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SOLVABILITY OF GROUPS OF ODD ORDER
WALTER FEIT AND JOHN G. THOMPSON

CHAPTER 1

1. Introduction

The purpose of this paper is to prove the following result:
THEOREM. All finite groups of odd order are solvable,

Some consequences of this theorem and a discussion of the proof
may be found in [11].

The paper contains six chapters, the first three being of a general
nature. The first section in each of Chapters IV and V summarizes
the results proved in that chapter. These results provide the starting
point of the succeeding chapter. Other than this, there is no cross
reference between Chapters IV, Vand VI. The methods used in Chapter
IV are purely group theoretical. The work in Chapter V relies heavily
on the theory of group characters. Chapter VI consists primarily of
a study of generators and relations of a special sort.

2. Notation and Definitions

Most of the following lengthy notation is familiar. Some comes
from a less familiar set of notes of P. Hall [20], while some has arisen
from the present paper. In general, groups and subsets of groups are
denoted by German capitals, while group elements are denoted by
ordinary capitals. Other sets of various kinds are denoted by English
script capitals. All groups considered in this paper are finite, except
when explicitly stated otherwise.

Ordinary lower case letters denote numbers or sometimes elements
of sets other than subsets of the group under consideration. Greek
letters usually denote complex valued functions on groups. However,
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_various times supported by the U. S. Army Research Office (Durham) contract number
DA-30-115-ORD-976 and National Science Foundation grant G-9504; the second author
by the Esso Education Foundation, the Sloan Foundation and the Institute for Defense
Analyses. Part of this work was done at the 1960 Summer Conference on Group Theory
in Pasadena. The authors wish to thank Professor A. A. Albert of the University of
Chicago for making it possible for them to spend the year 1960-61 there, The authors
are grateful to Professor E. C. Dade whose careful study of a portion of this paper
disclosed several blunders. Special thanks go to Professor L. J. Paige who has expedited
the publication of this paper.
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776 SOLVABILITY OF GROUPS OF ODD ORDER

o and 7 are reserved for field automorphisms, permutations or other
mappings, and € is used with or without subscripts to denote a root of
unity. Bold faced letters are used to denote operators on subsets of
groups.

The rational numbers are denoted by & while &, denotes the
field of nth roots of unity over &,

Set theoretic union is denoted by U. If % and B are sets, A — B
denotes the elements of A which are not in B. A B means that A
is a proper subset of B.

D the group generated by --- such that -.-..
1> will be identified with 1.

{oee]eee} the set of --- such that .-..

gpeee]eee) the group defined by the generators - -- with
the relations ---

X | the number of elements in the set X.

Xt the set of non identity elements in the set %.
vid a set of primes. If n = {p}, we customarily
identify 7 with ».

T’ the complementary set of primes.

m-number a non zero integer all of whose prime factors
are in «,

n, the largest m-number dividing the non zero
integer n.

T-group a group X with |X| = |%|..

m-element a group element X such that (X is a 7-group.

S.-subgroup of X a subgroup & of X with |&| = |%|,.

S-subgroup of X% a S,-subgroup of X for suitable .

Hall subgroup of X% a S-subgroup of X.

8% & is a normal subgroup of X%.

& char X £ is a characteristic subgroup of X.

F(X mod N) the inverse image in X of f(X/N). Here
N A%, and f is a function from groups to
subgroups.

0.(%) the maximal normal m-subgroup of X.

O.,....,(%X) 0., (Xmod O, ... .. (%)).

m-closed group we say that X is w-closed if and only if X has
a normal S,-subgroup.

F(%) the Fitting subgroup of X, the maximal normal
nilpotent subgroup of X%.

D(®) the Frattini subgroup of %, the intersection
of all maximal subgroups of X.

Z,(%) the nth term in the ascending central series

of X, defined inductively by: Z(X) =1, Z(X) =



o (%)

[X, Y]

(X, -+, X,
[, B]

[mly c %y 915]
xY

%I
C\(®)

Q2.(%)
o™(%)

m(X)
m,(%)
cl(%)

C(%)

N

ker (£ 2 9)

celg (A)
V(eel, (2); B)

(%)

2. NOTATION AND DEFINITIONS i

Z(%) = center of %, Z,,,(X) = Z (X mod Z,(%)).
the smallest normal subgroup %) of X such
that %/9) is a m-group.

XY ' XY = X'X*.

[[le ] Xn—l]v Xu]: n = 3.

{A, B]|Ae ¥, Be B>, A and B being subsets
of a group.

[[%[l’ %y 215-—1]’ 9'In]y n = 3.

(XT|Xe%, YeD). If 29,%Y is called
the normal closure of X in 9.

[%, %], the commutator subgroup of %,

the nth term of the descending central series
of %, defined inductively by: Cy(X) = %,
C,.(%) = [C,(%), %].

the subgroup of the p-group X generated by
the elements of order at most p*.

the subgroup of the p-group X generated by
the p*th powers of elements of X%.

the minimal number of generators of X.
m(PB), B being a S,-subgroup of X.

the class of nilpotency of the nilpotent group
%, that is, the smallest integer n such that
% = Z,(%).

the largest subset of B commuting element-
wise with 2, A and B being subsets of a
group X, In case there is no danger of
confusion, we set C() = C,().

the largest subset of B which normalizes %, 2
and B being subsets of a group X. In case
there is no danger of confusion, we set N(2)=
N,(2).

the kernel of the homomorphism a of the
group X into the group 9. a will often be
suppressed.

{A* | X e X}, A being a subset of X.

X | Xe%, A* = B), the weak closure of
celz () in B with respect to the group X.
Here A and B are subgroups of X, If A =
V(cely (%); B), we say that A is weakly closed
in B with respect to %.

the set of primes which divide |%]|.

the n by n matrix with 1 in positions (%, %)
and (4,7 +1,1<t1=n,1=j7<n-—1, zero
elsewhere.
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SL(2, p)

special p-group

extra special p-group

self centralizing sub-
group of X
self normalizing sub-
group of %
S (%)

SFENAE)
W)

N(%; 7)
section

factor

chief factor

the group of 2 by 2 matrices of determinant
one with coefficients in GF(p), the field of
» elements.

an elementary abelian p-group, or a non
abelian p-group whose center, commutator
subgroup and Frattini subgroup coincide and
are elementary.

a non abelian special p-group whose center
is of order p.

a subgroup A of X such that A = C(A). Notice
that self centralizing subgroups are abelian.
a subgroup A of % such that A = N(N).

the set of self centralizing normal subgroups
of X.

A | Ae Az (%), m(A) = m}.

the set of subgroups of X which 2 normalizes
and which intersect A in the identity only.
In case there is no danger of confusion, we
set U (A) =UA). If U(A) contains only the
identity subgroup, we say that U() is trivial.
the m-subgroups in U(Y).

if © and & are subgroups of the group %,
and 9 < &, then R/ is called a section.

if © and & are normal subgroups of X and
D E K, then 8/9 is called a factor of X.

if 8/9 is a factor of X and a minimal normal
subgroup of %X/9, it is called a chief factor
of X.

If /S and /M are sections of %, and if each coset of & in H has

a non empty intersection with precisely one coset of IR in € and each
coset of M in € has a non empty intersection with precisely one coset
of & in , then H/® and &/M are incident sections.

If /R is a section of £ and 2 is a subgroup of ¥ which contains
at least one element from each coset of & in ©, we say that £ covers
DIR. We say that & dominates the subgroup & provided £ covers the
gection NVy(8)/Cx(R®). The idea to consider such objects stems from [17].

If & = 9/R is a factor of X, we let Cy(F) denote the kernel of
the homomorphism of %X into Aut ¥ induced by conjugation. Similarly,
we say that X in X centralizes § (or acts trivially on %) provided
Xe CB).

We say that X has a Sylow series if X possesses a unique S, ...,
subgroup for each ¢ = 1, ---, n, where n(X) = {p,, +-*, P,}. The ordered
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n~tuple (p,, -+, p,) is called the complexion of the series [18].

A set of pairwise permutable Sylow subgroups of %, one for each
prime dividing |X|, is called a Sylow system for X. This definition
differs only superficially from that given in [16].

P. Hall [18] introduced and studied the following propositions:

E, X contains at least one S,-subgroup.

C, X satisfies E,, and any two S,-subgroups of ¥ are conjugate
in %X,

D, % satisfies C,, and any m-subgroup of X is contained in a

S,-subgroup of X.
Er X contains a nilpotent S,-subgroup.

In {19], P. Hall studied the stability group A of the chain #: % =
X 2%=2--+ 2%, =1, that is, the group of all automorphisms a of
% such that (X,X)* =%, X for all X in %,_, and eachi =1, ---,n, If
B and X are subgroups of a larger group, and if B normalizes X, we
say that B stabilizes & provided B/Cy(¥) is a subgroup of the stability
group of &.

By a character of ¥ we always mean a complex character of %
unless this is precluded by the context. A limear character is a
character of degree one. An integral linear combination of characters
is a linear combination of characters whose coefficients are rational
integers. Such an integral linear combination is called a generalized
character. If 7 is a collection of generalized characters of a group,
let _#(5°)(£(5”)) be respectively the set of all integral (complex)
linear combinations of elements in 2. Let _#(%”), % (5”) be the
subsets of _#(.$¥), &(.5”) respectively consisting of all elements a with
a(l) = 0.

If @ and B are complex valued class functions on X, then the
inner product and weight are denoted by

(@ B = g T, «COBD),

x|y = (@, @) .

The subscript X is dropped in cases where it is clear from the context
which group is involved.

The principal character of X is denoted by 1 ; the character of
the regular representation of X is denoted by p;. If a is a complex
valued class function of a subgroup $ of %X, then a* denotes the class
function of X induced by a.

The kernel of a character is the kernel of the representation with

the given character.
A generalized character is n-rational if the field of its values is
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linearly disjoint from &£,.
A subset U of the group % is said to be a trivial intersection set
in X, or a T.I. set in X if and only if for every X in %, either

XAXNA S {1}
or
XUAX=9U.

If © is a normal subgroup of the group X¥ and 6 is a character
of O, J(8) denotes the imertial group of 6, that is

) = {X| X%, 6(XHX) = 6(H) for all He9}.

Clearly, < (8) for all characters 6 of 9.

A group % is a Frobenius group with Frobenius kernel © if and
only if © is a proper normal subgroup of ¥ which contains the centralizer
of every element in f. It is well known (see 8.16) that the Frobe-
nius kernel  of X is also characterized by the conditions

1. 9<%, 1CcHCE,

2. J(6) = 9 for every non principal irreducible character 6 of 9.

We say that X is of Frobenius type if and only if the following
conditions are satisfied:

(i) If  is the maximal normal nilpotent S-subgroup of X, then
1CHCk,

(ii) If € is a complement for  in X, then & contains a normal
abelian subgroup U such that J@) N E = A for every non principal
irreducible character 6 of 9.

(iii) € contains a subgroup @, of the same exponent as & such
that €, is a Frobenius group with Frobenius kernel 9.

In case X is of Frobenius type, the maximal normal nilpotent
S-subgroup of X will be called the Frobenius kernel of X.

A group & is a three step group if and only if

(i) & =@&'Q*, where Q* is a cyclic S-subgroup of &, Q* #1,
and & NQ* = 1.

(ii) ©& contains a non cyclic normal S-subgroup  such that
S" < C(D) & &', OC(D) is nilpotent and $ is the maximal normal
nilpotent S-subgroup of &.

(iii) $ contains a cyclic subgroup $* #1 such that for @ in
0%, Ce(Q) = 9.

3. Quoted Results

For convenience we single out various published results which are
of use.
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3.1. ([19] Lemma 1, Three subgroups lemma). If 9, 8R,8 are
subgroups of the group X and

['b’ 'Q; 8] = [R’ £, @] =1, then [8; 9, R] =1,

3.2. [20] F(X) = NCxD), the intersection being taken over all
chief factors ® of the group X.

3.8. [20] If X s solvable, then C(F(X)) = Z(F(X)).

3.4. Let p be an odd prime and X a p-group. If every normal
abelian subgroup of X is cyclic, then %X is cyclic. If every mormal
abelian subgroup of X is generated by two elements, then %X is isomorphic
to one of the following groups:

(i) a central product of a cyclic group and the non abelian group
of order p* and exponent p.

(ii) a metacyclic group.

(iii) gp<A4, B|[B, Al =C,[C, Al=B* ", C*=[B,C]= 4= B" =
1L,n>1,(r,p) = 1.

(iv) a 3-group.

A proof of this result, together with a complete determination of the
relevant 3-groups, can be found in the interesting papers [1] and [2].

8.5. [20] If X is a non abelian p-group, » is odd, and if every
characteristic abelian subgroup of X is cyclic, then % is a central
product of a cyclic group and an extra special group of exponent p.

3.6. ([22] Hilfssatz 1.5). If o is a p'-automorphism of the p-group
X, p is odd, and ¢ acts trivially on 2.(%), then o = 1.

3.7. [20] If A and B are subgroups of a larger group, then
A, B] <<, B).

3.8. If the S,-subgroup P of the group X is metacyclic, and if
p ts odd, then B N O*(X) is abelian.

This result is a consequence of ([23] Satz 1.5) and the well known
fact that subgroups of metacyclic groups are metacyclic.

3.9. [28] If A is a normal abelian subgroup of the nilpotent
yroup X and U is not a proper subgroup of any normal abelian subgroup
of X, then U is self centralizing.

8.10. If P is a S,-subgroup of the group X, and N e Sz~ (P),
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then CA) = A X D where D is a p'-group. The proof of Lemma 5.7
in [27] is valid for all finite groups, and yields the preceding statement.

311, Let N and B be subgroups of a group %, where A i3 a
p-group and B is a p'-group normalized by . Suppose A, i3 a subgroup
of A which does not centralize B. If B, is a subgroup of B of least
order subject to being normalized by N and not centralized by A,, then
B, 18 a special g-group for some prime q, U, acts trivially on D(B)
and U acts irreducibly on B,/D(B,). This statement is a paraphrase
of Theorem C of Hall and Higman [21].

3.12, ([3] Lemma 1), Let A be a nonsingular matriz and let o
be a permutation of the elements of A. Suppose that o(A) can be
derived from A by permuting the columns of A and o(A) can also be
derived from A by permuting the rows of A. Then the number of
rows left fixed by o is equal to the number of columns left fixed by o.

The next two results follow from applying 3.12 to the character
table of a group X.

3.13 (Burnside). A group of odd order has no non principal real
valued irreducible characters.

3.14. If o is an automorphism of the group X then the number
of i1rreducible characters fixed by o is equal to the number of conjugate
classes fized by o.

3.15. ([8] Lemma 2.1). Let P be a p-group for some prime P
and let 6 be an irreducible character of B with (1) > 1. Then
20,1 = 0 (mod 9(1)*), where the summation ranges over all irreducible
characters 6; of B with 0,(1) < 6(1).

Let & be a Frobenius group with Frobenius kernel . Then

3.16. (). (7], [26]). D i8 a nilpotent S-subgroup of L and &
OCE for some subgroup € of & with $NE =1,

3.16. (ii). ([4] ». 3834). If p, q are primes then every subgroup
of € of order pq is cyclic. If p + 2 then a S,-subgroup of € is cyclic.

8.16. (iii). ([7] Lemma 2.1 or [10] Lemma 2.1). A non principal
irreducible character of  induces an irreducible character of 2.
Furthermore every irreducible character of & which does nolt have
O in its kernel is induced by a character of ©. Thus in particular
any complex representation of 8, which does not have O in its kernel,
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contains the regular representation of & as a conmstituent when
restricted to €.

We will often use the fact that the last sentence of 3.16 (iii) is
valid if “complex representation of £” is replaced by “representation
of € over a field of characteristic prime to |2]”.

4. Elementary Results

LEMMA 4.1, Let X be a group with center 8 and let N be an
irreducible character of 2. Then M1)* < |%X: 8.

Proof. For Ze B, |MZ)| =A1). Therefore
12| =2 2g|M2)[* = | B ML)

LemMMA 4.2. Let o be a generalized character of the group %.
Suppose that R, X are commuling elements of X and the order of R
18 a power of a prime r. Let F be an algebraic number field which
contains the | X |[th roots of unity and let t be a prime ideal in the
ring of integers of F which divides r. Then

a(RX) = a(X)(mod v) .

Proof. It is clearly sufficient to prove the result for a generalized
character, and thus for every irreducible character, of the abelian
group <R, X)>. If a is an irreducible character of (R, X) then a(RX)=
a(R)a(X) and a(R) = 1 (mod r). This implies the required congruence.

LEMMA 4.8. Let  be a normal subgroup of the group X and let
A be an irreducible character of ¥ which does not contain 9 in its
kernel. If XeX and C(X)N D =<1, then MX) =0,

Proof. Let g, t, -+- be all the irreducible characters of X/ =%.
Let A, N\, +++ be all the remaining irreducible characters of %X. If
C(X) N = <1), then C(X) is mapped isomorphically into C(X) where
X is the image of X in 2. Consequently

S X) P =1C(X)| 2 1 CX)| = Z 1 X) [ + Zi M(X) P
This yields the required result.

Lemma 4.3 is of fundamental impartance in this paper.

LEMMA 4.4. Let  be a normal subgroup of the group X, Assume
that if 0 is any momprincipal irreducible character of  then 0* is
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a sum of irreducible characters of %, all of which have the same
degree and occur with the same multiplicity in 6*. For any integer
d let &; be the sum of all the irreducible characters of X of degree d
which do mot have  in their kermel. Then £; = avy*, where a 13 a
rational number and v is a generalized character of 9.

Proof. Let 6}, 68, --- be all the distinct characters of ¥ which
are induced by non principal irreducible characters of $ and which are
sums of irreducible characters of £ of degree d. Suppose that 6f =
;2 ;\;;, where \;; is an irreducible character of X for all values of j.
It is easily seen that 6}, 6, --- form a set of pairwise orthogonal
characters. Hence &, = X;(1/a;)0F. This proves the lemma.

If © is a normal subgroup of the group X, X € X, and @ is a character
of , then % is defined by ¢*(H) = ¢(X'HX), He 9.

LEMMA 4.5. Let $ be a normal subgroup of the group X and let
0 be an irreducible character of 9. Suppose X contains a mormal
subgroup %, such that J(6) < %, and such that %X,/O is abelian. Then
0* 13 a sum of trreducible characters of X which have the same degree
and occur with the same multiplicity in 6*., This common degree
18 a multiple of |X:(0)|. If furthermore  is a S-subgroup of %,
then 6* is a sum of | J(0) : ©| distinet irreducible characters of degree

| %: 3(0) [6(1).

Proof. Let 0, be the character of J(6) = & induced by 4. Let
A be an irreducible éonstituent of 6, and let 1, (5, « -+, ¢£,, be all the
irreducible characters of J/$. Choose the notation so that Ay, =\
ifandonly if 1 <% <n. Since 0,5 =|J:9|0, we get that N5 = ab
for some integer a. Thus, '

(4.1) 3 Mty = af .

Hence, every irreducible constituent of af, is of the form \y;, so all
irreducible constituents of 4, have the same degree. The characters
th, [, - -+ form a group I which permutes the irreducible constituents
of a0, transitively by multiplication. Hence for every value of j there
are exactly n values of 7 such that Ay, = A5, If now A, Ay, « -+, are
the distinct irreducible characters which are constituents of a#,, then
(4.1) implies that a8, = n3\;.

Suppose A is a complement to $ in I,  being a S-subgroup of .
We must show that 4, is a sum of || distinet irreducible characters
of J. For any subgroups £, & of ¥ with $ S & S &, and any character
@ of &, let #® denote the character of £ induced by .
. "Suppose £ hds the property that 6% is a sum of |R: 9| distinet
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irreducible characters of &, where $9 S & J. Let Mg be the multi-
plicative group of linear characters of £ which have  in their kernel,
and let Ay be an irreducible constituent of 6%. Then (1) = 0(1) is
prime to |A N |, and it follows from Lemma 4.2 that A, does not
vanish on any element of AN & of prime power order. This in turn
implies that
= > rtt.
F-E}IRQ

If 8 =3, we are done. Otherwise, let  contain & as a subgroup
of prime index. It suffices to show that )»9 is reducible, or equivalently,
that A = Ag for every L in 8. This is 1mmed1ate since (6%)" = 6%,
so that \§ = A/t for some £ in M. Since A is abelian, it follows
that ¢t = 1, as required.

To complete the proof of the lemma (now that the necessary
properties of & have been established), it suffices to show that if

0, = bI\, ’

where the )\; are distinct irreducible characters of &, then each A% is
irreducible, and A% 3% for A, # )\;. For if this is proved, the normality
of %, in X implies the lemma. The definition of & implies that x*os is
a sum of |%;: | distinet irreducible characters of ¥. Furthermore, \;
is the only irreducible constituent of Xﬁ"s whose restriction to 9 is not
orthogonal to 4. Thus, if A = A%, then A; = ;. Since A% vanishes
outside &, a simple computation yields that ||A¥|? =1. Therefore
A¥o ig irreducible. The proof is complete.

LEMMA 4.6. Let p be an odd prime and let P be a normal S,-
subgroup of the group POE. Assume that OF is a Frobenius group with
Frobenius kernel D, D€ is a p'-group and SNE =1,

(i) If Cx(€) =1, then H S C(B).

(ii) If Cy(E) 18 cyclic for all elements E € €*, then | €| i3 a prime
or $ S C(P).

(ii) If 1+ Ca(D) S Cx(€), then either P is cyclic or Cy(€) is not
cyclic.

Proof. 9CE is represented on PT/D(P). Suppose that H & C(P).
By 38.16 (iii) € has a fixed point on PT/D(P), and thus on P. This
proves (i). If |&|is not a prime, let 1 <G, & Then 3.16 (iii) implies
that €, has a non-cyclic ﬁxed point set on B/D(P), and thus on EB
This proves (ii).

As for (iii), let k¥ be the largest integer such that $ has a non
trivial fixed point on Z,(P)/Z,—(P). It follows that  has a non trivial
fixed point on Z,(P)/D(Z.(P)). If Z.(P) is not cyclic then since HE-is
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completely reducible on Z.(PB)/D(Z.(P)) (i) implies (iii) by 3.16 (iii).
Suppose that Z,(P) is cyclic. If k= 2, then by [10] Lemma 1.4, P is
cyclic. Since Z,(P) is of class 1 or 2, 2,(Z,(P)) is of exponent p. As
Z,(*P) is not cyelic neither is 2,(Z(P)). Thus it may be assumed that
B = 2(Z(P)) is non cyclic of exponent p and class at most 2. If P
is abelian then (iii) follows from (i). If ‘¥ is of class 2 then by (i) €
has a fixed point on /P’ and on P'. As P has exponent p this implies
that Cyx(C) is not cyclic as required.

5. Numerical Results

In this section we state some elementary number theoretical results
and some inequalities. The inequalities can all be proved by the methods
of elementary calculus and their proof is left to the reader.

LEmMMA b.1. If p, q are primes and
p=1(modg), ¢ = 1(modp)
then p=1+ q + ¢

Proof. Let p=1+ ng. Since » > ¢, q # 1(mod p). Hence
1+g+q=mp.
Reading (mod q) yields m = 1 + rq. Therefore
l1+g+¢=1+ (r + n)g + rng*.

If » #+ 0 then the right hand side of the previous equation is strictly
larger than the left hand side. Thus » = 0 as required.

The first statement of the following lemma is proved in [5]. The
second can be proved in a similar manner.

LeEMMA 5.2, Let p,q be odd primes and let n = 1.
(i) If q divides (p* —1)(p** —1) +-- (p — 1) then q™ < p".
(i) If ¢~ divides (p™ — 1) (@** — 1) -+ (p* — 1) then ¢ < p™.

If =5, then

(5.1) 332>,

(5.2) 5= > 80z ,

(5.3) 3x > 20(2x* 4 1)
If x =17, then

(5.4) 8> 22,
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(5.5) 3 — 3 > 282,
(6.6) 7> 4023+ 1.
(6.7 5>423*+1 for =13,

(5.8) (xv—1)—(x—1)y—ﬂ_zﬁ>o for z,y=3.

(6.9 gt —1>4y" forx=3, y=5 orx=56y=8.

(5.10) 2>y fore=38 y=borrx=10, y=3.

(5.11) -1 -1 ¢re>y=3.
y—1 x—1

(5.12) Y @~ -1 > at @ —1) forxa >y=8.
y—1 x—1






CHAPTER 1II

6. Preliminary Lemmas of Lie Type

Hypothesis 6.1.

(i) p vs a prime, P is a normal S,-subgroup of PU, and U is
a non identity cyclic p’-group.

(i) Cy(®)=1.

(iii) P’ is elementary abelian and ‘B’ < Z(P).

@iv) |PBU| s odd.
Let U =<(U), U] =u, and |PB: D(P)| = p*. Let .& be the Lie ring
associated to P ([12] p. 328). Then L= & * @ & where &£* and
5 correspond to P/P’ and T’ respectively. Let &= FK*/p<*. For
t=1,2, let U; be the linear transformation induced by U on 2.

LEMMA 6.1. Assume that Hypothesis 6.1 is satisfied. Let ¢, ---,
&, be the characteristic roots of U,. Then the characteristic roots of
U, are found among the elements e5; with 1 <1 < j < n.

Proof. Suppose the field is extended so as to include ¢, ---,¢,.
Since U is a p’-group, it is possible to find a basis =z, -+-, 2, of &£
such that z,U, = ez, 1 <1 < n. Therefore, z,U,-2,;U, = ¢;;2;-x;. As
U induces an automorphism of &, this yields that

@ -2,)U, = 2,U, 2, U, = eg;m50; .
Since the vectors z;-z; with ¢ < j span &, the lemma follows.

By using a method which differs from that used below, M. Hall
proved a variant of Lemma 6.2. We are indebted to him for showing
us his proof.

LEMMA 6.2. Assume that Hypothesis 6.1 is satisfied, and that
U, acts irreducibly on <£. Assume further that n = q is an odd
prime and that U, and U, have the same characteristic polynomial,
Then q¢ >3 and
u< 30/2

Proof. Let e be the characteristic roots of U;,, 0 <1 <mn. By
Lemma 6.1 there exist integers 4, 7, k such that er'e»’ = er*, Raising
this equation to a suitable power ylelds the existence of integers a
and b with 0 < a < b < ¢ such that g?*+»"1 = 1, By Hypothesis 6.1 (ii),
the preceding equality implies p* + »* — 1 = 0(mod u). Since U, acts
irreducibly, we also have »* — 1 = 0(mod ). Since U is a p'-group,

789
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ab # 0. Consequently,

p* + p* — 1 = 0(mod u),

(6.1) PP —1=0(modu), 0<a<b<q.

Let d be the resultant of the polynomials f=2*+2*—1 and g =
2 — 1. Since ¢ is a prime, the two polynomials are relatively prime,
so d is a nonzero integer. Also, by a basic property of resultants,

(6.2) d=hf+kg

for suitable integral polynomials # and k.
Let ¢, be a primitive gth root of unity over &, so that we also
have

—1 —1
e=Te+e - DI +5" -1
(6.9) - -
— 1__‘[0 {3 + s:(u—-b) + e:(b-a) _ 6:“ _ e;‘b — Eq_“ _ eq—ia} .

For ¢ = 8, this yields that d*= (8 -1+ 1+1)* = 4%, so that d = 4.
Since % is odd (6.1) and (6.2) imply that v = 1. This is not the case,
so g > 3.

Each term on the right hand side of (6.3) is non negative. As
the geometric mean of non negative numbers is at most the arith-
metic mean, (6.3) implies that

1 El i(a—b i (b= i — < —ib
dﬂ/llé?_.o{s_*_s;a )+€; a)_s;a_eqm_sq__eq }.
=

The algebraic trace of a primitive gth root of unity is —1, hence
dhn<3.
Now (6.1) and (6.2) imply that
u=|d| < 8.

Since 8% is irrational, equality cannot hold.

LEMMA 6.8. If P is a p-group and P' = D(P), then C.(PB)/C,+. By
18 elementary abelian for all n.

Proof. The assertion follows from the congruence
[Au M) A”]p = [Al’ ) An—l! Aﬁ] (mOd Cn+l(§B)) ’
valid for all 4,, -+-, 4, in B,

LEMMA 6.4. Suppose that ¢ is a fixed point free p'-automorphism-
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of the p-group P, P = D(P) and A° = A*(mod L') for some integer
2 independent of A. Then P i8 of exponent p.

Proof. Let A° = A*.A* so that A% is in P’ for all A in P.
Then

[4) +--, A =[A4L, -+, A = [Af-A;", eee, AZ-AY]
= [A:’ MRS A:] = [Alv "% A”]z" (mOd Cn+1(§B)) .

Since o is regular on P, o is also regular on each C,/C,,,. As the
order of ¢ divides p — 1 the above congruences now imply that cl(P) <
» — 1 and so P is a regular p-group. If F(P) # 1, then the mapping
A —— A? induces a non zero linear map of PB/D(P) to C.(B)/Cn:i(P)
for suitable #. Namely, choose % so that & (B) < C(B) but () &
C...(P), and use the regularity of P to guarantee linearity. Notice
that n = 2, since by hypothesis () = P’. We find that z = z"(mod »),
and so z*' = 1(mod p) and o has a fixed point on C,_,/C,, contrary to
assumption. Hence, J'(B) = 1.

7. Preliminary Lemmas of Hall-Higman Type

Theorem B of Hall and Higman [21] is used frequently and will
be referred to as (B).

LEmMmA 7.1. If % i a p-solvable limear group of odd order over
a field of characteristic p, then O,(%X) contains every element whose
minimal polynomial is (z — 1)°.

Proof. Let 77 be the space on which X acts. The hypotheses
of the lemma, together with (B), guarantee that either O,(%) +1 or
X contains no element whose minimal polynomial is (@ — 1)

Let X be an element of £ with minimal polynomial (x — 1)>. Then
0,(%X) + 1, and the subspace 2% which is elementwise fixed by 0,(%)
is proper and is X-invariant. Since O,(¥) is a p-group, % # 0. Let

& =ker(— Aut %), K =ker(E— Aut (7 %)) .
By induction on dim #°, X€ 0,(Xmod &), ¢ =0,1. Since
0, (X mod &) N 0,(X mod &,)
is a p-group, the lemma follows.
LEMMA 7.2. Let X be a p-solvable g'roup of odd order, and U a

p-subgroup of X. Any one of the following conditions guarantees
that A < O, ,(%):
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A i8 abelian and |X: N(N)| is prime to p.

p=5and [B, A A A A = 1 for some S,-subgroup P of %.
[B, A, A] = 1 for some S,-subgroup P of X.

A acts trivially on the factor 0, , ,(%)]/0, (%).

Ll .

Proof. Conditions 1, 2, or 8 imply that each element of U has a
minimal polynomial dividing (z — 1)*! on O, ,(%)/D, where D =
D(0,. (%X) mod 0,.(x)). Thus (B) and the oddness of |%X| yield 1, 2, and
3. Lemma 1.2.3 of [21] implies 4.

LEmMMA 7.8. If %X 48 p-solvable, and P is a S,-subgroup of %,
then () is a lattice whose maximal element is O,.(%).

Proof. Since 0,(%) <X and PN O,(X)=1, 0,(%X) is in U(P).
Thus it suffices to show that if e MU(P), then < 0,(%). Since PO
is a group of order |P|-|H| and P is a S,-subgroup of X,  is a p'-
group, as is £0,.(%). In proving the lemma, we can therefore assume
that 0,.(X) = 1, and try to show that © = 1. In this case, 9 is faith-
fully represented as automorphisms of 0,(X), by Lemma 1.2.3 of [21].
Since 0,(%X) &P, we see that [, 0,X)]|=HN P, and H = 1 follows.

LEMMA 7.4, Suppose B is a S,-subgroup of X and A € &4 (P).
Then U(A) contains only p'-groups. If in addition, X 8 p-solvable,
then U(A) is a lattice whose maximal element is 0,.(%).

Proof. Suppose 2 normalizes  and AN H =<{1)>. Let A* be a
S,-subgroup of AP containing A. By Sylow’s theorem, P, =A*N O
is a S,-subgroup of . It is clearly normalized by %, and % N P, ={1.
If P, # 1), a basic property of p-groups implies that U centralizes
some non identity element of P, contrary to 3.10. Thus, B, =<1>
and $ is a p’-group. Hence we can assume that X is p-solvable and
that 0,.(%) = <1)> and try to show that = {1).

Let %, = 0,(X)9%. Then 0,(X)A is a S,-subgroup of X, and
Ae FAZ 4" (0,(X)%). If %, %, then by induction D<0,(%,) and so
[0,(%), ] = 0,(%) N 0,(X) =1 and D = 1. We can suppose that %, =
%,

If A centralizes O, then clearly A < %, and so ker (¥ — Aut ™) =
A x &, by 310 where DS 9,. Hence, , char A x O, < %, and
9 <%, so that §, = 1. We suppose that A does not centralize 9,
and that © is an elementary g¢-group on which % acts irreducibly.
Let B = 0,(%)/D(0,(%)) = B, X B,, where B, = Cgx(®) and B, = [B, $].
Let V€%, and Xe V, so that [X, A] < A. Hence, [X, A] maps into
B,, since [[X, A], D]S D N O0,(X) = 1. But B, is %-invariant, so [X, A}
maps into B, N B, = 1. Thus, A S ker (¥ — AutB,), and so [, D]



7. PRELIMINARY LEMMAS OF HALL-HIGMAN TYPE 793

centralizes B,. As U acts irreducibly on , we have = [D, U], so
B, =1. Thus, $ centralizes B and so centralizes 0,(%X), so =1, as
required.

LEMMA 7.5. Suppose O and O, are S, ,-subgroups of the solvable
group &. If BS0,(D) N D, then BS0,9).

Proof. We proceed by induction on [&|. We can suppose that
© has no non identity normal subgroup of order prime to pq. Suppose
that & possesses a non identity normal p-subgroup . Then

SE0,9) N0,D) .

Let &=6/J, B=BI/J, D=9/, &= $/J. By induction, BE 0,(9),
80 BSO0,(Dmod I) = 0,(D), and we are done. Hence, we can assume
that 0,(8) = {(1>. In this case, F(®) is a ¢-group, and F(&)< 9,.
By hypothesis, B<S0,(9,), and so B centralizes F(3). By 3.3, we
see that B = (1>, so BS0,(D) as desired.

The next two lemmas deal with a S,-subgroup P of the p-solvable
group X and with the set

& = {9|1. 9 is a subgroup of % .
2. Pso.
3. The p-length of  is at most two .
4. |9D| is not divisible by three distinet primes .}

LEMMA 7.6. X ={D|Dec .

Proof. Let %, = 9|9 € o). It suffices to show that |%,|, = | %],
for every prime ¢q. This is clear if ¢ = p, so suppose q #* p. Since
¥ is p-solvable, X satisfies E,,, so we can suppose that X is a p, ¢-
group. By induction, we can suppose that X, contains every proper
subgroup of X which contains B. Since PO,(%)ec.s”, we see that
0,X)S%,. If NBNO,, (%)%, then N(PBNO,X)=X,. Since X =
0,%)-N(BNO, ,(%)), we have X = X%,. Thus, we can assume that
0,%) =B NO, ,(X). Since O, (%X)e.s”, we see that 0, (X)) =%, If
RO, (%) = %, we are done, so suppose not. Then N(P N 0, , (%)) C %,
so that %, contains N(P N 0, , ,(¥))0, (%) = %, as required.

LEMMA 7.7. Suppose WM, N are subgrouns of £ which contain P
such that © = (O N MO NRN) for all © in % Then £ =T]MN.

Proof. It suffices to show that |[MN|, = |X|, for every prime g¢.
This is elear if ¢ = p, so suppose ¢ # p. Let L, be a S,-subgroup of
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M NN permutable with P, which exists by E,, in M N N. Since %
satisfies D,,, there is a S,-subgroup Q of ¥ which contains Q, and
is permutable with B, Set R = PLO. We next show that

R=@RNIWERNN) .

If Re. 5~ this is the case by hypothesis, so we can suppose the p-
length of R is at least 3. Let B, = PN 0,,,(R), and L = Ng(B).
Then £ is a proper subgroup of R so by induction on |X|, we have
L=E@NIWENN). Let & =PB-0,,,(R) = PO, (R). Since K is in
& we have & = (& N YK N N). Furthermore, by Sylow’s theorem,
R =82 Let ReR. Then R= KL with Ke®, Le 2. Then K = PK,,
with Pin B, K, in 0, (R). Also, L=MN, MinNM, NinN N,
and so R = KL = PK,MN = PMK*N. Since K*e€O0,,(R), we have
K* = M\N, with M, in N K, N, in RN K. Hence, R = PMM,-N.N
with PMM, in N R, N,N in RN R.
Since R= (RN DR NN), we have

— R = IROM[ROARN,
= (R = g .
%l = [R], RNMOR

By construction, (RN MNN|, = | M N NRN|,. Furthermore, [ RN M|, <
[, and [RNN|, < [N, s0

m|, = [BRl, > [ROTROR|, _ g
TRl = Tmam, EREFED 1%,

completing the proof.

LEMMA 7.8. Let X be a finite group and $ a p'-subgroup of %
which is normalized by the p-subgroup A of X. Set A, = Cy(9).
Suppose L is a p-solvable subgroup of % containing A and  Z 0,.(2).
Then there is a p-solvable subgroup & of ACLA,) which contains AD
and & 0,.(R).

Proof. Let § = 0,.,(8)/0,(%). Then $ does not centralize &.
Let B be a subgroup of ¥ which is minimal with respect to being
AP-invariant and not centralized by . Then B = [B, 9], and [B, A,] =
D(B), while [D(B), 9] = 1. Hence, [B, U, 9] =[¥,, H, B] =1, and so
[9,8, %] =1. Since [, B] =B, U, centralizes B. Since B is a sub-
group of ¥, we have B = £/0,.(2) for suitable &,. As 0, (%) is a
p’-group and B is a p-group, we can find an Y-invariant p-subgroup
PBo of ¥ incident with B. Hence, A, centralizes PB,. Set

=B, HHr<8.
As 8 is p-solvable so is & If < 0,(8R), then
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[Bo, 0] & L N 0,.(R) < 0,(9)

and 9 centralizes B, contrary to construction. Thus, $Z 0,(R), as
required.

LEMMA 7.9. Let $ be a p-solvable subgroup of the finite group
X, and let P be a S,-subgroup of O. Assume that one of the follow-
ing conditions holds:

(a) |X| s odd.

(b) »=5.

(¢) »=238 and a S,-subgroup of O s abelian.
Let B, = 0, ,(9) NP and let PB* be a p-subgroup of X containing P.
If B is a S,-subgroup of N (By), then B, contains every element of
FEN(PB*).

Proof. Let Ae A2+ (P*). By (B) and (a), (b), (c), it follows
that AN P=ANP, = A, say. If A A, then there is a B,-invariant
subgroup B such that A, CBSA, [B: A, | = p. Hence, [B, B]S A, &
Py, 80 BS N(P) N P*. Hence, {B, PB) is a p-subgroup of N (Py),
so BEP. Hence, BESAN P = WA, which is not the case, so A = ¥,
as required.

8. Miscellaneous Preliminary Lemmas

LemMma 8.1, If X i8 a m-group, and & 18 a chain X =1%,2
%2-.-2%, =1, then the stability group N of & is a w-group.

Proof. We proceed by induction on n. Let Ac . By induection,
there is a m-number m such that B = A™ centralizes X,. Let XeZ%;
then X# = XY with Y in %,, and by induction, X* = XY". It fol-
lows that B% =1,

LEMMA 8.2. If P i3 a p-group, then P possesses a characteristic
subgroup € such that

(i) cl@®) =2, and €/Z(€) is elementary.

(ii) ker (Aut P—> Aut €) i3 a p-group. (res is the homomor-
phism induced by restricting A in Aut P fo €.)

(ili) [B,C]=Z(C) and CE€) = Z(€).

Proof. Suppose € can be found to satisfy (i) and (iii). Let
® = ker res. In commutator notation, [®, €] =1, and s0 [R, €, P] = 1.
Since [€, B] €, we also have [€, B, K] = 1 and 3.1 implies [B, &, €] =
1, so that [B, K]S Z(€). Thus, £ stabilizes the chain P2E 21 so
is a p-group by Lemma 8.1.
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If now some element of ¥+ (P) is characteristic in P, then
(i) and (iii) are satisfied and we are done. Otherwise, let % be a
maximal characteristic abelian subgroup of %3, and let € be the group
generated by all subgroups ® of P such that AcCD, |D:A| = p,
DEZ (P modA), DS CH). By construction, A< Z(€), and € is seen
to be characteristic. The maximal nature of U implies that A = Z(€).
Also by construction [P, €]S A = Z(€), so in particular, [€, €)= Z(€)
and cl(€) <2, By construction, €/Z(€) is elementary.

We next show that C(€) = Z(€). This statement is of course
equivalent to the statement that C(€)= €. Suppose by way of con-
tradiction that C(€)Z €. Let & be a subgroup of C(€) of minimal
order subject to (a) € B, and (b) € L €. Since C(€) satisfies (a)
and (b), & exists. By the minimality of &, we see that [, E]=S€
and D(E)< €. Since € centralizes €, so do [P, €] and D(E), so we
have [P, €)= and D(E) =A. The minimal nature of & guarantees
that G/ENE is of order p. Since ENE=CNA, G/ENA is of
order p, so EUA/A is of order p. By construction of €, we find A=
€, so €< €, in conflict with (b). Hence, C(€) = Z(€), and (i) and
(iii) are proved.

LemMMmA 8.8. Let X be a p-group, p odd, and among all elements
of P& (%), choose A to maximize m(N). Then 2,(C(2(N))) = 2,(N).

REMARK. The oddness of p is required, as the dihedral group
of order 16 shows.

Proof. We must show that whenever an element of ¥ of order
p centralizes 2,(2), then the element lies in 2,(%).

If XeC(QN) and X* =1, let B(X) = B, = (2(Y), XD, and let
B,CcB, .- B, =AU, X)> be an ascending chain of subgroups, each
of index p in its successor. We wish to show that B, < B,. Suppose
B, 1B, for some m <n — 1. Then B, is generated by its normal
abelian subgroups %B, and B, N A, so B,, is of class at most two, so
is regular. Let Ze®B,, Z of order p. Then Z= X*A, A in ¥, k an
integer. Since B, is regular, X*Z is of order 1 or p. Hence,
AcQN), and Z¢B,. Hence, B, = 2,(B,) charB,, < B,.,,, and B, < B,
follows. In particular, X stabilizes the chain 2 2,(%) =2 {1).

It follows that if ® = 2,(C(2,N))), then D’ centralizes A. Since
Ne Fz 1 (%), DA We next show that D is of exponent p.
Since [D, D] A, we see that [D, D, D} < 2(A), and so

2,999 =1,

and c¢l(®) £8. If p=5, then D is regular, and being generated by
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elements of order p, is of exponent ». It remains to treat the case
» =3, and we must show that the elements of ® of order at most
8 form a subgroup. Suppose false, and that <X, Y) is of minimal
order subject to X®*=Y*=1, (XY)+#1, X and Y being elements
of ©. Since (Y, Y*HcC{X,Y), [Y,X]=Y* ' X'YX is of order
three. Hence, [X, Y] is in 2,(¥), and so [Y, X] is centralized by
both X and Y. It follows that (XY) = X*YY, XP =1, so D is of
exponent p in all cases.

If 2)cD, let Q% E=D, |€: 2,2A) =p. Since 2(AMS
Z(€), € is abelian. But m(€) = m(¥A) + 1 > m(N), in conflict with
the maximal nature of 2, since & is contained in some element of
Fz (%) by 3.9.

LemMMA 8.4. Suppose p i8 an odd prime and % i3 a p-group.

(i) If SAZ_1;(%) is empty, then every abelian subgroup of %
18 generated by two elements,

(ii) If &5 (X) is empty and A i8 an automorphism of % of
prime order q, p #+ q, then q divides p* — 1.

Proof. (i) Suppose A is chosen in accordance with Lemma 8.3.
Suppose also that X contains an elementary subgroup € of order %
Let G, = Cx(2,(A)), so that €, is of order p’at least. But by Lemma
8.8, G, < 2,(2), a group of order at most p*, and so &, = 2,(N). But
now Lemma 8.8 is violated since & centralizes €.

(ii) Among the A-invariant subgroups of X on which A acts non
trivially, let © be minimal. By 8.11,  is a special p-group. Since
p is odd, © is regular, so 3.6 implies that © is of exponent p. By
the first part of this lemma, © contains no elementary subgroup of
order p°. It follows readily that m(®) < 2, and (ii) follows from the
well known fact that ¢ divides [Aut /D(D)|.

LEMMA 8.5. If % 18 a group of odd order, p is the smallest
prime in 7(X), and if in addition X contains no elementary subgroup
of order p°, then X has a normal p-complement,

Proof. Let P be a S,-subgroup of X. By hypothesis, if  is a
subgroup of B, then % +;(D) is empty. Application of Lemma 8.4
(ii) shows that N.(9)/Cy(D) is a p-group for every subgroup 9 of P.
We apply Theorem 14. 4.7 in [12] to complete the proof.

Application of Lemma 8.5 to a simple group @ of odd order im-
plies that if » is the smallest prime in @(®), then & contains an
elementary subgroup of order »°. In particular, if 3¢ n(®), then G
contains an elementary subgroup of order 27.
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LEMMA 8.6. Let R, N, N, be subgroups of a group X and suppose
that for every permutation o of {1,2,8},

9zﬂ'(l) g gec(!) ma' (8)

Then NN, is a subgroup of X%.

P’I‘OOf. m,%l g (mlms)(msm,) g mlmsmg g m1(m1%)m’ g_ mlmg, as re-
quired.

Lemma 8.7. If U is a p'-group of automorphisms of the p-group
B, ¢of A has no fized points on P/D(P), and A acts trivially on D(P),
then. D(P) S Z(D).

Proof. In commutator notation, we are assuming [B, A] = B,
and [¥%, D(P)] = 1. Hence, [A, D(P), B]| = 1. Since [D(P), B} < D(P),
we also have [D(P), B, A] =1. By the three subgroups lemma, we
have [P, A, D(P)] = 1. Since [P, A] = B, the lemma follows.

LemMMA 8.8. Suppose Q is a q-group, q is odd, A is an auto-
morphism of L of prime order p, p = 1(mod q), and Q contains a
subgroup L, of index q such that F&.A:(Q,) i8 empty. Then p=
14+ g+ ¢ and Q 18 elementary of order ¢.

Proof. Since p = 1(mod q) and ¢ is odd, p does not divide ¢* — 1.
Since D(Q) &9, Lemma 8.4 (ii) implies that A acts trivially on D(Q).

Suppose that A has a non trivial fixed point on Q/D(X). We can
then find an A-invariant subgroup M of index ¢ in L such that A
acts trivially on Q/MM. In this case, A does not act trivially on IR,
and so M = Q,, and M N L, is of index ¢ in W, By induction, p =
1+g+ ¢ and M is elementary of order ¢°. Since A acts trivially
on LM, it follows that O is abelian of order ¢* If Q were elemen-
tary, Q, would not exist. But if Q were not elementary, then A
would have a fixed point on 2,(Q) = M, which is not possible. Hence
A has no fixed points on Q/D(Q), so by Lemma 8.7, D(Q) S Z(XQ).

Next, suppose that A does not act irreducibly on Q/D(X2). Let
N/D(L) be an irreducible constituent of A on Q/D(X). By induction,
N is of order ¢, and p=1+ ¢+ ¢. Since D) R, D) is a
proper A-invariant subgroup of N. The only possibility is D(Q) =1,
and || = ¢® follows from the existence of Q.

If |Q]| =¢* then p =1+ ¢q + ¢* follows from Lemma 5.1. Thus,
we can suppose that |Q| > ¢°, and that A acts irreducibly on Q/D(R),
and try to derive a contradiction. We see that £ must be non
abelian. This implies that D(Q) = Z(Q). Let |Q: D(Q)| = ¢*. Since
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p=1(modg), and ¢" =1(mod p), »=8. Since D(LQ)=Z(Q), » is
even, L/Z (L) possessing a non singular skew-symmetric inner product
over integers mod ¢ which admits A. Namely, let € be a subgroup
of order ¢ contained in Q' and let €, be a complement for € in L.
This complement exists since L' is elementary. Then Z(P'mod €,) is
A-invariant, proper, and contains D(Q). Since A acts irreducibly on
2/D(Q), we must have D(Q) = Z(Qmod €,), so a non singular skew-
symmetric inner product is available. Now L is regular, since ¢l(Q) =
2, and ¢ is odd, so |2(Q)| = |Q:0%)|, by [14]. Since cl() =2,
2,(R) is of exponent q. Since

R:0'Q) 2z |0:DQ)| =z ¢,

we see that |2,(Q)] = ¢*. Since Q, exists, 2,(X) is non abelian, of
order exactly ¢!, since otherwise L, N 2,(Q) would contain an elemen-
tary subgroup of order ¢®. It follows readily that A centralizes 2,(Q),
and so centralizes L, by 3.6. This is the desired contradiction.

LEMMA 8.9. If P is a p-group, tf Fz4,(B) 18 non empty and
A is a normal abelian subgroup of P of tyve (p, »), then A is con-
tained in some element of A& N5 (P).

Proof. Let € be a normal elementary subgroup of 3 of order 2°,
and let G = CxA). Then €, <P, and A, €)= is abelian. If
|¥| = p*, then A = €, = F E, and we are done, since € is contained
in an element of &4 (P). If |F| = »°, then again we are done,
since ¥ is contained in an element of .= 45 (P).

If X and 9 are groups, we say that 9 is involved in %X provided
some section of X is isomorphic to 9 [18].

LEmMMmA 8.10. Let B be a S,-subgroup of the group X. Suppose that
Z(P) is cyclic and that for each subgroup U in P of order p which
does not lie in Z(P), there is an element X = X&) of B which
normalizes but does not centralize U, 2(Z(P))>. Then either SL(2, p)
18 involved in X or 2(Z(P)) is weakly closed in B.

Proof. Let ® = 2(Z(B)). Suppose & = D¢ is a conjugate of D
contained in P, but that € = D. Let D =D), & =E). By hypo-
thesis, we can find an element X = X (&) in ¥ such that X normalizes
{E,D> =%, and with respect to the basis (¥, D) has the matrix

((]j i) Enlarge § to a S,-subgroup P* of Cy(€). Since € = 7,
B¢ S C4(€), so P* is a S,-subgroup of %, and €< Z(P*). Since Z(P*)
is cyclic by hypothesis, we have & = 2,(Z($*)). By hypothesis, there

is an element Y = Y(®) in B* which normalizes § and with respect
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to the basis (E, D) has the matrix G (1)) Now <(1) %) and G (1)>

generate SL(2, p) [6, Sections 262 and 263], so SL(2, p) is involved in
N,(®), as desired.

LemMa 8.11. IFf U i8 a p-subgroup and B i3 a g-subgroup of %,
P # q, and A normalizes B then [B, A] = [B, ¥, A].

Proof. By 3.7, [¥,B] < AB. Since AB/[Y, B] is nilpotent, we
can suppose that [%, B] is elementary, With this reduction, [B, ¥, A <
AB, and we can assume that [B, A, A] = 1. In this case, A stabilizes
the chain B2[B, A21, so [B, A] =1 follows from Lemma 8.1 and
P+ q.

LEMMA 8.12. Let p be an odd prime, and € an elementary sub-
group of the p-group P. Suppose A is a p'-automorpvhism of B which
centralizes Q(Cy(€)). Then A=1.

Proof. Since €S 2(Cyx(€)), A centralizes &. Since € is A-invari-
ant, sois Csp(@)- By 3.6 A centralizes C‘-B(@)' so if € = Z (), we are done.

If Ca(€) B, then Cy(€)D(P) P, and by induction A centralizes
D(PB). Now [P, €]< D(P) and so [P, €, <4>] = 1. Also, [, (4] =1,
so that [€,{A4), P] =1. By the three subgroups lemma, we have
[<A>, B, €] = 1, so that [B, {AD] < Cy(€), and A stabilizes the chain
P2CK(E) D1, It follows from Lemma 8.1 that 4 =1.

LEMMA 8.13. Suppose P is a S,-subgroup of the solvable group
&, L A5(P) 1s empty and S i8 of odd order. Then & centralizes
every chief p-factor of &,

Proof. We assume without loss of generality that 0,.(8) = 1.
We first show that P IS, Let $ = 0,(8), and let € be a subgroup
of  chosen in accordance with Lemma 8.2. Let B = Q,(€). Since
p is odd and cl(€) < 2, W is of exponent p.

Since 0,(®) =1, Lemma 8.2 implies that ker (& — Aut®) is a
p-group. By 3.6, it now follows that ker (& —— Aut ) is a p-group.
Since P has no elementary subgroup of order p*, neither does I, and
so |W: D) < p*. Hence no p-element of & has a minimal poly-
nomial (z — 1)* on BW/D(W). Now (B) implies that Plker a < S/ker a.
and so P < S, since kera & P.

Since P <« &, the lemma is equivalent to the assertion that if £
is a S,-subgroup of &, then ¥ =1. If ¥ # 1, we can suppose that
¥’ centralizes every proper subgroup of Y3 which is normal in &. Since
g is completely reducible on P/D(%P), we can suppose that [P, ] =P
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and [D(P),¥]=1. By Lemma 8.7 we have D(P)SZ(P) and so
2(P) =R is of exponent » and class at most 2. Since P has no
elementary subgroup of order %% neither does ®. If R is of order p,
%' centralizes & and so centralizes P by 3.6, thus & = 1. Otherwise,
|®: D(®)| = p* and & is faithfully represented as automorphisms of
R/D(R). Since 2] is odd, & =1,

LEMMA 8.14. If & 4is a solvable group of odd order, and
GFEN5(PB) is empty for every S,-subgroup P of S and every prime
P, then &' is nilpotent,

Proof. By the preceding lemma, &' centralizes every chief factor
of &. By 3.2, & < F(®), a nilpotent group.

LeMMA 8.156. Let & be a solvable group of odd order and suppose
that & does not contain an elementary subgroup of order p* for any
prime p. Let P be a S,-subgroup of & and let € be any character-
istic subgroup of PB. Then CEN P 1 S.

Proof. We can suppose that € =%, since € NP’ char P. By
Lemma 8.14 F(8) normalizes €. Since F(&)P <1 S, we have & =
F(©)N(P). The lemma follows.

The next two lemmas involve a non abelian p-group P with the
following properties:

(1) pis odd.

(2) B contains a subgroup B, of order p such that

0(530) = éBo B, ’

where 9B, is cyelic.
Also, % is a p’-group of automorphisms of # of odd order.

LEMMA 8.16. With the preceding notation,

(i) U is abelian.

(ii) No element of A centralizes 2,(C(FB,)).

(i) If U is cyclic, then either |A| divides p 1Jor FEAH(P)
18 empty.

Proof. (ii) is an immediate consequence of Lemma 8.12,

Let B be a subgroup of P chosen in accordance with Lemma 8.2,
and let B = 2,(B) so that A is faithfully represented on . If B, &L
9B, then P, is of maximal class, so that with B, = W, Wy, = [B;, P,
we have |, : W,,|=p, 1=0,1,.--,2 — 1, |BW| =p*, and both (i)
and (iii) follow. If P, =W, then m(W) =2. Since [BW, PSS Z(W),
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it follows that {P,, Z(W)> < P. By Lemma 8.9, & #;(P) is empty.
The lemma follows readily from 8.4,

LEMMA 8.17. In the preceding motation, assume in addition that
|A| =q 18 a prime, that q does mot divide p —1, that P =[P, A]
and that Cq;(i’l) 18 cyclic. Then |P| = p'.

Proof. Since gip — 1, A centralizes Z(P), and so Z(P)SP'.
Since C$(91) is cyclic, 2(Z,(B)) is not of type (», »). Hence, B, &
2(Z(%P)). Since every automorphism of 2,(Z,(P)) which is the identity
on 2(Z,(P)/2(Z(P)) is inner, it follows that P = 2,(Z(P)) - D, where
D = Cp(2(Z,(P))). Since P, is cyclic, so is D, and so DS A(Z(P)),
by virtue of B =[P, A] and ¢+ p — 1.



CHAPTER III

9. Tamely Imbedded Subsets of a Group

The character ring of a group has a metric structure which is
derived from the inner product. Let £ be a subgroup of the group
X. The purpose of this chapter is to state conditions on £ and X which
ensure the existence of an isometry 7z that maps suitable subsets of
the character ring of { into the character ring of ¥ and has certain
additional properties. If a is in the character ring of € and a* is
defined then these additional properties will yield information con-
cerning a*(L) for some elements L of £. Once the existence of 7 is
established it will enable us to derive information about certain
generalized characters of X provided we know something about the
character ring of . In this way it is possible to get global infor-
mation about X from local information about £.

There are two stages in establishing the existence of 7. First we
will require that £ is in some sense “nicely” imbedded in X. When
this requirement is fulfilled it is possible to define a* for certain
generalized characters a of £ with a(1) = 0. In this situation a* is
explicitly defined in terms of induced characters of various subgroups
of X. Secondly it is necessary that the character ring of 2 have
certain special properties. These properties make it possible to extend
the definition of z to a wider domain. In particular it is then possible
to define a* for some generalized characters a of 2 with a(1) # 0.
The precise conditions that the character ring of £ needs to satisfy
will be stated later. In this section we are concerned with the
imbedding of £ in X. The following definition is appropriate.

DEFINITION 9.1. Let £ be a subset of the group X such that
9.1) AN =2.

Let ¥, be the set of elements L in f such that CL)ESL, and let
D= —g,.

We say that £ is tamely imbedded in X if the following conditions
are satisfied:

(i) If two elements of { are conjugate in X, they are conjugate
in &

(ii) If © is non empty, then there are non identity subgroups
O, +, D, of X, =1, with the following properties:

803
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@ (%I, 19:) =1 for @ # j;

(b) ; is a S-subgroup of N, = N(D.);
() M=90NN,)and H;N L = = 1;

@ (9:1,1C(L))=1 for Lel,;

() For 1 <14 =< mn, define

% ={ U cp(m} -2t
EE%
Then Sft% is 2 non empty T. I. set in X and N, = N (ift.-).
(iii) If L,eD, then there is a conjugate L of L, in & and an
index 4 such that

C(L) = Co(L)-Co(L) SN .

If &is a tamely imbedded subset of X then for 1 < 7 < n, each of
the groups 9, is called a supporting subgroup of 2. The collection
{9:11 =1 £ n} is called a system of supporting subgroups of L.

In one important special case, the definition of tamely imbedded
subset of % is fairly easy to master. Namely, if © is empty, the
reader can check that £ is a T. I. set.

If € is a tamely imbedded subset of X with £ = N (51’) then in
this section _# (53) denotes the set of generalized characters of £ which
vanish outside £ and "g(ﬁ) denotes the complex valued class functions
of $ which vanish outside €. Similarly, £ (@)( %(SE)) is the subset of
a (8)(%(8)) vanishing at 1. R. Brauer and M. Suzuki noted that if

£ is a T. I. set in X then the mapping = from %(8) into the ring
of class functions of X defined by

ar = a*

is an isometry ([24], p. 662). They were then able to extend this
isometry to certain subsets of %’(:‘3). Several authors have since then
used this technique and it has played an important role in recent
work in group theory.

In this chapter these results will be generalized in two ways.
First we will consider tamely imbedded subsets of X rather than T.I.
sets in X. Secondly we will show that under a variety of conditions
7 can be extended to various large subsets of %(@). The results
proved in this chapter are important for the proof of the main theorem
of this paper. However it is unnecessary in general to assume that
X has odd order or that ¥ is a minimal simple group.

The following notation will be used throughout this section.

For a tamely imbedded subset € of X let &= N(ﬁ) and for
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1<7=<nlet $; and N; have the same meaning as in Definition 9.1.
Define $, = 1 and

& ={L|LeD, C(LYSN} forl<t=n.
For Le&,0=i=<n let
©.2) W, = {LH|LH = HL, He $} = L{%: 0 C(L)} .

Since £ is tamely imbedded in % it follows from (9.2) and Definition
9.1 that for Le®,0=i<n

(9.3) |CL)|=|CL)NB| |As] .
For ac %(@) and 1 < % £ n define
a; = a|gag, .
Let a;, be the class function of N,/D; which satisfies

a; lgnm, =q;.

Let a;, be the class function of R; induced by «;. Define
9.4) @ =a + 3 (@ — @) .

Ifae Z (ﬁ) then (9.4) implies that a* is a generalized character of X.
It is an immediate consequence of the definition of induced characters
that for 1 <i1<n

a,(A) = a(L) for Le®;, Ae¥,;
(9.5) o (A) =0 for Le®, AcA;,, A+ L
ay(L) =|CL)N$:|a(L) for Leg;.

LEMMA 9.1. Suppose that { is a tamely imbedded subset of %.
If ae & (f!) let a be defined by (9.4). Then a'(X) =0 if X is not
conjugate to an element of U, for any Le CJ L, , while
=0

a'(4) = a(L) for Ae¥,Lel)e;.

=0

Proof. If NeN,; then a complement of $; in (N is solvable.
Thus ([28] p. 162) for 1 < % < n every element of R; is conjugate to
an element of the form HL = LH with Lef®NN;, He ;. Suppose



806 SOLVABILITY OF GROUPS OF ODD ORDER

that L is not conjugate to an element of f!’; then since ac¢ %(@),
(9.4) implies that a’(HL) = 0. This implies that a"(X) = 0 unless X

is conjugate to an element of 2, for some Leg& .

Let Ae,, Le® for some i with 0 <7 =<mn. Suppose that
XLXe 532,- for some Xe€ZX and some j with 1 <5 <n,7+# j. Then
(19, 1CL))+#1. Thus 2+ 0 and Le ‘fé.-. Furthermore C(L) =
Co(L)Cs(L). By assumption (19:[,19;0) =1 and (| 9;l, |Ce(L)]) = 1.
Thus (| C(L)|, | D;|) = 1 contrary to the choice of L. Since ae & (2),
a; — a;, vanishes on N; — sfe*;. Consequently (9.4) implies that

9.6) a’(A) = a*(A) for 1 =0

L at(A) = a¥(A) + (@, —ag)*(4) forl=i=Zn.
Since fft,- isa T. I. set in ¥ with N (52;) =N, we get that

(ay — ay)*(4) = (@, — a,)(4) .
Thus (9.6) yields that
9.7 a(A) =a*(4) + (@, —a,)A) forl<i=<n.
Assume first that A = L. Then a*(L) = | C(L) N ;| a(L). Hence

(9.5), (9.6) and (9.7) yield that a’(4) = a(L). If A # L, then a*(4) =0

and 1<7=<n. Thus (9.5) and (9.7) yield that also in this case
a‘(A) = a(L). The proof is complete in all cases.

LEMMA 9.2. Suppose that isa tamely imbedded subset of X.
If ac &) let a* be defined by (9.4). Then for L<i<mn

a*(N) = a(N) for NeR, U $;.

Furthermore a |y, i8 a linear combination of characters of N;/9;.

Proof. If Ne 9, then by Lemma 9.1 and the definition of «;
a’(N) = 0 = a,(1) = ay(N) .

If Ne E?E,;, and a’(N) # 0, then N is conjugate to an element A of
U, for some Le&,. Thus by (9.5) and Lemma 9.1 a’(N) = a,(N) as
required.

Let 6 be an irreducible character of R; which does not have ©;
in its kernel. Then
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©.8) (@ lay 0) = 1 Zn @ (NYTCN)

By Lemma 4.8 6 vanishes on R, — 52,- — ©; hence (9.8) and the first
part of the lemma yield that

(@ |y, 0) = Zg"(N)6(N)

1
| R
1
{9 |

Zpau(NYI(N) = (y, 6) .

Since a«;, is a linear combination of characters of N,/D; this yields
that (a® |y, 6) = 0. The lemma is proved.

LEmMMmA 9.3. Suppose that g is a tamely tmbedded subset of X.
If ae &(8) and a* is defined by (9.4) then

(ar, lz)g = (@, 19,)9, .

Proof. Let €,C,, .- be all the conjugate classes of ¥ which
contain elements of . Let L, L,, -+ be elements in 0 ¥, such that
i=0

L;e€; N . The number of elements in % which are conjugate to
an element of ¥, , is easily seen to be

= _1%]
1€5] [ A, | = TCLY] 1%y, |

Thus by Lemma 9.1 and (9.3)

9.9) @, 1e = 37 S gty | % L)
= 5=l _awy.

21 Te@)ne

By assumption €, N @’, € n @’, -+- are the conjugate classes of  which
contain elements of ¥, Since a€ &,(2) this yields that

(@ 1)y = L5, 8l

T2 Tea,) ne ) -

Therefore (9.9) implies the desired equality.

LemMmaA 9.4. Suppose that Lisa tamely imbedded subset of X%.
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Let @ be a generalized character of X such that for Le 08.-, 6 is
i=0

constant on ;. If a,Be % (ﬁ) and if ar, B are defined by (9.4)
then

(ar, 0)5 = (a’ elg)g

(@, B)=(a,B)g .

Proof. Since @ is constant on ¥, for Le 053,. it follows from
=0
Lemma 9.1 that
{aéls}t = a'é .
Thus by Lemma 9.3

(ar, 0)5 = (a’é, 1&)3 = (aélﬁi ]:2)9 = (a! Glg)ﬁ .

By Lemma 9.1 8° is a generalized character of ¥ which is constant

on A, for Le 08;. If now @ is replaced by B° in the first equation
i=0

of the lemma the second equation follows.

LEmMmA 9.5. Suppose that 8 is a tamely imbedded subset of
X. Let O be a class function of X which is constant on U, for

Le 0 ;. Let X, be the set of all elements in X which are conjugate
i=0
to some element of U, with Le _08;. Then

+=0

1
| %]

2, 0(X) = ITllzése(L) :

Proof. Define ac %(fé) by

a(L) = 6(L) if Le®
a(L) = 0 if Le® — &,

By Lemma 9.1

a(X) = 6(X) if Xe¥%
a’(X) =0 if Xek—%, .

Consequently Lemma 9.3 implies that
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1

37 De8X) = (@) 19y = (@, 19y = L saa(L)

|2]

=1 5,
=18 SMO(L) .

Lemma 9.5 is of great importance. Even the special case in
which 6 = 1, is of considerable interest and plays a role in section
26. In this special case, Lemma 9.5 asserts simply that |%,|/|%| =
|18l

10. Coherent Sets of Characters

Throughout this section let fbea tamely imbedded subset of the
group X¥. Let € = N(R) and let _#(2) be the set of generalized char-
acters of € which vanish outside & Let = be defined by 9.4).

DEFINITION 10.1. A set & of generalized characters of £ is
coherent if and only if

(i) A *#0.

(ii) It is possible to extend 7z from _# (%) to a linear isometry
mapping _# () into the set of generalized characters of X.

(i) A£(A)sA4R).

It is easily seen that if & is a coherent set and 9~ <. with
F(7)# 0 then also 7 is a coherent set. It is more difficult to
decide whether the union of two coherent subsets of _# (f!) is coherent.
Examples are known in which .5 consists of irreducible characters of
€ and is not coherent though _%(<5°) # 0 [25]. In these examples )
is even a T. I. set in X. The main purpose of this section is to give
some sufficient conditions which ensure that a subset .&¥ of _# (@) is
coherent.

LEMMA 10.1. Suppose that Lisa tamely imbedded subset of X%.
Let & ={M|1=21 =< n} with n =2, Assume that for 1<1 = n, N\
18 an irreducible character of L. Furthermore \(L) = \(L) for
Le — . Then S is coherent. Furthermore, if 7, and 7, are
extensions of T to 7 then either 7, = t,0r | & | = 2 and \j» = —\i3,,
1=1,2.

Proof. For 1<4,j=<n let a;=x —2\;, then a;;c _7(%).
Thus .4 (5”) + 0 since » = 2, Furthermore «f; is defined. Since 7
is an isometry this yields that

(10.1) (a3, ai ) = (@, Qi) = 030 — 055 — 050 + 040 .
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In particular (10.1) implies that if 7+ j then ||a}; || = 2. By Lemma
9.1 a;;(1) = 0, therefore ai; is the difference of two irreducible charac-
ters of %.

If » > 2, then it follows from equation (10.1) that (af, ai) =1
if 1< 4,7 and ¢+ 7. It is now a simple consequence of (10.1) that
there exists a unique irreducible character of X which is not orthogonal
to any «af; for 2 < i < n. Furthermore if 4, is chosen to be plus or
minus this character then it may be assumed that

(a;, 4)=1 for2<1=n.
Now define 4; by
ai;=4,— 4, 2=i=z=n.
This implies that
ai; = d4; — 4; .

Hence (10.1) yields that the generalized characters 4;,1 <¢1 < n are
pairwise orthogonal and that they each have weight one. It is easily
shown that a rational integral linear combination of the characters
A; of degree zero is a rational integral linear combination of the
generalized characters «,;. Hence if %" is the set of generalized
characters 4,,1 < ¢ < n, then the linear mapping sending )\, into 4; is
an isometry. Thus, . is coherent and the extension of ¢ to &7 is
unique in this case.

If » =2, define 4; for i =1,2 by ai, =4, — 4,, where 4; has
weight one., Any rational integral linear combination of A, and A, of
degree zero is a multiple of «,,. Thus, if 7, is any extension of 7 to
S, Mit=4; or ANt = —4,_; for 1 =1,2. The proof is complete.

Before proving the main result of this section, another definition
is needed. The following notation is introduced temporarily.

Let & be a subset of _# (SAB) which consists of pairwise orthogonal
characters. If &£ £.97, let 2(54) denote the smallest weight of any
character in ¢ of minimum degree. If ¥ and .7~ are coherent
subsets of & and 7, and 7, are extensions of v to .5 and 7~ re-
spectively, define

(A, T T, Ts) = {a]

(i) ae #().

(ii) a° = 4, + 4,, where
(@) 4,e&(T ™),
(b) 4, is not orthogonal to _# (%),
©) N4l = 2(A))
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DEFINITION 10.2. Let .57 be a coherent subset of .&” and let 7*
be an extension of 7 to 54. The pair (%4, t*) is subcoherent in &*
if the following conditions are satisfied: If .7 is any coherent sub-
set of . which is orthogonal to .&¢ and if 7, and 7, are extensions
of 7 to &4 and .7~ respectively, then

(i) .47 is orthogonal to 77 ™,

(ii) If ae /(% 71 77, T,), then a’ is a sum of two generalized
characters, one of which is orthogonal to 4™ and the other is in
+H.

If (5% t*) is subcoherent in &7, we also say that &4 is subcoherent
in &7, which causes no confusion in case z* has been designated.

Hypothesis 10.1.

(i) R i3 a tamely imbedded subset of the group X.

(ii) For 1=i<k, ¢={|l<8=<n} is a subset of _#().

(iii) & = 0 £ consists of pairwise orthogonal characters.
i=1

(iv) For any ¢ with 1 <1 < k, &4 18 coherent with isometry t,.
% 18 partitioned into sets .&4; such that each .&; either consists of
trreducible characters of the same degree and | %% | = 2 or (S, Ti5)
18 subcoherent in & where T,;; =T, on 7.

(v) For 1<t1<k,1<8Zm,, there exist integers 4, such that

1=/n§/:1§ o0
x‘s'n(]-) = /.'.)"11(1)7 /ﬂ | /h .

(vi) My t8 an irreducible character of L.
(vii) For any integer m with 1< m <k,

bt

3
-

N H
=1 ”)"'n“,

(10.2) > 2 .

‘

Il
-

THEOREM 10.1. Suppose that Hypothesis 10.1 is satisfied. Then
& 18 coherent. There is an extension t* of 7 to 7 (%) such that
either t* agrees with ©; on % or 4 = {\, N} and NP = —\"; for
i=12,

Proof. The proof is by induction on k. If k=1 the theorem
follows by assumption.

k—1
It is easily seen that |J .97 satisfies the assumption of the theorem.
i=1

k—1
Hence by induction it may be assumed that |J .4 is coherent. Let

i=1

k—1
7* denote an extension of = to |J.&4, with the property that for
i=1
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1<i1=k—1,7* agrees with 7; on &, or &% ={\, \s} and \J" = —\ji;,
i=12.

Choose the notation so that \,, has minimum weight among the
characters in &4 of degree 4\ u(1). Let 5%, be the subset .&%; which
contains \;,. For 1 < s < n, define

B, = 4o dn — M,
Thus B, %4(5”) and B: is defined. Define the integer y by
(10.3) ML B)=40— Y.
If ,)# (1, 1)and 1 <2<k—-1,1=<t=n, then by (10.3)

( u 1] Bl) - (/itk'll' ) (/u)' k':t‘! B;)

(10.4)
= il — Y) — bisbn = — Y .

Since \,, i8 irreducible and 7 is an isometry on _%(%”)

(10.5) 181" = 4% + I\l for1<s=m,.
By (10.4)

k—1 %
(10.6) Bi=aM — Y5> —L i+ 4

ST

where (4,\;;)=0 for 1<i<k—1,1<8=<n;. Equations (10.5)
and (10.6) now yield that

(10.7)

” ” =4 + ”7\%1”’

If y # 0 then since y is an integer (10.2) and (10.7) imply that
0= 24, — ) < |IMull = 1411

Therefore

(10.8) NP <[ Ml if y#0.

We will show that y = 0. By Hypothesis 10.1 (iv), 7 can be ex-
tended from _%(%4) to a linear isometry 7, on _#(%%). Forl < s < n,
let 4, be the image of )., under this extension. If ($%4;, 7:;) is sub-
coherent in .&¥, then 4% is orthogonal to UJ!=! $¢". Suppose that
; consists of irreducible characters of the same degree. If .o4ji
is not orthogonal to Ui=! .4, then there exists A€ .9%; and \, € .54,
for some tandm with1 < ¢ 5 k — 1, such that (A"%3, \{") # 0. Assume
first that .54, consists of irreducible characters of the same degree.
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Then it may be assumed that N = A, Nie € sy Vs F M 8Dd A =
Niey Nig? € Fms Mis F Miore . Thus A H = e\l for suitable ¢ = =1, Hence

Hence A\i,, = —e\;5. Therefore
0 = (A5 — AL)() = el + MEN1) = 2e05(1)

which is not the case as [|A"*/|* = 1. Suppose now that .54, is sub-
coherent in .. Then %" is orthogonal to .&4°* by definition. There-
fore, for 2 < 8 < n,,

109) (4, %24 —a,) = (81, D24 — 4,) = — |

k1 k1 k1

Thus, 4 is not orthogonal to _%(54)°. If S%4 consists of irreducible
characters this yields that || 4|{[*= 1. Hence, ¥ = 0 by (10.8). Suppose
that (%4, 7..) is subcoherent in &/, If y + 0, (10.8) implies that

(10.10) Bi=4+4

where de =% and 4, is orthogonal to &4i*. By changing notation
if necessary it may be assumed that

(10.11) A= +4,
by (10.9). Now (10.9), (10.10) and (10.11) yield that
(10.12) e [* = 1(4, ) = N AP N [

Hence, (10.8) and (10.12) imply that y = 0 in all cases. Thus, (10.3)
becomes

(10.13) AL B =4a.

For 1<s=<m,,

B, = /"'/3 +<'/k—'7\'n"‘7\ln>-

k1 k1

Therefore, (10.13) implies that

(10-14) ()"n’ B:) = /lu ’ 1 § 8 é ’nb .
For 1 < 8 £ n,, define \[, by
(10.15) B: = 4 — My,

and extend the definition to _#(%”) by linearity. This implies that
M= NF or A = {A, M) and A =~k for 1 =1,2. Hence, 47 is
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k—
orthogonal to L_J:.?.’ * and thus 7* is an isometry on #(5°). The

proof is complete,

If & is a coherent subset of _# (@), then 7 will be used to denote
an extension of 7 to _#(5”).

Hypothesis 10.2.

(i) Lisa tamely imbedded subset of £ and O, ts a supporting
subgroup of 2. N, = N(D,).

(ii) If 0 s any non-principal irreducible character of ©; and
G is the character of N, induced by 6, then § is a sum of irreducible
characters of N;, all of which have the same degree and occur with
the same multiplicity in 8.

LEMMA 10.2. Suppose that Hypothesis 10.2 is satisfied. For any
character a of ©; let &, be the set of irreducible characters of N;
whose restriction to D; coincides with «. If 0 is a generalized
character of X which 18 orthogonal to _7Z(S4)* for all a with
(@,1g) =0 then 6 is constant on the cosets of D; which lie in

R — i

Proof. We first remark that by Lemma 4.3 characters in &
vanish on N, — 93?,- — 9:;, and so generalized characters in _%4(5%)
vanish on R; — E)'A?.-. Suppose that 6, 6, are distinct characters in &4
with (@, 1p) =0. By assumption (6, (6, — 6)*) =0. Thus by the
Frobenius reciprocity theorem (Qm,’ g8, —8,)=0. Henc_e by Hypothesis
10.2 0% =% 4+ B, where 7 is a class function of R, induced by a class

function v of ; and B is a generalized character of M,/9;.. Thus
€(N) = B(N) for NeR, — ;. The proof is complete.

LEMMA 10.8. Suppose that Hypothesis 10.2 is satisfied. Let &
be a coherent subset of _# (§) which consists of pairwise orthogonal
characters of &. Assume further that & contains at least two
1rreducible characters, Then if ne. &7, \° 18 constant on the cosets
of O: which lie in N; — ..

Proof. Suppose that 4,, 4, are distinet irreducible characters of
N, which do not contain D; in their kernel such that 0% = 0%‘. We
will show that ‘
(10.16) (M,m‘, 0,—6,)=0.

By Lemma 4.8 6, and @4, vanish on R; — ‘272,- — 9;. Since 52,- is a
T. I. set in ¥ and N, = NMN,) the mapping sending #, — 6, into
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(0, — 6.,)* defines an isometry on _%({6,, 6,}). By Lemma 10.1 this
can be extended to an isometry of _~({4,, 6.}). Let 6,8, be the
respective images of 4, 6, under this isometry, By assumption .&¥
contains two irreducible characters \, and A\,. Since

AN — MDA e A ()
for j =1, 2, Lemma 9.2 implies that if (10.16) is violated then
(Mm,' 6,—0)+0 for j=1,2.
Thus by the Frobenius reciprocity theorem
(56, —8,) =\, (6, —0)*) #0 for j=1,2.

Thus by changing notation if necessary it may be assumed that
A= +6; for j = 1,2, where the sign is independent of j. Hence

10.17) (MM — MDA, 6, — 8,) = (1) + 2(1) = 0.
Since M (1A, — (AN € A (S”) Lemma 9.2 implies that
(WA — MDA g, 6, — 65) = 0.
Thus by the Frobenius reciprocity theorem
(A — MDA, 6, — 61) = (MDA — XD, (6, — 6,)*) = 0
contrary to (10.17). Therefore (10.16) must hold. The result now

follows from Lemma 10.2.

LEmMMA 10.4. Suppose that the assumptions of Lemma 10.3 are
satisfied. Let a be the least common multiple of all the orders of
elements in & I f A 48 an irreducible character in ¥, then &,
contains all the values assumed by \°.

Proof. By assumption .&” contains another irreducible character
M. Let o be any automorphism of &2 whose fixed field contains &Z,.
Then since M)A — M\, € A4 (&) it follows directly from (9.4) that
oMW — MOMF] = (m)a(N) — MD)a(M))
= (DN — MDA} .
Therefore
MDo(W) — ML)a(A]) = MDA — MA] .

As ||AT P = ||Af]|* = 1, this implies that o(A") =\°. As ¢ may be an
arbitrary automorphism of &, whose fixed field contains &7, the result
is proved. '
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LEMMA 10.5. Suppose that Lisa tamely imbedded subset of %.
Let A; have the same meaning as in (9.2) and let ® be a generalized

character of X which 18 constant on U; for Le 08.-. Let & be a
=0

coherent subset of _# (@) consisting of irreducible characters. Then
there exist rational numbers b, ¢, and generalized characters B8, of

& which are orthogonal to & such that if L e ¥ then O(L) = bB(L)
if O is orthogonal to &°, and A (L) = ML) + ev(L) if 6 = A € 577,

Proof. 1t is an immediate consequence of Lemma 9.4 that if &
is orthogonal to &7° and if & = T\;(1)\;, where \,; ranges over &,
then

(10.18) O(L) = b&(L) + b8(L) for Le®

where b, b, are rational numbers and £, is a generalized character of
€ which is orthogonal to &% If & = A7, then Lemma 9.4 yields that

(19.19) A(L) = ML) + e&(L) + ev(L) for Le &

where ¢, ¢, are rational numbers and 7, is a generalized character of
€ which is orthogonal to &2 There exists a generalized character &
of € which is orthogonal to .&” such that

§+&=pg.
Since p (L) = 0 for L e & (10.18) and (10.19) imply respectively that

6(L) = —bg'(L) + b,8(L)
A(L) = ML) — e (L) + ev(L) .

The lemma follows by a suitable change in notation.

It is worth noting that if the hypotheses of Lemma 10.8 are
satisfied for every subgroup in a system of supporting subgroups of
@, then that lemma implies that A~ satisfies the hypotheses of Lemma
10.5. This fact will be used later in this paper.

11. Some Applications of Theorem 10.1

In this section we are concerned with the problem of finding
conditions under which it is possible to apply Theorem 10.1. That
theorem will then allow us to conclude that certain sets of characters
are coherent. To clarify matters the main Hypothesis is stated
separately. This also serves to introduce the notation.
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Hypothests 11.1.

(i) 530 18 a tamely imbedded subset of the group X and £, =
N (@o) has odd order. 9,< %, and @o 18 a union of cosets of O, Let
e = £/, and let € be the image of Q,, n L,

(ii) 9 and & are normal subgroups of L such that D is nilpotent
and

~

(11.1) HE U CH)INRSLREREL.
meHt

(ili) .97 is the set of all characters of & which are induced by
non principal irreducible characters of 8, each of which vanishes
outside & Then & consists of pairwise orthogonal characters.

(iv) There exists an integer d such that d|8:8||\M1) for v e &~.
Furthermore & contains an irreducible character of degree d|2:8|.

(v) Define an equivalence relation on & by the condition that
two characters in &7 are equivalent if and only if they have the
same degree and the same weight. Then each equivalence class of
& 18 either subcoherent in & or congists of irreducible characters.

(vi) For any subgroup U of O which is normal in & let S~ (A)
be the subset of & consisting of those characters which are equiva-
lent to some character in &7 that has A in its kernel,

In the application to the main theorem of this paper (11.1) will
always be augmented by one of the following conditions.

(11.2) P=8=8ce.

(11.3) Hcl=8ce.

(11.4) vs U‘C(H)nR=§gS%g8.
HE,@

THEOREM 11.1. Suppose that Hypothesis 11.1 is satisfied, Let
9, be a normal subgroup of & which is contained in O such that

(11.5) | 9:0.| > 4d? |2: 8+ 1.

If “(9) 18 coherent and contains an irreducible character of degree
d|2:8| then S is coherent,

Proof. Let 9, be a normal subgroup of & which is contained in
9, and is minimal with the property that .”(9,) is coherent. Suppose
that £, = {1). Choose D, C D, such that D,/, is a chief factor of L.
Let LO)=A={N\.|1=s8=n}, where A\, is irreducible and
M(l) =d |8:8|. Let &4, ---.%% be the subsets of S“(D) — (D)
consisting of all characters of a given weight and a given degree. For
2=t =<klet 4A;(1) be the common degree of the characters in .&.
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By Hypothesis 11.1 all the assumptions of Theorem 10.1, except possibly
inequality (10.2), are satisfied for S7(9;). We will now verify that
also inequality (10.2) is satisfied.

Let 4, 0,, --- be all the irreducible characters of £ which do not
have © in their kernel. Let #; denote the character of € induced by
0;. Then each 4; is in . by Lemma 4.3. Furthermore if 6; ranges
only over characters of /9, then

20,11)8; = Pgip, — Ogig -
Therefore
(11.6) 30,1)8; = Pgip, — Paig -

If 8; + 6; then (4;,4;) = 0. Suppose that for a given j there are a;
values of i such that d; = ;. Then (11.6) implies that

1.7 Z{0,MaF 10,1 = |2:9:] — [2:9]

where the summation in (11.7) ranges over the distinct ones among
the 4,. Since

(0.0 13:1F = 0417 |8: 8 a, = 300,000, = -FAL
(11.7) yields that

AL(1)? 2:9, e:
ZIIM.II’_' 0.1 —12:91,

where &4 = {\,,} or equivalently

* 42 2:8,] —18:9]
(11.8) 4 > | .
IS @IERp

Since 9 is nilpotent £,/9. is in the center of $/9,. Every irreducible
character of & is a constituent of a character induced by an irreducible
character of . Thus for 2 < m < k, Lemma 4.1 implies that

wd |[2: 8] = V]0:5:]8: 0],

or equivalently

(11.9) L < & iall/lsb 2l

Suppose now that inequality (10.2) is violated for some value of m.
Then (11.8) and (11.9) yield that

|2:9, — 12:9] o 2|R:D[V[9:%]
a*|8: R T d
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Thus
{19:9,] -1} =24 |2:8[V]D:8.],

or
19:9:'—2(9:0:1 +1 =48 |8:R[9:D1 .

Since every term is an integer this implies that

(11.10) |9:9:| —1=<4d*|2: 8.

However 9, 9,, thus |9:9,] = [9:9:]. Now (11.5) and (11.10) are
incompatible. Therefore inequality (10.2), and thus all the assumptions
of Theorem 10.1, are satisfied. Hence by that theorem .5°(9,) is co-
herent contrary to the minimal nature of ©,. This finally implies
that $, = (1)>. Therefore & = .59(9,) is coherent. The proof is
complete.

The remainder of this section consists of applications of Theorem
11.1. Lemmas 11.1 and 11.2 are closely related to Theorem 2 of [8].
By using the argument of that theorem the assumption that |2| is
odd in the following lemmas can be replaced by suitable weaker as-
sumptions. However the stronger results are not relevant to this
paper and will not be proved here.

Hypothesis 11.2,

(i) Hypothesis 11.1 and equation (11.2) are satisfied. Thus
d=1.

(ii) |8| i odd and ¥/ i8 a Frobenius group with Frobenius
kernel /9.

LemMMA 11.1. Suppose that Hypothesis 11.2 is satisfied. If
[9:9']1>4(|8:9'+1
then & is coherent.

Proof. By Lemma 10.1 and 3.16 (iii) .5”(9’) is coherent. The
result now follows from Theorem 11.1.

LemMma 11.2. Suppose that Hypothesis 11.2 is satisfied. Then
& 18 coherent except possibly if O is a mon abelian p-group for some
prime p and

|9:9' 1 =4[|8:9"+1.
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Proof. If =9, X 9,, where 9, and 9, are proper normal sub-
groups of &, then

[£::9:]=1 (mod [L:D]) fort1=1,2.
Since | 2] is odd, this implies that
19::9: 1 =2(2:91+1 fori=1,2.

Hence [9:9'1>4|2:9"+ 1 and .&” is coherent by Lemma 11.1. As
9 is nilpotent this implies that . is coherent if  is not a p-group
for any prime p. Since || is odd

19:91-1-,
1z 8T e,

Thus by Lemma 10.1 . is coherent if © is abelian. The result now
follows directly from Lemma 11.1,

LEMMA 11.8. Suppose that Hypothesis 11.2 is satisfied and L is
a Frobenius group with Frobenius kernel O. Assume that © is a
p-group for some prime p and | D:IND)| = p*. Then 7 is coherent.

Proof. 1If © is abelian Lemma 11.2 implies that &7 is coherent.
If © is not abelian then the second term of the descending central
series modulo the third is eyclic. Thus

p=1(mod|8:9]).
Therefore (p — 1) = 212:9| as |2]| is odd. Hence
[9:9' | =29 >4|8:9°+1

and the result follows from Lemma 11.1.

LEMMA 11,4, Suppose that Hypothesis 11.2 is satisfied and L is
a Frobenius group with Frobenius kernel . Assume that O is a
p-group for some prime p and |H:D(D)| =p*. If

(11.11) p—1>2p|8:9|

then & 18 coherent.

Proof. If  is abelian Lemma 11.2 implies that & is coherent.
If © is non-abelian let $, be a subgroup of D(9) such that D(9)/D,
is a chief factor of 8. As 9 is nilpotent D(9)/D, is in the center of
©/9.. Thus by Lemma 4.1 the degree of any irreducible character of
/9, is either 1 or p. Hence the degree of any character in 7(9)
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is either |2: 9| or |2:D|». Let &%, 4 be the subsets of S7(9,) con-
gisting of all the characters of degree |%:9[,|2:9|p respectively.
Let ,=1,4=9p. By (11.11)

s
|5’ilsz8——1—>2p=2/,.

19|

Thus by Theorem 10.1 &#(9,) is coherent.
If | D(©):9:| =p or p*, then p=1 (mod |8:9]) or

PP—1=0 (mod|2:9)).
As (p* —1,p* — 1) = p — 1 this yields that in either case
p=1 (mod|8:9]).
Therefore p — 1= 2|2:9|. Hence
19: 912 19: D) =9 >4|2:0'+1

and & is coherent by Lemma 11.1. Suppose that |D(9):9.|= 2%
Then by (11.11)

|9: D=0 >4|2:9"+1.

Since #(9,) is coherent the result now follows from Theorem 11.1.
The next two lemmas involve the following situation:

Hypothesis 11.3,

(i) Hypothesis 11.2 1is satisfied.

(ii) There exist primes p, ¢ and positive integers a,b such that
|12:9] =2 19:9| = |0:D®)| = ¢* Thus |D| is a power of q.

LEMMA 11.5. Suppose that Hypothesis 11.8 is satisfied and a = 2¢
is even. Then & 18 coherent except possibly if q¢° + 1 = 2p®, q° is
the smallest degree of any non linear irreducible character of  whose
kernel contains [9, O] and for no subgroup ©, of ' with O, + 9,
D, < € i3 8/, a Frobenius group.

Proof. Suppose that & is not coherent. Then by Lemma 11.1
I +1=2¢* As (¢°+1,¢°—1)=2 it follows that 2p®|¢°+ 1 or
2p°|¢° — 1. If 2p*# q°+ 1 this implies that 4p* + 1 < ¢* contrary
to what has been proved above. Therefore ¢¢ + 1 = 2p°,

Let .77 = {6;;} be the set of non principal irreducible characters
¥ DD, '] of degree ¢'. Lemma 4.1 implies that .75 is empty for
i >ec. Let &% ={\;} be the set of characters in 5% of degree ¢‘p’.
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Since | & = 2(¢° — 1) > 2¢%%, it follows from Hypdthesis 11.1 and
Theorem 10.1 that U 5% is coherent. Suppose that U 7 is non
i=1

empty. Then 3.15 1mp11es that
c—1
530,17 2 ¢

Therefore

Se-L
=5 ThalF

= LS s Ml oy LSS0,y > 200
p 7 p =1 j

=057 [

Thus by Theorem 10.1

U209 9)

is coherent. Since
4(2: 9 +1=4p" + 1< ¢*" = [9:[9, Y11,

Theorem 11.1 implies that . is eoherent. Thus it may be assumed
that ¢° is the smallest degree of any non linear irreducible character
of 9/[9, ']

Suppose now that ©' contains a subgroup , # ' such that ¥/,
is a Frobenius group. Then $, may be chosen so that /9, is a chief
factor of €. Thus [, §1=H: and by the earlier part of the lemma
every irreducible character of /9, has degree either 1 or ¢°. As
¢ +1 = 2p% ¢*is the smallest power of ¢ which satisfies ¢* = 1 (mod °).
Since '/, is a chief factor of £ this implies that £'/9, is in the
center of /9, and |9': 9. = ¢*. If 8 is an irreducible character of
/9, of degree ¢°, then the orthogonality relations yield that 6(H) =
for He /9, — 9'/9.. As every non linear character of $/9, has degree
q° the orthogonality relations may once again be used. They imply
that

(11.13) |C(H)| = ¢ for He /9, — 99, .
However
<H, ¥'/%,) S C(H)

which contradicts (11.18). Thus £ contains no subgroup o, = 9 such
that 2/9, is a Frobenius group. All statements in the lemma are
proved.

LeEmMMA 11.6. Suppose that Hypothesis 11.3 is satisfied. Assume
further that a 1s odd and p =8. Then 57 is coherent.
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Proof. Asaisodd and ¢* = 1 (mod 3), it follows that ¢ = 1 (mod 38).
Define the integer ¢ = 1 by

g=1(mod3), gq%1 (mod3+),

If b<ec, then ¢ =28+ 1. Thusif a #1,4:3* +1<¢* and & is
coherent by Lemma 11.1, If a = 1, then 9 is cyelic. Therefore &

is coherent by Lemma 10.1.
Suppose now that b >c¢. Then since ¢° =1 (mod 3’) we must

have a = 8"z for some integer z. Therefore
¢ = (7).

Since ¢*°' = 1 (mod 3*~"), this yields that

(11.14) =1+ 2.3,

If 4.3®% + 1< ¢* then &” is coherent by Lemma 11.1. Thus if &7 is
not coherent (11.14) implies that

43" + 12 ¢ 2 (1+ 237 >880 + 1,

Therefore 3* > 2.3, Hence b = 1 or b == 2. In either case this implies
that ¢* <43 +1< 7, As a =0 (mod3) we get that ¢ < 7. How-
ever ¢ =1 (mod8). This contradiction arose from assuming that .&¥
is not coherent. The proof is complete.

12. Further Results about Tamely Imbedded Subsets

In this section a fairly special situation is studied. Our purpose
here is to get some information about certain sets of characters which
may not be coherent.

Hypothesis 12.1,

(i) Let q be a prime and let Q be a S,-subgroup of the group
X, Assume that QO = € is tamely imbedded in % and 8 = N(Q) = Q
has odd order. Let 9, <8, Q,cQ and let Q= Q/Q, L=g/Q,.

(ii) 2 is the set of all characters of & which are induced by
non-principal irreducible characters of Q. Define an equivalence
relation on ¥ by the condition that two characters are equivalent
1f and only if they have the same degree and the same weight, Then
each equivalence class of <~ 18 either subcoherent im <& or consists
of irreducible characters.

(iii) Let 1 =9 < gt --- be all the integers which are degrees
of irreducible characters of Q. Let n > 0 be a fized integer. For
0<i1=<n—1 let & be the set of all characters in ¥ of degree
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g7t |R:2|. Assume that each % consists of irreducible characters.
Let & be an equivalence class in & consisting of characters of
degree g'»|8:Q|. Let & = UX, .

In case Hypothesis 12.1 is satisfied the following notation will be
used.

(12.1) 1Q:8|=¢, |T:Q|=e>1.

Since [2]|is odd, | 4| =2 and A%(F)#*0 for 0 =<t =<n. Thus by
Lemma 10.1 .54 is coherent for 0 < i <n — 1.
For 0 £ 1 < n let a; be the number of non principal irreducible

characters of Q of degree ¢’:, By Hypothesis 12.1 &/Q acts regularly
as a permutation group on the non principal irreducible characters of
degree ¢7i for 0 < 7 < n. Since | 8] is odd, no non principal irreducible
character of Q is real. Thus a, is even. Therefore

(12.2) a,-sO(modZe),L%l=% for0si<n-—1.

Let j, = 0. Define j, inductively to be the largest integer not
Ja—1
exceeding n + 1 such that |J .5 is coherent. Suppose that

i=35-
0=5< - <Jj<Jm=n+1,
For 0 < 8 < t, define
(12.3) Ti= U 4
and let m, = f;,. Define
(12.4) ¢, = Dua,qVi e for 0<s=t,

where 7 ranges from j, to j,., — 1. Define

(12.5) d,=qmt ™ for0<s<t.
Then by Theorem 10.1 applied to .7, U %,,,
(12.6) ¢, <2d, for 0ss<t.
By (12.2)

12.7) ¢, =0 (mod2) for0=<3<t.
By 3.15

(12.8) 1+ ic,-q"‘i =0 (modg™s+1) for 0=s8<t.
3=0
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LemMA 12,1, Suppose that Hypothesis 12.1 is satisfied. Assume
that

19:Q'|=¢" <4+ 1.
Then

@<e+1 Jor 0=s<t.

Furthermore if a is odd, ¢, < ¢ and ¢, = 0 (mod q), then

%8 -1,

Proof. We will first prove that
(12.9) 1+ Segmi<er™ foro<s<t.
3=0

This is true if 8 = 0 since 1 < ¢. Suppose that s > 0. Then by (12.5)
and (12.6)

1+ .—Elc:'qm" =1+ 2e ‘5_“_1 gqrit®it
=0 i=o0
S1+4+2(Q+q+ -+« + g™

§_1+2e(q,-'——l)§1+e(q"ﬂl — 1) < eg’™s
@-1

Assume now that the lemma is false and choose 8 minimum tc
violate the result. Let ¢ =c¢,, d =d,.
By (12.8) and (12.9)

q"""‘H < eqﬂm, + cqmn, .
Hence by (12.5)
(12.10) d<e+ec.

Inequalities (12.6) and (12.10) yield that d* < e + 2¢d or d* — 2ed — e < 0.
This implies that

e—Ve+esd=ze+Veée+e.
Consequently

(12.11) d=<e+ Ve +e<3e.

Suppose that
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1+ i ciq™i = g1,
2=0
Then by (12.9)
3q2m,+1 < (e + c)qam, .
Hence by (12.7) 8d* < e + ¢ < 3¢/2. Thus
de

e
— =< —<e—-1
c _2<

since e > 2. This contradicts the choice of s. Hence
1+ J2;:'.)¢:,q”"i < Bgmer

As ¢; is even for 0 < j < 8, (12.8) implies that

(12.12) 1+ g, cig™™i = g,

The group L contains a normal subgroup £, of index ¢**s+1, Every
irreducible character of O/Q, has degree strictly less than g™+ and
the sum of the squares of the degrees of these characters is equal
to ¢*s+1, Hence (12.12) implies that every character of & whose
degree is strictly less than g™+ has &, in its kernel. Thus Q, is a
normal subgroup of € and £/, is a Frobenius group with Frobenius
kernel 2/Q,. Therefore

(12.13) g™+t =dig*™ =1 (mode),

and the center of Q/Q, has order at least ¢°. Thus by Lemma 4.1
g™ < g™++1—%, This yields that

(12.14) ¢e=d.
Define the integer k by
(12.15) c+k=d.
By (12.10) £ < e and by (12.12) 0 < k. Thus
(12.16) 0<k<e.
Define the integer b by
(12.17) g™ = ¢ (mode), 0sb=sa-—-1.
Equations (12.7), (12.13), (12.15) and (12.17) imply that
(12.18) k=d'=¢q¢"%=q" (mode).
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If b =0, then by (12.16) and (12.18) £k = 1. Thus by (12.15) ¢ =
d* — 1, hence by (12.7)

‘_1.’.6_.—_-Lc+_1)f_=e+_e_<3+1
c c c )

If ¢ < ¢ and a is odd, then
d=c+1<e+1<g™.

Thus by (12.18) d* = ¢*. However this is impossible as & is odd.

Assume now that b = 0. As d®is a power of ¢, (12.14) and (12.18)
imply that either d* = ¢*** or d* = ¢****. Since b # 0, the latter case
leads to '

d2 z qm+b — qlaqb > 4elq > 9e2 .
Hence d > 3e contrary to (12.11). Thus
(12.19) d=¢", 2za-b.

The inequality follows from (12.17) and the fact that @ + b is even,
Now (12.11) and (12.19) yield that

"’:q_aj-.::_d’_ .ge_lse’.

qa—h qa—b q2
Thus 1 < ¢* <e. (12.16) and (12.18) imply that

q

(12.20) k=¢, b>0.
Equation (12.15) now becomes d* = ¢ 4 ¢*. Hence
¢=0 (modg).
Furthermore by (12.19)
ce=d'—¢"=¢@ —-1).
Consequently

] a+b
Pe_ % _ G _,4 € .41,

= =e
¢ @ -1 g¢-—-1 ¢ -1

THEOREM 12.1. Suppose that Hypothesis 12.1 is satisfied. Assume
that for some j with 0 £ j<n— 1, e and N € .. Define

a = qTitTiNn, — A,
Suppose that &< .7, and
af = A + Al
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where 4,€ _#(7,%) and 4 i8 orthogonal to _#(F,?). Then
14 se+ (M.
Furthermore if a is odd, ¢ = ¢, < ¢ and ¢ = 0 (mod q) then
H4l'se+ M| —2.

Proof. Let 7 =7, If S,E 7 then a'e #(7) and
4 = 0. Thus the result is trivial in this case. Hence it may be assumed
that &4, Z.Z. In particular, .&¥ is not coherent, hence & is not
coherent, so by Lemma 11.1 |Q: Q'| < 4¢* + 1. Consequently Lemma
12.1 may be applied. Furthermore f;,, = m,,, and s <t Thus 7
consists of irreducible characters. Let 7~ ={\,;|1 =<1 < n,}, where
the notation is chosen so that )\, = A,; and A1) | A, ;1) for 1 < 7 < m,.
Suppose that A, = A,;,. Define the integer x by (a, Af,) = —2. Then
since a €. % (%) Lemma 9.4 implies that

(ar’ A':'i) = _x—}‘dl)— -+ 3;,,(1""“"’-" for 1 é ’I: é n, .

Ma(1)
Then
4, = qmIiNG, — ;1 ::—EII;M" .
Therefore
N4 = lla" | — [| 4| = g*™e+1—72
(12.21)

2 __ a1 C _ amgia—14 2 Nai1) myir;
+ M- S 9 i)+ wxn(l)q 1y

where ¢ = ¢, is defined by (12.4). Let d = d, be defined by (12.5).
Since A, (1) = ¢™ and \,.(1) = ¢77 (12.21) yields that

2
(12.22) 4l =1Dalf + 20d — 22,
As a function of =, 2xd — (2’c/e) assumes its maximum at = = ed/c.
Thus (12.22) implies that

(12.23) |u||=é||x,||*+2iji—if—'=n>»,||'+f§i.

As || 4] is an integer Lemma 12.1 and (12.23) imply that ||4|]’<
lIA|]* + 6. Furthermore if a is odd, ¢ < ¢* and ¢ % 0 (mod g), then

NI = linmi+e—2.
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The proof is complete.
13. Self Normalizing Cyclic Subgroups

Hypothesis 13.1.

(i) B is a cyclic subgroup of the group X with |W| = w odd.
Suppose that B = W, x W, where w, = | W;|and w; 1 fori=1,2.
Let

B =T — B, — B,
For any non empty subset A of T
(13.1) CA)=NRA=T.
(ii) Let. W, Wy be faithful irreducible characters of WL, T/TY,
respectively. Define
W;; = WiWH

Jor0sisw,—-1,0=7=w,— 1,

If w,, w, in Hypothesis 13.1 are both primes then (13.1) follows from
the assumption that N(TW) = W. Thus the situation described above
is a generalization of this case.

LEMMA 18.1. Suppose that Hypothesis 18.1 s satisfied. Then
W is a T.1. set in X. There exists an orthonormal set {7;;|0 =1 =
w,— 1,0 =< 7 < w,— 1} of generalized characters of X such that for
0=ZiZ2w—1,0=7=<w,— 1, the values assumed by %;;, N, No; Lie
m &y, @y, v, TesPectively. Ny, = 1z and

74 W) = 0 (W) for WeB,
Q1 —wy— @y + @) =1z — Ny — Nos + N«

Furthermore every irreducible character of X distinct from all +7;;
vanishes on B.

Proof. 1t follows directly from Hypothesis 13.1 that WisaT. I
get in X. Define the generalized character «;; of T by

i = (W — W) (D — Wg5) .
Clearly a;; vanishes on T — ®. Thus
ar (W) = a;(W) for We®,

(13.2)
(a:'kh a:;) = 1 + 8!" + 8:’: + aiaah
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for 154,85 w,—1,1=j,t<w,—1. Therefore ||a}|*=4 and
(af,at)=2fori,5,t + 0,5+t It follows directly from the definition
of a;; that the values of af; lie in &2,

For any algebraic number field % and any generalized character
a of a group let # («) denote the field generated by .# and all the
values assumed by a. Since £ (a;;) = & (a}) we see that & (a) =
&, for some v with v|w. If 4,7 + 0 then v = v, where v,|w, and
v,>1 for s=1,2. By (13.2)

af=1,+6,+6,+86,,

where 8,, 6,, 0, are distinet irreducible characters of X%.
Suppose that «7(8,)ZL &, for k=1,2,8. Let

F = @(91; 02; 05) = Q’(Ol, 0” 03) .

Let & be the Galois group of % over &,. For k =1,2, 3 let &, be
the subgroup of @ whose fixed field is &, (0,,)

Assume first that =08, US®,US,. By (13.2) 8,NS, =1 for
1=8<t=8. If =@, for some k then «#(6,) S &, contrary to
assumption. Let |@| =gand |®,| =g, for k=1,2,3. Then it may
be assumed that g >9,=29,=2¢9,. Since g=¢,+¢,+9:.—1—-1—-1+41
we must have g, = g/2. Therefore

1=18,n6,]=20/2 1=|GNG =g/2.
Hence
g/2=g—gl=g2+ga_2! 93,03_5_2.

Therefore g < 4. @ is not cyelic as it is the union of proper sub-
groups. Hence ® is the non cyelic group of order 4 and |S,| =2
fork=1,2,3. As v, is odd this implies that v,=8. For k=1,2,3
let @, = {g,>, where the notation is chosen so that &, = &, (6,).
Therefore og(af;) = af;. Hence 0,(8,) = 6,. Consequently &, (8,) =
&, (0,) as @ is abehan This implies that g, = g, which is not the
case. Thus @ +#G, UG, UG,.

If 0e® —®,UB,UGS, then by (13.2) (o}, o(al)) = 2. Hence by
choosing the notation suitably it may be assumed that ¢(®,) = 8,. If
(a¥, 8,) + (a},, 0(6,)) then replacing o by o' and 8, by 6, if necessary
we get that

af =1, + 6, + 6, — 0(8)} .

By (18.2) 0(8,) # 6,, ,. Hence also 0(8,) + 0%(#,). Therefore
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2 < (o(at), at) = 1 — 1+ (8, + 6,, 6(8)) — 5*6))
= (6, + 6,,9(8) — (6, + 8,, 6%(6)))
<6,+6,06)) =1

" gince 0,, 0,, 6(0,) and 0*(®,) are all characters. This contradiction
establishes that (a}, 8,) = (a};, 6(8,)). Since a¥(1) = 0 we see that

(13.3) af =1y + {8, + 0(8) — 6.} .

Furthermore &, =@, and if ve® -GS, U®, then 6, + v(,). By
definition @, # v(#,) for Y€ ®, U ®,. Therefore

6, + v, for ve®,

Suppose that v(8,) = 8, for some automorphism v of &#. Then
v6(8,) = 0(8,) and (13.3) implies that (a¥, v(a¥)) = 3. Thus by (13.2)
Y(a¥) = at,. Consequently ¥(6,) = 8, and so

(13.4) @S F =0, .
If now ve®*, v # 0,7 # ¢, then (13.8) yields that
2 < (af, v(@f) =1+ (6, 7(6)) .

Therefore v(8,) = 0, and v¢@®,. Thus |§,|= |G| - 2. Since®, =6
and |®,|||®| we get that (G| < 4. If |G| =2then # &«&,. Thus
(13.2) and (13.3) yield that 2 = (af;, o(aly)) = 8. Since |&Z: &, | is
even we get that [@| = 4. Thus either v, =5 and #F S &, or v, =3.
In the latter case (13.2), (13.3) and (13.4) imply that 0(#,) = 8,. Thus
® = @, or equivalently «(8,) S &, contrary to assumption.

Suppose now that », = 5. Thus », # 5 and the previous argument
with v, and v, interchanged yields that «(6,) = &, fork=1or k = 2.
Thus by (13.4) ()= &, By (13.2) and (13.3) & ={¢>. Thus
o*(#,) = 6, since (o*(a};), a) = 2. Let v be in the Galois group of &,
over &,. Then 76%@,) =6, and v can be chosen so that

(af;, vo'a) =1.
Hence (13.3) yields that
(6, + 0(8,) — 6,,75%(8,) + 10°*6,) — 6,) = 0.
Since 6, is not conjugate to &, this implies that
(8, + 0(8,), v0*(®,) + 73%6,)) = —1

contrary to the fact that 6,, 6(6,), ¥6*(@,) and v0*#,) are all characters.
Thus in any case there exists a non principal irreducible character
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6, of X such that (8, a})+#0 and &(6,)<4,. Suppose that
<0, = &. Since w is odd

(a:na—:v = (ai.f; EG—J) = 1 .
Therefore
1=(1§igligzigs,1gigliéziés)=2+(93i@3;§2i63)-

Hence
(01 =+ Os; éz + és) = -1,

Since @, and 6, are characters this yields that &, + 6, for k =2, 3.
Hence 6, = 6, and so 6, = 8,. Consequently (8, = 6,,6, + 6,) = +2,
which is not the case. Therefore

(13.5) @+ O, .

Similarly there exists an irreducible character 8, of X with (8,, @) # 0
and & #+ &)= &,,. Thus by (13.5) 6, # 6,. Now (13.2) yields
that

(13.6) af; =1y — Ny — Noj + Nij
for1<igw,—1,1<j=<w,—1. The +7; are distinct irreducible

characters of X whose values lie in the required field. Suppose now
that

Neoigg = ‘Z; ;i0;; + AP

with @, = 0. Then by the Frobenius reciprocity theorem it follows
from (138.6) that

— @i — @oj + Q5 = _ao’t ’
wyi—1 wa—1 w11 wg—1

Ngg = 2 Goo@io + 21 QoiWy; + ‘E___.‘{ o z{ Wy

=1 =
wy—1 wi—1 wa—1

+jz=:{ao,'§1w.'j—’_§w,j+ap93

wy—1 wa—1 wg—1 w1—1 w3—1

= 'Z._laso%wu'i' J__Zlaoi ?;3(0;5- ,g:a)u"*‘ap
Consequently for We
7]:0( W) = - ’gi wu‘(W) = w.o( W) .

In a similar way it can be shown that 7,.(W) = w,.(W). Then it
follows from (13.6) that 7, (W) = 0,(W) for We B,
This implies that if We 2 then
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Z S e ="% |0(W) [ =w = | C(W)].

=0 j5=0 =0 j

The orthogonality relations for the irreducible characters of X now
yield that every irreducible character of X distinet from all +7%,;

vanishes on . This completes the proof of the lemma.

LemMA 13.2. Suppose that Hypothesis 13.1 is satisfied. If 41is
a generalized character of X which vanishes on T8 then

w-1 g1
4= aply + Z.'.l o g}) Nii

w31 w1—1

w3—1 wg—1
+ El Qs é’?&:"—aw Z‘{ :’z::;vi}"*"do
where (4o, ;) =0 for 01w, —1,0<j<w,— 1.

Proof. Let

w1—1 wy—1

d=4,+ 3 3 @i,

= =
where (4,,7;;) =0for0 £t <w, —1,0=<j7=<w,— 1. By Lemma 13.1
4,1 — N — Mo +75) =0 for0si=w,—-1,0=<j=w,— 1.
Hence
Qo — Gy — Qo; + A;; = 0 for0s+1=w,—-1,0=55w,—1.
This implies the desired result.
Hypothesis 13.2.

(i) The group & = X satisfies Hypothesis 13.1.
(ii) L contains a normal subgroup K such that

L=8B, 2NW, =)
and if A is a non empty subset of W — W, then
CA) =N =BB.
Since T, is a S-subgroup of LW, Hypothesis 18.2 (ii) implies that
®, is a S-subgroup of €. Also, if We B, then C(W)N & = BW,.

LEMMA 13.3. Suppose that £ satisfies Hypothesis 13.2. Then
W—-—W,isaT.l.setinl For0=si<w —1,0=j=<w,—1 there
exist irreducible characters (t;; of L such that
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wg—1 w11

Pijjge = L @05 + tZ_:., a, E_:‘l)wat ’

where {a,} is a set of integers depending on j and the sign depends
only on j.

Proof. Hypothesis 13.2 implies that I — B, is a T. 1. set in &.
Foro0<i,k=sw —1,0=j=<w, —1,0;— 0, vanishes on W,. Define

S ={w;|0=isw, -1 for0<j=sw,—1.

Then by Lemma 10.1 .54 is coherent for 0 < j < w, — 1. Let y¢;; =
+o}f;, where the sign is chosen so that f,;(1) > 0. Then

(@5 — W) = (W5 — W)* = (i — 4))
for0<i,k<w,—-1,0j5w,—-1.

The Frobenius reciprocity theorem now implies the required result
since (w;; — w,;)* vanishes on T,.

LEMMA 13.4. Suppose that & satisfies Hypothesis 13.2, Let \ be
an 1rreducible character of &. Then there exists an integer a such
that

Mg, = 00 »

or

Mg, = T + 00g,
for some i, with 0 <i<w,—1,0jisw,— 1.

Proof. Let p,; be the characters defined in Lemma 13.3. If
A =p,; for some 4,7 with 0<i<w,—1, 0=j=<w,— 1 then the
result follows from Lemma 138.8. Furthermore Lemma 13.8 implies
that

w1—1 wy—1

2 2 (W) =w=|C(W)| for WeD}.

i=0 j=o0
Hence if \ # g,; for all 4, 5 we have that \(W) = 0 for We . This
completes the proof of the lemma.

We will use the fact that Lemma 18.4 is valid over fields of
characteristic prime to | 2|, provided that A is absolutely irreducible.

LEmMMA 18.5. Suppose that L satisfies Hypothesis 18.2. For
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0<i1=w,—1,0=j7=<w,—1 let p;; be the characters defined by
Lemma 138.8. Define

w1—1

&= M for0sjsw,—1.

Then &; is induced by an irreducible character p; of R. Further-
more

Pisg = tosig=f; for0si<w,—-1,0=j=w,—1.

Proof. By Lemma 13.4 the characters f;,0<t<w, —1,0=
j < w,—1 are the only irreducible characters of & which do not
vanish on ! Since each p,, agrees on W, with a suitable linear
character of 2/f it follows from Lemma 13.1 that {¢£, |0 < ¢ < w, — 1}
is the set of irreducible characters of £/f. Therefore ft,tt; agrees
with ££;; on ®. Hence Lemma 18.1 implies that g0, = ;. Con-
sequently if y; = ;o then

Pisig = Mosig = for0<i=w,—1,0=j=<w,—1.

Thus the Frobenius reciprocity theorem implies that y,; is a constituent
of pf for all values of ¢,75. Since

1) = o) = 5, (D) = &1)
the lemma is proved.

LEMMA 13.6. Suppose that L satisfies Hypothesis 13.2, p is a
prime, and R i3 an extra special p-group with K =B, Let
|R:8| = p™. Then w, divides either p" + 1 or p* — 1.

Proof. 1t is easily seen that a faithful irreducible character of
& has degree »". Thus by Lemmas 13.4 and 13.5
p=p(1) =aw, £ 1.

This proves the result.

LeEMMA 138.7. Suppose that L satisfies Hypothesis 13.2. Let p;, &;
be defined by Lemma 13.5. Then an irreducible character of R
either induces an irreducible character of £ or it induces &; for some
Jwith 07 <w,— 1.

Proof. The group T, acts as a permutation group on the conjugate
classes of 8. If We T, and W leaves some conjugate class of & fixed,
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then since T, is a Hall subgroup of 8, W must centralize some element
of this conjugate class. Hence by assumption the only conjugate
classes of & which are fixed by any We ! are those containing an
element of W,. There are at most w, of these. The group W, also
acts as a permutation group on the irreducible characters of . There-
fore by 3.14 there are at most w, irreducible characters of & which
are fixed by any element We 2. By Lemma 13.5 the w, distinet
characters ¢;, 0 < j < w, are fixed by every We 2B, and these induce
£;,0 <7< w, Thus every other irreducible character of & induces
an irreducible character of €. The proof is complete.

Hypothesis 13.3.

(i) & is a tamely imbedded subset of the group % and & = N(®)
has odd order.

(ii) L satisfies Hypothesis 13.2, and X satisfies Hypothesis 13.1
with the same group W.

(iii) 2 contains a mormal nilpotent subgroup O such that

Bcops U CH)NRslcRce.

megpt
g =8UyUL'®L.
LEQ
(iv) There exist subgroups 9, --+, D, such that {P.|1 =<8 =n}
is a system of supporting subgroups of £ and 531. Let R, = N(D.,)
for 1 <8 =< m.
(v) For 02it=w,—1,0=7=<w,—1 let 0, t1;, &; be defined
respectively by Lemmas 13.1, 13.3 and 13.5.
(vi) Let &7 be the set of characters of & which are induced by
non principal irreducible characters of K, each of which vanishes

outside 2.

LeMMA 18.8. Suppose that Hypothesis 13.8 is satisfied. Assume
that for some 4,5,k with 0<i<w, —1,1=j, ks w,— 1, (1) =
(). Then p;; — s, vanishes in & — & and

(5 — Pa)" = 25 — D) ©

Proof. By Lemma 13.83 f,;, tt:. do not contain %8, in their kernel,
thus they do not contain 9 in their kernel. Hence by Lemma 4.3
Yy M vanish on & — L. By Lemma 13.3 Piivg, = Pinig, - Thus
i — M, vanishes on 8 — £, Hence || (¢; — ta)°|? = 2. By Lemmas
9.1 and 13.3
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{5 — )" (05 — D) W) =0 for We B .

¥

Thus the result follows from Lemma 13.1.

LEMMA 18.9. Suppose that Hypothesis 18.8 is satisfied. Choose
kwithl<kzZw,—1. Let
A=¢11=27=w,—18() =¢&Q0)}.

Then & 18 coherent and
wl—-l
§i=¢ Z_‘a i
18 an extension of T to & where either e =1 or e = —1,

Proof. Since |2| is odd &; # &;. Hence % (54) # 0. By Lemma
13.5

§i— &= g{, (5 — ) -
Hence Lemma 13.8 yields that
E;i—&) = 'go + (D5 — D) -

By Lemma 9.1 (§; — £.)° vanishes on i@l. Thus Lemma 13.2 implies
that

w11

(13.7) & — g = =% Z.}) s — Nu)

Now define

wy—1

5§=i‘§)77ii

where the sign is the same as in (13.7). It is easily seen that risa
linear isometry on %4. Thus .54 is coherent.

LEMMA 13.10. Suppose that Hypothesis 13.8 is satisfied. Let &%
have the same meaning as in Lemma 138.9. Then (54, 7) 18 sub-
coherent in & where T 18 defined on &4 as in Lemma 13.9.

Proof. By Lemma 13.9 .&4 is coherent. Let .7~ be a coherent
subset of .5 which is orthogonal to .%4. Let 7, be an extension of
T to 7.

Every generalized character in & vanishes on . Thus by Lemma
9.1 every generalized character in % (5°)° vanishes on W, If \is
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an irreducible character in .7, then A # \ as |[2| is odd. Further-
more (A — X)'€.%(S”)" and thus vanishes on . Hence \? # +7:;
for 0w, ~1,0=<j5=<w,—1. Therefore A\ is orthogonal to
Fr. If¢,e 7, thensince (€72, (¢, — T.)) = w,, £72is a linear combination
of 7, and 7;, with 0 <% < w, — 1. Hence £ is orthogonal to $5°.
Consequently .7 "2 is orthogonal to .&".

Suppose now that a € _% (&) with a® = 4, 4 4,, where 4,€ (7 ),
4, is not orthogonal to %(%%°) and |4, w,. Let a* =TI + 4,
where 4 is a linear combination of the generalized characters 7;; and
ry)=0for0t=w,—1,0<j7=<w,—1. Let g be the set of
integers s such that £,€. 9. Lemma 13.8 implies that every gener-
alized character in .77 "2 is orthogonal to 7;; for0 <1 = w, —1,5¢o0.
Let 4 = 4, + 4], where 4, is a linear combination of 7,, with s€o and
4, 7.)=0for 0<i<w, —1,8e0. Then

(13.8) N4l = w, .

By changing notation it may be assumed that ¢&,¢&,€.5 and
(4,8 — &) >0. By Lemma 9.4

(41, 67 — 52’).:5 = (a, §] — E§)§ =(a, & — Ez)g .
Hence (41, &f — &) is a non zero integral multiple of w,. By (13.8)

L é — &y =s|alrllé — &= 2w,
Therefore

(13.9) 4,86 — &) =w,.
By Lemma 13.2

w1—1 wi—1

(13.10) 4i=¢ ‘go Qili0 + € ‘5::') {(@i + @i + (@io + @)W} + 47,

where ¢ is as in Lemma 13.9 and where (47, 7,) =0for0 =i < w, — 1,
t=20,1,2. Now (13.9) yields that a, —a,=1. Thus (13.8) and
(13.10) imply

w—1 wi—1

E,) ai, + g‘.) (@i + o) + (@i + G — 1} S w, .

Every term in the second summation is non zero. Thus a;,, =0 for
0<i=w,—1. Hence a,=1 or a, =0. Hence (13.8) and (13.10)
yield that 4] = &7 or 4 = —&:. This shows that (5%, 7) is subcoherent
in & and completes the proof of the lemma.

In the proof of the main theorem of this paper we will reserve
the letter ¢ to denote the extension of ¢ to &4 defined by Lemma
13.9. Thus (%%, 7) will always be subcoherent in 4
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DEFINITION. A Z-group is a group all of whose Sylow subgroups
are cyeclic.

Hypothesis 13.4.

(i) L=BRwithBNR =1, L and & solvable. Furthermore
B 18 a cyclic S-subgroup of L and |L| 8 odd.

(ii) For Be®B, Cy(B) = Co(®B). Furthermore Cg(B) is a Z-group
and & # Cy(B).

(iii) 8 is faithfully and irreducibly represented on a vector space
7~ over a field of characteristic mot dividing |8|. &~ contains a
vector space 7, of dimension at most 1 such that 1f Be B, ve ¥
then vB = v if and only if ve 7,

LemmA 13.11. Suppose that Hypothesis 18.4 is satisfied. Then
R i3 nilpotent. Furthermore |B| is a prime and the representation
of & on ¥ is absolutely irreducible.

Proof. Let )\ be the character of the representation of £ on 7
Let P be a S,-subgroup of & which is normalized but not centralized
by B. Then either Cy(B) =1 or PB satisfies Hypothesis 13.2. Thus
by Lemma 13.4 only one absolutely irreducible constituent of Mg is
not linear. Hence )\ is absolutely irreducible. Furthermore Lemma
13.4 and 3.16 (iii) imply that g has py as a constituent. Thus |B|
is a prime.

The nilpotence of £ is proved by induction on |®|. We assume
without loss of generality that the underlying field is algebraically
closed. If BS F(®) then 8 S C(B) contrary to assumption. Thus by
3.3 BZC(F(). Let ¥ be a minimal nilpotent normal subgroup of
£ which is not centralized by 8. Then ¥ is a p-group for some prime
p. Furthermore ' = D(¥) and BES C(D(F)). By Lemma 13.4 there
is exactly one non linear irreducible constituent of M gy. Let

>"I3$=’Z=‘;pi+0’

where each y; is a linear character of §B. Assume first that n # 0.
If v is an irreducible constituent of 6,5, then (v, 0 = 1. Since
V#E Mo for 1 =i =mn, we have (Mg, F’ﬂ;}) =1. Since g is a sum of
conjugate characters this implies that % is abelian and the g; are
distinct. Thus ¥B = &, X §B, where |F,| = p and F,B is a Frobenius
group. For Lef&let pi(X) = p(L*XL). If Lef such that pf = g,
for some <, j then L e N(J,) since F, is the kernel of each ;5. Since
£ permutes the constituents of M transitively this implies that N(E,)
acts transitively on {¢,, +--, ¢£,}. Hence n is odd. Thus M1) = n + |B|
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is even contradicting the absolute irreducibility of . Therefore n = 0
and Mg is irreducible.

By Lemma 18.4 this implies that A1) = [B]| or M1) =2 |B]| — 1.
If M1) = |B| then \, is reducible since (|B|, |R])=1. As |B|is a
prime this implies that Mz is a sum of linear characters and & is
abelian. Thus we can suppose that A(1) = 2|8| — 1. By Lemma 13.4
X,g is irreducible. Thus if  is any proper B-invariant subgroup of
8 with FS 9 then BH satisfies the induction assumption and 9 is
nilpotent. If =P x O, with FE&P then since N\g is irreducible,
H,.SZ(®). If Fis not a S,-subgroup of € then FR, is a proper sub-
group of & where R, is a B-invariant p-complement in &. Thus
& SZ(&®) and & is nilpotent. Suppose now that F is a S,-subgroup
of &.

Since D(%) < C(B), D(F) is cyclic. Let ¥, be the subgroup of
index p in D(§). Then F/F. is a p-group of class 2 and hence is a
regular p-group. If $%/%, does not have exponent p then there exists
a characteristic subgroup of § of index p» which is normal in £ but
is not centralized by B contrary to the minimality of §. Thus F/F:
has exponent p. Therefore B acts without fixed points on F/D(F) as
C4(®) is cyclic and D(F) = C (D).

Let 8/9 be a chief factor of & with F= 9. Suppose first that
B does not centralize £/9. Then BRK/H is a Frobenius group which
is represented on F/D(F). As B has no fixed points on F/D(F) Lemma
4.6 implies that 8/ acts trivially on F/D(F). Thus & = FC(B) is
nilpotent. Assume now that £/9 is abelian. Then |R:9]|=g¢ for
some prime q #= p. If BR/O is represented faithfully on F/D(F), the
minimal nature of § implies that BR/Y is represented irreducibly on
FID(E). Let R/9 =<Q9>. Then @ acts without fixed points on
B/D(F). Since Mg is irreducible, Z(F) S Z(8). Thus Q € C(Q(D(F))).
Hence Q € C(D(%)). We will now reach a contradiction from the fact
that Qe C(F). Let =T X .. Then $, & Z(¥). Thus L/§ is abelian.
Let £ be the linear character of &/ such that MH) = M1)u(H) for
He®,. Let My=2¢'. Then 21)=M1)=2|B]—1 and ), is an
irreducible character of £/9,. The group £/9, satisfies Hypothesis 13.2
where %9,/9, is the normal subgroup. Thus by Lemma 13.4 no
irreducible character of £/9, has degree 2|8| — 1. This completes
the proof of the lemma in all cases.

~ DEFINITION. Let % and B be subgrbups of a group € with B&
N@). We say that B is prime on U if

S Cy(By = Cy(B) for Be B,

4 4 fl

¢+ If |®B] is a prime then B is necessarily prime on 2. ~ - -
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LEMMA 13.12, Let % =UB with A L, A solvable, B cyclic,
(A, 1B)=1 and |AB| odd. Suppose that B is prime on A and
Cy(B) 18 a Z-group. If Cy(B)S W' then AIF(N) is nilpotent. If
Sfurthermore |B| i8 not a prime then A is nilpotent.

Proof. Let € be a counter example to the result for which [ |
has minimum order., Since (||, [B|) = 1 the hypotheses are satisfied
by all B-invariant factor groups of .

Suppose that |B| is not a prime. Let M be a minimal normal
subgroup of €. Then M is a p-group for some prime » and M= .
By induction UA/M is nilpotent. If O is a B-invariant S,-group of A
for gen(N), ¢ # p, then MY ¢ AB and B has no fixed points on
2 — Q. If Ais not nilpotent then it is possible to choose ¢ so that
ML) is not nilpotent. Let O, = Cx(IM). Then BLYLQ, is faithfully
represented on M. Hypothesis 18.4 is satisfied with M in the role
of #. Thus by Lemma 13.11 |B| is a prime contrary to assumption.

Assume now that |®B| is a prime. Suppose that £ contains two
distinct minimal normal subgroups M, and WM,. For 1 =1, 2 let §;
be the inverse image of F(A/M,) in A. By induction A/F; is nilpotent
for ¢ =1,2. The result now follows from the fact that F() =
$ N F.. Thus it may be assumed that € contains a unique minimal
normal subgroup M. Then M S 0,(N) = F(A) for some prime ». Let
D = D(0,(Y)). Then FA/D) is a p-group. Thus the result follows
by induction if © # 1. Assume now that ® = 1. Then Cy(I) = 0,(N).

Let A, be a B-invariant S,-subgroup of A. Then AMB is faith-
fully represented of W. Hypothesis 13.4 is satisfied with I in place
of 7 unless A, SCy(B). Thus by Lemma 13.11 %A, is nilpotent or
A, S Cy(B).

Let %, = A/0,(N) and let B, be a B-invariant S,-group of A,. If
B, F(AU,) then A/P, is nilpotent since it is a p’-group and the result
isproved. Assume that %, & F(,). By induction %,/F(A,) is mlpotent
Hence B does not centralize P, by assumption.

Let P be a p-group in 2, which is minimal with the property
that B normalizes P but does not centralize P. Since F(2) is a p'-
group there is a prime ¢ # p such that P contains no normal p-sub-
group, where £ is a S,-group of F(Y,). Thus BP acts faithfully on
Q. Let M, = Cqy(B). As OB is faithfully represented on M Lemmas
4.6 and 13.4 imply that M, # 1. Let O, = Cy(B). As PB is rep-
resented faithfully on O/D(Q), Lemmas 4.6 and 13.4 imply that
Q,#1. Thus Cy(B) is a Z-group, I, < Cy(B) and pq||Cy(B)|.
Therefore ’ : ' : C

(13.11) p.= 1 (mod q)-.
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By 3.11 B is a special p-group and D(P) S Cyx(B). Thus D(P) is
cyclic. By Lemma 13.11 the representation of PB on Q/D(Q) has a
unique faithful irreducible constituent and this constituent is absolutely
irreducible. Let ¢ be the character of this constituent. If D(B) #1
then by Lemma 13.4 gy remains absolutely irreducible. Hence
g =1 (mod p) contrary to (13.11). Therefore P is an elementary
abelian group and BP is a Frobenius group. Thus p¢#(1) = |[B] is a
prime, If B is not cyelic then ty is reducible in the field of ¢
elements as pp is faithful. Thus ¢ =1 (mod p) contrary to (13.11).
Therefore P is a cyclic group of order p and BP is a Frobenius group.
Hence

(13.12) p=1 (mod|BJ).

Let Q, be a BYP invariant subgroup of L which is minimal sub-
ject to ‘,BQ_C%(D.‘,). Thus the representation of BP on O,/D(L,) is
irreducible. Therefore Q,< (0,P)’. Since 0,(A) is elementary and
Cy(B) #1 we get that the hypotheses of the lemma are satisfied.
Thus the minimal nature of 2 implies that A, = QAP and O = Q.
Therefore the representation of BOP on M is irreducible. Let L,
be a minimal normal subgroup of BOYP which is not centralized by
B. Thus O, £0. Then Q] = D(Q,) and B C(D(X,)). Hence D)
is cyclic. Let A be the character of the representation of BL, on M.
By Lemma 138.4 )\ has exactly one irreducible constituent which does
not have (BL)) in its kernel. Let ¢ be this constituent and let

A=Sh+0.
=1

Since each \; is a character of a group of exponent ¢ |B| it follows
from (13.11) and (18.12) that each A\, is absolutely irreducible. Thus
M(1)=1for 1 i <mn. By Lemma 13.11 ¢ is absolutely irreducible
in the field of p elements. By Lemma 13.4 6(1) < 2|8B| — 1. Since
|B|p is odd (B) and (13.12) yield that

(13.13) M| = p* = g8,

Thus » + 0. Let O\n, = 2i-1V;, Where each y; is an irreducible char-
acter of Q,. Thus

(13.14) A = Z_,‘l k;,nl + g‘{ Yi.

Since L, 4 Q,BYP, {7‘"!01’ y;} is a set of conjugate characters. Since
n # 0 they are all linear, Thus L) =1. Hence OB =, X OB,
where Q8B is a Frobenius group and |Q,| = ¢. Furthermore
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(13.15) m = 6(1) = |B|.

Since O, Skern; #Q, for 1 <7 =<1 we see that 7&.-,01 # y; for all
1, J. Since y; # v; for 1 # j we get that no constituent of A5 occurs
with multiplicity greater than one. Since {)»,I } is a set of distinet

linear characters of Q, we get that n < q. Now (18.18), (13.14) and
(13.15) yield that

pEM)=m+ns|B|+q.

This contradicts (18.11) and (13.12) since |B| »g is odd. The proof is
complete.
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' CHAPTER IV

14. Statement of Results Proved in Chapter IV

In this chapter, we begin the proof of the main theorem of this
paper. The proof is by contradiction. If the theorem is false, a
minimal counterexample is seen to be a non cyclic simple group all
of whose proper subgroups are solvable. Such a group is called a
minimal simple group. Throughout the remainder of this chapter,
® is a minimal simple group of odd order. We will eventually derive
a contradiction from the assumed existence of ®.

In this section, the results to be proved in this chapter are summar-
ized. Several definitions are required.

Let 7* be the subset of 7(Q) consisting of all primes p such that
if P is a S,-subgroup of @, then either .#Z_+#;(P) is empty or P
contains a subgroup A of order p such that Css(ﬁ) =Y X B where B
is cyclic. Let m¥ be the subset of #* consisting of those p such that
if P is a S,-subgroup of ® and a is the order of a cyclic subgroup
of N(P)/PC(P), then one of the following possibilities occurs:

(i) a divides p — 1.

(ii) *B is abelian and a divides p + 1.

(iii) |PB| = »* and a divides p + 1.

We now define five types of subgroups of ®. The basic property
shared by these five types is that they are all maximal subgroups of
®. Thus, for =1, I1, III, IV, V, any group of type « is by definition
a maximal subgroup of ®. The remaining properties are more detailed.

We say that I is of type I provided
(i) M is of Frobenius type with Frobenius kernel .
(ii) One of the following conditions is satisfied:
(a) DisaT. I set in G.
(b) (D) S =t
(e¢) 9 is abelian and m(@)
(iii) If pex(M/D), then m,,(im) s 2 and a S,-subgroup of M is
abelian,

The remaining four types are by definition three step groups. If
©isa three step group, we use the followmg notatlon

@=@'QB1, @'n%,—l C’g'(%l) , .

Furthérmore, § denotes the maximal normal nilpotent S-subgroup of
&. By definition, § & & so we let U be a complement for $ in &',

845
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In addition to being a three step group, each of the remaining four
types has the property that if B, is any non empty subset of
BB, — B, — B, then Ng(T,) = W, W,, by definition. The remaining
properties are more detailed.

We say that & is of type II provided

(i) N +#1 and U is abelian.

(ii) Ng) £ &.

(iii) Ng¥A) =& for every non empty subset A of &* such that
Co(A) + 1.

(iv) |TW,| is a prime.

(v) For every prime p, if %, A, are cyclic p-subgroups of U
which are conjugate in & but are not conjugate in &, then either
Co(Ug) =1 or Cy(A) = 1.

(vi) $C(®) is a T. 1. set in G.

We say that & is of type III provided (ii) in the preceding defi-
nition is replaced by

(iiy NgW) S6,
and the remaining conditions hold.

We say that © is of type IV provided (i) and (ii) in the definition
of type II are replaced by

)y w=+1,

(i)" Ng) £,
and the remaining conditions hold.

We say that & is of type V provided
(i) u=1,
(ii) One of the following statements is true:
(a) & isaT. I set in 6.
(b) & =P x &, where &, is cyclic and P is a S,-subgroup of
& with pen?®.

THEOREM 14.1. Let G be a minimal simple group of odd order.
Two elements of a nilpotent S-subgroup D of & are conjugate in &
if and only if they are conjugate in N(D). Either (i) or (it) is true:

(i) Ewvery maximal subgroup of ® is of type I

(i) (8) ® contains a cyclic subgroup W= W, x W, with the
property that N(B) =B for every non empty subset T, of W—W,—W,,
Also, B, +1, 1 =1,2.

(b) @ contains maximal subgroups & and T not of type I
such that

S WS, T =BT, en®, =1, TNny,=1,
GNT=1W.
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(¢) Ewvery maximal subgroup of ® s either conjugate to S or
< or 18 of type I

(d) Either & or T 18 of type II.

(e) Both & and T areof type II, III, IV, or V. (They are
not necessarily of the same type.)

In order to state the next theorem we need further notation. If
€ is of type I, let

8=8=Ucym,
zeH
where $ is the Frobenius kernel of 2.

If 8 is of type II, III, IV, or V, we write L=8'8, ¥NW, = 1.
Let © be the maximal normal nilpotent S-subgroup of £, let Ul be a
complement for $ in &' and set W = Cy(W), W, =WN L, W= —
B, — W,.

If 8 is of type II, let

L= U Cy(H).
HeHE

If 8 is of type III, IV, or V, let
L=g.
If 8 is of type II, III, IV, or V, let
{=8UULBL.

LEQ

We next define a set &7 = () of subgroups associated to 8.
Namely, Me o7 if and only if M is a maximal subgroup of & and
there is an element L in & such that CLYZL Q and C(L) S M. Let
Ry, -+, N,} be a subset of .o~ which is maximal with the property
that N, and N, are not conjugate if 1+ 5. For 1 <7<, let D; be
the maximal normal nilpotent S-subgroup of %,.

THEOREM 14.2. If £ is of type I, II, III, IV, or V, then & and &,
are tamely imbedded subsets of ® with

N®) =N&)=2¢.

If o7 (R) is empty, € and 8, are T. 1. sets in ®. If o7(Q) is non
empty, the subgroups ,, «-+, . are a system of supporting subgroups
for £ and for L,

The purpose of Chapter IV is to provide proofs for these two
theorems.
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15. A Partition of 7(®)

We partition 7(®) into four subsets, some of which may be empty:
m, = {p|A S,-subgroup of @ is a non identity eyclic group.}
7, ={p|1l. A S,-subgroup of ® is non cyclic.
2. ® does not contain an elementary subgroup of order 2°.}
7w, = {p|1l. © contains an elementary subgroup of order p°.
2. If P is a S,-subgroup of @, then U(P) contains a non
identity subgroup.}
m,={p|l. ® contains an elementary subgroup of order 7
2, If B is a S,-subgroup of &, then U(P) contains only
<D}
It is immediate that the sets partition #(®). The purpose of Lemma
8.4 (i) is that condition 2 defining m, is equivalent to the statement
that 2 4 (P) is empty if P is a S,-subgroup of &. Lemma 8.5
implies that 3¢ m, U m..

16. Lemmas about Commutators

Following P. Hall [19], we adopt the notation YAB = [¥, B},
THUABH = [vAB, B, n=1,2, ---, and 7UABE = [, B, €].

If X is a group, #57(X) denotes the set of normal abelian
subgroups of X.

The following lemmas parallel Lemma 5.6 of [27] and in the
presence of (B) absorb much of the difficulty of the proof of Theorem
14.1,

LEMMA 16.1. Let B be a S,-subgroup of & and U an element of
A DB). If § is a subgroup of & such that

(i) <%, B> is a p-group,

(i) ¥ centralizes some element of Z(P) N A¢,
then Y'FU = (1),

Proof. Let Ze C(F) N Z(P) N A*, and let € = C(Z). By Lemma
7.2 (1) we have A S 0, ,(€) = . As P is a S,-subgroup of €, P, =
BN is a S,-subgroup of . Since A < B, so also A < PB,, and since
9 is abelian, we see that Y'9W* < 0,.(€). Since < €, we have
YFA S  and so V*FA* S 0,.(€). Since <A, F) is assumed to be a p-
group, the lemma follows.

If P is a non cyclic p-group, we define Z7(P) as follows: in case
Z(P) is non cyclic, % (*P) consists of all subgroups of Z(B) of type
(p, p); in case Z(P) is cyclic, Z(P) consists of all normal abelian
subgroups of P of type (v, p).

LEMMA 16.2, Let B be a non cyclic S,-subgroup of ®, A € 42¥7(P),
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and let ¥ be a subgroup such that . N

(i) <%, 3> is a p-group,

(ii) A contains a subgroup B of Z(P) such that 580—0,8(%)$<1>
If p =5, then YA = (1), while if p =8, then Y*FA* = (1>. Also,
if W=UAN2ZP) and p = 5, then Y¥FA: = 1>, -

Proof. If B, S Z(P), the lemma follows from Lemma 16.1. If
B, £ Z(P), then B, = Cy(B,) is of index p in P so is of index at most
P in a suitable S,-subgroup P* of C(B,) = €. In particular, B, < P*.

Let =0, ,C€), P¥r=P*NH, and P, = B, N . Since B, < B*,
so also B, < P¥. Hence YPrA S PN H S P, and so »PrA* = 1), A
being in A (B,). If p = 5, we conclude from (B) that A & 9, and
so Y’QU* S 0,.(€). Since TYFA S H, the lemma follows in this case.
(Since P, centralizes A,, we have V*FA = {1D.)

Suppose now that » = 3. If Pr = P, then ¥PrA* = (1), and so
by (B), A =  and the lemma follows. If PBF + B, then P* = PP,
since [ P*:P,| = p. In this case, letting A = AH/D, P* = B*H/D, we
see that A e _+.7($*) and so A S 0, ,(€/9), that is, AS 0, ,, (€)=
f. Hence, YFAS R and since A < P*, we see that ¥FA* S0, ,.,(C),
and so YU < . Continuing, we see that *FUA‘ < 0,.(€)P, and so
YFU < 0,(€), from which the lemma follows.

LeEMMA 16.8. Let  be a S,-subgroup of & and let € e Z(P).
Let ¥ be a subgroup of & such that

(i) <%, €> is a 3-group.

(i) €, = C(@) # <.
If ¥F€* = (1), then v*FC* = €,, and €, = 2(Z(P)).

Proof. First suppose €, & Z(P). Let D = C(€) 2 <P, F>. Since
B is a S,-subgroup of ©, (B) implies that € S 0, (). Setting P, =
Dy (D) N B, we have 0, (D) = 0,(D)B.. If €= Z(P), then € & Z(P)
and so 7'FE? S 0,(D) N <G, € = 1), since {F, €) is a 3-group. If
€ &£ Z(P), then the definition of Z/(P) implies that ¥'FE* S €,0,(9),
so if 7FC? # (1), we must have 'FC*= H'C.H for suitable H in
0:(9). By definition of it follows that H-'€.H = €,.

We can suppose now that €, & Z(). In this case, the definition
of Z/(P) implies that € =D, €D, where D = Q(Z(P)). Let B, =
Cy(C,) and let P* be a S;-subgroup of o= C(€,) containing P, and
let B = B* N0y 4(D). Since P, is of index at most 3 in P* and since
B, centralizes €, we have V*P*E* = (1), and so € & PB;F. If Py S B,
it follows that v’C* < 0,(D) N <€, F> = {1)> and we are done. Hence,
we can suppose that P} & B,. In this case, it follows that P* = B, P7,
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since | B*:B,| = 8. We also have D(B}) S%B,, and so €S Cyx(D(B) =
€. If €< P, we have € & Z(€), and since Z(€) char € char By, it
follows that v'F€* S 0,(9) N <€, F> = (1> and we are done. We can
therefore suppose that € & Z(¢). Choose E in G — Cg(€). Since P*
centralizes €, it follows that E does not centralize ® = (D). Consider
[D,E]l=F+1. Now €< Z(P) < P* and so FeZ(P). On the
other hand, F lies in D(}) since both £ and D are in PF. Since
E€@, it follows that E centralizes F. Since {$,, E> = P*, it follows
that F'is in Z(P*). But F is of order 8 and €, = 2,(Z(P*)), since
Z(B*) is eyclic. It follows that {F') = €,, and so E normalizes € and

with respect to the basis (D, F') of € has the matrix ((]5 %) On the

other hand, P possesses an element which normalizes € and with

respect to the basis (D, F') has the matrix G 2) Since these two

matrices generate a group of even order, we have the desired con-
tradiction which completes the proof of this lemma.

17. A Domination Theorem and Some Consequences

In view of other applications, Theorem 17.1 is proved in greater
generality than is required for this paper.

Let P be a S,-subgroup of the minimal simple group ¥ and let
%A be an element of . %Z_+"(P). Let ¢ be a prime different from ».

THEOREM 17.1. Let Q,%, be maximal elements of W; q).

(i) Suppose that Q is not conjugate to O, by any element of C4().
Then for each element A in A%, either Cp(A) =1 or Cp(4) =1.

(i) If AeFAZA5(P), then L and O, are conjugate by an
element of C(N).

Proof. The proof of (i) proceeds by a series of reductions. If
A = 1, the theorem is vacuously true, so we may assume A # 1,

Choose Z in Z(P), and let T* be any element of WU(A; q) which
is centralized by Z. By Lemmas 7.4 and 7.8, if £ is any proper
subgroup of %X containing AQ*, then V* & 0,.(2).

Now let 2* denote any element of U(¥; ¢) and let £ be a proper
subgroup of X containing AQ*. We will show that Q* & 0,.(8). First,
suppose Z(P) is non cyclic. Then QV* =<{Cy(Z)|Ze Z(P)*), so by
the preceding paragraph, Q* S 0,(%). We can suppose that Z(*B) is
cyclic. Let Z be an element of Z(P) of order p. We only need to
show that [Q*, Z] < 0,.(%), by the preceding paragraph. Replacing
Q* by [Q*, Z], we may suppose that Q* =[Q* Z]. Furthermore,
we may suppose that U acts irreducibly on Q*/D(Q*).

Suppose Z€0,. (8. Then Q* =[Q* Z] & 0, (%) N Q* S 0,(2)
and we are done. If U is cyclic, then Z is necessarily in 0, ,(2),
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since AN O, () #1. Thus, we can suppose that A is non cyeclic.

Let A, = Cy(V*) = Cy(V*/D(V*)), so that A/A, is cyclic and
Ze¢U,. We now choose W of order p in U, such that {Z, W) <.

Suppose by way of contradiction that Q* £ 0,.(2). Then by Lemma
7.8, we can find a subgroup £ of AC(A,) which contains AQ* and
such that Q* £ 0,.(R). In particular, Q* £ 0,.(C(W)). Thus, we
suppose without loss of generality that € = C(W). Let P* be a S,-
subgroup of ¥ which contains ‘IS =PNC(W). If P*= ?ﬁ, then
Ze0, 4,2), by Lemma 1.2.3 of [21], which is not the case. Hence,
ﬂNS is of index p» in P*. Clearly, i’Ig‘E and Ze Z(‘:ﬁ). Hence,
[B*, Z] = Z(B)<A. Let B = PB* N 0, ,(2) so that Py is a S,-subgroup
of 0, ,(8). Then [P, <2, 0*] & [A, L*]N 0, ,(8) S V* N O, 5(B), s0
that [BF, <2), 0*] £ 0,(8). Let B=0,.,(8)/0,(8) and let T, = Cx(V*).
The preceding containment implies that [8,{Z)>] < ®B,. Let B,=
Ng(®B,). Then Z acts trivially on the Q*¥A-admissible group B,/B,.
Hence, so does [{Z), Q*] = Q*, that is, B, &S B,. This implies that
B = B, is centralized by O* so O* S 0,(¥). We have succeeded in
showing that if Q* is in U(; ¢) and £ is any proper subgroup of %
containing AQV*, then Q* S 0,.().

Now let &, -+, &, be the orbits under conjugation by C(®) of
the maximal elements of WU(;q). We next show that if Qe
L, €4 and 1 # j, then LN, = 1. Suppose false and <, 7, Q, L, are
chosen so that | Q N L, | is maximal. Let Q* = Ny(Q N Q) and Qf =
Np, (RN Ky). Since O and L, are distinet maximal elements of U(%; q),
QN Y, is a proper subgroup of both Q* and VF. Let L = N(Q N Q).
By the previous argument, {Q*, Q> € 0,(8). Let R be a S,-subgroup
of 0,(2) containing O* and permutable with % and let R, be a S,-
subgroup of 0,.(8) containing L} and permutable with %A, The groups
R and R, are available by D,, in 20,(8). By the conjugacy of Sylow
systems, there is an element C in 0,.(¥)A such that A’ =AY and
R°=R,. As U has a normal complement in 0,.(), it follows that
C centralizes 9. Let O be a maximal element of U(; q) containing
R,. Then OND,20:>QNQ, and so Ve Also, QN2
Q* 5 (Q N Q) so that Qe and i = j.

To complete the proof of (i), let Q, Q, be maximal elements of
U(; ) with Q€ &, 0, € ;. Suppose A e A* and C(4)+#1, Cp(A)+1.
Let € = C(A), let R be a S,-subgroup of 0,(8) containing C,(4) and
permutable with %, and let R, be a S,-subgroup of 0,.(%) containing
Cp,(4) and permutable with . Then R’ = R, for suitable C in C(N).
Let Q* be a maximal element of W(;q) containing R,. Then
QN 2C(A)#1 50 Q*ea;. Also, R*NYV° 2 (C(4)° #1 so
Q*e«, and © = 5. This completes the proof of (i).

As for (ii), if Ae .= 4;(P), then there is an element A in A
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such that Cg(A4) # 1 and Cp,(4) # 1. By (i), Q and £, are conjugate
under C(Y).

CorOLLARY 17.1. If pem, U7, P 18 a S,-subgroup of & and
WAe A& MN;(P), then for each prime q + p and each maximal element
L2 of U(Y; q), there is a S,-subgroup of N(N) which normalizes Q.

Proof. Let Ge N(Y). Then QFf is a maximal element of U(¥; q),
since any two maximal elements of U(2; q) have the same order, so
f = QF for suitable C = C(G) in C(Y). Hence, GC normalizes Q.
Setting I = N(Q) N N(A), we see that I covers N()/C(A), that
is, N(Q) dominates 2A. Now we have JC(A) = N(A) and I contains
A Since CA) =A X D where D is a p’-group, we have N) =
SCRA) =JAD =3P, and & contains a S,-subgroup of N() as required.

COROLLARY 17.2. If penUm, P 48 a S,-subgroup of
G, Ae AZ(P) and q i3 a prime different from p, then P
normalizes some maximal element Q of W; q). Furthermore if G
18 an element of & such that A = P, then A¢ = A¥ for some N in
N(Q).

Proof. Applying Corollary 17.1, some S,-subgroup $* of N(A)
normalizes L,, a maximal element of U(¥; ¢g). Since P is a S,-subgroup
of N(), P = PB** for suitable X in N(A), and so P normalizes O =

¥, a maximal element of U(; g).

Suppose Ge® and A¢ = P. Then A° normalizes O since P does,
so A normalizes O '. Now 0F ' is a maximal element of M(%; q)
since any two such have the same order. Hence, Q' = Q° for some
C in C(Y), by Theorem 17.1 and so CG = N is in N(Q). Since ¥ =
A% = A9, the corollary follows.

COROLLARY 17.8. If pex,P i3 a S,subgroup of & and
Ae A5 N;(B), then U(A) i8 trivial.

Proof. Otherwise, U(%; q) is non trivial for some prime q # p,
by Lemma 7.4, and so U(®B; ¢) is non trivial, contrary to the definition
of «,.

Hypothesis 17.1.

(i) pem, P is a S,-subgroup of & and A e & A;(P).

(i) q is a prime different from p, W, q) 18 non trivial and Q
s a maximal element of U(A; q) normalized by P.
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REMARK. Most of Hypothesis 17.1 is notation. The hypothesis
is that pem, for in this case a prime ¢ is available such that (ii) is
satisfied. Furthermore, we let

B = Viecelg(A); P), N=N(E), and N, = N(Z(D)).

LEmMMA 17.1. Under Hypothesis 17.1 if Ge@ and A = B, then
A¢ =AY for some element N in N(Q) N N(B).

Proof. By Corollary 17.2, UA¢ = A* for some element X in N.
Since N is solvable, Lemma 7.2 (1) and Corollary 17.2 imply that
N = 0,,(N) - Ny(B), so we can write X = NN where N,€0,(%) and
Ne Ny(B). Now A" is in B, so in particular is in P. Also A¥ = Y~
is in PB. Hence, if A is in A, then A~ . A*" =[A, N|J¥ is in P,
and in particular is a p-element. Since [4, N|] is a p’-element, we
see that N, e C(). Hence A" = A¥, and the lemma follows.

LemMMmA 17.2. Under Hypothesis 17.1, N, = 0*(N).

Proof. Since Z(B) char B, and B is weakly closed in P, N,
contains N(P), so Theorem 14.4.1 of [12] applies. We consider the
double cosets I, XP distinet from MN,. Denote by K(X) the kernel of
the homomorphism of 8 onto the permutation representation of P on
the cosets of M, in NXP. Let P= P(X) be an element of P such
that &(X)P is of order » in Z(P/K(X)).

Suppose we are able to show that P can always be taken to lie
in A. In this case, we have [U, P,P]=1 for all U in P. Since
p =8 and ® is simple we conclude from Theorem 14.4.1 in [12] that
N, = 0°(N).

We now proceed to show that P can always be taken to lie in 2.
The only restriction on the element X is that Xe N, that is, we
must have £(X) = P.

Now A S B, so Z(B) centralizes A. Since Ac .1 (P), we
have Z(B) & A. It follows that N, contains C (V).

It suffices to show that A £ KX). For if AL K(X), choose A
in A so that (K(X) N WA is of order p in Z(P/R(X) N A). It follows
that R(X)A is of order p in Z(P/R(X)).

Suppose by way of contradiction that A & £(X). Then A S NF
so A = P** for P* a suitable S,-subgroup of RN,. But P* = P for
some Y in N,. Setting X;= YX, we have N, XP=N.X,P and A = P*:.
Hence, ¥ <P, so by Lemma 17.1, AXKi = A” for some W in
NN N(EB). Since N(B) = N,, we have A = A"T1and WeNRNN,. Let
WX, = X,. Since WeR, we have B, X,P = N X, 3.

Since X; normalizes A, A normalizes Fs ' By Theorem 17.1,
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Q%' = Q7 for some C in C(Y). Hence X;C~* = X;* (this defines X,)
normalizes Q. Since X, and C normalize ¥, we see that X;e N N NX).
Since C centralizes 2 and C(NA) = N,, we have N X, P = N X;B.

We now write X, = X]X,, where X;e NN N(B) and X, €0, (N).
Such a representation is possible since X;e M. Consider the equation
X, = X!7'X,. Since N(B) =N, we have RXP=NXP. If Ae¥,
then [4, X'] is a p'-element since X,€0,(N). But [4, X;'X]] =
[A, X!][A, X; %, an identity holding in all groups. Since X; e N(B),
[4, X!]€®B. Since X,e N(¥), [4, X;1cASDY, so [4, X;']%:eB, a
p-group. Hence

[4, X7 =[4, X' X;]=1.

Since A is an arbitrary element of 2, we have X,e C(A) S N,. Now,
however, we have

m1X§B = m1X1$ = leﬂs = 9}xAYlﬂs = 921X,§B = ml ’

so XeN,, contrary to assumption.

LemMmA 17.8. Under Hypothesis 17.1, M, = 0,.(N) - (R, NN), and
N = 0*(N).

Proof. We must show that R contains at least one element from
each coset €=0,.(N)W, WeR,, from which the lemma follows directly.

Let $ =P N0, ,(N), & = Ny, (9), and CA) =A X D, D being
a p-group. Notice that ® £ 0,.(0N,) by Lemma 7.4 together with
C) < N,. (This was the point in taking Z(B) in place of B.)

By Sylow’s theorem, £ contains some element of €, so suppose
Wef. Since U is contained in © by Lemma 7.2 (1), we have
A" < S P, and A" normalizes O. Hence, A normalizes V¥ ' and
by Theorem 17.1, Q' = Of for some S in C(A). Write S=AD
where A, De®, so that OF = Q?, since A normalizes Q. Hence,
DW normalizes Q. But DWe€, since DeO0,(R,), so DWeRNNR,
and N contains an element of €.

LEMMA 17.4. Under Hypothesis 17.1, if © is a subgroup of B
which contains A, then N(D) = N,.

Proof. Let Ge N(D). Since P normalizes Q, so does . Hence,
9% normalizes L. But £¢ = 9 and O containg A, so A normalizes.
£°. By Theorem 17.1, Q¢ = Q° for some C in C(Y). Let GC*'=
NeN. Now N = N,N, where N,€0,(N) and N,eNNN,. Consider
the equation GC'N;? = N,. Let Ze Z ().

We have GC*N;ZN,CG™* = GZ,G™, where Z, = Z*° is in Z(B);
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hence, Z'GC'N;"ZN,CG™* = [Z, N,CG™] = Z7'GZ,G™ is a p-element
of , since Z,eZ(B)<SAS D, so that GZ,G'eGHG*=9H. But
Z'N,ZN;*€0,(N). Hence, [Z, NCG*]=[Z, N/ ]=1. Since Z is
an arbitrary element of Z(B), it follows that N, centralizes Z(8), so
N, is contained in RN,. But now the elements N;, N, and C normalize
Z(B). Since G = N,N,C, the lemma follows.

LEmMMA 17.5. Under Hypothesis 17.1, if & is a proper subgroup
of @ which contains B, then T = 0, ,(R).

Proof. 1f By =P N0, (), and & = Ng(P), it suffices to show
that B & P,.. By Lemma 7.2 (1), we have A = P, and so by Lemma
17.4, & S N,. Thus it suffices to show that B < 0,. ,(R,). By Lemma
17.8, it suffices to show that B & 0,.,(N). However, this last contain-
ment follows from Lemma 7.2 (1) and Corollary 17.1.

LEMMA 17.6. Under Hypothesis 17.1, if & is a proper subgroup
of ©, and P, is a S,-subgroup of R, then V(ccly(N); B) S 0,,,(R).

Proof. Suppose false, and that £ is chosen to maximize |&|, and
with this restriction to minimize |8],. Let P, = BN 0, ,(R). By
minimality of |®|,, we have P, << & By maximality of |®],, P, is a
S,-subgroup of N(*B,). We assume without loss of generality that
B & P. In this case, Lemma 7.9 implies that A = P,. Since A = P,
by Lemma 17.4 we have £ & N;; by Lemma 17.5, B = 0, ,(R,), soin
particular, V(cclg(¥); B,) S P, as required.

18. Configurations

The necessary E-theorems emerge from a study of the following
objects:

1. A proper subgroup & of ®.

2. A S,-subgroup P of K.
©)

3. A p-subgroup % of G.

4, B= V(ccl@@l); P), M = [0,.,, »(R), 9], B = 0,,,(R)/0,(R).

DEFINITION 18.1. A configuration is any 6-tuple (&, B, %; B, M, W)
satisfying (C). The semi-colon indicates that B, M, W are determined
when R, B, A are given.

DEFINITION 18.2.

(@ = {A|
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(i) U is a p-subgroup of @.
(ii) for every configuration (&, B, A; B, W, W),
(a) N centralizes Z ().
(b) If Z(W) is cyclic, then WM centralizes Z,(W)/Z(W).}

DEFINITION 18.3.
FEN D)= UFZAN(B), #ZO)=UZ®D),

B ranging over all S,-subgroups of & in both unions.

LEmMA 18.1. If p = 5, then Z/(p) U A& A5(p) S Z ().

Proof. Let Aez/(p)U FZ . A45(p), and let (], B, A; B, M, W) be
a configuration. Suppose by way of contradiction that either I fails
to centralize Z(BW) or Z(W) is cyclic and M fails to centralize
Z,(B)|Z(). Since 0,.,,(R) centralizes both Z(W) and Z,(W)/Z (W), it
follows that some element of I induces a non identity p’-automorphism
of either Z(T) or Z,(W)/Z(W), so in both cases, some non identity
p’-automorphism is induced on Z,(TW) by some element of M. By 3.6,
some non identity p’-automorphism is induced on 2,(Z,(TW)) = W, by
some element of M. Let W, = 2(Z(W)) & W, and let W_, = .

Let M, =ker(0,,p,,(R)—AutBW,), M,=ker (0, , ,(K)—Aut (TW,/TW,)).
By definition of M, M is contained in M, if and only if BV acts trivially
on 0, , ()M, 2 =0 or 1. Suppose that B does not act trivially on
0,5 (R)/M,. Let B=U° be a conjugate of A which lies in L and
does not centralize O,., ,(&)/; (B depends on ¢). In accordance with
3.11, we find a subgroup R; of 0, , ,(R) such that N,/M; is a special
g-group, is B-admissible, and such that B acts trivially on D,/
irreducibly and non trivially on Ri,/®,, where ®; = D(R, mod W,). Let
B; = ker (B — Aut (R,/MM,)), so that B; acts trivially on N,/M. and
B/B; is cyclic.

Let %; be a subgroup of B,/W,_, of minimal order subject to being
BN,-admissible and not centralized by N,. The minimal nature of X,
guarantees that B, acts trivially on %,, If B,B; is a generator for
B/B,;, then (B) guarantees that the minimal polynomial of B; on X; is
(x — 1) where r =7, = |3B:%;]|.

Suppose 7 = 0. Since X, is a p-group, while 0,.(®) is a p’-group,
we can find a p-subgroup 9, of & such that £, and X, are incident,
and such that 9, is B-admissible. In particular, B, centralizes 9,.
Let PB* be a S,-subgroup of N(B), so that P* is a S,-subgroup of G.
If B, N Z(P*)* is non empty, we apply Lemma 16.1 and have a contra-
diction. Otherwise, Lemma 16.2 gives the contradiction.

We can now suppose that Z() is cyclic. In particular, B, is of
order p. Since ¥, is of the form 9),/, where ), is a suitable subgroup
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of W, we can find a p-subgroup 9, of K incident with 9, and B-
admissible.

Choose B in B,. Since B, centralizes ¥),/T, and since W, is of
order p, it follows that 9, = Cg (B) is of index 1 or p in $,. If
B, N Z(P*)* is non empty, application of Lemma 16.1 gives 7*9,B° = (1D,
and so 7B = (1), the desired contradiction. Otherwise, we apply
Lemma 16.2 and conclude that 79,8 = (1>, and so ¥*$,B° = {1), from
which we conclude that |8:%8,| = 5. In this case, however, setting
B=ZP*)NB, we have B =B, 3), and so the extra push comes
from Lemma 16.2 which asserts that 9.8 = {1}, and so v'$,8' = (1),
completing the proof of the lemma.

19. An E-theorem

It is convenient to assume Burnside’s theorem that groups of
order p°¢® are solvable. The interested reader can reword certain of
the lemmas to yield a proof of the main theorem of this paper with-
out using the theorem of Burnside.

If p,gqen,Um, we write p ~ ¢ provided @ contains elementary
subgroups & and & of orders p* and ¢® respectively such that {€, §>C®.
Clearly, ~ is reflexive and symmetric.

Hypothesis 19.1.
(i) pemyUnm,qen(®) and p +q.
(ii) A S,-subgroup B of ® centralizes every element of WU(P; q).

LemmA 19.1. Under Hypothesis 19.1, if B e Z/(p), then B central-
izes every element of U(B; q).

Proof. Suppose false, and that Q is an element of U(B; ¢) minimal
with respect to Y8Q # {1>. From 8.11 we conclude that B centralizes
D(L) and acts irreducibly and non trivially on £/D(X)), so in particular,
Q=708 and B, = ker (B— Aut Q) # {1). Let € = C(B,), let P be
a2 S,-subgroup of N(B), and let B, = CB)NP. Since BeZ(p), Bo
is of index at most p in a S,-subgroup P, of €, and so P, < P.. Hence
BB = P,. Since P, centralizes B, we have TP,B* = 1), so
BEO0,,(€)=8 Let 2=0,(6). Since BSRE, OB !, so
KBS RN S Since Q =708, we have QL & L.

By Lemma 8.9, B is contained in an element A of .F&_4;(P).
Since U centralizes B, we have A S P,. Let D = AL, and observe
that € is a normal p-complement for U in ©. By Hypothesis 19.1
ii), Theorem 17.1, Corollary 17.2, and D,, in ®, ¥ centralizes a S,-
subgroup of ®, so D satisfies E, and every p, g-subgroup of D
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is nilpotent. But OB S D, and QL =7QB =), so OB is not
nilpotent. This contradiction completes the proof of this lemma.

Hypothesis 19.2.

(i) p,gemUm, and p # q.

(iil) p~aq.

(iii) A S,-subgroup P of G centralizes every element of WU(PB; q)
and a S,-subgroup L of O centralizes every element of W(Q; p).

THEOREM 19.1. Under Hypothesis 19.2, & satisfies E,.

We proceed by way of contradiction, proving the theorem by a
sequence of lemmas. Lemmas 19.2 through 19.14 all assume Hypothesis
19.2. We remark that Hypothesis 19.2 is symmetric in » and gq.

LEmMA 19.2. U, B> G, whenever ez (p) and Be Z(q).

Proof. Suppose (U, B) = RC @, where Ac Z(p), Be %(q), and
& is minimal. By D,, in &, it follows that & is a p, g-group.

By the previous lemma A® centralizes O,(®) and B# centralizes
0,(R). Since B and A are abelian, K/A* and K/B® are abelian, so &
centralizes 0,(8) X O, (R) = F(!). Hence & S Z(F(®)) by 3.3.

Let & be a chief series for &, one of whose terms is &', and
let €/D be a chief factor of 7. If & & D, then €/D is obviously a
central factor. If € S &', and €/ is a p-group, then B centralizes
€/D, and since €/D is a chief factor, A must also centralize €/D, sc
€/D is a central factor. The situation being symmetric in » and g,
every chief factor of & is central, and so & is nilpotent, and & =
A x B,

Let N = N), let M be a S, ,-subgroup of N with Sylow systen
B, Q, B being a S,-subgroup of @, since Ae % (p). By D,,in N, B, =
BY = Q for suitable N in N. Let M, be a maximal p, g-subgroup of
S containing M, with Sylow system B, Q, where L Q,. Let Q
be a S,-subgroup of & containing Q,. Finally, let B = V(cclgy(B); L)
and observe that B, & B. By Hypothesis 19.2, B centralizes 0,(IN,)
By the previous lemma, 8 centralizes 0,(I).

We next show that 8 & F(IMM,)). Consider 0, ,(IM,), and let P, =
BNO,,(WM). Since P centralizes O,(IM,), so does PB,, so O, (M) =
By X O,(WM,) is nilpotent. But now L centralizes P,, and so Lemm:
1.2.3 of [21] implies that ¥ < O,(IM,). It follows that B < W,. Since
B is weakly closed in a S,-subgroup of M, it follows that MW, is
S,..-subgroup of ®.

Again, P centralizes 0,(I,), and now L), centralizes 0,(IM,) botl
assertions being a consequence of Hypothesis 19.2 (iii). It follow:
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readily that every chief factor of I, is central, and so I, is nilpotent.
Since we are advancing by way of contradiction, we acecept this lemma.

LEMMA 19.83. If Ae Z/(p), then either C(N) is a ¢'-group or a
S,-subgroup € of C(X) is of order q, and € has the property that it
does nmot centralize any B € Z/(q).

Proof. Let & be a S,-subgroup of C(), and suppose € # {1).
By Lemma 19.2, no element of G* centralizes any Be Z(q). Let {
be a S,-subgroup of & containing & and let Be Z(LQ). Then Cy(B)
is of index 1 or ¢ in Q and is disjoint from €, |E&| = ¢ follows.

Lemmas 19.2 and 19.3 remain valid if » and ¢ are interchanged
throughout. In Lemmas 19.4 through 19.14 this symmetry is destroyed
by the assumption that » > ¢ (which is not an assumption but a choice
of notation).

We now define a family of subgroups of @, #F = & (p). First,
& is the set theoretic union of the subfamilies .# (P), where P
ranges over the S,-subgroups of @. Next, & () is the set theoretic
union of the subfamilies . (¥U; P), where A ranges through the
elements of 4= 4;(B). We proceed to build up F (A; P). Form
V() = V(eclg(A); P). Consider the collection 7" = 7 (A) = # (¥, q)
of all p, g-subgroups & of & which have the following properties:

1. P K.

(K) 2. V) SO0, ,(R).

3. Every characteristic abelian subgroup of B N O, ,(]) is eyelic.

If %Y, q) is empty, we define & (A; P) to consist of all
subgroups of o of type (p, p). If (¥, ¢) is non empty, we define
F (U; P) to consist of all subgroups of A of type (p, ») together with
all subgroups of PN O,,,(R) of type (v, p) which contain 2,(Z(P N O, (D)),
and £ ranges over . (¥, q).

Notice that .# (p) depends on ¢, too, but we write Z (p) to
emphasize that its elements are p-subgroups of &. The nature of
& 1is somewhat limited by

Lemma 194. If U, W, e &2, B 18 a S,-subgroup of
S, 7 (A) and 2#(N,) are non empty, and if ;¢ % (W), 1=1,2,
then PN 0,,,(]) = BN O,,(K,).

Proof. Let P,=PNO,,(R),2=1,2. Then P, PB,2=1,2.
From 3.5 and the definition of £ (p), we have cl(B) =2,i=1, 2.
Hence ¥*B,P:= 1> and Y*B.P! = ). From (B), we conclude that
B S B, and P, & PB,, as required.

Using Lemma 8.9 and Lemma 19.4, we arrive at an alternative
definition of & (P), B being a S,-subgroup of @. If " (N) is empty
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for all A e A& 4;(P), & (P) is the set of all subgroups B of P of
type (p, p) such that B¥ is abelian. If .92°() is non empty for some
e A2 4:(P) and Re 7 (NA), then F (P) consists of all subgroups
of type (p, p) in O, ,(R) N P which contain 2,(Z(0,,,(R) N P)), together
with all subgroups B of 0, ,(®) NP of type (p, ) such that B® is
abelian. Here we are also using (B) to conclude that 0,,(®) NP
contains every element of 2%+ (P).

LEMMA 19.5. Let 8¢ % (N), where Ne P& 45(P) and P is a
S,-subgroup of . Let B, = BN O, ,(R). If M is any proper subgroup
of © containing P, then B0, (W) < M.

Proof. Since *PPi=1, it follows from (B) that B,=P N 0, (M) =
P, say. By Sylow’s theorem, I = 0, (M)Ny(P,), so it suffices to
show that By, < Ngp(PB) = N. Choose Nin RN. Then [P, B, Bo, Bo)=1.
Since B, S P, & P < &¥, it follows from (B) applied to KY that
B, & PY, so that P, = P, as required.

LEMMA 19.6. Let € .27 (), A e A& 4;(P), B being a S,-subgroup
of ®, and let 8 be a subgroup of index p in B, = 0,,() N P. Then
B = Vieclg(R); B) S BN O, (R).

Proof. Since & _45(P) is non empty, (B) implies that € is non
abelian. Now 2,(Z(%)) is of order p and is contained in £ By 3.5
R/2(Z(*B)) is abelian.

Let 8¢ = g, be a conjugate of € contained in P, Ge@, First,
suppose that (2.(Z(P)))° = 8 is contained in P,. Then Cg(B) =€, is
of index 1 or » in PBy. Set €, = C(8). By Lemma 19.5, with €, in
the role of I, P¢ in the role of P, P in the role of P, we see that
Y€, = (1), and it follows that *$,8 =<1>, so by (B), & & P,
(Recall that p = 5.)

Thus, if £ £ By, but £, S B, then 3L B,. But &, normalizes P,
so BN < &. Since &, is of index p» in TE, any non cyclic normal
subgroup of £, contains 8. Hence, P, N &, is cyclic and disjoint from
8. If now Q%) is extra special of order p**', we see that 2,(8)
contains an extra special subgroup ¥ of order p*~' which is disjoint
from T

Consider now the configuration (&, P, &; B, M, W), and observe
that W = P,. T is disjoint from %P, so is faithfully represented on
F=0,,5 (&)/0,,,(8]), a g-group. Furthermore, ¥ is faithfully represented
on 2,(W)/2(Z(BW)), which makes sense, since 0, ,(]) acts trivially on
2,(B)/2(Z(W)). Let ¥, be the subgroup of ¥ which acts trivially on
Q2(Z(®)), which also makes sense, since 0, () acts trivially on
Q2(Z(®)). Then F/F, is cyclic and T acts trivially on F/F, since p >q.
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Since £ is a p-group, T acts faithfully on ¥, so acts faithfully on
SIDE). If | : D@D | =g, then |T| divides (¢"—1)(g**—1)---(g—1),
and so [¥| < ¢*, by Lemma 5.2,

On the other hand, ¥, acts faithfully on 2,(8)/2,(Z()), and trivially
on 2,(Z(W)), so ¥, is isomorphic to a subgroup of the symplectic group
Sp(2r, p). Hence, || divides |Sp(2r,p) |, = (" —1) -+ (p* — 1) [6],
so by Lemma 5.2 (ii), | .| < »'. Combining this with the previous
paragraph, we have (T |=9p""'<¢" = |{| < P, a contradiction,
completing the proof of the lemma.

We can now translate this information about £ to the general
P, g-subgroup of &. To do this, we let <“(p) be the set theoretic
union of sets <Z(P), B ranging over the S,-subgroups of &. F(P)
is the set of all subgroups € which can occur in the previous lemma.
Formally, <2 () is the set of all subgroups of index » in P N O, ,(R),
where &€ 277 (N), and A e FAZ_+;(D).

LemMma 19.7. If e #(p) and D is a p, g-subgroup of ©, then
B, = V(ccl@(g); 'b) S 0«.9(%)-

Proof. Let (9, P, &; B, M, W) be a configuration. The lemma is
clearly equivalent to the statement that LS 0, (D). Let B, be a
S,-subgroup of & containing B, and let &, = £¢ be a conjugate of L
contained in PB,. Since 8, e L (p), we have 2 e (P, for some S,-
subgroup P, of 8, Now P, = P& for some X in @, and so 8 & P,
By Lemma 19.6, we have 7*P(8%)*=<1), and so 7*$,8 = 1); in
particular, Y*P,2 = (1), so (B) and »p = 5 imply this lemma.

LemmA 19.8. If e A& 45(D), then B S O, ,(8]) for every con-
Siguration (8, B, A; B, M, W) for which & is a p, g-group.

Proof. Suppose false, and that & is chosen to maximize B, and,
with this restriction to minimize |®|,. It follows readily that 0,(R)
is a S,-subgroup of O, ,(®) and that P is a S,-subgroup of every
p, g-subgroup of & which contains f.

By Lemma 18.1 and the isomorphism O0,(R) = 0,,,(R)/0(8) = B,
we conclude that I centralizes Z(0,(f)). By minimality of |®],, we
also have & = PM.

If P* is a S,-subgroup of & containing P, we see that Z(P*)
centralizes 0,(f), and so Z(P*) & Z(0,(!)), by maximality of P. It
now follows that ® centralizes Z(P*), and maximality of P yields
B = P*,

Since L does not act trivially on O, , (R)/0,.,(®), and since p > g,
it follows that I contains an elementary subgroup of order ¢®. But
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M centralizes Z(0,(®)) = 8 and if 8 is non cyclic, then 3 contains
an element of Z/(*B), in violation of Lemma 19.3. Hence, 8 is cyclic.
In this case, we conclude from Lemma 18.1 that a S,-subgroup of M
centralizes Z,(0,(8)) = 2,. But 3, contains an element of Z/(P), so
once again Lemma 19.3 is violated. This contradiction completes the
proof of this lemma.

LemMMA 19.9. If 8e &£ (p) U P& 1,(p), then & S 0,(R) for every
P, g-subgroup & of & which contains L.

Proof. By Lemmas 19.7 and 19.8, it suffices to show that £
centralizes 0,(8R). If e & +;(p), Theorem 17.1, Corollary 17.2 and
Hypothesis 19.2 imply that £ centralizes O,(R). If e <2(p), then
Le 2 (P) for some S,-subgroup P of ®. In this case, if A e A= 15(P),
the definition of &“(B) implies that A N L = Y, is non cyclic. Hence,
O/R) is generated by its subgroups C(4) N O(R) as A ranges over
A¢. By the preceding argument, A is contained in 0,(K,) for every
P, g-subgroup &, of C(A) which contains 2. Lemma 7.5 implies that
2, centralizes O,($f). In particular, 2,(Z(B)) centralizes O(&).

Consider C(2,(Z(P))) 2 (B, 0,(R)). Since LS 0,(K,) for every
P, g-subgroup &, of (B, 0,(8)> which contains € by (B) and Hypothesis
19.2, a second application of Lemma 7.5 shows that 8 centralizes 0(8),
as required.

LeEMMA 19.10. If Be Z# (p), then B centralizes every element of
U@; q).

Proof. Suppose false, and L is chosen minimal subject to
LeU(B; q) and QOB =+ (1), so that we have Q=708 and B, =
ker (B — Aut Q) # {1)>. Let € = C(B,). Since Be . # (p), we have
Be F(P) for a suitable S,-subgroup P of @. By definition of F# (P),
either C(B) contains an element U, of #Z_7;(P) or else C(B) contains
a subgroup P, of index » in PN 0,,(}), Re F (N) and A e FZ_4;(P).
Let  be a S, ,-subgroup of € containing 2, in the first case, and P,
in the second case. Lemma 19.9 implies that A, & 0,(9) in the first
case and P, S 0,(D) in the second case. In both cases, we have
B S 0,9). Now let $, be a S, ,-subgroup of € containing BY. By
Lemma 7.5, we have B < 0,(D,) and so QB S 0,(H) N Q = 1),
contrary to assumption.

LEmMA 19.11. If Be F (p), Ae % (q), then G = (¥, B).

Proof. Suppose <A, B> =8RG, and A and B are chosen to
minimize 8. By the minimal nature of , R is a p, g-group. By the
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previous lemmas, 2® centralizes 0,(), and B® centralizes 0,(®). It
follows readily that £ is nilpotent, so = %A x B. But now C(N)
contains B in violation of Lemma 19.8, with » and ¢ interchanged.
This interchange is permissible since Lemma 19.3 was proved before
we discarded the symmetry in p and gq.

LemMmA 19,12, If D is a p, q-subgroup of & and if D possesses
an elementary subgroup of order p°, them a S,-subgroup of D is
normal in D,

Proof. Case 1. D contains a S,-subgroup P of &. Let Q be a
S;-subgroup of D, let O, = QN O, (D), let 2 be a S,-subgroup of &
containing Q, let Be (L), and Q, = Cp,(®B). Then L, is of index
1or qinQ,

Next, let & = 0,(D), and assume by way of contradiction that
fcP. By the preceding lemmas, & contains V(cclyx(N); P) for every
e A& 4;(P). By the preceding lemma, no element of Qf centralizes
any element of & (p).

If ® contains a non cyclic characteristic subgroup €, then every
subgroup of € of type (p, p) belongs to & (), and so Cx(Q) is cyelic
for @ €L,. This implies that 7= #;(Q,) is empty, and if Q, possesses
a subgroup of type (q,q), then » =1 (modq). However, if ® does
not contain any non cyclic characteristic abelian subgroup, then every
subgroup of & of type (», ) which contains 2(Z(f)) lies in F (P),
and we again conclude that & _#;(Q,) is empty, and if O, is non
cyclic, then p =1 (mod q).

Now Q, = 0,,(D)/t admits a non trivial p-automorphism since
RcCP, so 2 4:(Q) is non empty, by Lemma 8.4 (ii) and p > q.
Hence, L, is non cyclic, being of index at most ¢ in Q,, and this
yields » =1 (mod ¢). We apply Lemma 8.8 and conclude that »p =
14+ g+ ¢ and L, is elementary of order ¢°. This implies that any
two subgroups of Q, of the same order are conjugate in ®, Since
at least one subgroup of £, of order ¢ centralizes B, every subgroup
of Q, of order g centralizes some element of Z/(g). Since at least
one subgroup of L, of order ¢ centralizes some element of .&# (P),
every subgroup of Q, of order ¢ centralizes some element of & (p).
This conflicts with Lemma 19.11.

Case 2. ® does not contain a S,-subgroup of ®. Among all D
which satisfy the hypotheses but not the conclusion of this lemma,
choose D so that | D N 2(Y)| is a maximum, where A ranges over all
elements of S22 #;(p), and with this restriction, maximize |D|,.

Let ®, be a S,-subgroup of D, and let P be a S,-subgroup of &
containing D,.
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First, assume D, centralizes 0,(®). In this case, 0,(D) is a S,-
subgroup of 0, ,(P). By maximality of |D|,, D, is a S,-subgroup of
N(0,(D)). This implies that D, contains every element of .7 1;(P).
To see this, let A e A2 15(P), and let A, =AND,. Since 0,(D) is
a S,-subgroup of 0,,,(D), it follows that AN D, = 0,(D). If A, were
a proper subgroup of U, then P, would be a proper subgroup of
Ny,(0:(D)). Since this is not possible, we have A = A,. But now,
Vicelg(); D) < D, and by maximality of |D},, D, =P follows, and
we are in the preceding case,

We can now assume that D, does not centralize 0,(D). Suppose
D, contains some element B of F (p). By Lemma 19.10, B centralizes
0,(D). Since D, does not centralize 0,(D), |0,(D)| > ¢, and so Lemma
19.11 is violated in C(Q), Q@ being a suitable element of 0,(P). Thus,
we can suppose that D, does not contain any element of & (p). In
particular, ® N 2,(A) is of order 1 or p for all Ae A= _7;(p). Let
Bez(P), and D, = Cp(B). Since & #;(D) is non empty by
hypothesis, ®, is non cyelic. Let & be a subgroup of ®, of type
(p, p). Since BZL D,, <&, B> is elementary of order at least p*. If
& does not centralize 0,(®), then there is an element E in &* such
that € does not centralize C(E)N 0,/(D). But in this case, a S,
subgroup of C(F) is larger than ® in our ordering since B = C(E),
C(E) possesses an elementary subgroup of order 7% and a S,-subgroup
of a S,,-subgroup ¥ of C(¥) is not normal in . This conflict forces
every subgroup of D, of type (p, p) to centralize 0,(®). Thus, 2(D,) =
D* centralizes 0,(D), since D* is generated by its subgroups of type
(p, ). However, we now have N(D*) 2<D,B,0,(D)> and a S,,
subgroup 3, of N(D*) is larger than D in our ordering, possesses an
elementary subgroup of order p°, and has the additional property that
its S,-subgroups are not normal in %, This conflict completes the
proof of this lemma.

Lemma 19.12 gives us a fairly good idea of the structure of the
P, g-subgroups of &. The remaining analysis is still somewhat detailed,
but the moves are more obvious.

For the remainder of this section, ¥ denotes a S,-subgroup of &,
£ a S,subgroup of N(P), and Da S,-subgroup of @ which contains Q.

LEMMA 19.13, SA4&° 45(RQ) i8 non empty.

Proof. We apply Hypothesis 19.2 (ii) and let ® be a maximal
p, q-subgroup of @ which contains elementary subgroups of order p*
and ¢°. By Lemma 19.12, D, 19D, D, being a S,-subgroup of D,
Since D is a maximal p, g-subgroup of &, D, is a S,-subgroup of ©,
80 D, = P¢ and the lemma follows.
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We now choose B in 2/(Q) and set O, = C(B).

LEMMA 19.14.

(i) SFAZ 1R, is empty.

(ii) Q contains 2(Z(D)).

(i) »p=1 (modgq).

(iv) £F contains an element Y which centralizes an element of
F (B), and has the additional property that Cy(Y) contains an
elementary subgroup of order ¢.

(v) If XeQt and X centralizes an element of # (P), then X
does nmot centralize any element of Z(Q), and C(X ) does not contain
an elementary subgroup of order ¢'.

Proof. Let @ be an elementary subgroup of Q of order ¢° and
choose & in L, if possible. If 3 possesses a non cyclic characteristic
abelian subgroup €, then some element of € has a non cyclic fixed
point set on €. Since every subgroup of € of type (p, p) lies in
Z (P), (iv) is established in this case.

If every characteristic abelian subgroup of P is eyelic, then some
non cyclic subgroup &, of & centralizes Z($3). Since any non cyclic
subgroup of P which contains 2,(Z(P)) is normal in P, by 3.5, some
element of @, centralizes an element of # (P), so (iv) is proved.

If € €L, then Lemma 19.11 is violated in C(E), E € &*, E central-
izing an element of & (P). Hence, (i) is proved.

On the other hand, % _#:(Q) is non empty, so L, possesses a
subgroup F¥, of type (¢,¢). If »p #1 (modq), then some element of
. is seen to centralize an element of % (PB). Since this is forbidden
by Lemma 19.11, (iii) follows.

We now turn attention to (v). In view of Lemma 19.11, we only
need to show that if X in Q! centralizes an element of .# (P), then
C(X) does not contain an elementary subgroup of order ¢‘.

Let A be an element of .# (P) centralized by X, let  be a S, ,-
subgroup of C(X) and let & be a maximal p, ¢g-subgroup of & containing
9. By D,,in ¢(X), A, =A< $ & &, for some G in C(X). Suppose
by way of contradiction that C(X) contains an elementary subgroup
of order ¢'. By D,, in C(X), $ contains an elementary subgroup of
order ¢*; thus, & contains such a subgroup.

We first show that a S,-subgroup of & is not normal in & Suppose
false. In this case, since & is a maximal p, ¢-subgroup of @, a S,-
subgroup of & is conjugate to P, and so K is conjugate to PL.
However, (i) implies that £ does not contain an elementary subgroup
of order ¢!, since |Q:Q,| =g, so & does not contain one either.

We now apply Lemma 19.12 and conclude that & does not possess



866 SOLVABILITY OF GROUPS OF ODD ORDER

an elementary subgroup of order p°. It follows directly from Lemma
8.13 that £ has p-length one. Let &, be a S,-subgroup of & containing
A, and let B, = Vieely(W,); &;). By Lemma 19.10, B, centralizes O,(R).
Since £ has p-length one, B, < £ But then N(L) = RN contains S,-
subgroups of larger order than |&,|, and M also contains &, contrary
to the assumption that £ is a maximal p, g-subgroup of &. This
contradiction proves (v).

We now turn to (ii). Choose Y to satisfy (iv) and let € be an
elementary subgroup of Cy(Y) of order ¢°. If QI(Z(ﬁ)) = ), were
not contained in €, then (€, 2,> would contain an elementary subgroup
of order ¢*, and (v) would be violated. This completes the proof of
this lemma.

We remark that Lemma 19.2 and Lemma 19.14 (ii) imply that
VA (ﬁ) is eyelic.

Theorem 19.1 can now be proved fairly easily. We again denote
by € an elementary subgroup of {Q of order ¢°, and we let Y be an
element of €* which centralizes an element of & (). Let & = Cg(®B).
Since 92, = QI(Z(:@)) centralizes B, 2, does not centralize any element
of Z7(P), by Lemma 19.2, and so does not centralize P. Thus, we
can find an element E in G! with the property that 2, does not
centralize Cyx(E). Consider € = C(E). We see that € contains both
Y and B. Since Y does not centralize B, {Y, B> is a non abelian
group of order ¢° with center 2,. Let £ be a S, ,subgroup of €
which contains (Y, B)>; since £ contains B, € does not contain an
elementary subgroup of order p°. Since £, is contained in the derived
group of <Y, B), 2, is contained in ¥'. We apply Lemma 8.13 and
conclude that 2, centralizes every chief p-factor of 8 It follows
that v*82F = (1) for suitably large =, and so 2, & 0,(2). But now
if © is any S, .-subgroup of € which contains 2,, we have 2, S 0,(9),
by Lemma 7.5, and so [2,, Cs_B(E)] is both a p-group and ¢-group, so
is {1), contrary to construction. This completes the proof of Theorem
19.1.

COROLLARY 19.1. If p,qem,U7m, P+ q, and p ~ q, then either
PET, O QET,.

Proof. 1f & satisfies E;,, then both p» and ¢ are in w,. Other-
wise, Hypothesis 19.2 is violated and the corollary follows.

20. An E-theorem for 7;

Hypothesis 20.1 p,qem, p# ¢q, and p ~ q.
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THEOREM 20.1. Under Hypothesis 20.1, @ satisfies E, ,.

The proof of this theorem is by contradiction. The following

lemmas assume that Hypothesis 20.1 is satisfied but ® does not satisfy
E,,.

LemMA 20.1. If B is a S,-subgroup of @ and Q is a S,-subgroup
of @, then either P normalizes but does not centralize some q-subgroup
of ®, or L nmormalizes but does mot centralize some p-subgroup of .

Proof. This lemma is an immediate consequence of Hypothesis
20.1, Theorem 19.1, and the assumption that @ does not satisfy E,,.

We assume now that notation is chosen so that B, a S,-subgroup
of @, does not centralize Q,;, a maximal element of U(PB; q). Let O*
be a S,-subgroup of N(L;) permutable with P, and let Q be a S,-
subgroup of & containing Q*.

LEMMA 20.2, O,(PL*) # <.

Proof. Suppose false. Let 2 be an element of % #;(Q). By
Lemma 7.9, we have ¥ & 0,(PL*). We apply Lemma 17.4 and conclude
that N(Q,)) & N(B), where 8= Z(8), B = V(cclgx(%); Q), and so &
satisfies E,,, contrary to assumption.

Let B, = 0,(%9*).

LEMMA 20.3. Q* i3 a S,-subgroup of every proper subgroup 8
of ® which contains P,Q*.

Proof. Let ¥ be a S, subgroup of & with Sylow system LQ,, B,
where Q*S Q, and B, =P, and let F(T)=2T, x T,, where T,=0,(T),
T = Oq(z)-

We first show that T, & P,. Suppose by way of contradiction
that £, N P, T,. Since O* and P, both normalize T, N P, and both
normalize ¥,, setting T¥ = Ny (T, N P,), we see that TIV*P, is a
group, and that Q*P, normalizes T¥. Let T*/T, N P, be a chief factor
of TFQ*P, with T* = T, Since P, < PV*, it follows that P, central-
izes T*/T, NP, that is YT*P, & T, N P,. In particular T* normalizes
P.. Now PQ* is a maximal p, g-subgroup of & by Lemma 7.3, so
Q* is a S,-subgroup of N(B,). A second application of Lemma 7.3
yields that 9P, is a S,-subgroup of 0,(N(P,). But PB,T* is normalized
by {*, so a third application of Lemma 7.8 yields B,T* & O, (N(B))),
so T* & B,, contrary to our choice of £*. Thus, T, & P..

We next show that %, £ Q*. To do this, it suffices to show that
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B, centralizes ¥,, for if this is the case, then T, S C(B) = N(B),
and so ¥,Q* is a g-subgroup of N(B,). Since L* is a S,-subgroup of
N(B), £, < Q* follows.

To show that 93, centralizes ¥,, we first show that P, centralizes
Cq,(R4). By definition, Q* is a S,-subgroup of N(Q,), and since
0*Cq, (D) is a g-subgroup of N(L,), we have Cq,(Q) S Q*. Hence,
[Ce, (), BIS LN, BJS TNP, =<1). Suppose that P, does
not centralize ¥, and that T, is a PB,Q,-invariant subgroup of T,
minimal subject to the condition 7%,P, # <1>. By minimality of I,
we have T, =7TP. Since I, is a g-group, 7T, T, and so
TEPB, = 1), Since vO,P, = (1), we also have V'QB,E, = (1)>. The
three subgroups lemma now yields v*$,3.Q, = (1), so L, centralizes
YB3, = F,. By what we have already shown this implies that P,
centralizes ¥,. This conflict forces 7B,T, = .

We next show that &, & T,. To do this, consider C(¥,) = € C T.
Since T, & Py, we see that O, & €. On the other hand, Z($P,) central-
izes both ¥, and I,, so Z(P,) & I,, by 3.3. Hence, € & Cx(Z(P)) S
C(Z(P)) & N(Z(P)). Since L, = 0(PL*), Lemma 7.5 implies that
0, 20,€) char € 4 F, and s0 Q, £ T,.

Consider finally C¢(%,). Since Q, S T,, we have Cg(T,) & Cx(Q) S
C(Q,) &S N(R,). Since P, =0,(PQ*), Lemma 7.5 implies that
P, S 0,(Cx(T,)) char Cx(T) <, and so P, S I,. Since we have
already shown that , & P, we have T, =B, < &, and so Q* is a
S,-subgroup of ¥, as required.

To prove Theorem 20.1 recall that Q is a S,-subgroup of & con-
taining Q*. Choose U in AZ_45(L), and let A* = A N Q*. We first
show that A*cC A. Suppose by way of contradiction that A* = A,
Then 2 normalizes ¥B,. Lemma 7.3 and the previous lemma imply
that 9B, is a maximal element of MU(¥; p). By Corollary 17.1, N(,)
contains a S,-subgroup of &, and ® satisfies E,,. Since we are
advancing by contradiction, we have 2* < 9.

We next show that A* N O, = {A). To do this, we observe that
WNY, AL s0if A*XNQ, =W, then A* N, NZEQ*) #D). In
this case, however, C(A* N L, N Z(L*)) contains B, and also contains
Q*A, contrary to the previous lemma. Thus, A* N Q, = {1>. Since
A* and O, are both normal in QO*, we have YA*Q, = (1.

Let %A, = Ny(L*), so that A* A, S A Observe that +AL* S
*NACHA, and so O* normalizes A,. Let B be any subgroup of A,
which contains UA* properly. Since [B, QA*] S A*, we see that B
normalizes Q,A* = O, X A*. Since O* normalizes B, O* also normal-
izes Cgp,(B) = D, say. If D # (1), then DN Z(V*) # {1). But then
the previous lemma is violated in C(® N Z(X2*)). Hence, D = {D.
Since C(A) N O,A* 2 A*, we have C(B) N QA* = A*.
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Since B normalizes Q, X A*, B also normalizes (T, x A*) = Q.
Since B has no fixed points on ! by the above argument, Q, is
abelian. But now Q,2* and B are normal abelian subgroups of {Q,, B),
so (&, B) is of class two, so is regular. It follows that if Be®,
Q€ Q,, then [B% Q] = [B,Q°] = [B,Q]°. But B is an arbitrary subgroup
of %, which contains A* properly, so we can choose B such that
JY(B) & A*. For such a B, the element B centralizes J*(X,). It now
follows that Q, is elementary.

We take a different approach for an instant. ¥ does not centralize
the elementary abelian group Q,, and N(X;) has no normal subgroup
of index p, by Lemma 17.3. It follows that {Q, is not of order gq.

Returning to the groups A* and B, since B has no fixed points
on Q,, if Be®B, Be¢A*, then the mapping ¢5:Q, — A* defined by
$5(Q) = [B, Q], @ in L, is an isomorphism of Q, onto a subgroup of
A*. Hence, A* is not cyelic.

From the definition of 2A*, we see that A* contains Z(L). We
wish to show that 2* contains an element of 2/(Q). This is immediate
if Z(Q) is non cyclic, so suppose Z(Q) is cyclic. If 2A* does not
contain any element of (X)), then the element B above can be taken
to lie in some element of Z/(Q). However, [Q, Blec 2,(Z(L)), so ¢4
could not map L, onto a subgroup of order exceeding q. We conclude
that 2* containg Z(X) and also some element of Z/(Q).

We will now show that for each element Z of Z(Q)*, we can find
a p-subgroup 9H(Z) in U(X; p) which is not centralized by Z. Namely,
A* is faithfully represented on P, since A* N, = 1) and A* is a
normal abelian subgroup of Q*. We first consider the case in which
Z(Q) is non cyclic. Let & be a subgroup of Z(Q) of type (g, ¢) which
has non trivial intersection with {Z, that is let & contain 8, = 2,({(Z)).
Since 3, acts non trivially on P, B, acts non trivially on Cg(E) for
suitable F in &*, Let € = C(F), and let R be a S,-subgroup of €
permutable with Q. It is easy to see that 3, does not centralize
0, (QR) e W, p).

If Z(Q) is eyclic, we use the fact that U* contains an element
U of 27(Q). We can find an element U in ¥ such that 3, = 2(Z(Q))
does not centralize Cg(U). Let € = C(U). By (B), it follows that
1 S 0, 4€), and so [8,, Cp,(U)] S 0,(€). Thus, € contains an element
of U(; p) which 3, does not centralize.

It now follows from Theorem 17.1 and the preceding argument
that if 9 is a maximal element of M(Q; p), then Z(Q) is faithfully

represented on ?'fS If ‘fS is a S,-subgroup of N (‘E) permutable with
£, then Lemma 20.2 is violated with » and ¢ interchanged. This
completes the proof of Theorem 20.1.
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21. A C*-theorem for 7y, and a C-theorem for T,

It is convenient to introduce another proposition which is “between’
C, and D,

C*: % satisfies C,, and if ¥ is a mw-subgroup of ¥ with the
property that |¥|, = |%X|, for at least one prime » in m#, then ¥ is
contained in a S,-subgroup of %.

THEOREM 21.1 If p,qem, and p ~ q, then ® satisfies CrX,

Proof. We can suppose p + q. We first show that @ satisfies
C,.. By Theorem 20.1, ® satisfies E,,. Let $ be a S, -subgroup
of @ with Sylow system P, Q, where P is a S,-subgroup of &. We
assume notation is chosen so that [PB| > |Q|. Then 0,9) # 1> by
Lemma 5.2. Lemma 7.3 implies that 0,(D) is a maximal element of
HUEQ; p). If 9, is another S, -subgroup of @ containing Q, then 0,(9.)
is also a maximal element of U(Q); p). From Section 17 we conclude
that 0,(9) = G'0,(D)G for suitable G in &. Hence, GG and
both normalize 0,(D) so are conjugate in N(0,(D)).

Turning to CJ,, we drop the hypothesis |P| > |{|, and let T
be a maximal p, g-subgroup of & containing . Let  be a S, ,-subgroup
of & containing .

First, assume that 0,(%) # 1. In this case, 0,%) is a maximal
element of U(P; q). If 0,(9H) #+ 1, then 0,(D) is also a maximal element.
of U(%PB; ¢). Thus, Theorem 17.1 yields that 9 is conjugate to T.
(Here, as elsewhere, we are using the fact that every maximal element.
of U(PB; ¢) is also a maximal element of U(¥; q) for all A in A& 15(B).)
Thus, suppose 0,(9) = 1. In this case, if A e FA&_4;(P), then B P,
B = V(celx(A); B), by Lemma 17.5, so |B|, = | N(B):C(B)|,. But
N(0,(%)) dominates B, 80 | N(0«(X)) |, > |S|,, which is absurd.

We can now suppose that 0(%) = 1. We apply Lemma 17.5 and
conclude that B q T, where B = V(cclgx(A); B), and A e FA&4;(P).
Let Q, be a S,-subgroup of . Since ¥ is a maximal p, g-subgroup
of ®, L, is a S,-subgroup of N(J).

Let © be a S, subgroup of ® containing P and let Q be a S,-
subgroup of . Let Q,=0,(9). If {, =), then S N(B), by
Lemma 17.5, and we are done. Otherwise, $ = O,Ny(®B), again by
Lemma 17.5, and we assume without loss of generality that Ny(B) & T.

Assume that Ng(B) N L, # <1). Then in particular, T N Y, # {1,
contrary to Oy(T) = {1)>. Hence, Nx(B) N L, = .

We will now show directly that Ny(B) =. Since Ng(B) S I,
it suffices to show that | Ng(B)|, = [T[;. Now N(L,) = 0,(N(Q)))-
(N(2,) N N(B)), by Lemma 17.1, and since Ng(B) N L, = (1), it follows
easily that | No(®B) |, = | N(Q,) N N(B) |..
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Let !, = N(Z(B)). By Lemma 17.3 we have R%,=0,.(RN)-(N(Q) NN,).
Let M= NQ)NN,. Since M contains P, 0, (W) = 0,.(N) N M. By
Lemma 17.5, we now have ¢ = (0,.(N,) N M) - (N(B) N M), which yields
RN, = 0,,N) - (N(Q) N N(B)). Now RN, contains T and TN O, N) =
<1), since O,(%) =<1)>. Thus, Q, is mapped isomorphically into
R,/0,.(R) = (N(R) N N(B))/(0,(R) N N(Qy) N N(B)), and it follows
that | N(Q) N N®)|, = | Q| = |Z|,, as required.

Since Ny(®B) = %, it follows that T & 9, proving the theorem.

THEOREM 21.2. Let o be a subset of m,. Assume that ® satisfies
E,, for all p, q in 0. Then & satisfies C,.

Proof. By the preceding theorem, we can assume that o contains
at least three elements. By induction on |o|, we assume that &
satisfies C, for every proper subset 7 of o.

Let 0 ={p, -+, 0.}, n =38, and let 6, =0 — p;, 0;; =0 — p; — p;,
1=4,5=mn,1+#J. Let & be a S, -subgroupof @, 1 << <n. Then
the S, ,-subgroups of &; are conjugate to the S, -subgroups of &;.

For ¢ +# j, let m;; ={0,(&;)|. Note that by C,, m.; depends
only on 7 and 7 and not on the particular S, ,-subgroup of & we choose.

Fix 4,5,k i # 5 # k #1, let P; be a S,-subgroup of ®, let S}
be a S, ,-subgroup of @ containing PB; and &; be a S, -subgroup of
® containing PB;, chosen so that SN &S} is a S,j'k-subgroup of &
which is possible by C,M, C,j and C.,.

Let Bi; = 0,(8}), Bi = 0,(S}). Suppose that B;; N By = <.
‘With this assumption, we will show that m;; < m;,. We can assume
that 1 =1, =2, k=38, that B, NP, =<1, and try to show that
My = My,

Let B, R, Ry, .-+, R, be a Sylow system for SF NS¥, and let
By, Ry, -+, R, and B, R, R, ---, R, be Sylow systems for S} and S
respectively. Here R, is a S, -subgroup of @, ¢ =2, .-+, n.

Since ., is the S, -subgroup of F(&), the condition P,, N Py = D
says that PB,, is faithfully represented as automorphisms of F(&;). Now

FEH)=F&)NPx FEHNR, x F&S)NR, x --- x F&)NR,,

where P, = F(©S})NP,. Since Ly, and P, are disjoint normal subgroups
of B, P, centralizes P,;. If 4 <s<n, then (B,, FISHNR> =9,
is clearly contained in &} N &F and so P, and F(SF) N R, are disjoint
normal subgroups of 9,, and so commute elementwise. But P, is
faithfully represented as automorphisms of F(&}), so is faithfully
represented as automorphisms of F(&}) N R,. It follows from Lemma
5.2 that m,; < m,,.

Returning to the general situation, if 0,,(S;) N 0,,(8,) =<1,
whenever i + j # k # 1, and &;N S, is a S, ,-subgroup of ®, then
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m;; < m;,.. Permuting 1, 7, k cyclically, we would have m;; < mj; <
my; < m;;. The integers m,;, m;, m,; being pairwise relatively prime,
we would find m;; =1 for all 2+ 5. This is not possible since a
S.,-subgroup of @ is solvable.

Returning to the groups &} and &f, we suppose without loss of
generality that P, N P = Dy # ). Since Dy & P I S5, Dys
commutes elementwise with 0,,(&7}). Similarly, D,,, commutes element-
wise with 0,,(&;). Hence (B, 0,(&7), 0,,(})> = £ is a proper sub-
group of @ normalizing D,;;. By Lemma 7.5, both 0,,(57) and 0,(S7)
are S-subgroups of 0,,(8); in particular, 8 has a normal p,-complement.
Since £ has a normal p,-complement, we can find an element C in Co(P)
such that 0,(&;) is permutable with C-'0,(S})C. For such an
element C, let M = <0,,(S;), C~'0,,(S;)C>.

We will now show directly that for each ¢ in o, N(IR) contains.
a S,-subgroup of ®&. This is trivially true if M = (1), so suppose
that M + 1), Let M, ---, M, be a Sylow system for M which is
normalized by P,, where IM; is an S, -subgroup of M, i =2, .-+, n,
We remark that by C; ,,, each IR; is a maximal element of U(P; p.).

Let | ;| = p# and let |@{,, = p/*. By Lemma 17.5 and C;; ,, we
see that p/[~* =|N(B):C(B)|,, where B = V(ccly(A); P), B=P,
and A € FSELA5(P).

Let N, = N(Z(B)). Let € be a coset of 0,(N) in N,. Then €
contains an element N of N(ZB) by Lemma 17.5. Hence, ¥~ = M7,
1 =2,+--,m where C,,--+,C, all lie in C(N). Let & = P, W|,,- --,M,,
Cy +++,C,>. Since Dy N Z(P,) # 1, and since & centralizes D3N Z(B),
we have 8C ®. Let £ = 0,.(8) (p = p,) so that 8P = & by Lemmas
7.3 and 7.4. Hence, & contains both M and M**, and since B
normalizes M, A normalizes both M and M* ™. By C;,,1 =2, -+, n,
M is a S-subgroup of 8. By the conjugacy of Sylow systems in AL,
there is an element C in QA such that A=A, M = M, Since
2A has a normal p-complement, CeC¥) & 0,(N), so € contains
CNe N(IY),

Thus, if T =N, N N(), we have N, = 0,(N)T. Since P& T,
we have 0,(%) = T N 0,(N,). Hence T = 0,.(T)Ng(B) by Lemma 17.5,
so that &, = 0,(N)Ng(B). Thus Ny (B) maps onto N(B)/C(B). Since
N (B)NM centralizes B, it follows that [T:T N M|, = pli™%,
1=2,.-+,n. Hence |TM|, =|B|,,, as required.

If now M + (1>, then N(M) G and so O satisfies E,.

We now treat the possibility that It = <1>. In this case, both
F($}) and F(PY) are p-groups. By (B), both groups contain 2. By
Lemma 17.4, both 8} and %} are contained in N(Z(B)), so once again
O satisfies E,.

It remains to prove C,, given E, and C. for every proper subset
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7 of o.

Let  and $, be two S,-subgroups of & with Sylow systems
By, -+, Bo and L, - -+, Q, respectively, PB; and L, being S, -subgroups
of @ 1=1=n.

If F(9) and F(9,) are p,-groups, we apply Lemma 17.4 and conclude
that  and 9, are conjugate in N(Z(B)), where B = V(cclx(A); By,
Ne A= A;(PB) and we have normalized by taking P, = Q..

If F(9) is a p-group, then C, , for i =2, ---, n imply that F()
is a p,-group. Thus, we can assume that neither F($) nor F(D,) is
a p-group for any prime p.

Let m; = |0,,(9) |, mi = |0,(9)], 1 =1 =n. For each 7, we can
choose G; in © so that Q4 =P, 1 5= n, 1+ 5. Let & = 9f,
t=1, -+, n, so that DN R; contains a S, -subgroup of .

Suppose 0, (%) N 0, () = 1) for some 1, j, i # j. Then 0, (R.)
is faithfully represented on F(9), since 0,,(R;) S . But in this case,
0,,(&;) centralizes 0, (9) and also centralizes 0,,(9) for k + . Hence,
0, ,(R.-) is faithfully represented on 0,,(9), and so m; < m; by Lemma
5.2. For the same reasons, m; < m;, since 0,(9) is faithfully repre-
sented on F(R,). If forall 4,5,1<4,5<m,i#J], 0,(R)N 0, (D) =
{1, we find m; < m; < m), and so m}; = m; = 1. This is not possible
since  and 9, are solvable.

Hence, we assume without loss of generality that 9, =
0,,(8,) N 0,(D) # <1>. We will now show that 0,(&,) is conjugate to
0,(9). To see this, we first apply Lemma 7.4 and C,,,, to conclude
that 0,(®,) and 0,(9) have the same order. Since 2D, centralizes
both 0,,(®,) and 0,(9), it follows that £ = (B, 0,/(Ry), 0,(9)) < S.
By Lemma 7.4, it follows that <0,/(&,), 0,;(9)) < 0,(2). By Theorem
17.1 and C3,,, 0,(®,) and 0,(D) are S-subgroups of 0,(%), so are
conjugate in £, being of the same order. Since O’i(@ # 1), C,
follows immediately.

22. Linking Theorems

One of the purposes of this section is to clarify the relationship
between 7, and =,.

Hypothesis 22.1.
(i) pem, gen(®).
(i) A S,-subgroup P of ® does not centralize every element of

U(®; o).

THEOREM 22.1. Under Hypothesis 22.1, if Q, is a mazximal
element of U(B; q) and Q is an element of X, of order q, then Cqp(Q)
contains an elementary subgroup of order ¢°. In particular, ge m,Ux,.
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Proof. Choose € char Q, in accordance with Lemma 8.2, and set
€, = 2,(€). From 3.6 and Lemma 8.2, it follows that  does not
centralize €,. Since cl(€) < 2, €, is of exponent q.

Since N(€,) 2 N(L,), Lemma 17.3 implies that O?(N(€,)) = N(E)).
Since N(E€,) has odd order, this in turn implies that €, is not generated
by two elements. Consider the chain #:€,2v€,Q,27€0!2 ---.
Since P does not centralize €,, P does not stabilize &, so we can
find an integer n and subgroups «A,, ¥; such that »"'COM S A &
A, & €, Qr and such that B = A,/YA, is a chief factor of N(L,) and
with the additional property that ¥ does not centralize B. Since
N(Q) =0*(N(Q,)), we also have N =0°3), where RN=
(N(B) N NEQY)/(C(B) N N(Ly)). Since | N(Q,)| is odd it follows that
|B| = ¢*. Since YA, S U, it follows that | Cy,(@)| = ¢*. If Co(Q)
did not contain an elementary subgroup of order ¢°, then we would
necessarily have @ €%, since 2, is of exponent ¢. Since |Cy,(Q)| = &,
the only possibility is that Cy,(Q) is the non abelian group of order
¢* and exponent ¢. But in this case Qe Cy (Q) S Z(€,), and Cq(Q)
contains an elementary subgroup of order ¢° since L, does, by Lemma
8.13, Lemma 8.1, and the equation N(Q,) = O°(N(Q)).

Hypothesis 22.2.

(i) B is a S,-subgroup of ® and penx,.

(ii) q, ren,Un,; B does not centralize every element of W(B; q)
and P does not centralize every element of VU(P; 7).

THEOREM 22.2. Under Hypothesis 22.2, q ~ r.

The proof of this theorem is by contradiction. The following
lemmas assume that g ~ 7.

Since Hypothesis 22,2 is symmetric in ¢ and r we can assume
that ¢ > r, thereby destroying the symmetry.

Let Ae & 45(P). Let Q,, R, be maximal elements in U(P; q),
U(B; r) respectively.

LEMmA 22.1. If © is an A-invariant q, r-subgroup of ©, and
if a S,~subgroup D, of O 1s non cyclic, then 9, < 9.

Proof. Let O, be a S,-subgroup of  normalized by . Since
q + r, either FEA7(D,) or FZ NP, is empty. If FLZ 459,
is empty, application of Lemma 8.5 to  yields this lemma.

Suppose FF.45(D,) is non empty. Then FZ A4YD,) is empty,
so  has g¢-length one. Thus, it suffices to show that 9, centralizes
0,(9). We suppose without loss of generality that 2 normalizes 9,.
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Then by Corollary 17.2 $, is contained in a conjugate of Q,, so C(H)
possesses an elementary subgroup of order ¢* for H in ,, H of order
g, by Theorem 22,.1. We will show that 2,(9,) centralizes 0,(9). Since
9, is assumed non cyclie, 2,(9,) is generated by its subgroups & which
are elementary of order ¢? so it suffices to show that each such &
centralizes 0(9). If & does not centralize 0.(9), then & does not
centralize 0,(D) N C(E) for suitable E in &, By Lemma 8.4,
FZA5(0,9) N C(E)) is non empty for such an E, so q + r is violated
in C(E).

Since 2,(9,) centralizes 0.(9), it follows that & 4 (0.(D)) is
empty, since ¢+ r. Hence, 9, centralizes 0.(9) by Lemma 8.4, as
required.

We define 27" as the set of ¢, r-subgroups of WU(A) which have
the additional property that no S,- or S,-subgroup is centralized by 2,

LEMMA 22.2. <S¢ 18 non empty.

Proof. Suppose that YOQ,A = 1). If we also had YRA = 1),
then ¢ + r would be violated in C(X). Hence, YR,A # {1, and we
can find R, S R,, R, # (1), such that R, = YR,A and such that A, =
Cy(R,) #= <1). Consider C(¥,) 2<A, Q, R,>=28. By Lemma 17.6,
A 20, (2 and it follows readily that £ possesses a normal comple-
ment 9, to A, We can then find C in Cy(A) such that $ = {0, R
is a ¢, r-group. By Lemma 22.1 and the fact that Q, is a maximal
element of U(; q), we have Q, | D. But now R{ & N(Q,) = O°(N(Q))).
Since ¢~ r, if &, is a S,-subgroup of N(L,), then & 4:(S,) is
empty. By Lemma 8.13 N(Q,) centralizes every chief »r-factor of
N(Q,)). It follows that 2 centralizes R?, contrary to construction, so
we can assume that vYQ,% # {1).

Suppose YR, A = 1). Since A possesses an elementary subgroup
of order p°, we can find A in %A such that Cg(4) is non cyelic.
Consider C(4) 2 <%, Cy(A4), ®)>. By Lemma 17.6 we can assume that
$=<C(A),R> is a q,r-group. Then Lemma 22.1 implies that
S, < 9, &, being a S-subgroup of . Enlarge  to ®, a maximal
A-invariant ¢, r-subgroup with Sylow system &, R,. Lemma 17.6,
Lemma 22.1 and maximality of & imply that &, is a maximal element
of U(Y; q), contrary to g « 7.

We can now assume that vQ,% # (1) and YR,A + {1,

Let Q, be an U-invariant subgroup of L, of minimal order subject
to 7O,U # {1). Let R, be an U-invariant subgroup of R, of minimal
order subject to YRUA # {1>. Let «A =ker(A —AutQ,), A =
ker (A — Aut R,). Since A acts irreducibly on Q,/D(Q,) and on R,/D(R,),
it follows that A/A; is eyelic, 1 =1, 2. Since A e FZ 4(P), w. N WA, =
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", # {1). An W-invariant S, ,-subgroup of <%, L, R,> S C(V,) satisfies
the conditions defining %", by Lemma 17.6 and D,,, in <{¥, Q,, R,).

Let & be a maximal element of %", with Sylow system &, &,,

chosen so that U normalizes both & and &,, & being a S,-subgroup
of &.

LEMMA 22.8. R, i8 cyclic and O(8R) = {1).

Proof. Suppose £, is non cyclic. Then Lemma 22.1 yields &, < £.
The maximal nature of £, together with Lemma 17.6, imply that
&, is a maximal element of U(¥;q), so is conjugate to Q.

By Lemma 17.3, N(R,) =N = 0*(N). Since g+~ r, N(], does
not possess an elementary subgroup of order 7°. Now R = 0°(RN) and
Lemma 8.13 imply that v&,% = (1), contrary to construction. Hence,
K, is cyclic.

If 0(R) #= (1), then 2(0,(8)) = 2(R,) < 8. The maximal nature
of £ now conflicts with Lemma 17.6 and Theorem 22.1 proving this
lemma.

We choose C in C() so that & & R,; since K is also a maximal
element of 92", we assume without loss of generality that £, & R..

LEMMA 224,

(i) 8, ts non abelian.

(ii) No mon identity weakly closed subgroup of R, is contained
n 0(R).

(iii) O.(R) contains an element of Z(R), R being any S,-subgroup
of ® containing a S,-subgroup R* of N(R).

Proof. We first prove (ii). Suppose T # {1, ¥ is weakly closed
in &, and L& 0,(R). Then T < &, so the maximal nature of &
together with Lemma 17.6 imply that &, = R,.

Since N(R) = O*(N(R)), so also N(T) = O°(N(Z)). Since g~ r,
Lemma 8.13 implies YAR, = {1, contrary to construction, proving (ii).

If & were abelian, then 0(8) =<1) and Lemma 1.2.3 of [21]
imply that &, = 0,(f), in violation of (ii). This proves (i).

Suppose r € ;.  In this case, C¥, implies R* =R, and since R|=1),
it is clear that R, contains an element U of Z(R). Since K, =
N@O () N R, it follows that U N Z(R) = K, and so by (B), UNZR) &
0,(R). It now follows that 1 £ &,, and so U & 0,(R), again by (B).
Next, suppose that rex,. In this case, since R|+# (1>, R* contains
an element B of Z(RN), R* being a S,-subgroup of N(R)). Since B
centralizes 0,(PR*), by Lemma 19.1, we have B = R,. Since BES R,
BNZA)S K, and so by (B), BNZR) = 0(R). It follows that
B < 0,(R). This proves (iii).
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To prove Theorem 22.2 we will now show that &£, centralizes
Z(0R®)) = 8. Suppose by way of contradiction that this is not the
case. We can choose € € 7(r) such that € & &, but € £ 0,(R®). Since
&, is cyclic €, = € N 0,(R) is of order ». From (B), we then have
7 18E T = ().

If =5, we apply Lemma 16.2 and conclude that *3€* = (1),
contrary to the above statement. Hence =8, and by Lemma 16.3
we have ¥*36€* = @,; in particular, €, & 8. Now apply Lemma 16.3
again, this time with O,(&) in the role of &, and conclude that
7'0,(R)E* = €,.

Let T = 70(R)!,. By Lemma 8.11, we have T =vIR,, and so
€, & 2(Z(X)). Hence by (B), &, acts trivially on ¥/2,(Z (X)), and this
implies that T = 2,(Z(¥)), so that T is elementary.

The equality 7’R€* = €, and (B) imply that an element of € — €,
induces an automorphism of ¥ with matrix J,. Since |®,| divides 3°—1,
we have |[®,| = 13.

By definition of .2~ we have p/12 = | Aut &;]. Since p # r =3,
we have a contradiction, completing the proof that £, centralizes 3
in all cases.

Now Z(R,) centralizes 0.(8), so by maximality of &, we have
Z(R)SK, and (B) implies that Z(R)=Z(0(R)). Hence, R&EN(Z(R,)=
R,. But R, = 07°(R,) and since g #* r, N, does not possess an elementary
subgroup of order ¢°. Lemma 8.13 implies that v& % = (1), contrary
to construction, completing the proof of Theorem 22.2.

For p in m, U, let 97°(p) be the set of all subgroups T of &
of type (p, p) such that every element W of T centralizes an element
B of Z7(p). We allow B to depend on W.

Hypothesis 22.8.
(i) pem, gen(®).
(i) p+aq.

THEOREM 22.8. Under Hypothesis 22.3, if & t8 a p, g-subgroup
of O and if & contains an element of 7 (p), then a S,-subgroup of
& is normal in K.

Proof. Let 57 be the set of subgroups of & satisfying the
hypotheses but not the conclusion of this theorem and let .24 be the
subset of all & in .7~ which contain at least one element of Z/(p).

We first show that .9 is empty. Suppose false and & in .24 is
chosen to maximize |®],. Let &, be a S,-subgroup of R, and let
B = V(celgy(B); K,) where Be 7 (p) and B < R,.

Since p + q, Hypothesis 22.1 does not hold. Hence, Hypothesis
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19.1 holds. Apply Lemma 19.1 and conclude that B centralizes O,(R).

Suppose &, is a S,-subgroup of ®. Then &, centralizes O,(8R).
By Lemma 17.5 and Hypothesis 22.8 (i), if A e = #;(R],), and B, =
V(celg(A); R,), then B, = 0,,,(R). Since &, centralizes O(R), it follows
that B,S0,(R), and so B, K. By Lemma 17.2, N(Z(B,))=0"(N(Z(B,))).
Since p ~ q, N(Z(%B,)) does not possess an elementary subgroup of
order ¢°, so Lemma 8.13 implies that &, < &, contrary to the definition
of 24. Hence,, in showing that .9 is empty, we can suppose that
£, is not a S,-subgroup of &.

Since ¥ centralizes 0(8&), we have &, - 0,(8) & N(B). Since B is
weakly closed in £, and £, is not a S,-subgroup of ®, ®, is not a
S,-subgoup of N(B). Maximality of ||, implies that &, < &, - 0(R),
and so O,(&) is a S,-subgroup of O, ,(&).

Let P be a S,-subgroup of & containing &,, and let A € .2&_4;(B).
Since O,(8) is a S,-subgroup of O, .(R), it follows from (B) that
ANK, =ANO0,(R). By maximality of |R],, &, is a S,-subgroup of
N(O,(8)) and it follows readily that U & 0,(R). But in this case,
L, = V(cclg(N); 8,) < &, by Lemma 17.5. Since &, is not a S,-subgroup
of @, it is not a S,-subgroup of N(8,), and the maximality of &, is
violated in a S, ,subgroup of N(%B,). This contradiction shows that
% is empty.

Now let & be in .27 with | ® |, maximal. Let WS K,, We 22 (p).
If YRO(R) # (1), then W does not centralize C(W) N O,(R) for suitable
W in B¢, But in this case a S, ,subgroup of C(W) contains an
element of Z/(p) and also contains non normal S,-subgroups, and 2%
is non empty. Since this is not the case, T centralizes 0,(8), and
so B, = V(celx(W); ®,) centralizes O,(K), W being an arbitrary element
of 7 (p) contained in ®,. Since £, is not a S,-subgroup of @, it is
not a S,-subgroup of N(,), so maximality of ||, implies that &,
centralizes O,(R). Hence, 0,(8) is a S,-subgroup of O, ,(®). Since
R, is a S,-subgroup of N(0,(R)) in this case, Z(PB) S 0,(R]) for every
S,-subgroup P of @ which contains ,. It follows that &, contains
an element of Z2/(p). This contradiction completes the proof of this
theorem.

If pen,Ur, we define m(p) to be the set of primes ¢ such that
p ~ q, and we set 7,(p) = 7(p) N 7,.

THEOREM 22.4. If p,qem, and p ~ q, then m(p) = m(q).

Proof. We only need to show that if rex, and p~r, then r~gq.
Apply Theorem 21.1, let & be a S, ,-subgroup of & with Sylow
system P, Q, and let € be a S,,-subgroup of @ with Sylow system

B, R.
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If Hypothesis 22.2 is satisfied, Theorem 22.2 applies and yields
this theorem. Hence, we suppose without loss of generality that P
centralizes O, ($).

Let Ae A2 4;(P), B = V(celg(A); B). Apply Lemma 17.5 and
conclude that B < K.

If P also centralizes 0,(2), then we also have B L, and ¢~ r
follows from consideration of N(¥). We can suppose that B does not
centralize 0,(2).

. Suppose we are able to show that N(0,(®)) contains a S,-subgroup

of C(P). Apply Lemma 17.3 and conclude that N(Z(B)) =N, =
0,(R) - N, NN, where N = N(0,(2)). Let Q, be a S;-subgroup of C(P)
which is contained in M. Since P centralizes O(R), it follows that
L, is a S,-subgroup of 0,.(N,). Let N} be a S,-subgroup of 0,.(N,),
so that 0,(N,) = NQ,. Hence,

ml=0,/(§R1)'§nlnm=%f&'%lnm=§Rf*§nlnm,

since Q, S N, NN. Since N, contains a S,-subgroup of &, so does
NNN. But N contains a S,-subgroup of & as well, and so q¢ ~ 7.

Thus, in proving this theorem, it suffices to show that N(0.(R))
contains a S,-subgroup of C(%3).

We wish to show first that some element A of ' centralizes a
subgroup W of 97 (r) with B S 0.(8). If D(0.(R)) = D is non cyelic,
then every subgroup of ® of type (r,r) is in 92°(r) and since A
possesses an elementary subgroup of order p° an element A is available.
Suppose then that D is eyclic. If D = (1), then of course P centralizes
D. If D+ 1), then N(D) = 0°(N(D)) and once again P centralizes
D. It now follows that 2A* contains an element A whose fixed-point
set on 2,(0,(%))/2,(D) is non cyclic, and this implies that C(A) N 0,(Y)
contains an element of 977(r).

For such an element A, let © be a S, ,-subgroup of 0,.(C(A)) which
is A-invariant and contains O,(R). Then Lemma 17.5 implies that
contains an element of 97°(r). Apply Theorem 22.8 and conclude that
9, <19, O being a S,-subgroup of . If H* is a maximal element
of U(Y; g, r) containing $, then Theorem 22.3 implies that 9 < H*,
9F being a S,-subgroup of $*. By maximality of H*, O is a maximal
element of U(A; r). Since  contains a maximal element of UX; q),
namely, O,(8), so does $*. It follows that N(0,(2)) contains a maximal
element O* of U(P*; q¢) where P* is a suitable S,-subgroup of N(0,(2)).
But B S N(O,(?), and so P = P** for some N in N(0(R)), and so
Q*Y =0, is a maximal element of WU(PB; q) normalizing 0,(8). By
Lemma 17.4, L, is a maximal element of U(Y; q).

Now P centralizes 0,(®), and O,(f) is a maximal element of U(P; q).
It follows that N(O(R))/C(0,(R)) is a p’-group. Since Q, and O,(K)
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are conjugate by Theorem 17.1, it follows that N(Q,)/C(Q,) is a »'-
group, and so P centralizes L,. By C},, it follows that Q, is a S;-
subgroup of C(P), completing the proof of this theorem.

THEOREM 22.5. If pem,, then @ satisfies C. ).

Proof. By Theorem 22.4, if q, r € m,(p), then ¢ ~ r. By Theorem
20.1, ® satisfies E,, for ¢, r € m(p). By Theorem 21.2, ® satisfies C,,).

Hypothesis 22.4. .

(i) pem, gemUnm,

() If P is a S,-subgroup of ®, then P contains a normal
subgroup € of type (p, ) which centralizes at least one maximal
element of V(B; q).

LEMMA 22.5. Under Hypothesis 22.4, € centralizes every element
of U(E; q).

Proof. Suppose false and O is an element of WU(E; g) minimal
with respect to YQE # {1>. Then Q = YQ€ and & = Cx(Q) # .
Let © = C(€,). Then 9 contains an element A of & _+;(PB) with
G <= A. By Lemma 17.5, A = 0, (D), and so O = YQF is contained
in 0,.(9). If Q* is an W-invariant S,-subgroup of 0,.(9), it follows
readily that vQ*G = (1>. If L is a maximal element of M(Y;q)
containing Q*, then & does not centralize L. Let 9, be a maximal
element of U(PB; q) centralizing €. Since Q, is also a maximal element
of U(¥; q), we have Q, = & for suitable C in C(¥) S C(E). Since &
does not centralize fl, @? = € does not centralize L, This contradiction
completes the proof of this lemma.

The next theorem is fairly delicate and brings =, into play ex-
plicitly for the first time.

Hypothesis 22.5.
(i) pem, qem,
(i) p~aq.

THEOREM 22.6. Under Hypothesis 22.5, if P 18 a S,-subgroup
of @ and Q, is a maximal element of WU(P;q), then O, + ). If
L, 18 a Sisubgroup of N(Q,) permutable with P and Q; 18 a S,-
subgroup of & containing L, then L, contains every element of
FEN (). Furthermore, 0,(BL,) = 1.

Proof. By Theorem 19.1, P does not centralize £, so in particular
2, # {O.
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Suppose that L, contains an element B of %/(Q,). By Lemma
19.1, B centralizes 0,(PLY,) and since B is a normal abelian subgroup
of Q, (B) implies that B < 0,(PL,). Let A be an element of
GEN5(L,) containing B, Let D = N(B) 2 (O, 0,(PL,)). Since
q €T, 0,(9) = 1), and (B) implies that A S 0,(9). Hence,
[A N Qy, 0,(BY)] S 0(D)NO,(PLY,) =<1), and by (B), AN, &
0, (PLY,;), and so ANQ, S O0,(PLY,), that is, AN, =ANLY,. If
ANLY, A, then AN Y, < Ny(Q,), contrary to Ny(Q)S AN, =
ANLY,. Hence, A SN, Since gem, Corollary 17.3 implies that
W(A; p) is trivial, so 0,(PL,) = (1). By Lemma 7.9, it follows that
L, contains every element of $%%_#"(XQ;), and not merely . This
proves the theorem in this case.

We can now assume that Q, does not contain any element of
Z(2;), and try to derive a contradiction.

Since L, is a S,-subgroup of the normalizer of every non identity
normal subgroup of PL, if D(Q,) # (1), then Ny (D(L,)) contains an
-element of Z/(X;), and since Np (D(Q,)) = L, in this case, O, contains
an element of Z/(Q;), contrary to assumption. Hence, D(Q,) = <1).

Let QF = 0, (B N ;. Since [QF, Q] = [0, (PL), 1] 4 BYO,,
and since every element of Z/(Q;) normalizes [QF, ,], we conclude
that O, € Z(Q}). Since D) N Y, is normalized by every element
of ZZ(Q,) and also by <0,(BLQy), PL, N N(QF)) = P, we have
DR NQ, =). This implies that QF =0, x § for a suitable
subgroup § of Q.

Since Z(L,) € L, we have Z(Q,;) S QF, by (B). Since Q, contains
no element of Z/(X,), Z(XQ,) is cyclic. For the same reason, Z(Q,) N1, =
<1>, since otherwise, 2,(Z(L;)) & L, and every element of Z/(Q,)
normalizes £,. In particular, Q, is a proper subgroup of QF. This
implies that 0,(PQ,) # {1)>. More exactly, L, = Cp*(0,(BLY)).

Let Be 7(9;) and let O, = Cg(B), so that [D,: Q.| =gq.

Suppose 0,(BL,) is non cyelic. In this case, a basic property of
p-groups implies that 0,(PL,) contains a subgroup € of type (v, »)
which is normal in PB. Since L, is a maximal element of W(P; q),
Hypothesis 22.4 is satisfied. Since £, is of index ¢ in ©,, Theorem
22.1 implies that Q, # {1>. Hence, (B, > is a proper subgroup of
® centralizing Q,. Choose B, € ccly(B) and €, € cclkx(€) so that & =
<%, € is minimal. By D,, in &, it follows that & is a p, ¢-group.
By Lemma 19.1, B¢ centralizes 0,(®) and by Lemma 22.5, G centralizes
0,(R). It follows that & = B, x €. Let % = N(B,). Since ger,, F(N)
is a g-group. By Lemma 22.5, &, centralizes F(N) so 3.3 is violated.
'This contradiction shows that 0,(PL,) is cyeclic.

Since L, = Cp*(0,(PL)), it follows that F is cyclic of an order
dividing » — 1.
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Let B = 2,(QF) = Q, X (), and let $, = Ngp (B). We see that
PO, = DI0,(PL,), H: N 0,(PLy) = <1). Let M = N(B), !, = C(B). It
is clear that IM, N PO, = Q}, since WM, N 0,(PL,) = (1), and since OF
is a S,-subgroup of 0, ,(PL,).

Let & = 0,(Pmod M,). We see that 8 N PO, = QF, again since
L} is a S,-subgroup of 0, (PL,). We observe that since L} contains
Z(2y), WM contains every element of 2/(Q;), and so contains B. By
Lemma 7.1, & contains B. Hence, 2 D> M,.

We next show that &/, = £ is elementary. If D(R) # <1), then
by a baASic property of g¢-groups, C%(D(f‘,)) is of order at least ¢’
Hence, L, = Cs(D(®)) N Q, # (1)>. But in this case, :ﬁl is normalized
by <0,($Qy), D> = P, and is centralized by D (L mod ), and so
L, is not a S;-subgroup of N(Q,). This is not possible, so D() = (1.
We have in fact shown that if 8 < I, and M, C &, = &, then Cx(L)
is of order q.

Since & is abelian, € normalizes [B, B] = 2(Z(Q,). It follows
that C(®) = 2.(Z(,)).

Let & =(B®, MD, and let B, = B¥, McM. Since B and B,
are conjugate in M, [B,B,] is of order ¢ and is centralized by 2. It
follows that [B, B,] = 2,(Z(Q,)). Since 2 is abelian, and since BMW
covers /M, = 8, it follows that [B, 8] = 2(Z(Qy). Let |Q,] =¢~,
and |, :M,| = q~. Since each element of 2! determines a non trivial
homomorphism of B/2,(Z(X,)) into 2,(Z(L,)), it follows that m < n.
Since Cx(8) = 2(Z(L)), it also follows that m = n. Hence, m = n.
This implies that &, = £, since any g-element of Aut B which centralizes
€, is in ¥, by 3.10. Here we are invoking the well known fact that
L, is normal in a S,-subgroup O of Aut DB and is in fact in %7 1" (Q).
(This appeal to the “enormous” group Aut B is somewhat curious.)

Returning to £, let B* be a S,-subgroup of &, and let W = 2,(B*).
Since UY(B*) < Z(B*), and Z(B*) is cyclic, it is easy to see that
QZ(BW)) = 2(Z(Q,)), and that T/2(Z(W)) is abelian. Hence, W is
an extra special group of order ¢**' and exponent q.

We next show that 9, is a p’-group. Since M, S C(L,), it suffices
to show that no non identity p-element of N(XQ,) centralizes 8. This
is clear by D,, in N(Q,), together with the fact that no non identity
p-element of PO, centralizes B.

Since M, is a p'-group, so is L. Since L g M, we assume with-
out loss of generality that Ng(®) normalizes B*.

Let € e & 4:(P), and set €, =€n Nyg(B). Since P =
0,(PQy,) - Ny(B) and 0,(PY,) is cyclic, €, is non cyclic. Since €, is
faithfully represented on B, it is faithfully represented on T = 2,(8*).
Since p > g, €, centralizes 2,(Z(2V)).
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We can now choose C in €} so that €, does not centralize o, =
Cx(C). Let B, =[T,E]. We will show that T, is non abelian.
To do this, we first show that 8, is extra special. Let We 2, —
2(Z®)). Since C centralizes W, C normalizes Cwi(W). Since p > g,
C acts trivially on W/Cyx(W), and so C centralizes some element of
B~ Cx(W). 1t follows that Z(BW,) = Z(W), so that W, is extra
special. We can now find B, & B, so that B, = BB, and B, N B, &
Z(B); in fact, we take W, = Cy (T,). By the argument just given,
B, is extra special. Since T, is, too, it follows that LW, is extra special,
hence is non abelian.

For such an element C, let T = C(C) 2 <€, W,>. By Lemma 17.5,
€ S0, ,(¥). Since W, =[W,, €], by Lemma 8.11, it follows that
R, € 0,(%). It follows now that U(C; q) contains a non abelian group.
But now Theorem 17.1 implies that the maximal elements of U(C; q)
are non abelian. Since ), is a maximal element of U€; q) and Q,
is elementary, we have a contradiction, completing the proof of this
theorem.

THEOREM 22.7. If p, gem, and p ~ q, then w(p) = x(q).

Proof. Suppose p ~r. By Theorem 22.4, we can suppose that
rem, Proceeding by way of contradiction, we can assume that a
S,-subgroup Q of & centralizes every element of U(Q; ), by Theorem
22.1. By Theorem 19.1, a S,-subgroup P of & does hot centralize
every element of WU(PB;r). Applying Theorem 22.2, we can suppose
that P centralizes every element of U(P; g).

Let £, be a maximal element of U(P; ¢) and let R, be a maximal
element of U(P; ). Let R, be a S,-subgroup of N(R,) permutable with
B and let R, be a S,-subgroup of @ containing R,. Let A e .S _1+;(P).
By Theorem 22.6, 0,(BR,) = 1), so A does not centralize R,. We
can then find A in A* such that R} = [Cy (4), A] = 1)

Suppose L, is non cyelic. Then by C},, Q, contains an element
of (). Let 9 9=CA 2R, Q> =2, and let & be an UA-
invariant S, ,-subgroup of 0,.(¥) with Sylow system &,, Q,. By Theorem
22.3, ©, < ®. Since N(Q,) = 0*(N(L,)), it follows that YAK, = 1>
by Lemma 8.11 and the fact that N(Q,) does not contain an elementary
subgroup of order »°. This violates the fact that R} = YRIA £ {1,
by D,, in ©. Hence, Q, is cyclic.

Since YO,P = 1D, B, = 0,(PLX,) # (1), where L, is a S,-subgroup
of ® permutable with ¢ and containing {Q,, which exists by C},.
Since N($) = OY(N(P,)), it follows that Q, & Z(L,), L, being a S,-
subgroup of 0, (N(B)).

Let B = V(cclg(A); PB), and N, = N(Z(B)). By Lemma 17.3, N, =
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0,MR)- N, N N®R,). Since Q, is a S,subgroup of 0,(N), it follows
readily that 2, N N(R,) contains an element of 9#°(¢). In particular,
N(R,) contains an element of 9%#7(q). If & is a S,,-subgroup of N(R)
with Sylow system &,, £, then £, < &, by Theorem 22.3. By Theorem
22.6, R, containg an element € of .4%Z_+;(R,). By Corollary 17.3,
NE) is trivial. Since {,€WU(€), we have a contradiction, completing
the proof of this theorem.

23. Preliminary Results about the Maximal Subgroups of &

Hyopothesis 23.1.
(i) ©w 18 a non empty subset of ..
(ii) For at least one p in w, w = n(p).

We remark that by Theorem 22.7, Hypothesis 23.1 (ii) is equivalent

(i) n(p) = w for all p in w.

Under Hypothesis 23.1, Theorem 22.5 implies that & contains a
Sg-subgroup 9. Since D also satisfies K, for all subsets v, of w,
is a proper subgroup of @ by P. Hall’s characterization of solvable
groups [15]. This section is devoted to a study of $ and its normalizer
M = N(®). All results of this section assume that Hypothesis 23.1
holds. Let w={p, -+, p.},n =1, and let B, ---, B, be a Sylow
system for 9.

LEmmA 23.1. M 18 a maximal subgroup of & and is the unique
maximal subgroup of @ containing 9.

Proof. Let £ be any proper subgroup of & containing . We
must show that & & IR. Since & is solvable we assume without loss
of generality that £ is a w, g-group for some q¢ w. Let P, ---, P,,
£ be a Sylow system for &. It suffices to show that P, < P.2.

Since g¢w, P.%*¢q. Theorem 22.1 implies that P, centralizes
0,(PBL). By Lemma 17.5, B < P, where B = V(cely(A); B) and
WNe A= ;(P). By Lemma 17.2, N, = N(Z(B)) = 0°1(N)). Since N,
does not contain an elementary subgroup of order ¢° Lemma 8.13
implies that P, centralizes every g-factor of P,Q and so P, K PO,
completing the proof of this lemma.

LEMMA 23.2. If p; € n(F(D)), and U, € & AH:(P.), then C(A)SMM.

Proof. We can assume that i =1. By Cj,; © contains a S, -
subgroup of C(A,) for each 7 =2, «--,n. Thus, it suffices to show
that if g¢ w, and Q is a S,-subgroup of C(%,) permutable with P,
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then Q € IN.

By the preceding argument, P, < B,Q. Since P, normalizes C(A,)=
A x D, D being a pi-group, it follows that PO = P, x Q.

Since F(D) NP, # <1, it follows that M = N(F(D) N B,), since
F(®) NP, char & <M and M is the unique maximal subgroup of &
containing . The lemma follows since N(F(O)NP) 2 CFO)NP) =2 Q.

LEMMA 233. Let 1<1<n, and let UA,e = H4:(B), B,=
Vieelg(2s); B). If CA) <=M, then N(B,) S M.

Proof. We can assume that 1 =1, If F() is a p-group, then
Lemma 17.5b implies that B, < $ and so B, < M, since B, is weakly
closed in F(9) N P,.. In this case, N(B,) = M and we are done.

We can suppose that F(D) is not a p,-group, and so T = 0,.(9) #*
{>. Let %, --+,%, be a P,-invariant Sylow system for T, where Z;
is a S,,-subgroup of T and we allow Z;=<1>. By C;,, T; is a
maximal element of U(P,; p;).

Let Ne N(B,). Then by Theorem 17.1, ¥ = ¥¢ where C,, -+, C,
are in C(Y;) S M. Since T char O 4 M, each TY¢ is contained in T
and so T¥ =T, Since T = 1), M = N(T) 2 N(B)), as required.

LEMMA 23.4. Let 1=t=n, A;€ & A4:(P), B; = Vieclyg(¥); B).
If LC(W), N(B)) & M, then M is the unique maximal subgroup of
® containing P,.

Proof. We can assume that 1 =1. Let £ be a g¢-subgroup of
© permutable with P,. It suffices to show that Q & M.

Since O = 0,(B,L) - N (B)), it suffices to show that Q, = 0,(BLO) S
M. If Q is centralized by PB,, then by hypothesis Q S M. Otherwise
we apply Theorem 22.1 and conclude that g€ w. By Theorem 17.1,
L7 €  for suitable Ce C(A,) & M, and the lemma follows.

LEMMa 23.5. For each 1 =1, --+,n, if WU, e A& 45(PB.), then
CU) S M, and M is the unique mazimal subgroup of ® containing P;.

Proof. First, suppose p; € #(F(9)). Then C,) & M, by Lemma
23.2. Then by Lemma 23.3, N(ZB;) S M, B; = V(ccly(Us); Bs), and then
by Lemma 23.4, this lemma follows. We can suppose that p; ¢ 7(F(9)).

We assume that ¢ =1. Let C(U) =%, X D, where D is a p}-group.
It suffices to show that for each ¢q in #(D), M contains a S,-subgroup
Q of . If gew, this is the case by C;,, 80 we can suppose that
qew.

Since p, ¢ n(F(9)), U, does not centralize F($). If F(D) were cyclic,
and p = max {p, -, P.}, then a S,-subgroup of  would be contained
in F(9) and so be cyclic. Since this is not the case, F(9) is non cyclic,
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so we can assume that F(9) N P, is non cyeclic. We can then find 4
in A so that C(4) N F(D) N P, contains an element of % (p,), say .

Let 8* =D, B, A S C(A), and let £ be a S, ,,subgroup of
£* with Sylow system &,, %,, £, where %, < €, and Q & &,. Since
A & 0,,,(8*) by Lemma 17.5, it follows that ,0,,(8*)/0,(2*) is a
central factor of *. Hence, ¥, is a S, -subgroup of £* and so &* =
QII'OPi(g*)'

We apply Theorem 22.83 and conclude that €, <8 If $isa
maximal element of U(Y,; p,, ¢) containing &, -2, it follows that 8 ,< g,
where 8,,’ is a maximal element of WU(¥; »). By constructlon, ¢
contains £). By Theorem 17.1, there is an element C in C(,) such
that 82, = 0,(P,B,). Since O normalizes 7, it follow that N(0,,(B,%B,)
contains a S,-subgroup of C(). But p,en(F(9)), so by what is
already proved, we have N(0,,(B,%,)) S M, and so M contains C(U,).
We apply Lemmas 23.3 and 28.4 and complete the proof of this lemma.

24, Further Linking Theorems
LEMMA 24.1. If pern,qen,Un, and q ~ p, then n(q) S n(p).

Proof. If ¢ = p, there is nothing to prove, so suppose ¢ # p.
Corollary 19.1 implies that gen,. Let r~q,r #q,r #+ p. We must
show that r ~ p.

If ren,and O is a S,-subgroup of &, then L does not centralize
every element of U(Q; p) and Q does not centralize every element of
U(Q; r). By Theorem 22.2, we have p ~ 7.

If rem, then since also gex, we have r ~ p, by Theorem 22.7.
This completes the proof of this lemma.

If pe 7, and p, € 2(p), », # p, let n(p,) = {p, Dy, + - -, ».}. By Theorem
22.7 and Lemma 24.1, #n(p) = 7(p;),1=1%,5=<n. It follows from
pem, that p;em, 1 <7 <n. By Theorem 22.5, ® satisfies C,,,. Let
D be a S,y -subgroup of @. Clearly,  C @ since p ¢ my(p)).

It is easy to see that F(9) is non cyclic. Choose 7 so that the
S,,subgroup of F(9) is non cyclic. Let %P, :--, P, be a Sylow system
for O, P; being a S, -subgroup of . Thus, P; N F(P) is non cyeclic,
so that P, N F(D) contains a subgroup B of type (p, p) which is normal
in PB;. Let A be an element of A= #;(PB;) which contains B. Let
B, be a maximal element of UX; p). By Lemma 24.1 and Theorem
22.6, [y = ). Let C(A) =UA x D, D being a p-group.

THEOREM 24.1. (%, 0,,(D), D) is a pi-group.

Proof. Let & be the set of U-invariant subgroups B, of B, such
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that <., 0,/(0), DD G. Since <0,(9), D)SC(P), it follows that
e A

Suppose e &, and T = <’1~3o. 0,,(9), D). Since A normalizes
T, ATD=AT =8cCS. By Lemma 17.6, ASO0,,,(2).

Let %A be the image of %A under the projection of 0;;,(2) onto
0, ,(8)/0, (2) Since % = A, we see that U is a self centralizing sub-
group of O,, ,,‘(8)/0 (8), and it follows readily that 0,;.,(8)]0,,(2) is
centralized by SB,,, O,'(«b) and ®. By Lemma 1.2.8 of [21], we have
<%, 0 »(D), DS 0,,(2) and hence T = 0,(®) is a pi-group.

Let &, -+, %, be an W-invariant Sylow system of T, T, being a
S,,-subgroup of ZT. If g;e{p, -, p.}, it follows from C} , , that %;
is a maximal element of WU(X; q;). Since D&, this implies that
0,.(9) is a S-subgroup of . If q; # »,q;€{p,, -, P}, then Theorem
22.1 implies that 2 centralizes T;, so that ;S D, Finally, if ¢; = p,
then there is an element D of D such that T? &P, by Theorem 17.1.

Let & be a fixed S,-subgroup of <D, 0,,(9)>. By the preceding
paragraph, & is a S,-subgroup of ¥, and B, N T is a S,-subgroup of
2. Since FS B, N T, it follows that <P, |Pe &> = B* is permu-
table with £ so that B*K is a proper pl-subgroup of @. This means
that & contains a unique maximal element. Since Cyx/(B) is A-in-
variant for each Be®!, since P, ={Cy(B)|BeB*, and since
{Cx(B), 0,(9), D> C(B)c G, the theorem follows.

THEOREM 24.2. Let R = <Py, 0,(9), D), and M = N(R). Then
M contains D, M is a maximal subgroup of & and WM is the only
maximal subgroup of & containing P,.

Proof. Since PB, # <{1), M is a proper subgroup of . We first
show that I contains P;. Let QO be an W-invariant S,-subgroup of
R, so that £ is a maximal element of U(; q), either by virtue of
q € n(p;), or by virtue of ¢ ¢ m(p;) so that A centralizes . For P in
B;, QF = QP for some D in ® by Theorem 17.1 together with C(A) =
A x D. Since DS R, OF is a S,-subgroup of N. Hence, R* SR, and
so R” = R. Thus, P.=M.

To show that $SM, we use the fact that = 0,(9) Ny(®),
where B = V(cclg(¥); B,). Since 0,(H) SR, it suffices to show that
Ng(B)S M. We will in fact show that NEB)SM Let Q be a B-
invariant S,-subgroup of . If Ne N(B), then A" " =B, so that A"
normalizes Q. Hence, A normalizes QY = OP, De D, and we see that
R¥ = R. Thus, IM contains  and N(B).

Let M, be a maximal subgroup of ® containing M. 1t is easy
to see that R = 0,,(M,) by Lemma 7.3, so that L, =M, and M is a
maximal subgroup of &.
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Let & be any proper subgroup of ® containing ;. To show that
S M, it suffices to treat the case that & is a ¢, p,-group. Let R,
be a S;-subgroup of £ permutable with P,. Since N(B)<S W, it suffices
to show that 0,(®) S M. This is clear by C;, if ge{p, ---,p,}. If
g = p, this is also clear, by Theorem 17.1, since C(Y) &M and P, < M.
If g¢{p, »), - -, p.}, then P; centralizes O,(B.K,) by Theorem 22.1, and
we are done, since C(UA)= M.

If gem,Um, and O is a S,subgroup of @&, we define
SHR2) = {0, | QW ELQ, L, contains some element of & 4;(Q)},

Q) = {9 | W EQ, O, contains a subgroup L, of type (g, q)
such that C(Q) € 9% (Q) for each @ in Q,},71=2,3,4.

LEMMA 24.2. If qem, U7, and Q is a S;-subgroup of ®, then
every subgroup L, of O which contains a subgroup of type (q, q, 9)
18 in 5% (Q).

Proof. Let BeZ/(Q), Of = Cy(B), so that VY is non eyclic.
Let O, be a subgroup of QF of type (¢, ). If Qe Q,, then Cy(Q)2B.
Since B is contained in an element of Y& 4;(X), it follows that
Cy(Q) is in (D).

THEOREM 24.3. If gqem, X is a S,isubgroup of @, and Q is
contained in a unique maximal subgroup of ®, then each element of
S () 18 contained in a unique maximal subgroup of ®.

Proof. Let MM be the unique maximal subgroup of & containing
L. We remark that if this theorem is proved for the pair (2, ),
then it will also be proved for all pairs (Q¥, M) where Me M. This
prompts the following definition: &4*(Q) is the set of all subgroups
2, of O such that L, contains €* for some € in FZ_#;(Q) and
some Me M. Clearly .94(Q)<S *(Q).

Suppose some element of .4*(Q) is contained in a maximal sub-
group of & different from M. Among all such elements O, of 4*(Q),
let || be maximal. By hypothesis, Q,c Q. Let I, be a maximal
subgroup of ® different from I which contains O, and let QF be a
S;-subgroup of M, which contains Q,. If O, Qf, then O, C Nes(Qy).
Since Q,C Ng(Q,), maximality of |Q,| implies that Ng(Q) S, so
that N;(Q,) S Q¥ for some M in M. Since M, # M, so also MY = M.
But Nna(ﬁo)"_’e S *(Q), and maximality of |2, | is violated. Hence,
L, is a S,subgroup of M,.

Let € e & _4;(X) be chosen so that €S Q, for some Mec M.
Since every element of M(€) is contained in M, every element of
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UE¥) i3 contained in M¥ =M. Hence O (M)SM. If V=
V(cclg(@); L), then L, C Ny(B), so Ny (B)S M, by maximality of
|8 ]. Since M, = Op.(M,)- Ny (B) by Lemma 17.6, we find that M, = I,
contrary to assumption. The theorem is proved.

THEOREM 24.4. Let gqem,Um,, and let Q be a S,-subgroup of ®.
If each element of 74 (Q) i8 contained in a unique maximal subgroup
M of ®, then for each i = 2, 8,4, and each element Q, of (L), M
18 the unique maximal subgroup of & containing L.

Proof. For i =2, 8,4, let & *(Q) be the set of subgroups L,
of L such that Q, contains a subgroup L, of type (g, ¢) such that Cq(Q)
contains an element of .97 *(Q¥) for some M e M and all Q€ Q,. Here
7 *(QY) denotes the set of Q¥, Qe ¥ *(Q). Suppose 1 =2,3, or 4
is minimal with the property that some element of .97 *(X) is con-
tained in at least two maximal subgroups of &. This implies that
S4(QY) does not contain any elements which are contained in two
maximal subgroups of ®, M being an arbitrary element of M. Choose
£2, in *(Q) with |LQ,| maximal subject to the condition that L, is
contained in a maximal subgroup M, of & with W, = M. We see
that L, is a S-subgroup of M,. Let L, be a subgroup of O, of type
(g, 9) with the property that Cy(Q) contains an element of .974* (%)
for suitable M in M, and each @ in L,. (We allow M to depend on
@.) Since 0,.(IM,) is generated by its subgroups 0,.(M,) N C(Q), Q € L},
it follows that 0,(MM,) =M.

Let € be an element of & #;(X). Then €L, or we are
done. Let £ =N 0p (M,). Since {,NE=,nE by (B), it
follows that Nn(ﬁ.):)ilo. Hence, N(Q,) S M, by maximality of | O, |.
Since M, = o,,(m)-Nm(ﬁ.,), we have I, S M, completing the proof
of this theorem, since &(Q)S . *(Q),7=2,3,4.

THEOREM 24.5. If germ, and L 18 a S,-subgroup of ®, then Q
is contained in a unique maximal subgroup of ©.

Proof. If m(g)Em, this theorem follows from Lemma 23.5.
Suppose pen(g) N7, Let n(g) = {p, », -+, p,}, where ¢ =p, and
let © be a S, ,,-subgroup of @ containing Q. If VLN F(P) is non
cyclic, we are done by Theorem 24.2, so we suppose that QN F(9)
is cyeclic.

Let Dt be the unique maximal subgroup of @ containing . Suppose
we are able to show that C(€) &M for some € in & _#;(X). Since
F(®)NLQ is eyelic, F(M) N Q is also cyclic. Hence, 0,(M) +1. If
B = V(ccly(€); Q), then N(B) normalizes O, (M), by Theorem 17.1,
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together with C(€)SM. Since & = 0,(R): Ng(B) for every proper
subgroup 8 of & which contains L, it suffices to show that every
element of U(Q) is contained in M. This follows readily by Cisp
Theorem 22.1 and C(€)< M.

Thus, it suffices to show that C(€) =M. Choose ¢ such that §;,,
a S,-subgroup of F(9), is non cyclic, and let %P; be a S, -subgroup of
9 permutable with Q. It suffices to show that Cg,(C)e 24(PB;) for
some Ce@*f by Theorems 24.8 and 24.4 together with the fact that
M is the unique maximal subgroup of ® containing %B,.

Let & = 0,,(0%;), so that §Ff is a maximal element of U(T; ;).
By Lemma 17.3, Q& N(§!). Since %B; is contained in M and no
other maximal subgroup, Q<M. Thus, if 2,(Z.(F;)) is generated by
two elements, then © centralizes Z,(¥;) and we are done. If Z(§)
is non cyclic, then every subgroup of Z(%.:) of type (p;, ;) is contained
in 7 (%B;). Since € contains a subgroup of type (q, g, ¢), C(C) N Z(F:)
is non eyclic for some C in ¢! and we are done in this case. There
remains the possibility that Z(%;) is cyclic, while 2,(Z,(3;)) is not
generated by two elements. Since every subgroup of 2,(Z(g:)) of
type (p;, p;) which contains 2,(Z(%F;)) is contained in .4 ($P;), by Lemma
24.2, and since C(C) contains such a subgroup for some C in €}, we
are done.

The preceding theorems give precise information regarding the
S,-subgroups of the maximal subgroups of & for ¢ in 7.

THEOREM 24.6. Let gem, and let WM be a mawimal subgroup of
®. If Q 1is a Ssubgroup of M and QO is not a S,-subgroup of S,
then O contains a cyclic subgroup of index at most q.

Proof. Let Q* be a S,-subgroup of ® containing Q, let Be Z(L*)
and let Q, = C(B) so that |V:Q,| =1 or ¢g. If Q, is non eyelic,
then Q,e 7 (Q*), and so O, is contained in a unique maximal sub-
group of @, which must be W, since Q, S WM. But Q* &M, a con-
tradiction, so L, is cyclie, as required.

Theorem 24.6 is of interest in its own right, and plays an important
role in the study of =, to which all the preceding results are now
turned.

Hypothesis 24.1.
1. 3erm,.
2. B 18 a S;-subgroup of ®.
3. 8 is a proper subgroup of & such that
(i) P
(ii) If D = 04(R), there i3 a subgroup € of D chosen in
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accordance with Lemma 8.2 such that Z(€) is generated by two ele-
ments.

THEOREM 24.7. Under Hypothesis 24,1, P 1is contained in a
unique maximal subgroup M of G, and M centralizes Z(P).

Proof. Let £ be any proper subgroup of & containing P. We
must show that £ centralizes Z(P).

By Lemma 8.2, ker(f — Aut€) is a 3-group, so is contained in
$. It follows that Cg(€) = Z(€) and in particular Cs(€) = Z(C).

Suppose € S 0,(8). Then Z(04(8)) < Cx(€)< Z(€), so Z(04(2)) is
generated by two elements. Since |®| is odd, a S;-subgroup of £
centralizes Z(04(2)), so centralizes Z(P). Since B also centralizes Z(P),
we have £< C(Z(B)).

Suppose € L 0,(8). Since Z(€) is a normal abelian subgroup of P
we have Z(€)S 04%). Since Y*PE*S Z(€), we conclude that €<
0, 5(2%). By the preceding paragraph, N(P N 0, (8)) centralizes
Z(B). Thus, it suffices to show that P0,.(8) = L, centralizes Z(P).
Since 8, = Ng (04(8)€)-[0,,(%), €], and since P normalizes O(B)€, it
suffices to show that [0,.(8), €] centralizes Z(P). Let 3 = Z(0«(2)),
so that 3 contains Z(). Since 8 is a normal abelian subgroup of PB,
(B) implies that 3 S 04(f). Hence, ¥’38* =1, which implies that
[0s,:(2), €] induces only 8-automorphisms on 8, and suffices to complete
the proof.

Hypothesis 24.2,

1. 3enm,.

2. B is a S,-subgroup of ®.

3. If R is any proper subgroup of & containing B, and if =
O«(R), then every subgroup € of © chosen in accordance with Lemma
8.2 satisfies m(Z(C)) = 8.

ReMARK. If 3em, then Hypothesis 24.1 and Hypothesis 24.2
exhaust all possibilities.

LEMMA 24.8. Under Hypothesis 24.2, B contains an element B
of 7z(B) such that the mormal closure of B in C(2(Z(P))) is abelian,

Proof. If Z(P) is non cyclic, every element of Z7(P) satisfies
this lemma. Otherwise, set £ = C(2(Z(P))), and let A be a non
eyelic normal abelian subgroup of . Since A < P, A contains an
element B of %/(PB) which meets the demands of this lemma.

THEOREM 24.8. Let pex, and let P be a S,-subgroup of &, If
» = 8, assume that Z7(P) contains an element B such that the normal
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closure of B in C(2(Z(P))) is abelian. If p =5, let B be any ele-
ment of Z(P). If & is any proper subgroup of & such that
0,(R) =1 and if &, is a S,-subgroup of &, then & = 8- Ny(B), where
B = V(cclgy(B); 8,), and L is the largest normal subgroup of & which
centralizes Z(8,).

Proof. Observe that £ contains 0,(R).

Since 0,(R mod &) = 2-(8, N 0, (& mod L)), maximality of & guaran-
tees that € =0,(8mod ). If B L, then Sylow’s theorem yields
this theorem since UV is weakly closed in € N &,.

Suppose by way of contradiction that 8Z 8, Let £ = 0,. (R mod ).
By Lemma 1.2.3 of [21], 788, L &.

Let B, =R,NL, and let &, =8 n Ng(B,). Let B, be the normal
closure of ¥ in Ng(®p,). Suppose &8, S C(Z(R,)). Since &8, < Ng(B),
and since £ = £:Ng(®P,) by Sylow’s theorem, we see that LEB, < 8.
Maximality of € implies that &%, < 2. In particular, Y& 8< 2. Since
e =288, by Sylow’s theorem we have B< 0, (& mod &), which is not
the case. Hence, 78,8, Z C(Z(R,)). Since Z(B,) 2 Z(K,), we also have
'YSEIQSI%C(Z(EB,)). Since {8, §1>§N(Z(SBI)), the identity [X, YZ] =
[X, Z][X, Y]}* implies that B, contains a conjugate B, = B¢ of B such
that v28, & C(Z(B)). Since &, < Ny(B,), application of Theorem C of
[21] to 23151/551 N C(Z(P,) yields a special g-group Q = /L, N C(Z(P))
such that B, acts irreducibly and non trivially on Q/D(Q). Since Q
is a p'-group, and O does not centralize Z(P,), O does not centralize
W = 2(Z(P,)). Furthermore, W = W, x BW,, where W, = Cx (L) and
W, = vYBQ, and BW; is invariant under B,Q, 7 =1, 2.

Since 2B, is a p-group and W, # 1, we have BW; # 1, where W, =
C,(B,) and B, = ker (B, — Aut Q) # 1. If p = 5, Lemma 18.1 gives
an immediate contradiction. If p = 8, and v*%W,B: = 1, we also have
a contradiction with (B), since Y®;Q # 1. If Y BB+ 1, Lemma
16.3 implies that Z(P) is eyclic, and that B, = 2(Z(P¢). However,
the normal closure of B, in C(2,(Z(P°))) is abelian, and so VBB =1,
the desired contradiction, completing the proof of this theorem.

REMARK. Except for the case » =38, and the side conditions
0,(8) =1 and & &, Theorem 24.8 is a repetition of Lemma 18.1.

Hypothesis 24.3.

1. pem,qen(p),q+p.

2. Q is a S,subgroup of ®, P, is a maxrimal element of U(X; D),
and B, 18 a S,-subgroup of N(P,) permutable with Q.

8. P i3 a S,-subgroup of G containing PB,, and B € Z(P), where
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Jor p =3, the normal closure of B in C(2(Z(P))) is abelian.
4, B = V(cclg(.‘B); B).

THEOREM 24.9. Under Hypothesis 24.3, either Ny(®B) contains an
element of () or Co(Z () contains an element of 4 (Q). Further-
more, P, = P and & satisfies C,,.

Proof. Let £ be the largest normal subgroup of & = N(P,) which
centralizes Z(Py)). Then ® = L. Ng(B), by Theorem 24.8. Since £ < &,
LN If £NQ is non cyclie, then &€ N Qe ().

Suppose £ N L is a non identity eyelic group. By Lemma 17.6,
LS &. Since a Sylow g-subgroup of  is eyelic, it follows that R
centralizes QN L-8/%, where & = 0.(%), and so QNS Z(Q). If
B centralizes LN 8-L/T, then Ng(B) contains a S,-subgroup of K.
In this case, O normalizes B~ for some K in & Let {Q, P!> be a
S, ;-subgroup of £ containing QVBX, with BX = PF. By the conjugacy
of Sylow systems in £, we have P}5 = B, OQFr = Q for suitable K,
in 8 Hence, T normalizes BX%: gnd V1< P,. Since B is weakly
closed in B, B = B==: and we are done. If B does not centralize
2NL LY, then N(B)NL is a ¢'-group, since LN L is eyelic. In
this case the factorization, & = 2. Ny (B), together with Q N LS Z (D),
yvields that Q =Q N ¢ x L, for some subgroup O, of L. This in
turn implies that every non cyclic subgroup of Q is in ¥ (Q).

Since & = - Ng(B) and € N Q is cyclic, the S,-subgroups of Ny(B)
are non cyclic. Hence,  contains a non cyelie subgroup £, such that
£, normalizes BF for some K in &. By the conjugacy of Sylow
systems, we can find K, in & such that B=X:1 = P, and QXS Q. Since
LB is weakly closed in P, B = BEXE, and we are done, since every non
cyclic subgroup of L is contained in .%4(Q).

Suppose 2N =<1>. Then 8 is a ¢-group. From & = 8- Ny (),
we conclude that Q normalizes BX for some K in & and the conjugacy
of Sylow systems, together with the fact that B is weakly closed in
B, imply that Q normalizes B. This completes the proof of the first
assertion of the theorem.

If PP, then P, Ng(B). Since every element of ¥ (Q) is
contained in a unique maximal subgroup M of &, by Theorem 24.3,
if N(B) contains an element of .7(%), then B, is not a S,-subgroup
of M. But P,Q is a maximal p, g-subgroup of ®, by Lemma 7.3. If
C(Z(P,)) contains an element of .4({), then since Z(B,)=2Z(P) by
(B) and Theorem 22.7, we see that C(Z(P)) contains an element of
¥ (Q). Hence, P=M. Thus, in all cases, PSM. Since M also
contains a S, -subgroup of ®, ® satisfies E,,. Since Q is contained
in M and no other maximal subgroup of G, @ satisfies C,, as required.
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Hypothesis 24.4.

1. 3erm,.

2. B i3 a S;-subgroup of G.

3. P contains a subgroup A which is elementary of order 27
with the property that V'C(A)N* =1 for all Ae AP,

Hypothesis 24.5.

l. penm,

2. A S,-subgroup P of ® is contained in at least two maximal
subgroups of ©.

LEMMA 24.4. Assume that Hypothesis 24.5 18 satisfied and that
if p =3, Hypothesis 24.4 i3 also satisfied. If p =5, let A be an
arbitrary element of & A43(B). If p=38, let A be the subgroup
given in Hypothesis 24.4. Let B be the weak closure of N in P, and
let B* be the subgroup of P generated by its subgroups B such that
BS A and N°/B is cyclic for suitable G in @. Let M be a proper
subgroup of @ containing P, with the properties that M i3 a p, q-
group for some prime q and M has p-length at most two. Let (%, %)
be any one of the pairs (Z(P), W), (Z(W’*), W), (Z(BV), W*). Then M =
MM, where WM, normalizes £ and WM,/Cyy (%) i8 a p-group, and I,
normalizes 9.

Proof. Let O be a S,-subgroup of M, and let $ = 0,(M). Then
P2 <M. The lemma will follow immediately if we can show that
vQ%) normalizes ¥ and induces only p-automorphisms on X,

Suppose by way of contradiction that either some element of YQ)
induces a non trivial g-automorphism on X%, or ¥QY) does not normalize
X, IfPY =2, we can find B = A*< Y such that either some element
of vYOB induces a non trivial g-automorphism of X or else YOB does
not normalize X. Similarly, if 9 = B*, we can find B&Y and G in
& such that BS A¢, A¢/B is cyclic and such that either some element
of YQB induces a non trivial g-automorphism of Z(P) or else vYOB
does not normalize Z ().

Let © = Q9/9, so that vOB = (YOB)9/D. Since ¥OB is gener-
ated by the subgroups vQ,8 which have the property that B acts
irreducibly and non trivially on Q,/D(Q,), we can find O, = Q,9/9
such that vQ,8 either does not normalize % or some element of v, %B
induces a non trivial g-automorphism on %, and with the additional
property that B acts irreducibly on <,/D(Q)).

Let B, = ker (B — Aut Q,) = ker (B — Aut Q./D(Q,)), so that B/B,
is cyclic. Let M, = HBY,, and , = 0,(IM,). Since HB S P, and since
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Z(P)S 9, it follows that Z(P) <= Z(D,). Also, since Z(TW*) is a normal
abelian subgroup of B, we have Z(TW*) < .

Suppose that X = Z(P). If p = 8, then since AY/B, is generated
by two elements, it follows that B, # {(1>. Hence, Z(9,)< C(%B,).
Since the normal closure of A¢ in C(B,) is abelian, we have Y*Z(9)B* =
<1>, and (B) implies that a S,-subgroup of $Q, centralizes Z(9,), so
centralizes Z ().

Suppose p = 6. ‘We first treat the case that 9, N U # {1) for some
Nez(P°), NS A, Then {Z(H), A*>=SC(®,NN) =€ and P°NE is
of index at most pin P°. If PB* is a S,-subgroup of € containing B N €,
then PN E < P*. Hence, YP*BS yP*AS PN E, and so vP*B* =
). It follows that B< 0,(€). (Note that 0,.(€) = (1) since A° S €.)
Hence, vZ(9,)8 < 0,(€), and so vZ(9,)B* = 1), so that a S,-subgroup
of X, centralizes Z(9,) and so centralizes Z(P).

We can now suppose that ,NU = 1> for all U such that
Nez (P9, NS A, In this case, since A¢/B, is generated by two ele-
ments, there is a normal elementary subgroup € of B¢ of order »* such
that E<A°. Hence, €NB, # {1>. Since ENB,SCEN P, we can
find E in €N 9L Consider C(E)2<Z(D,), Cys(E)). Since AYB is
cyclie, if Ue Z7(P°) and US A%, then BNU=U, = 1). Let Uelll.
Let B* be a S,-subgroup of C(E) containing Cg;s(E), so that
| P* : Cpe(E) | =1, por p’. We have v$*B'S Cye(E), and so v'P*B' =
{1>. This implies that B=0,(C(E)). Let Ze Z(9); then [Z, Ule
0,(C(E)), so that [Z, U, U, U]e Cge(E). Since Uel,SUe z/(P°), it
follows that [Z, U, U, U, Ule Z($¢). Since H, N U =), and since
[Z,U,UUUle Z(PB)N D, we have [Z, U, U, U, U] =<1). This shows
that a S,-subgroup of O, centralizes Z(9,) and so centralizes Z(%P).

Suppose now that X = Z(W*), so that P =BW. In this case,
B = A, Hence, B,S W*, since B/B, is cyclic. Since Z(W*) is con-
tained in 9,, if B* denotes the normal closure of B, in HBY,, then
Z(T¥*) centralizes B*, B* being a subgroup of TW*,

Let €* = C(B*)N , so that €* is normal in $BY,. If p =3,
we have Y€*B* = (1), since B, # {1), and it follows that a S,-sub-
group of M, centralizes €*, Namely, if €* =€} >E€}F> ««. is part
of a chief series for M, then P, centralizes each €}/C%,, so that a
S,-subgroup of M, centralizes each €¥/€,,, so centralizes €*, If p =5,
then B, N U # (1) for some Ue Z(Pf), USB, and we have Y'E*B* =
{1>, and we are done.

THEOREM 24.10. Under Hypothesis 24.5, p =3 and =(3) = {3}.
Furthermore, Hypothesis 24.4 18 not satisfied.

Proof. Suppose that either » = 5 or Hypothesis 24.4 is satisfied.
Let A be any element of & 45(P) in case p = 5 and let A be the
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subgroup given by Hypothesis 24.4 in case p = 8. Let T, B* be as
in Lemma 24.4. Let R, = N(Z(P)), R, = N(BW), N, = N(Z(W*)), and
let © be any proper subgroup of & containing P. Then by Lemma
24.4and Lemma 7.7, wehave § = (D NT)ONW) = O NRNONR,) =
GNRYONN,). Taking = N, we get N, SN, R, S NN,. Taking
P=R, we get WLNN, N SNN,. Taking $=N,, we get N, &
NR, RS NN,. By Lemma 8.6, we conclude that NN, is a group
and so DS NN, for every proper subgroup $ of G containing P. If
NN, = G, then 0,(N,) is contained in every conjugate of N,, against
the simplicity of &. Hence, NN, is the unique maximal subgroup of
@ containing PB.

We can now suppose that p = 3 and that Hypothesis 24.4 is not
satisfied. Suppose gem(8),q #3. Let X be a S,-subgroup of &
permutable with 8 and let M be the unique maximal subgroup of &
containing Q. If 9 =0,(M) and € is a subgroup of P chosen in
accordance with Lemma 8.2, then Theorem 24.7 yields that m(Z(€)) = 8.
Let & be a subgroup of & of type (¢,¢,¢9) and let 2,(Z(€)) =
€, x ++- X €,, each €, being a minimal G-invariant subgroup. If &
centralizes Z(€), then any subgroup of Z(€) of type (38,3,38) will
serve as A. This is so, since in this case, C(4)SM for all A in A,
Otherwise, [€;| =27 for some ¢, and since @/Cg€,) is cyclic,
Cs(€)) € 4 (R), so we let U be any subgroup of €; of type (3,3, 3).
The proof is complete.

25. The Isolated Prime

Hypothesis 25.1.

1. 3em,

2. A S;subgroup B of O is contained in at least two maximal
subgroups of ®. :

THEOREM 25.1. Under Hypothesis 25,1, there is a q-subgroup
Q of ® permutable with P such that if = PQ and if P, O are
the images of P, O respectively in D/0(D), then B =1 is cyclic, P

18 faithfully and irreducibly represented on O/D(Q), and L does not
centralize B = 2,(Z(0«9))).

Proof. There is at least one proper subgroup of ® containing P
and not normalizing Z(*f), since otherwise N(Z(P)) is the unique
maximal subgroup of ® containing P. Let © be minimal with these
two properties. Then $ = PO for some g¢-group L. Since e,
0,9) = 1. Since & 4(Q) is empty, © has g-length 1. Hence,
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O(H)Q < . By Lemma 8.13, P is abelian. By minimality of $, P
acts faithfully and irreducibly on Q/D(Q). If =1, then P <« D,
and O normalizes Z(%B), which is not the case.
Since L does not normalize Z(P), O does not centralize Z(04(9))
80 does not centralize 2,(Z(0.(9))). The proof is complete.

We will now show that Hypothesis 24.4 is satisfied. PO is rep-
resented on B = 2,(Z(0,9))), and it follows from (B) that the minimal

polynomial of a generator of P is (x — 1)"3'. Hence, there is an ele-
mentary subgroup % of B of order 27 on which 3 acts indecomposably.
Let B, = Cx(¥) and let € = 2,(Z(P,)) so that A < €. Choose Ae AL,
and set € = C(A). Let P* be a S;-subgroup of € containing B, (It
may occur that P = P* but this makes no difference in the following
argument.) If B, = P*, then V€A’ = 1. Suppose | P*:B,| = 8. Then
<{B, P*> = N(Bo), so that (P, P*> normalizes &. Since P and P* are
conjugate in N(B,), any element of P* — B, has minimal polynomial
{ —1)® on G,

Let 8 =04(€). Then [R: 8NP,/ =1 or 3, so that YRE & B,
and R =1. By (B), €< If RSP, then €< Z(R), and
YEW*=1. Suppose [K:8NPy|=3. Then D) S P, so that
€< Co(D(R). If Co(D(R) S Py, then € S Z(Ce(D(R))), and once
again Y€U' = 1. Hence we can suppose that Cg(D(R)) contains an
element K of & — &N Py. Since & S L*, it follows from the preceding
paragraph that the class of Co(D(R)) is at least three. On the other hand,
if X and Y are in Co(D(R)), then [X, Y] e Co(D(R))NK’. Since & S D(R),
we have [X, Y, Z] =1 forall X, Y, Z in Co(D(R)). This contradiction
shows that Y6A* =1 for all A in A*. Combining this result with
the results of Section 24 yields the following theorem.

THEOREM 25.2. If pem, and P is a S,-subgroup of ®, then P
18 contained in a unique maximal subgroup of ©.

THEOREM 25.8. Let pen, and let P be a S,-subgroup of &. Then
each element of (P) is contained in a unique maxrimal subgroup of &.

Proof. First, assume that if p = 8, then Z/(P) contains an ele-
ment B whose normal closure in C(Z(P)) is abelian, while if p =5,
B is an arbitrary element of Z/(B).

Let MM be the unique maximal subgroup of & containing B. Let
% *(P) be the set of subgroups B, of P such that P, contains € for
suitable € in A& 45 (P), M in M. Suppose by way of contradiction
that some element PB, of 4*(P) is contained in a maximal subgroup
M, of @ different from M, and that |B,| is maximal. It follows
readily that P, is a S,-subgroup of M,. Since P, contains €* for
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suitable € in SZA(R), M in M, 0,(M) = 1. Thus the hypotheses
of Theorem 24.8 are satisfied, IR, playing the role of & and B, the
role of &,, B = V(celg(B); Po). Since Nyp(B) O Py, and since P,2E* 2
Z(P) (€* being self centralizing), we conclude from the factorization
given in Theorem 24.8 and from the maximality of P, that W, < M.

There remains the possibility that for every B in Z(P), the
normal closure of B in M = C(Z(P)) is non abelian, and p = 8.

Let © = O,(M). If 9 contains a non cyclic characteristic abelian
subgroup A, then A contains an element B of Z(PB), and B is abe-
lian. Since we are assuming there are no such elements, every
characteristic abelian subgroup of © is cyelic. The structure of o is
given by 8.5. If € is any element of % 4#;(B), then € = 9, by
(B), so €e FZ . 4:5(D).

As before, let Be .4*(P) be chosen so that LB, is contained in
a maximal subgroup M, of & different from M, with |PB,| maximal.
Then P, is a S,-subgroup of M, and O, (M) = 1.

Let £ = 0,(M,). Since v"TE* =1, (B) implies that TN E = [, N €.
Since B, = Ng,(SI) by maximality of 3,, we conclude that €= I, We
need to show that D & P,. Consider DN P, = .. Since YPOI S
2(Z(P)), we conclude that 9, S 0, ,(IM,), and maximality of |B,}
implies that N(P, N Oy (M) S M so it suffices to show that I, =
P05, (M) S M, and it follows readily from T, = Ng (TDy) - 7D:0s,5 (M)
that it suffices to show that 79,0;.(IM,) = M. Since € & T, we have
Z(%) S €, so that *Z(R)9; =1, and 79,0;,: (M) induces only 3-auto-
morphisms on Z(T), so centralizes Z(P), and M, = M follows in case
9 C 9.

Suppose $=B,. If DNTDOE, then 2(Z(P)) < T, and since
YIS Q(Z(P) & T & D), (B) implies that D & T. In this case,
2(Z)) = 2(Z(P)) < WM, so M, & M. There remains the possibility
that §N T = E.

If T =€, then Y39*=1 and (B) is violated. Hence, TDOE, so
that ¥+ 1. Hence, T NZER)#1. If 2(Z(P)) E T, then V"I = T’
and we are done. If Q(Z(P)) £ T, we conclude that $ centralizes
T NZE), since T NZE®) SC. This is absurd, since 2,(Cy(D)) =
2.(Z(P)) by (B) applied to IM, completing the proof of this theorem.

Before combining all these results, we require an additional result
about =«,.

THEOREM 25.4. Let pem, let P be a S,~subgroup of & and let
MM be the unique maximal subgroup of ® containing PB. Then P S M.

Proof. Let €e Pz 4;(P), and suppose G in & has the property
that €°< B. Then € SM¢™'. By Theorem 25.3, we have M ' =M,
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so that GeIM. Hence B = V(ccly(€); P) = Vicely(€); B). By (B)
and pem, € < 0,(M) for each M in M. Hence, B < M, so maxi-
mality of M implies M = N(V). By uniqueness of M (or because B
is weakly closed in 3), we have M 2 N(P). Furthermore, by Theorem
25.8, if M~ M, then € £ M¢. Thus, € is not in the kernel K@)
of the permutation representation of ¥ on the cosets of P in MGDP,
We can then find C in € such that &(G)C has order p in Z(P/K(G)),
so Theorem 14.4.1 in [12] yields this theorem.

We are now in a position to let 7, and 7, coalesce, that is, we
set 7, =m, U,

THEOREM 25.5. Let I be a maximal subgroup of &. If pem,
and M, is a S,-subgroup of M, then either M, is a S,-subgroup of
S or M, has a cyclic subgroup of index at most p, and M, ¢ S (P)
Sor every S,-subgroup P of ®. If w s the largest subset of m, with
the property that M contains a Sy-subgroup & of G, then S I M,
and S & .

Proof. Let P be a S,-subgroup of & containing M,. Suppose
M, < P. Then M, ¢ . (P), by Theorems 24.3, 24.5, and 25.8. Thus,
if Be Z(P), then C(B) N M, is cyclic. Since |WM,:CAB)NWM,| =1
or p the first assertion follows.

Let &, be a S;,-subgroup of & for ¢ in w. (If & is empty there
is no more to prove.) If gem, then &, & MW by uniqueness of MW
and Lemma 17.2, If gem,, then &, S M’ by uniqueness of IM and
Theorem 25.5. Hence, @ £ W'. If ren(M), r¢ v, then W central-
izes every chief r-factor of I, by Lemma 8.13. Since & = WM, we
conclude that & < M.

THEOREM 25.6. =, is partitioned into mon empty subsets o,, ---
0., n =1, with the following properties:

(i) If t &=, then ® satisfies E. if and only if 7 <& o, for
some 1 =1, .-, 7.

(ii) If ©: i3 a S,-subgroup of ®, then N; = N(D.) is a mazimal
subgroup of ®, D, S N, and ;N Of is of square free order for
each GEG —-NR;, 1=1,---,m.

(i) If p.eo; and B; 18 a S,-subgroup of 9;, and if P, N P =
D+ 1 for some Ge® — N, then D; is of order p; and Cy (D) =
D; x &, where €, is eyelic, 1 =1,2, -+, n.

Proof. By Lemma 8.5, m, is non empty. By Corollary 19.1,
Theorems 24.3, 24.4, 24.5, 25.2 and 25.3 ~ is an equivalence relation on

7, and if o, ---, 0, are the equivalence classes of 7, under ~, then (i)
holds.
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Let $=9; be a S, -subgroup of & and let P =P, be a S, -
subgroup of  for p = p;€d,. By Theorem 25.5, N() = RN is a maxi-
mal subgroup of G, and & W.

Suppose GG — N and PN P =D # 1. If P, is any non identity
characteristic subgroup of 9, then either N(D) N Pe (P) or
N(®) N P ¢ (P, by Theorems 24.8, 24.4, 24.5, 25.5 and 25.3. Since
N(D(®)) contains every element of both Z/(B) and Z(P?), we con-
clude that 9 is elementary of order p» or p'. Suppose |D| = p*. If
D contains 2,(Z(P)) then N(D) contains an element of Z/(P), so that
NONPe A(P). If © does not contain 2,(Z(P)) then N(D) NP
contains an elementary subgroup of order o) so once again
N®)NPe F(P). The same argument applies to P, so that PP N.
Hence P¢ = PB* for some N in N. Hence GNe N(P) SN, so GeNR,
contrary to hypothesis. Hence, ® is of order p.

If Cy(D)e A (P), then N(D) SN, so that P°NNDOD, contrary
to the fact that BN P* has order 1 or p for all N in N, by the
preceding paragraph. Hence, Cy(®D)¢ M (P). If BeZ(P), and
Cx(®) N Cy(B) = €, then € is of index at most p in Cyx(D) and € is
disjoint from D, since Cyx(D)¢ M (P). Hence, Cp(D) = D x €. This
proves (iii), the eyclicity of € following from Cy(D) ¢ (). The proof
is complete.

26. The Maximal Subgroups of &

The purpose of this section is to use the preceding results, notably
Theorems 25.5 and 25.6, to complete the proofs of the results stated
in Section 14.

LEMMA 26.1. If pem Um, and P is a S,~subgroup of ®, then
P <= N(P)Y.

Proof. If P is abelian, the lemma follows from Griin’s theorem
and the simplicity of ®. If P is non abelian, P is not metacyelic,
by 8.8. Also, p = 5, as already observed several times. Thus, from
3.4 we see that 2,(P) is a non abelian group of order p°. The hypo-
theses of Lemma 8.10 are satisfied, so f & N(2(Z(P)))Y by Theorem
14.4.2 in [12] and the simplicity of &. Since N(P) & N(2,(Z(P))), and
since N(2,(Z(B))) has p-length one, the lemma follows.

LEMMA 26.2. If pem, and P is a S,-subgroup of ®, then P 1is
abelian or is a central product of a cyclic group and a non abelian

group of order p* and exponent p.

Proof. We only need to show that P is not isomorphic to (iii)
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in 3.4. Suppose false. Let P, = 2,(P), and let & be a fixed S,-
subgroup of N(P). Set & = R/Cx(P). The oddness of | N(P)| guar-
antees that R, is abelian.

Let & be a chief series for P, one of whose terms is P, and
which is f-admissible. Let a; be the character of & on the ith term
of & modulo the (¢ + 1)st, where ¢ =1, --.,7+ 8, and [ P: P,| = »~
Since PB/P, is eyelic, a;, = +-- = ;. From 8.4, we see that a, = a ;.
Furthermore, a..,=a@a,, and a,;=a,,a,,. Combining these
equalities yields a,, =1, so @, =1, and Lemma 26.1 is violated.

If B normalizes A we say that B is prime on A provided any
two elements of B* have the same fixed points on A. If |B| is a
prime, B is necessarily prime on 2. If U is solvable, then B is prime
on %A if and only if for each prime p, there is a S,-subgroup A, of
A which is normalized by B and such that B is prime on 20,.

The next two lemmas are restatements of Lemma 13.12.

LEMMA 26.3. Suppose A 18 a solvable m-group, and B is a cyclic
w'-subgroup of Aut(¥A) which is prime on A. Assume also that
19| B| 8 odd. If |B| is not a prime, if the centralizer of B in
A 18 a Z-group, and if B has no fived points on AW/, then A i3
nilpotent.

LEMMA 26.4. Suppose U i3 a solvable n-group and B i8 a ='-
subgroup of Aut(N) of prime order. Assume also that |A|-|B| s
odd. If the centralizer of B in A is a Z-group, and if B has no
fized points on Y/A’', then U/F(A) is nilpotent.

&#° denotes the set of all proper subgroups of &, 27 denotes
those subgroups 2 of & such that, for all pex, A does not contain
an element of .94(PB) for any S,-subgroup P of G; 27 = 2 — 23.
# denotes the set of maximal subgroups of @, # = _# N 23 i =
0, 1.

If & € 25, then & does not contain an elementary subgroup of order
p* for any prime p, so & is nilpotent. Furthermore, if 7(®) ={p,, -+, Da}
Py > D> o+ > D, then & has a Sylow series of complexion (p,, « -, D,).

Suppose pem, and P, is a subgroup of type (», ») with P, € 23
Let PB,, ---, P, be the distinet S,-subgroups of & which contain L,.
Since B, ¢ (B, 1 <1 < n, it follows that B, 2 2(Z(%B,)), and that
N(B,) — C(B,) contains an element of order p centralizing 2,(Z(%.).
Since N($B,)/C(Po) is p-closed, this implies that 2,(Z(B:)) = 2(Z(B,)),
1 <1, j<n. This fact is very important, since it shows that the
p + 1 subgroups of P, of order » are contained in two conjugate
classes in ®, one class containing 2,(Z(%,)), the remaining p subgroups
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lying in a single conjugate class.

If Me_+, HEN) denotes the largest normal nilpotent S-subgroup
of M. Note that by Lemma 8.5, H(I) + 1. More explicitly, z(H(IN))
contains the largest prime in #(IM). Note also that H(IMN) is a S-sub-
group of @.

If Pe._#, H(N) denotes the unique S,-subgroup of I, where
o = o(M) is the equivalence class of 7, under ~ associated with M.
That is, pe o if and only if pex, and IR contains a S,-subgroup of
@®. Or again, peo if and only if M contains an elementary subgroup
of order p*. Or again, p<co if and only if pexm, and M contains an
element of () for some S,-subgroup P of G.

Suppose Me_#, gen(M) — o(IN) and a S,-subgroup L of WM
centralizes H,(IM). Since M is the unique maximal subgroup of &
containing H (M), it follows that N(Q) S M, so that O is a S,-sub-
group of &. Then by Lemma 26.1, O & WM. Since the derived group
of M/H,(AN) is nilpotent, we have QO <t M. Thus, if 7 is the largest
subset of m(IM) — (W) such that some S.-subgroup of WM centralizes
H,(M), then M contains a unique S.-subgroup E,(WM), E,(WM) is a
normal nilpotent S-subgroup of M, E, (M) is a S-subgroup of &,
and the structure of the S,-subgroups of E,(IM) is given by Lemma
26.2. We set H)=<{E,(I), H(M)>=E (M) x H(WM). Since E(M)M
and E,(I) centralizes H,(IM), and since M is the unique maximal
subgroup of ® containing H,(IM), it follows that E,(IM) is a T.I. set
in @.

If pem,N7* and P is a S,-subgroup of &, then the definitions
of m, and #* imply that 2.(Z(P)) is of type (p, p). In this case, we
set T(P) = Cu(2(Z,(P))), and remark that T(P) char B, |P: T(P)| =
p. Furthermore, if P is an element of order » in T(P), then Cy(PY
contains an elementary subgroup of order . If gexm, — w*, set
T(Q) = Q, Q being any S,-subgroup of &. The relevance of T(X)
lies in the fact that if @ is any element of 7(Q) of order g, then
C(Q) is contained in only one maximal subgroup of &, namely, the
one that contains Q. This statement is an immediate consequence of
the theorems proved about .27 (L), explicitly stated in Theorem 25.5.

If Ae 2, then A is contained in a unique maximal subgroup M
of @, so we set M(A) =M. The existence of the mapping M from
25 to _# is naturally crucial.

If Me. #, set fI(i)ﬁ) = HM)*. If Me_ #, let f!(im) consist of
all elements H in H(IM)* with the property that some power of H,
say H, = H" is either in E(I)* or is in T(Q)* for some S,-subgroup
2 of M with g € w(H(IM)).

Let genm, and let Q be a S,-subgroup of & with T(Q)cCQ; let
7 (Q) denote the set of subgroups Q, of O of type (g, ¢) such that
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L,y = 2(C(Q)) for some element Q in O, If O e.7(Q), then Q2
2(Z(XQ)). Furthermore, if gem, and Q, is a subgroup of & of type
{9, 9), and if Q, is contained in at least two maximal subgroups of
@, then Q,€. 7(Q) for every S,-subgroup Q of & which contains Q.

LeEMMA 26.5.
(i) If Me A, then HER) is a T.I. set in O,
(i) If Me _#, then HIM) is a T.I. set in ©.

Proof.

(i) HERY is cyclic and normal in IR, by Lemma 26.2. Hence,
if He HY* N HER®Y* for some G in &, then N(KH)) 2 {It, M*),
S0 GeM, as required.

(i) It is immediate from the definition that IAI(‘.IR) is a normal
subset of M, so ﬁ(am) is a T.I. set in M. Suppose Ge® and
He ﬁ(‘m) N ﬁ(ﬂ'ﬁ)". Choose n so that K = H" is in either E,(IMM)* or
T()* for some S,-subgroup & of H(M), and such that K is of prime
order. If Ke E(IN)}, then since (| E (M), | H(M)|) =1, it follows
that Ke E,(M)*. Hence C(K) =2 <{H(I), H(M)*), and so GeM.
Suppose Ke H(M)*. Then Cy(K)e ¥(L) and so C(K) S M. This
implies that H,(I) N H(IMM)? contains non cyclic S,-subgroups. By
Theorem 25.6 (ii), we again have Ge M. The lemma is proved.

With Lemma 26.5 at hand, it is fairly clear that the one remaining
obstacle in this chapter is #*. In dealing with 7*, we will repeatedly
use the assumption that |®| is odd.

LEMMA 26.6. Let pem, let P be a S,~subgroup of &, and let
WM = M@P). If B, is any non identity subgroup of T(P) and P, is
contained in the p-subgroup P* of ®, then N(P*) & M.

Proof. In any case, P* & M, by Theorem 25.6 (iii). If P* is non
cyclic, then N(2,(PB*)) contains an element of .¥(P,) for some S,-
subgroup B, of WM and we are done. Otherwise, 2,(P*) = 2,(B)), so
N(2,(P*)) contains an element of (%), and we are done.

LEMMA 26.7. Suppose p,qem,UT,, P+ q, L is a S,-subgroup
of & and P is a S,-subgroup of N(XQ). If P is cyclic, then P i3
prime on L.

Proof. Suppose false. Then ¢ = +1 (mod p), and every p,¢q-
subgroup & of ® is g-closed. Also 2,(P) & Z(P*) for some S,-subgroup
P* of @, by Lemma 26.2 and || > ». If P* is cyclic, or if P* is
non abelian, then P S N(2(P))’, by Lemma 26.1. Since every chief
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g-factor of N(2,(P)) is centralized by N(Q(D)), it follows that B
centralizes C(2,()) and we are done.

If P* is abelian and non ecyclic, then P* normalizes some S,-
subgroup L* of N(2(%)). Since the lemma is assumed false,
Co(2(B)#1, so Q*=+ 1, If & is a maximal p, g-subgroup of &
containing P*Q*, then & is g-closed, so contains a S,-subgroup of ©.
This violates the hypothesis of this lemma.

LemMMA 26.8. Let pem, qen(®) and suppose that gexw, Ux, or
p¥*q. If & is any p, g-subgroup of & and & contains an element
of M (P) for some S,-subgroup P of ©, then & is p-closed.

Proof. Let MM = M(RK). The hypotheses imply that »| H,(IN)|
and gt | H(M)|. The lemma follows.

LEMMA 26.9. Let perm, qecn(®) and suppose that gem, Um, or
p+q. If Q 18 a g-subgroup of & which is normalized by the cyclic
p-subgroup P of O, then P is prime on L.

Proof. If |B| = p, the lemma is trivial. Otherwise, the lemma
follows from Lemma 26.8, since N(2,(P)) contains an element of
S(%B,) for some S,-subgroup B, of G.

LEMMA 26.10. Let IMMe _, and let P be a S,-subgroup of M for
some prime p. If P 18 non abelian and B & W', then [ does not
contain a cyclic subgroup of index p.

Proof. We can suppose that Pe .25 for if Pe .2, then M =
M(@P) and P & W by Theorem 25.6 (ii). Hence, proceeding by way
of contradiction we can suppose that B = gp{P, P,|P" = PF =1,
P'P,P, = P+ where n = 2. Note that P = {(P"™.

If P is nilpotent, then P < W, so M = N(P') by maximality of
M. This implies that P is a S,-subgroup of @ which is not the case.
Hence, ' is not nilpotent. In particular, Me . It follows that
p # q for all ¢ in 7(H(IN)).

We first show that E,(M) = 1. For %' centralizes E,(IM), so if W,
is an element of _# containing N(¥¥'), then E,(It) normalizes some
S,-subgroup B, of W, with L = B,. It follows from Lemma 8.16 that
E() centralizes B,. If E, (M) # 1, then P, & M, which is not the
case, so E,(M) = 1.

Choose ¢ in m(H()) and let O be a S,-subgroup of W normalized
by 3. We can now choose % & 7(Q) such that % is normalized by
2,(P), is centralized by some non identity element P of 2,(B), but is
not centralized by 2,(B). For otherwise, 2,(P) centralizes T(XQ), and
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N(Q,(P)) & M, which is not the case. For such a choice of ¥ and
P, let & be a S, -subgroup of C(P) which contains A2,(P). By Lemma
26.7, there is a S,-subgroup &, of & which contains 2 and is contained
in M. Since 2:(PB) does not centralize A, and since p+~gq, a S,-
subgroup £, of & is contained in .25, by Lemma 26.8.

We wish to show that & < & This is clear if £, contains an
element of ¥ (X*) for some S,-subgroup Q* of &, by Lemma 26.6.
Otherwise, Lemma 8.5 implies that &, < &, since ¢ > p. By Lemma
26.6, & = M, so WM contains a S,-subgroup of C(P). This implies that
(P> # (P>, Since the p subgroups of P of order p different from
(PP are conjugate in P, and since ﬁ(WZ) is a normal subset of N,
we can suppose that P = P,.

Let B* be a S,-subgroup of & containing P and let B = Q(Z,(T*)),
so that BN P = (PP"™, or else pem, It follows that P,W central-
izes P, for some W in . But I contains a S,-subgroup of C(P)),
so C(P)NIM contains an element of order equal to that of P,W.
Since P,W and P, have the same order, a S,-subgroup of C(P) N W
has exponent ", which is not the case. The proof is complete,

LevmMa 26.11, Let Me _# and let P be a S,-subgroup of M for
some prime p. If P is non abelian, then P S WM.

Proof. First, suppose pem, If Pe .27, we are done. Other-
wise, P contains a cyclic subgroup of index » and we are done by
the preceding lemma.

We can now suppose that pen,. If I is nilpotent, the lemma
follows readily from Lemmas 26.1 and 26.2. We can suppose that
T is not nilpotent and that P & WM'. Since P is non abelian, Lemma
26.2 implies that 2,(P) is of order p°, or else P is metacyclic. In the
second case, we are done by the preceding lemma.

We first show that E, () = 1. Since 2,(Z(B)) centralizes E,(IM),
it follows readily that N(E,(IM)) dominates P, by Sylow’s theorem.
If EI?) + 1, then M = N(E,(IM)), and so P S W, by Lemma 26.1,
and we are done,.

Let £ be a S,-subgroup of M which is normalized by P, with
g € 7(H(M)).

We show that Q = T(Q). For otherwise, P’ centralizes Q, by
Lemma 8.16, so that N(P') < M. By Lemmas 26.1 and 26.2, P S
N(P'Y, contrary to P £ W'. Hence, O = T(Q).

Let 8 = Z(2,(P)). We next show that 3 has no fixed points on
., Let 9, =0NC(3), and suppose by way of contradiction that
2, #1. Let 8 = N(38), and let £ be the maximal normal subgroup
of € of order prime to ng. Let 8,, £, be permutable Sylow subgroups of
L P, O, 8. Since &, < ¥, it follows that & is not contained
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in any conjugate of M. This implies that £, .23 This in turn
implies that 2, centralizes every chief g-factor of £, by Lemma 8.13.
Hence, 8, <1 2,2, and it follows that N(2,) covers 2/¢%,. Since
NE&) &S M, by Lemma 26.6, we have a contradiction. Hence, Q, = 1.

We next show that if PeQ,(P) — 3, then C(P) = M. This is
clear if C(P) N Q is non cyclie, since O = T(Q), so suppose C(P)N ] =
L, is cyclic. We remark that L, # 1, an easy consequence of the
preceding paragraph.

Let M, be a maximal subgroup of & containing C(P), and let
* be a Si-subgroup of M, containing Q,. If QO* is non cyclic, then
L0* is contained in a unique maximal subgroup MM¢ of G, GeG,
and since Q* S M,, we have M, = M. Since MNM?* 2 Q,, and
since Q, £ T'(Q), we have MM = M, Thus, we can suppose that Q*
is eyelie.

Since 3 acts regularly on Q,, we can suppose that a S,-subgroup
P* of I, normalizes O* and that {P, 8> = P*.

If 9] is nilpotent, then 2,(V*) < M,. Since 2,(T*) = 2,(Q)), we
have M = IMM,. Hence, we can suppose that MM} is not nilpotent.

Choose r in w(H,(M))), and let R be a S,-subgroup of M, normalized
by B*Q*. Since [* is cyclic, g # r. Since g % r, Q* does not cen-
tralize R. It follows from Q* S (P*Q*) that R = T(R), by Lemma
8.16. Since 0*3 is a Frobenius group, it follows that R, = RN C(8) #
1. Let € = N(3).

Let & be a S,,,-subgroup of € which contains R, and P*, and
let &, be a S,-subgroup of £ containing R,. If & is non cyeclie, then
K, e.2, 80 K& M. If &, is cyelic, then in any case &, S IM,, since
R = T(R). Let &, be a S,-subgroup of & If P* does not centralize
R, then » > p, and so &, < &, and once again & & M,. If P* cen-
tralizes R, and R, 4 &, then K, < K. Since the structure of &, is
determined by Lemma 26.2, and since R, centralizes P*, it follows
that R, centralizes ®,, so that 2(R,) < & and once again £ & M,.
Thus, in any case, we see that £ £ I,. This implies that 3 & I,,
so 8 centralizes every chief ¢-factor of I,. This is absurd, since
BQ* is a Frobenius group. We conclude that C(P) & M for every P
in 2(P) — 3.

We will now show directly that N(2,(P))=IM. Choose N e N(2.(P)).
Then 2,(P) normalizes Q and Q. Since 8 has no fixed points on
QF, QF is generated by its subgroups QY N C(P), Pc 2,(P) — 3. By
the preceding paragraph, we conclude that Q¥ & M. Since M” is the
unique maximal subgroup of & containing QF, we have I = MWM¥,
so Ne. By Lemma 26.1, B < N(2(P)), so PS WM. The proof is
complete.

LEMMA 26.12. Suppose Me _# and P is an abelian, non cyclic
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S,-subgroup of M for some prime p. Suppose further that a S,-
subgroup of ® is non abelian. Then P =B, X P,, where |P,| = »,
B, centralizes H(IN), PLH(MN) is a Frobemius group with Frobenius
kernel H(IM) and P, contains ,(Z(P*)) for every S,-subgroup P* of
® which contains PB.

Proof. Let P, be a S,-subgroup of & containing B. If pemx,
then 2,(P)e.77(P,), and if ¢ is any automorphism of P, of prime
order s, then 8 < p, by Lemma 8.16. The same inequality clearly
holds if pem,.

Choose ¢ in w(H(IM)) and let O be a S,-subgroup of W normalized
by PB.

Let 8 = 2,(Z(%)). We will show that Q8 is a Frobenius group.
Let € = N(3) and suppose by way of contradiction that O, =QNE#1.
First consider the case that pexw, Let M = M(€), and let By, be a
S,-subgroup of M, normalized by L, with PSS Pw. Then [Q, P] S
QN Pw =1, so Q, centralizes P. Since 2(P) & .7 (By), it follows
that Q, centralizes B,. Thus, if ¢e a(E(M) or T(Q) =L, we con-
clude that B, S M, which is contrary to hypothesis. Otherwise,
T(R)CQ, or genm, U, so that ¢ > p, or P centralizes L. But in
these cases, we at least have N(Q,) S M, so O, + Q, which yields
q > p, and so a S,-subgroup of M N M, is non cyclic, and centralizes
Pw. Again we conclude that P, S IR, which is not the case. Hence,
we can suppose that pem,.

Let & be a S, subgroup of € containing PQ,, PSS K,, O, & K,,
and let 8* be a maximal p, g-subgroup of & containing &, &, & &;,
R, € &, where &; is a S,-subgroup of &* and & is a S,-subgroup
of &*. Since P, is a S,-subgroup of G, &, = K* is a S,-subgroup of
®. If & contains an elementary subgroup of order ¢°, then & < &%,
and maximality of £* implies that &* is contained in a conjugate of
M, contrary to hypothesis. If KF does not contain an elementary
subgroup of order ¢°, then either ¢ > p or P centralizes Q,. If ¢ > p,
then & < &*, so once again &* < ¢ for some Ge®. If ¢ < p, then
K  &*, and since L, centralizes B, O, centralizes £}, by Lemma
26.2. In this case, O,(R*) # 1. If O,(8*) is non cyclic, then &* & IM?,
either by Lemma 26.6, in case q € ,, or because Q <] M in case g€ 7,.
If 0,(8*) is cyclic, then Q, < &*. In this case N ()P is conjugate
to a subgroup of £*, since K* is a S-subgroup of N(Q,). Since
K < &*, it follows that P centralizes N;(L,) so that N(L,) centralizes
some S,-subgroup of N(Q,). If q € n(E,(M)), this is not possible. But
if qen(H,(MM)), then Ny(L,) is non cyclic, so N(Ny(Qy)) S M. Thus,
in all these cases, M contains a S,-subgroup of ®&. Since this is not
possible, 80 is a Frobenius group, and so SH(IM) is a Frobenius
group.
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Suppose Me _#,. We will show that if 3, is any subgroup of
P of order » with C(8,) N HIN) = 1, then C(8,) S M. Let M e #
with C(8,) & M,. First consider the case M, = M?, for some G in
S. Let L, be a non identity S,-subgroup of C(3,) N H(IM) and let
L, be a S;-subgroup of C(3,) N H(WM,) containing Q,. If Q, CQ,, then
Lemma 26.2 implies that Q, is a S,-subgroup of . In this case,
since M, and I are conjugate and since P is a S,-subgroup of W, P
contains a subgroup of order » which centralizes the S-subgroup of
M. Since BH(M) is a Frobenius group, this implies that if 3, is
any subgroup of P of order p, then either B,H, (M) is a Frobenius
group, or 3, centralizes H,(I), the S,-subgroup of M. This violates
the choice of Q,. Hence, Q, =Q,. If a S,-subgroup of & is abelian,
then L, < R, M, so M = M,. If some S,-subgroup of & contains
2,(L,) in its center, then by Lemma 8.10, It = M,. Hence, we can
suppose that L), is of order ¢ and Q, & Z(H(IN)). In this case,
N@EQ) NW, is of index ¢ in M, and N(Q) N M is of index g in WM,
and N(Q,)) N WM, contains C(3,).

Let £ = N(Q). If 8 is contained in a conjugate of 9, then
NER)NHE) < 8 so & S M, since N(Q,) N HER) < M,. Similarly,
L < M, and we are done. If R is contained in an element of _#;, then
since 3H(M) is a Frobenius group, we see that N(Q) N HR) < &, DD,
and 2 & M.

Hence, in showing that C(3,) & M, we can suppose that C(3,)
is contained in an element MM, of _#. Since 3:(C(Z,) N H(IM)) is a
Frobenius group, this implies that 3 & M|. Since P is a S,-subgroup
of M, we conclude that P is a S,-subgroup of MW,. By what we have
already proved, BH(I,) is a Frobenius group. This implies that
(C(By) N HEM))H(M,) is nilpotent, so C(B,) N H(M) centralizes H,(I,).
Since M, is the unique maximal subgroup of & containing H, (M), it
follows that H(IM) centralizes H,(M,), so that M & M,, which is absurd
since Me _#, M e . We conclude that C(3,) S M.

We next show that if Me_~ and C(B,) contains an element of
H®@), then C(2,) S M. Here, as above, R, is a subgroup of P of
order p. Let £, be a P-invariant S,-subgroup of C(3,) N M with
QNH®) +# @. From Lemma 26.7, we conclude that C(8)NM
contains a S,-subgroup L, of C(&,), and we can assume that Q, = Q..

Let Me 7, C(B)ESE M. If M =M then MNW, 29, so
WM =MWM,. If M is nilpotent, then by Lemma 26.7, we see that
M, N M contains a S,-subgroup L, of WM, which is B-invariant. Since
8Q, is a Frobenius group, Q, < M, and so M, = WM. We can suppose
that 9 is not nilpotent, and that MM, = M. In particular, W, e .
It follows that P is a S,-subgroup of I, so that SH(I,) is a Fro-
benius group, and so L, centralizes H(IN), and M = W, follows.
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Thus, M = M, in all cases.

Suppose now that P contains two distinet subgroups 3,, B, such
that C(3) N H@) #+ @ and C(8)N HID) + @. We can choose P in
P, such that 8, =8F. If Me_#, we get an easy contradiction.
Namely, C(8) S MNM?, and so M =M? and PeMN P, =B, so
that 3, = B,, contrary to assumption.

If M e _#,, then M N M? contains C(8,) N H(M). If H(M) contains
an abelian S;-subgroup Q with C(3,)NQ #1, then C(8)NLQ < (M, WM,
and M = M?, which is the desired contradiction. Otherwise, if Q is
a S,-subgroup of H(IM) with C(8,) N =1, # 1, then N(Q,) N M is of
index ¢ in M and N ) NIM? is of index ¢ in M?, while both
N N HD) and N(Q,) N H(DF) are S-subgroups of N(Q,). Further-
more, since a S, .subgroup ¥, of N(Q,) is g-closed, it follows that
PN N HE@) and PN(Q,) N H(RF)) are S-subgroups of N(Q,).
Furthermore, 3 has a normal complement in N(Q,), since gex,, and
no element of P* centralizes N(Q,) N . By the conjugacy of Sylow
systems in N(Q,), we can therefore find CeC(P)N N(Q,) such
that (N(Q) N HEIRP)) = N(Q) N HR).  Since (N(Q,) N HEARD))Y =
NE) N HER), and N(Q) N HEAR) M, we conclude that Pt = M7e,
so PCe M, which is not the case, since C is in M and P is not.

Hence, there is exactly one subgroup 3, of # of order » which
has a fixed point on ﬁ(s.m), 80 B, centralizes H(IM). Since P = 3, x P*,
where P* 2 3, the lemma follows.

Lemma 26.12 is quite important because, given M, (and the
hypothesis of Lemma 26.12) it produces a unique factorization of 2,(B).
Namely, exactly one subgroup 3 of P of order p is in the center of
a S,-subgroup of &, and exactly one subgroup 8, of P of order p
centralizes H(IR), and 8 # 8,. This is a critical point in dealing
with tamely imbedded subsets. Furthermore, Lemma 26.12 shows
that H(IN) is nilpotent, a useful fact.

LEMMA 26.18. Suppose Me _»# and P is an abelian, non cyclic
S,-subgroup of MM for some prime p. Suppose further that a S,-
subgroup of ® 1is abelian. Then the following statements are true:

(i) P is a S,-subgroup of G.

(ii) C((P) s M.

(iii) If P and P, are elements of ® which are conjugate in G
but are not conjugate in M, either C(P)N H(I)=1 or C(P)NHI)=1.

(iv) FEither M dominates 2,(B) or C(2,(P)) N HEIY) = 1.

(v) Omne of the following conditions holds:

(a) P&
(b) N(PB) S M for every non identity subgroup B, of B such
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that C(B,) N HM) + 1.

Proof. If pem, then Pe 27 and all parts of the lemma follow
immediately. We can suppose that pem,.

In proving this lemma, appeal to Lemmas 8.5 and 8.16 will be
made repeatedly.

If 2.(B) centralizes H(IMM), then M = N(2(P)) and all parts of
the lemma follow immediately. We can suppose that 2,() does not
centralize H(M). This implies that HI) N P = 1.

We first prove an auxiliary result: if & is any p, ¢-subgroup of
@ containing 2,(P) and if & N H(M) # 1, then K is g-closed. To see
this, let 2 be a S,-subgroup of & N H(M), and let P, be a S,-subgroup
of R N M which contains 2,(P). Let &, be a S,-subgroup of & con-
taining ) and let &, be a S,-subgroup of & containing P,. If &, € .23,
then & € M for some G in @ and so & < K. If &, € 25 then K does
not contain elementary subgroups of order 2®or ¢°, so either &, < & or
<8 IR IR, and K, 4K, then p >q. Suppose gem, Um,. Then
P centralizes the S,-subgroup Q, of M. There is no loss of generality
in supposing that £ is a maximal p, ¢-subgroup of &. It follows
from this normalization that O/(R) is a S,-subgroup of ®, and &=
!,x8®,. Hence, we can suppose g<m,. Since & P R, & ¢ .25 If
O,(R) is not of order ¢, then & is contained in a conjugate of I, by
Lemma 26.7, and we are done. Hence, we can suppose that Q=
O,/8) is of order q. But now N(Q) N M contains S,-subgroups of
order exceeding ¢, so that S, ,-subgroups of N(X) are g-closed. Since
! < N(Q), R is g-closed

(i) is an immediate application of the preceding paragraph, since
some element of P centralizes an element of H(IR)E.

We turn next to (iv). Suppose C(2,(P) N HEIR) +1, and L, is

a non identity PB-invariant S,-subgroup of C(2,(P)) N H(M). Let L,
be a S,subgroup of N(2(%P)) permutable with P. By the first
paragraph of the proof, P normalizes Q,, so by Sylow’s theorem
N(Q,) dominates £2,(P). Suppose for some 7 =1, P normalizes Q,
and L, dominates 2,(P). Let L,., be a Sisubgroup of N(LQ,)
permutable with . Then P normalizes Q,;, and so L,., dominates
2,(B). Since O, S, & ---, we see that some S,-subgroup of &
dominates 2,(P) and is normalized by P. It follows that the normal-
izer of every S,-subgroup of MM dominates 2,(P*) for some M in IR,
and so MM dominates 2,(°B). (iv) is proved.

Notice that if C(2,(P)) N H(AM) # 1, then by (iv), elements of P
are conjugate in € if and only if they are conjugate in M. Thus,
in the case, it only remains to prove (ii). We emphasize that in any
case (i) and (iv) are proved.
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Since P S W, if Me_#, then P M and the lemma follows.
We can suppose that Me_#. Let qen(H (M) and let O be a P-
invariant S,-subgroup of M. If 2,(P) centralizes T(L), then (ii)
follows immediately. Thus, we can choose P in 2,(P)* such that 2,(B)
does not centralize TRQ)NCEP)=Q,. If O, €27 then C(P)S M,
so that (ii) holds. If O, € .25 then L, is eyclic, by Lemma 8.16, and
the containment P & WM'. Hence 2,(P) = (P> X P,, where P, is a
Frobenius group.

Let € = C(P). If & is nilpotent, then Q, = 0,(€), so by Lemma
26.7, € S M, and (ii) follows. Suppose €’ is not nilpotent. Hence,
€ contains an elementary subgroup of order »* for some prime r. If
ren(H(IM)) then € S M for some G in G. Since MNP 2O,
we have I = M? and (ii) follows. Suppose r ¢ 7(H(WM)). In this case,
2,(PB)Q, normalizes a S,-subgroup R of €. Since P centralizes R
and PO, is a Frobenius group, and since ¢ « r, it follows that
RNCEMDPB) #+1. Let M = M(C). By (iv) applied to M, we get
PSM. Since O, N HI) =1, and since the derived group of
IM/H(M,) is nilpotent, P centralizes L,, which is a contradiction.
Hence, C(P) S M, and (ii) holds. The lemma is proved in case
CR,(PB) N H) + 1, and (i) is proved in all cases.

Throughout the remainder of the proof, we assume

(26.1) CRMP)NHIY 1
Suppose B, is a non identity subgroup of P and
(26.2) CPB)NHD) #1,

There are three cases:
(a) Me.# and CHF)NHD) + 2.
(b) Me A and C(PB)NHI) =2

(c) Me._#,.
In each of these cases, we will show that
(26.3) N®B)s I

Case a,. N(P,) is nilpotent.

Choose g so that C(P,) N H(M) contains an element of order g,
and let O, be a P-invariant S,-subgroup of C(P,) N H(M). By (26.1),
0, E N, s0 QS O,(N(B)). If gen(H(M), we conclude that
N(O/(N(By)) S M, by Lemma 26.7. If gem(E(WM)), then O,(N(%,))
centralizes H(IM)? for some G in @, and so N(Q,) 2 (H,(M), H,(M)*,
and G e M follows.

Case a,. N(P,) is not nilpotent,

In this case, N(%,) contains an elementary subgroup of order »*
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for some prime r. If rex(H(IM)), then M(N(P)) = M¢, for some G
in . Since M N HIY) # @, we have M =W, If ¢ n(H(M)), let
R be a S,-subgroup of N(P,) normalized by Q,(P)LX, where L, is a
non identity S;-subgroup of C(PB,) N H(M), as in Case a,. Let 2,(P) =
£2(B,) x B, so that O,P, is a Frobenius group by (26.1). If PR is a
Frobenius group, then Q, centralizes R, and R < M. This is not the
case, since r + r, for all r, € 7(H,(IM)). Hence, P, has a fixed point
on R*¥, so 2,(P) has a fixed point on H(M(R)). By (iv) applied to
M(R), it follows that 2(P) S M(R), and so 2,(P) centralizes L,
which is not the case. Thus (26.3) holds in case (a).

In analysing case (b), we use the fact that E,(IR)* = ﬁ(%é), and
that if B is any subgroup of H(IM) which is disjoint from iz(m),
then B is of square free order and gem, N =* for every ¢ in 7(B).

Let Q be a non identity P-invariant S,-subgroup of C(P,) N H(M).
so that |Q| = q. Suppose that (26.3) does not hold.

We will show that O is contained in a maximal subgroup W,
of ® such that MM is not nilpotent, and such that IR, is not conjugate
to I,

Case b,. N(B,) & M° for some G in G.

Consider N(X)). Since N(Q) N WM and N(Q) N WM have non cyclic
S,-subgroups, and since M += M7, it follows that N (L) is contained in no
conjugate of M. Let Q, be a P-invariant S,-subgroup of N(Q) N H(WM).
If N(QY is nilpotent, then Q, S 0,(N(Q)), and so N(Q)S M by
Lemma 26.7. This is not the case, since N(Q) N M has non cyelic
S;-subgroups. Hence, N(LQ)' is not nilpotent, so we take IR, =
M(N Q).

Case b,. N(P,) is nilpotent, but N(P,) is not contained in any
conjugate of IN.

Since 0 S N(B)', QLE ON(By)). If O(N(Py)) is not of order g,
then N(B,) & M¢ for some G in @. Suppose that O = O(N(P,)) is
of order q. Let N, = N(X), so that R, N M has non cyclic S,-subgroups
and N(B,) S N,. Since N(P,) is contained in no conjugate of I,
neither is N,. If N! is nilpotent, then a S,-subgroup of N, N WM is con-
tained in 0,(MN,), by (26.1) and so N, = M, which is not the case.

We apply (iv) to M,. If C(2(P)) N HA) + 1, then P S M, so
that P centralizes L, which is not the case. Hence, (26.1) holds
with T, replacing M. Let P, be any subgroup of P of order p
different from 2,(B,). Then P is a Frobenius group. Choose
ren(H,(M)) and let R be a S,-subgroup of M, invariant under PL.
If © does not centralize T'(R), then C(B) N T(R) # 1, so that case
(a) holds with M, replacing M, P, replacing P,.

Suppose then that QO centralizes T(R). Then N(Q)&S M, so a
Ssubgroup L, of N(Q) N M is contained in M,. We suppose without
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loss of generality that Q, normalizes R. If now P, is any subgroup
of P of order p which does not centralize L,/Q, then since Q, does
not centralize T(R), we conclude that C(P.) N T(R) += 1.

Thus, in all cases, if P, B, ---, B are the distinet subgroups
of P of order p which have fixed points on I}(EIRI), then n = p, so
that n =p or p + 1.

Choose Ne N(2,(B)). Then there are indices 7, 7, not necessarily
distinet, such that B} = P3¥. If 4 = j, then Ne M, by (a). If 7+ 7,
then N(P}) S T, NIMY, so that HOL) NTF = @ and W, = MY,
Hence, N(2(P)) S M,, so 2,(P) S M], and 2,(P) centralizes O, which
is not the case. Hence, (b) implies (26.3).

We will now complete the proof of this lemma in case Me ;.

Since some element of 2,(B)* has a fixed point on I?(EIR), (ii) holds
by (26.3). Also, by (26.8), alternative (v)b holds. It remains to prove
(iii). Suppose P,, P, are elements of P which are conjugate in @,
but are not conjugate in I, and that C(P)N HI) =+ 1,71 =1,2,
"Theorem 17.1 is violated.

We next verify (26.8) under hypothesis (c).

Suppose by way of contradiction that (26.8) does not hold. Let
£ be a non identity PB-invariant S-subgroup of C(PB,) N H(W). We
will produce a subgroup £ of ® such that & is not nilpotent, and
such that QP = &. Once this is done, then it will follow as in case
b, that » of the p + 1 subgroups of P of order » have fixed points
on HM(®))!, and (26.3) will follow.

Suppose M, is a maximal subgroup of & containing N(B,). If
M, is nilpotent, then L = O,(M). If O,(IM) is non abelian, then
M, = M for some G in &. Furthermore, from (26.1) and the fact
that Q is not a S;-subgroup of @, we conclude that < = 0,(IM) N C(B,).
Hence, N(X) contains C(P,). Let M, be a maximal subgroup of &
containing N(Q). If T is nilpotent, then WM, = M and (26.8) holds.
Hence, M, is not nilpotent, so we can take & =M,. If O,(M,) is
abelian, then I = M, and (26.3) holds. Thus, (26.3) holds in all cases.

The completion of the proof that (26.3) implies this lemma is a
straightforward application of Theorem 17.1.

LEMMA 26.14. Suppose M e _# and P i3 a non abelian S,-subgroup
of M. Then N(R(Z(P) S M. Furthermore, one of the following
conditions is true:

(@) QuZ(P)) centralizes H(IMN).

(b) NB) S M for every non identity subgroup B, of B.

(© P < HI.

Proof. Suppose pem,. If Pe.2, then M = M(P), and so
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NQ(Z(P))) < M. Since P = H(M), the lemma is proved. If Pe .27,
then P contains a cyclic subgroup of index p. Since P is assumed to
be non abelian, P is a non abelian metacyclic group, so B L W, by
3.8. Lemma 26.10 is violated.

Through the remainder of the proof, we assume per,.

Let 3 = 2(Z(P)), so that 3 is of order », by Lemma 26.2 and
Lemma 26.10.

If T is nilpotent, then B <{ M, and all parts of the lemma follow.
We can suppose that ¢’ is not nilpotent. In particular, Mec _#. We
can further assume that p ¢ x(H(IN)).

Since B is non abelian, 3 centralizes E,(IM).

Choose q € n(H,(IM)) and let O be a P-invariant S,-subgroup of M.
If gen*, then 3 centralizes Q.

Thus, if 7 = 7(E(M) U (z* N a(H(M))), then B centralizes a S;-
subgroup of M. If ¥ = w(H(IM)), all parts of the lemma follow.

Let ren(HY)) — & and let R be a S,-subgroup of MM normalized
by P, and such that 3 does not centralize R. If there are no such
primes r, we are done.

Let 9B, be any subgroup of P of order p different from B. We
will show that N(PB) = IN.

Since 8 does not centralize R, R N C(B) £ C(B). Set R, =Rn C(PB).
If R,e25 then N(P) S M. Otherwise, R, is a non trivial cyclic
subgroup of R, and 38R, is a Frobenius group.

Let M, be a maximal subgroup of ® containing N(P). If M| is
nilpotent, then R, < 0,(M), so M, = M, by Lemma 26.6. We can
suppose that IR is not nilpotent and that I, is not conjugate to M.
If a S,-subgroup of I, is non abelian, then 3 centralizes R,, which is
not the case. Hence, a S,-subgroup of AN, is abelian and non cyclic.
We can apply Lemma 26.12 to I, and a S,-subgroup L* of T, which
contains PB,.3. We conclude that SH(IN,) is a Frobenius group. Since
B8R, is a Frobenius group, R, centralizes H(M,), and so M = M,. We
conclude that MM contains N(P,) in all cases.

Now let P, -+, B, be the distinect subgroups of P of order p
different from 3. Here n = p* + p. Let ¥ be any proper subgroup
of @ containing 2,(P). Let & = 0,(2). Since ¥, is generated by its
subgroups C(PB,) N 8, 1 <1< n, we have &, S IM. Let &, =2 N N(Q(D)),
and choose L in £, We can then find indices ¢, j, not necessarily
distinct, such that P! = P;. Hence, N(PB;) & M N WME,  Since N(P;)
contains an element of ®* S H(IN), we have M = M-, Hence, L S M,
so in particular, N(B) & .

Let P, be any non identity subgroup of P. If P, is non cyelic,

then N(P)S N@B)SM. If B, is cyclic, then N(2(By) S M. The
proof is complete.
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LemMMA 26.15. Suppose Me _#,A is a cyclic S-subgroup of W
and ANW =1. Then A is prime on HWM), and CN) N HIN) is a
Z-group.

Proof. Suppose U is prime on H(IWM), but that T is a non cyclic
S;subgroup of C(A) N H(WM). Choose pen(WA) and let A, be the
S,-subgroup of UA. Since NX,) £ M, it follows that Qe 2. Thus,
if gem,, Q is a S,-subgroup of &, while if g€, O is also a S,-subgroup
of ®, by Lemma 8,12, Since ) € 25, we have g € 7, so that M = N(Q).

Let M, be a maximal subgroup of @ containing N(,). If a
S,-subgroup of ® is cyclic, then MM = N(L) dominates ¥A,, which is
not the case, since A, NP =1. Hence, pen,Ux,. Let A* be a
S,-subgroup of M, permutable with Q. If A} is a S,-subgroup of G,
then O normalizes ;. Otherwise, L normalizes A} since A, < Ak,
and Lemma 8.5 applies to QA;.

Let & be a maximal p, ¢g-subgroup of ® containing QA*, and let
8, be a S,-subgroup of & Then &, < &, so that £, is a S,-subgroup
of @. Let M, be a maximal subgroup of & containing N(R,).

If £ were non abelian, then M = M, by Lemma 26.14, which is
not the case. Hence, Q is abelian. If pex, then by Lemma 26.13,
we have N(2,(Q)) & M, since O centralizes A, = 1. Since this is
impossible, we see that pem,.

If A, £ R, then by Lemma 26.1, together with the fact that
N(Q) covers N(&,)/8,C(R;), we see that A, N W # 1, contrary to
hypothesis. Hence, %, & &;,. Since A, = C(Q) N &,, this implies that
&, is a non abelian group of order p* and exponent p.

Since some element of O has a non identity fixed point on H(I,)?,
and since T centralizes O, we see that T’ & M,, by Lemma 26.13.
Since N(2,) & M, and since A, N W’ = 1, it follows that M & M,, the
desired contradiction.

Thus, in proving this lemma, it suffices to show that % is prime
on H(I).

First, suppose that ¥ is a p-group for some prime p. We can
clearly suppose that |%| = p?, and that C(2,(20)) N H(M) + 1.

Case 1. pem, Letqen(E(M)), sothatgen, Un,, Lemma 26.9
applies. Let g € 7(H,(IM)). Then p ~ ¢ since AN W = 1. Lemma 26.10
applies. If Me_#, Lemma 26.9 applies.

Case 2. pem, and a S,-subgroup of & is abelian,

If g en(E(M)), or qen(H(M)) and M e _~;,, Lemma 26.7 applies.

Let q e m(H,(IM)), and let O be an A-invariant S,-subgroup of IN,
If A centralizes O, we have an immediate contradiction. Hence, %
does not centralize Q.

We can suppose by way of contradiction that [C(2,(2)) N L, A] # 1.
If C(2,() N Qe 25 M contains a S,-subgroup of &, which is not the
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case. Otherwise, ¢ > p, so every p, g-subgroup of ® is g-closed, and
I contains a S,-subgroup of ®, which is not the case,

Case 8. pem, and a S,-subgroup of @& is non abelian.

Here, A & N(2,(A)), by Lemma 26.2. Since C(2:()) N HIN) e 75,
the lemma follows,

Case 4, pem. In this case, also, we have ¥ & N(2,(¥)), and
the lemma follows.

Next, suppose that W = A, x A, where ¥, is a2 non identity p,-group,
©+=1,2. Suppose by way of contradiction that Q is an U-invariant
S,-subgroup of H(IN) and that A is not prime on Q. We can suppose
that %, does not centralize 0. N C(2,(A)) = 2N CHA) = 2,

Let M, be a maximal subgroup of & containing N(2,(%,)). Then
N, is not conjugate to M, either because A, is not a S-subgroup of
M, or because A, S M. Let L, be a S,-subgroup of M N M, which
contains L, and is A-invariant.

Suppose £, < Q,. Then A, £ H(A), since [Ty, A +# 1, and
g ¢ T(H(W,)). Furthermore, Q, is non cyclic. Suppose ¢ €x,. In this
case, ¢ > p,, 80 a §,-subgroup U of M, normalizes some S-subgroup
of M, and it follows that A} normalizes some S,-subgroup of &, This
implies that 2, is a S, -subgroup of . But in this case A, & N2,(A,))
so that U, centralizes Q, and so Q, = £,. Suppose gen, If O, 2],
then N(2,(2)) & M, which is not the case. Hence, Q,€ 2 so that
q > . Once again we get that Q, = Q,. Hence, we necessarily have
Q, = L, in all cases.

Since ¥, is prime on H(IM), from the first part of the lemma, we
conclude that Q, is eyclic.

We next assume that IR is nilpotent.

Suppose 2,(0,(M,)) = 2,(V,). Since L, is a S,-subgroup of MW, N M,
it follows that gex, and Q, is a S,-subgroup of ®, so that I = M,.
Since O, = [Q,, ;] £ 0,(M,), we can suppose that 0,(IM,) is non cyeclic.
In this case, however, 0,(I) is a S,-subgroup of & and M, is conjugate
to M, which is not the case.

We can now suppose that IR; is not nilpotent.

Suppose p, ¢ 7(H,(IM,))). Let & be a complement for H,(MWM,) in W,
which containg Q2. Then & is nilpotent and so [Q,, U.] & 0.(€).

Case 1. gem. In this case, ¥, is a S,-subgroup of @, and L,
dominates A,. This violates A, N W = 1.

Case 2. gem, and a S,-subgroup of @ is abelian. In this case,
22y, %)) = 2,(0,(€)), so once again U, is a S, -subgroup of G and
M dominates A,.

Case 3. qem, and a S,subgroup of ® is non abelian. Since L,
is cyclic, we have ¢ > p,, so some S,-subgroup &, of € normalizes
some S,-subgroup of ®. But now MM dominates U, since every »,, ¢-
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subgroup of & is g-closed, and & dominates 2A,.

Case 4. gqem, If gen*, then every p, g-subgroup of & which
contains a S, ,-subgroup of I, is g-closed, so once again M dominates
A, and A, is a S,-subgroup of &, Hence, g¢n*. Since MW, is not
conjugate to M, it follows that if Q, is a S,-subgroup of & containing
£,, then Q; € 225, which implies that Q, is eyclie, and Q, < M. Hence,
Q, = 1, since ¥, centralizes Q,. But now Q, = [Q,, U] < €, so & = M.
Thus, once again ¥, is a S, -subgroup of @ and M dominates A,.

All these possibilities have led to a contradiction. We now get
to the heart of the matter. Suppose p, € 7(H,(IM,)).

We will show that p, ¢ r*.

Let P, be a S,-subgroup of H,(IY) containing A, and invariant
under A,Q,. Suppose that

(26.4) NI, Q) s

We will derive a contradiction from the assumption that (26.4) holds.

If g e m,, (26.4) is an absurdity, since N([2,, O,]) =M. Ifqenm, U,
then a S,-subgroup of N([2,, O,]) N P is non eyclie, so g € 7, as already
remarked. If ¢ < p,, then ¥, centralizes a S,-subgroup of M, so L,
is a S,-subgroup of ®. In this case, however, [U,, O] < M, an absurdity,
by (26.4). Thus, if (26.4) holds, then gex, and ¢ > p,.

Since (26.4) is assumed to hold, it follows that Q, is a S,-subgroup
of M N N(IYU, £,]). Hence, L, is non cyclic. We have already shown
that Q, is eyclic, We conclude that (26.4) does not hold.

If p,exn*, then [, O,] centralizes P,, by Lemma 8.16 (ii), so
{(26.4) holds. Hence, p, ¢ 7*.

Since (26.4) does not hold, and since p,¢x*, C([;, LD NP, is
cyelic. It follows that C(,) NP, is non eyelic. This implies that
NE) < M, since CAL)N P, € Z5. Since p, ¢ 7(H(I)), and since ¢ > p,,
it follows that a S,, ,~subgroup of I,/H(IR,) is g-closed. This in turn
implies that some S,,-subgroup of 9% normalizes some S,-subgroup of
@®. Since %, is a S,,-subgroup of M, U, is forced to be a S,,-subgroup
of @. But N®) & M, and A, & NY, so A, centralizes L,. The
proof of the lemma is complete in case w(¥A) = {p,, p.}.

If |7(A)| =38, the lemma follows immediately by applying the
preceding result to all pairs of elements of w(%).

LEMMA 26.16. Suppose M e _# and H(M) is not nilpotent., Then
(P W | i3 @ prime and W 18 a S-subgroup of M,

Proof. Let pen(M/IM') and let A, be a S,-subgroup of M. By
Lemma 26,11, %, is abelian. Suppose 2, is non cyclic, If a S,-subgroup
of ® is non abelian, then H(IN) is nilpotent, by Lemma 26.12. Hence,
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we can suppose that a S,-subgroup of & is abelian. By Lemma 26.13
A, is a S,-subgroup of &. By Griin’s theorem, the simplicity of ®,
and Lemma 26.15, %, contains elements A4,, 4, which are conjugate in
S but are not conjugate in M. If 2,(CA)) = 2,({4.)) and if 2,(C4))
has a fixed point on H(IM)!, then N(2,((AD)) S M, so that A, and A4,
are conjugate in N, Since this is not the case, 2,(K4AD))H(MM) is a
Frobenius group, and so H(IM) is nilpotent, contrary to assumption.
Hence, 2,((A)) # 2,((4,>). By Lemma 26.18, either 2,(KA))H(M) or
2,(KAD)H(I) is a Frobenius group, which is not the case. Hence,
A, is cyelic.

Let A be a complement to P in IN, so that A is a cyelic S-subgroup
of IR,

By Lemma 26.15, % is prime on H(M) and C(N) N H(M) is a Z-group.

Let & = [¥, H(I)] and suppose that |A| is not a prime. By
Lemma 26.3, £ is nilpotent. By 8.7, & < HM). Hence F(H(I)) 2 !,
so that H(IM)/F(H(M)) is a Z-group. It follows that H(IN) £ W', the
desired contradiction.

LEMMA 26.17. Suppose Me # and 7,=n(HW))Nrn* 7,=
n(YHD) Nn*. Let ©,={py, -, P}, 2 >0 > -+ > p,, and 7,=
{9y, 1.}, @n> <+« >qn. Set T =1,U7,. Then a S.-subgroup of M
has a Sylow series of complexion (p,, *+«, Dy, @iy ***» Ow). Furthermore,
if ret, M has r-length 1.

Proof. We first show that M has r-length 1 for each » in 7.
If re¢n(H(IM)), this is clear, so suppose 7€ n(H,(M)). Let R be a
S,-subgroup of M and let A be a subgroup of R of order » such that
Cyx(A) = A x B where B is cyclic.

Let R, = RN O, (M), and W, = NR,). It suffices to show that
M, has r-length one, since WM = WM,0,.(M). Let B be a subgroup of
R, chosen in accordance with Lemma 8.2, and set T = 2,(B). Then
ker(, - Aut W) S M, N O, (W). If A S R, then m(BW) < 2, and we
are done. We can suppose that A £ R,. This implies that m(BW) < »,
since C(A) N T has order r and W is of exponent ». We are assuming
by way of contradiction that I has r-length =2, so by (B), we have
m(W) = r. Hence, m(W) = r.

Set B, = W/ D(W) and let W, = M, /ker (M, — Aut B,). Then A maps
onto a S,-subgroup of M,. Hence M, has a normal seriesl <€, c €, = M,,
where €, and I,/€, are r'-groups and |€,: €, | = 7.

Since m(W) = r, €, is abelian. Also ,/€, is faithfully represented
on €,/€, and since r € 7(H(IM)), €, M,.

By Lemma 26.16, | : M| = q is a prime, and W is a S-subgroup
of M. We let Q be a S,-subgroup of M,, so that O is of order q.
Since |M: W' | = | M, : W} |, it follows that O maps onto M,/€,. Let
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A denote the image of A in M, and let O denote the image of Q in
M,. Since €, is a r'-group and a ¢’-group, we assume without loss
of generality that O normalizes 9.

Let a be the linear character of Q on U, so that @ = 1. Let 8
be the linear character of Q on B,/yTW,A. Since ¢ divides (» — 1)/2,
Cm;l(@) is non cyclic. Hence, C(Q) N H(WM) is not a Z-group, contrary
to Lemma 26.15.

Thus, M has r-length one for each rez. Since a S.,-subgroup of

M has a Sylow series of complexion (q,, - -+, ¢,) and since a S.-subgroup
of I is 7,-closed, it suffices to show that a S, -subgroup of M has a
Sylow series of complexion (»,, «--, D,).

Let & be a S,, ., ;subgroup of M with Sylow system &;, §; where
»; > p;. By Lemma 8,16, & N N(8;) centralizes &;. Hence R is p;-closed,
since & has p;-length one. The lemma follows.

LEMMA 26.18. Let Mec _~# and let € be a complement for H(IN)
in M. Then there is at most one prime p in n(€) with the following
properties:

(i) A S,-subgroup of € is a non cyclic abelian group.

(ii) A S,-subgroup of ® is non abelian.

Furthermore, if n(€) contains a prime p satisfying (i) and (ii), then
a S,-subgroup of € 18 a Z-group.

Proof, Suppose p,, p;€ n(€), », # p, and both p, and p, satisfy (i)
and (ii). Let &, be a S,-subgroup of € and let G, be a S,,-subgroup
of € permutable with &,,

Let @, =UA; x B;, where |A;| = p;, A; centralizes H(M), B; H(M)
is a Frobenius group and 2,(B;) S Z(%P;) for some S, -subgroup PB; of
®,i=1,2. Assume without loss of generality that p, > p,. Then
@, normalizes &,. It follows that 2,(€, centralizes &,/%,, and this
implies that 2,(€,) centralizes 2,(B,). It follows that @ satisfies E, ,,.

By Lemma 26.17, N(P,) contains a S, -subgroup P} of &. By
Lemma 8.16, P}’ centralizes B, so centralizes &, Since C(Y,) E WM,
we see that p, € 7,. By Lemma 26.2, and Lemma 26.10, 3, now centralizes
%B,. This is a contradiction, proving the first assertion.

Now suppose p € (&) satisfies (i) and (ii), €, is a S,-subgroup of & and
@, is a non cyclic S,~subgroup of & permutable with €,, ¢ € n(€), ¢ # p.

Case 1, €, is non abelian.

In this case, &, is a S,-subgroup of & and g €x,, by Lemma 26.14.
Since €, & W, &, normalizes &,. Write €, = A x B, where A centralizes
H(?), BH(IM) is a Frobenius group, and 2,(B) & Z(P) for some S,-
subgroup of P of @ with €, =P. Then 2,(€,) centralizes &,/E, N C(H(IN)).
If @, centralizes €, then ® satisfies E,, as can be seen by considering



920 SOLVABILITY OF GROUPS OF ODD ORDER

N(E,).

We now show that & does not satisfy &,,. Otherwise, since
NE,) S M, we see that &, normalizes some S,-subgroup P* of ©.
Then €, centralizes 3* by Lemma 26.2, Lemma 26.14, and Lemma 8.16.
This is not possible since €, is abelian.

Hence, & does not satisfy E, ,, so 2,(€,) does not centralize &, and
g > p. Thisimplies that | €, : €, N C(H(M)) | =¢q. Hence &, N C(2(€,))=
€; is of order q.

Consider N(2,(€,)) =RN. Since a S,-subgroup of N has order
p|€,|, it follows that a S, ,subgroup of R is g-closed. Let %, be a
S,-subgroup of N containing €F. If §F, is not of order ¢, then N(2,(F.))
contains a S,-subgroup of &, a S, ,-subgroup of N(2,(%,)) is g-closed,
and a S,-subgroup of N(2,(%,)) has larger order than &,. As N(C,) S
M, this is not possible. Hence §, = € has order ¢. But now a
S.;-subgroup of N(%,) contains & and Z(€,), so a S, ,subgroup of
N(F,) is g-closed. This in turn implies that a S,-subgroup of N(E,)
has order larger than |€,|, which is a contradiction.

Case 2. €, is a non cyclic abelian group.

By the first part of the proof, and by Lemma 26.13, €, is a S,-
subgroup of &. Since 2,(€,) centralizes € /E, N C(H(WM)), and since
G, LC(H(I)), it follows that ® satisfies €,,. This implies that a
S, ,-subgroup of & is p-closed, by Lemma 26.2. Hence, &, centralizes
the center B of some S,-subgroup of ®, since 2,(€,) centralizes 2,(B),
(where €, = A x B, as in Case 1). To obtain the relation [2(E,), 2,(B)}
=1, we have used Lemma 26.13 to conclude that there are at
least 2 subgroups of &, of order ¢ which have no fixed points on H(?), or
else &, S M’ in which case &, normalizes &, and so 2,(B) centralizes €,.

But now N(2,(®8)) dominates &,, so &, centralizes some S,-subgroup
of ®, contrary to C(€,) S M. The proof is complete.

LEMMA 26.19. Let Me _#. Suppose M/H(M) is abelian., Sup-
pose further that either H(IM) is nmilpotent or |M: H(M)| i8 not a
prime. Then M 18 of type I or V.

Proof. Let & be a complement for H(M). Since H(IM) = I’
by hypothesis (we always have H(IN) S I’), & = M/WM' is abelian.

Case 1. € is cyclic.

We wish to show that H(I) is nilpotent, so suppose || is not
a prime. Since | €| is not a prime, since € is prime on H(IM), since
¢ has no fixed points on H(IM)/H(MN), and since C(E) N HEM) is a
Z-group, it follows from Lemma 26.3 that H(IN) is nilpotent, so that
C(E) N HI) = €, is cyclic.

Case 1la. G, =1,

In this case, M is a Frobenius group with Frobenius kernel
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H(R) = W', so condition (i) in type I holds. If H(M) is a T.I. set
in ©, then M is of type I, since (ii) (a) holds, so suppose H(M) is
not a T.I. set in ®. Let H(M) =P, x --+ x P,, where P, is the S, -
subgroup of M and {p, ---, .} = (HEM)). If p,em, then clearly
p;ent. If p,em,Nx*; then also p, € n}, since EZ(P;) is a Frobenius
group. Similarly, if p; e, and ; is non abelian, then p; e 7.

Suppose »,¢7m*. Then either p;em, and B, is abelian, or
p;em, — *. We will show that the second possibility cannot occur.

Choose G in & — M such that T = HA) N HE)? + 1, and let
H be an element of ® of prime order p. If p,en, — x*, and p = p,,
then C(H) 2 {PB;, B¢, and M = M¢, contrary to assumption. Hence,
p=p;. In this case, C(H)22{C(H)NP;,, C(H)N P>, and since
p;€E®, — *, both C(H)N P, and C(H) N P¢ are in 27, so M = M,
Hence, (r, — #*) N a(H(M)) = 2.

Thus, if 7(H(I)) & 7, then 7(H(IM)) contains a prime ¢q such
that the S,-subgroup L of W is abelian and gex,. Since |[€] does
not divide ¢ — 1 or ¢ + 1, but |€| does divide ¢ — 1, we can find
r, 7, € () such that »,|¢—1 and 7,|¢+ 1. Let & be the S, -
subgroup of €. Then Q = Q, x Q,, where Q; is normalized by €, and
Q; is cyclic, ¢ = 1,2, Since 7,|q + 1, it follows that Q, and Q, are
isomorphic €, -modules. Hence, €, normalizes every subgroup of Q.

Once again, choose G in & — M so that D = HIM) N HIM)® = 1.
Then C(D) 24K, 0, so C(D) is not contained in any conjugate of
M. Let C(DY=WMe_»#. We apply Lemma 26.13 to M, and Q.
Since C(2,(L)) = H(IM), we have H(IM)<S M,.

Suppose H(IN) were not abelian. Let R be a non abelian S,-
subgroup of H(IMM). Apply Lemma 26.16 to I, and R, and conclude
that N(2,(Z(R))) < M,, and so M S IM,, which is not the case. Thus,
alternative (ii) (¢) in the definition of type I holds, so IR is of type
I. (Since H(M)e 27, H(M) is generated by two elements.)

Case 1b. G, # 1,

Since H(M) = T, we have G, HMY S HWY U {1}. It follows
that N(E;) S M for every non empty subset &, of Gt Let G = GG, —
G—-6¢. If @0 is any non empty subset of (5, then each element of
@, is of the form EE, Ec®, E c@. Thus, if § = {(E®|E,cC)},
then N (@o)g N (%o) SIM. Since MN N (@'o) = @, M is a three step
group with € in the role of Q*, H(M) in the role of 9, €, in the
role of *. Since H(IMM) = W', we take W =1, so that (i) in the
definition of type V holds. If (ii) (a) holds, then M is of type V,
so suppose (ii) (a) does not hold.

Since G, < HMNY, H@AR) is non abelian. Let H(M) =P x &,
where P is a non abelian S,-subgroup of H(IN) (there may be
several).
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We will show that &, is a T.I. set in ®. Suppose Ge® — M
and &, N Sf = D is a maximal intersection, so that N(D) is contained
in no conjugate of M. Let M, e _»~ with N(D)SM,. Apply Lemma
26.14 to WM, and P and conclude that iUtCiml, a contradiction.
Hence, &, is a T.I. set in &,

Since H(IM) is not a T.I. set in ®, choose Ge® — M so that
1+ H) N HM)® is a maximal intersection. Since &, is a T.I. set
in ©, we see that HM) N HIN)® = D, = PN B, and N(D, is con-
tained in no conjugate of M, while N(D)26S,. Since &, is a T.I.
set in N(9,), and since N(®,) £, &, is cyclic. By construction, P
is non abelian, so pen*, It only remains to show that pecx*.

Apply Lemma 8.16 to P and & If € does not centralize Z(P),
then |&| divides p — 1 and we are done. Suppose that € centralizes
Z(P). Then € is faithfully represented on 2,(Z.(B))/2.(Z(P)), so if
| QU(Z(P)): 2(Z(P))| = p, we are done. Otherwise, we let P, be an
element of P of order p such that Cg;(Po) = (P> x U, where U is
cyclic. Since |2(Z(PV)): 2(Z(P))| = p*, we have P,c 2(Z,(P)), so
(Po 2(Z(P)><AP. By Lemma 8.9, & +(P) is empty. By
Lemma 26.2, P is a central product of a cyclic group and 2,(P),
with [ 2(P)| = p*. Since PS W and since & centralizes Z(P), we
have |P|=p’. € is faithfully represented on PB/P’, and since €
centralizes ', each element of & induces a linear transformation of
PB/PB' of determinant 1. Thus, || divides either p — 1 or p + 1,
since & is isomorphic to a cyclic p’-subgroup of SL(2, p). Hence,
peny, and W is of type V.

Case 2. € is non eyclic.

Case 2a. There is an element p ¢ w(E) such that the S,-subgroup
€, of € is non cyclic and a S,-subgroup of & is non abelian, In
this case, Lemma 26.18 implies that € = &, x % where § is eyclic.

Let €, =6G,xE,, with |G, =9 €E,S Z(M), and with
G, H(M) a Frobenius group. Also § is a cyclic S-subgroup of M.

We will show that &, FH(IM) is a Frobenius group. If § =1,
this is the case, so suppose ¥ + 1. By Lemma 26.16, ¥ is prime on
H(M). Let * = C(%) N H(M), and suppose H* + 1. Then €, H* is
a Frobenius group. Let M, be a maximal subgroup of ® containing
N(Z), & being a fixed subgroup of & of prime order. Then I, is
not conjugate to M. Hence, M N M, € 2;. Since €,,H* is a Frobenius
group, €,, N M = 1, so a S,~subgroup of IR, is abelian. By Lemma
26.12, €, H(IM,) is a Frobenius group, so H(IM) N M, centralizes H(I,).
Since 1CH*S HIM) NM, we see that MS M, which is not the
case. Hence, $* = 1, so FH(IM) is a Frobenius group, as is &,,FH(N).
M itself is a group of Frobenius type.

Suppose ' is not a T.I set in ® and 7(W') £ 7}, It follows readily
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that D' is abelian and is generated by two elements. M is of type I.

Case 2b. Whenever a S,-subgroup of & is non cyclic, a S,-
subgroup of ® is abelian.

Let # be the set of primes p n 7(€) such that a S,-subgroup
of € is non cyclic. Let € = €, x &,, where €, is the S;-subgroup of
€. Thus @, is a cyclic S-subgroup of M, and # +# @. By Lemma
26.13, €, is a S-subgroup of ®.

We first show that if pe® and €, is the S,-subgroup of &,, then

(26.6) CE)NHI) =1

This is an immediate consequence of Lemma 26.13 (iv) and Griin's
theorem, since W' N €, = 1.

We next show that either &, = 1 or & H(IM) is a Frobenius group.
Suppose €, + 1. By Lemma 26.15 &, is prime on H(IR). Suppose
O*=CE)NHI) +1. Let €, be the S,subgroup of &, for some
qen(§,), and let M, be a maximal subgroup of @ containing N(E&,).
Then I, is not conjugate to k.

By Lemma 26.18 (ii), together with W N &, = 1, there is some
element of 2,(¢,)* which has no fixed points on H(IM), so H* is
cyclic. By construction <€, 9*>SM,. Suppose WM, N H(IN?) is non
cyclic for some G in ®. Let R be a non cyclic S,-subgroup of
MmN HEIRE., If a S,-subgroup of © is abelian, then H(IM®) =M, by
Lemma 26.13 (i) and (ii). Since €S M,, we have M? = MW,, which
is not the case. Hence, a S,-subgroup of & is non abelian. If R
were non abelian, then M, = WM for some G, in G, by Lemma 26.14
with R in the role of 8. Hence, R is abelian. By Lemma 26.13,
R=RXR, | R | =7, R, centralizes H(IM,) and R,H(IN,) is a Frobenius
group. By (26.6), RS M, so R, < M,. Since RH(M,) < MWM,, we can
find a S,-subgroup R* of M, which is normalized by &,. Since IM
and M, are not conjugate, w(H(WM)) N 7(H(M)) = B, so R* does not
lie in H(I,), and R* does not centralize H(M,). There are at least
» subgroups P, of 2(€E,) with the property that T,LR*/R, is a Fro-
benius group, by (26.6). Each of these has a fixed point on H(IN):.
It follows from Lemma 26.13 (iii) that I, dominates &,. This is
absurd, by (26.6) and Lemma 8.13. Hence, I, N H(WE) is cyclic for
all G in . In particular, M, N H(M) is cyelic. This implies that
M, N HEN) is faithfully represented on H(IR,), so H* is faithfully
represented on H(M,). By (26.6), at least p subgroups of &, or order
p have fixed points on H(IM,), so WM, dominates &,, which violates (26.6),
by Lemma 8.13. &,H(IM) is a Frobenius group. Thus, in the defi-
nition of a group of Frobenius type, the primes in n(€,) are taken care
of. Let &, = €,, x €, with|€,,| =<|€,.|, pe 7, and where §,; is cyclie,
+=12. 1If |€,|<|E,,]|, then 2,(€,,) char ¢, By Lemma 26.14
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(v), it follows that E,,H(M) is a Frobenius group. If |E,,| = |C,,|,
then by Lemma 26.14 (iii), there is some element P of order p in G,
such that (PO>H(IM) is a Frobenius group. Thus, & contains a sub-
group &* of the same exponent as & with the property that G*H(I)
is a Frobenius group. M is of Frobenius type.

If H@AR) is not a T.I. set in ®, and n(H(M)) & «r}, it follows.
readily that H(IN) is abelian and is generated by two elements. The
proof is complete.

LEMMA 26.20. Let Me _# and let T be the subset of primes p
wn T(M/H(N)) such that a S,-subgroup of WM is a non cyclic abelian
group and a S,-subgroup of © is abelian. Let & be a complement for
H() in M. Then a Si-subgroup P of € is a normal abelian sub-
group of € and PNE =1 or L.

Proof. We can suppose L'+ 1. Let pef and let €, be a S,-
subgroup of €. We first show that €, < €. Let gen(€) and let
€, be a S,-subgroup of & permutable with &,. If &, is non abelian,
then N(Q(Z(E))ESM, by Lemma 26.14. If 02,(Z(E,)) centralizes
2.(€,), then €, &M so that &, centralizes &, We can suppose
that 2(Z(€,)) does not centralize 2,(€,). Since 2,(E,) centralizes
€,/€, N C(H(IM)), and since &, Z C(H(WM)), it follows that €, & so
that &, centralizes &,.

If €, is a non cyclic abelian group, then ¢€# by Lemma 26.18.
If € 46E,¢E, then €, normalizes &, and £2,(€,) centralizes
G/E, NCHED)). If € NCHE) =1, then N(E,) dominates 2,(€,),
so €, centralizes €,. If €, N C(HW)) +# 1, then €, N C(2(E,)) domi-
nates &,, so that &, dominates &, and once again &, centralizes &,.

Suppose €, is cyclic. We can suppose that &, normalizes &,.
Then 2,(€,) centralizes &,. If qem, U7, then &, centralizes €,
since €, S N(2,(€,)). We can suppose g€ m, and that a S,-subgroup
Q of C(2(E,)) is in 27. In this case, however, C(P) & M(X) for all
Pe @, so M = M(Q) which is absurd. Hence, €&, < €, so that P is
a normal abelian subgroup of &.

Suppose & contains a non abelian S,-subgroup &, for some prime
g. Then N(2(Z(G,))) SM, which implies that PSI, since N(E,)
dominates each Sylow subgroup of .

Thus, in showing that PN =1 or B, we can suppose that
every Sylow subgroup of € is abelian. By Lemma 26.18 and the defi-
nition of #, this implies that a S;-subgroup § of € is a Z-group.
This in turn implies that § N MM’ is a S-subgroup of WM. Let F be
a complement for F NP in F. Then F, is cyclic. If Fp, =1, then
& is abelian and we are done. We can suppose §, # 1.

Suppose $,is not of prime order. Let T = [T, PH(M)]. By
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Lemma 26.3, and Lemma 26.16 ¥ is nilpotent. If [, P] # 1, then
[Bo, €51 = 1, for some S,-subgroup €, of P. Hence, N([F,, &,]) domi-
nates every Sylow subgroup of P. Since [F, H(IN)] can be assumed
non cyclic, PSS WM', and we are done. If [F, B] =1, then PN W =
1, and we are done.

We can now suppose that &, is of prime order . We can now
write P = P, x P, where B, =PNCEF) and P, =[P, F), and we
suppose by way of contradiction that P, #+ 1,7 =0, 1.

Choose p so that &, N B, # 1, where €, is the S,-subgroup of PB.

If B, N &, centralizes H(M) N C(F,), then N(P)< M, by Lemma
26.13, since H(M) N C(F,) # 1. Since B, N &, 4 N(€,), B, N &, = DY,
contrary to construction. Hence we can assume that (3, N €,)H*
is a Frobenius group, where $* = H(I) N C(%,). Let M, be a maxi-
mal subgroup of @& containing N(F,). Since B, N E, 4 N(E,), it
follows that LB, N E, S I, since N(F,) dominates €,. Since MM, is
not conjugate to M, it follows that m(H (W) N 7(H(M)) = @, so that
O* N HE) =1. Since [9*, B, N E,] # 1, both B, N &, and [*, B, N G, ]
are in IM,, so commute elementwise. Thus [$*, B, N €,]=1, contrary
to the above argument. The lemma is proved.

LEMMA 26.21. Let Me _ 7 and suppose mw(IMM/I) contains a
prime p such that a S,-subgroup of WM is non cyclic. Then W 18

of type I.

Proof.

Case 1. A S,-subgroup of & is abelian.

Case 2. A S,-subgroup of ® is non abelian.

In Case 1, let 7 be the subset of those ¢ in #(IWM/H(IM)) such that
a S,-subgroup of I is an abelian non cyclic S,-subgroup of &. Then
pe 7, and if € is a complement for H(M) in N, then a S;-subgroup P of
& is an abelian direct factor of & by Lemma 26.20. Let € =B x F.
[f ¥ were not a Z-group, then some Sylow subgroup ¥, of § would
be non abelian, by Lemma 26.18 and the definition of #. But then
N(F,) &M, by Lemma 26.14. Since N(F,) dominates every Sylow sub-
group of P, we would find PSP, which is not the case. Hence,
& is a Z-group.

Let %, be a complement for § in ¥, and let ¥, be the S,-
subgroup of F,. Let * = H(IM) N C(2«(F,)). Since H* is a Z-group,
and since N(2,(%,)) dominates every Sylow subgroup of %, P central-
izes $*. By Lemma 26.13, $* = 1. Hence FH(M) is a Frobenius
zroup.

Let §, be the S,-subgroup of ', and let $* = H(M) N C(2(F.)).
[f $* is a Z-group, then $* = 1 as in the preceding paragraph. If
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$* is not a Z-group, then since N(2,(F.) dominates every Sylow
subgroup of B, we find PSP, which is not the case. Hence,
FH(M) is a Frobenius group.

If ¥ is non abelian, then m(Z(9,)) = 8 for every S,-subgroup 9o,
of H(IN), so that H(M) is a T.I. set in G. By Lemma 26.13, I is
of Frobenius type, so I is of type I. If ¥ is abelian, € is abelian,
so M is of type I by Lemma 26.19.

In Case 2, let € be a complement for H(IR) in AN, let €, be a S,-sub-
group of €, and let % be a S,-subgroup of & Let &, be a complement
for F NI in F. Then F, is a S-subgroup of M, and F, = 1 is a possi-
bility. We can suppose §, is permutable with &,, so that $, normalizes
¢€,, since by Lemma 26.18, ¥ is a Z-group, and &, N ' = 1.

Let €, = A x B, where A centralizes H(IM), BH(M) is a Frobenius
group, ¥, normalizes both % and B, and 2,(B)<= Z(P) for some S,-
subgroup P of @. By hypothesis, [F,, €,] < &,.

Suppose ¥, # 1. Let F* = F N C(B), and suppose that 1 C F* C
%o Let FF be a fixed subgroup of F* of prime order. Then $* =
H(M) N CGFF) = HI) N C(S,) is a Z-group normalized by F:B. Since
%:B is non abelian, D* = 1. Hence F*BH(IM) is a Frobenius group.
Since %, is prime on H(WM), FH(M) is a Frobenius group. In par-
ticular, every subgroup of {, of prime order centralizes B.

Let & = § NIV, and suppose that §, + 1, so that our running
assumptions are: F = 1, 1 F* B B # 1. Suppose FH(IMM) is not
a Frobenius group, and let § be a subgroup of prime order such
that * = HM) N CFF) # 1. It follows that N(F)S M. But Fr
centralizes 2,(€,), so &, is not a S,-subgroup of N(F). Hence
BFH(IN) is a Frobenius group, in case 1 F*C F. Hence, M is of
Frobenius type in this case. If BF is non abelian, then m(Z(9,)) = 3
for every S,-subgroup 9, of H(MM), r € 7(H(WM)), so H(WM) is a T.I. set
in @ and M is of type I. If BF is abelian, and H(M) is not a T.I
set in ©, and 7(H(M)) £ =¥, then m(H(IMM)) =2 and H(M) is abelian.
M is of type I in this case.

Suppose now that ¥, = F* # 1. In this case AF < E. Since
BH(M) is a Frobenius group and A centralizes H(WM), it follows
readily that FH(IM) is a Frobenius group, and that M is of type I.

Next suppose F* =1,%, # 1. Since F, is prime on H(IN), F, is
of prime order. Since ¥, does not centralize B, F, does centralize
A. Let 9* = HI) N C(F.,), so that $* + 1. Since A centralizes
H(M), A centralizes H*. Since BF, is non abelian and BH(M) is a
Frobenius group, it follows that H(IM) is a T.I. set in @ and that
$* is cyclic.

Let I, be a maximal subgroup of & containing N(%.,). Then I,
is not conjugate to M. Let &, be a complement to H(IM,) which con-
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tains $*. If A S H(IR), then since C(A)= M, D* centralizes a non
cyclic p-group, which is not the case. Hence, AL H(IM), and we can
suppose that ASE,.

Since N(D)< M for every non empty subset D of (AH*)Y, it follows
that AH* is prime on H(IR). Let $F = HIN) N M, so that $ & HF, and
9 is prime on H(M,). Since N(F) S M, it follows that HF = H*.

If A is not a S,-subgroup of M,, then 2,(B)¥ =M, for some M
in M. But then 2,(B)*H(IM) is a Frobenius group, as is Q2,(B)*H*,
so that ©* centralizes H(IM,), which is absurd. Hence % is a S,-
subgroup of M,

If %&£ H, (M), then either |F,|ex, or a S,gol-subgroup of M, is
abelian. But in the first case, $* dominates §, contrary to
Fo NP =1, while in the second case D*A normalizes some Sig,-
subgroup £ of M, with F, S K, and [R, D*AJH*U is a Frobenius group.
As ©*: is prime on H(IM)) and | H*A | is not a prime, it follows that
[©*Y, &] centralizes H(M,). If R is a Slgorsubgroup of &, then $*A
dominates 8, so §, S T, which is not the case. Otherwise, a Sig,-
subgroup of & is non abelian, and 2,([®, $*A}) is contained in the
center of some S,%o.-subgroup of &. But N([9*U, KD<=M, and a
S,%ol-subgroup of M, is abelian. Hence, §,S H ().

We next show that $*U is a complement to H(IM) in WM.
Namely, turning back to the definition of %, we have § = F(F N W').
But BS T, and U centralizes H(I). Hence, F=F, or § is a
Frobenius group with Frobenius kernel ¥ NIM'. Now, since F, <=
H,(M,), it follows that T, N M S O*AH (). This implies that H*A
has a normal complement in €, If *A # §, then €, is a Frobenius
group with Frobenius kernel €] and €, = €9*U. This is absurd
since 9*A is prime on H(WM,), and | H*A| is not a prime. Thus H*A
is a complement to H(IM,)) in M,. Now, however, H(IM,) is nilpotent.
Since ¥, has no fixed points on (& N W')¥, it follows that M N M, =
B U,

Since $*A centralizes F, it follows that %, & H(IM,)Y. We next
show that H(I,) is a T.I. set in &. Namely, |3, divides » — 1,
since [B, F] =B. Hence p> | F |; since | ¥ | is a prime, |F,|e 7, — 7%,
so HM,) is a T.I. set in G.

We now turn to N(E,). Let IR, be a maximal subgroup of &
which contains N(2,(8)). Then I, is not conjugate to either WM or
I, since the S,-subgroups of these three maximal subgroups are
pairwise non isomorphic. Let B be a S,-subgroup of M, containing
&, and normalized by %, If pem, then §, does not map onto
N(B)/PC(B), since F, centralizes A. But then N(T,) covers
N(B)/PC(P). This is not the case since N(F)E&S M, and AL M.
Hence, p¢m,, so pem, and P& H(M).
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Since C(F,) N H(M,) S M,, and since
1=(H@) |, | HO) |- | HEY) ),

it follows that C(F.,) N H(IT) = A. Hence, N(§,) N M, normalizes
A. But NGE)NN®E) = FAD*. (This turns the tide.) Suppose
N@) NP, DOAF,. Then M, contains a non identity subgroup H**
of $*. But H(IM,) contains B, and we find that [D**, B] = H** <
H(I,), which is not the case. Hence N(%F,) N T, = AF..

By Lemma 26.17, I, has p-length one. Let &, = 0,.(IN,), so that
PRYR, = P M, = M/RK,. Then M,/PR, is a Frobenius group whose
Frobenius kernel is of index |3, |, or else M, = PR, F. In any case,
by Lemma 8.16, M, centralizes PB/P’. But now A Z M;, which is a
contradiction to H(I,) & M.

We have now exhausted all possibilities under the assumption
that &, # 1.

Suppose F, = 1. In this case, FES I, §F is cyclic and ¥ is nor-
malized by &,. Since BH(M) is a Frobenius group, 2,(B) centralizes
®, so Q(C,) centralizes §. This implies that FH(IM) is a Frobenius
group, or § = 1. In both cases, M is of Frobenius type. If § +# 1,
then BF is non abelian, so m(Z(9,)) = 3 for every S,-subgroup 9, of
HM), ren(H(IM)), and H(IN) is a T.I. set in &, If § =1, then
¢ = @, is abelian, and the lemma follows from Lemma 26.19.

LEMMA. 26.22. Let 2 be the set of Z-subgroups 3 of & with
the following properties:

(i) If p,q are primes, every subgroup of B of order pq is
cyclic.

() 3=8:%x8,18:l=2+1,i=1,2 and for any non empty
subset B, of 8 — B, — Bs N(8) & 3.
Then 2 18 emply or consists of a wunique conjugate class of
subgroups.

Proof. If B3e 2°, and 8 = B,x B, satisfies (i) and (ii), then
3 =8 — 8, — 8. contains (2, — 1)(z, — 1) elements. Since 3 is a
Z-group, (2, 2,) = 1. 3 is clearly a normal subset of 8, so N(g) =
8. Suppose Ge® and Z eg N 3". Then there is a power of Z, say
Z, = Z* such that Z,¢ :?) N 33" and such that Z, has order »,p, where
p; is a prime divisor of |8;| = 2;.. Then {8,> <1<{8,3% and so 8 =
3%, Ge 3. Thus, the number of elements of & which are conjugate
to an element of 3 is

18] (2. — 1)z, — |®]
(26.7) @ VE - >k
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Suppose 3* is another subgroup of 2~ and 8* = 3 x 8 satisfies
(i) and (ii). Set 3* = 8* — 8f — 8. We can assume that 3*N 3 %«
@, by (26.7), and it follows that 8* = 8. The proof is complete.

LEMMA 26.23. Let Me _»~, and suppose M’ is a S-subgroup of
T, | M : WM | 8 not a prime, and WM/ is cyclic. Then M is of
type I or V, or M has the following properties:

(i) HM) i8 a nilpotent T.I. set in G.

(ii) If € i3 a complement for H(M) in M then

(a) € i3 a mon abelian Z-group and every subgroup of €
of order pq 18 cyclic, p, q primes.

(b) € is prime on H(M), and &, = HM) N CE) 18 a non
rdentity cyclic group.

(iii) GC, = B satisfies the hypotheses of Lemma 26.22,

Proof. If MM = H(M), the lemma follows from Lemma 26.19.
We can therefore suppose that H(IMM)cWM'. Let € be a complement
for H(M) in I, let ¥ be a complement to & = EN WM’ in €. Then
‘% 18 a cyclic S-subgroup of I, and |F| is not a prime.

If M is a Frobenius group, then m(Z(9,)) = 8 for every non
identity S,-subgroup 9, of H(IM), so HM) is a T.I. set in &, and
we are done. We can suppose that I is not a Frobenius group.

Suppose FH(IM) is a Frobenius group with Frobenius kernel H(IN).
With this hypothesis, we will show that I is of type 1.

Let &, be a cyclic S,-subgroup of &,. Suppose $* = H(IM) N C(2,(E,))
# 1. Then €,¥, normalizes $*. Consider N(2,(€,)) 2<9* €,, .
Since |$| is not a prime and FH* is a Frobenius group, it follows
that N(2,(C)) =M. Hence, €, is a S,-subgroup of ®. Since €,
does not centralize H(IM), it follows that every subgroup of ¥ of
prime order centralizes &,. Since G, &SI, |§F| is not square free,
.and § contains a S,-subgroup F, such that [€,, F] =+ 1. Consider
NQ(B)). If qem, then [T, E,]=1. If genm or qer, and a S,-
subgroup of ® is non abelian, then F, S N(2,(F.)), so once again
1$.,6,]=1. If genr, and a S,i-subgroup of & is abelian, then
N(2,(E,)) contains a S,-subgroup of &, contrary to N(2,(€,))<S M.
Hence ©* =1 and G, H(M) is a Frobenius group.

Since M is not a Frobenius group, &, containg a non cyclic S,-
subgroup ¢, for some prime p. If €, is abelian, and a S,-subgroup
.of @ is non abelian, then € = €,-€,,, and €, is a Z-group. In this
case, &, H(IM) is a Frobenius group, and so M is of type I. If €,
is abelian, and a S,-subgroup of ® is abelian, then &, is a S,-subgroup
of . In this case, every subgroup of & of prime order centralizes
&,/€, N C(H(M)), so centralizes €} for some non identity subgroup
of &, Since pem, and a S,-subgroup of & is abelian, it follows
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that if §, is a S;subgroup of ¥ which does not centralize €, then
g€, a S;subgroup of @ is abelian, and &, is normalized by a S,-
subgroup Q of & with F, L. Since C(2(E,)) M, CE,) N QS FK..
Since £ is of type (¢%, ¢*), ab > 0, there is a direct factor of & which
normalizes every subgroup of &,. Hence, %, is this direct factor.
Hence, ¢ divides p — 1, so we have €, =€, x §,,, where €, is
normalized by Q. It follows that G, H(IM) is a Frobenius group for
1=1,2.

Suppose every Sylow subgroup of € is abelian. Let # be the
subset of » in m(€) such that a S,-subgroup of & is non cyclic, and
let B be a S;-subgroup of €. By Lemma 26.18 and the preceding
paragraph, P is a normal abelian subgroup of & Hence, I is of
Frobenius type. Since € is non abelian, H(M) is a T.l. set in &, so
M is of type I.

Thus, if FH(IM) is a Frobenius group and every Sylow subgroup
of & is abelian, then I is of type I.

Suppose FH(IM) is a Frobenius group, and &, is a non abelian
S,-subgroup of & Then &, is a S,-subgroup of ® and pex,. Since
every subgroup of § of prime order centralizes &,/C, N C(H(M)),
and since €, Z C(H(M)), Lemma 26.9 implies that § centralizes
E,/€, N C(H(IM)). This violates the containment ¢, SIWM’'. Hence, if
SH(IM) is a Frobenius group, M is of type I.

Suppose now that FH(IM) is not a Frobenius group. Let € =
C(®) N HM). By Lemma 26.15, @ is a Z-group. By Lemma 26.3,
H(T?) is nilpotent so @, is cyclic. Since every subgroup of § of
prime order centralizes &' /& N C(H(WM)), it follows that & normalizes
€, so centralizes @, since Aut €, is abelian. Hence, &, < H(W)'.

Since every subgroup of § of prime order centralizes
G’ /€ N C(H(M)), it follows that G’ is abelian. Suppose &' were non
cyclic. Let &, be a non cyclic S,-subgroup of ¢'. By Lemma 26.12,
together with €, = 1, €, is a S,-subgroup of .

Let ¥, be a S,isubgroup of % which does not centralize
G/, NCHEIM), and let G =CNCARAGB))#*1. Then N=
N(2,(F)) 2B, €, ). It follows now from €, S HM)' = f!(‘.UZ) U {1}
that either %, is not a S,-subgroup of @ or §, & W', both of which
are false. Hence, & is cyclic. This yields that every subgroup of
& of order pq is eyclic, p, ¢ being primes.

We next show that & is prime on H(M). Since C(E)=2
CR)NHM) =G, for all Ec@ it suffices to show that &, =
C(E)N HM) for all Ec@*. Suppose false and €, is a S,-subgroup
of & such that C(2.(€,) N HM) = ¢, > E,. Since FE,/C, is a Fro-
benius group, it follows that €, is a S,-subgroup of & and N(€,) <
M. In this case, let ¥, be a S,-subgroup of § which does not
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centralize €, and consider N(2,(%,)) 2<€E,, §>. If ¢exr, Lemma 26.9
is violated; if ¢em, then F, S N(2«(F.)) 80 [Fo, €l =1; if gem, F,
is not a S,subgroup of N(€,), contrary to N(G,)S M. Hence, € is
prime on H(M), and so &, = C(E) N H(M) for all Ec@*. Since € is
non abelian, H(IM) is a T.I. set in @.

Let 8 = €€,, and let 3 = @€, — € — @,. By construction, € = 1,
G #1, and NB)NM=3. Since &< HDY S HI U {1}, NB)S
IR for every non empty subset 3, of &. Since (€|, |E,|) =1, this
implies that N(B) 8 and N (8°)C8 for every non empty subset 80

of 3 Thus, 3 satisfies the hypotheses of Lemma 26.22. The proof
is complete.

LEMMA 26.24. Suppose Me _# and M is of type V. Then W’
18 tamely imbedded in .

Proof. We can suppose that I’ is not a T.I. set in &. Let
€, = M’ N C(€), where € is a complement to PV in M. Then &, %=1,
and ¢, SIMM"”. Hence, P is non abelian. Let W = P x S, where
P is a non abelian S,-subgroup of W', and &, is the S,-subgroup of
M’ for some prime p (there may be several).

We show that &, is a T.I. set in ®. If &, =1, this is the case.
Suppose &,+ 1, and Se& NS, S+ 1. Then C(S)2{PB, B*. Let
M, be a maximal subgroup of & containing C(S). By Lemma 26.14,
NER(Z(P)) & WM,. Hence MSIM,, so M=, 2P¢ and so P=P°
and Ge M.

Since I is not a T.I. set in &, it follows that &, is cyclic.

Suppose MeIW, M+ 1, and C(M)ZL M. Since every subgroup
of & is normal in M, it follows that MeB. Furthermore,
{M>N T(P) =<1), so M is of order p, and Cop(M) =<{M)> x B x &,
where B is a non identity cyclic subgroup of B, and B2 2.(Z(P)).
(Notice that since M¢M”, Cy(M) S IY.)

Let M, be a maximal subgroup of & containing C(M). Then a
S,-subgroup of M, is abelian, by Lemma 26.14, so {<M>xB is a
S,-subgroup of IR, by Lemma 26.6. By Lemma 26.12 BH(I,) is a
Frobenius group.

Let £ be a complement to H(I,) in M, which contains Cgy(M).
Since BH(M,) is a Frobenius group, it follows that (M) x 2,(B) < 8.
This implies that 8 =M, so that L = WM N M.

We next show that (I, | H(N)|) = 1. This is equivalent to
showing that (€|, | H(IMM)|) = 1. Suppose false and ¢ is a prime
divisor of (||, | H(IM)|). Since pen*,q divides p+1 or p — 1.
Since p divides |M,: H(R)|, and BH(I,) is a Frobenius group,
genm,— n*. Thus, if @ is any element of & of order ¢, then C(Q)
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is contained in a unique maximal subgroup of ®&. Let @ be an
element of € of order ¢, and let M, = M(C(Q)). Then EE, S M,. Since
gem, — *, M, is conjugate to M, in &. Since €S, is a Frobenius
group or &, =1, @, is a p-group. We can thus find G in @ such
that M¢ = M,, and we can suppose that {E¢, M, B) is a p-group.
This implies that G¢<= M, so that Ge M. Since <M,B) is a S,-
subgroup of M, we have GI= (M, B). Since €, SM" and Ge M,
S M’ N<M, B, and so 2,(€F) = 2,(B). But now [2,(Cf), ] =1,
contrary to Q%c H(IR) and 2,(B)H(IM,) a Frobenius group. Hence,
(M|, | HID) ) = 1.

By construction, C(M) S IR,. We next show that Ngp(KM)) is a
complement to H(IM,) in M,. Since L=WM N M, it follows that
<M <&, since <M, B 1€ and {M)<S C(H(I)). Thus, €= Ny(KMD).

We next show that two elements of ' are conjugate in & if
and only if they are conjugate in M. Let M, M, e M*, and M = M¢,
Ge®. Since &, is a T.I. set in @, we can suppose M, M,eB. If
Me f!(sm), then C(M)S I, so PPN M is non cyelic, and so GeM.
We can suppose M¢ IAJ(‘,IR). In this case Cyg(M) is a S,-subgroup of
C(M). Now C(M)=2{2(Z(B)), 2(Z(P))>, so we can find Ce C(M)
so that 2,(Z(P)°S Cg(M). As observed earlier, this implies that
Q(Z(B9)° = 2(Z(P)). Since 2(Z(PY))° = AW(Z(P)*°, and M=
N(Q2(Z(B))), we have GCeM. Then MF’ = MY so M and M, are
conjugate in M, namely, by GC, since C e C(M).

Let M, ---, M,, be a set of representatives for the conjugate
classes €,, ---, €, of elements in IM which are in M* and satisfy
CMH)ELEM, 1 <1 <m. As we saw in the preceding paragraph, C(M,)
is contained in a unique maximal subgroup of &, for each 7, in fact,
N(KM)) is the unique maximal subgroup of & which contains
CKM>). Let ;= NKM)), 1<i<m, and suppose notation is
chosen so that R, ---, M, are non conjugate in &, while N; is con-
jugate to some \; with1 < i< n, if n+1<7<m. Set O, = HR),
l1<i=m, so that (|9:],|9;)=1if1=4,7=sn,1+].

Let

R, =U Cm‘(H) - 9.
mept
Since M, =%, it follows that N(R) = R.. Also, R, = DR, N W)
and ;NM=1. If .NMSWW, then N; N M is abelian, and in
fact N, N M =M, x B; xS, where B; is a cyclic subgroup of P.
Since (B, x &,)9; is a Frobenius group,

(26.8) = U M9 U{1},

net
so is a T.I. set in ®.
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Suppose N, NMZWM'. Then NP AR NM, and K, N M =
R NW)-F, where FNWM =1, and F<{M,> is a Frobenius group so
that || divides p — 1. Now & normalizes B; x S,. (B; can be so
chosen.) If ¥FB,S, is abelian, then FB,S,H; is a Frobenius group by
Lemma 26.21, (together with ¥<{M,> a Frobenius group), and ?fé.- is a
T.I. set in @. If ¥B,S, is non abelian, then since § is prime on
MW, and § is prime on P, F is prime on B;SH;. If |F| is not a
prime, then [, B.S,] centralizes ;. Since &, is cyclic and every
subgroup of &, is normal in M, we have & =1. But N(B,) =M
since 2,(B;)S Z(I'). Thus, we can suppose |F| is a prime. If §
centralizes B;, Lemma 26.21 implies that N; is of type I. Thus, we
can suppose that B, is a Frobenius group. Hence FBS, is a
Frobenius group, as is FIMH>B,S,. Since B,D; is a Frobenius group
and §B; is also a Frobenius group, O; is a nilpotent T.I. set in .
Hence §* = Ctu(%) is a non identity cyclic subgroup and FF* satisfies
the hypotheses of Lemma 26.22 with the obvious factorization FF* =
$ x &*. But GG, also satisfies the hypotheses of Lemma 26.22, so
F&* and CGC, are isomorphic. In particular, p divides |FF*|, so
divides |$*|. This is absurd, since p divides |B;| and B,9; is a
Frobenius group with Frobenius kernel $;,2%*. Hence, this case
cannot arise. Hence, ‘fé.- is a T.I. set in ®, and in fact (26.8) holds.
Since 9, is a S-subgroup of N;, we have N, = N(i?%i).

Since M; and N; are not conjugate in @, 1 <4,5<n,1+ 7, by
construction, we have (|9;|,|9;]) =1 if ¢ # 3. The factorization of
C(M,) is now immediate, 1 <k <m. We have already shown that
(M|, |9:)) =1. Thus, D' is tamely imbedded in ®.

Hypothesis 26.1.

(i) Se_7 and & is a S-subgroup of ©.

(ii) |1©:&|=gq i3 a prime and Q* i8¢ a complement to &'
m S.

(ili) ©&' is mot milpotent.

(iv) ©* = Cex(DY).

LEMMA 26.25. Under Hypothesis 26.1, ©* is cyclic and Q*H*
satisfies the hypotheses of Lemma 26.22 with the factorization
*H* = Q* x H*; N(Q*) 18 contained in a unique maximal subgroup
Tof ;S NI =V*O*; Q*ST'; every element of 2 s of type I or
18 conjugate to & or &,

Proof. Since &' is not nilpotent, $* # 1. Let T be any maximal
subgroup of @ containing N(Q*). :

Let # consist of those p in m(&') such that either pen* or
pen(D*) or p¢n(H(S)), and let U be a Q*-invariant S;-subgroup of
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S, and let $ be a S;-subgroup of &'. We will show that U is
nilpotent and that $ < &.

Choose pe® and let P be a Q*-invariant S,-subgroup of &. If
pen* or p¢n(H(S)), then & has p-length one, by Lemma 26.17.
Hence, &' centralizes 0,. ,(8)/0,.(), so &' has a normal p-complement.
If pen(9*), then by 8.16 (i) or Lemma 13.4, & centralizes
0;-.,(©)/0,(8), so in this case, too, ©' has a normal p-complement.
Hence, 1 is nilpotent and $ << &. Since & is not nilpotent, O # 1.
Ful;thermore, &*NUESU. By construction, #n(9)S7w, — n*, so
N(©)S® for every non empty subset © of ©F. Thus,  is a T.I.
set in ®. Since $* NN S, Lemma 26.14 implies that N(®)SS
for every non empty subset © of ©*. Thus 9*Q* = P* x Q* satis-
fies Hypothesis (ii) in Lemma 26.22.

Let §* =&"'NT29*. T is not conjugate to &, either because
L* is not a S,-subgroup of ® or because Q* <= I’'. Thus, $** N HE®) =
1. If *c 9**, then Q* L T’ since [Q*, $**] # 1. But in that case,
some S,-subgroup of ¥ normalizes $**, so Q* is a S,-subgroup of ..
But in that case, Q* S N(Q*Y<=3'. Hence, 9* ="' N T, so H*V* =
S NI, Since N(fb)g@ for every non empty subset 9 of 9% it
follows that $* has a normal complement in £, say ¥, and £, is a
S-subgroup of T. Suppose QL*ZELIT'. Then T, N T’ is disjoint from
2%, 9*(E, N T') is a Frobenius group, and T, = (T, N T)HQ*. Further-
more, a H*-invariant S,-subgroup Q of ¥, has a normal complement
in €, and Q is abelian, by Lemmas 26.10 and 26.11. Thus Q* is a
direct factor of Q, and Q* C Q, since Q* LT’ and N(Q*)=T, If a S,-
subgroup of & is abelian, then N(9*) dominates Q, so Q*&&,
which is not the case. If a S,-subgroup of @ is non abelian, then since
2, N ¥’ is nilpotent, O* is contained in the center of some S,-subgroup
of @. This is absurd, since N(Q*) &% and Q is an abelian S,-subgroup
of £. Hence, Q*=F'.

Again, let Q be a Ssubgroup of ¥ normalized by $*, and let
B be a S,-subgroup of ¥, normalized by *. Then either ¥ =1 or
$*B is a Frobenius group. In both these case, we conclude that
L Q8. If B does not centralize Q, then by Lemma 26.16, gexw, —
n*, so ¥ is the unique maximal subgroup of ® containing N(Q*). If
B centralizes L, then Q*= L, so if gexw, T is the unique maximal
subgroup of & containing Q*. But if ¢g¢m, then Q* X, so of
course T is the unique maximal subgroup of ® containing N(Q*).
Thus, in all cases, ¥ is the unique maximal subgroup of ® containing
QF.

We next see that if p, p, are primes then every subgroup of
* of order pp, is cyclic. We next show that * N 1S Z(D*).
Suppose false and $F = H* N U, £ Z(D*) where U, is the S,-subgroup
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of U. If rexn, Um, then since N, &&', it follows that rex, and 1,
is the non abelian group of order »* and exponent 7, so that || =
7. Since $* N U has a normal complement in $* and every subgroup
of D* of order p,p, is cyclic, DF & Z(H*). Thus, we can suppose that
rem,. By definition of %, we also have rexn*. Apply Lemma 8.17
and conclude that ¢ divides » — 1. Since $* is a Z-group, Lemma
13.4 applied to L*U, acting on the S,-subgroup of &' implies that
1, centralizes the S,.-subgroup of &’; since $} S 1', it follows once again
that F S Z(9*). Hence, $* = (D* N U) X (H* N ) with cyclic H* N 1.

If 9*NHS F(S), then D* is cyclic. Suppose D* is non cyelic.
Since 1 is nilpotent and since &'/F(&) is nilpotent by Lemma 26.4,
it follows that #(* N ) contains a prime s such that a S,-subgroup
of &'/F(©)N D is non abelian. Hence, Cg(11) contains a non abelian
S,-subgroup. By construction, se€x, — n*, so Cg(l}) € 27. This implies
that & is a T.I. set in G.

Since $* is assumed non ecyeclic, hence non abelian, and since
every subgroup of D* of order p,p, is cyclic, it follows that | * : *'|
is not a prime. By Lemma 26.23 (i), £, is a nilpotent T.I. set in ®.
Set g={8|, |&|=m, |T,|=m, |9*|=h, |Q*|=q. If G, G,
G;€®, the sets GG, GG, GIH(H*Q* — * — O*)G, have pair-
wise empty intersections. Hence,

> 9 m -1+ I (m— 1)+ I (h— 1) —
o2 Lm -+ Lom -1+ Le-ne-,

so that

1 1 1
g mh Sk
Since m, = 8h, m, = 3¢, the last inequality is not possible. Hence,
O* is cyelie.

Let & be a maximal subgroup of ®& which is not conjugate to
either & or T. If &' is not a S-subgroup of £, then Lemmas 26.10,
26.11 and 26.21 imply that £ is of type I. If £ is a S-subgroup of
2 but /2 is non cyclic, Lemma 26.21 implies that £ is of type I
If & is a S-subgroup of &, £/%’ is cyclic, and |2:%'| is not a prime,
then by Lemma 26.23, & is of type I or € containg a subgroup 3 =
8, X B, which satisfies the hypotheses of Lemma 26.22. But Q*9*
also satisfies the hypotheses of Lemma 26.22, so B is conjugate to
2*H*. Since 3, H(®) can be assumed, either (13|, |Q*|) #1, or
(8.1, 19*) #1. The first case yields & = 2% Ge®, the second case
yields € = &%, G,€® and we are done in this case. Lemmas 26.22
and 26.23 complete the proof.
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LEMMA 26.26. Under Hypothesis 26.1 T 1is either of type V, or
(i) |D*| =p 18 a prime.
(ii) T satisfies

@) |T:¥|=p, and T’ is a S-subgroup of L.

(b) ' is not nilpotent.

Proof. By Lemma 26.25, Q*<= %' and 9* is cyelic. As
©*NUSW and 7(®) Sx, — 7%, it follows that N(®) =S for every
non empty subset @ of 9**. Since SN T = Q*H*, this implies that
©* has T as a complement. If |D*| is not a prime, ¥’ is nilpotent,
by Lemma 26.8. This implies directly that ¥ is of type V, condition
(ii) in the definition of type V following easily, since ¥’ is non abelian.

We can suppose that T is not of type V. Hence, (i) is satisfied.
Since ¥’ is not nilpotent, (ii) (a) and (ii) (b) also hold.

Lemma 26.26 is important, since if T is not of type V, then T
satisfies Hypothesis 26.1, as does &.

LeEMMA 26.27. Under Hypothesis 26.1, one of the following holds:
(i) NWLS; (i) & 1s a tamely imbedded subset of ®, and U is a
S-subgroup of ©.

Proof. Suppose NU)S &, If & iga T.I. set in @ we are done.
Hence, we can suppose that &' is not a T.I. set in @.

Since €’ is not a T.I. set in ® and since  is a T.I. set in
S (@(®)=7n, — n*, so Lemma 26.5 (ii) applies), U # 1. We first treat
the case in which 1l is non abelian. Let U = R x R,, where R is a
non abelian S,-subgroup of R, and R, is the S,-subgroup of . We
show that & is the unique maximal subgroup of & containing R.

Suppose R&Q,%€_#. By Lemma 26.1, N(Q(ZR)SLN®S.
In particular, NR)S LN S, so R is a S,-subgroup of . If & =&,
Ge€@®, then by Sylow’s theorem, R is conjugate to GRG™ in &, R =
S-'GRG™'S, so that S'Ge NR)&®S, and GeS. Hence, we can
suppose £ is not conjugate to &. Clearly, 8 is not conjugate to T,
since ¢t |T:X’'|. Hence, 8 is of type I. But then RS H(Y), so that
L = NR)SS, contrary to assumption. Hence, R is contained in &
and no other maximal subgroup of ®. This implies that 11 is a S-
subgroup of @.

Choose Sc&"*"N&% Ge® — S. There are such elements S and
G since &' is not a T.I. set in @. If S is not a #-element, then
S, = 8S"e 9N ¥ for some integer n, contrary to the fact that 9 is
a T.I. set in @. Hence S is a 7-element and we can suppose that
Sel, If S¢®R, then S,=S"c RN S" for some m, and C(S,) con-
tains a S,-subgroup of both & and &¢ which is not the case. Hence,
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SeR. Since R was any non abelian Sylow subgroup of U, it follows
that R, is abelian.

Let Le 7, C(S)=8. A S,-subgroup of £ is non cyclic. Let
R be a S,-subgroup of £ containing Cyx(S). If rex, then by Lemma
26.7, N(Cx(S))S©, so R = Cx(S). If rem, the same equality holds
by Lemma 26.14 and the containment N (Cx(S)E N((ZR))). Thus,
2 is not conjugate to &. Since R is non cyclic, £ is not conjugate
to . Hence, 8 is of type I, and this implies directly that £ =
HOERNS), SN H® =1. Since a S,-subgroup of & is non abelian,
Lemmas 26.12 and 26.18 imply that

{ U ) - 5@ = BEKS?,
meg @t

and it is obvious that H(®)(S>*is a T.I. set in @ with £ as its
normalizer. We have verified all the properties in the definition of
a tamely imbedded subset except the conjugacy condition for &' and
the coprime conditions. By definition of H(R), together with the
fact that &' is a S-subgroup of &, it follows that (| H(®)|, |&'|) = 1.
If (|H(®)|, |Q*|) # 1, then £ is conjugate to . This is not the case, as
R is non cyclic. Thus, if 8, ---, &, is a set of representatives for the
conjugate classes of maximal subgroups of @ which contain C(S) for
some Sin &' and are different from &, it follows that (| H(L,) |, | H(Z;)|) =1
for 1 # j. It remains only to verify the conjugacy condition for
elements of &%, Let S, S, be elements of & which are conjugate
in . We can suppose that S and S, have order r and are in R;
otherwise it is immediate that S and S, are conjugate in &. Let
S = G7'S,G, then C(S)2<{(Z(R)), 2(Z(R°))>. Since N(2(ZR))) <
&, it follows that S and S, are conjugate in &. (It is at this point
that we once again have made use of the fact that the subgroups in
7 (R) have two conjugate classes of subgroups of order r.) Thus, &
is a tamely imbedded subset of & in this case.

We now assume that Ul is abelian. We first show that U is a
S-subgroup of &. Otherwise, 1 is not a S-subgroup of N(1,) for
some non identity S,-subgroup U, of . Let N, <S2%¢ec_». Then
€ is not conjugate to &, since |2y # |S|;. Suppose & is conjugate
to L. Since UQ* is a Frobenius group, we have 1S 2. Thus &' is
not nilpotent, since by hypothesis N(1)=©&. Hence, ¥ is not of
type V. By Lemma 26.26, |*| = p is a prime. Since |Q*|=gq is
also a prime, it follows that if B is a S,-subgroup of T’ normalized
by ©*, then $*B is a Frobenius group, (8 # 1, since T' is not
nilpotent). If n(l) & n(V), then since N() &S, it follows that U is
conjugate to B. But p divides | N(B): C(B)|, and so p = ¢, which
is not the case. Hence 7(M)ZLm(B). But rM)&x@)NnXT)S
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7(B) U {q}, so g € 7(1), which is absurd since &' is a ¢’-group. Hence,
¢ is not conjugate to either & or T, so 8 is of type I. Since D* is
of prime order and Q* is a Frobenius group, US H(L). Since
NU)=©S, we have U = H(8). Hence 8= N(I) =&, which is absurd.
Hence, N1 is a S-subgroup of &. This implies directly that NU,) =&
for all non identity Sylow subgroups U, of &.

Since U is an abelian S-subgroup of @, and  is a T.I. set in G,
the condition N(11) & & implies that two elements of &' are conjugate
in @ if and only if they are conjugate in &.

Suppose Se€@"*, and C(S)ZS. Then S is a #-element, and we
can suppose Scll. Let e _#, C(S)SL. Since U is an abelian S-
subgroup of @& and since U S C(S) S &, it follows that € is not con-
jugate to & or . It is now straightforward to verify that &' is
tamely imbedded in @.

LEMMA 26.28. Under Hypothesis 26.1, either & or T is of type
II. If & is of type II, then

U Ce(H)

mepHt

18 a T.I. set in @. Both & and T are of type II, III, IV or V.

Proof. First, suppose T is of type V, but that & is not of type
II. Suppose NW)SS. By Lemma 26.27, & is a tamely imbedded
subset of . As U is a S-subgroup of & in this case, we have
(€], |¥))=1. By Lemma 26.24, ¥’ is a tamely imbedded subset
of . We now use the notation of section 9. Suppose Sc¢&"* Tel"
and some element of U, is conjugate to some element of A,. This
implies the existence of € _# such that | & : H(Y)| divides (|&'|, |T'))
=1, which is not the ecase. Setting ® = O*QF — H* — Q*, it
follows that no element of T8 is conjugate to an element of Ay or
A,. We find, with b = |D*|, s =|&"|, t = |¥’|, that by Lemma 9.5,

1 t—1 g

L (h—1g—1) , s—
(26.9) g= I g+ po» g+ ih ’

which is not the case. Hence NW)ZL&. If U, were a non abelian
S,-subgroup of &, then N(2(Z(1,))&S, by Lemma 26.14. Since
NWQ)S N(2,(Z(1,))), this is impossible. Hence U is abelian, and
m() £ 2. Thus, & is of type II in this case, since the above in-
formation implies directly that  is nilpotent.

Suppose now that ¥ is not of type V. Then from Lemma 26.26
we have T = $*BLY, where Q) is a normal S,-subgroup of T, H*B is
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a Frobenius group with Frobenius kernel %, and 8B is a non identity
q¢’-group. Since Q* is of prime order ¢, it follows from 8.16 that
2 contains a subgroup L), such that Q, < T, Q/Q, is elementary of
order ¢*(p = | 9*|), and B centralizes Q,.

We next show that B’ centralizes Q. This is an immediate
application of 3.16. If N(B)< <, then T is of type III or IV accord-
ing as B is abelian or non abelian. If neither & nor ¥ is of type
II, then both &' and &' are tamely imbedded subsets of &, by Lemma
26.27, since both © and ¥ satisfy Hypothesis 26.1. Once again,
(26.9) yields a contradiction.

If & is of type II, then  is a T.I. set in @. Suppose

X, Ye U Cy(H)

meHt

and X = G'YG. Choose H,eCy(X), H,eCy(Y). Then C(X)2
{H, G'HG>. If ((X)S©, then Ge &, since Hisa T.I. set in 8. We
can suppose C(X)Z S, and without loss of generality, we assume
that X has prime order », XelU. If a S,-subgroup of U is non
cyelie, then by Lemmas 26.12 and 26.13, C(X)=&. We can suppose
that the S,-subgroup U, of U is cyclie, so that {<X> = 2,(,). Since
NW£S, it follows that NKXD)ZLS. Choose Le.# with
NKXY) S8 If C(X)No* + 1, it follows readily that C(X)S®, so
we can suppose C(X)N $* = 1. In this case, C@(X )* is a Frobenius
group, and this implies that Cb(X )E H(®), which is not the case.
The proof is complete.

LEMMA 26.29. If fe _# and L 18 of type I, then

U CoH) =8

geg@t

18 a tamely imbedded subset of ®.

Proof. We first show that H(R) is tamely imbedded in @.

If H®) is a T.I. set in & we are done. If H(R) is abelian,
the conjugacy property for elements of H(R) holds. Suppose H(L) is
abelian, Le H(®), and C(L)Z 8. Let Ne _# with C(L)SN.

Suppose N is of type I. Then NN L is disjoint from H(N), since
HR)SNRNY. Let & be a complement for H(R) in N which contains
NNEL. Lemmas 26.12 and 26.13 imply that € =N N L.

If 8,-.-,8, is a set of representatives for the conjugate classes
of maximal subgroups of @ constructed in this fashion, then (| H(Z,)|,
[H(&;)]) =1 for ¢ +#7. Also, (| H(Z)|,|H(®)[) =1. Suppose (| HE,)|,
[ Co(L)|) # 1 for some L e H(2), and some 7. We can suppose that
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L has prime order r. Let s be a prime divisor of (| H(Z:)|, | Cg(L)|),

so that sen(®) — n(H(®)), Since & is of type I, this implies that a

S,-subgroup & of £ is non cyclic so that sez*. Since & does not

centralize a S,-subgroup of &, s < r. But now Lemma 8.16 implies

that the S,-subgroup of £ centralizes a S,-subgroup of H(2,), which

is not the case. Hence, (| H(2)|, | Cg(L)|) =1 for every Le H(Z).
By construction

2= U Cy(H) - HRY

mem@yt

contains a non identity element. From Lemma 26.13 we have N (f!;) =
€, and @i is a T.I. set in @. Thus, if H(R®) is abelian and every R
with the property that Rte_# and C(L)SN for some Le H(Q) is
of type I, then H(®) is tamely imbedded in .

Suppose N is not of type I. Since H(R) SN, it is obvious that
N is not of type V. It is equally obvious that N is not of type III
or IV. Hence, N is of type II. Since H(R) is a S-subgroup of &, it
is a S-subgroup of N, and it follows that NN L is a complement to
H(M). Since | H(N)| is relatively prime to | H(®)| and to each | H(Z,)|,
we only need to show that | H(R)| is relatively prime to |Cy(L)|,
LeH®). Let ¢g=|N:N'|, so that ¢ is a prime and N N L contains
a S,subgroup O* of M. Since 7(HN)) S, — n*, it follows that if &
is a Sg-subgroup of 2, w = nw(H(RN)) N 7(L), either & =1, or KH(Y) is
a Frobenius group. Thus (| H(N)|, | Cy«(®)]) = 1 for L € H(R)*, and H()
is a tamely imbedded subset of . Since C(L)< 8 for every element
of

{ U C(H)}—-H®),
Heg(Q)¥
by Lemmas 26.12 and 26.13, the lemma is proved if H(Z) is abelian.
We can now suppose that H(L) is non abelian, and is not a T.I.
set in . Let R be a non abelian &-subgroup of H(R), and let
HE =RxR,. Since H(L) is not a T.I. set in & Lemmas 26.14 and
26.13 imply that R, is a cyclic T.I. set in ®. It follows directly
from Lemma 26.12 that H(L) is a tamely imbedded subset of &.
It remains to show that € is a tamely imbedded subset of ®.
This is an immediate consequence of Lemmas 26.12 and 26.13.

LEMMA 26.30. If © 18 a nilpotent S-subgroup of &, then two
elements of © are conjugate in & if and only if they are conjugate
mn N(D). R

Proof. Let Le_#, NO)ES8. If DS H(R) and £ is of type I,
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we are done. If < H(R) and L is not of type I, we are done. If
PLH®R), then DN H(®) =1, If € is of type I, » is abelian, and
we are done. If £ is not of type I, then 8 is of type IIl or IV, and
we are done.

We now summarize to show that the proofs of Theorems 14.1
and 14.2 are complete. By Lemma 26.30, the conjugacy property for
nilpotent S-subgroups holds. If every element of _.Z is of type I, we
are done by Lemma 26.29. We can therefore suppose that _# con-
tains an element not of type I. Choose L€ _#, £ not of type I.
By Lemma 26.21, if pen(¥/2’), a S,-subgroup of L is cyclic. This
implies that &' is a S-subgroup of €. First, suppose |£:%’] is not a
prime. Then by Lemma 26.23, £ is of type V or satisfies the con-
ditions listed in Lemma 26.23. Suppose that £ is not of type V, and
@ is a complement to H(®) in 8. Let p be the smallest prime such
that a S,-subgroup &, of & is not contained in Z(€) and choose
e #, N2,(,)=2. By Lemmas 26.12 and 26.13, 2, is not of
type I. Lemma 26.21 implies that ] is a S-subgroup of €, and /%,
is cyclic. By construction, £ is not nilpotent, and also by construc-
tion %, is not conjugate to L. We will now show that |2 :8]| is a
prime. Otherwise, since ¥, is not of type I or V, £ satisfies the
conditions of Lemma 26.23. In this case, both H(¥) and H(Z,) are
nilpotent T.I. sets in @ and £ N £, satisfies the hypotheses of Lemma
26.22. Let/= (8], 4=|8|,|%:HR®)| =¢, [L:H®E)| =¢, g =|6]|,
so that

@10 gz l-Ve-1), -1, 4-1,

€6, 7€ 16
which is not the case. Hence |%,: 2| is a prime, so that £, satisfies
Hypothesis 26.1. But then Lemma 26.25 implies that £ is of type
V. Thus, whenever € _# satisfies the hypotheses of Lemma 26.23,
® is of type I or V.

Suppose every element of _# 1is of type I or V, and there is
an element 8 of type V. Let pen(2/¥), and let €, be a S,-subgroup
of & Choose &, so that N(€,)S8 e _»#. Then ¥, is not of type I.
Suppose &, is of type V. By Lemma 26.20, ¥ and & are tamely
imbedded subsets of . Since (|¥'|, |€!]) =1, it follows that ¥, and
,, do not contain elements in the same conjugate class of @, Le ',
L,c®. Setting g=[6|, |¥]|=4 [8]=4 [8:%]=¢|8,:8|=¢,
then (26.10) holds, by Lemma 9.5, which is not the case.

We can now suppose that _# contains an element £ not of type
I or V. Lemmas 26.21, 26.23 and the previous reduction imply that
€ is a S-subgroup of £, &' is not nilpotent, and |2:%’'| is a prime.
Lemmas 26.25 and 26.28 complete the proof of Theorem 14.1.
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As for Theorem 14.2, Lemmas 26.28 and 26.29, together with
Theorem 14.1, imply all parts of the theorem, since if £ is of type
II, III, IV, or V, 2 is any tamely imbedded subset of & which
satisfies N (@) =$, and T =W, LB, is a cyclic subgroup of & which satisfies
the hypothesis of Lemma 26.22, then adjoining all L—*(%® — T, — W,) L,
Leg to ¢ does not alter the set of supporting subgroups for Q, as
W)=l forall We® — B, — BW,. The proofs are complete.



CHAPTER V

27. Statement of the Result Proved in Chapter V

The following result is proved in this chapter.

THEOREM 27.1. Let @ be a minimal simple group of odd order.
Then & satisfies the following conditions:

(i) p and q are odd primes with p > q. ® contains elementary
abelian subgroups P and T with |P|=2", |Q|=¢*. P and Q are
T.I. sets in ®.

(ii) N(P)=PUL*, where PU and UQ* are Frobenius groups with
Frobenius kernels P, U respectively. |Q*|=gq, || = (p* — 1)/(p — 1),
L*cQand (P —-D/p—1),p—-1) =1

(iii) If P* = Cx(R*), then |P*| = p and P*Q* is a self-normal-
1zing cyclic subgroup of ®. Furthermore, C(P*) = PL*, C(V*) =
QP*, and B* = NRQ).

(iv) CcQ) is a cyclic group which is a T.I. set in &. Further-
more, L* S NI) = N(C()), N)/C(N) is a cyclic group of order
pq and N() is a Frobenius group with Frobenius kernel C(1).

In this chapter we take the results stated in Section 14 as our
starting point. The notation introduced in that section is also used.
There is no reference to any result in Chapter IV which is not con-
tained in Section 14. The theory of group characters plays an es-
sential role in the proof of Theorem 27.1. In particular we use the
material contained in Chapter III.

Sections 28-81 consist of technical results concerning the characters
of various subgroups of @. In Section 32 the troublesome groups of
type V are eliminated. In Section 33 it is shown that groups of
type I are Frobenius groups. By making use of the main theorem
of [10] it is then easy to show that the first possibility in Theorem
14.1 cannot occur. The rest of the chapter consists of a detailed
study of the groups & and ¥ until in Section 36 we are able to supply
a proof of Theorem 27.1.

28. Characters of Subgroups of Type 1

Hypothesis 28.1.

(i) % ¢s of Frobenius type with Frobenius kernel © and comple:
ment €.

(ii) € = AB, where A is abelian, B s cyclic, and (| X/, |B|) = 1.

943
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(ili) €, 8 a subgroup of & with the same exponent as € such
that €O is a Frobenius group with Frobenius kernel 9.

LEmMMA 28.1. Under Hypothesis 28.1, X has an irreductble charac-
ter of degree |§,| which does mot have D in its kernel.

Proof. If U is eyclic, then % is a Frobenius group and the lemma
is immediate. We may assume that % is non cyeclic.

Let ©./D(D) be a chief factor of AD with H, & 9. Let U, =
Coy(9/D(9)). Then A/A, is cyclic. Since X is of Frobenius type, the
exponent of /¥, is the exponent of A. Hence, |F:%,|=|C,|. Let
%A, be the normal closure of 2, in & Then 2, is abelian. Let /¢ be
a non principal linear character of £,/D(9). Then J(w) = H¥,, so
Lemma 4.5 completes the proof.

LEMMA 28.2. Suppose L is of type 1, and & = X satisfies Hypo-
thesis 28.1. Suppose further that Z(€) contains an element E such
that Co(E) £ &' and Cy(E) + . Then the set & of irreducible
characters of & which do not have  in their kernmel is coherent.

Proof. By Lemmas 28.1 and 4.5, it follows that Hypothesis 11.1
and (11.4) are satisfied if we take =1, =8, d =|E;| and let
% play the role of &%

Since E' is in the center of €, it follows that $'Ce(E) < 8. Thus,
by assumption, $/9’ is not a chief factor of 8. Therefore,

(28.1) S:91>4(C"+1.

Let ()= {\.l8=1,---,n;i=1, --. k}, where the notation
is chosen so that A\,(1) =A;(1) if and only if 7= 7, and where
Au(l) < <o < Au(l). By (28.1) we get that (11.5) holds with $, = 9’
and by Theorem 11.1 the lemma will follow as soon as it is shown
that .&#(9') is coherent.

Set 4 = Au(1)/d for 1 <4 < k. Then each 4 is an integer and
l=4< -+ < 4. By Theorem 10.1, the coherence of <7 (') will
follow once inequality (10.2) is established. Suppose (10.2) does not
hold. Then for some m with 1< m <k,

(28.2) S <24 .

=1

Every character in .5#(9’') is a constituent of a character induced
by a linear character of . Therefore,

(28.3) 456§,
Let '6 = $/9’ and let ‘61 = Cﬁ(E)’ '62 = [‘61 E]. Thus, 6 = 51 X 52
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and §:; # 1, 1 =1,2. If 9, is the inverse image of O; in O, then EP;
is of Frobenius type and satisfies Hypothesis 28.1. Two applications
of Lemma 28.1 imply that n, = 4|€: E,|. Hence, (28.2) does not hold
for any m, 1 <m =< k. The proof is complete.

29. Characters of Subgroups of Type IIl and IV

The following notation will be used.

S = &Q* is a subgroup of type II, III, or IV. £Q* plays the
role of W, in the definition of subgroups of type II, III, and IV
given in Section 14. 9, 1, and W, have the same meaning as in these
definitions. T = T'W, is a subgroup of type II, III, IV, or V whose
existence follows from Theorem 14.1 (ii) (b), (e).

Let n(9) = {p,, -+, »} and for 1 =7 < ¢, let P, be the S, -sub-
group of . Define

C.=uncep), 1=si=t,
€ =[6..

Let {D|=h, |B]| =2, |0%|=¢q,|€|=c,1=<t=tand [€|=c,
By definition, ¢ is a prime.

4 is the set of characters of & which are induced by nonprineipal
irreducible characters of &'/9.

%7 is the set of characters of & which are induced by irreducible
characters of & that do not have 9 in their kernel.

The purpose of this section is to prove the following result.

THEOREM 29.1.

(i) If & s of type Il then & U .S 18 coherent except possibly
if 19| = p? for some prime p and € = 1.

(i) If © isof type IV, then ¥ U .54 18 coherent except possibly
if 1O = p® for some prime p, € =0 and & is not coherent.

Hypothesis 29.1.
& is a subgroup of type III or IV.

Throughout this section, Hypothesis 29.1 will be assumed. Thus,
by Theorem 14.1 (ii) (d), ¥ is of type II. Consequently, &, has prime
order p. Let p=9p, P=9P, and W, = P*. Thus, by 3.16 (),
NS CE) for 2=i <t Since U EZ C(D), this yields that U £ C(P).
As 11 does not act trivially on P/D(P), Lemma 4.6 (i) implies that
Cy(P*) =€, cl.

For any subgroup 9, of D€, let .&7(9,) denote the set of characters
in %4 U & which have the same degree and the same weight as some
character in &4 U & that has , in it kernel.
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LeMMA 29.1. Hypothesis 11.1 is satisfied if S° in that hypothesis
18 replaced by S U ., $ 18 replaced by D€, O, is taken as {1, &
18 replaced by &, & and & are replaced by &', and d =1,

Proof. By Theorem 14.2, Condition (i) is satisfied. Condition (ii)
follows from the fact that & is a three step group. Condition (iii)
is immediate and Condition (vi) is simply definition (consistent with
the present definition). Since UQ* is a Frobenius group, & contains
an irreducible character of degree q. Hence, Condition (iv) is satisfied.
The group & satisfies Hypothesis 18.2. Hence, by Theorem 14.2,
Hypothesis 13.3 is satisfied with 8 =&, ¥ =@, and =R = &', and
with & replaced by $45U.”. By Lemmas 138.7, 13.9, and 13.10,
Condition (v) of Hypothesis 11.1 is satisfied. The proof is complete.

LEMMA 29.2. If SZ((DC)) is coherent, then S U & i8 coherent.

Proof. As N Z C(P), U does not act trivially on P/D(P). Since
UL* is a Frobenius group, 8.16 (iii) yields that |PB: D(P)| = »°. As
either p=8 and ¢g=5or p=5 and ¢ = 8, (5.9) yields that

€. (€)Y [z (B:DP) | 2p" >4 +1=4|6: &+ 1.

Hence, (11.5) is satisfied with $, = (£€).’ By Lemma 29.1, Theorem
11.1 may be applied. This implies the required result.

LEMMA 29.3. If S7((D8)) is not coherent, then &" = HE.

Proof. Letb=|H€:8"”|. We have P* = &”, as P* = &' and Q*
centralizes P*. Hence, &/&" is a Frobenius group. Let d, < --- < d,
be all the degrees of characters in S“((H€)) and let -, = d.fq for
1<m=k. Then for each m, - is an integer and 4 = 1. Every
character of &/&"” is a constituent of a character induced by a linear
character of €. Thus, 4, < ufec for 1 < m < k. There are at least

(20-1

irreducible characters of degree ¢ in S#((9€)'). Thus, if SZ(HCY) is.
not coherent, inequality (10.2) must be violated for some m. In par-
ticular, this implies that
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Therefore, b — (cfu) < 2¢, so b< 29 + 1, sincec < u. As E/S" is a
normal subgroup of the Frobenius group &/&”, we have b = 1 (mod g).
Since b and ¢ are both odd, this implies that &6 = 1 as required.

LemMaA 29.4. If <2((9C)) is not coherent, then H =P, P =
D), |B:P =2, P*NDP)=1and € =1

Proof. By Lemma 29.3, &' =9€. If 2<i<t, then UD S
B:.C(P.), so that p;||&':&”|. Hence, t=1and D=P. € =1 fol-
lows directly from the fact that $€ =&" =S W'. If | PB: D(P)| > »°,
then since Cyx(Q*) = P* is cyclic, Lemma 4.6 (i) implies that some
non identity element of PB/D(P) is in the center of PU/D(P). Thus,
p divides |19:©&"”| which is not the case. Since I does not act
trivially on PB/D(), 8.16 (iii) now implies that | B: D(P)| = p?. Since
P* has prime order and lies outside D(P), we get that D(P)YUL* is
a Frobenius group. Hence, by 3.16 (i), D(P) is nilpotent. Conse-
quently, D(P)/T is in the center of PU/Y'. As the fixed points of
11 on P/P’ are a direct factor of P/P’, and since U has no fixed points
on P/D(P), we have P = D(P). The lemma is proved.

LEmmA 29.5. If SZ((D€)) is not coherent then P is an elementary
abelian p-group of order p°.

Proof. In view of Lemma 29.4 it suffices to show that ¥ =1.
By 8.16 (i), U & C(P). Thus, if P + 1, there exists a subgroup L,
of P such that P, < PU and | P : By =». If U acts irreducibly on
B/B, then P'/PB, = Z(PB/B,). Hence, P/P, is an extra special p-group
and |P: P | = p® for some integer b contrary to Lemma 29.4.

Suppose that U acts reducibly on PB/P’. Since the irreducible
constituents of this representation are conjugate under the action of
£*, all constituents have the same dimension. As |P:P'| = p* and
q is a prime, this yields that they must all be one dimensional. There-
fore, there exist elements P, -, P, in P such that

PBIP = BPIPD X o+ X BB
and
U-'PPU= P, Uell, 15i=gq,

where s, -+-, s, are linear characters of U (mod p) with s, (U) =
8,(Q*UQ) for Ue Nl and a suitably chosen generator @ of Q*. Since
|Q*| is odd, 8;8; # 1 for any 4,5 with 1 <4, j <q. Hence, if ¢,7
are given, there exists U e U such that s(U)s;(U)+# 1, For 1<k=<¢q
let P, be an element of P such that
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U-PJU = PiOP%, .

Since P'/P, S Z(P/P,), we get that

[P, P;] = U[P, P,)U = [P P, P{5 ™ P]]
= [Py, P;s @] = [P, Pi]%®*%(mod By) .

Since 8,(U)s(U) #+ 1, this yields that [P;, P;]e®, for 1 <1, j=<gq.
Since P =P, :-+, Py, we get that P’ S P, contrary to construction.
Thus, P’ = 1 as required.

LEMMA 29.6. If Z((D€)') is not coherent and € + 1, then &% is
not coherent.

Proof. Suppose that € =1, Assume that .$¥, is coherent.
Let 4 =% Let %, ---, 5 be the equivalence classes of
S(9C)) — & chosen so that every character in &, has degree /,q
for2<m=<k, and 4 < -« £ 4. Suppose Ui, 54 is not coherent.
By Hypothesis 11.1, and Lemma 29.1, all parts of Hypothesis 10.1
are satisfied except possibly inequality (10.2). Since S~(($€)) is not
coherent, inequality (10.2) must be violated for some m.

Every character in J%., .54 is a constituent of a character induced
by a linear character of 9€. Thus 4, =< (u/c) for 1 < m =< k. Hence,
violation of inequality (10.2) yields that

-1 <9, <2%
g T~ "7 e’

A

Since ¢ =1 (mod 2q) and ¢ # 1, this implies that

u_1§2ql=_(2q;1)u—ﬂéu—l<u_1.

¢ c ¢ ¢
Hence U, & is coherent. Since F((HC)) = ULi,.54, the proof is
complete.

The proof of Theorem 29.1 is now immediate. Lemmas 29.2, 29.4
and 29.5 imply statement (i). Lemmas 29.2, 29.4, 29.5, and 29.6
imply statement (ii).

30. Characters of Subgroups of Type II, IIl and IV

The notation introduced at the beginning of Section 29 is used
in this section. The main purpose of this section is to prove the
following result.
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THEOREM 80.1. Let & be a subgroup of type II, III or IV.
Then & 18 coherent except possibly if & is of type II, O is a non
abelian 8-group, HU/C 28 a Frobenius group with Frobenius kernel
OCIC, u <81 |9:9| =3 and T is a subgroup of type V.

All lemmas in this section will be proved under the following as-
sumption.

Hypothesis 30.1.

(i) © is a subgroup of type II, III, or IV,

(ii) &7 18 mot coherent except possibly if & 18 of type 1.
(iii) WU has exponent a.

For any subgroup 9, of & let $7(9.) be the set of characters in
& which have 9, in their kernel. Notice that this notation differs
from that used in Section 29.

LEMMA 30.1. The degree of every character in S 18 divisible
by aq.

Proof. Every character in .&” is a constituent of a character of
& induced by a nonprincipal character of ©. For any character 4 of
5 let & be the character of $U induced by 6. Set W, = O NU.
Let (N:U,|=0b. If & is of type II or III, then by Lemma 4.5 it
suffices to show that if 4 # 1, then a|b.

Let 8 be the kernel of 6 and let He $ — & such that HR € Z(H/R).
Then & < $U, and U'HRU = HR for UelU,. As(u,h)=1,if Uell,
then U centralizes some element in H®. Hence, U, & &. Let I, =
{U*|Uen). Then 1, char U and N, S U, S &.

Suppose U, #1. If & is of type II, then & is a T.I. set in ®
by Theorem 14.2, Hence, N() € N(1I,) & & contrary to definition.
If & is of type III, then by Theorem 29.1, UQ* is represented irre-
ducibly on . Since U, < UQ*, U, is in the kernel of this represen-
tation. Thus, 1, & C(9) contrary to Theorem 29.1. Thus, U, = 1.
Therefore U* =1 for Ucll and soa|b in case & is of type II or IIIL

If & is of type IV, we will show that Hypothesis 11.1 and (11.2)
are satisfied with £, in that hypothesis being taken as our present
D, 8 being taken as &/, © and & being taken as &'/9, and @., being
taken as &', Certainly (i) is satisfied. Since &/ is a Frobenius group
with Frobenius kernel &'/9, (ii) and (11.2) are satisfied, and the
remaining conditions follow immediately from the fact that &/9 is a
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Frobenius group. The present .& plays the role of .5 in Hypothesis
11.1 iii).

Notice now that Hypothesis 11,2 is satisfied. By Lemma 11.2
and the fact that .5 is not coherent it follows that &'/ is a non
abelian r-group for some prime r whose derived group and Frattini
subgroup coincide. But 1= &'/H. Sinece € =1, /€ is of exponent
r, 80 a =7r. As U has no fixed points on o, it follows readily that
every non linear character of & has degree divisible by 7, as required.

LEMMA 30.2. For 1<1=<¢, |B::DPB)| = p! and U/€; has ex-
ponent a.

Proof. If & is of type III or IV, the result follows from Theo-
rem 29.1. Suppose & is of type II. Then & is a T.I set in ® by
Theorem 14.2. Let a; be the exponent of /E; for 1 < i <¢. Let
U, ={U%|Uen}. Then W; S €, =& and U; char U. Thus, if U, =1,
then N() & N(II;) € &, contrary to definition of subgroups of type II.

Suppose | B; : D(P;)| > p? for some 7 with 1 <4 < ¢. Since Cy,(L%)
is eyelie, this implies the existence of a subgroup 9, with W, S , C H
such that £/, is a chief factor of &. By 38.16 (i), DU1/9, is nilpotent.
Thus, 1 & & and N ) & &, contrary to definition.

LeEMMA 30.3. For 1 <1 <t, either a|(p; — 1) or a|(p! — 1) and
(@, p; — 1) = 1. In the first case, P;/D(P;) 18 the direct product of q
groups of order v;, each of which is normalized by 1. In the second
case, W€, is cyclic of order a and acts irreducibly on P,/ D(P:).

Proof. By Lemma 80.2, 11Q* is represented irreducibly on P,/ D(B;).
As 11 q UQ*, the restriction of this representation to 11 breaks up-
into a direct sum of irreducible representations all of which have the
same degree d. By Lemma 30.2, d]q and so d =1 or d = q.

If d =1, the order of every element in 1/€; divides (p; — 1)..
Hence, by Lemma 30.2, a|(p; — 1).

If d =¢q, then U acts irreducibly on PLB:/D(PB;). Thus, W/E; is
cyclic. By Lemma 80.2, {11:6;|=a. Therefore, a|(p! —1). Let
U/€; =<U). Then the characteristic roots of U are algebraically
conjugate over GF(p). Hence, this is also the case for every power
of U. If (a, p; — 1) # 1, then some power U, = 1 of U has its charac-
teristic roots in GF(p) and thus is a scalar. This violates the fact
that UQ* is a Frobenius group.

LEMMA 380.4. Suppose (a, p; — 1) =1 for some i, 1 £ 1 <t. Let
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O =B ILPs,
IF#¢

and let | P, : Bi| = pr. Then m} = m.q for some integer m;,. Further-
more, (9D, contains at least

%{(p!"“ a— l)e; (p™ — 1)}

1rreducible characters of degree aq and at least (p?« — 1) characters
of wetght q and degree aq.

Proof. By Lemma 30.3, 1/€; is cyeclic. By Theorem 29.1, © is
not of type IV, so I is abelian. Hence, $11/9,€; is a Frobenius group.
By Lemma 30.2, |U: €;| = a. Furthermore, since 1Q* acts irreducibly
on B,/D(P,), D = /9, is the direct product of ¢ cyclic groups of the
same order p. Thus, gm; = mi, and |CE(R*)| = p. By 3.16 (iii)
every non principal irreducible character of 9€,/9,€; induces an irre-
ducible character of DU/D,EC; of degree a. Since 1 is abelian, this
implies that every irreducible character of $€,/9, which does not have
® in its kernel induces an irreducible character of U/, of degree
a. Hence, DU/, has at least

(P — e
a

distinet irreducible characters of degree a.

Since &/9, satisfies Hypothesis 13.2, Lemma 13.7 implies that all
but p™ — 1 non principal irreducible characters of DU/9, induce irre-
ducible characters of &, The result now follows.

LeMMA 30.5. Suppose that a|(p; — 1) for some 7 with 1 < i1 < ¢.
Let

O =B IL %

and let |P;: P! = :":‘. Then m; = milq is an integer and S7(9.)
contains at least

P —1) u
a au

1rreducible characters of degree aq, where || = u'.

Proof. For any subgroup ¥ of &, let X = X9,/9,. By Lemma

30.3, ® contains a cyclic subgroup P, which is normalized by 1 such
that
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| Bt | = 7

and such that © = P, x 9, for some subgroup O, which is normalized
by U. Since UQ* acts irreducibly on B./D(P.), it follows that m, =
mi/q. Let U, be the kernel of the representation of 11 on PB;;. Then
/Y, is eyelic and so [1:1,| < a. There are at least

(pT ,— 1) |, |
u

distinet linear characters of U/, which do not have P, in their
kernel. Each of these induces an irreducible character of U of

degree (U :1,|. Thus, by Lemma 30.1, |I1:U,| = a and there are at
least

@r —~1-u
a-a-u

distinet irreducible characters of DU of degree a which have $, in
their kernel, and as characters of & have 9, in their kernel. If one
of these induced a reducible character of & or two of these induced
the same character of &, then Q* would normalize 9,, contrary to
the fact that UQ* acts irreducibly on PB./D(B,).

LemMmaA 30.6. If & contains no irreducible character of degree
aq, then t =1, BL=D(P), e =u = (p{ — 1)/(p, — 1), and ¢ =¢, = L.
Furthermore, .7 (9') is coherent.

Proof. By Lemmas 30.8 and 80.5, (@, p;, — 1) =1 and a divides
(P! — 1)/(p; — 1) for 1 <4 < t. Suppose that for some i,

W =Do_gr—n=0.
a
Then
(pg"‘i _ 1) e:<a
(pri—1) 7

Therefore, ¢; =1, m; =1, and @ = (p{ — 1)/(p; — 1). Thus,

(30.1) ﬂ"’_‘aﬂ —(pr—1)=0.

Now Lemma 30.4 implies that (30.1) holds for 1 < ¢ <t. Thus, ¢ = 1.
Hence,c=¢,=1, u=a=(p*—-1)/(p — 1), p = p,. Also, m, =1, and
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so B; = D(P,).

If a character 4 in ¥ U .%; is equivalent to a character in .57(9'),
then its degree is prime to | 9], so © & kerd. Thus, the equivalence
relation in Hypothesis 11.1 has the property that the present set
Z(9) is a union of equivalence classes. Therefore, .57(9') consists
of (p — 1) reducible characters of degree aq. Theorem 14.2 implies
that Hypothesis 138.3 is satisfied. Hence, Lemma 138.9 implies that
(D) is coherent.

The remaining lemmas in this section will be proved under the
following stronger assumption.

Hypothesis 30.2.
(i) Hypothesis 80.1 is satisfied.
(i) &7 is not coherent,

LEmMMA 30.7. If S7(9') is not coherent, then =%, € =1,
a=0p—-1)2 p=9p, u*a, and D(B) = P.. The degree of every
character in 7 (9') is either aq or uq, and 7 (9') contains exactly
2ufa irreducible characters of degree aq.

Proof. Let d, < --- < d, be all the degrees of characters in
S((H€)). Define ~, =d;Jag for 1 <t < k. By Lemmas 13.10, 30.1
and 30.6, all the assumptions of Theorem 10.1 are satisfied except
possibly inequality (10.2). Every character in .7((9€)) is a constituent
of a character of & which is induced by a linear character of DHE.
Hence, d, < qu/c, and so 4 < ujac.

Choose the notation so that a|(p; — 1) for 1<i<¢,and (a, p; — 1) =
1 for t,+1=<i<t. If SZ((HEY) is not coherent then inequality
(10.2) is violated. Lemmas 80.2 and 30.8 imply that for {, + 1 = ¢ £ ¢,
¢; =uj/a. Thus by Lemmas 30.4 and 80.5, there exists m with
1 <m £k, such that

o (-1 ., {u (™ —1) _ (pri—1) }
?:‘1' a au’ + a%"ﬂ a qa q
+ ‘Z -1 <2 < 2u
i=tg+l q ca
Therefore,
(30.2) f‘,(f’?"_—l)_+ 5'_" D —1) o, 82 9
= au iStg+1 qa ™ P

For
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1<ist, M = 2pmi-D |
a

By Theorem 29.1, ¢ = %’. Thus, (30.2) implies that
{30.3) <1 Ift,=1 thenm =1,¢t=1,

Assume first that ¢, =0. If ¢ =1, then since ¢ < p? and a <
@ —1)/(p, — 1), (80.2) yields m, =1. Thus, every character in
S((D€)) has degree aq. Therefore the definition of subcoherence
implies directly that .S#((9€)) is coherent contrary to assumption.
Suppose now that ¢ = 2. Then (80.2) yields that (p, — 1) + (p, — 1) <
2q. Therefore,

(80.4) %1 (modg), 2=1,2.
Further, (30.2) also implies that

Lt-1 1 -1
@05 d®m-D e @m-Dn -

It follows from (30.4) that

(30.6) 1@-1 _1_1(@-1 (mod q) .

Each term on the left of (30.5) is an integer. Hence, if p, > p,
(80.6) yields that :

1 (=1 1 (-1
oD 2 T T o

contrary to (30.5). Consequently, ¢, = 0.

Now (80.2) and (80.83) imply that ¢ = 1, so that = L,. We also
conclude that m, = 1, so that D(PB) = PB{. Furthermore, ¢ = ¢, = %/,
and (p, — 1)/a £ 2. Since ap, is odd, we have p, — 1 = 2a. Finally
we get that 4, =ufac and so m=k. If k=m > 2, or if .Z((DC))
contains more than 2u/a irreducible characters of degree ga, then (80.2)
is replaced by a strict inequality which is impossible as (p, — 1)/a = 2.
Thus, ¥k =m =2, and so d, = ug/c and the degree of a character in
(D)) is either aq or ugfe. If ©is of type II or III, then (HE) =
9’ and the result is proved.

Suppose that & is of type IV. Since the degree of any character
in SZ((9C)) is either aq or ugfc, U/€ is generated by two elements.
Since € = I, 11 is generated by two elements, Thus, if we set $, =
9, replace  and & by &'/9, and replace £ by & in Hypothesis 11.2,
then by Lemma 29.1, Hypothesis 11.2 holds and by Lemma 11.8 and
Theorem 29.1, we conclude that &7 = 57(9’) is coherent, contrary to
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assumption,
LEMMA 30.8. .S#(9) 18 coherent.

Proof. By Lemma 380.7, it may be assumed that $ =P is a p-
group for some prime p, that D(P) = P, and that € = 1. Suppose
that .7(9’) is not coherent. Let .54 be the set of irreducible charac-
ters in $7(9') of degree ag. Then by Lemma 30.7

(80.7) | =24 =1
a 2

Let .& be the set of irreducible characters in .57(9’) of degree ug. The
group /9’ satisfies Hypothesis 13.2. Hence, by Lemmas 18.5, 138.7
and 30.7, there are (p — 1) reducible characters in & of weight ¢
and degree uq which have £ in their kernel. As the sum of the
squares of degrees of irreducible characters of S/9’ is p'ugq, we get
that

(30.8) ug + | Sl ¢'a’ + (p — Deu’ + | S| ¢’ = p'ug .

Since 1 is abelian and is generated by two elements, we also have
(30.9) usa.

Now (30.7), (80.8) and (30.9) yield that

(80.10) REA il ¢ B I)Zq— 2qa — 1

L [t —1)— (- 1)g — =1
ga—,q{@ H- -2}

Hence, by (5.8), .4 is non empty.

Let “={\,|1=s8=<m} for t=1,2, The character A\, is in-
duced by a linear character of some subgroup &, of index a in &',
Define

(30.11) a= g — M),

where Tgo is the character of & induced by lg, Since & &, it
follows that 1g, induces pgg, on €. Since LQ* does not normalize
&,, (30.11) is seen to imply that

3
laif=a+1+@~1)-.

Since & is tamely imbedded in ® and & vanishes on & — @3, we get
that
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2
(30.12) laclF =llalf=a+1+@-1-=.

Furthermore,
(ar, X;i - X;,) = (av k':i - X!J) =0

for all values of 7 and j.
Suppose that (a®, Ay;) #+ 0 for some 2. Then (a,Ay;) # 0 for all
t. Henece (30.10) and (30.12) imply that

pq—l _(p'—]-)_(p_l)sa_{_l_{_(q_l)ﬁi_
qa’ a? q - %

p—1 +1+(q-—1)—‘:—.

2
Thus
(30.18) 2{(1+ «++ + p* Y} = p"; 1
L] K
2 la q 2 "
(p—1) a?
< —
<q 82 (p+qu)
(p—1) p
<¢-— (p+q2).
Therefore
a—2 p1t—1 “--l:_q_
<4 — <pq(1+12)
Hence

3P < 4pt <L q(l + —g—) <q.

Thus ¢ = 8 by (5.1). Now (30.13) becomes

4
p—1

59 2q?
S p—1+1+ 28,
+e@=1+ +u}

+p+p)sS0-1{
Thus
%(1+p+p’)é4+p—1+%(p—1)’+3;L(p—1).

This implies that

4 . 5 . 2a°
Ep<p+2p4+ Z p.
3p_p 6p up
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Therefore (1/2)p* < (1 + (2a*/u)), or equivalently (1/2)p < 1 + (2a*/u).
Thus (80.7) yields that
u< 2a® = 4a’ S(p_1)2<p+1<3a“

%p—l p—2 (p—2)

This is impossible since @ |%, @ #+ % and both @ and % are odd. Thus,
(30.14) (a,\) =0 for );€%5.

Define 8 = (u/a)\, — Ay € 5(.S”). Suppose that (87, \5) = (u/a) — b.
As 7 is an isometry on _#(.$”), this yields that

(B M) = % 8a—b for all i,
Therefore,
(30.15) B=(L-b)mi-bSn+T+4,
a $#1
where I is a linear combination of elements in .5%4° and 4 is orthogonal
to U S5°.  Sinee (B, A, — N) # 0, it follows that {|I]*= 1.
Since

(30.16) el =nsir= (%) +1,

(30.7) and (30.16) yield
i+ (% —0) + (22 -1)p < (X))

a

This implies that

||A||’+2%b’—2-'-‘-bso,
a

or b» < b. Since b is an integer, b=0 or 1 and 4 = 0.
Suppose b = 1. Then (30.15) becomes

(30.17) g = (l - 1) Ny — S+ I
a A
As a, 8 vanish on & — @, we have

(30.18) (o, B) = (@, B) = —%.

Sinee (a7, AL, — AL) = —1, we get that
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(30.19) a = (@ — 1\, + 2 % A+ 4,

for some integer x and some 4, which is orthogonal to %4. Now
(80.14), (30.17), (30.18) and (80.19) yield that

_l=(l—l>(m—-1)—x(2%—1>.

Reading this equality mod u/a, we get
= —(a:—l)—}-a;sl(modl).
a

Thus u = a, contrary to Lemma 80.7. Hence, b = 0. Consequently
B* = (uja)\j + I', and so I" = +\i; for some j. Since (87, A\ — A\j) # 0,
A = Ny OF Ay. This implies directly that % U .54 is coherent. Lemma
13.10 and Theorem 10.1 now yield that .5#(9’) is coherent. The proof
is complete.

LeMmA 30.9. & 48 of type II.

Proof. If & is of type III or IV, then Theorem 29.1 yields that
$ =1. Thus, by Lemma 30.8, .5¥ is coherent., Hence, Hypothesis
30.2 implies that & is of type II.

LeEmMA 30.10. If S contains an irreducible character of degree
aq, then Hypothesis 11.1 is satisfied with =1, 2=6, L =6, &K =
& and d = a.

Proof. By Theorem 14.2, Condition (i) is satisfied. Condition (ii)
follows from the definition of three step group. Conditions (iii) and
(vi) are immediate, while Condition (iv) holds by assumption. The
group & satisfies Hypothesis 13.2. Hence, by Theorem 14.2 Hypo-
thesis 13.3 is satisfied with =6, 2 =&, £=8 and 8 =¢©'. By
Lemmas 13.7, 13.9 and 18.10, Hypothesis 10.1 is satisfied. Thus,
Lemma 10.1 yields that Condition (v) of Hypothesis 11.1 is satisfied.
The proof is complete.

LeMMA 30.11. If &7 contains an irreducible character of degree
aq, then

|9:9 | =4’ +1.

Proof. By Hypothesis 30.2, .5 is not coherent. Thus, Lemmas
30.8, 30.9, and 30.10, together with Theorem 11.1 yield the result.



30. CHARACTERS OF SUBGROUPS OF TYPE II, III AND IV 959

LEmMA 80.12. For 1<t =t, (@,p, —1)=1 and PU/E,; is a
Frobenius group.

Proof. Suppose that a|(p; — 1) for some i. Then Lemmas 30.2
and 30.11 yield that p1 < 4a%’+ 1 < (p. — 1)¢* + 1. Thus, pi?* < ¢
Therefore, (5.1) implies that ¢ =8. Hence, p,=5 or 7. Thus, a
divides 4 or 6. As ais odd and (a,q) =1, this implies that
a =1 which is not the case. Therefore, by Lemma 80.8, 11/€,; is
cyclic of order @ for 1 <i <t If P,U/C;, were not a Frobenius
group, then for some b < a, {U?|Uecll} =1, would lie in &. Since
U, # 1 and U, char U, this implies that N(1) & N(11,) & &, contrary
to Lemma 30.9.

LEMMA 30.13. ¢t =1, p, =38, a < 3% and P! = D(P).

Proof. By Lemma 380.8, © # 1. Choose the notation so that
Pr#x1l Let Pi=PuDOPu+++ D P = B D PBrasy, Where Py/P, iy, is
a chief factor of & for 1<t < 7. Thus, B,/PB,... is of class two
and so is a regular p-group. By Lemma 4.6 (i) Q* centralizes an
element of P; — P;y for 1 =i =n. Since Cp(V*) is cyclic, this
implies that %,/P,.:+» has exponent p*. Let U/€;, = {U)>. Then the
regularity of P,/P, ... yields that U has the same minimal polynomial
on BYD(EPB) as on Pi/P,.... Hence, by Lemma 6.2, a < 3. Now
Lemma 30.11 implies that if | P, : Pi| = o9, then

(30.20) pro 11 ot < 4.3 + 1.
Since 3 < p,, (30.20) implies that
pr Tl pt < 4¢' + 1.
Hence, by (6.9), m =1 and ¢t = 1. Thus, (30.20) becomes

(30.21) pI<43¢"+1.
If p, =11, (80.21) implies that

3«<(%)'§4q’+1.

Thus, 32 < ¢* and so ¢ < 5 by (5.1). Hence ¢ = 38 and (30.21) yields
1331 = 113 < 4.8 + 1 < 1000, which is not the case. If p, =7, then
(30.21) and (5.6) imply that ¢ < 7. Thus, ¢g=5o0r¢=38. If ¢ =38,
then
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Pl g

p—1
and a < 3*< 9. Since (g,a) =1 and a |57, this cannot be the case.
If ¢ =5, then

P21 _ 9gm
»—1

is a prime. Thus 2801 =a < 3¥* < 27. Suppose now that p, = 5.
Then by (5.7), ¢ <18. Thus, ¢ =38,7, or 11. Let r be a prime
factor of a. Then » < 8"*and 5* =1 (mod 7). Thus, » =1 (mod 29).
If g =38, then » =1 (mod 6) and r < 8%, which is impossible. If
g="1T, then r <87 <50 and r =1 (mod14). Thus r =29 or 43.
Since 5" = —1 (mod29) and 5 = —6 (mod 43), these cases cannot
oceur. If ¢ =11, then r < 3" < 437 and » = 1 (mod 22). Thus, r =
23, 67, 89, 199, 331, 353, 397, or 419. Since 5" =1 (mod r), the quad-
ratic reciprocity theorem implies that (r | 5) = 1, so that » = +1 (mod 5).
Thus, r =89, 199, 331 or 419. Since 5" =55 (mod 89), 5" = 92
(mod 199), 5" = —2 (mod 331), 5" = —40 (mod 419), these cases cannot
occur. Hence, p, = 3, and the lemma is proved.

If &7 is not coherent, then Lemmas 30.8 and 80.12 imply that
|, | is not a prime. Hence, ¥ is of Type V. The other statements
in Theorem 30.1 follow directly from Lemmas 80.9 and 30.13.

31. Characters of Subgroups of Type V

In this section T = ¥'W, is a subgroup of type V. Let & be the
subgroup of @ which satisfies condition (ii) of Theorem 14.1. By
Theorem 14.1 (ii) (d) & is of type II. The notation introduced at
the beginning of Section 29 will be used.

.7 is the set of all characters of ¥ which are induced by non
prineipal irreducible characters of ¥’. For any class funetion a of ¥’
let & be the class function of ¥ induced by «.

For0<i=<qg—1, 0<j < w,—1let 7, be the generalized charac-
ters of © defined by Lemma 13.1 and let v;; be the characters of &
defined by Lemma 13.3.

Hypothesis 18.2 is satisfied with 8 =3, £ = %’ and I, replaced
by %,. By Lemma 18.7 ¥’ has exactly ¢ irreducible characters which
induce reducible characters of £. Denote these by v, for 0 <t =<q—1,
where v, =1z, Let {,=9; for 0<i<¢q—1. Since ¢ is a prime
the characters v, are algebraically conjugate for 1=<i<¢q-—1.
Therefore

y1)=p(1) forl<i1=¢g-—1.
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LEmMmA 81.1. S2(9) contains an irreducible character of & ex-
cept possibly if w, 18 a prime and DU is a Frobenius group.

Proof. If & is not a Frobenius group then there are strictly
more than w, classes of &'/9 whose order is not relatively prime to
}©|. The result now follows from Lemma 13.7.

Suppose that & is a Frobenius group. By Lemma 6.2 and 3.16
(iii) 9 is abelian and || = wj] if the result is false. Then Lemma
13.7 implies that & contains exactly w, — 1 conjugate classes which
are in ©'. Therefore

19/=1 =qw, — 1.
%

Hence

_191-1_ (9|-1
u w1 |©|1/'_1>1/l—-§|.

‘This implies that  is an elementary abelian p-group for some prime
p. Since T, is eyclic w, is a prime as required.

LEmMMmA 81.2. Let

@i = (((W)Ig — T, ) -
Then a;; #0 for 1<1<q¢q—1,0=<j<w,— 1.

Proof. Lemma 10.3 implies that by Lemma 9.4
@LY) Wiy — G, ) = (D1g — 8, ) = iy
Since 7,, is rational on ¥’ by Lemma 13.1, a;; = a; is independent of

4. Thus (81.1) implies that

g—-1
(31.2) Nojigr = by — @y .Z.} Viogr + Xig7 »

for some integer b, where a is an integral linear combination of
irreducible characters of ¥ each of which vanishes on .

Let Qe Q*. Let p be a prime dividing w,, let P be an element
of order » in I, and let » be a prime divisor of » in the ring of
integers of & . Let w;; have the same meaning as in Hypothesis
13.1. Thus by Lemmas 13.1 and 13.3

(8L3) NAPQ) = 0(PQ), a(PQ) =0, v(PQ)=-cwy(PQ),

where ¢ = +1 is independent of 7. Therefore
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BLY  SrPQ=¢F 0uPQ =¢ T 0u@ = —¢.
In view of Lemma 4.2 (31.3) and (31.4) imply that
7i(Q) = Ni(PQ) = 0;(PQ) = 0;(Q) =1 (mod p)
(BLE) S vul@ = (mod p)
a@) = a(PQ) =0 (mod p) .
Thus (31.2) and (81.5) yield that 1 =ea; (modp). Thus a; # 0 as

required.

The main purpose of this section is to prove that .~ is coherent.
Theorem 12.1 will play an important role in the proof of this faect.
The lemmas in this section will from now on satisfy the following
assumption.

Hypothesis 31.1.
9 18 not coherent.

By Griin’s theorem %/%’’ is a Frobenius group. Hence by Lemma
11.2 ' = Q is a g-group. Define

(31.6) 120 =¢q, 1T:Q|=w,=e.

Let 1 =¢o< g1 < -+« be all the integers which are degrees of
irreducible characters of Q. Let

(81.7) v,(1) = ¢’», n>0,.
By Lemma 13.10 Hypothesis 12.1 is satisfied. Let .7, be defined
by (12.3) for 0 < s < t.

LeEMMA 381.8. Suppose that b = 2¢c for some integer ¢. Then e
is mot a prime power.

Proof. Suppose that e = p* for some prime »p. Then by Lemma
115 ¢°+1=2p" fi=c and Q contains a subgroup O, which is
normal in ¥ and satisfies | Q' :Q,|=¢ and Q* £ Q - Q. Therefore
n =1 and .7~ contains 2(¢° — 1) irreducible characters A\, A, -+ of
degree e. Define

a=’i’n—7\‘1’ B=a¢M—-C.
By Lemma 9.4 we have that
6L8) llalP=e+1, [BIP=c"+e, @, 8)=—¢.

Furthermore
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(ar, A — h;) = 8:'1 - 36! ’
(B, M — N) = ¢°(0u — 01) .

Suppose that (a7, A;) # 0 for some ¢ with 2 <1 < 2(¢° — 1). Then
(31.8) and (31.9) imply that

(31.9)

—g:;'—1+1=e+1=||a'll’zl+2(q°—1)—1.

Hence ¢° + 8 = 4¢° — 4, or 7 = 3¢° which is not the case. Therefore
(31.10) a=1lgy—M+T, (H\)=0 for1<1<2(¢ ~1).
Equation (31.9) also yields that for some integer «

2(g%~1)

(31.11) B =¢q¢\ — 2 ‘Z_I A+ 4,
~()»f,41)=0 for1s%=<20¢-1).
Furthermore Lemma 13.8 implies that for 2<s8=<¢q —1,
(31.12) 4,0-H)=6,0-0)=6L-0)=e.
Since S8° vanishes on B and (8, 1g) = 0 Lemma 13.2 yields that

e—1 e—1

g—1 g—1
(81.13) 4= 'Z_‘.l'aso %77;5 + .’z.:laloi Z.:.,%; + 4,

where (4, 7:;;) =0for 0291 <q—1,0=<j=<e—1. Now (31.12) and
(31.13) imply that

Ao — 0, =1 for2<s8=q-—-1.

Define @ = a,. Then (81.18) implies that
GLY) @1y +@— 20+ S a
=1

+ :21 {@x1+ay)+(@—2+a)}= 4],

For any value of j the term in the last summation in (81.14) is non
zero. Furthermore (@ + 1)* + (¢ — 2)a* # 0. Thus (31.14) implies that
if there are exactly k& values of j with a,; # 0, then

(81.15) k+e=<||4|?, Fkis even.

The last statement follows from the fact that (7,;, 4) = (7., 4) since
B and thus 4 has its values in &;,. By definition

(qcin - &)= qcﬁn — M)+ (@M — M) =¢gar + B

Lemma 31.2 implies that for any value of j with 1 <j=<e—1
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(31.16) (@, M) #0 or (B,7;)+0.
Now (31.8), (31.11) and (31.15) yield that
(@—2y+2{20¢°—1) -1} = ¢¥,
or
20¢° — o = 2¢°x .

Therefore

0sz<s—9%L <2,
¢ -1
Suppose that & + 0, then z = 1. Now (81.8) and (81.11) imply
that J|4|*<g¢*+e—{(¢°— 1)+ 2(¢°—1)— 1} =¢ + 2. By (81.15)
this implies.that k=0 or k=2. Assume first that & = 0, then
(81.10) implies that ||I"||* = e — 1. Hence by (31.16)

e—1

Fzzi-noj-
=1

This implies that (87, I') = 0. Consequently (31.8), (81.10) and (81.11)
yield that

—¢=@,B)=(—-\M,f)=2—¢=1—-¢

which is not the case.

Assume now that k =2. Choose 1,2 with 11'<2 <e—-1
so that a,, # 0 for j =1',2. Thus Mo = Doz, Gy = G = +1 and by
(81.16)

a=1lg— N+ 5 *%+ 1y, ILIP=2.

1#17,27,0

Since 8° has its values in &, and 7, has its values in &, (9,;, 8°) # 0
for any algebraic conjugate 7,; of %,. By Lemma 13.1 7, has at
least (p — 1) algebraic conjugates. Hence p = 3, therefore q +# 3.
Since a* vanishes on %8 Lemma 13.1 implies that for 1 <s<¢q—1

0=(a',1g— N — N + D) =1+ (Lo, = Do + N} — (L'oy Tur’) .
Hence if (I, 7)) = 0 then
2= ILfz@—1>2.
Therefore (I'y, ') # 0. Hence

e—1

F=52=livoj-

Consequently (31.8), (81.10) and (81.11) yield that
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—¢=(@,B)=(—M,f)t2=2—q¢£2=1—-¢ 2.

The assumption that z # 0 has led to a contradiction in all cases.
Therefore (81.8), (31.11) and (31.15) imply that

B =¢\ + 4, 4|P=e.
Thus a,; =0 for 1 < j < e — 1. Thus (31.14) implies that
(@ax1e+(g—2)ae=<e.

Hence a=0or¢g=8and a =1=0. Thus 8 =¢\ — ¢ or ¢q=3
and 87 = ¢°\f + {i. In either case this implies that the set of charac-
ters consisting of \;, 1 £ 1 <2(¢* —1)and {,, 1 £ 8 £ ¢ — 1 is coherent.
This includes all characters in .~ which have L, in their kernel.
Since |Q:Q,| = ¢** > 4p*® the result now follows from Theorem
11.1 with $=8=8=9, £, =, and 2= &.

LEMMA 81.4. . 18 coherent.

Proof. By Theorem 30.1 w, is a power of 3 if .&” is not coherent.
By Lemma 31.8 b is odd. Thus the lemma follows from Lemma 11.6.

LeMMA 381.5. For 0 <1 <mn — 1 let \; be an irreducible charac-
ter of T with \(1) = eq’s. Let L, be the normal closure of LQ* in
X, Let 1 =g < +++ < q'n be all the degrees of irreducible characters
of 2/Q,. Then IO, is a Frobentus group. For any value of j with
0=j=<m let 6; be an irreducible character of X|Q, of degree eq’s,
Define

a = io, — Ao,
Bi=¢q i, —\ forlsis=n-—1,
Vi =q% %10, —6; forl<j=m.
Then
(.8:’770:)=0 fOTOétée—l, léién_ls
(5N =0 for0st=<e—1,1=5j=m.

Furthermore if e i3 a prime then one of the following possibilities
must occur:

e-1
@ =1g— N+ 57,
@ = 1o+ N+ 57 and 26+ 1=D: 0,

-1
a'=1@+q§.‘._17].o+r’
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with (I, 7,) =0for 0<8<¢q—1,0=t=<e— 1.

Proof. Forl1=i=n—-1,155m let
" =T+ dw, Bi=Iy+ 4y, 7Yi=2T4+ 4y;,

where each d4;; is a linear combination of the generalized characters
7,. and each [I';; is orthogonal to each of these generalized characters.
Since for 1 =8=¢q—1, ({, — )" is orthogonal to a7, 8; and 7v; and
all of these vanish on ?IAB, Lemma 13.2 implies that

q—1 e—1 e—1 q—1 e—1

(31.17) 4i; = aplyg + a Z Z N + Z on Z Mo — Qoo Z Z et »

where {a}U {e,} is a set of integers depending on (7, j). Since
A =X, a)# 0, [[ 4ol < e. Since (A\j — X, B5) # 0, (65 — 65, 75) #0,
Theorem 12.1 implies that

(31.18) [| 4;;1* e for all (s, 7).

Assume first that (¢, 7) # (0, 0). Then a, = 0. Thus (81.17) and
(31.18) imply that

(q—1)a’+(q—1)g(a+am)’+ ga&ée.

If a = 0 then for each value of ¢ either a,, + 0 or a + a,, # 0. Thus
(¢ — Da’ =1 which is not the case. Hence @ = 0 and so

—1 g1
(31.19) 4i; = ‘_gaot ?:'o Vot »

As A(&°) is orthogonal to _%( 7 )° Lemma 31.4 yields that for all
(3, 9)
()5 — 6(1)6L, 4:5) =0 for L=k, K <e—1.
By (31.19) (4,;, &) = +a,q. Hence
E(D)ag — & (L)ag, = 0.

Suppose now that a, # 0 for some . Then a, # 0 for all ¢ with

1 <t<e Hence (31.18) and (31.19) imply that
gle —1) = ano. <

which is not the case. The result is proved in case (%, 7) # (0, 0).
Let (¢,7) = (0,0). Then a, = 1. By assumption £.(1) = &(1) for
1<k=e—1, since ¢ is a prime. By (31.17)
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(4o &) = H{alg — 1) + aug —axg — 1)}, for1sk=<e—1

where the sign is independent of k. Since (44, &8 — &) = 0 this yields
that a, =a, for 1 <k <e — 1. Hence (31.17) and (81.18) imply that

@-Da’+(—Dah+(—-1@g—-e+ax—1y=e—1.

If a, # 0 this yields that ¢ =0 and a, =1 and the result follows.
If a; = 0 then we get that

@—1a*+(e—1)g—1)a—-1)=<e—-1.

Hence a = 1 and the result is proved also in this case.

LEMMA 31.6. Let N = \,., have the same meaning as in Lemma
31.5. Define

By =B =g 71\ — (.

Then (B85, M) =0 for 0=t <e—1,

Proof. Let &, be the equivalence class in .7~ defined by (12.3)
which containg M. If {, is in .7, then the result follows from the

coherence of . 7,. For any ¢, let a;/e be the number of characters
of degree ¢”i¢ in .7, and define ¢ as in (12.4) by

(31.20) ¢ = S agim

where ¢'me¢ is the minimum degree of any character in 773.
Let

(31.21) BF=4+4+17I,

where 4,€ _# (77°), 4 is an integral linear combination of the gener-
alized characters 7,, and I" is orthogonal to .7;° and to every 7,,.
Theorem 12.1 yields that

(31.22) WA+ P = 2.

B* vanishes on ® and (87, 1g) = 0. Furthermore ({; —{{, 4) =e for
2=<s8=<q—1. Therefore Lemma 13.2 implies that

—1 6—1 1 g—1

(31.23) 4d=¢ :2-:',7/" + aij > M + ‘glu Qe %77.: ’

=1t=0

where ¢ = +1.
Since _7(.S”)" is orthogonal to _#4( 7 ) Lemma 31.4 yields that

E)se — &V, ) =0 for 1<k, kK <e—1,
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By (31.23)
(i 4) = £{e + (@ — Day + qau},
where the sign is independent of k. Therefore
§ul){e + (¢ — Dayw + gau} = & (1) {e + (¢ — Day + qau}
for 1<k, k¥ <e. By (81.22) and (81.23) we see that

(BL20)  Sah+ @ot+ O+ @ - 20h+ 5+t + au)
+@—2F @+ au =4I S 2.

If a, # 0 and a, + &€ + 0 then for each ¢ at most one of a, a,, + a
€ + @y + a, vanishes. Hence (81.24) yields that

(a'm + 5)’ =+ (q - 2)0'?0 _S_ 2.

This is impossible as either a,, or a, 4 ¢ is even. If a,,# 0 then
(31.24) implies that

e—1

25+ @-D+@— D - 2.

Ifq+8,then2a} + (¢ —2)a, —¢)'=2forl <t<e. Henceq—2=
2 which is not the case. Thus a,,=0 or ¢ =8 and a,, + ¢ = 0. Thus
we get

(31.25) € 4) = £{xe + qan}
&) £e + qan} = &u(1){£e + qan} for 1<k, K <e.

Assume that the result is false. Then a, # 0 for some value of
t. We will next show that a,, #0 for 1 £t <e. If this is false
then there exists 7 such that a,; = 0. If v is any character in .&¥
then (v(1)&5 — &;(1)y%, 4 + I') = 0. Thus (81.25) implies that

: 4+ 1) =270
(81.26) Or 4+ 1) = 205

Thus £,(1)|v(1) for every v in .. Let a be the exponent of 1I. By
Lemmas 80.1, 80.4 and 30.5 £;(1) = aq. Thus & is in the kernel of
&;. Define

o={t|1 =t <e(l) + &1},
By (31.25)

@) =&} o 1<t<e.
¢&5(0) eristse

Ay =
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Thus (31.22), (81.23) and (31.26) yield that
2000 2 2901Y + = 60 - §OF 2 A0 + Z s eay,

where © = 4/9 if ¢ # 8 and £ =16/25 if ¢ =38, and 7 ranges over
the irreducible characters in .5”. By Lemma 13.7 there exist irre-
ducible characters g, of © which induce the characters &, for1 < ¢ <e.
Consequently

20’ 2 521 + 0 T 2 2 {20 + 3 w1y}

where ¥ ranges over the irreducible characters of € which are distinet
from all ¢, and do not have  in their kernel. Therefore C(9) S
otherwise since |®| is odd there are at least 2eq characters X of
degree at least a. Furthermore

2ea’q = x{u(h — 1) — a*(e — 1)} .

This implies that

(31.27) yeqa® = {_2:1 teo— l}a’ > uh — 1),

where y =4 if ¢ =8 and ¥ =5 otherwise. Let 1C ,c D, where
£ 48, Leth, =D, b =[D: D, &, = Co (V%) | and ¢, =| Cg,,(V*) [.
Since & is of type II ae, < 2h, and a < . Thus (31.27) implies that
h, — 1 < 2yqge,. Since h, = p* e, for some prime p dividing h, we get
that »*' < 2yq. Thus ¢ =8 by (56.1). Hence »* < 24 which is not
the case as p = 5. Hence no such group £, exists. Thus $ is an
elementary abelian p-group for some prime. Therefore ¢ = p is a
prime and £,(1) = §,(1) for 1 <t <e. Consequently a, = a,; =0 for
1 £t < e contrary to assumption.
Returning to (31.24) we see that

e—1

2a3tée+1.
=1

Therefore a3, =1 for 1 <t <e¢ —1, Thus
(31.28) a,=+1 forl<t<e—1.
Now (81.24) implies that

(31.29) (@ + €)Y + (g — 2)aj,
+ (e — D{(@, + ¢ + ay,)' + (g— 2)(a,y + aOI)’}
Se+1,
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Suppose that ¢ +3. Thus ¢ =5 and a,=0. Then (81.29) im-
plies that (¢ — 1)(¢ — 2) < e+ 1. As ¢ = 5 this implies that 3¢ — 3 <
¢ +1 or e <2 which is not the case. Therefore

(31.30) ¢g=3.

By (81.29) either a,, =0, @y, = —(@y +6)ora, +& =20, ay = —ay,.
Now (31.23) and (81.28) imply that
77”}

Du} -

M»

4= i'{g’?u - ._:

t=0 t=

]
o

or

M=

4= :t{.i’?:c - 'E_i

t=0 t=1s

i
o

This is equivalent to
4= '_*'{7710 - :2{ (Dot + 77::)}
(31.31) or

4

i{’?m - g (0 + 77u)} ;

Since (87 — B7, I') = 0, I is a real valued generalized character. Thus
IC|*+ 1. By (81.81) ||4|]* = 2¢ — 1, hence by (31.22) I = 0. Now
(81.21) implies that

n—1 &gl

(31.32) Br=g/n i — @ 5 5, ¢ TN + 4,

where for m = 1<% — 1, \;; ranges over the characters of degree
eq’s in 7.

Suppose that .~ contains an irreducible character v. Then by
Lemma 31.4

()& — A, B)=0 forl<t=<e—1.

As v is rational valued on elements of Q, v* # A{; for all ¢, 5. Thus
(31.81) and (81.32) imply that

+2v(1) = (v(1)é7, B8°) = G, 87) = 0.

Therefore .&° contains no irreducible characters. Hence by Lemma
311

(31.33) e=9p, P a prime,

Now Lemma 81.8 implies that b is odd, where b is defined in
(81.6). As ||4]}?=2p —1 > 2p — 2 Theorem 12,1 implies that if ¢ is



31. CHARACTERS OF SUBGROUPS OF TYPE V 971

defined in (81.20) then
(31.34) c=0 (modgq) orcz=p*.

Assume first that m # 0 in (31.32). Let a be defined as in Lemma
31.5. Suppose that

p—1

a'=lmi7\'5+.z=‘{770t-
Then (81.31) and (81.32) yield that
0= (,B)=x(—1).
Thus by Lemma 381.5

(BL35) @ =lgEN+ N7+, ILISp-3.

Then

n—1 o4/P

(31.36) IFy=Iyx+ Yy Z Z q!"—f"'xst:' ’

1=m j=1

where (', M) =0 for m<t1=<n-—1, 1 <7 = (a:/p). Suppose that
y = 0. Then (81.31), (81.82) and (381.36) yield that 0 = (a*, B7) = 1.
Hence y #+ 0. Thus by (81.35) and (31.36)

Thus (31.34) yields that
(31.37) ¢=0 (modgq).
Equations (31.31), (31.32), (31.85) and (31.36) imply that

0= (@, §) = 1+ yg's/m1g/rTm — 2y 2.

Hence (31.37) implies that 0 = +1 (mod q). This contradiction arose
from assuming m # 0.
Assume now that m = 0. Then

e=¢q¢"—14 ga.-q”* .
Hence ¢ = 0 (mod ¢q). Thus (31.34) and 8.15 imply that
(31.38) c=p', ¢+ 1=0 (modg”’»).
Now (81.31) and (31.32) yield that



972 SOLVABILITY OF GROUPS OF ODD ORDER

@I 4 p = || B || = @V Tw1 — 2¢7n 4 22 -%— +2p-1.
Therefore
(31.39) 2% + p(p — 1) = 2x¢"»p .
By (81.38), (¢ + 1) > pg’». Thus (81.89) yields that
f(®) = #*(pg’» — 1) — 2e¢’*p + p(p — 1) < 0.

It is easily verified that f(«) is a monotone increasing function for
z=2 and f(2)=p(r—1)—4>0. Thus #<2. By (31.39) « > 0.
Hence 2 = 1. Now (81.39) becomes

¢+ p@—1)=2¢"p,
or equivalently
(31.40) P—91+2¢Y)Y+¢c=0.
Therefore (1 + 2¢’+)* — 4¢ = 0, hence
4c < 4¢¥" + 497 + 1 < 8¢¥= .

Thus ¢ < 2¢*’». As ¢ is even, (31.38) now yields that ¢ = ¢¥» — 1,
Now (81.40) becomes

¢ —2¢p+p"—p—-1=0,
or

@ —p—D@"—-p+1)=p.

As p is a prime one of the factors is +1 and the other is +p. As
the factors differ by 2 this implies that p =1 =2. Hence p = 3.
Since p # ¢ (81.30) implies that p # 8. This contradiction establishes
the lemma in all cases.

TueEoREM 381.1. .7 18 coherent.
Proof. Suppose that .7~ is not coherent so that Hypothesis 31.1

is assumed. Let a, 8;, Vi, M, 8; have the same meaning as in Lemmas
31.5 and 31.6. Choose A, = 8,. Then

(31.41) (@1n — §) = g™a + 3 g™ 1485 .
(31.42) (@™ — G = 330715 .

=1
(31.43) (q°96, — 6,)" = EJZ gy, forl1<j<m,

a=1
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Lemmas 81.2, 81.5 and 81.6 together with (31.41) imply that

e—1
@ =1g =2+ %7

or

—1

a"=1®+x;.+t2_lvu

and 2¢ +1=|Q:Q/|. If the latter possibility occurs then by Lemma
10.1 it may be assumed after changing notation that in any case

e—1

(81.44) = 1@ — N+ ¢§1 Noe -

Now Lemma 31.5, (31.43) and (81.44) imply that

(31'45) —q° = (ar’ (qa'ao - 01)7)
= (—8;,(q"0,— 06,)), forl<s<m.

Since [ (¢°*6, — 6.)° |I' = ¢+ + 1 and ((¢°*6, — 6,)", (6; — 67)) = —1, (81.45)
implies that

(31.46) @0, — 6,) = q°0; — 65 for1<s=m.
Lemmas 31.2 and 31.5 and equations (81.42) and (81.44) yield that
(31.47) —q" = ("M — &) @) = (7N — G, — M)

By Lemma 138.10 {{;|1 <% <q — 1} is subcoherent in .7~. Since
H(@7"n — &) |1 = ¢ + e it follows from (31.47) that

(31.48) @ — 0 =¢"N — 1.

Let Q, have the same meaning as in Lemma 81.5. Then there
exists a subgroup L, of L, such that Q,/Q, is a chief factor of ¥
and |Q,: Q| =¢q. Let 7 (Q,) be the irreducible characters of T of
degree eq%, 0 < j < m. Then (31.46) implies directly that .7 (Q,) is
coherent. Hypothesis 11.1 is satisfied with © = €=8=9 and T =
8. If 7 is not coherent then Theorem 11.1 implies that |Q:Q,| <
46’ +1. As I/Q, is a Frobenius group this implies that Q, = Q.
Therefore /O, is an extra special ¢g-group. Thus |Q: Q| = ¢* for
some integer ¢. Define

T ) =T Q)U{Il=isqg—1}.

Then . (X),) consists of all characters in .~ having the same weight
and degree as some character in .7~ which has Q, in its kernel. By
(81.48) .9~ (L),) is coherent, Thus if .7~ is not coherent Theorem 11.1
implies that
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(31.49) ¢t ={Q:0,|<46+ 1.

Lemma 13.6 applied to the group W,0/Q, implies that e|¢°+ 1 or
e|lg°—1 and |W,| =e. As ¢ is odd this yields that 2e < ¢°+ 1 in
any case. Thus by (31.49)

=4l +1=(+1)+1<2".

This contradiction suffices to prove Theorem 31.1.

COROLLARY 381.1.1. If )\, t8 an trreducible character of T of
degree w, then

(i’z"_xo)r=1@“7\';+ ‘}:770:-

Proof. Let a = iz, — X and let a, = (a7, ). By Theorem 31.1

(81.50) Ml — &) = wlar + @A — &)
= v — & + vi(la" .

As 7, is rational on %', (u, M) =0. By Lemma 13.9 (9., i) = 0.
Thus (31.50) implies that

(Wlg — &), M) =awy(l) for 1<t<w,—1.

Hence by Lemma 31.2 (o, 7, ) #0 for 1 st =w,— 1. As |9 |>2,
(@,1g) =1, (a", M —X;) = —1 and ||a°|]' = wy, + 1 we get that

wy—1

a’:lm_x;'i"zﬂi”og.
As a° vanishes on B Lemma 13.2 now implies the required result.
COROLLARY 81.1.2. &' is a Frobemius group and w, i8 a prime.

Proof. Suppose that .&” contains an irreducible character 4.
Choose &; in S#(9). Then (BQ)¢: — £;(1)67) e A(S”). If &7 is not
coherent 4 may be chosen in $(9’) by Theorem 30.1 and Lemma 381.1.
Hence by Corollary 31.1.1 and Lemmas 13.9 and 30.8,

0 = (B(L)E; — &,1)8°, (g — M)°)
= 00) (= 57, 33 ) = 2600

Therefore . contains no irreducible characters. Lemma 31.1 now
implies that &' is a Frobenius group and w, is a prime.
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32. Subgroups of Type V
THEOREM 32.1. & contains no subgroup of type V.

Proof. Suppose that the result is false and £ is a subgroup of
type V. T is tamely imbedded in & by Theorem 14.2. For 0 <1< n
let 8, have the same meaning as in Definition 9.1 and let A, be
defined by (9.2). Let &, be the set of elements in & which are
conjugate to some element of %, for Le J?,%. By Lemma 9.5

=1
|G, I©| 2, 14(G)

8|~

(32.1)

77 Zele(D) = o (1 - Tle) .

lf"CI
Let M be an irreducible character of degree w, in .. By Theo-
rem 31.1 and Lemmas 10.3 and 9.4

(32.2) M(T) =a + MT) for TeZ",

where « is independent of 7. Now Theorem 31.1 and Corollary 31.1.1
imply that @ =0 in (82.2). Thus A (T) = \MT) for TeZIT*. Hence
Theorem 31.1 and Lemmas 10.3 and 9.5 imply that

(823) =3, VO = 57 X MG =1 —

I@I IEI If"C’I '

Let B be defined by Theorem 14.1 (ii) (a) and let B=B—BW, — O*.
Define

@, = JG'BG .

ee®
Thus Theorem 14.2 (ii) (a) implies that

1 1 1 1
32.4) — =1 — — = 4 =,
( e7 & w, "7 T

Let &, be the set of elements in @ which are conjugate to some
element of . Since H is a T.I. set in G,

(32.5) 116, =

1 —
iG] PAETIAARE

Define
®0 @ @1 @; - @3 .
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Then (32.1), (82.4) and (32.5) imply that

1 1 1 1 1 1
— |G =1 —_———e — ) [ — - —
I(SII ol 2 ( w, q+qw,) (w, w,[i”[)
1 1 1 1 1 1
) (qu qul@l) g wg qu w|T|
+ 1 1_1_ 1 _1
qu| 9| g 8 8 8¢
By (32.3)
1 w. w
32.7 —_ V@) P11 —-(1 - )= W |
(32.7) &7 SmIN@r s ( II,l) -

By Corollary 81.1.2 w, is a prime and $U is a Frobenius group.
Hence by Lemma 13.1 7%y, -:<, %,.,1 are algebraically conjugate
characters whose values lie in «#,,. Every element whose order is
divisible by w, lies in &, U ®,. Thus 7,/(G) = 7,(G) is a rational integer
for Ge®, and 1<j =< w,—1. Now Corollary 81.1.1 implies that
1 —A(&) + (w, — 1)(G) = 0 for G€®,. Hence A (G) = 1(mod 2) for
Ge@®, Therefore |\ (G)|=1for Ge®, Now (82.6) and (32.7) imply
that

W, 1
— > =
|Z'| © 3¢
or
(82.8) 3qw, > |T'].

Since T" 1, (32.8) yields that 8w, > |2’ : %" | and |¥”|=gq. Thus,
L&, acts irreducibly on £'/%"”. Therefore ¥’ is an extra special group.
Let |¥':%”| = ¢*. Then by Lemma 13.6, w, < (¢° + 1)/2. Thus (32.8)
implies that ¢* < (3/2)(¢° + 1) < 2¢°. Hence ¢° < 2 which is not the
case. The proof is complete.

COROLLARY 382.1.1. Let & be a subgroup of type II, III or IV,
Let & have the same meaning as in Sectton 29. Then &7 18
coherent.

Proof. This is an immediate consequence of Theorems 30.1 and
32.1.

33. Subgroups of Type 1

LEMMA 33.1. Let 8 be ¢ maximal subgroup of & and let £ have
the same meaning as in section 14. If R is of type 1 with Frobenius
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kernel © let < be the set of all irreducible characters of & which
do not have  in their kernel. If £ isof type II, III or IV let &
be the set of characters of R each of which 1is induced by a non
principal irreducible character of &' which vanishes outside Q. Let
L; have the same meaning as in section 9 and let A, be defined by
(9.2). If ne & then M\ can be defined. Furthermore \* i8 constant
on A; for Le Y, &.

Proof. Since |®| is odd Lemmas 10.1 and 13.9 imply that \*
can always be defined as {\, A} is coherent.

If Le& then %A, = {L} and there is nothing to prove. If Le g
with 7 # 0 let 9, be a supporting subgroup of € such that CLYeEN; =
N©). If N, is of type I then the result follows from Lemmas 4.5
and 10.3. By definition %; cannot be of type III or IV. If R; is of
type II then the result is a simple consequence of Corollary 32.1.1.

The main purpose of this section is to prove

THEOREM 33.1. FEwery subgroup of type 1 is a Frobenius group.

All the remaining lemmas in this section will be proved under
the following assumption.

Hypothesis 33.1.
® contains a subgroup of type 1 which 18 not a Frobenius group.

If Hypothesis 33.1 is satisfied the following notation will be used.

o is a set of primes defined as follows: p;eo if and only if &
contains a subgroup M, of type I with Frobenius kernel &; such that
a S,-subgroup of M/K; is not cyclic.

p = p, is the smallest prime in ¢, M =IM,; & = K,.

B, is a S,-subgroup of M.

P is a S,-subgroup of & with P, & B.

€ is a maximal subgroup of & such that N(2,(B,)) & L.

% has the same meaning as in Lemma 33.1.

If 8 is of type I let 11 be the Frobenius kernel of £ Let & =
U€ with UNE =1.

If 8 is of type II, III or IV let  be the maximal normal nilpotent
S-subgroup of 8. Let U be a complement of  in ¥ and let T, be
a complement of & in £ with T, & N().

LEMMA 388.2. £ is the unique maximal subgroup of ® which
contains N(2,(B,)). Furthermore L is either a Frobenius group or
L is of tyve III or IV and B can be chosen to lie in 1.
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Proof. By Theorem 32.1 £ is not of type V. If 8 is of type II,
IIT or IV then B, S ¥ since P, is not cyclic. Since  is a T.I. set
in @ it may be assumed that P, = .

There exists Pe 2,(%,) such that C(P) S M. Thus either P =
P, or Z(P) is cyclic and Z(P) = B,. If a S,-subgroup of U is abelian
then P, is the S,-subgroup of U. Hence 2,(B,) char Il and so N(1) =
N(Q2(P)) = & Therefore € is of type III or IV and P =P, & 1.
By definition & is the unique maximal subgroup which contains
N(Q,(B,). If the S,-subgroup of U is not abelian then 8 is of type
IV and it may be assumed that L S U. Then 2,(P,) S € and in this
case also L is the unique maximal subgroup of & which contains
N(2,(Bo).

Suppose that 8 is of type I. Let ¥, be a S,-subgroup of 8 with
B & Pi. If pen(€), then P, is abelian. Thus, P, = P, and so Py =
PB. Hence, P is an abelian S,-subgroup of &. By construction,
N(B) & 8. Hence, <, by Burnside’s transfer theorem. Since
|8] is odd, if an element of N() induces an automorphism of P of
prime order ¢, then ¢ < ». By the minimal nature of p, a S,-subgroup
of € is cyclic. Let P*=PNC@Q). Since 8 is of type I, P* is
cyclic. We can now find a prime ¢ such that some element N(¥)
induces an automorphism of order g on L/P*. Let L be a S,-subgroup
of & permutable with . Since ¢ < p, L normalizes P, and L) is
cyclic. Since LU is a Frobenius group, 2,(Q) centralizes P/P*. Let
By = Cy(1(2)). Then P = P*Py, and [, BF] & P*.

Let 2* be a maximal subgroup containing N(2,(Q)). The minimal
nature of p implies that Q £ £*'. Hence, by Lemma 8.18, Q centralizes
every chief p-factor of £*, so Q centralizes PF, which is not the
case. We conclude that p ¢ m(). Therefore pen(ll). Hence PS.
I is not a T.I. set since P is not a T.I. set in &, This yields that
either penf or m() = 2. In either case this implies that every
prime divisor of |€| is less than p. The minimal nature of p now
implies that € is a Frobenius group.

The previous parts of the lemma imply that if £, is a maximal
subgroup of @ which contains N(2,(,)) then &, is a Frobenius group
and p divides the order of the Frobenius kernel of £,. If P is abelian
then =P, and =8, = N(2(By). If P is non abelian then L =
€, = N(Z(*3)). The uniqueness of £ is proved.

LEMMA 33.3. There extsts an irreducible character A € & which
does not have P in its kernel such that M1)|(p — 1) or M1) |(p + 1).

Proof. Let A be a character of £ which does not have P in its
kernel and is induced by a linear character of U if £ is a Frobenius
group and by a linear character of ¥ if & is of type III or IV,
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Either P = B, and so m(P) =2, or Z(P) is eyclic. In either case
this implies that if g€z (N(P)/C(P)), ¢ # p then g|(p + 1) or q|(p —1).
If & is of type III or IV then A1) = |W,| is a prime and the result
follows. Suppose that & is a Frobenius group. If pexn} then |€| =
A1) has the required properties by assumption. If p ¢ 7¥ then O is
abelian since  is not a T.I. set in . Thus P =P, and m(P) = 2.
Suppose that g¢,, ¢,€ 7(€) where ¢,|(» — 1) and ¢,|(» +1). Then an
element of € of order ¢, acts as a scalar on . There exists Pe Pt
such that N((PD) & M. Thus M contains a Frobenius group of order
pg, which is not the case. Therefore every prime in #(€) divides
(» — 1) or every prime in 7(€) divides (p + 1). Since (p+1,p — 1) =
2 this yields that |€||(p+ 1) or |€||(®» —1). The lemma follows
since M1) = | €.

LemmA 33.4. Let N be the character defined in Lemma 33.8.
Then

AM(L) = ML) for Le®

Proof. Set e=|L2:%|. Observe that if £ is a Frobenius group,
then since pen*, it follows that ¥ =1, so that A(1) =e. This
equality also holds if £ is of type III or IV.

Set a = (fg, — ) so that a* = 15 — \* + 4, where 4 is a gener-
alized character of ® orthogonal to 1g. Let X =2, «--, )\, be the
characters in .&” of degree e. Since e divides (p + 1)/2 or (p — 1)/2,
it follows that f >e¢+ 1, and s0o (4,\)) =0, 1 <3< f.

We next show that & is coherent. If 2 is a Frobenius group,
the coherence of & follows from Lemma 11.1 and the fact that &
is of type I.

Suppose € is of type III or IV. Then Hypothesis 11.1 and (11.2)
are satisfied with the present £ in the role of &, £ in the role of
9, and /D in the role of . By Lemma 11.1, we may assume that
|&:8"|<4|2: ¥+ 1. Hence, |¥:8'|=9" and e = (p + 1)/2, so
that P=U. If P is non abelian, then e divides (p — 1)/2. Hence,
we may assume that P is abelian of order »* and L is of type III.
By Theorem 29.1 (i), no element of Pt centralizes . This implies
that if g, ---, &, are the characters in . of degree pe, then f’ = 2p.
Hence, (4,15 =0, 1<j = f'.

Let 8= (p\, — tt), 8o that B = p\ — @ 3 M — 4 + 4, with
(4, \7)=0. If =0, the coherence of & follows from Theorem
30.1. As ||B|P=9"+1, and f = 2(p — 1), it follows that 0 < 2 < 2,
and [|4,[*< 2. Hence, £ =1 and (4, ¢£5) =0. But now (a*, 87) =
(@ B)=—p=—(—1)+(4,4,), so that (4, 4,) = —1. This is not
the case as 4 and 4, are real valued generalized characters of @
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orthogonal to 1g. The coherence of & is proved in all cases.
Since (4,77) = 0, the lemma follows from Lemmas 9.4 and 33.1.

LEMMA 338.5. Let \ be the character defined in Lemma 33.3. Then

I MK < )T%T .

liml

Proof. Let @, be the set of all elements in @ which are conjugate

to an element of %A, for some Le®, Let ®, be the set of all ele-

ments in @ which are conjugate to an element of U, for some K € &*.

No subgroup of ® can be a supporting subgroup for both 8 and M.

If & were a supporting subgroup of M then p would not be minimal

in the set 0. Thus @, is disjoint from ®&,. Therefore by Lemmas 9.5,
4.5, 10.3, 33.1 and 33.4

1

1 T 3 - = T 3 — 1 AT 3
T ——Tat | MV(K) ' = I(sj'EmllN(G)l <1 Ich 26, | M(G) |
= _TEITZQ'W(G)'EI"|_513|'23~‘"MG)"
C1 (1 MUY M)
( ISI) |2

LEMMA 33.6. Let R = KF where § =M N L. Then there exists
Fin (BN Z(F) such that Cx(F) £ &. Furthermore M satisfies
Hypothesis 28.1.

Proof. If & isof type I, then § & U. Thus, ¥ is nilpotent and
hence abelian. The result follows from 8.16 (ii) and the fact that
P, is not cyelie.

Suppose & is not of type I. If § £ 1D, then we may assume
that 2, S §. Then WP, is a Frobenius group and WP, = §. By
3.16 (ii), T, centralizes an element of K. Since |W,| is a prime,
this contradicts the fact that M contains a Frobenius group of order
[W,R|. Thus, FSUD. Let F1=FNH. Since  is a T.I. set in G,
we get that &, is a cyclic normal S-subgroup of &. If &, =1, then
% is abelian and the result follows from 38.16 (ii).

Assume now that &, +1. We may assume that § = F.(§ N N0).
If 92,(%,) does not centralize &, then there exists P* & 2,(B,) such
that §,P* is a Frobenius group. Hence, Co(B*) # 1 by 3.16 (ii). But
in this case, P* lies in no normal abelian subgroup of ¥ contrary to
the definition of groups of Frobenius type. Thus, 2,(B,) centralizes §,.
Since FNU is abelian and F = F(F N 1), this implies that 2,(B,) &
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Z(%). The lemma now follows from 38.16 (ii).

LEMMA 33.7. Let _ be the set of all irreducible characters of
M which do mot have K in their kernel. Let N be the character
defined in Lemma 33.3. If _# 18 coherent them N\ i8 constant on &*.

Proof. Let O, -9, be a set of supporting subgroups of M in
©, and let N; = Ng(D:). By definition,

Mt = U, Cn(K) .

Suppose Me ¥ and Cy(M) L M. We will show that Me®. For
otherwise, some power of M is M-conjugate to an element A of F*.
Since & is a supporting subgroup of some tamely imbedded subset of
G, it follows that Cx(4) & M. Hence, M is in &

We next show that R;is of type I or II, 1 <1 <s. Suppose N
is not of type I. Then N; = H;:(N; N M), and we assume that N; N M =
PN NF). Since ; is a supporting subgroup of ‘.th, we may
choose M in S so that Co(M)EN;, Cx(M)ZL M. By the first paragraph,
Me®*. Hence, ;N 8 # 1. If Ng(R: N &) S N;, then by a well known
property of nilpotent groups, we have 8 = RN, N K, so that M= N,,
which is not the case. Hence, Ngy(® N ®) £ N;, so N; is not of type
III or IV; M, is of type II.

Let a be the least common multiple of the orders of all elements
of & We will show that (@ |RD)=(, | D:)=11=<1=<s. If 8 is
of type I, then € is a Frobenius group, so a divides [11|, and we only
need to verify that £ is not conjugate to W or W;,1 <2 <s. As
none of the groups W, N, ---, N, is a Frobenius group, this is clear,
Suppose L is of type III of IV, so that & = %11281,33 = U, Since
none of M, N, ---, N, is of type III or IV, we have (|9, |R) =
(9, 19:)=1,1=1=<s. Since Ngx(l) S &, it is trivial that (|1, |R[) =
(quj, %) =1

We appeal to Lemma 10.4 and conclude that \° is rational on &
and on every supporting subgroup of o,

Let ©; be a supporting subgroup of M and let a be a character
of 9; with (@, 1g) = 0. Let 1, £, be irreducible characters of R; with
M9, = M9, = @. Then ||(¢t, — £)*|" = 2 and no irreducible character
of @ appearing in (¢, — ft,)* is rational on ;. Thus, (A7, (¢, — £,)*) = 0.
If N, is of type I, then Hypothesis 10.2 is satisfied with our present
% in the role of 8. If N, is of type II, then a complement to 9; in
N! is abelian, and again Hypothesis 10.2 is satisfied. Hence, by Lemma
10.2, \° is constant on the cosets of ; in N; — ,, and in particular
is constant on all the sets A,, Me M. As _# is assumed coherent,
an appeal to Lemma 10.5 completes the proof of this lemma.
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Theorem 33.1 will now be proved by showing that Hypothesis 33.1
leads to a contradiction.

Choose Pc P! and KeC(P)N &, By Lemmas 33.1 and 83.4

(33.2) N (KP) = N(P) = MP) .

Let p be a prime divisor of p in &g. By Lemma 4.2
(33.3) A(K) = A(PK) (mod p)
(33.4) MP) =nM1) (mody).

Now (33.2), (83.3) and (33.4) yield that
V(K) = N(PK) = MP)=M1) (modp).
By Lemma 10.4 A*(K) is rational. Thus
A(K) =M1) (mod p) .
Since M1) = (p + 1)/2 by Lemma 33.3, we get that
(33.5) IV(K)|=2M1) —1 for Kef, Cp(K)#1.

If every element in £f commutes with an element of 3} then (33.5)
implies that

(33.6) IAV(K)| =M1) —1 for Ke .

If not every element in $£* commutes with an element of ¥ then
A is constant on £ by Lemmas 28.2, 33.6 and 33.7. As (33.5) holds
for at least one element in & we get that (33.6) holds in any case.
Now Lemma 33.5 and (33.6) imply that

MY S (811 o) gp
g >y MO

This can be written as

[T: R {i®—1}/e—1) _
(833.7) 2] > %] ( . ), where ¢ = (1) .

Since [£:2NM|>1 and LN M is a complement to & in WM, (33.7)
yields that

154811 (1), (811 (2)

3 KX e/ = |8 \3

Hence 8|R|/4> 8| —1or |8| < 4. Thus [®]| =3 and a S;-subgroup
of ® is cyclic contrary to the simplicity of @ and the fact that | @]
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is odd. This contradiction completes the proof of Theorem 33.1.
THEOREM 33.2. @ contains a subgroup of type II.

Proof. Suppose false. Then by Theorems 14.1 and 383.1, every
maximal subgroup of & is a Frobenius group. Let 2 be a maximal
subgroup of ® and let € be a complement to the Frobenius kernel of
M. We will show that & is abelian. Suppose false.

Let o be the set of primes p such that for some maximal subgroup
M, with Frobenius kernel 9, and complement &, a S,-subgroup of €, is
not in Z(€,). Let p be the least prime in 6. We may suppose that
a S,-subgroup P of € is not contained in Z(€). Then PN E = 1. Let
M, be a maximal subgroup of ® containing N(2,(B)). Since 2,(P) =
Z(€),E = M, If P is contained in the Frobenius kernel & of M,
then so is [P, €] + 1. This is impossible as & does not centralize P,
while £ is nilpotent. Hence €N/ =1. Since W' = &, it follows
that B is not contained in M, and that a S,-subgroup of M, is cyelic.
Hence, by Burnside’s transfer theorem, & is not simple. Since this
is not possible, & is abelian.

Let Ge®* Let It be a maximal subgroup of @ containing C(G).
It follows that C(G) is nilpotent. Hence, ® is solvable by the main
theorem of [10]. The proof is complete.

34, The Subgroups & and ¥

By Theorems 32.1 and 33.2 & contains two subgroups & and T,
each of which is of type II, III or IV and which satisfy Condition
(ii) (b) of Theorem 14.1. The following notation will be used throughout
the rest of this chapter. This differs slightly from that introduced
previously.

=0, T=PT, || =q, |P'I=p.

‘Thus p and ¢ are both primes. Let P be the S,-subgroup of & and
let © be the S,subgroup of T. Then P* S B, L* & 0. Let

W=PQ*, [W=TW— P* —Q*.

Let U be a complement of P in &' and let B be a complement of Q
in ¥’. By 8.16 (i) 1 and OB are nilpotent, thus

Uucp=86,
pept

if & is of type II and
Uce==2,

eel?
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if T is of type II. Let
€ =Cy(P), D =Cx(R) .

If Sisof type IIl or IV let W*=U. If & is of type II then
a maximal subgroup 9% which contains N(11) is not conjugate to ¥
since MM is not g¢-closed. Hence by Theorem 33.1 I is a Frobenius
group. Let U* be the Frobenius kernel of M. Thus U & U*. Define
B* similarly. Let

€l=¢, |D]|=d, [N=uc, |B|=vd,
[u*|=wu%, [B*|=v'd, [B|=g.

&7 is the set of characters of & which are induced by irreducible
characters of & which do not have 9§ in their kernel.

7" is the set of characters of ¥ which are induced by irreducible
characters of £’ which do not have L in their kernel.

The set .&” as defined here is a subset of the . as defined in
Section 29. Thus by Corollary 32.1.1 . and .7~ are coherent.

%, %, are the sets of irreducible characters of N(1*), N(B*)
respectively which do not have 11*, B* respectively in their kernel.

For0<1=<g—1,0=<j<p—1, n; are the generalized characters
of ® defined by Lemma 13.1; f,; are the characters of & defined by
Lemma 13.3; v;; are the characters of ¥ defined by Lemma 13.3. For
0=7=<p—1,& is the character of & defined by Lemma 13.5. For
0=1=q—1,{ is the character of £ defined by Lemma 13.5.

If 8 =@, c®, where @, is a maximal subgroup of @ and if «
is a class function of &, then & denotes the class function of &, induced
by @. Whenever this notation is used &, will be uniquely determined
by the context.

Throughout this section mo distinction is made between & and T.
Any result in this section about one of these groups is automatically
valtd for the other by symmetry.

LEmMMA 34.1. FEither

pr—1
u pra

and U/€ 8 cyclic or U/€ is the product of at most ¢ — 1 cyclic groups
and w|(p—1)y* For 1<j5=<p—1 & i3 induced by a linear
character of P&, £(1) = uq. FEither PU is a Frobenius group with
|B| =p" and
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or & contains an irreducible character of degree uq which is induced
by a linear character of PE.

Proof. If P* & D(P) then by 3.16(i) PU/D(P) is nilpotent. Thus
PBU is nilpotent contrary to assumption. Hence P contains a subgroup
PBo such that P* NPy =1 and PB/P, is a chief factor of S. Hence
UL* is represented on the elementary abelian group P/%,. By 3.16 (i)
Bl is nilpotent. Therefore UQ*/€ is faithfully and irreducibly
represented on P/P,. By 3.16 (iii) | P: B, | = »°

Let B/PB, = BP*/By ¥ By/Py, where Q* & N(P,). By Lemma 4.6 (i)
Ny(P) € Cy(B/Bo). Thus Ny(P.) S Cy(P) = €. Hence any non principal
linear character of PE/P,E induces &; for some j with 1 < 5=<p— 1.
As p is a prime the characters &; are algebraically conjugate for
1=7=<p-—1. Thus &(1) =uq for 1<j7j<p—1. Let & = +; for
+r; & linear character of PE/PB,E.

Suppose that |BE: D(PE)| > p?. Then PE contains a subgroup
9 # B,E€ such that PE/H is a chief factor of S. Let A be a non
principal linear character of P&/9. Then +». induces an irreducible
character of & of degree ugq.

Suppose that U is represented reducibly on P/P,. Since Il  UL*
the irreducible constituents of this representation all have the same
dimension. This dimension is 1 since ¢ is a prime. Thus /€ is the
direct product of k cyeclic subgroups for some integer k, each of which
has order dividing (»p — 1). No element of /€ is represented as a
scalar as UQ* is a Frobenius group. Therefore ¥ < q and «|(p — 1)*%.
The irreducible constituents of the representation of /€ on P[P, are
distinct since ULQ* is irreducibly represented on PB/PB,. Let P/P, =
Py X «o+ X P, where P,,;, = Q*P,Q* for some generator Q of O* and
such that U normalizes each PB,. Let

P=1:[1P‘

with P,e B}, P, = QP 'Q and Q°PQ' = P;,, for 2<i¢=<q 1. Sup-
pose Uell and UQ’ centralizes P for some 5. Let UP,U P#¢ then

P (UQ) PUQ) = Q11 PrQ.

Then QP»@Q’ = P,.;. If j+ q then P,.; is conjugate to P,. Hence
Pyi is conjugate to P, which is impossible as |1Q | is odd. Therefore
j=gq. Then UP,U=P; for 1<t <q and so Uc€. This proves
that no element of (UQ/C) leaves P fixed. Let /£, be a non principal
linear character of /P, with ker g, = P, X -+ x B,. Let g, = p2'™;
then g = go,p*1; - - - 1, induces an irreducible character of & of degree
ug.
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Assume now that U is irreducibly represented on P/,. Then W/E
is cyclic since U/€ is abelian. If a subgroup of II/€ acts reducibly on
BB, then it is represented by scalar matrices. As UQ* is a Frobenius
group every non identity subgroup of /€ acts irreducibly on P/P..
Thus U/€ permutes the subgroups of order » in P/PB, and no element
of (/C)* leaves any such subgroup fixed. Hence

-1
u—p-—l .

Suppose now that & contains no irreducible character of degree ug.
By an earlier part of the lemma this implies that | € : D(PC) | = p°.
Thus € =1 and |P: D(P)| = p°. Since D(P) N P* = 1, we must have
D(P) =P. By 8.16 () P'U is nilpotent. If P'#1 then there exists
a subgroup P, of P’ such that | : P,| = ». Hence P'/P, is the center
of PB/PB, since N acts irreducibly on P/P'. Thus P/P, is an extra special
p-group. This implies that ¢ is even which is not the case. Thus
P’ = 1. Hence PU is a Frobenius group. Consequently Pl contains
(p* — 1)/u irreducible characters of degree u. Lemma 13.7 now implies
that

LEMMA 34.2. Either PU is a Frobenius group with | P| = p* and

p—1
p—1

or QB is a Frobenius group with || = q° and

¢ —1

v = o

Proof. If the result is false then Lemma 34.1 implies that &
contains an irreducible character A of degree ug and .7~ contains an
irreducible character 6 of degree vp. Every character in .77 ° is rational
valued on P by Lemma 10.4. Since |® | is odd this implies that every
generalized character of weight 1 in .&7° is orthogonal to .7 *. Define

a=\x—§, B=0-0.
Then a(l) = 8(1) =0 and (a7, 8°) = 0. Thus
0=0v — 0" =) = (£ 570 % 3 70)

= i(vu’ Nu) = *1.
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This proves the lemma.

LEMMA 348, For 12j5<p—1

S 0 X) Pz ue | B —w
XE(RE

Proof. Since PE is a T.I. set in & and .&” is coherent the Frobenius
reciprocity theorem implies that for 1< j<p—1

(X)) = &(th(X) + a(X)) for Xe(PE),
where « is a generalized character of &'/, and ¢’ = 1. Therefore
27X = 2 (X Ja(X) + phoi(X)a(X)}
(ﬂs@) ($@)

+ E‘Iﬂo;(X)I’+ Z‘.‘F (X)) .
(B (BE

This implies that
(84.1) (q%;’ [7AX) " = —2p0,(1)(1) + ou| B| — w*
+IB1 3, 1(O)F — ety
By Lemma 34.1, 2u + 1 < ||, thus
—2¢4;(Dex(1) + | B| %T. |a(C) | — a(1)*
= | B %‘. la(C) ' — 2u + Da(l)
= I%I@Si‘.la(c)l’g 0.

The result now follows from (34.1).

LEMMA 34.4. For1£:1<¢q—-1
> 7Dz {8 - Ye.

XEPE

Proof. Since PC is a T.I. set in @ the coherence of .5¥ and the
Frobenius reciprocity theorem imply that 7,(X) = a(X) for X e PC —¢€,
where « is a generalized character of &'/P. Therefore for1<i<q-—1

(34.2) S 1uX)=_35 |aX)
xePE—C XERE—C
={|$I—1}%la(0)l’-

If PeP*, QeQ@** and q is a prime divisor of ¢ in &,, then by
Lemma 4.2
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7:(P) = 7:(PQ) =1 (mod q) .

Thus the expression in (84.2) is non zero. The result now follows
from the fact that

Eé‘.la(C)I’ =0 (modc) .

LEMMA 34.5. Suppose that & contains an irreducible character
A of degree uq which is induced by a character of PC. Then

S0 IAN(X) P> uge | B| — (ug)' — 2ug*.
xewpe?

Proof. As PE€ is a T.I. set in & the coherence of . and the
Frobenius reciprocity theorem imply that

AV(X) = MX) + a(X) for Xe(PE),
for some generalized character a of &'/9. Therefore

S IVEX)P= D IMI)P+ D MX)X) + MX)a(X)}
et gt ge?
(34.3) + $Z‘ |a(X) > = uge | B| — (ug)* — 2n1)a(1)
(BE)

+{PBl-1} X |a(C)" + Xl
e (3
If |a(l)| = ¢ then by Lemma 34.1
2M(1)| (1) | = 2ugl (1) | < 2ua(l)* < {| B| — 1} a(1)*.

Hence the result follows from (34.3) in this case. If [a(l)| < ¢ then
22:(1)| a(1) | < 2uq® thus (34.3) also implies the result in this case.

LEMMA 34.6. Let ©, be the set of elements in @ which are not

conjugate to any element of PE, Q or . Suppose that & contains
an irreducible character )\ of degree uq. Define

A, ={G|Ge @, \(G) + 0}
A, = {G| G € B, 7(G) # 0}
A = {G |G € By, 7u(G) # 0, 7u(G) = 0 (mod (¢ — 1))} .
Then
G=AWUA,UY,.

Proof. Suppose that Ge®, — (WA, UN,). Let a=¢& — . Then
¢ —2M(G) =0 and

G =)y = 'J::Z;.,’?u — A
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Since G € @,, 7,,(G) is rational. Thus 7,(G) =N (G) for 1 <i<q — 1.
As Ge¢ U, U A, we must have that

(34.4) 0= Z 7(@) = 7u(@) + (¢ — D7u(@)
= 7u(G) (mod (g — 1)) .

Suppose that 7,(G) = 0. Then since a’(G) =0 we must have that
Na(G) =0 for 0 <t =<q—1. Hence by Lemma 13.1

0= (1@ — N — N + 7711) (G) =1- ﬂm(G)

contradicting the fact that G¢%,. Hence 7,(G) # 0 and by (34.4)
G €U, as required.

LEmMMA 34.7.

(i) If ¢ =5 then |PB| = p* and ujc > 9p*/20g.

(ii) If p,q="5 then ¢c =1 and u = (18/20) p*/q.

(ii) If p=8and ¢+ 1 then u=121,9 =5,¢c =11.

(iv) Ifq=38thenc=1o0rc="T. Furthermoreu > (p* + p + 1)/18.

(v) If q =38 then P is an elementary abelian p-group and |P| =
pPorp=Tc=1and |P|=T"

(vi) If q=8 and ¢ =T then u > (p* + p + 1)/2.

Proof. If Plisa Frobenius group with |P| =%, u = (p?—1)/(p — 1)
then all the statements in the lemma are immediate. Suppose that
this is not the case. Then by Lemma 34.1 & contains an irreducible
character A which is induced by a linear character of €. By Lemma
34.2 OB is a Frobenius group with |Q| =¢%, v = (¢* — 1)/(qg — 1),
d=1.

PE, L and ® are T.I. sets. Let ®,, A, A, A, have the same
meaning as in Lemma 34.6, Then

1 1 1 1
=@ =1—(1-—— =+ —
gl | ( Y4 q+pq>
1
4, —_— Q) -
(34.5) - qerprIBle— 1 - —2r D]~ 1
1 1 1 1 1 1

_l,1 111, bl
P g pg qu pv quciP| pvg*

Since A is rational valued on &, by Lemma 10.4, Lemma 384.5 implies
that

1 1
— |, == VXIP1 - —4mM (X))
|2, | g%‘:l (X)| l‘—BI %Z@‘.) [ A(X) |
(34.6)
< 29

FIrE I
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If Lemma 34.3 is applied to ¥ then Lemmas 18.1 and 34.4 yield that
L= Lyin@e
g g U,

1 —
e e LR

1 1
_t —,
u | B | ug

e s1-(1 —%—%+%)
v

1,
D nq*

Lemmas 13.1 and 34.3 also imply that

1 1 1
— |, S —= Nu(X) [*
| I-—( 1) Z;l (X)|

1 1 1 1
(34.8) é(q—l)’{ _(1_'5"7+pq)
a7 e B1 — )}
_ 1 [@=1
(q—1)'{qpq +qc7$l}‘

Lemma 34.6 and (34.5), (34.6), (84.7) and (34.8) now imply that

1 1 1 1 1 1 uq
= — @—1)+—-————=<
que |P|  pvg? ) ¢ pa qu |Blec
+ 2% 1 v 1 _ 1 1

|Bie I‘—Bluq P® @ Pg qu

1 + u
pa(g —1)  qe|Pl(@—1p}"

Since v = (¢* — 1)/(g — 1), this can be simplified to

1_ (m+2g , (c—1 1 1
p =" I®lc @ 1%lauwe  pa—1) pr@-1D
¢-1) 1 u
" + g°® +pq(q—1)+qc|‘Bl(q-1)’
(84.9) ~(u+2q , =1 u

|B|e |Bque  ge|Bl(@—1)

(@+1) , (@—-10—-1
re(g — 1) pe*(q — 1)
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By Lemma 34.1 u < (p* — 1)/(p — 1) and | B| = p°; thus (34.9) implies that

1_(+2q, @+1) 1
sa10) 7 B i?Bllc 1pq(q—l) e(r —1)g(g — 1y’
g pgt’
Let |B| = p'» then
(34.11) 2 =c¢ = 1(mod 29) .

Suppose first that p, ¢ = 5. Then (34.10) implies that

uq 2q 3 1 2
pge | pae + 10p + 80(p — 1) + 5'p°

A

1
P

Hence by (5.2)

1 uq 1 3 3/2 1/2
P < pwe  40p + 10p 80p + 80p °
Therefore .
34.12 q » 18
( ) xc p° > 20p
Therefore

1, 18 p

34.13 —_— .
( ) e 20q 2q

Suppose that ¢z # 1. Then by (84.11) ¢x > 29. Thus (84.12) implies
that

18 1= 1 1
20 2 p 2 (-1 °
Thus 13(p — 1) < 10p or 3p < 13 which is not the case. Hence ¢ =

2z = 1 and (34.13) completes the proof of statement (ii) of the lemma.
Suppose now that p = 3. Hence (34.10) yields that

1 _(u+2q, (@+1) 1 1,1
414 =< 1,1
(34.14) 3~  exd + 3g(g — 1) 2q(g — 1) + 3% + 3¢

As g = 5 this implies that

l1og» 1, 1 ,@C'+1) 1
3=cx3’+10+160+ 3q +75'

Hence by (5.3)
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160 —48—-3—-24—-10 _ 75 3

> 480 =180 0 20"
Thus
3 &
4, ICESO I

(34.15) pom > 20 q
This yields that

2,9 37,3

cx > 10 u > 5

Hence 4q > cz.
Assume that cx # 1. Then (84.11) implies that

(34.16) cx=2¢+1,
Suppose first then ¢ = 11. Then (34.14) implies that

1 q % 2 1 1 2 1 1
—< 4L %, 4 L S S S
3 ex 8 + 55 + 2.10° + 10.3® cx 3° 300
Henece
9w ,1_2 1,1 3 _5
cx3">3 55 60>3 54 18 °
Therefore
4 .85 .26 1
cx u 18 > 18 > 2

contrary to (34.16). Suppose that ¢ = 7. Then cx = 15 by (34.16).
Thus =3 and ¢ =5 since  is a power of 8 and (¢, 8) =1. This
contradicts (34.11). Hence ¢ = 5. Thus by (84.16) cx = 11. Hence
# =1 and ¢ = 11 since z is a power of 3. Thus statement (i) of the
lemma follows from (34.15) and statement (ii). If ¢+ 1 then ¢ =25
and ¢ = 11. By (84.15)

11.8°
34.1 —>2=(p-1)r",
{(34.17) w> o> (p-1)
Hence by Lemma 34.1 w|(3° — 1)/2 =121. Thus « = 121 by (34.17).
This completes the proof of statement (iii) of the lemma,
Assume now that ¢ = 8. Lety = (»*+ » + 1)/u. (¥ is not neces-
sarily integral) Then (34.9) implies that



34. THE SUBGROUPS & AND 993

2
1 .80 +p+1) . 6 . 1

p cxyp® cxp? 3p’u
v]
@+p+l) 2 . 1
12¢xyp® 3p 2p3*
Therefore
1 _381p"+p+1) 6 1 1
3p < 12¢ayp® + cxp® + 3p°u + 2p3e-1 "’
or
37(p*+ p + 1) 18 1 1
34.18 1 .
( ) < dexyp? + cxp’ + Pu + 2.872

Suppose that cxy = 13. Then (84.18) implies that

ST @P+op+1) 3 19 1
52 s P 52

Therefore 37(p* + » + 1) > 51p* — 52-19, or
14p* — 87p — 5219 — 87 < 0.

Therefore, p < 11. Hence p =5 or p="T. Since (6, %) =1, Lemma
84.1 now implies that |p*+ p+ 1. Thus |3l if p=5 and «|57
if p =7. Hence one of the following must occur:

p=2>5, u = 31, y=1, cx =18

or

By (34.11)
cx =17, p=T orce=13.
If ¢z = 13 then by (34.18)

3
ST@+p+1 , 19 1

1 —_.
< 52 p* 13p? 52

Hence » < 5, which is not the case. Therefore we have shown that
either cxy <18 or p=T,u =19,y =8and cx =7, If cwxy < 18, then
4 <18, and by (84.11) ¢x =7 or cx = 1. Thus in any case

(34.19) u>—$-’:—'%——’—'L,cx=1 orcx =1T.

This proves statement (iv) of the lemma.
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If # + 1 then (84.19) implies that ¢c =1 and =7, hence »p =17
and |B|=T. Since (u,6) =1, Lemma 34.1 implies that « |57, thus
% =19. If D(P) +# 1 then N acts irreducibly on L/D(B) and centralizes
D(P). If P is non abelian this implies that D(P) = Z(PB). Hence P
is an extra special p-group contrary to the fact that |B:D(P)| = p°.
Thus P is abelian. Hence |P:2.(P)| < p. If 2(P) # P this implies
that UL is represented on 2,(B) and so U acts irreducibly on 2,(P)
contrary to D(P) & 2,(P) and U S C(D(P)). Thus P is elementary
abelian. Statement (v) of the lemma is proved.

Suppose that ¢ =7 and ¥ = 2; then (84.18) implies that

37T P+ p+1) 19 1
1< 2L -
<56 P + 7p’+54

Therefore, p < 5 which is impossible. Hence if ¢ =7 then y < 2.
This proves statement (vi) of the lemma and completes the proof of
Lemma 34.7.

LEMMA 34.8. If q=5 then PU/C is a Frobenius group and
u|(®* —1)/(p —1).

Proof. By Lemma 34.7 (i) |PB| = p°. Thus if PU/E is not a
Frobenius group then by Lemma 34.1 | [(p — 1)/2]**. Thus by Lemma
34.7 (i)

PSS 9
o %> e

Therefore ¢ > 2-2-(9/10) which is not the case, since ¢ = 5.

LEMMA 34.9. If p,q=b then c=1, |B|=p" and either u=
(»*—1)/(p—1) or p =1(mod g) and u = 1/q[(»* — 1)/(p — 1)].

Proof. By Lemma 34.7(ii) ¢ = 1. Lemma 34.8 implies that | B| =
p*and u|(p* — 1)/(p — 1). Letuxr = (p*—1)/(p —1). If p #1(modg)
then

w=2"1 —1(mod2g).
p—1
Thus # =1(mod 29). If p=1(modgq) then (p*—1)/(»p —1) =0 (mod q).

Hence # =0(modq) as (u,¢9) =1. Thus in any case x = 2¢ if the
result is false. Now Lemma 384.7 (ii) implies that

13

PPl ur>2quz 18 g

p_—

Hence
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13
> ! -
=707 "o

Thus 138 > 8p contrary to the fact that p = 5.

pq>p¢_1

LEMmA 34.10.

| N(B*):B*C(B*)| = p or pg if p,q=bor p=38,¢q=1
=8o0r150r3 ifp=8,¢q=5
=p,8p or Tp tf ¢ =38.

Proof. Let € be a complement of B*C(B*) in N(B*) which contains
P*. Every Sylow subgroup of & is cyclic and every subgroup of prime
order is normal in € by 8.16 (ii) and Theorem 83.1. Thus € & N(P*) =

Q*PE. Hence €= P* or |E| =pg or € = P*€. The result now
follows from Lemma 34.7.

By Theorem 83.1 1* is tamely imbedded in @ unless 1I* = 1l and
C‘_B(II) # 1. By Lemma 34.7 this can only happen if p = 7 and ¢ = 8.
In that case let 2 be the set of characters of & which are induced
by non principal irreducible characters of &'/P. In all other cases let

#, =% . Define " similarly. Then .%4(%)" and _#4(¥)" are always
defined.

LEmMMA 84.11. Suppose that <7~ is coherent and » >q. If
dv* —1 v—1

IN@Y %~ p
and

dv* — 1 >u—1

NGB8 4

then | N(B*):B*| = pq. If furthermore | N(B*):B*| = pq then 1/p <
pglv*d.

Proof. Let e=|N(B*):B*|. Let +e¥ with ¥(1) =e. Let
a= iszs‘ — 4, Then ||a’ |}’ =||a]|*=e+ 1. Define :
B@ = Tn'g;@ — P, 133 = ‘ilap'om — VY.

Bg, B¢ vanish on & — &, T — §, respectively. As @1 and ¥, are T.L.
sets in O

@420 1851 =186 = 2L +2, [183IP=18IF = 2= L +2.
Furthermore by Lemma 13.8
(34.21) Bs=1lgxmm+ g, Bi=lgtn+ Ty
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where I'g, I'g are real valued generalized characters of @ which are
orthogonal to 1y. The assumed inequalities and (34.20) imply that
(v7,B88) =0=(y",B%). Thus if & =1y5+ ¥" + I'y then

O0=(a’,B8) =1+ (Do, I'y) (mod 2)

0=(a,83) =1+ (N, I'y) (mod 2).
Since I'y is rational valued on ® this implies that

/7 FSB) =Ny I'g) =1 (mod 2)
for121=<¢q—1,1=<j57=<p—1. Hence by Lemma 13.1
Qg — s — Mo + Nisy @) =1 + (N, I'p)
+ (voh 1153) + (771':'7 P%) (mOd 2) .
Thus (7, I'gy) # 0 for 1<i=<¢—1,1=<j=p—1. Hence
e+l=|al'zpg+1.

Suppose now that e¢ = pg then

-1 q—1 p—1

(34-22) + - Z N Z N £ z_:ll ,2 /T

Let &, be the set of elements in & which are conjugate to some
element of A, with VeB*:. Since " is coherent by assumption,
(34.22) Lemmas 338.1 and 9.4 imply that ¥“(VC) = (V) for VCe ¥,,
Ve®B*, Furthermore Lemma 9.5 and (84.22) imply that

1 T 3 3
G42) L Sl @F = o S WGP =1 KL
By Lemma 9.5
_ (dv* —1)
(34.24) —‘I@ol——'Z@o (5( ) = *dg'.:' @(G)—W-

Let &, be the set of elements in & — &, which are not conjugate to
any element of B, P& or VD. Now (34.22) implies that if Ge@,
then +(G) is rational and

0=a'(@) =1+ ¥(G) (mod 2) .
Thus |¥*(G)]'= 1 for Ge®,. Hence (34.23) implies that

_dt-1 (1 1,1
'v"‘d I@‘| pqv*d (1 P q + pq)

_IB€C|—-1 (09D -1
qu | Ble pv|[Qld
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“Therefore
pg 1,1 1 _ 1, 1 _ 1., 1
v*d  p g p¢ pg  pgvd  qu  qu|Plc
1 1
v |Qld’

‘Since v >2¢, v >2p and p >¢=3
LI D .
v

- =1
g MM qu q

)
thus the required inequality follows.

LEmMMA 84.12. If U* is cyclic then U* ig a T.I. set in ® unless
n* =" and NU) € 8,

Proof. Since U* is a cyclic S-subgroup in N(11*), 1* is a S-subgroup
«of @. Suppose that U* is not a T.I. set in ® and let 1 =10* N G'UW*G =
1, &u*. Then {NMU*), MG*G)} & N(II;). Since NU1*) is a maximal
:subgroup of ® this implies that {1*, G"N*G} & N(1*). Thus GT'U*G =
N* and N* is a T.I. set in G.

35. Further Results About & and T

The notation of Section 34 is used in this section. However we
-will destroy the symmetry of & and ¥ by choosing the notation so that

(85.1) g<p.

The next three lemmas are restatements of Lemmas 84.7, 34.8,
84.9 and 34.10.

LEMMA 85.1. If gq=b6thenc=d=1,v=(¢*—1)/(g—1), |B|=2»"
and |Q]|=¢q*. Either u =" —1)/[(p—1) or p =1(mod q) and u =
1/q[(»* — 1)/(p — 1)]. Furthermore PU and OB are Frobenius groups.

| NU*): 0*| =q or pq and | N(B*):B*| =p or pq.

LEmMA 35.2. Suppose that ¢ =8. Then |Q| = 8°,
v 9 3

d 20 »

and QBID is a Frobenius group with v|(8* —1)/2. Either d =1 or
d=11,p=05 and v =121. Furthermore ¥~ = ¥#; and

| N(B*):B* | =9,8p or Tp.
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LEmMmA 85.8. Suppose that ¢ =8. Then

| NU*):u*CcUu*)| = 8 or 3p ifp=T
=38,1560r 83 i p=5H.

Furthermore one of the following possibilities occurs:

(i) e=1,u> @+ p+1)/18, P is an elementary abelian p-group
with [P =2 or |P| =T

) c=T,u>@+0+1)2 P is an elementary abelian p-group
with | P| = p°

LEmMmA 35.4. FEither q =8,p=5,v=11,u = 81 or

v»—1 >u——1.
P q

Proof. By (56.12)

1 (*1— 1) s (0 — 1)
=1 > D 21 "

q

Therefore if v = (¢* — 1)/(g — 1) then by Lemma 384.1
v—1 _ 1+ ---+¢"—-1_ g@g*—1)

P D p(g—1)
-1
p(p*t —1) p—1 u—1
-1 = q =7y

Suppose now that v # (¢* —1)/(¢ —1). Then ¢ =8 by Lemma 385.1, By
Lemma 85.2 v|(8° — 1)/2 and v > 9/20-(8"Y/p). Thus if (v — 1)/p =
(w — 1)/g then by Lemma 34.2

9 8r!

~_. _ \

20 »p Sp+p.
P = 3

Hence p < 11. Thusp=5orp="T. If p=7 then v|(3 —1)/2 = 1093.
As 1093 is a prime this implies that » = (8" — 1)/2 and the result follows
from the first part of the lemma. If p =5 then »|(8 — 1)/2 = 121.
Thus v = 11 and %|31. Thus u = 81, The proof is complete.

LEMMA 35.5. & is coherent.

Proof. Suppose that &~ is not coherent. Then by Lemma 11.2
v*d is a power of some prime . As B/D is cyclic » = 1 (mod p). Thus
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(35.2) r>2p>2q.
Let |8*: D(B*)| = r*, then n = 8 by Lemma 11.8. By Lemma 11.1
(85.8) r* < 4|NB*):B**+1.

Suppose that | N(B*) : B* | = Tp. Then » # 7 and (85.2) and (85.8) imply
that r* < 200p* < 507*. If m = 4 this yields that » £ 7. Then p = 8
by (35.2) which is not the case as p > q. Hence n = 8. Thus Lemma
11.4 implies that r* < 2r(7Tp) + 1. Hence by (35.2) * < 14p < 7r and so
r < 7 which is impossible.

By Lemmas 35.1 and 35.2 we may assume now that | N(B*): 8* | <
pq. Thus (35.2) and (85.3) imply that

24P+ 1< @2p) <,

thus # = 8. Hence Lemma 11.4 implies that
7.3
r’§2rpq+1<3.
This completes the proof in all cases.

LemMA 35.6. d =1, If | N(B*):8*| < pg then v* = v or p =5,
q=3,v=11»* =121,

Proof. If | N(B*):B*| > pgthenc+# 1. Henced =1 by Lemma
384.2. Assume now that | N(8*):8*| < pq.
Assume first that d + 1. By Lemmas 35.1 and 35.2 d =11,¢q =
8,p=>5and v=121. By Lemma 34.2 u=(5°—1)/(5 —1)=81. Thus
dv*—1  1I°—1 11 — 1 v—1

N - 18 ° 5

and

do* — 1 w-1_8-1_u—1
| N(B*):B* | 15 3 7

v

Hence by Lemmas 85.5 and 34.11 1/p < pg/v*d.
Thus

1< v*d < p¢="175.

Therefore d = 1.

Assume now that ¢ =8, p=5,v=11,u =81, Let v* = vz, 2 =
1(mod10) as v = v* = 1(mod 10). If v* #11 and »* # 121, then
= 21. Thus v* = 21.11.
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-1 J 2111-1 11-1 _v—1

| N(B*):B*| — 15 > 53 D
and
v —1 g21.11—1>31—-1=u——1.
| N(B*): B* | 15 3 q

Thus Lemmas 35.5 and 34.11 imply that 1/p < pg/v*. Thus 21.11 <
v* < p’¢ = 75 which is not the case. Therefore v = v* = 11 or v* =
121, and we are done in this case.

By Lemma 385.4 it may now be assumed that (v —1)/p > (u —1)/q..
If v* = vz, then # =1(mod 2p) since v* = v = 1 (mod 2p). Thus

(35.4) v=xv,e>20>2 fx+l.
Therefore

v*—1 v*—1 2vg — 1 v—1 uw—1
= > > > .
| N(B*): B* | g g D q
Hence by Lemmas 35.5 and 34.11 1/p < pg/v*. Hence (35.4) and
Lemmas 35.1 and 35.2 imply that

<&p/ysl(lfv* §_12.p’q.

p—1
e g 7= 9
Thus ¢** < 2p’. Hence p < 7 by (6.4). Thus p =5. Hence z = 11,
¢ =3 and v|121. By assumption v = 11, hence v = 121. Thus 11* <
v* < p'q = 75. This completes the proof in all cases.

LemMMmA 35.7.
| N(U*):u*CU*)| = gq or pq .

Proof. This follows directly from Lemmas 35.1, 35.2, 35.3 and 35.6..

THEOREM 85.1. If N(1*) is conjugate to N(B*) then the conclusions
of Theorem 27.1 hold.

Proof. By Lemma 35.6 if B* + B then p =5, ¢ = 3 and v* = 121.
Thus % = 31. Hence u does not divide »*. Thus by Lemmas 385.1
and 35.2, B* = B is cyclic. By Theorem 33.1 N(B*) is a Frobenius
group with Frobenius kernel B*. Hence by Lemma 34.12 B* is a
T.I. set in ®. Since Q* = NU11*) and »|| N(B*): B*| Lemma 85.7
implies that N(U1*)/1* is a cyclic group of order pg. Thus condition
(iv) of Theorem 27.1 holds. Since B* is cyclic so is 1. Thus € char
U. Hence if € #1 then NU1) & & which is not the case. Hence
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¢=1. By Lemma 35.6d = 1. Thus C(X*) = QP* and C(P*) = PO*.
Hence condition (iii) of Theorem 27.1 holds. If |P| + p* or || + ¢°,
then NU) &£ & or N(B) S < respectively. This implies that P is
elementary abelian of order »* and L is elementary abelian of order
g*. Hence condition (i) of Theorem 27.1 holds.

Since U is cyclic and € =1, PU and UQ* are Frobenius groups
and N(P) =& = PU. Since U* is cyclic every divisor =z of |U*|
satisfies ¢ = 1 (mod pg). Thus (11|, p — 1) = 1. Hence by Lemma 34.1
a1 (® —1/(»—1). Let (»—1}p—1)=y|/1|. Suppose that
p#1(modgqg). Then y = 1 (mod pq) since

P—1 _\uj=1(mod pq).
p—1

Thus if ¥ # 1, then ¥ > 2pq. Furthermore Lemma 35.1 implies that

in this case ¢ = 8. Thus by Lemma 35.3 (i)

13>—2’+Tlf]i—1— =y > 2pq = 6p

which is impossible as » > 8. Thus ¥y = 1and so|1| = (p* — 1)/(» —1). Sup-
pose that p=1(mod g). Then ¢|(»*—1)/(p—1). Hence u|1/q[(p*—1)/(p—1)]
since (4,9)=1. Asg<pand u=(" —1)/(p—1)=1(mod p) we see
that w # 1/¢[(»* — 1)/(» — 1)]. Thus if ¥ # 1, Lemma 35.1 yields that
¢ = 8. Since ¢ =1, Lemma 385.3 (i) implies that u > (p*+ »+1)/13.
This is impossible since w = 1 (mod 3p). This verifies condition (ii) of
Theorem 27.1 and completes the proof of the theorem.

36. The Proof of Theorem 27.1
In this section the study of the groups & and ¥ is continued. All

the lemmas in this section will be proved under the following assumption.

Hypothesis 36.1

(i) ¢<o.
(i) NQU*) is not conjugate to N(B*).

The following notation is used in addition to that introduced in
Section 34.
pew , veZ
and
¢(1) = | NU*):u*cu*)|, (1) =|NB*):B*|.

If ¢,€ 77 then ¢: is defined since |®| is odd. Let %T = {¢}| ;€ %}.
Then
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(Eu.—¢)'=1®—¢'+1‘u+su, if 2 =%

g — ¢y =15 —¢"+ My + 8y if & + %,

(86.2) Qg — V) =15 — v + 'y + 5y

(36.3) (lpggs — M)* =1g =T+ Mg+ 5y forlsjsp—1,

(36.1)

(364) (ggp —v)* =15t o+ Tg+ 5y forl<is<g-—1,

where 5y, Zg are in _#(%/7), #(77) respectively, I'y, I'y are orthogonal
to Z7, 7" respectively. £Eg, 5, are linear combinations of the
generalized characters 7,, and I'g, Iy are orthogonal to each 7,.
Then I'y, I'y, I'y and I'y are real valued generalized characters each of
which is orthogonal to 1. Thus

(36.5) 'y, To) + (', $°) # 0 (mod 2) ,
(36.6) (Fgs M) + (L, ¥7) =0 (mod 2) .
(36.7) Iy, M) + (T, 97) # 0 (mod 2) .
It is a simple consequence of Lemma 13.1 that
(36.8) 'y P) + Ty, o) + (Fyy %) # 0 (mod 2) .
(36.9) (g ) + (I'gs o) + (', 7)) % 0 (mod 2) .

By Hypothesis 36.1 (ii) Z7° is orthogonal to . Thus
(36.10) Iy, ¥°) + (I, ¢°) # 0 (mod 2) .
Since 7 is an isometry (36.1), (86.2), (36.3) and (36.4) yield that
(36.11) |y ll* = | NU*):u*Ccu*)| -1
(36.12) | Mgl = [ N(B*):B*| -1
(36.19) Il s £
(36.14) gl =2 > L

LEMMA 86.1. % 1s coherent.

Proof. If & is of type IV then by Lemmas 35.2 and 3568 ¢ =1
or 7 so by Lemma 11.1 the result follows from Theorem 29.1. If &
is of type III then 1 = U* is abelian and the result follows from
Lemma 11.2. Suppose that Z is not coherent. Then Z¥ = %, and
by Lemma 11.2 11* is an r-group for some prime ». Furthermore &
is of type II. Let e = | NU*):U*| then by Lemmas 11.1,11.3 and
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114 U¥ = DU*) # 1,
(36.15) |n*: 0¥ | =»r* with n =38,
(36.16) rr<4d4e+1,n=24 or r**<2re+1and n=3.

Suppose first that 1 is not cyclic. Then by Lemma 35.1 ¢ = 3.
If ¢ # 1, then by Lemma 35.8 € is cyclic and

P+p+1 p—1\
u > 2 >( 2 ) .
Thus by Lemma 384.1 U/€ is cyclic. Hence 1 is generated by two
elements. If ¢ =1 then Lemma 34.1 implies that 11 is generated by
two elements. Thus U #=U0*, As & is of type II & is a T.I set in
@. Consequently there exists an element R of order 7 such that
0 = Cy.(R). Thus Z(1*) is cyclic. Hence r =1 (mod ¢). This contradicts
(36.15) and (36.16).

Suppose now that U is cyclic. Thus r = 1(mod ¢). By (36.16)
NU*)/0* is irreducibly represented on U*/D(11*). Thus O* acts asa
group of scalar matrices on U*/D(11*). Hence by Lemma 6.4 U* has
prime exponent. Since U is a eyclic subgroup of 11* this implies that

(36.17) |0 =1r.
If ¢ > 8 then Lemmas 35.1, 85.7 and (36.15) and (86.16) imply that

pﬂ—l&
(7 ) S |UP<dl+1<dpg+1.

Hence 9*° < 5¢° and so
534—10 é qu—lo < psq—xo < 5 .

Thus 3¢ — 10 < 1 which is not the case.
Suppose that ¢ = 8: If n = 4 then (86.16) and Lemmas 35.3 and
35.7 imply that

@'—Jflg.‘ill< U] < 360"+ 1.
Hence
P < (P + p+ 1) <1336p* + 1) < 3.18%".
Thus 2° < 8.13°. Hence » < 13. If n = 8 then (36.16) and Lemmas
35.3 and 85.7 imply that

W<|ul’§6p.

Hence
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PL<(P+p+1)1<136p< 18p.

Therefore p < 13 in this case also. Thus »p = 5,7 or 11. By Lemma
34.1 and (36.17) either |[U||(p —1)or |[U||p*+ 2+ 1. If |U||(p—1)
then p =11 and || =5 since (|U|,6) = 1. However in this case

EJrlg_-Fl)>1o>|u|

which is impossible by Lemma 85.1. Thus |1||p* + p + 1. Hence by
(36.17) if p=5,|U|=38L,ifp=7|U| =19 and if p = 11 then |U| =
Tor |[W[=19. If p =25 then (36.16) and (86.17) imply that

31° < 86.25 + 1
which is not the case. If p =7 then (86.16) and (86.17) imply that
19° < 36.49 + 1 < 1800 .

Thus 19 < 100 which is not the case. If p =11 and |[11| =19 then
(36.16) and (86.17) imply that

15.360 < 19° < 36.121 + 1 < 4800

which is not the case.
Assume now that p=11 and || =7 =17. Then (36.15) and
(36.16) imply that

(36.18) 7"=<86.11'+1, 7 =1 (mod1l).

Since
™ >10* > 5000 > 386.112 + 1

we must have n < 4. However
7=5"7=2"T =38 (mod11)
contrary to (86.18). The proof is complete.
LEMmA 36.2. ¢ = 8.
Proof. Suppose that ¢ # 3. Then by (86.10) either (I"y, ¥°) # 0

or (I'g, $7)#0. If u=1/g[(»*—1)/(p —1)], then u # 1 (modp). Hence
by Lemmas 35.1, 35.5 and 36.1,

- —1
»q P9
Therefore by (5.11) p* < (»*—1)/(p —1) < p’¢®. Hence p"*<¢’< p*

¢ —1 1 -1 _
—1
g4- . <pg—1 or P =pg—1.
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which is impossible for q = 5.
Lemma 36.3. ¢ =1, | N(B*):8*| = p or 3p.

Proof, If ¢+ 1thenc = 7and u > (p* + » + 1)/2 by Lemma 385.3.
Since [(p — 1)/2)* < (»* + p+ 1)/2 Lemma 34.1 implies that w|p* +p+ 1.
Thus # = p*+ »p + 1. By Lemma 34.2 v = (8" — 1)/2.

Suppose first that | N(11*):11*|=8. Then by (36.8) I"y;= £ (7~ 7a).
Thus (I'y, 7,) = 0. Hence (I'g, ¢7) + 0 by (36.5). Since %/ is coherent
(36.13) implies that

Tu* — 1 uw—1 u* —1
— = ||I'g|* € = ’

g = I gl = 3 =3
which is not the case.

Suppose now that |NU*):U*| % 3. Then by Lemma 35.7
| NO*):0* | = 8p. Let cu* = 2u = (1 + p + p*). Then z = 1 (mod 6p)
since

cu* = u = 1 (mod 6p) .

As 1 < ¢ <« this implies that x = 6p + 1. Hence by Lemma 35.2
and (36.12)

(36.19) 0“;; LN 6;’;‘ 22u>Tp—12|Igl.

Since %7 is coherent this implies that (I'y, ¢°) = 0. Thus by (36.10)
(36.20) Iy, ¥7) #0.

Since % is coherent (86.13) and (36.19) imply that (I'g, ¢) = 0. Thus
by (36.5)

(86.21) (I'ys Mu) Z 0 (mod 2) .
Since 7 is coherent (86.11), (36.20) and (86.21) imply that

* _
-1 +—2—-1 g, 1,

| N(B*) : B* |
Hence by Lemma 35.2

-1
2
Therefore 37 — 3 < 28p’. Hence »p =5 by (56.5). Thus % = 81 and

v =121, If the S,-subgroup of U* has order 7, then 7* = 1 (mod 5).
Thus » = 4. Therefore

—1=v—-1=v*—1Z2p|N(B*):B*| < 14p*.
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uw* -1 7381 -1 v—1
= — 24 = .
3 15 > P
Thus the coherence of % implies that (I'y, ¢°) = 0. Hence (36.7) yields

that (I'y, %) # 0(mod 2). Therefore (36.8), (36.11) and (86.21) imply
that

1

q p~1
'y==%3n % 770.1"’—" ;7761

contrary to (36.20). Thus ¢ =1 and consequently | N(B*):8*|=1»p
or 3p.

-

Lemma 36.4. | NQU*):uU*CU*)| = 3p.

Proof. If the result is false then | N(UI*): U*C(1*)| = 3 by Lemma
35.7. Thus (36.8) implies that I'y = *(7% + 7»). Therefore by (36.5)
and (36.10) (I'g, ") # 0 and (I', 7) # 0. Since u* = u (36.13) implies
that u* =« and

(36.22) I'y= 340,

where ¢; ranges over Z/. Thus by (36.6) (I'g, 7) is odd. Hence by
Lemma 36.3 and (36.12)

—1
r53=b2¢fi’_2=.1770i+4%;
where b is odd and 4 is orthogonal to all ¢;, ;. Therefore by (36.22)

0= (({go — ) A — 9N =121+ b@‘g—l) .
Since b = 0 this implies that |b|(w — 1)/8 =2, Hence w = 7. Thus
by Lemma 385.8 (i) 7 = (»* + » + 1)/18, hence » < 10. Hence p =5
or p="17. In either of these cases u|(»*+ » + 1) by Lemma 34.1
since (u,6) =1. Thus 7|31 or 7|57 which is not the case.

LEMMA 36.5. || = p"

Proof. If |P|+# p° then NU) S Sas Pisa T.I. set in @. This
contradicts Lemma 36.4.

LEMMA 86.6. U s cyclic.

Proof. By Lemma 34.1 if 11 is not eyclic then 11 =1, x U,, where
each U, is cyclic and |U;||(p —1)/2. Let |1;|= (p — 1)/2y; for i =
1,2. If vy, = 4 then Lemma 35.3 (i) implies that



36. THE PROOF OF THEOREM 27.1 1007

P Ptptl -1 _@-1 _ o
13 < 13 < 4y -~ 16 < 16

which is not the case. Thus %%, < 4. If y% = 2 then p = 1 (nod 4)
and so |[U]=(p—1)8 is even. If %9,=38 then p =1 (mod 8) and
so 8|u which is not the case. Thus %w,=1 and u = [(» — 1)/2]".
Therefore ((p —1)/2, 6) =1. Thus p =11. Furthermore u =1/4 (mod p).
Since u* =1 (mod ») by Lemma 36.4 we have that «* = ux and = =
4 (mod p). By Lemma 34.2 v = (3* — 1)/2. Hence Lemma 36.83 and
(36.10), (36.11) and (36.12) imply that

3""1 _1

1
=8 -1 orusp <3 -1.

(36.23) 3p

The first possibility implies that 3 — 8 < 18p* — 6p. Thus 372 < 2p°.
Hence » < 7 by (5.4). The second possibility in (36.23) yields that

-(pz—l),-x—1§9p’—3p.

Therefore

(p— 1)z <36p"— 12p + 4 < 869 .
As p = 11 this implies that

H 2
36.24 36(—2 _Y=386(1+ -1 )<s86(12L) <45,
86.24) @< (p_l) (+p_1)_ (100)<
Let # = 4 4+ zp for some integer 2. Then since p = 11 (86.24) yields
that z < 4. Furthermore

(36.25) p<4l; if 222, p<20; if 2=8, p<1l4.

As p<4land ((p—1)/2,6) =1, p=11or »p = 28. If » = 23 then by
(36.25) » = 27 which is impossible as # =1 (mod 8). If p = 11, then
x =15, 26 or 87. As z =1 (mod 6) this implies that x = 87. Then
u =25 and so 837 =1 (mod 11) by Lemma 36.4 which is not the case.

LEMMA 86.7. u=2"+p+1 or u=@+p+1)/38 or u=
@+ p+ 7.

Proof. If u|[(» — 1)/2]* then by Lemmas 84.1 and 36.6 u|(p — 1)/2.
Thus by Lemma 3858 () (» —1}/2 > (»* + » + 1)/13. Hence
2p* — 11p + 15 < 0 which implies that » < 5. Therefore by Lemma
341 p»+p+1=wuy, y an integer. By Lemma 85.8 (i) ¥ < 18. If
r is a prime such that °+ p + 1 = 0 (mod r) then either r = 3 or
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r=1(mod8). Hence y=1,8,7T0r 9. If y=9then p*+p+1=0
(mod 9). Hence p =1 (mod8). Thus p=1,4 or 7 (mod9). In none
of these cases is P+ P+ 1 =0 (mod9). Hence y=1,3 or 7.

LEMMA 86.8. u=u*=p"+p+ 1.

Proof. Let u* = ux. Assume that z #1. «* =1 (mod 6p) by
Lemma 364. If u=p2'+p»+1, then u=4*=1 (mod6p), thus
=1 (mod6p) and so x =1+ 6p. If u= P+ p+ 1)/3, then =8
(mod p). Furthermore # =1 (mod6) since v = u* =1 (mod 6) and
p =1 (mod6) since p*+ p+ 1 =0 (mod3). Thus if x = 3 + zp then
1=8+4+2 (mod6). Hence xr=8+ 4p. If w=(p*+ »+ 1)/7 then
=177 (modp). If =T then by Lemma 86.6 the S,-subgroup of
n* is generated by two elements. Hence 7°—1 =0 (modp) by
Lemma 386.4. However 7? — 1 =48 and (p,48) =1. Thusz # 7. Let
2=T+2p. Then P+ p+1=u=1 (mod6). Hence p =5 (mod 6).
Thus 1 =2 =7+ 5z (mod6), hence z=0 (mod6). Therefore =z =
7 + 6p. Thus in any case

(36.26) u* = uw, r=4p+ 3.

Therefore (u* —1)/8p > (u—1)/3. Hence by (86.13) and the coherence
of v
(86.27) (¢, I'g) = 0.

Assume first that (¢°, I'g) +# 0, then by (36.12) and the coherence
of v

(36.28) w1 gp_1.
3p

Suppose now that (¢7, I'g) =0. Then by (36.10) (y~, I'y) # 0.
Hence the coherence of 2~ and (86.11) imply that

v —1
(86.29) 3 <8-1.
By (86.27) and (86.5) (7, I'y) # 0 (mod 2). If also (7, I'y) were odd
then by (36.8) (i, ['y) #0for1<1<¢—1,1=<j=<»-—1. Thus
by (36.11) (v*, I'y) = O contrary to what has been proved. Therefore
(Mo I'y) = 0 (mod 2). Hence by (36.7) (I'g, $°) # 0. Thus by (36.14)
and (36.29)

u*—lév—l g'"*—1<9p—3,
3p P P

Now (36.28) implies that in any case
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* 1
36.30 Ll <8 —1.
( ) T 74

For any prime r let U, be the S,-subgroup of 1*.
Suppose first that « = p*+ p + 1, then « > 6p. Hence (86.30)
implies that

6P +p+1)—-1=<27p—9.

Therefore 2p* — 7p + 4 £ 0 which is impossible for » = 5.
Suppose now that u = (p* + » + 1)/8 then = = 4p + 3 by (36.26).
Hence (36.30) implies that

4P+p+1)<8lp.

Thus 4p < 81 or p < 22. Since p =1 (mod 3) this yields that p =17,
p=13 or p=19.

If p=1T7 then u=19. If |[U,|=19" then n=6 as |U,|=1
(mod 7). Thus (86.30) implies that 19° < 27.7? < 19‘. If p = 13 then
% =261. Let |U;|=61", then n =8 as |U,| =1 (mod13). Hence
(86.80) implies that 61° < 27.13* < 61%. If »p =19 then u = 127. Let
|y | = 127", then # = 8 a8 |U,,| = 1 (mod 19). Hence (36.30) implies
that 1270 < 27.19° < 127,

Assume finally that « = (p*+ » + 1)/7 then 2 =6p + 1. Thus
(86.30) implies that

6@ +p+1) _ gy
241 <

Therefore 6p < 27.7, so p<382. Since P+ p»p+1=0 (mMod7),
p=2(mod7) or p=4 (mod7). Thus p =11 or p = 23.

If p=11 then ¥ =19. Let |U,|=19" then n =8 as |U,| =1
(mod 11). Hence (86.30) implies that 19° < 27.11* = 287.11 < 19°. If
p=23thenu =179, As|U,|=1 (mod23), |U,|=T79. Hence (86.30)
implies that 79° < 27.28* < 79

Therefore # = u* in all cases. Hence # =1 (mod p) by Lemmas
36.4 and 36.5. Since (p,6)=1, T#1l (modp) and 8= 1 (mod p).
Hence by Lemma 36.7 u = p*+ » + 1.

The proof of Theorem 27.1 under Hypothesis 36.1 is now im-
mediate.

Let ¢ = 3 and p have the same meaning as in the earlier part
of this section. By Lemma 85.2 |Q| = ¢*?. By Lemma 36.56 |B| = p°.
The other properties of Condition (i) follow from the structure of &
and T and Theorem 14.1. Thus Condition (i) is verified. By Lemma
35.6 C(Q) = Q. Hence C(Q*) = P*Q. By Lemma 86.83 C(P)= P,
hence C(P*) = PO* by Lemma 36.5. The other properties of Condi-
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tion (iii) follow from the structure of & and £. Thus Condition (iii)
is verified. Lemmas 86.6 and 86.8 imply that I = C(1) is cyclic. By
Lemmas 34.12 and 36.4 W =1U* is a T.I. set in . Hence Lemma
36.4 completes the verification of Condition (iv).

Lemmas 84.1, 86.3, 86.5 and 86.8 imply that PU is a Frobenius
group. Lemma 36.8 implies that |[11| = (p* —1)/(p — 1). Lemmas 36.4,
86.6 and 36.8 imply that if u,||U| then u%,=1 (modpg). Thus
(|{0],» —1)=1. The other statements in Condition (ii) follow from
the structure of & and Z.

By Theorem 35.1 this completes the proof of Theorem 27.1 in
all cases.



CHAPTER VI

37. Statement of the Result Proved in Chapter VI

The purpose of this chapter is to prove the following result.

THEOREM 37.1. There are no groups & which satisfy conditions
(i)~(iv) of Theorem 27.1.

Once it is proved, Theorem 87.1 together with Theorem 27.1 will
serve to complete the proof of the main theorem of this paper. In
this chapter there is no reference to anything in Chapters II-V other
than the statement of Theorem 27.1. The following notation is used
throughout this chapter.

® is a fixed group which satisfies conditions (i)—(iv) of Theorem
27.1

Mm=uy=2=1
p—1
U*=CM) and |U*|=u*.
n* =(Up, U= U*. Thus U ={U)
2,=[L, B*] so that L =0* x Q,.

P and Q are fixed elements of P** and Q** respectively.

For any integer » > 0, 2, is the ring of integers mod n. If »
is a prime power then &, is the field of = elements.

U acts as a linear transformation on P. Let m(t) be the minimal
polynomial of U on P. Then m(t) is an irreducible polynomial of
degree ¢ over #,. Let w be a fixed root of m(t) in F#,. Then w
is a primitive uth root of unity in %, and @, @*, -, @ are all
the characteristic roots of U on .

38. The Sets % and <&

LEMMA 38.1. There exists an element Y e Qf such that P* nor-
malizes YR*Y !

Proof. LQ* normalizes U* and Q* is contained in a cyclic sub-
group of N(1*) of order pq. Hence some element of order p in C(Q*)
normalizes 1*. Since C(Q*) = QP* every subgroup of order p in
C(Q*) is of the form Y B*Y for some Y e, Hence it is possible
to choose Ye L, such that Y 'P*Y normalizes I1*, Since [P*, ]S B,

1011
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P* does not normalize 11*, hence Ye Q! and P* normalizes YU*Y !,

From now on let
(88.1) Z,=YUY?, Z=YUY*=2Z""

where Y satisfies Lemma 38.1. Notice that Q* normalizes {Z,), since
0* normalizes 11* and Y centralizes Q*. Define v, w e 2. by

(38.2) PZP=2;, Q'ZQ =27’

LeEmMMA 38.2. If Z,edZ), ae %, be x, then {Z) =<{Z; "
unless a =0 and b =0,

Proof. Z;'P-°Q*Z,Q'P* = Z;***-'. Hence P°Q® acts trivially on
{ZpKZy "y, However if Z,+# 1 then P*Q*(Z) is a Frobenius
group with Frobenius kernel {(Z,>. Thus <{Z,> = {Z**"-*) as required.

LEMMA 38.8. Ewvery element of PU has a unique representation
wn the form P™OUS, where ac Z, and m,(t) 18 a polynomial of
degree at most ¢ — 1 over £°,.

Proof. There are up®’ ordered pairs (m,(t),a) with a€ 2, and
my(t) of degree at most ¢ — 1 over 2,. Thus it is sufficient to show
the uniqueness of (m,(t), @) in such a representation.

If PmOys = Pi® U, Then reading mod Pyields that ¢ = a'.
Since m(t) is irreducible we get that m,(t) = m{(f) (mod m(t)). Thus
m,(t) = mi(t) as required.

LEmMMA 38.4. Ewvery element of PU — U has a unique representa-
tion in the form U°PYU*, where z,2€ 2, and y€ %,, ¥ # 0.

Proof. If XePN — N and
X =U*P'U* = UnPnU"
then reading mod P we get that * + 2 =, + z,. Hence
Us—nprJ-=+s = Pwn

Since X¢ll, y +0. As (u,» —1) =1 we have that # =,, and so
Y =1, #=2. The representation is unique. There are u’(p — 1)
ordered triples (z, ¥, 2) with z,ze 2, and y€ 2, ¥y #+ 0. Each triple
gives rise to an element of PU — U and [PU — U| =u*(p — 1). The
result now follows.

LEmMmA 38.5. Let %,2,9€ 2, =%, ¥, f,he Z,. Then
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P=U'PU'PU*=1

if and only if
(i) y+f+h=0
(ii) 2w’ + z + gw¥** =0,

Proof. Let R= P*U*P'U’P*U*. Then
R =P gU—"—!U”"” ]
Thus by Lemma 38.3 B =1 if and only if
Yy+h+f=0 =+ 2t7"+ gtv7 = 0(mod m(t)) .
The first equation allows us to rewrite the second as
xt? + z 4 gty = 0 (mod m(t)) .

Thus the lemma is proved.

DEFINITION 88.1. The set & is defined to consist of all ordered
triples (a,, @, a;) such that

(i) a;€2,, ;0 for 2=1,2,3.

(ii) e, +a,+a,=0.

(iliy PU“PU%PU% =1,

DEFINITION 38.2, <7 is the set of all elements a, € 2, such that
(a,, a,, a;) € &7 for suitable a,, a,.

LEmMMA 386. || = ||

Proof. If (a,, a,, a;)e % then by Lemma 88.4 a, and ¢, are de-
termined by a,.

LEmMA 38.7. (@, @, @) € ¥ if and only if

(i) ;€e2, a;,+0 for 1=1,2,38

(ii) e, +a,+a;,=0

(ili) o™ + wmtas — 2 =0,

Proof., By Lemma 38.5,

PUnPUaPU* =1

if and only if a, + @, + a@; =0 and w* — 2 + @w"*% = 0, This implies
the result.

Lemma 38.8. If (a,, a, a)€ ¥, then (—a, —a,, —a,) e 5.
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Proof. If (a,, @, a;) € 57 then by Lemma 38.7 w=% — 2 + @™ = 0.
As a, = —a, — a, this yields that

W2 —-24+ W=,

As —a, — a, —a, = 0 the result follows from Lemma 38.7.

LeMmA 389, For 0 <t =<p—1 let €, be the conjugate class of
PO which contains P* and let R; be the sum of the elements in €;
wm the group ring of PU over the integers. Let

p—1
.Q{ = ZC;R" .
i=0
If ¢ > 38, then ¢, = 2.

Proof. Let g, tt, +-- be all the irreducible characters of PU/T
and let i, %, -+ Dbe all the other irreducible characters of PU. It

is a well known consequence of the orthogonality relations ([4] p. 316)
that

= up' [ (2 PY (P X:{(P)Y(P?)
“= o p1) ¥ x:(1) }

Since U is eyeclic, ¢t:(P) = p(P?) = (1) =1 for all 2. By 3.16 1;(1)=u
for all 5, Thus

=% 1 5 o (PYY AP
(33.3) o= tcfu+ o+ BT}

By the orthogonality relations
SILPIFSICP) s for 1Sisp—1.
Therefore
(38.4) |3 XPYLA(PY)| < (max | x:(P) ) 2 (2P [ = 9%
By (38.3) and (38.4)
| p'e, — w'| < PP
Thus
(38.5) Pl = w — pt*,

-1

Since u = 2 T > 7' (38.5) vields that

¢y = o Pt > Pt — pult = puypUt 1)
=



38. THE SETS &« AND @ 1015
As ¢ > 3 and ¢ is a prime we have ¢ = 5, and the lemma follows.
Lemma 3810, | ¥ |=]|<#]|>0.

Proof. Assume first that ¢ = 3. Consider the set of polynomials
of the form f,(t) = + at’ + (¢ + 6)t — 1 with a€ 2,. There are p
of these and none of them has 0 as a root. Thus if f,(f) were re-
ducible for every value of a there would exist @ + b such that f,(f)
and f;(t) have a common root c€.%#,. Then

ac’ + (@ + 6)c = be* + (b + 6)c .

Since ¢ # 0 this yields that a(c + 1) = b(c + 1), hence ¢ = —1. How-
ever f,(—1) = —8 # 0. Thus there exists some polynomial f,(f) which
is irreducible over &#,. Let a be a root of f.(t) in .%,:. Then

@t = —f0) =1, (1+ @)= _f(-1)=8,

Therefore a = @™ for some a,€ 25, a,#0, and 1+ a =2w" for some
a, € 2,,a,+ 0, Furthermore —w%+ 2w =1, Thus w* + @+ —2=0,
Since w2 # 1, a, + a, # 0. Hence by Lemmas 38.6 and 88.7 | &% | =
|| > 0.

Assume now that ¢ > 8. Then Lemma 88.9 implies the existence
of a,be 2, with a # 0 or b # 0 such that

U-PUU*PU? = P?,
Therefore
(38.6) PUPPUPU =1,

Jet a,=0b,a,=—a, agz=a&¢ —b. Then a,+a,+a,=0. If b=0
then (38.6) becomes P'U°PU*® = 1; as PU is a Frobenius group this
implies @ = 0 contrary to the choice of @ and b. If @ = 0 then (38.6)
implies that PU*P'U* =0, hence b =0. If a — b =0 then (88.6)
yields that PU*P*U—°P =1 or U® commutes with P?, Thus a =0,
hence also b = 0. Therefore a,, a,, @, are all non zero and by Definition
88.1 and Lemma 38.6 | & | =|<Z| > 0.

The following result about finite fields is of importance for the
proof of Theorem 37.1.

LEMMA 38.11. For x€ %, define N(x) = 2't** "+ and for

x+ 2 let °= 2;9; If a e Fp — F,, then for some i, N(a*') - 1.

Proof. Assume that the result is false and N(a”') =1 for all i.
‘We will first prove by induction that
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—i—1Da+1
—ta+(+1)

If 1 =1 (38.7) follows from the definition of 6. Assume now that
(38.7) holds for 2 =k — 1, Then

1
—(k—2ax+k—1
2"{ (—(k—)1)a+1c }
—(k—Da+k
—2(k — 1) + 2k + (k — 2)a — (k — 1)
—(k—Da+k
—ka+(k+1)

This establishes (38.7).
Now (88.7) implies that for j = 1,

(38.7) a = for1=1,2, ...

a™ =

i f“—(’i—l)a+'i} 1
o= 22 S S—
= Mi{-ia+G+n ~J*+0+D
Therefore
N(—je+i+1)=—"— =1,
EN(a“")
Thus
(38.8) N(—aa+a+1) =1 for ac. #,.
Define f(t) by
(38.9) ) =(t—a)t —a®) e (t — ™).

Thus f(t) has coefficients in %, and (38.8) yields that

(38.10) a«f(_“_;f_l_) = a«N(“_:_l - a) =N@+1l—ax)=1

for ae #,, a#0.

Let b =% : 1 for @ + 0, then ¢ = 7_1_1_ . Hence (38.10) yields that

1 _
o ®=1 forbes b1,

Therefore

(38.11) SO)—(b—-1)Y=0 for be #,, b#1.
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J@® — (@t —1) is a polynomial of degree at most ¢. By (88.11)
F@) — (@ —1)Y has at least (»p — 1) roots. As (p — 1) > ¢ we must
have that f(t) = (¢ — 1)*. By (38.9) « is a root of f(t), hence a =1
contrary to the choice of @. The proof is complete.

39, The Proof of Theorem 37.1

LEMMA 89.1. There exist functions f, g, and h such that

(i) fand h map 2, X 2, X 2, into 2,

(ii) g maps 2, X 2, X 2, into 2,

(iii) P*UYPrUI=voposynrevn =1
Furthermore for x + 0, y + 0, z+ 0 (iii) determines f(x, y, 2), 9(=, ¥, ?)
and h(x,y, 2) uniquely and f(z, vy, 2), 9(z, ¥, 2), h(z, ¥, 2) are all non-
zero.

Proof. By Lemma 38.4 the functions exist and are uniquely de-
fined by

PUPUIPUP =1

provided that P*UYP* does not lie in U, It is easily seen that if
z+0, y+ 0 and z+ 0, P*UYP* does not lie in 1.

Suppose that f(x,y,2) =0. Then P*UvP**? = U-*ell, Then
y=—h and U'P***U~¥ = P*c P*. Therefore either y =0or x = 0.

Suppose that g(x,y,2) =0. Then P*U*P*= U-’-*, Thus y =
—f-—h and UP*U"v= P> Hence x=0o0r y=0.

Suppose that h(x,y,2) =0. Then UYP*U’P*** =1, Hence
y+f=0, then U'P*U"¥=P* Thus y=0o0r z=0. This com-
pletes the proof of the lemma.,

Throughout the rest of this section f, g, & will denote the func-
tions defined in Lemma 39.1. For e 2°,, Y as in Lemma 38.1, define

Y,=YP*YP",

LemMaA 39.2,

(i) Y,= Y 'P*YP*= P*YP'Y!

(ii) YP'Y'= Y:!P*

(iii)) YP'Y*= P'Y,,
Sfor x,2,0€ %,

Proof. Since Pe P*= N(Q,) and O, is abelian, (i) is immediate.
(iii) is a direct consequence of (i). By definition Y_, = Y 'P*YP—,
Thus Y} = P*Y'P—*Y = YP*Y'P-* which implies (ii).

LemMA 89.8. For ze 2, P*UP*= Y 'U"Y..
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Proof. By (38.2) P*ZP—* =Z"", By (38.1) Z= YUY™. Hence
Y 'P*YUY'P*Y=U"".
Conjugating both sides by P°, we get that
YUY, = P*U"" P+,
If both sides are raised to the v*th power, the lemma follows.
LEMMA 39.4.
Y ZVY:} = P*Z - Mevn Yo PRV RZ S0 pos

Proof. Substitute (38.1) into (iii) of Lemma 39.1 to get
P*Y'ZYYP*'Y'Z'YP°'Y'Z'Y = 1.
Conjugate by Y-'P* to get
(P=YP*Y )Z(YP'Y )Z(YP'Y )Z'P*=1.
Now use the results of Lemma 39.2 to derive that
Y. ZVYZP*Z'P°'Y , Z'"P* =1
which implies the lemma.
LemmA 89.5. If (a,, a., a;) e 7, then
Y, 22 Y Y, 25 Y = Y 2 Y

Proof. In the definition of & conjugate (iii) by P*. Then
PyapU=PU»P* =1,
or
(P*UP)YP2USPY) = P*U %P,
Hence Lemma 89.3 yields that
(YUY )Y U'Y,) = YUY, .
Since Q is abelian, this implies that
YUY Y, U'Y;' = Y, U 'Y;".

Conjugating by Y ' implies the result by (88.1) and the fact that Q
is abelian.

LEMMA 389.6. For (a, a,, a;)e & define
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9. = 9@, a, —3)
9, = 9(1, —az»*, —3)
g: = 9(1, ap’, —2)
k, = h(2, av, —8) — h(1, —a*, —3)v™*
k, = —f(2, a,v, —8) — h(1, a,v*, —2)v?
k= —r(Q1, a2, —2)v* + f(1, —av*, —8)
k=—-—g,—1.
Then

(39.1) Y, ZMPY; = P-1Z"P Y PZ*P

Proof. Use Lemmas 39.4 and 39.5 to obtain

P37 -h.a10,—9) Y,'(',l - P-o@.60.-8) 7~ (.a0.~8) P38
Pz —htt.aph Yﬂ?ll uzus,-—l)P —0(1.879%,~2) 777 (1.ay0%.—2) 3
= V2wV V2o Y = V2T,

— P—lZ—h(l.—aac’,—a) ,711_%”,,_3) P—g(l.—u,o’.—s) Z—yu,—aau?,—s) P,
Multiply on the left by Y,u.4,0-5Z****~P* and on the right by
P Z!(l.—asv’.-—a) Pq(l,—a,oﬂ,—s)
to get
AY; agt,—0 B = Ya(!.alv.—S)C o0t —agot,~5)

where

A = P98 Z-y(:,alu.—w—m.a,os,—a)u-’ P2

B = P—a(l.a,v’.—:)—l Z-,ru.a,v'.—:)a—-luu.—a,vﬂ.—s) Pot~azi—9)

C = Zh(a,alu.—a)—-h(1.—a3v5.-a)o"1 P R
or equivalently

A= PnzZmp' B= P‘Z%»pPs, (C=Z4P,
The lemma follows.

LeEMMA 39.7. Let (a, a,, a;)€ . Use the notation of Lemma
39.6. If k, +# 0, then there exist elements ¢, ¢c;€ 2, such that

(i) &=+0

(ii) k,+ kv =k,

(ili)y Y PYP—% = P oY 'P-%Y,.

Proof. Conjugate (89.1) by Q. Since P*Q = C(Q), this yields
that
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Y, Z*PY,; = P~ Z*P'Y,P*Z"P% ,
Taking inverses we get
Y, PZhY,t = P~ kP-+Y, P Z kP,

Multiplying this by (39.1) on the left yields

YGIZ (1—w)k; Y,II — P—nZk,P! Yg—;lPkZ (l—w)k3P—k anP_’Z_wk2P,1 .
Conjugating by P~ yields

Pn lezu—w)kl Y,?P—" = Zkp? Y,;IP"Z (1-w)ky P—Fk Y%P—Qz—wk, .
Use Lemma 39.2 (iii) and (38.1) to get

YPaY YUty 1YPuY !
=YURY'P'Y, ' P*YU* Y 'P*Y, P YUY,

Conjugate this by Y to obtain »

payt-wmp-o = kY PY P*YUS Y P*Y, PYU ¢,
Multiply on the left by U-* and on the right by U** to obtain

U-tpao-vap-nh = WU W1,
(39.2)
W, = Y'P'Y,'P*Y .
Suppose that U*®* =1, Then (89.2) implies that
Paga-wkhp-o = [Ja-wk

By Hypothesis k, #+ 0, hence by Lemma 38.2, U*** 1, By Lemma
39.1 g, # 0. Thus the above equality cannot hold in the Frobenius
group PU. Hence U*"'* =1, This proves statement (i) of the
lemma..

Let U, = W, U W, By (39.2) U, is a conjugate of U*s*—*
which lies in PU. All conjugates of U*"* which lie in U1 are of
the form

Uk,u—w)u"swc' ,
with ¢;€ 2, ¢’€ 2,. Hence
(39.3) U = WU W = W? [ ksi—wre®iue’ W,

for some W,eP. Thus W,W,e N(1). Since Qe N(Il), we get that
Q- W, WQe NW). By (39.2) W,Q = QW,, thus Q'W, W,Q = Q' WLQW.
Hence

WQW 'R = W,W, QW' W 'Q)e N() .
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However W.Q'W,'Q e P. Since PN NW) =1, this yields that
Qe C(W,). Hence W,eBNCQ) = P*. Thus

(39.4) W, = P>
for some ¢, € 2,. Now (39.2) and (89.4) show that
W, W, e QPB* N NU) .

Since Pe N(KZ)), we have Y-'PY e N(I), thus QP*NNQU) =
{Y-'PY). Therefore

(39.5) W, W, = Y 'P»Y
for some ¢, € ;. Consequently

(W W)U e I, = oo
If this is compared with (39.3) we see that

(39.6) G+e=0 ¢=0.
Using (39.4) and (39.6) in (39.5) leads to
(39.7) W, = PaY'P-aY,

Comparing (39.2) and (89.7), we get
P-aY-'P-%Y = Y'P*Y,'P*Y .
Conjugating by Y gives
(39.8) YP-aY'P~% = P*Y'P*,
If we substitute (39.7) into (39.2) we get
U-PaUo-wup-nluw = P-altt-"pa

Multiply on the left by U—**“P% and on the right by U-nepPalUhuw
to get

U—k,o"-"Pc, U-tapulka — U—wk3u°3Pe, U-twpalfhe

Since the right hand side is the left hand side conjugated by @, we
see that @ centralizes the left hand side. Hence

(39.9) U-t“pal--pPal4 = Pu
for some ¢, € 2. Reading (39.9) mod P yields that
k, =k, + kv
which proves (ii) of the lemma. Substituting (ii) of Lemma 89.2
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into (39.8) we get that
(39.10) PY, P = Y )P,
Substituting (89.10) into (89.1) leads to

Y, ZBPY,!' = P Z"Y'P~oraZ"P%

Multiply on the left by P and on the right by P-%. Then using
Lemma 389.2 (ii) and (iii) this becomes

YPnY ' ZMWPYP-2Y ' = ZhY P~ sk
Use Z= YUY to get
YPaURY'PYP-2Y ' = YURY Y ' P~ v sYURY™,
Conjugate by Y and multiply on the left by U—* to get
(39.11) UnPaUsY'PYP = Y'Y 'PsYU?
Conjugate by @ and take inverses, then
pPuY'PRYUwp-ahw = U Y 'PataY, Y
Multiply by (89.11) on the right to get
Py,Y—lP—-l YU—kle—lek’(w—l)PplUkl Y—lPYP—ﬂ, — U"S(l"“) .
Conjugate by W to get

W PuY PYU - wp-ahtwe-tpaghy-'PYP- W
= W,Ub-» W,

Using (39.2) and (39.3), this yields

W PaYPY{U - wp-akw-bpayh}lYPYP-: W
(39.12) —_ l]o — U—k’P“U(l_th—hUw" .
Now by the second equation in (89.12)

U—kle—al Uk,wU—k,Pal Ukl — U—kle-—yl Ul:,w UOU—kngql Ulqw .
Thus the first equation in (89.12) implies that

U-twpaheY-'PYP- "W e C(U,) .

By (39.3) and (89.4), C(U,) = P~%U*P". Hence
(89.13) Ut paJawy-1PYP-W,? = P~2U,P%

for some U,e*. We wish to show that U,el. To do this con-
jugate (39.18) by @ to get
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(39.14) U+ P’ Y PYP- W = P~ Po

by (39.7). Multiply (39.13) by the inverse of (39.14) on the right to
get

(39.15) U-tvwpnhwe J-kwP-aJkaw? = P-alji-vpPa

By Lemma 388.2 U, and U} have the same order. Since the left
hand side of (89.15) is in PU, this implies that the order of U, divides
u, thus U,ell,

Multiply (39.13) on the left by U;7P° and on the right by
W, P2 Y'P'Y to get

(39.16) UtPaU-*epayUhw = PaW,P2Y'P'Y .,

By (39.7) the right hand side is in C(Q), while the left hand side is
in PU. Since C(Q) N PU = P*, this yields that

(39.17) UtPaU-tepayhe = P’
for some ¢” € 2,. Conjugate by @' to get
U ' PaU-Pals = P,
Comparing this with (89.9) yields that
Ur P = Uw"Pa,
so that
Ut = U, ¢,=c".
Using (89.16) and (89.17) this yields
Pt = PaW,PuY'P'Y
or
Poa-aY'PYP2=W,.
Hence by (39.7)
Po-aY'PYP~9% = P~ Y 'P~%Y,

This immediately implies (iii) of the lemma and thus completes the
proof.

LemMMA 39.8. Let (a,, a,, a;) € 7, and let k, have the same meaning
as in Lemma 89.6. Then k, = 0.

Proof. Suppose that k, # 0, so that Lemma 39.7 may be applied.
Let



1024 SOLVABILITY OF GROUPS OF ODD ORDER

hq = h(2, al’l), _'3)
h, = h(1, a,;0*, —2)
hy = (1, —azv*, —3) .

By Lemma 38.5 (i)
f@,av, —8)= —aw—h

f(lr q,,'vs, '_2) = __a’,vs - h:
JQ, —av*, —8) = a,v* — h, .

Hence in the notation of Lemma 39.6
kl = hl - h,’l)_l
k’ - a{l) + h1 - h”v—.,
ks = av* + hv' + a,v* — by .
Since a, + a, + a; = 0, this yields that
k= —a v+ hv™ — by
k,— k= —av+ hv?®— b,
Thus
(ke — kv =k,
or
ky+ kovi=k.

By Lemma 389.7 (ii) this implies that k(v — v ) =0. If ¢, # —1,
then by Lemma 38.2, (v** — v~*) has an inverse in 2,. Thus &k, =0

contrary to Lemma 39.7 (i). Therefore ¢, = —1. Now Lemma 39.7
(iii) becomes
(89.18) Y-'PYP-% = P-«Y-'PY .,

Reading (39.18) mod L implies that g, =¢,. Thus (89.18) yields that
Y-'PY and P-% commute. Since g, # 0 by Lemma 89.1, this implies

that
PY'PYeQ,NC(P)={1}.

Thus Ye, N C(P) = {1} which is not the case. Therefore k, = 0 as
required.

LemMMA 39.9 Let (a,a, a,)e ¥, let k, and k, have the same
meaning as in Lemma 39.6. Then k, =k, = 0.

Proof. Since k, = 0 by Lemma 39.8, (89.1) becomes
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139.19) Y, PY;' = P Z"P'Y 'P*Z*%P%
‘Conjugating by @ and using (38.2) we get that
{(39.20) Y, PY;! = P~Z*MP*Y,'P*Z*%P%
Now (39.19) and (89.20) imply that

ZMP Y P ZYs = Z¥P Y, P Z "% |
‘Therefore
(39.21) PY\P*ZM - P*Y, P~ = Zkw |

Suppose that %k; # 0. Then by Lemma 38.2 k(1 — w) # 0. As
<Z» is a T.I. set in @, (39.21) now implies that P*Y,'P*e N(KZ)).
As Pe N({Z)) this implies that

Y-P-#YPh = Y, e NKZY) N DO =<1 .

‘Therefore P% commutes with Y, Hence g, = 0. This is contrary to
Lemma 39.1. Thus %, = 0.

Now (89.21) implies that k (w — 1) =0. Therefore by Lemma
38.2 k,=0.

LEMMA 39.10. Let (a,, a,,a,) € ¥ and g, have the same meaning
as in Lemma 39.6. Then g, = 1,

Proof. In view of Lemmas 39.8 and 39.9 equation (39.1) becomes
{(39.22) Y, PY,'= P-P*Y 'P*P%
Reading (39.22)Jmod L, implies that

l=—0,+2+k+g,

.or using the definition of &
(39.23) -1-g=k=-14+9,—9,.
Hence g, = g, — ¢, and (89.22) becomes
(39.24) Y, PY;' = P*aY,l, Pot,

P acts as a linear transformation on L, It is convenient to use
the exponential notation., Thus Y? = P'YP, so that Y, = Y +F°,
(89.24) can be rewritten as

PY,PY;' = P-ovY, Pot

In exponential notation this becomes
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(39.25) Y(_1+P71)P+ (1 P93 — Y(l_Pﬂl—ﬂl)yﬂ—l
Define

(39.26) A=(—-14+ PP+ (1 — P — (1 — Prro)pn-
=(1-—P)+ P (P*—1)— P (P—1).
Since P*L, is a Frobenius group with Frobenius kernel £, 1 — P is

an invertible linear transformation on {,. By (89.25) A annihilates
Y. Hence also A(1 — P)! annihilates Y. By (89.26)

Al — P)* =1— PuY(P + 1) + Pot
=1—Pn41—Put_] 4 Pt

Therefore
Y, 1 Y;'11Y,,'" = Y(—1+pﬂ,—1)—(—1+P'1-‘)_(_1+p01) =1
tae il .
Thus
(39.27) Y=Y, Y, .

By Lemma 39.3
Y,,',l . Ut Y”’_1 = P~ [Jpos-1
By (89.27) this yields that
(39.28) Y;LY U, Y, , = P-eragpery
Lemma 89.2 also implies that
Y U vl Y, = P"UP" .
Raising this to the »%—%~'th power we get that

(39.29) YUY, = Py TP
Now (39.28) and (39.29) yield that
(39.30) LP-aUST T pay, | = P-eriUper |

Another application of Lemma 39.3 gives
(39.31) Y LUTY, , = PO PO |
Thus (89.80) and (39.81) imply that

YL [P Py, U Y,

(39.32) =[P~wr0 Ptes-b, p--n JPio-1]

Since g, # 0, P U ""'Pug1l, Therefore
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[P..,1 U.,'!—.l—IP'I, U‘,Ul—l] c q;‘ .
As P is a T.I. set in & (39.32) now implies that
Y, e NN =1.

Therefore P commutes with Y and so g, = 1. Now (89.27) yields
that Y, , =Y, or

Y- P-@rd YPurh = Y-PYP,

Consequently P-92YP!-% = Y, Hence g, = 2. Now (89.23) implies
that g, = 1 as required.

LemmA 89.11. Let <# have the same meaning as in Definition
38.2. If ac Z then —a€c &.

Proof. Let a =a,6 &# and suppose that (a,a, a,)e. . By
Lemma 388.8(—a,, —a,, —a;)€ . Let (—a, —a, —a,) play the role
of (a,, a,, @;). By Lemma 89.10 g, = g(1, —a,v®, —2) =1, Thus Lemmas
88.5 and 39.1 imply that

(89.33) —a,v* + f(1, —av?, — 2) + k1, —a?, —2) =0
(39.34) 0 — 2 4 warttht-art-n —

Let b, = —a,»*, b, =f(1, —a,?’, —2) and b, =h(l, —a?®, —2). By
Lemma 89.1 b, #0 for 1 =1,2,3. By (89.33) b, + b, + b, = 0. Now
it follows from (89.34) and Lemma 388.7 that (b, 0b,, b;)e o. Thus
—av®* = —a, 0 = b, e FZ.

Since @ was an arbitrary element of <# we get that for any
integer n, a(—7*)*€ <. Thus in particular, a(—1°?ec <#. Hence
by (88.2), —a = —av*?€ <# as was to be shown.

It is now very easy to complete the proof of Theorem 37.1.
Define the set & by

& = {w*|ac F}.

Since | &# | = | ¥ |, Lemma 388.10 yields that & is not empty. The
definition of <# and Lemma 38.7 yield that 1¢ % and aeZ if
and only if 2 —ae%. Lemma 89.11 implies that @€ & if and only

if a=*e &. Therefore if o efgthenz1 €#. Sinceu=14+p+---

+ p, we have N(a) = at+?++#"' =1 for ae &. Thus if ¢ has the
same meaning as in Lemma 38.11 then there exists ae F — F,
such that N(a”) =1 for all values of <. This contradicts Lemma
38.11, and completes the proof of the main theorem of this paper.
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