) = 2,({4.)) and if 2,(C4))
has a fixed point on H(IM)!, then N(2,((AD)) S M, so that A, and A4,
are conjugate in N, Since this is not the case, 2,(K4AD))H(MM) is a
Frobenius group, and so H(IM) is nilpotent, contrary to assumption.
Hence, 2,((A)) # 2,((4,>). By Lemma 26.18, either 2,(KA))H(M) or
2,(KAD)H(I) is a Frobenius group, which is not the case. Hence,
A, is cyelic.

Let A be a complement to P in IN, so that A is a cyelic S-subgroup
of IR,

By Lemma 26.15, % is prime on H(M) and C(N) N H(M) is a Z-group.

Let & = [¥, H(I)] and suppose that |A| is not a prime. By
Lemma 26.3, £ is nilpotent. By 8.7, & < HM). Hence F(H(I)) 2 !,
so that H(IM)/F(H(M)) is a Z-group. It follows that H(IN) £ W', the
desired contradiction.

LEMMA 26.17. Suppose Me # and 7,=n(HW))Nrn* 7,=
n(YHD) Nn*. Let ©,={py, -, P}, 2 >0 > -+ > p,, and 7,=
{9y, 1.}, @n> <+« >qn. Set T =1,U7,. Then a S.-subgroup of M
has a Sylow series of complexion (p,, *+«, Dy, @iy ***» Ow). Furthermore,
if ret, M has r-length 1.

Proof. We first show that M has r-length 1 for each » in 7.
If re¢n(H(IM)), this is clear, so suppose 7€ n(H,(M)). Let R be a
S,-subgroup of M and let A be a subgroup of R of order » such that
Cyx(A) = A x B where B is cyclic.

Let R, = RN O, (M), and W, = NR,). It suffices to show that
M, has r-length one, since WM = WM,0,.(M). Let B be a subgroup of
R, chosen in accordance with Lemma 8.2, and set T = 2,(B). Then
ker(, - Aut W) S M, N O, (W). If A S R, then m(BW) < 2, and we
are done. We can suppose that A £ R,. This implies that m(BW) < »,
since C(A) N T has order r and W is of exponent ». We are assuming
by way of contradiction that I has r-length =2, so by (B), we have
m(W) = r. Hence, m(W) = r.

Set B, = W/ D(W) and let W, = M, /ker (M, — Aut B,). Then A maps
onto a S,-subgroup of M,. Hence M, has a normal seriesl <€, c €, = M,,
where €, and I,/€, are r'-groups and |€,: €, | = 7.

Since m(W) = r, €, is abelian. Also ,/€, is faithfully represented
on €,/€, and since r € 7(H(IM)), €, M,.

By Lemma 26.16, | : M| = q is a prime, and W is a S-subgroup
of M. We let Q be a S,-subgroup of M,, so that O is of order q.
Since |M: W' | = | M, : W} |, it follows that O maps onto M,/€,. Let
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A denote the image of A in M, and let O denote the image of Q in
M,. Since €, is a r'-group and a ¢’-group, we assume without loss
of generality that O normalizes 9.

Let a be the linear character of Q on U, so that @ = 1. Let 8
be the linear character of Q on B,/yTW,A. Since ¢ divides (» — 1)/2,
Cm;l(@) is non cyclic. Hence, C(Q) N H(WM) is not a Z-group, contrary
to Lemma 26.15.

Thus, M has r-length one for each rez. Since a S.,-subgroup of

M has a Sylow series of complexion (q,, - -+, ¢,) and since a S.-subgroup
of I is 7,-closed, it suffices to show that a S, -subgroup of M has a
Sylow series of complexion (»,, «--, D,).

Let & be a S,, ., ;subgroup of M with Sylow system &;, §; where
»; > p;. By Lemma 8,16, & N N(8;) centralizes &;. Hence R is p;-closed,
since & has p;-length one. The lemma follows.

LEMMA 26.18. Let Mec _~# and let € be a complement for H(IN)
in M. Then there is at most one prime p in n(€) with the following
properties:

(i) A S,-subgroup of € is a non cyclic abelian group.

(ii) A S,-subgroup of ® is non abelian.

Furthermore, if n(€) contains a prime p satisfying (i) and (ii), then
a S,-subgroup of € 18 a Z-group.

Proof, Suppose p,, p;€ n(€), », # p, and both p, and p, satisfy (i)
and (ii). Let &, be a S,-subgroup of € and let G, be a S,,-subgroup
of € permutable with &,,

Let @, =UA; x B;, where |A;| = p;, A; centralizes H(M), B; H(M)
is a Frobenius group and 2,(B;) S Z(%P;) for some S, -subgroup PB; of
®,i=1,2. Assume without loss of generality that p, > p,. Then
@, normalizes &,. It follows that 2,(€, centralizes &,/%,, and this
implies that 2,(€,) centralizes 2,(B,). It follows that @ satisfies E, ,,.

By Lemma 26.17, N(P,) contains a S, -subgroup P} of &. By
Lemma 8.16, P}’ centralizes B, so centralizes &, Since C(Y,) E WM,
we see that p, € 7,. By Lemma 26.2, and Lemma 26.10, 3, now centralizes
%B,. This is a contradiction, proving the first assertion.

Now suppose p € (&) satisfies (i) and (ii), €, is a S,-subgroup of & and
@, is a non cyclic S,~subgroup of & permutable with €,, ¢ € n(€), ¢ # p.

Case 1, €, is non abelian.

In this case, &, is a S,-subgroup of & and g €x,, by Lemma 26.14.
Since €, & W, &, normalizes &,. Write €, = A x B, where A centralizes
H(?), BH(IM) is a Frobenius group, and 2,(B) & Z(P) for some S,-
subgroup of P of @ with €, =P. Then 2,(€,) centralizes &,/E, N C(H(IN)).
If @, centralizes €, then ® satisfies E,, as can be seen by considering
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N(E,).

We now show that & does not satisfy &,,. Otherwise, since
NE,) S M, we see that &, normalizes some S,-subgroup P* of ©.
Then €, centralizes 3* by Lemma 26.2, Lemma 26.14, and Lemma 8.16.
This is not possible since €, is abelian.

Hence, & does not satisfy E, ,, so 2,(€,) does not centralize &, and
g > p. Thisimplies that | €, : €, N C(H(M)) | =¢q. Hence &, N C(2(€,))=
€; is of order q.

Consider N(2,(€,)) =RN. Since a S,-subgroup of N has order
p|€,|, it follows that a S, ,subgroup of R is g-closed. Let %, be a
S,-subgroup of N containing €F. If §F, is not of order ¢, then N(2,(F.))
contains a S,-subgroup of &, a S, ,-subgroup of N(2,(%,)) is g-closed,
and a S,-subgroup of N(2,(%,)) has larger order than &,. As N(C,) S
M, this is not possible. Hence §, = € has order ¢. But now a
S.;-subgroup of N(%,) contains & and Z(€,), so a S, ,subgroup of
N(F,) is g-closed. This in turn implies that a S,-subgroup of N(E,)
has order larger than |€,|, which is a contradiction.

Case 2. €, is a non cyclic abelian group.

By the first part of the proof, and by Lemma 26.13, €, is a S,-
subgroup of &. Since 2,(€,) centralizes € /E, N C(H(WM)), and since
G, LC(H(I)), it follows that ® satisfies €,,. This implies that a
S, ,-subgroup of & is p-closed, by Lemma 26.2. Hence, &, centralizes
the center B of some S,-subgroup of ®, since 2,(€,) centralizes 2,(B),
(where €, = A x B, as in Case 1). To obtain the relation [2(E,), 2,(B)}
=1, we have used Lemma 26.13 to conclude that there are at
least 2 subgroups of &, of order ¢ which have no fixed points on H(?), or
else &, S M’ in which case &, normalizes &, and so 2,(B) centralizes €,.

But now N(2,(®8)) dominates &,, so &, centralizes some S,-subgroup
of ®, contrary to C(€,) S M. The proof is complete.

LEMMA 26.19. Let Me _#. Suppose M/H(M) is abelian., Sup-
pose further that either H(IM) is nmilpotent or |M: H(M)| i8 not a
prime. Then M 18 of type I or V.

Proof. Let & be a complement for H(M). Since H(IM) = I’
by hypothesis (we always have H(IN) S I’), & = M/WM' is abelian.

Case 1. € is cyclic.

We wish to show that H(I) is nilpotent, so suppose || is not
a prime. Since | €| is not a prime, since € is prime on H(IM), since
¢ has no fixed points on H(IM)/H(MN), and since C(E) N HEM) is a
Z-group, it follows from Lemma 26.3 that H(IN) is nilpotent, so that
C(E) N HI) = €, is cyclic.

Case 1la. G, =1,

In this case, M is a Frobenius group with Frobenius kernel
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H(R) = W', so condition (i) in type I holds. If H(M) is a T.I. set
in ©, then M is of type I, since (ii) (a) holds, so suppose H(M) is
not a T.I. set in ®. Let H(M) =P, x --+ x P,, where P, is the S, -
subgroup of M and {p, ---, .} = (HEM)). If p,em, then clearly
p;ent. If p,em,Nx*; then also p, € n}, since EZ(P;) is a Frobenius
group. Similarly, if p; e, and ; is non abelian, then p; e 7.

Suppose »,¢7m*. Then either p;em, and B, is abelian, or
p;em, — *. We will show that the second possibility cannot occur.

Choose G in & — M such that T = HA) N HE)? + 1, and let
H be an element of ® of prime order p. If p,en, — x*, and p = p,,
then C(H) 2 {PB;, B¢, and M = M¢, contrary to assumption. Hence,
p=p;. In this case, C(H)22{C(H)NP;,, C(H)N P>, and since
p;€E®, — *, both C(H)N P, and C(H) N P¢ are in 27, so M = M,
Hence, (r, — #*) N a(H(M)) = 2.

Thus, if 7(H(I)) & 7, then 7(H(IM)) contains a prime ¢q such
that the S,-subgroup L of W is abelian and gex,. Since |[€] does
not divide ¢ — 1 or ¢ + 1, but |€| does divide ¢ — 1, we can find
r, 7, € () such that »,|¢—1 and 7,|¢+ 1. Let & be the S, -
subgroup of €. Then Q = Q, x Q,, where Q; is normalized by €, and
Q; is cyclic, ¢ = 1,2, Since 7,|q + 1, it follows that Q, and Q, are
isomorphic €, -modules. Hence, €, normalizes every subgroup of Q.

Once again, choose G in & — M so that D = HIM) N HIM)® = 1.
Then C(D) 24K, 0, so C(D) is not contained in any conjugate of
M. Let C(DY=WMe_»#. We apply Lemma 26.13 to M, and Q.
Since C(2,(L)) = H(IM), we have H(IM)<S M,.

Suppose H(IN) were not abelian. Let R be a non abelian S,-
subgroup of H(IMM). Apply Lemma 26.16 to I, and R, and conclude
that N(2,(Z(R))) < M,, and so M S IM,, which is not the case. Thus,
alternative (ii) (¢) in the definition of type I holds, so IR is of type
I. (Since H(M)e 27, H(M) is generated by two elements.)

Case 1b. G, # 1,

Since H(M) = T, we have G, HMY S HWY U {1}. It follows
that N(E;) S M for every non empty subset &, of Gt Let G = GG, —
G—-6¢. If @0 is any non empty subset of (5, then each element of
@, is of the form EE, Ec®, E c@. Thus, if § = {(E®|E,cC)},
then N (@o)g N (%o) SIM. Since MN N (@'o) = @, M is a three step
group with € in the role of Q*, H(M) in the role of 9, €, in the
role of *. Since H(IMM) = W', we take W =1, so that (i) in the
definition of type V holds. If (ii) (a) holds, then M is of type V,
so suppose (ii) (a) does not hold.

Since G, < HMNY, H@AR) is non abelian. Let H(M) =P x &,
where P is a non abelian S,-subgroup of H(IN) (there may be
several).
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We will show that &, is a T.I. set in ®. Suppose Ge® — M
and &, N Sf = D is a maximal intersection, so that N(D) is contained
in no conjugate of M. Let M, e _»~ with N(D)SM,. Apply Lemma
26.14 to WM, and P and conclude that iUtCiml, a contradiction.
Hence, &, is a T.I. set in &,

Since H(IM) is not a T.I. set in ®, choose Ge® — M so that
1+ H) N HM)® is a maximal intersection. Since &, is a T.I. set
in ©, we see that HM) N HIN)® = D, = PN B, and N(D, is con-
tained in no conjugate of M, while N(D)26S,. Since &, is a T.I.
set in N(9,), and since N(®,) £, &, is cyclic. By construction, P
is non abelian, so pen*, It only remains to show that pecx*.

Apply Lemma 8.16 to P and & If € does not centralize Z(P),
then |&| divides p — 1 and we are done. Suppose that € centralizes
Z(P). Then € is faithfully represented on 2,(Z.(B))/2.(Z(P)), so if
| QU(Z(P)): 2(Z(P))| = p, we are done. Otherwise, we let P, be an
element of P of order p such that Cg;(Po) = (P> x U, where U is
cyclic. Since |2(Z(PV)): 2(Z(P))| = p*, we have P,c 2(Z,(P)), so
(Po 2(Z(P)><AP. By Lemma 8.9, & +(P) is empty. By
Lemma 26.2, P is a central product of a cyclic group and 2,(P),
with [ 2(P)| = p*. Since PS W and since & centralizes Z(P), we
have |P|=p’. € is faithfully represented on PB/P’, and since €
centralizes ', each element of & induces a linear transformation of
PB/PB' of determinant 1. Thus, || divides either p — 1 or p + 1,
since & is isomorphic to a cyclic p’-subgroup of SL(2, p). Hence,
peny, and W is of type V.

Case 2. € is non eyclic.

Case 2a. There is an element p ¢ w(E) such that the S,-subgroup
€, of € is non cyclic and a S,-subgroup of & is non abelian, In
this case, Lemma 26.18 implies that € = &, x % where § is eyclic.

Let €, =6G,xE,, with |G, =9 €E,S Z(M), and with
G, H(M) a Frobenius group. Also § is a cyclic S-subgroup of M.

We will show that &, FH(IM) is a Frobenius group. If § =1,
this is the case, so suppose ¥ + 1. By Lemma 26.16, ¥ is prime on
H(M). Let * = C(%) N H(M), and suppose H* + 1. Then €, H* is
a Frobenius group. Let M, be a maximal subgroup of ® containing
N(Z), & being a fixed subgroup of & of prime order. Then I, is
not conjugate to M. Hence, M N M, € 2;. Since €,,H* is a Frobenius
group, €,, N M = 1, so a S,~subgroup of IR, is abelian. By Lemma
26.12, €, H(IM,) is a Frobenius group, so H(IM) N M, centralizes H(I,).
Since 1CH*S HIM) NM, we see that MS M, which is not the
case. Hence, $* = 1, so FH(IM) is a Frobenius group, as is &,,FH(N).
M itself is a group of Frobenius type.

Suppose ' is not a T.I set in ® and 7(W') £ 7}, It follows readily
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that D' is abelian and is generated by two elements. M is of type I.

Case 2b. Whenever a S,-subgroup of & is non cyclic, a S,-
subgroup of ® is abelian.

Let # be the set of primes p n 7(€) such that a S,-subgroup
of € is non cyclic. Let € = €, x &,, where €, is the S;-subgroup of
€. Thus @, is a cyclic S-subgroup of M, and # +# @. By Lemma
26.13, €, is a S-subgroup of ®.

We first show that if pe® and €, is the S,-subgroup of &,, then

(26.6) CE)NHI) =1

This is an immediate consequence of Lemma 26.13 (iv) and Griin's
theorem, since W' N €, = 1.

We next show that either &, = 1 or & H(IM) is a Frobenius group.
Suppose €, + 1. By Lemma 26.15 &, is prime on H(IR). Suppose
O*=CE)NHI) +1. Let €, be the S,subgroup of &, for some
qen(§,), and let M, be a maximal subgroup of @ containing N(E&,).
Then I, is not conjugate to k.

By Lemma 26.18 (ii), together with W N &, = 1, there is some
element of 2,(¢,)* which has no fixed points on H(IM), so H* is
cyclic. By construction <€, 9*>SM,. Suppose WM, N H(IN?) is non
cyclic for some G in ®. Let R be a non cyclic S,-subgroup of
MmN HEIRE., If a S,-subgroup of © is abelian, then H(IM®) =M, by
Lemma 26.13 (i) and (ii). Since €S M,, we have M? = MW,, which
is not the case. Hence, a S,-subgroup of & is non abelian. If R
were non abelian, then M, = WM for some G, in G, by Lemma 26.14
with R in the role of 8. Hence, R is abelian. By Lemma 26.13,
R=RXR, | R | =7, R, centralizes H(IM,) and R,H(IN,) is a Frobenius
group. By (26.6), RS M, so R, < M,. Since RH(M,) < MWM,, we can
find a S,-subgroup R* of M, which is normalized by &,. Since IM
and M, are not conjugate, w(H(WM)) N 7(H(M)) = B, so R* does not
lie in H(I,), and R* does not centralize H(M,). There are at least
» subgroups P, of 2(€E,) with the property that T,LR*/R, is a Fro-
benius group, by (26.6). Each of these has a fixed point on H(IN):.
It follows from Lemma 26.13 (iii) that I, dominates &,. This is
absurd, by (26.6) and Lemma 8.13. Hence, I, N H(WE) is cyclic for
all G in . In particular, M, N H(M) is cyelic. This implies that
M, N HEN) is faithfully represented on H(IR,), so H* is faithfully
represented on H(M,). By (26.6), at least p subgroups of &, or order
p have fixed points on H(IM,), so WM, dominates &,, which violates (26.6),
by Lemma 8.13. &,H(IM) is a Frobenius group. Thus, in the defi-
nition of a group of Frobenius type, the primes in n(€,) are taken care
of. Let &, = €,, x €, with|€,,| =<|€,.|, pe 7, and where §,; is cyclie,
+=12. 1If |€,|<|E,,]|, then 2,(€,,) char ¢, By Lemma 26.14
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(v), it follows that E,,H(M) is a Frobenius group. If |E,,| = |C,,|,
then by Lemma 26.14 (iii), there is some element P of order p in G,
such that (PO>H(IM) is a Frobenius group. Thus, & contains a sub-
group &* of the same exponent as & with the property that G*H(I)
is a Frobenius group. M is of Frobenius type.

If H@AR) is not a T.I. set in ®, and n(H(M)) & «r}, it follows.
readily that H(IN) is abelian and is generated by two elements. The
proof is complete.

LEMMA 26.20. Let Me _# and let T be the subset of primes p
wn T(M/H(N)) such that a S,-subgroup of WM is a non cyclic abelian
group and a S,-subgroup of © is abelian. Let & be a complement for
H() in M. Then a Si-subgroup P of € is a normal abelian sub-
group of € and PNE =1 or L.

Proof. We can suppose L'+ 1. Let pef and let €, be a S,-
subgroup of €. We first show that €, < €. Let gen(€) and let
€, be a S,-subgroup of & permutable with &,. If &, is non abelian,
then N(Q(Z(E))ESM, by Lemma 26.14. If 02,(Z(E,)) centralizes
2.(€,), then €, &M so that &, centralizes &, We can suppose
that 2(Z(€,)) does not centralize 2,(€,). Since 2,(E,) centralizes
€,/€, N C(H(IM)), and since &, Z C(H(WM)), it follows that €, & so
that &, centralizes &,.

If €, is a non cyclic abelian group, then ¢€# by Lemma 26.18.
If € 46E,¢E, then €, normalizes &, and £2,(€,) centralizes
G/E, NCHED)). If € NCHE) =1, then N(E,) dominates 2,(€,),
so €, centralizes €,. If €, N C(HW)) +# 1, then €, N C(2(E,)) domi-
nates &,, so that &, dominates &, and once again &, centralizes &,.

Suppose €, is cyclic. We can suppose that &, normalizes &,.
Then 2,(€,) centralizes &,. If qem, U7, then &, centralizes €,
since €, S N(2,(€,)). We can suppose g€ m, and that a S,-subgroup
Q of C(2(E,)) is in 27. In this case, however, C(P) & M(X) for all
Pe @, so M = M(Q) which is absurd. Hence, €&, < €, so that P is
a normal abelian subgroup of &.

Suppose & contains a non abelian S,-subgroup &, for some prime
g. Then N(2(Z(G,))) SM, which implies that PSI, since N(E,)
dominates each Sylow subgroup of .

Thus, in showing that PN =1 or B, we can suppose that
every Sylow subgroup of € is abelian. By Lemma 26.18 and the defi-
nition of #, this implies that a S;-subgroup § of € is a Z-group.
This in turn implies that § N MM’ is a S-subgroup of WM. Let F be
a complement for F NP in F. Then F, is cyclic. If Fp, =1, then
& is abelian and we are done. We can suppose §, # 1.

Suppose $,is not of prime order. Let T = [T, PH(M)]. By
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Lemma 26.3, and Lemma 26.16 ¥ is nilpotent. If [, P] # 1, then
[Bo, €51 = 1, for some S,-subgroup €, of P. Hence, N([F,, &,]) domi-
nates every Sylow subgroup of P. Since [F, H(IN)] can be assumed
non cyclic, PSS WM', and we are done. If [F, B] =1, then PN W =
1, and we are done.

We can now suppose that &, is of prime order . We can now
write P = P, x P, where B, =PNCEF) and P, =[P, F), and we
suppose by way of contradiction that P, #+ 1,7 =0, 1.

Choose p so that &, N B, # 1, where €, is the S,-subgroup of PB.

If B, N &, centralizes H(M) N C(F,), then N(P)< M, by Lemma
26.13, since H(M) N C(F,) # 1. Since B, N &, 4 N(€,), B, N &, = DY,
contrary to construction. Hence we can assume that (3, N €,)H*
is a Frobenius group, where $* = H(I) N C(%,). Let M, be a maxi-
mal subgroup of @& containing N(F,). Since B, N E, 4 N(E,), it
follows that LB, N E, S I, since N(F,) dominates €,. Since MM, is
not conjugate to M, it follows that m(H (W) N 7(H(M)) = @, so that
O* N HE) =1. Since [9*, B, N E,] # 1, both B, N &, and [*, B, N G, ]
are in IM,, so commute elementwise. Thus [$*, B, N €,]=1, contrary
to the above argument. The lemma is proved.

LEMMA 26.21. Let Me _ 7 and suppose mw(IMM/I) contains a
prime p such that a S,-subgroup of WM is non cyclic. Then W 18

of type I.

Proof.

Case 1. A S,-subgroup of & is abelian.

Case 2. A S,-subgroup of ® is non abelian.

In Case 1, let 7 be the subset of those ¢ in #(IWM/H(IM)) such that
a S,-subgroup of I is an abelian non cyclic S,-subgroup of &. Then
pe 7, and if € is a complement for H(M) in N, then a S;-subgroup P of
& is an abelian direct factor of & by Lemma 26.20. Let € =B x F.
[f ¥ were not a Z-group, then some Sylow subgroup ¥, of § would
be non abelian, by Lemma 26.18 and the definition of #. But then
N(F,) &M, by Lemma 26.14. Since N(F,) dominates every Sylow sub-
group of P, we would find PSP, which is not the case. Hence,
& is a Z-group.

Let %, be a complement for § in ¥, and let ¥, be the S,-
subgroup of F,. Let * = H(IM) N C(2«(F,)). Since H* is a Z-group,
and since N(2,(%,)) dominates every Sylow subgroup of %, P central-
izes $*. By Lemma 26.13, $* = 1. Hence FH(M) is a Frobenius
zroup.

Let §, be the S,-subgroup of ', and let $* = H(M) N C(2(F.)).
[f $* is a Z-group, then $* = 1 as in the preceding paragraph. If
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$* is not a Z-group, then since N(2,(F.) dominates every Sylow
subgroup of B, we find PSP, which is not the case. Hence,
FH(M) is a Frobenius group.

If ¥ is non abelian, then m(Z(9,)) = 8 for every S,-subgroup 9o,
of H(IN), so that H(M) is a T.I. set in G. By Lemma 26.13, I is
of Frobenius type, so I is of type I. If ¥ is abelian, € is abelian,
so M is of type I by Lemma 26.19.

In Case 2, let € be a complement for H(IR) in AN, let €, be a S,-sub-
group of €, and let % be a S,-subgroup of & Let &, be a complement
for F NI in F. Then F, is a S-subgroup of M, and F, = 1 is a possi-
bility. We can suppose §, is permutable with &,, so that $, normalizes
¢€,, since by Lemma 26.18, ¥ is a Z-group, and &, N ' = 1.

Let €, = A x B, where A centralizes H(IM), BH(M) is a Frobenius
group, ¥, normalizes both % and B, and 2,(B)<= Z(P) for some S,-
subgroup P of @. By hypothesis, [F,, €,] < &,.

Suppose ¥, # 1. Let F* = F N C(B), and suppose that 1 C F* C
%o Let FF be a fixed subgroup of F* of prime order. Then $* =
H(M) N CGFF) = HI) N C(S,) is a Z-group normalized by F:B. Since
%:B is non abelian, D* = 1. Hence F*BH(IM) is a Frobenius group.
Since %, is prime on H(WM), FH(M) is a Frobenius group. In par-
ticular, every subgroup of {, of prime order centralizes B.

Let & = § NIV, and suppose that §, + 1, so that our running
assumptions are: F = 1, 1 F* B B # 1. Suppose FH(IMM) is not
a Frobenius group, and let § be a subgroup of prime order such
that * = HM) N CFF) # 1. It follows that N(F)S M. But Fr
centralizes 2,(€,), so &, is not a S,-subgroup of N(F). Hence
BFH(IN) is a Frobenius group, in case 1 F*C F. Hence, M is of
Frobenius type in this case. If BF is non abelian, then m(Z(9,)) = 3
for every S,-subgroup 9, of H(MM), r € 7(H(WM)), so H(WM) is a T.I. set
in @ and M is of type I. If BF is abelian, and H(M) is not a T.I
set in ©, and 7(H(M)) £ =¥, then m(H(IMM)) =2 and H(M) is abelian.
M is of type I in this case.

Suppose now that ¥, = F* # 1. In this case AF < E. Since
BH(M) is a Frobenius group and A centralizes H(WM), it follows
readily that FH(IM) is a Frobenius group, and that M is of type I.

Next suppose F* =1,%, # 1. Since F, is prime on H(IN), F, is
of prime order. Since ¥, does not centralize B, F, does centralize
A. Let 9* = HI) N C(F.,), so that $* + 1. Since A centralizes
H(M), A centralizes H*. Since BF, is non abelian and BH(M) is a
Frobenius group, it follows that H(IM) is a T.I. set in @ and that
$* is cyclic.

Let I, be a maximal subgroup of & containing N(%.,). Then I,
is not conjugate to M. Let &, be a complement to H(IM,) which con-
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tains $*. If A S H(IR), then since C(A)= M, D* centralizes a non
cyclic p-group, which is not the case. Hence, AL H(IM), and we can
suppose that ASE,.

Since N(D)< M for every non empty subset D of (AH*)Y, it follows
that AH* is prime on H(IR). Let $F = HIN) N M, so that $ & HF, and
9 is prime on H(M,). Since N(F) S M, it follows that HF = H*.

If A is not a S,-subgroup of M,, then 2,(B)¥ =M, for some M
in M. But then 2,(B)*H(IM) is a Frobenius group, as is Q2,(B)*H*,
so that ©* centralizes H(IM,), which is absurd. Hence % is a S,-
subgroup of M,

If %&£ H, (M), then either |F,|ex, or a S,gol-subgroup of M, is
abelian. But in the first case, $* dominates §, contrary to
Fo NP =1, while in the second case D*A normalizes some Sig,-
subgroup £ of M, with F, S K, and [R, D*AJH*U is a Frobenius group.
As ©*: is prime on H(IM)) and | H*A | is not a prime, it follows that
[©*Y, &] centralizes H(M,). If R is a Slgorsubgroup of &, then $*A
dominates 8, so §, S T, which is not the case. Otherwise, a Sig,-
subgroup of & is non abelian, and 2,([®, $*A}) is contained in the
center of some S,%o.-subgroup of &. But N([9*U, KD<=M, and a
S,%ol-subgroup of M, is abelian. Hence, §,S H ().

We next show that $*U is a complement to H(IM) in WM.
Namely, turning back to the definition of %, we have § = F(F N W').
But BS T, and U centralizes H(I). Hence, F=F, or § is a
Frobenius group with Frobenius kernel ¥ NIM'. Now, since F, <=
H,(M,), it follows that T, N M S O*AH (). This implies that H*A
has a normal complement in €, If *A # §, then €, is a Frobenius
group with Frobenius kernel €] and €, = €9*U. This is absurd
since 9*A is prime on H(WM,), and | H*A| is not a prime. Thus H*A
is a complement to H(IM,)) in M,. Now, however, H(IM,) is nilpotent.
Since ¥, has no fixed points on (& N W')¥, it follows that M N M, =
B U,

Since $*A centralizes F, it follows that %, & H(IM,)Y. We next
show that H(I,) is a T.I. set in &. Namely, |3, divides » — 1,
since [B, F] =B. Hence p> | F |; since | ¥ | is a prime, |F,|e 7, — 7%,
so HM,) is a T.I. set in G.

We now turn to N(E,). Let IR, be a maximal subgroup of &
which contains N(2,(8)). Then I, is not conjugate to either WM or
I, since the S,-subgroups of these three maximal subgroups are
pairwise non isomorphic. Let B be a S,-subgroup of M, containing
&, and normalized by %, If pem, then §, does not map onto
N(B)/PC(B), since F, centralizes A. But then N(T,) covers
N(B)/PC(P). This is not the case since N(F)E&S M, and AL M.
Hence, p¢m,, so pem, and P& H(M).
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Since C(F,) N H(M,) S M,, and since
1=(H@) |, | HO) |- | HEY) ),

it follows that C(F.,) N H(IT) = A. Hence, N(§,) N M, normalizes
A. But NGE)NN®E) = FAD*. (This turns the tide.) Suppose
N@) NP, DOAF,. Then M, contains a non identity subgroup H**
of $*. But H(IM,) contains B, and we find that [D**, B] = H** <
H(I,), which is not the case. Hence N(%F,) N T, = AF..

By Lemma 26.17, I, has p-length one. Let &, = 0,.(IN,), so that
PRYR, = P M, = M/RK,. Then M,/PR, is a Frobenius group whose
Frobenius kernel is of index |3, |, or else M, = PR, F. In any case,
by Lemma 8.16, M, centralizes PB/P’. But now A Z M;, which is a
contradiction to H(I,) & M.

We have now exhausted all possibilities under the assumption
that &, # 1.

Suppose F, = 1. In this case, FES I, §F is cyclic and ¥ is nor-
malized by &,. Since BH(M) is a Frobenius group, 2,(B) centralizes
®, so Q(C,) centralizes §. This implies that FH(IM) is a Frobenius
group, or § = 1. In both cases, M is of Frobenius type. If § +# 1,
then BF is non abelian, so m(Z(9,)) = 3 for every S,-subgroup 9, of
HM), ren(H(IM)), and H(IN) is a T.I. set in &, If § =1, then
¢ = @, is abelian, and the lemma follows from Lemma 26.19.

LEMMA. 26.22. Let 2 be the set of Z-subgroups 3 of & with
the following properties:

(i) If p,q are primes, every subgroup of B of order pq is
cyclic.

() 3=8:%x8,18:l=2+1,i=1,2 and for any non empty
subset B, of 8 — B, — Bs N(8) & 3.
Then 2 18 emply or consists of a wunique conjugate class of
subgroups.

Proof. If B3e 2°, and 8 = B,x B, satisfies (i) and (ii), then
3 =8 — 8, — 8. contains (2, — 1)(z, — 1) elements. Since 3 is a
Z-group, (2, 2,) = 1. 3 is clearly a normal subset of 8, so N(g) =
8. Suppose Ge® and Z eg N 3". Then there is a power of Z, say
Z, = Z* such that Z,¢ :?) N 33" and such that Z, has order »,p, where
p; is a prime divisor of |8;| = 2;.. Then {8,> <1<{8,3% and so 8 =
3%, Ge 3. Thus, the number of elements of & which are conjugate
to an element of 3 is

18] (2. — 1)z, — |®]
(26.7) @ VE - >k
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Suppose 3* is another subgroup of 2~ and 8* = 3 x 8 satisfies
(i) and (ii). Set 3* = 8* — 8f — 8. We can assume that 3*N 3 %«
@, by (26.7), and it follows that 8* = 8. The proof is complete.

LEMMA 26.23. Let Me _»~, and suppose M’ is a S-subgroup of
T, | M : WM | 8 not a prime, and WM/ is cyclic. Then M is of
type I or V, or M has the following properties:

(i) HM) i8 a nilpotent T.I. set in G.

(ii) If € i3 a complement for H(M) in M then

(a) € i3 a mon abelian Z-group and every subgroup of €
of order pq 18 cyclic, p, q primes.

(b) € is prime on H(M), and &, = HM) N CE) 18 a non
rdentity cyclic group.

(iii) GC, = B satisfies the hypotheses of Lemma 26.22,

Proof. If MM = H(M), the lemma follows from Lemma 26.19.
We can therefore suppose that H(IMM)cWM'. Let € be a complement
for H(M) in I, let ¥ be a complement to & = EN WM’ in €. Then
‘% 18 a cyclic S-subgroup of I, and |F| is not a prime.

If M is a Frobenius group, then m(Z(9,)) = 8 for every non
identity S,-subgroup 9, of H(IM), so HM) is a T.I. set in &, and
we are done. We can suppose that I is not a Frobenius group.

Suppose FH(IM) is a Frobenius group with Frobenius kernel H(IN).
With this hypothesis, we will show that I is of type 1.

Let &, be a cyclic S,-subgroup of &,. Suppose $* = H(IM) N C(2,(E,))
# 1. Then €,¥, normalizes $*. Consider N(2,(€,)) 2<9* €,, .
Since |$| is not a prime and FH* is a Frobenius group, it follows
that N(2,(C)) =M. Hence, €, is a S,-subgroup of ®. Since €,
does not centralize H(IM), it follows that every subgroup of ¥ of
prime order centralizes &,. Since G, &SI, |§F| is not square free,
.and § contains a S,-subgroup F, such that [€,, F] =+ 1. Consider
NQ(B)). If qem, then [T, E,]=1. If genm or qer, and a S,-
subgroup of ® is non abelian, then F, S N(2,(F.)), so once again
1$.,6,]=1. If genr, and a S,i-subgroup of & is abelian, then
N(2,(E,)) contains a S,-subgroup of &, contrary to N(2,(€,))<S M.
Hence ©* =1 and G, H(M) is a Frobenius group.

Since M is not a Frobenius group, &, containg a non cyclic S,-
subgroup ¢, for some prime p. If €, is abelian, and a S,-subgroup
.of @ is non abelian, then € = €,-€,,, and €, is a Z-group. In this
case, &, H(IM) is a Frobenius group, and so M is of type I. If €,
is abelian, and a S,-subgroup of ® is abelian, then &, is a S,-subgroup
of . In this case, every subgroup of & of prime order centralizes
&,/€, N C(H(M)), so centralizes €} for some non identity subgroup
of &, Since pem, and a S,-subgroup of & is abelian, it follows
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that if §, is a S;subgroup of ¥ which does not centralize €, then
g€, a S;subgroup of @ is abelian, and &, is normalized by a S,-
subgroup Q of & with F, L. Since C(2(E,)) M, CE,) N QS FK..
Since £ is of type (¢%, ¢*), ab > 0, there is a direct factor of & which
normalizes every subgroup of &,. Hence, %, is this direct factor.
Hence, ¢ divides p — 1, so we have €, =€, x §,,, where €, is
normalized by Q. It follows that G, H(IM) is a Frobenius group for
1=1,2.

Suppose every Sylow subgroup of € is abelian. Let # be the
subset of » in m(€) such that a S,-subgroup of & is non cyclic, and
let B be a S;-subgroup of €. By Lemma 26.18 and the preceding
paragraph, P is a normal abelian subgroup of & Hence, I is of
Frobenius type. Since € is non abelian, H(M) is a T.l. set in &, so
M is of type I.

Thus, if FH(IM) is a Frobenius group and every Sylow subgroup
of & is abelian, then I is of type I.

Suppose FH(IM) is a Frobenius group, and &, is a non abelian
S,-subgroup of & Then &, is a S,-subgroup of ® and pex,. Since
every subgroup of § of prime order centralizes &,/C, N C(H(M)),
and since €, Z C(H(M)), Lemma 26.9 implies that § centralizes
E,/€, N C(H(IM)). This violates the containment ¢, SIWM’'. Hence, if
SH(IM) is a Frobenius group, M is of type I.

Suppose now that FH(IM) is not a Frobenius group. Let € =
C(®) N HM). By Lemma 26.15, @ is a Z-group. By Lemma 26.3,
H(T?) is nilpotent so @, is cyclic. Since every subgroup of § of
prime order centralizes &' /& N C(H(WM)), it follows that & normalizes
€, so centralizes @, since Aut €, is abelian. Hence, &, < H(W)'.

Since every subgroup of § of prime order centralizes
G’ /€ N C(H(M)), it follows that G’ is abelian. Suppose &' were non
cyclic. Let &, be a non cyclic S,-subgroup of ¢'. By Lemma 26.12,
together with €, = 1, €, is a S,-subgroup of .

Let ¥, be a S,isubgroup of % which does not centralize
G/, NCHEIM), and let G =CNCARAGB))#*1. Then N=
N(2,(F)) 2B, €, ). It follows now from €, S HM)' = f!(‘.UZ) U {1}
that either %, is not a S,-subgroup of @ or §, & W', both of which
are false. Hence, & is cyclic. This yields that every subgroup of
& of order pq is eyclic, p, ¢ being primes.

We next show that & is prime on H(M). Since C(E)=2
CR)NHM) =G, for all Ec@ it suffices to show that &, =
C(E)N HM) for all Ec@*. Suppose false and €, is a S,-subgroup
of & such that C(2.(€,) N HM) = ¢, > E,. Since FE,/C, is a Fro-
benius group, it follows that €, is a S,-subgroup of & and N(€,) <
M. In this case, let ¥, be a S,-subgroup of § which does not
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centralize €, and consider N(2,(%,)) 2<€E,, §>. If ¢exr, Lemma 26.9
is violated; if ¢em, then F, S N(2«(F.)) 80 [Fo, €l =1; if gem, F,
is not a S,subgroup of N(€,), contrary to N(G,)S M. Hence, € is
prime on H(M), and so &, = C(E) N H(M) for all Ec@*. Since € is
non abelian, H(IM) is a T.I. set in @.

Let 8 = €€,, and let 3 = @€, — € — @,. By construction, € = 1,
G #1, and NB)NM=3. Since &< HDY S HI U {1}, NB)S
IR for every non empty subset 3, of &. Since (€|, |E,|) =1, this
implies that N(B) 8 and N (8°)C8 for every non empty subset 80

of 3 Thus, 3 satisfies the hypotheses of Lemma 26.22. The proof
is complete.

LEMMA 26.24. Suppose Me _# and M is of type V. Then W’
18 tamely imbedded in .

Proof. We can suppose that I’ is not a T.I. set in &. Let
€, = M’ N C(€), where € is a complement to PV in M. Then &, %=1,
and ¢, SIMM"”. Hence, P is non abelian. Let W = P x S, where
P is a non abelian S,-subgroup of W', and &, is the S,-subgroup of
M’ for some prime p (there may be several).

We show that &, is a T.I. set in ®. If &, =1, this is the case.
Suppose &,+ 1, and Se& NS, S+ 1. Then C(S)2{PB, B*. Let
M, be a maximal subgroup of & containing C(S). By Lemma 26.14,
NER(Z(P)) & WM,. Hence MSIM,, so M=, 2P¢ and so P=P°
and Ge M.

Since I is not a T.I. set in &, it follows that &, is cyclic.

Suppose MeIW, M+ 1, and C(M)ZL M. Since every subgroup
of & is normal in M, it follows that MeB. Furthermore,
{M>N T(P) =<1), so M is of order p, and Cop(M) =<{M)> x B x &,
where B is a non identity cyclic subgroup of B, and B2 2.(Z(P)).
(Notice that since M¢M”, Cy(M) S IY.)

Let M, be a maximal subgroup of & containing C(M). Then a
S,-subgroup of M, is abelian, by Lemma 26.14, so {<M>xB is a
S,-subgroup of IR, by Lemma 26.6. By Lemma 26.12 BH(I,) is a
Frobenius group.

Let £ be a complement to H(I,) in M, which contains Cgy(M).
Since BH(M,) is a Frobenius group, it follows that (M) x 2,(B) < 8.
This implies that 8 =M, so that L = WM N M.

We next show that (I, | H(N)|) = 1. This is equivalent to
showing that (€|, | H(IMM)|) = 1. Suppose false and ¢ is a prime
divisor of (||, | H(IM)|). Since pen*,q divides p+1 or p — 1.
Since p divides |M,: H(R)|, and BH(I,) is a Frobenius group,
genm,— n*. Thus, if @ is any element of & of order ¢, then C(Q)
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is contained in a unique maximal subgroup of ®&. Let @ be an
element of € of order ¢, and let M, = M(C(Q)). Then EE, S M,. Since
gem, — *, M, is conjugate to M, in &. Since €S, is a Frobenius
group or &, =1, @, is a p-group. We can thus find G in @ such
that M¢ = M,, and we can suppose that {E¢, M, B) is a p-group.
This implies that G¢<= M, so that Ge M. Since <M,B) is a S,-
subgroup of M, we have GI= (M, B). Since €, SM" and Ge M,
S M’ N<M, B, and so 2,(€F) = 2,(B). But now [2,(Cf), ] =1,
contrary to Q%c H(IR) and 2,(B)H(IM,) a Frobenius group. Hence,
(M|, | HID) ) = 1.

By construction, C(M) S IR,. We next show that Ngp(KM)) is a
complement to H(IM,) in M,. Since L=WM N M, it follows that
<M <&, since <M, B 1€ and {M)<S C(H(I)). Thus, €= Ny(KMD).

We next show that two elements of ' are conjugate in & if
and only if they are conjugate in M. Let M, M, e M*, and M = M¢,
Ge®. Since &, is a T.I. set in @, we can suppose M, M,eB. If
Me f!(sm), then C(M)S I, so PPN M is non cyelic, and so GeM.
We can suppose M¢ IAJ(‘,IR). In this case Cyg(M) is a S,-subgroup of
C(M). Now C(M)=2{2(Z(B)), 2(Z(P))>, so we can find Ce C(M)
so that 2,(Z(P)°S Cg(M). As observed earlier, this implies that
Q(Z(B9)° = 2(Z(P)). Since 2(Z(PY))° = AW(Z(P)*°, and M=
N(Q2(Z(B))), we have GCeM. Then MF’ = MY so M and M, are
conjugate in M, namely, by GC, since C e C(M).

Let M, ---, M,, be a set of representatives for the conjugate
classes €,, ---, €, of elements in IM which are in M* and satisfy
CMH)ELEM, 1 <1 <m. As we saw in the preceding paragraph, C(M,)
is contained in a unique maximal subgroup of &, for each 7, in fact,
N(KM)) is the unique maximal subgroup of & which contains
CKM>). Let ;= NKM)), 1<i<m, and suppose notation is
chosen so that R, ---, M, are non conjugate in &, while N; is con-
jugate to some \; with1 < i< n, if n+1<7<m. Set O, = HR),
l1<i=m, so that (|9:],|9;)=1if1=4,7=sn,1+].

Let

R, =U Cm‘(H) - 9.
mept
Since M, =%, it follows that N(R) = R.. Also, R, = DR, N W)
and ;NM=1. If .NMSWW, then N; N M is abelian, and in
fact N, N M =M, x B; xS, where B; is a cyclic subgroup of P.
Since (B, x &,)9; is a Frobenius group,

(26.8) = U M9 U{1},

net
so is a T.I. set in ®.
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Suppose N, NMZWM'. Then NP AR NM, and K, N M =
R NW)-F, where FNWM =1, and F<{M,> is a Frobenius group so
that || divides p — 1. Now & normalizes B; x S,. (B; can be so
chosen.) If ¥FB,S, is abelian, then FB,S,H; is a Frobenius group by
Lemma 26.21, (together with ¥<{M,> a Frobenius group), and ?fé.- is a
T.I. set in @. If ¥B,S, is non abelian, then since § is prime on
MW, and § is prime on P, F is prime on B;SH;. If |F| is not a
prime, then [, B.S,] centralizes ;. Since &, is cyclic and every
subgroup of &, is normal in M, we have & =1. But N(B,) =M
since 2,(B;)S Z(I'). Thus, we can suppose |F| is a prime. If §
centralizes B;, Lemma 26.21 implies that N; is of type I. Thus, we
can suppose that B, is a Frobenius group. Hence FBS, is a
Frobenius group, as is FIMH>B,S,. Since B,D; is a Frobenius group
and §B; is also a Frobenius group, O; is a nilpotent T.I. set in .
Hence §* = Ctu(%) is a non identity cyclic subgroup and FF* satisfies
the hypotheses of Lemma 26.22 with the obvious factorization FF* =
$ x &*. But GG, also satisfies the hypotheses of Lemma 26.22, so
F&* and CGC, are isomorphic. In particular, p divides |FF*|, so
divides |$*|. This is absurd, since p divides |B;| and B,9; is a
Frobenius group with Frobenius kernel $;,2%*. Hence, this case
cannot arise. Hence, ‘fé.- is a T.I. set in ®, and in fact (26.8) holds.
Since 9, is a S-subgroup of N;, we have N, = N(i?%i).

Since M; and N; are not conjugate in @, 1 <4,5<n,1+ 7, by
construction, we have (|9;|,|9;]) =1 if ¢ # 3. The factorization of
C(M,) is now immediate, 1 <k <m. We have already shown that
(M|, |9:)) =1. Thus, D' is tamely imbedded in ®.

Hypothesis 26.1.

(i) Se_7 and & is a S-subgroup of ©.

(ii) |1©:&|=gq i3 a prime and Q* i8¢ a complement to &'
m S.

(ili) ©&' is mot milpotent.

(iv) ©* = Cex(DY).

LEMMA 26.25. Under Hypothesis 26.1, ©* is cyclic and Q*H*
satisfies the hypotheses of Lemma 26.22 with the factorization
*H* = Q* x H*; N(Q*) 18 contained in a unique maximal subgroup
Tof ;S NI =V*O*; Q*ST'; every element of 2 s of type I or
18 conjugate to & or &,

Proof. Since &' is not nilpotent, $* # 1. Let T be any maximal
subgroup of @ containing N(Q*). :

Let # consist of those p in m(&') such that either pen* or
pen(D*) or p¢n(H(S)), and let U be a Q*-invariant S;-subgroup of
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S, and let $ be a S;-subgroup of &'. We will show that U is
nilpotent and that $ < &.

Choose pe® and let P be a Q*-invariant S,-subgroup of &. If
pen* or p¢n(H(S)), then & has p-length one, by Lemma 26.17.
Hence, &' centralizes 0,. ,(8)/0,.(), so &' has a normal p-complement.
If pen(9*), then by 8.16 (i) or Lemma 13.4, & centralizes
0;-.,(©)/0,(8), so in this case, too, ©' has a normal p-complement.
Hence, 1 is nilpotent and $ << &. Since & is not nilpotent, O # 1.
Ful;thermore, &*NUESU. By construction, #n(9)S7w, — n*, so
N(©)S® for every non empty subset © of ©F. Thus,  is a T.I.
set in ®. Since $* NN S, Lemma 26.14 implies that N(®)SS
for every non empty subset © of ©*. Thus 9*Q* = P* x Q* satis-
fies Hypothesis (ii) in Lemma 26.22.

Let §* =&"'NT29*. T is not conjugate to &, either because
L* is not a S,-subgroup of ® or because Q* <= I’'. Thus, $** N HE®) =
1. If *c 9**, then Q* L T’ since [Q*, $**] # 1. But in that case,
some S,-subgroup of ¥ normalizes $**, so Q* is a S,-subgroup of ..
But in that case, Q* S N(Q*Y<=3'. Hence, 9* ="' N T, so H*V* =
S NI, Since N(fb)g@ for every non empty subset 9 of 9% it
follows that $* has a normal complement in £, say ¥, and £, is a
S-subgroup of T. Suppose QL*ZELIT'. Then T, N T’ is disjoint from
2%, 9*(E, N T') is a Frobenius group, and T, = (T, N T)HQ*. Further-
more, a H*-invariant S,-subgroup Q of ¥, has a normal complement
in €, and Q is abelian, by Lemmas 26.10 and 26.11. Thus Q* is a
direct factor of Q, and Q* C Q, since Q* LT’ and N(Q*)=T, If a S,-
subgroup of & is abelian, then N(9*) dominates Q, so Q*&&,
which is not the case. If a S,-subgroup of @ is non abelian, then since
2, N ¥’ is nilpotent, O* is contained in the center of some S,-subgroup
of @. This is absurd, since N(Q*) &% and Q is an abelian S,-subgroup
of £. Hence, Q*=F'.

Again, let Q be a Ssubgroup of ¥ normalized by $*, and let
B be a S,-subgroup of ¥, normalized by *. Then either ¥ =1 or
$*B is a Frobenius group. In both these case, we conclude that
L Q8. If B does not centralize Q, then by Lemma 26.16, gexw, —
n*, so ¥ is the unique maximal subgroup of ® containing N(Q*). If
B centralizes L, then Q*= L, so if gexw, T is the unique maximal
subgroup of & containing Q*. But if ¢g¢m, then Q* X, so of
course T is the unique maximal subgroup of ® containing N(Q*).
Thus, in all cases, ¥ is the unique maximal subgroup of ® containing
QF.

We next see that if p, p, are primes then every subgroup of
* of order pp, is cyclic. We next show that * N 1S Z(D*).
Suppose false and $F = H* N U, £ Z(D*) where U, is the S,-subgroup
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of U. If rexn, Um, then since N, &&', it follows that rex, and 1,
is the non abelian group of order »* and exponent 7, so that || =
7. Since $* N U has a normal complement in $* and every subgroup
of D* of order p,p, is cyclic, DF & Z(H*). Thus, we can suppose that
rem,. By definition of %, we also have rexn*. Apply Lemma 8.17
and conclude that ¢ divides » — 1. Since $* is a Z-group, Lemma
13.4 applied to L*U, acting on the S,-subgroup of &' implies that
1, centralizes the S,.-subgroup of &’; since $} S 1', it follows once again
that F S Z(9*). Hence, $* = (D* N U) X (H* N ) with cyclic H* N 1.

If 9*NHS F(S), then D* is cyclic. Suppose D* is non cyelic.
Since 1 is nilpotent and since &'/F(&) is nilpotent by Lemma 26.4,
it follows that #(* N ) contains a prime s such that a S,-subgroup
of &'/F(©)N D is non abelian. Hence, Cg(11) contains a non abelian
S,-subgroup. By construction, se€x, — n*, so Cg(l}) € 27. This implies
that & is a T.I. set in G.

Since $* is assumed non ecyeclic, hence non abelian, and since
every subgroup of D* of order p,p, is cyclic, it follows that | * : *'|
is not a prime. By Lemma 26.23 (i), £, is a nilpotent T.I. set in ®.
Set g={8|, |&|=m, |T,|=m, |9*|=h, |Q*|=q. If G, G,
G;€®, the sets GG, GG, GIH(H*Q* — * — O*)G, have pair-
wise empty intersections. Hence,

> 9 m -1+ I (m— 1)+ I (h— 1) —
o2 Lm -+ Lom -1+ Le-ne-,

so that

1 1 1
g mh Sk
Since m, = 8h, m, = 3¢, the last inequality is not possible. Hence,
O* is cyelie.

Let & be a maximal subgroup of ®& which is not conjugate to
either & or T. If &' is not a S-subgroup of £, then Lemmas 26.10,
26.11 and 26.21 imply that £ is of type I. If £ is a S-subgroup of
2 but /2 is non cyclic, Lemma 26.21 implies that £ is of type I
If & is a S-subgroup of &, £/%’ is cyclic, and |2:%'| is not a prime,
then by Lemma 26.23, & is of type I or € containg a subgroup 3 =
8, X B, which satisfies the hypotheses of Lemma 26.22. But Q*9*
also satisfies the hypotheses of Lemma 26.22, so B is conjugate to
2*H*. Since 3, H(®) can be assumed, either (13|, |Q*|) #1, or
(8.1, 19*) #1. The first case yields & = 2% Ge®, the second case
yields € = &%, G,€® and we are done in this case. Lemmas 26.22
and 26.23 complete the proof.
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LEMMA 26.26. Under Hypothesis 26.1 T 1is either of type V, or
(i) |D*| =p 18 a prime.
(ii) T satisfies

@) |T:¥|=p, and T’ is a S-subgroup of L.

(b) ' is not nilpotent.

Proof. By Lemma 26.25, Q*<= %' and 9* is cyelic. As
©*NUSW and 7(®) Sx, — 7%, it follows that N(®) =S for every
non empty subset @ of 9**. Since SN T = Q*H*, this implies that
©* has T as a complement. If |D*| is not a prime, ¥’ is nilpotent,
by Lemma 26.8. This implies directly that ¥ is of type V, condition
(ii) in the definition of type V following easily, since ¥’ is non abelian.

We can suppose that T is not of type V. Hence, (i) is satisfied.
Since ¥’ is not nilpotent, (ii) (a) and (ii) (b) also hold.

Lemma 26.26 is important, since if T is not of type V, then T
satisfies Hypothesis 26.1, as does &.

LeEMMA 26.27. Under Hypothesis 26.1, one of the following holds:
(i) NWLS; (i) & 1s a tamely imbedded subset of ®, and U is a
S-subgroup of ©.

Proof. Suppose NU)S &, If & iga T.I. set in @ we are done.
Hence, we can suppose that &' is not a T.I. set in @.

Since €’ is not a T.I. set in ® and since  is a T.I. set in
S (@(®)=7n, — n*, so Lemma 26.5 (ii) applies), U # 1. We first treat
the case in which 1l is non abelian. Let U = R x R,, where R is a
non abelian S,-subgroup of R, and R, is the S,-subgroup of . We
show that & is the unique maximal subgroup of & containing R.

Suppose R&Q,%€_#. By Lemma 26.1, N(Q(ZR)SLN®S.
In particular, NR)S LN S, so R is a S,-subgroup of . If & =&,
Ge€@®, then by Sylow’s theorem, R is conjugate to GRG™ in &, R =
S-'GRG™'S, so that S'Ge NR)&®S, and GeS. Hence, we can
suppose £ is not conjugate to &. Clearly, 8 is not conjugate to T,
since ¢t |T:X’'|. Hence, 8 is of type I. But then RS H(Y), so that
L = NR)SS, contrary to assumption. Hence, R is contained in &
and no other maximal subgroup of ®. This implies that 11 is a S-
subgroup of @.

Choose Sc&"*"N&% Ge® — S. There are such elements S and
G since &' is not a T.I. set in @. If S is not a #-element, then
S, = 8S"e 9N ¥ for some integer n, contrary to the fact that 9 is
a T.I. set in @. Hence S is a 7-element and we can suppose that
Sel, If S¢®R, then S,=S"c RN S" for some m, and C(S,) con-
tains a S,-subgroup of both & and &¢ which is not the case. Hence,
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SeR. Since R was any non abelian Sylow subgroup of U, it follows
that R, is abelian.

Let Le 7, C(S)=8. A S,-subgroup of £ is non cyclic. Let
R be a S,-subgroup of £ containing Cyx(S). If rex, then by Lemma
26.7, N(Cx(S))S©, so R = Cx(S). If rem, the same equality holds
by Lemma 26.14 and the containment N (Cx(S)E N((ZR))). Thus,
2 is not conjugate to &. Since R is non cyclic, £ is not conjugate
to . Hence, 8 is of type I, and this implies directly that £ =
HOERNS), SN H® =1. Since a S,-subgroup of & is non abelian,
Lemmas 26.12 and 26.18 imply that

{ U ) - 5@ = BEKS?,
meg @t

and it is obvious that H(®)(S>*is a T.I. set in @ with £ as its
normalizer. We have verified all the properties in the definition of
a tamely imbedded subset except the conjugacy condition for &' and
the coprime conditions. By definition of H(R), together with the
fact that &' is a S-subgroup of &, it follows that (| H(®)|, |&'|) = 1.
If (|H(®)|, |Q*|) # 1, then £ is conjugate to . This is not the case, as
R is non cyclic. Thus, if 8, ---, &, is a set of representatives for the
conjugate classes of maximal subgroups of @ which contain C(S) for
some Sin &' and are different from &, it follows that (| H(L,) |, | H(Z;)|) =1
for 1 # j. It remains only to verify the conjugacy condition for
elements of &%, Let S, S, be elements of & which are conjugate
in . We can suppose that S and S, have order r and are in R;
otherwise it is immediate that S and S, are conjugate in &. Let
S = G7'S,G, then C(S)2<{(Z(R)), 2(Z(R°))>. Since N(2(ZR))) <
&, it follows that S and S, are conjugate in &. (It is at this point
that we once again have made use of the fact that the subgroups in
7 (R) have two conjugate classes of subgroups of order r.) Thus, &
is a tamely imbedded subset of & in this case.

We now assume that Ul is abelian. We first show that U is a
S-subgroup of &. Otherwise, 1 is not a S-subgroup of N(1,) for
some non identity S,-subgroup U, of . Let N, <S2%¢ec_». Then
€ is not conjugate to &, since |2y # |S|;. Suppose & is conjugate
to L. Since UQ* is a Frobenius group, we have 1S 2. Thus &' is
not nilpotent, since by hypothesis N(1)=©&. Hence, ¥ is not of
type V. By Lemma 26.26, |*| = p is a prime. Since |Q*|=gq is
also a prime, it follows that if B is a S,-subgroup of T’ normalized
by ©*, then $*B is a Frobenius group, (8 # 1, since T' is not
nilpotent). If n(l) & n(V), then since N() &S, it follows that U is
conjugate to B. But p divides | N(B): C(B)|, and so p = ¢, which
is not the case. Hence 7(M)ZLm(B). But rM)&x@)NnXT)S



938 SOLVABILITY OF GROUPS OF ODD ORDER

7(B) U {q}, so g € 7(1), which is absurd since &' is a ¢’-group. Hence,
¢ is not conjugate to either & or T, so 8 is of type I. Since D* is
of prime order and Q* is a Frobenius group, US H(L). Since
NU)=©S, we have U = H(8). Hence 8= N(I) =&, which is absurd.
Hence, N1 is a S-subgroup of &. This implies directly that NU,) =&
for all non identity Sylow subgroups U, of &.

Since U is an abelian S-subgroup of @, and  is a T.I. set in G,
the condition N(11) & & implies that two elements of &' are conjugate
in @ if and only if they are conjugate in &.

Suppose Se€@"*, and C(S)ZS. Then S is a #-element, and we
can suppose Scll. Let e _#, C(S)SL. Since U is an abelian S-
subgroup of @& and since U S C(S) S &, it follows that € is not con-
jugate to & or . It is now straightforward to verify that &' is
tamely imbedded in @.

LEMMA 26.28. Under Hypothesis 26.1, either & or T is of type
II. If & is of type II, then

U Ce(H)

mepHt

18 a T.I. set in @. Both & and T are of type II, III, IV or V.

Proof. First, suppose T is of type V, but that & is not of type
II. Suppose NW)SS. By Lemma 26.27, & is a tamely imbedded
subset of . As U is a S-subgroup of & in this case, we have
(€], |¥))=1. By Lemma 26.24, ¥’ is a tamely imbedded subset
of . We now use the notation of section 9. Suppose Sc¢&"* Tel"
and some element of U, is conjugate to some element of A,. This
implies the existence of € _# such that | & : H(Y)| divides (|&'|, |T'))
=1, which is not the ecase. Setting ® = O*QF — H* — Q*, it
follows that no element of T8 is conjugate to an element of Ay or
A,. We find, with b = |D*|, s =|&"|, t = |¥’|, that by Lemma 9.5,

1 t—1 g

L (h—1g—1) , s—
(26.9) g= I g+ po» g+ ih ’

which is not the case. Hence NW)ZL&. If U, were a non abelian
S,-subgroup of &, then N(2(Z(1,))&S, by Lemma 26.14. Since
NWQ)S N(2,(Z(1,))), this is impossible. Hence U is abelian, and
m() £ 2. Thus, & is of type II in this case, since the above in-
formation implies directly that  is nilpotent.

Suppose now that ¥ is not of type V. Then from Lemma 26.26
we have T = $*BLY, where Q) is a normal S,-subgroup of T, H*B is
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a Frobenius group with Frobenius kernel %, and 8B is a non identity
q¢’-group. Since Q* is of prime order ¢, it follows from 8.16 that
2 contains a subgroup L), such that Q, < T, Q/Q, is elementary of
order ¢*(p = | 9*|), and B centralizes Q,.

We next show that B’ centralizes Q. This is an immediate
application of 3.16. If N(B)< <, then T is of type III or IV accord-
ing as B is abelian or non abelian. If neither & nor ¥ is of type
II, then both &' and &' are tamely imbedded subsets of &, by Lemma
26.27, since both © and ¥ satisfy Hypothesis 26.1. Once again,
(26.9) yields a contradiction.

If & is of type II, then  is a T.I. set in @. Suppose

X, Ye U Cy(H)

meHt

and X = G'YG. Choose H,eCy(X), H,eCy(Y). Then C(X)2
{H, G'HG>. If ((X)S©, then Ge &, since Hisa T.I. set in 8. We
can suppose C(X)Z S, and without loss of generality, we assume
that X has prime order », XelU. If a S,-subgroup of U is non
cyelie, then by Lemmas 26.12 and 26.13, C(X)=&. We can suppose
that the S,-subgroup U, of U is cyclie, so that {<X> = 2,(,). Since
NW£S, it follows that NKXD)ZLS. Choose Le.# with
NKXY) S8 If C(X)No* + 1, it follows readily that C(X)S®, so
we can suppose C(X)N $* = 1. In this case, C@(X )* is a Frobenius
group, and this implies that Cb(X )E H(®), which is not the case.
The proof is complete.

LEMMA 26.29. If fe _# and L 18 of type I, then

U CoH) =8

geg@t

18 a tamely imbedded subset of ®.

Proof. We first show that H(R) is tamely imbedded in @.

If H®) is a T.I. set in & we are done. If H(R) is abelian,
the conjugacy property for elements of H(R) holds. Suppose H(L) is
abelian, Le H(®), and C(L)Z 8. Let Ne _# with C(L)SN.

Suppose N is of type I. Then NN L is disjoint from H(N), since
HR)SNRNY. Let & be a complement for H(R) in N which contains
NNEL. Lemmas 26.12 and 26.13 imply that € =N N L.

If 8,-.-,8, is a set of representatives for the conjugate classes
of maximal subgroups of @ constructed in this fashion, then (| H(Z,)|,
[H(&;)]) =1 for ¢ +#7. Also, (| H(Z)|,|H(®)[) =1. Suppose (| HE,)|,
[ Co(L)|) # 1 for some L e H(2), and some 7. We can suppose that
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L has prime order r. Let s be a prime divisor of (| H(Z:)|, | Cg(L)|),

so that sen(®) — n(H(®)), Since & is of type I, this implies that a

S,-subgroup & of £ is non cyclic so that sez*. Since & does not

centralize a S,-subgroup of &, s < r. But now Lemma 8.16 implies

that the S,-subgroup of £ centralizes a S,-subgroup of H(2,), which

is not the case. Hence, (| H(2)|, | Cg(L)|) =1 for every Le H(Z).
By construction

2= U Cy(H) - HRY

mem@yt

contains a non identity element. From Lemma 26.13 we have N (f!;) =
€, and @i is a T.I. set in @. Thus, if H(R®) is abelian and every R
with the property that Rte_# and C(L)SN for some Le H(Q) is
of type I, then H(®) is tamely imbedded in .

Suppose N is not of type I. Since H(R) SN, it is obvious that
N is not of type V. It is equally obvious that N is not of type III
or IV. Hence, N is of type II. Since H(R) is a S-subgroup of &, it
is a S-subgroup of N, and it follows that NN L is a complement to
H(M). Since | H(N)| is relatively prime to | H(®)| and to each | H(Z,)|,
we only need to show that | H(R)| is relatively prime to |Cy(L)|,
LeH®). Let ¢g=|N:N'|, so that ¢ is a prime and N N L contains
a S,subgroup O* of M. Since 7(HN)) S, — n*, it follows that if &
is a Sg-subgroup of 2, w = nw(H(RN)) N 7(L), either & =1, or KH(Y) is
a Frobenius group. Thus (| H(N)|, | Cy«(®)]) = 1 for L € H(R)*, and H()
is a tamely imbedded subset of . Since C(L)< 8 for every element
of

{ U C(H)}—-H®),
Heg(Q)¥
by Lemmas 26.12 and 26.13, the lemma is proved if H(Z) is abelian.
We can now suppose that H(L) is non abelian, and is not a T.I.
set in . Let R be a non abelian &-subgroup of H(R), and let
HE =RxR,. Since H(L) is not a T.I. set in & Lemmas 26.14 and
26.13 imply that R, is a cyclic T.I. set in ®. It follows directly
from Lemma 26.12 that H(L) is a tamely imbedded subset of &.
It remains to show that € is a tamely imbedded subset of ®.
This is an immediate consequence of Lemmas 26.12 and 26.13.

LEMMA 26.30. If © 18 a nilpotent S-subgroup of &, then two
elements of © are conjugate in & if and only if they are conjugate
mn N(D). R

Proof. Let Le_#, NO)ES8. If DS H(R) and £ is of type I,
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we are done. If < H(R) and L is not of type I, we are done. If
PLH®R), then DN H(®) =1, If € is of type I, » is abelian, and
we are done. If £ is not of type I, then 8 is of type IIl or IV, and
we are done.

We now summarize to show that the proofs of Theorems 14.1
and 14.2 are complete. By Lemma 26.30, the conjugacy property for
nilpotent S-subgroups holds. If every element of _.Z is of type I, we
are done by Lemma 26.29. We can therefore suppose that _# con-
tains an element not of type I. Choose L€ _#, £ not of type I.
By Lemma 26.21, if pen(¥/2’), a S,-subgroup of L is cyclic. This
implies that &' is a S-subgroup of €. First, suppose |£:%’] is not a
prime. Then by Lemma 26.23, £ is of type V or satisfies the con-
ditions listed in Lemma 26.23. Suppose that £ is not of type V, and
@ is a complement to H(®) in 8. Let p be the smallest prime such
that a S,-subgroup &, of & is not contained in Z(€) and choose
e #, N2,(,)=2. By Lemmas 26.12 and 26.13, 2, is not of
type I. Lemma 26.21 implies that ] is a S-subgroup of €, and /%,
is cyclic. By construction, £ is not nilpotent, and also by construc-
tion %, is not conjugate to L. We will now show that |2 :8]| is a
prime. Otherwise, since ¥, is not of type I or V, £ satisfies the
conditions of Lemma 26.23. In this case, both H(¥) and H(Z,) are
nilpotent T.I. sets in @ and £ N £, satisfies the hypotheses of Lemma
26.22. Let/= (8], 4=|8|,|%:HR®)| =¢, [L:H®E)| =¢, g =|6]|,
so that

@10 gz l-Ve-1), -1, 4-1,

€6, 7€ 16
which is not the case. Hence |%,: 2| is a prime, so that £, satisfies
Hypothesis 26.1. But then Lemma 26.25 implies that £ is of type
V. Thus, whenever € _# satisfies the hypotheses of Lemma 26.23,
® is of type I or V.

Suppose every element of _# 1is of type I or V, and there is
an element 8 of type V. Let pen(2/¥), and let €, be a S,-subgroup
of & Choose &, so that N(€,)S8 e _»#. Then ¥, is not of type I.
Suppose &, is of type V. By Lemma 26.20, ¥ and & are tamely
imbedded subsets of . Since (|¥'|, |€!]) =1, it follows that ¥, and
,, do not contain elements in the same conjugate class of @, Le ',
L,c®. Setting g=[6|, |¥]|=4 [8]=4 [8:%]=¢|8,:8|=¢,
then (26.10) holds, by Lemma 9.5, which is not the case.

We can now suppose that _# contains an element £ not of type
I or V. Lemmas 26.21, 26.23 and the previous reduction imply that
€ is a S-subgroup of £, &' is not nilpotent, and |2:%’'| is a prime.
Lemmas 26.25 and 26.28 complete the proof of Theorem 14.1.
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As for Theorem 14.2, Lemmas 26.28 and 26.29, together with
Theorem 14.1, imply all parts of the theorem, since if £ is of type
II, III, IV, or V, 2 is any tamely imbedded subset of & which
satisfies N (@) =$, and T =W, LB, is a cyclic subgroup of & which satisfies
the hypothesis of Lemma 26.22, then adjoining all L—*(%® — T, — W,) L,
Leg to ¢ does not alter the set of supporting subgroups for Q, as
W)=l forall We® — B, — BW,. The proofs are complete.
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