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SOLVABILITY OF GROUPS OF ODD ORDER

WALTER FEIT AND JOHN G. THOMPSON

CHAPTER I

1. Introduction

The purpose of this paper is to prove the following result:

THEOREM. All finite groups of odd order are solvable.

Some consequences of this theorem and a discussion of the proof
may be found in [11].

The paper contains six chapters, the first three being of a general
nature. The first section in each of Chapters IV and V summarizes
the results proved in that chapter. These results provide the starting
point of the succeeding chapter. Other than this, there is no cross
reference between Chapters IV, V and VI. The methods used in Chapter
IV are purely group theoretical. The work in Chapter V relies heavily
on the theory of group characters. Chapter VI consists primarily of
a study of generators and relations of a special sort.

2. Notation and Definitions

Most of the following lengthy notation is familiar. Some comes
from a less familiar set of notes of P. Hall [20], while some has arisen
from the present paper. In general, groups and subsets of groups are
denoted by German capitals, while group elements are denoted by
ordinary capitals. Other sets of various kinds are denoted by English
script capitals. All groups considered in this paper are finite, except
when explicitly stated otherwise.

Ordinary lower case letters denote numbers or sometimes elements
of sets other than subsets of the group under consideration. Greek
letters usually denote complex valued functions on groups. However,
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various times supported by the U. S. Army Research Office (Durham) contract number
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in Pasadena. The authors wish to thank Professor A. A. Albert of the University of
Chicago for making it possible for them to spend the year 1960-61 there. The authors
are grateful to Professor E. C. Dade whose careful study of a portion of this paper
disclosed several blunders. Special thanks go to Professor L. J. Paige who has expedited
the publication of this paper.
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776 SOLVABILITY OF GROUPS OF ODD ORDER

a and r are reserved for field automorphisms, permutations or other
mappings, and e is used with or without subscripts to denote a root of
unity. Bold faced letters are used to denote operators on subsets of
groups.

The rational numbers are denoted by &, while <ff* denotes the
field of nth roots of unity over &.

Set theoretic union is denoted by U. If 21 and S3 are sets, 21 — 93
denotes the elements of 21 which are not in S3. 21 c S3 means that 21
is a proper subset of S3.

<(• • • | • • •> the group generated by • • • such that
<1> will be identified with 1.

{•••!•••} the set of • • • such that
the group defined by the generators • • • with
the relations
the number of elements in the set X.
the set of non identity elements in the set X.
a set of primes. If n = {p}, we customarily
identify n with p.
the complementary set of primes.
a non zero integer all of whose prime factors
are in nm

the largest 7r-number dividing the non zero
integer n.
a group X with | X | = | X I*.
a group element X such that <X> is a 7r-group.
a subgroup @ of X with | @ | = | X |̂ .
a S^-subgroup of X for suitable TU.
a S-subgroup of X.
S is a normal subgroup of X.
$ is a characteristic subgroup of X.
the inverse image in X of /(X/5JZ). Here
31 < X, and / is a function from groups to
subgroups.
the maximal normal 7r-subgroup of X.
O,n(XmodO,1,....,n_1(X)).
we say that X is 7r-closed if and only if X has
a normal S^-subgroup.
the Fitting subgroup of X, the maximal normal
nilpotent subgroup of X.
the Frattini subgroup of X, the intersection
of all maximal subgroups of X.
the nth term in the ascending central series
of X, defined inductively by: Z0(X) = 1, ZX(H) =

1 3 E I
V
TZ

n'
7r-number

rc-group
7r-element
S^-subgroup of X
S-subgroup of X
Hall subgroup of X
5 ? < X
S? char X
/(X mod 31)

7r-closed group

W)
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Z(X) = center of X, ZW+1(X) = Z(X mod Zn(X)).
O*(X) the smallest normal subgroup ?) of X such

that X/$ is a 7r-group.
[X, F] X^Y^XY = X~lXT.
[Xu • • •, Xn] [[Xu . • •, Xn^l Xn], n^S.
[21, SB] <[A, JB] | A e 2i, B e S3>, 21 and 35 being subsets

of a group.

>. If I S ? ) , 3 £ S is called
the normal closure of X in 2).

I ' [3E, X], the commutator subgroup of X.
Cn(X) the nth term of the descending central series

of X, defined inductively by: Cx(X) = X,
CW+1(X) = [Cn(X), I ] .

£n(X) the subgroup of the p-group 3£ generated by
the elements of order at most p n .

ffn(3E) the subgroup of the p-group X generated by
the pnth powers of elements of X.

m(X) the minimal number of generators of X.
mp(X) mity), ?$ being a Sp-subgroup of X.
cl (X) the class of nilpotency of the nilpotent group

X, that is, the smallest integer n such that
X = Zn(X).

C$Q(2I) the largest subset of S3 commuting element-
wise with 21, 21 and S3 being subsets of a
group X. In case there is no danger of
confusion, we set C(2I) = CS(2I).
the largest subset of S3 which normalizes 21,21
and S3 being subsets of a group X. In case
there is no danger of confusion, we set iV(2I) =

ker (X —• 59) the kernel of the homomorphism a of the
group X into the group 2). a will often be
suppressed.

ccl a («) {2F | Xe X}, 21 being a subset of X.
F(ccls(2I);33) <2lx | X e X, 21* s S3>, the weak closure of

cclx(2I) in S3 with respect to the group X.
Here 21 and 33 are subgroups of X. If 21 =
F(ccl3E(2l); S3), we say that 21 is weakly closed
in S3 with respect to X.

TT(X) t h e s e t of p r i m e s w h i c h d iv ide | X | .
Jn the n by n matrix with 1 in positions (i, i)

and ( i , j + 1), 1 ^ i ^ n, 1 ^ j ^ n — 1, zero
elsewhere.
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SL(2, p)

special p-group

extra special p-group

self centralizing sub-
group of X
self normalizing sub-
group of X

(X)

section

factor

chief factor

the group of 2 by 2 matrices of determinant
one with coefficients in GF(p), the field of
p elements.
an elementary abelian p-group, or a non
abelian p-group whose center, commutator
subgroup and Frattini subgroup coincide and
are elementary.
a non abelian special p-group whose center
is of order p.
a subgroup 21 of X such that SI = C(2I). Notice
that self centralizing subgroups are abelian.
a subgroup 21 of I such that 21 = JV(2i).

the set of self centralizing normal subgroups
of X.
{21121 e £«t?^r (X), m(«) ^ m}.
the set of subgroups of X which 21 normalizes
and which intersect 21 in the identity only.
In case there is no danger of confusion, we
set 1̂ (21) = M(2t). If M(H) contains only the
identity subgroup, we say that M(2I) is trivial,
the 7r-subgroups in H(2I).
if £> and 5? are subgroups of the group X,
and § < 58, then S/£> is called a section,
if £> and $ are normal subgroups of X and
§ S « , then ffl/£ is called a factor of X.
if $ /§ is a factor of X and a minimal normal
subgroup of X/£>, it is called a chief factor
of X.

If £>/5? and 8/3K are sections of X, and if each coset of 5Hn £> has
a non empty intersection with precisely one coset of 3Ji in 2 and each
coset of 3Ji in 8 has a non empty intersection with precisely one coset
of 5? in £>, then £>/5? and 8/9K are incident sections.

If &/5J is a section of X and 8 is a subgroup of X which contains
at least one element from each coset of 5? in £>, we say that 8 covers
&/S?. We say that 8 dominates the subgroup 58 provided 8 covers the
section ^(fflj/C^A). The idea to consider such objects stems from [17].

If g = §/st is a factor of X, we let C^g) denote the kernel of
the homomorphism of X into Aut g induced by conjugation. Similarly,
we say that X in X centralizes % (or acts trivially on %) provided

We say that X has a Sylow series if X possesses a unique SPl,...,Pl-
subgroup for each i = 1, • • •, n, where n{Ti) = {plt • • -, pn}. The ordered
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n-tuple (pl9 • • - ,#„) is called the complexion of the series [18].
A set of pairwise permutable Sylow subgroups of X, one for each

prime dividing |X| , is called a Sylow system for X. This definition
differs only superficially from t h a t given in [16].

P . Hall [18] introduced and studied the following propositions:

EK 3£ contains a t least one Sx-subgroup.
CK X satisfies En, and any two S^-subgroups of X are conjugate

in X.
Dx X satisfies CX9 and any 7r-subgroup of X is contained in a

S^-subgroup of X.
E* X contains a nilpotent S^-subgroup.

In [19], P. Hall studied the stability group 21 of the chain ^ : X =
l o i ^ i • • • 2 Xn = 1, that is, the group of all automorphisms a of
X such that (X^X)" = X<X for all X in X^ and each i = 1, • • •, n. If
33 and X are subgroups of a larger group, and if S3 normalizes X, we
say that 33 stabilizes & provided 33/ CQ(X) is a subgroup of the stability
group of ^ .

By a character of X we always mean a complex character of X
unless this is precluded by the context. A linear character is a
character of degree one. An integral linear combination of characters
is a linear combination of characters whose coefficients are rational
integers. Such an integral linear combination is called a generalized
character. If S^ is a collection of generalized characters of a group,
let ^(S/*) ( ^ ( ^ ) ) be respectively the set of all integral (complex)
linear combinations of elements in *$". Let ^ ( ^ ) , ^(.5^) be the
subsets of ^P(£S), <&(Sf) respectively consisting of all elements a with
a(l) = 0.

If a and /3 are complex valued class functions on X, then the
inner product and weight are denoted by

II« Hi = <«,«)«-
The subscript X is dropped in cases where it is clear from the context
which group is involved.

The principal character of X is denoted by l s ; the character of
the regular representation of X is denoted by p^. If a: is a complex
valued class function of a subgroup © of X, then a* denotes the class
function of X induced by a.

The kernel of a character is the kernel of the representation with
the given character.

A generalized character is n-rational if the field of its values is
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linearly disjoint from &n.
A subset 21 of the group X is said to be a trivial intersection set

in X, or a T.I. set in X if and only if for every X in X, either

or

If £> is a normal subgroup of the group X and 0 is a character
of £>, S(#) denotes the inertial group of 0, that is

3(0) = {Xl X e X, 0(X-*HX) = 6(H) for all i?e

Clearly, § C 3(0) for all characters 0 of £>.
A group X is a Frobenius group with Frobenius kernel £> if and

only if 6 is a proper normal subgroup of X which contains the centralizer
of every element in §*. It is well known (see 3.16) that the Frobe-
nius kernel § of X is also characterized by the conditions

2. $(0) = £> for every non principal irreducible character 0 of £>.
We say that X is of Frobenius type if and only if the following

conditions are satisfied:
( i ) If § is the maximal normal nilpotent S-subgroup of X, then

(ii) If @ is a complement for £> in X, then @ contains a normal
abelian subgroup 21 such that $(0) fl @ C 21 for every non principal
irreducible character 0 of §.

(iii) G? contains a subgroup @0 of the same exponent as @ such
that (£<,£> is a Frobenius group with Frobenius kernel £>.

In case X is of Frobenius type, the maximal normal nilpotent
S-subgroup of X will be called the Frobenius kernel of X.

A group @ is a three step group if and only if
( i ) @ = @'Q*f where Q* is a cyclic S-subgroup of @, £>* ^ 1,

and & n Q* = 1.
(ii) © contains a non cyclic normal S-subgroup § such that

@" E £>C(£) S @'f $C($) is nilpotent and & is the maximal normal
nilpotent S-subgroup of @.

(iii) § contains a cyclic subgroup &* =£ 1 such that for Q in

3. Quoted Results

For convenience we single out various published results which are
of use.
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3.1. ([19] Lemma 1, Three subgroups lemma). If £>, 5?, 8 are
subgroups of the group X and

[§, ®, 8] = [$, «, £] = 1, then [8, $f ft] = 1 .

3.2. [20] F(X) = n CS(S)), the intersection being taken over all
chief factors S> o/ the group X.

3.3. [20] / / X ts soZmftZe, tfen C(F(X)) = Z(F(X)).

3.4. Lei p be an odd prime and X a p-group. If every normal
abelian subgroup of X is cyclic, then X is cyclic. If every normal
abelian subgroup of X is generated by two elements, then X is isomorphic
to one of the following groups:

( i ) a central product of a cyclic group and the non abelian group
of order p* and exponent p.

(ii) a metacyclic group.
(iii) gp <A, B | [B, A] = C, [C, A] = B»-1, C = [B, C] = A- = B>* =

1, n > 1, (r, p) = 1>.
(iv) a 3-group.

A proof of this result, together with a complete determination of the
relevant 3-groups, can be found in the interesting papers [1] and [2].

3.5. [20] If X is a non abelian p-group, p is odd, and if every
characteristic abelian subgroup of X is cyclic, then X is a central
product of a cyclic group and an extra special group of exponent p.

3.6. ([22] Hilfssatz 1.5). If a is a p'-automorphism of the p-group
£, p is odd, and a acts trivially on £?i(X), then a — 1.

3.7. [20] If SI and 95 are subgroups of a larger group, then
[21, 93] < <2I, 93>.

3.8. If the Sp-subgroup %$ of the group X is metacyclic, and if
p is odd, then s# D OP(X) is abelian.

This result is a consequence of ([23] Satz 1.5) and the well known
fact that subgroups of metacyclic groups are metacyclic.

3.9. [28] If 21 is a normal abelian subgroup of the nilpotent
yroup X and 21 is not a proper subgroup of any normal abelian subgroup
)f X, then 21 is self centralizing.

3.10. If <$ is a Sp-subgroup of the group X, and
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then C(2t) = 21 x 3) where ® is a p'-group. The proof of Lemma 5.7
in [27] is valid for all finite groups, and yields the preceding statement.

3.11. Let 21 and 33 be subgroups of a group X, where 21 is a
p-group and S3 is a pf-group normalized by 21. Suppose 2IX is a subgroup
of 2t which does not centralize S3. / / 33! is a subgroup of S3 of least
order subject to being normalized by 21 and not centralized by 2Ilf then
S3! is a special q-group for some prime q, 2^ acts trivially on D^)
and 2t acts irreducibly on S31/Z7(S31). This statement is a paraphrase
of Theorem C of Hall and Higman [21].

3.12. ([3] Lemma 1). Let A be a nonsingular matrix and let a
be a permutation of the elements of A. Suppose that o(A) can be
derived from A by permuting the columns of A and a(A) can also be
derived from A by permuting the rows of A. Then the number of
rows left fixed by a is equal to the number of columns left fixed by a.

The next two results follow from applying 3.12 to the character
table of a group X.

3.13 (Burnside). A group of odd order has no non principal real
valued irreducible characters.

3.14. If a is an automorphism of the group X then the number
of irreducible characters fixed by a is equal to the number of conjugate
classes fixed by a.

3.15. ([8] Lemma 2.1). Let ^ be a p-group for some prime p
and let 0 be an irreducible character of ty with 0(1) > 1. Then
2di(l)2 = 0 (mod 0(1)2), where the summation ranges over all irreducible
characters 0{ of ty with 0,(1) < 0(1).

Let 8 be a Frobenius group with Frobenius kernel §. Then

3.16. (i). ([7], [26]). § is a nilpotent S-subgroup of 8 and 8
§@ for some subgroup @ of 8 with $ n B = 1.

3.16. (ii). ([4] p. 334). / / p, q are primes then every subgroup
of © of order pq is cyclic. If p =£ 2 then a Sp-subgroup of Gf is cyclic.

3.16. (iii). ([7] Lemma 2.1 or [10] Lemma 2.1). A non principal
irreducible character of § induces an irreducible character of 8.
Furthermore every irreducible character of 8 which does not have
§' in its kernel is induced by a character of £>. Thus in particular
any complex representation of 8, which does not have £> in its kernel,
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contains the regular representation of @ as a constituent when
restricted to @.

We will often use the fact that the last sentence of 3.16 (iii) is
valid if "complex representation of 8" is replaced by "representation
of S over a field of characteristic prime to |8|".

4. Elementary Results

LEMMA 4.1. Let X be a group with center 3 <MKJ let X be an
irreducible character of X. Then X{lf ^ | X : 3 |.

Proof. For ZeS9\ MZ) | = Ml). Therefore

LEMMA 4.2. Let a be a generalized character of the group X.
Suppose that R, X are commuting elements of X and the order of R
is a power of a prime r. Let J^~ be an algebraic number field which
contains the | X |th roots of unity and let x be a prime ideal in the
ring of integers of J^~ which divides r. Then

a(RX) = a(X) (mod x) .

Proof. It is clearly sufficient to prove the result for a generalized
character, and thus for every irreducible character, of the abelian
group <J?, Xy. If a is an irreducible character of <2J, X> then a(RX) =
a(R)a(X) and a(R) = 1 (mod x). This implies the required congruence.

LEMMA 4.3. Let $ be a normal subgroup of the group X and let
X be an irreducible character of X which does not contain !Q in its
kernel. If X e X and C(X) n £ = <1>, then X(X) = 0.

Proof. Let f*u f*2, • • • be all the irreducible characters of X/£> = X.
Let Xu X2, • • • be all the remaining irreducible characters of X. If
C(X) n & = <1>, then C(X) is mapped isomorphically into C(X) where
X is the image of X in X. Consequently

|2 = | C(X) I ̂  I C(X) I =

This yields the required result.

Lemma 4.3 is of fundamental importance in this paper.

LEMMA 4.4. Let febe a normal subgroup of the group X. Assume
that if 0 is any nonprindpal irreducible character of § then d* is
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a sum of irreducible characters of X, all of which have the same
degree and occur with the same multiplicity in 0*. For any integer
d let £d be the sum of all the irreducible characters of X of degree d
which do not have £> in their kernel. Then fd = ay*, where a is a
rational number and y is a generalized character of §.

Proof. Let Of, 0*, ••• be all the distinct characters of X which
are induced by non principal irreducible characters of £> and which are
sums of irreducible characters of X of degree d. Suppose that Of =
ailjXij, where Xo- is an irreducible character of X for all values of j .
It is easily seen that Of, Of, ••• form a set of pairwise orthogonal
characters. Hence £d = S^l/a^O*. This proves the lemma.

If § is a normal subgroup of the group X, X e X, and <p is a character
of £>, then q>x is defined by <p*(H) = <p(X~lHX),

LEMMA 4.5. Let !Q be a normal subgroup of the group X and let
0 be an irreducible character of £>. Suppose X contains a normal
subgroup Xo such that 3(0) ^ Xo and such that Xo/£> is abelian. Then
0* is a sum of irreducible characters of X which have the same degree
and occur with the same multiplicity in 0*. This common degree
is a multiple of | X : ft(0) |. / / furthermore £> is a S-subgroup of Xo,
then 0* is a sum of | ft(0): £> | distinct irreducible characters of degree
|X:ft(0) |0(l) .

Proof. Let 0X be the character of 3(0) = ft induced by 0. Let
X be an irreducible Constituent of 0x and let filf fa, ••-,{*„ be all the
irreducible characters of ft/£>. Choose the notation so that Xfc = X
if and only if 1 ^ i g n. Since 0M§ = \ ft : § |0, we get that X^ = aO
for some integer a. Thus,

(4.1) S Xfa = a0x .
i

Hence, every irreducible constituent of aOx is of the form Xptj9 so all
irreducible constituents of 0X have the same degree. The characters
f*i, fa, " - form a group 2Ji which permutes the irreducible constituents
of a0x transitively by multiplication. Hence for every value of j there
are exactly n values of i such that Xfrfti = Xfij. If now \ l f X2, • • •, are
the distinct irreducible characters which are constituents of aOu then
(4.1) implies that aOY = nlx{.

Suppose 21 is a complement to § in $, § being a S-subgroup of $ .
We must show that 0Y is a sum of 1211 distinct irreducible characters
of ft. For any subgroups 5 ,̂ ^ of ft with § £ ^ s S, and any character
<P of $r, let qP denote .the character of ® induced by q>.
a- Suppose $ hds the property that 0 s is a sum of | f i : $ | distinct
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irreducible characters of 5J, where £> Si St £ 3 . Let 5D?a be the multi-
plicative group of linear characters of $ which have £> in their kernel,
and let X$ be an irreducible constituent of 0*. Then \ f t(l) = 0(1) is
prime to | 2 I n S | , and it follows from Lemma 4.2 that \ f t does not
vanish on any element of 21 n ® of prime power order. This in turn
implies that

If $ = $, we are done. Otherwise, let 8 contain 5? as a subgroup
of prime index. It suffices to show that \ § is reducible, or equivalently,
that X| = XA for every L in S. This is immediate, since (0®)L = 0®,
so that \ | = XRfi for some /* in 2Jls. Since 2t is abelian, it follows
that ft = 1, as required.

To complete the proof of the lemma (now that the necessary
properties of $ have been established), it suffices to show that if

0x = bliXi ,

where the Xt are distinct irreducible characters of $, then each A,?0 is
irreducible, and xf° ̂  xf° for X{ =£ Xjm For if this is proved, the normality
of So in X implies the lemma. The definition of $ implies that Xf^ is
a sum of |3Eo: Qf| distinct irreducible characters of $ . Furthermore, Xt

is the only irreducible constituent of xf.% whose restriction to § is not
orthogonal to 6. Thus, if Xf° — Xj°, then X̂  = Xjm Since Xf0 vanishes
outside 3f, a simple computation yields that ||\?°||a = l. Therefore
\?° is irreducible. The proof is complete.

LEMMA 4.6. Let p be an odd prime and let ^ be a normal Sp-
subgroup of the group *#&(£. Assume that Jp@ is a Frobenius group with
Frobenius kernel £>, £>@ is a p'-group and § n 6 = 1.

( i ) If Cy(®) = l, then ©SCIpP).
(ii) / / Cy(E) is cyclic for all elements Ee®*, then \ ® | is a prime

or § S C(^).
(iii) If 1^ C%(§) £ C«p(@), ^en either ty is cyclic or Ĉ (@) is not

cyclic.

Proof. £@ is represented on ?P/D(SP). Suppose that §
By 3.16 (iii) @ has a fixed point on ?}//)($), and thus on ?p. This
proves (i). If | B | is not a prime, let l c S f l c B . Then 3.16 (iii) implies
that @0 has a non-cyclic fixed point set on sp//)(̂ P), and thus on ty.
This proves (ii).

As for (iii), let k be the largest integer such that § has a non
trivial fixed point on Zifc(̂ P)/ZA;_1(̂ P). It follows that £> has a non trivial
fixed point on Zk(^)ID(Zk(^)).^ If Zk(%>) is not cyclic then since §@-is
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completely reducible on Zk(¥>)ID(Zk($)) (i) implies (iii) by 3.16 (iii).
Suppose that Zk(ty) is cyclic. If k ^ 2, then by [10] Lemma 1.4, 5̂ is
cyclic. Since Z2($P) is of class 1 or 2, £?i(Z2($P)) is of exponent p. As
Za(̂ P) is not cyclic neither is Qx(ZJt$))m Thus it may be assumed that
$P = QX(ZJ$)) is non cyclic of exponent p and class at most 2. If ty
is abelian then (iii) follows from (i). If 5̂ is of class 2 then by (i) @
has a fixed point on SP/̂ P' and on 5̂'. As ty has exponent p this implies
that C«p(@) is not cyclic as required.

5. Numerical Results

In this section we state some elementary number theoretical results
and some inequalities. The inequalities can all be proved by the methods
of elementary calculus and their proof is left to the reader.

LEMMA 5.1. If p, q are primes and

p = 1 (mod q) , q* = 1 (mod p)

then p = 1 + q + q2.

Proof. Let p = 1 + nq. Since p > q,q ^ l(mod p). Hence

1 + q + q2 = mp .

Reading (mod q) yields m = 1 + rq. Therefore

l + q + q2 = l + (r + n)q + rnq2 .

If r =£ 0 then the right hand side of the previous equation is strictly
larger than the left hand side. Thus r = 0 as required.

The first statement of the following lemma is proved in [5]. The
second can be proved in a similar manner.

LEMMA 5.2. Let p, q be odd primes and let n ^ 1.
(i) If qm divides (pn - 1) (p*-1 - 1) • • • (p - 1) then qm < pn.

(ii) / / qm divides (p2n — 1) (p^(""1} — 1) • • • (p2 — 1) then qn <

If x ^ 5, then

(5.1) 3*-2 > x2,

(5.2) 5*"1 > 80a ,

(5.3) 3*a > 20(2a2 + 1) .

If x ^ 7, then

(5.4) 3*"a > 2a2,
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(5.5) 3* - 3 > 28a;2,

(5.6) T > 4a;2-3" + 1 .

(5.7) 5" > 4*23X + 1 for x ^ 13 .

(5.8) (** - 1) - (x - 1)2/ - (a? ~ 1)3 > 0 for x, y ^ 3 .

4

(5.9) xv - 1 > Ay2 for * ^ 3, y ^ 5, or x ^ 5, y ^ 3 .

(5.10) a;""2 > y2 for x ^ 3, 1/ ^ 5 or x ^ 10, y ^ 3 .
(5.11) V - \ > xv -1 f o r ^ > ^ 3

2/ — 1 a; — 1

(5.12) y2 (yX"1 ~ 1 ) > a;'(a?""1 ~ X) for x > y ^ 3 .
2/ — 1 a; — 1





CHAPTER II

6. Preliminary Lemmas of Lie Type

Hypothesis 6.1.
( i ) p is a prime, ^ is a normal Sp-subgroup of tyU, and U is

a non identity cyclic p'-group.
(ii) CUCP) = 1.
(iii) $P' is elementary abelian and P̂' S Z($).
(iv) \W\ is odd.

Let U = <tf>, |U| = u, and |5(S: D(SP)| = p \ Let ^ be the Lie ring
associated to *P ([12] p. 328). Then Sf= -Sf*© J2f where JSf* and
-Sf correspond to W and 5p' respectively. Let jgf = Jg? 7p_2f *. For
i = 1,2, let 17* be the linear transformation induced by U on -£?.

LEMMA 6.1. Assume that Hypothesis 6.1 is satisfied. Let slf • • •,
sn 6e £/&e characteristic roots of Ulm Then the characteristic roots of
U2 are found among the elements £<£,- with 1 ^ i < j ^ n.

Proof. Suppose the field is extended so as to include elf • • •, en.
Since U is a p'-group, it is possible to find a basis xu • • •, xn of -Sf
such that XiUx = etxi9 X ̂ i g w . Therefore, xJI^XiUx = 6^0^-0?/. As
U induces an automorphism of j£ff this yields that

Since the vectors XrXj with i < j span .Sf, the lemma follows.

By using a method which differs from that used below, M. Hall
proved a variant of Lemma 6.2. We are indebted to him for showing
us his proof.

LEMMA 6.2. Assume that Hypothesis 6.1 is satisfied, and that
Ui acts irreducibly on -Sf. Assume further that n = q is an odd
prime and that Ux and U2 have the same characteristic polynomial.
Then q > 3 and

u < 3«/a

Proof. Let epi be the characteristic roots of Ul9 0 ^ i < n. By
Lemma 6.1 there exist integers i, j , k such that e»*e»y = £**. Raising
this equation to a suitable power yields the existence of integers a
and b with 0 ^ a < b < q such that s"a+p6-1 = 1. By Hypothesis 6.1 (ii),
the preceding equality implies pa + pb — 1 = 0(mod u). Since UX acts
irreducibly, we also have pq — 1 = 0(mod u). Since U is a p'-group,

789
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ab =£ 0. Consequently,

Pa + Pb - l = 0(mod u),
p9 - 1 = 0(mod u), 0 < a < b < q .

Let d be the resultant of the polynomials / = xa + xb — 1 and g —
xq — 1. Since q is a prime, the two polynomials are relatively prime,
so d is a nonzero integer. Also, by a basic property of resultants,

(6.2) d = hf+kg

for suitable integral polynomials h and k.
Let eg be a primitive gth root of unity over «^, so that we also-

have

ej' + ej* - 1) jGt (spfl + sp6 - 1)
;

= I I {3 + e;(a"6) +

For g = 3, this yields that d3 = (3 - 1 + l + l ) 2 = 42, so that d = ± 4 .
Since it is odd (6.1) and (6.2) imply that u = l. This is not the case,
so q > 3.

Each term on the right hand side of (6.3) is non negative. As.
the geometric mean of non negative numbers is at most the arith-
metic mean, (6.3) implies that

The algebraic trace of a primitive gth root of unity is —1, hence

d21' ̂  3 .

Now (6.1) and (6.2) imply that

u^ \d\ ^&12.

Since 39/2 is irrational, equality cannot hold.

LEMMA 6.3. If ^ is a p-group and W = D($), then Cn(^)/CH

is elementary abelian for all n.

Proof. The assertion follows from the congruence

[Au • • -, An]p = [Au • • . , An.u Ap
n](mod C.+l(SP)) ,

valid for all Al9 • • •, An in ̂ P.

LEMMA 6.4. Suppose that a is a fixed point free p'-automorphism-
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of the p-group 5̂, sp' = D(ty) and A" = Ax (mod sp') for some integer
x independent of A. Then $P is of exponent p.

Proof. Let A°" = A* • A* so that A* is in ?P' for all A in sp.
Then

[Af-Af, • •., Ax
n-At]

^ [A?, • • •, A*n] EE [Alf •. •, A.]-"(mod C.

Since o1 is regular on ?Pf a is also regular on each CJCn+1. As the
order of a divides p — 1 the above congruences now imply that clOP) g
p — 1 and so ?p is a regular p-group. If £T($P) =£ 1, then the mapping
A >AP induces a non zero linear map of P̂/Z>OP) to
for suitable n. Namely, choose n so that eT(^) S ^(^P) but tf
CW+1(̂ P), and use the regularity of Ŝ to guarantee linearity. Notice
that n ^ 2, since by hypothesis ff2(^P) C ̂ P'. We find that x = a;" (mod p),
and so xn~l = l(modp) and a has a fixed point on Cn-JCn, contrary to
assumption. Hence, V1^) = 1.

7* Preliminary Lemmas of Hall*Higman Type

Theorem B of Hall and Higman [21] is used frequently and will
be referred to as (B).

LEMMA 7.1. If H is a p-solvable linear group of odd order over
a field of characteristic p, then OP{H) contains every element whose
minimal polynomial is (x — I)2.

Proof. Let 3^ be the space on which X acts. The hypotheses
of the lemma, together with (B), guarantee that either Op(£) ̂ 1 or
3E contains no element whose minimal polynomial is (x — I)2.

Let X be an element of X with minimal polynomial (a; — I)2. Then
OP(X) ^ 1, and the subspace % which is element wise fixed by OP(S)
is proper and is X-invariant. Since OP{H) is a p-group, ^ =£ 0. Let

So = ker (X > Aut %) , ft, = ker (X > Aut ( 3*7 3^)) .

By induction on dim 3*", XeOp(H mod$<), i = 0,1. Since

OP(X mod So) 0 OP(X mod ftj

is a p-group, the lemma follows.

LEMMA 7.2. Let H be a p-solvable group of odd order, and SI a
p-subgroup of X. Any one of the following conditions guarantees
that 21S Op/,P(X):
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1. 21 is abelian and | X : iV(2l)| is prime to p .
2. p ^ 5 and [ty, 21, 21, 21, 21] = 1 for some Sp~subgroup *p of X.
3. PP, 21, 21] = 1 for some Sp-subgroup ^ of X.
4. 21 acts trivially on the factor OPtP Am)IOp,,p(Tll).

Proof. Conditions 1, 2, or 3 imply that each element of 21 has a
minimal polynomial dividing (x — I)*"1 on Op'>P(X)/2), where 2) =
D(Op,,p(l)mod Op,{-$)). Thus (B) and the oddness of |X| yield 1, 2, and
3. Lemma 1.2.3 of [21] implies 4.

LEMMA 7.3. If X is p-solvable, and $ is a Sp-subgroup of X,
then MOP) is a lattice whose maximal element is Or("$).

Proof. Since 0P,(X) < X and $ n OP,{H) = 1, Or(JL) is in
Thus it suffices to show that if fteM($), then ftS0,,(I). Since
is a group of order |5P|-|ft| and P̂ is a Sp-subgroup of X, £> is a p'-
group, as is 4>0p>(X). In proving the lemma, we can therefore assume
that OP/(X) = 1, and try to show that £> = 1. In this case, § is faith-
fully represented as automorphisms of OP(X), by Lemma 1.2.3 of [21].
Since Op(X)g^, we see that [£>, Op(X)]S£n «Pf and & = 1 follows.

LEMMA 7.4. Suppose ^ is a SP~subgroup of X and 21
M(2I) contains only pf-groups. If in addition, X is p-solvable,

then M(2I) is a lattice whose maximal element is OP,(H).

Proof. Suppose 21 normalizes © and 21 n § = <1>. Let 21* be a
Sp-subgroup of 2I£> containing 21. By Sylow's theorem, SR = 21* n &
is a Sp-subgroup of £>. It is clearly normalized by 21, and 21 fl P̂i =<1>.
If p̂x zfr <1>; a basic property of ^-groups implies that 21 centralizes
some non identity element of P̂x, contrary to 3.10. Thus, ^ = <1>
and § is a p'-group. Hence we can assume that X is p-solvable and
that 0p,(X) = <1> and try to show that § = <1>.

Let Xx = Op(X)§2I. Then OP(X)2I is a Sp-subgroup of Xlf and
a e ^ j f . ^ - ( O f ( I ) a ) . If XxcX, then by induction §<^OP{^ and so
[Op(X), &] ̂ 0P(X) n Op'(X0 = 1 and £ = 1. We can suppose that Xx =
X.

If 21 centralizes £>, then clearly 21 < X, and so ker (X > Aut 21) =
21 x £ l f by 3.10 where § S &. Hence, & char 21 x & < X, and
& < X, so that §i = l. We suppose that 21 does not centralize £>,
and that § is an elementary g-group on which 21 acts irreducibly.
Let 53 = OP{H)ID(OP(H)) = ^ x 9S2, where ^ = Ca($) and 552 = [53, ©].
Let FeS32 and l e F, so that [X, 2l]g2I. Hence, [X, 21] maps into
3Slf since [[X, 21], ft] S © fl OP(X) = 1. But 532 is X-invariant, so [X, 21]
maps into ^ D 532 = 1. Thus, 21 g ker (X > Aut 532), and so [21, §]
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centralizes 9S2. As 21 acts irreducibly on ft, we have § = [£, 21], so
SS2 = 1. Thus, £> centralizes 55 and so centralizes OP(X), so § = 1, as
required.

LEMMA 7.5. Suppose £> and £>! are Sp,g-subgroups of the solvable
group @. 7/ 23 S O,(&) n ft, tfcen S3 S O,(ft).

Proof. We proceed by induction on |@|. We can suppose that
@ has no non identity normal subgroup of order prime to pq. Suppose
that @ possesses a non identity normal p-subgroup 3« Then

Let @ = 6/3, 8 = S33/3, ft = ft/3, & = &/3. By induction, 8 a 0,(5),
so 33 S Op (§ mod 3) = 0P(§), and we are done. Hence, we can assume
that OP(@) = <1>. In this case, F(@) is a g-group, and F(@)SftL
By hypothesis, 8aO,(ftO, and so S3 centralizes F(@). By 3.3, we
see that S3 = <1>, so S3S0P(&) as desired.

The next two lemmas deal with a Sp-subgroup ?̂ of the ^-solvable
group 3E and with the set

Sf = {ft|l. § is a subgroup of I .

2. 3 ? S £ .
3. The p-length of § is at most two .
4. |ft| is not divisible by three distinct primes .}

LEMMA 7.6. I =

Proo/. Let £ = < f t | § € ^ > . It suffices to show that |3Ex|f = | I | f

for every prime q. This is clear if q — p, so suppose q ^ p. Since
X is p-solvable, I satisfies £> g, so we can suppose that X is a p, g-
group. By induction, we can suppose that 3EX contains every proper
subgroup of I which contains $p. Since $POg(£)e^, we see that
0,(1) a £ . If JV(SP n Og P(X)) c X, then iV(^ n 0,(1)) a £ . Since X =
0ff(X)-JV(?Pn0gp(X))f we have X = X1B Thus, we can assume that
0P(X) = % n Og p(X). Since ?0,if(X) e ^ , we see that 0,lf(X) aSx. If
¥0p f(X) = X, we are done, so suppose not. Then iV0P n OP), P(X)) c X,
so that Xj contains N($ n 0Pj7 P(X))0P ,(X) = X, as required.

LEMMA 7.7. Suppose 501,5ft are subgroups of X which contain ty
such that § = (ft n SW)(ft n 5R) /or aZI ft in ^ T/̂ en X = 2K5R.

Proof. It suffices to show that 13K5R |g ^ | X \q for every prime g.
This is clear if q = p, so suppose q =£ p. Let Dx be a Sg-subgroup of
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3JI n 31 permutable with $P, which exists by Ep>q in 3JI n 31. Since X
satisfies Dp g, there is a Sg-subgroup Q of I which contains Qx and
is permutable with sp, Set 9t = 5pQ. We next show that

91 = (SR n 2Ji)(5R n 31) .

If 5 R G ^ this is the case by hypothesis, so we can suppose the p-
length of 5R is at least 3. Let SR = sp n O,ifi,(R), and 8 = J V ^ ) .
Then 8 is a proper subgroup of SR so by induction on |X|, we have
8 = (8 n 2Ji)(8 fl 31). Let ft = $-OP,g ,(3t) = WP,,(5R). Since ft is in
*5? we have S = (Sfl 3tt)(ft n sJi). Furthermore, by Sylow's theorem,
5R = ft8. LetiJeSR. Then R = KL with JTeft, Le2. Then if = PJTlf

with P in sp, 1£ in Op,.(3*). Also, L = M2ST, ilf in 8 n 3Jl9 N in 8 n %
and so i? = KL = PKXMN = PMK»N. Since Kx* e O,lf(«)f we have
# * = JfiiVi with Ml in 5K n ft, 2Vi in 91 n ft. Hence, i2 = PMM^N.N
with Pi lf^ in 5K n SW, iViiNT in 31 n » .

Since SR = (» n 5K)(5R fl 91), we have

By construction, | SR n 9R n 91 |ff = | SK n 91 |f. Furthermore, 13t n 3R \q ^
|2»|f and | » n 9!|f ^ |9l|ff so

completing the proof.

LEMMA 7.8. Let X be a finite group and § a p'-subgroup of X
which is normalized by the p-subgroup 21 of X. Set % = C^^)).
Suppose 2 is a p-solvable subgroup ofH containing 2I& and § g OP'(8).
Then there is a p-solvable subgroup ft of 2K72(2Ii) which contains

Proof. Let g = OP,,p(8)/OP,(8). Then § does not centralize g.
Let 35 be a subgroup of g which is minimal with respect to being
21§-invariant and not centralized by ©. Then S3 = pB, §] , and [S3, 21J S
!>(»), while [Z)(93), §] = 1. Hence, [»f 2Ilf ft] = [21^ ft, S3] = 1, and so
[&, S3, 2Ii] = 1. Since [£>, S3] = S3, 2tx centralizes S3. Since S3 is a sub-
group of g, we have S3 = 80/Op,(8) for suitable 8o. As Or (8) is a
p'-group and S3 is a p-group, we can find an 2I-invariant p-subgroup
% of 80 incident with S3. Hence, 2lx centralizes %• Set

ft = <a, P̂o, §> s s .

As 8 is p-solvable so is ft. If § S OP,(ft), then
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[%, § ] S 8 f l f l OA®) £ 0P,(8)

and § centralizes 93, contrary to construction. Thus, §gOp /(^), as
required.

LEMMA 7.9. Let fg be a p-solvable subgroup of the finite group
3E, and let ^ be a SP-subgroup of £>. Assume that one of the follow-
ing conditions holds:

(a) [361 is odd.
(b) p ^ 5 .
(c ) p = 3 and a S2-subgroup of £> is abelian.

Let $P0 = Op>,p(iQ) fl ?* and let 5̂* be a p-subgroup of X containing $P.
If ty is a Sp-subgroup of iVx(

s$0), then ty0 contains every element of

Proof. Let 2te.$*£fL^0P*). By (B) and (a), (b), (c), it follows
that 21 n SP = 21 PI % = 2*i, say. If 2IX c 21, then there is a ^-invariant
subgroup S such that Sx c 33 e 21, 133: 2tx | = p. Hence, [%, S3] £ 2^ g
sp0, so 33SJVs0P0)n^P*. Hence, <33, ̂ p> is a p-subgroup of iVsOPo),
so 93S$P. Hence, 33S21 n P̂ = 21̂  which is not the case, so 21 = 2tlf

as required.

8. Miscellaneous Preliminary Lemmas

LEMMA 8.1. If X is a n-group, and ^ is a chain X = £„ 3
#! 2 • • • 3 £B = 1, then the stability group 21 of ^ is a n-group.

Proof. We proceed by induction on n. Let A e 21. By induction,
there is a 7r-number m such that B = Am centralizes 3 .̂ Let XeJL;
then XB = XY with Y in Xlf and by induction, X»T = XYr. It fol-
lows that B1^1 = 1.

LEMMA 8.2. If P̂ is a p-group, then 5̂ possesses a characteristic
subgroup £ such that

( i ) cl (£) ^ 2, and &/Z(£) is elementary.
(ii) ker (Aut $P—^-»Aut(£) is a p-group. (res is tffte homomor-

phism induced by restricting A in Aut P̂ to £.)
(iii) PP,<£]SZ(£) and

Proof. Suppose E can be found to satisfy ( i ) and (iii). Let
5? = ker res. In commutator notation, [5B, (£] = 1, and so [58, E, P̂] = 1.
Since [(£, ? ] S E , we also have [£, P̂, SJ] = 1 and 3.1 implies [$, S, E] =
1, so that [? ,S ]gZ(E) . Thus, $ stabilizes the chain ^ 2 E 3 1 so
is a p-group by Lemma 8.1.
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If now some element of S^f^y(^) is characteristic in sp, then
( i ) and (iii) are satisfied and we are done. Otherwise, let 21 be a
maximal characteristic abelian subgroup of 5̂, and let & be the group
generated by all subgroups 35 of sp such that 21 c 35, | 35: 211 = p,
35 ̂ Z OP mod 21), SgC(2l) . By construction, 2leZ((£), and (£ is seen
to be characteristic. The maximal nature of 21 implies that 21 = Z((£).
Also by construction HP, (£] S 21 = Z(£), so in particular, [©, (£] E Z(£)
and c l ( £ ) ^ 2 . By construction, &/Z(£) is elementary.

We next show that C(£) = Z(E). This statement is of course
equivalent to the statement that C(E) iE . Suppose by way of con-
tradiction that C((£)§££. Let © be a subgroup of C(S) of minimal
order subject to (a) & < s£, and (b) E g E . Since C(£) satisfies (a)
and (b), © exists. By the minimality of @, we see that [̂ p, ©] g £
and />(©) S S. Since © centralizes S, so do [̂ , ©] and /)(©), so we
have [sp, ©] 5 21 and /)(©) £ 21. The minimal nature of © guarantees
that ©/© n E is of order p. Since © n & = © n 21, ©/© n 21 is of
order p, so ©21/21 is of order p. By construction of E, we find ©21S
E, so © £ (E, in conflict with (b). Hence, C(C) = Z(©), and ( i ) and
(iii) are proved.

LEMMA 8.3. Let X be a p-group, p odd, and among all elements
of £*&l4r(£), choose 21 to maximize m(2I). Then Q^

REMARK. The oddness of p is required, as the dihedral group
of order 16 shows.

Proof. We must show that whenever an element of X of order
p centralizes £?i(2I), then the element lies in i2i(2I).

If Xe aQW)) and Xp = 1, let ®(X) = S3, = ^(21), X>, and let
S3,, c S32 c • • • c 93n = <2I, X> be an ascending chain of subgroups, each
of index p in its successor. We wish to show that S3X < 33n. Suppose
S3! < S3m for some m ^ n — 1. Then 33TO is generated by its normal
abelian subgroups S3! and S3m n 21, so S3m is of class at most two, so
is regular. Let ZeS3m, Z of order p. Then Z= XkA, A in 21, k an
integer. Since S3W is regular, X~kZ is of order 1 or p. Hence,
A G ̂ (21), and Z e S3!. Hence, S3X = fi^SSJ char S3W < S3m+1, and S3X < S3,
follows. In particular, X stabilizes the chain 213 J2i(2t) 2 <1>.

It follows that if 3) = QX{C(QM))), then ®' centralizes 21. Since
2le^g^^^(X), ®'^2I. We next show that ® is of exponent p.
Since [®, ®] s 21, we see that [®, ®, ®] G ̂ (21), and so

[®, 3), ®, SB] = 1 ,

and cl(35) ^ 3 . If p ^ 5, then 35 is regular, and being generated by



8. MISCELLANEOUS PRELIMINARY LEMMAS 797

elements of order p, is of exponent p. It remains to treat the case
p = 3, and we must show that the elements of 3) of order at most
3 form a subgroup. Suppose false, and that <X, T> is of minimal
order subject to X3 = Y* = 1, (XY)* =£ 1, X and Y being elements
of 3). Since <F, T x >c<X, Y>, [Y, X] = Y~\ X~lYX is of order
three. Hence, [X, Y] is in ^(21), and so [Y, X] is centralized by
both X and Y. It follows that {XYf = XZY\Y, X]* = 1, so © is of
exponent p in all cases.

If ^(31)c®, let e < I f e s 3 ) l |©: ^(21)1= p. Since ^(21)2
Z(@), (S is abelian. But m(@) = m(2l) + 1 > m(2I), in conflict with
the maximal nature of 21, since Gc is contained in some element of

by 3.9.

LEMMA 8.4. Suppose p is an odd prime and Hi is a p-group.
( i ) / / S^^fl(X) is empty, then every abelian subgroup of X

is generated by two elements.
(ii) / / S^^^K (X) is empty and A is an automorphism of X of

prime order q, p^frq, then q divides p2 — 1.

Proof. ( i ) Suppose 21 is chosen in accordance with Lemma 8.3.
Suppose also that X contains an elementary subgroup @ of order p3.
Let ©x = Cg(/31(2I)), so that ^ is of order p2 at least. But by Lemma
8.3, © i S f l ^ ) , a group of order at most p2, and so (S± = ^(21). But
now Lemma 8.3 is violated since Gc centralizes BlB

(ii) Among the A-invariant subgroups of X on which A acts non
trivially, let § be minimal. By 3.11, § is a special p-group. Since
p is odd, § is regular, so 3.6 implies that § is of exponent p. By
the first part of this lemma, § contains no elementary subgroup of
order p3. It follows readily that ra(£>) ̂  2, and (ii) follows from the
well known fact that q divides |Aut

LEMMA 8.5. If % is a group of odd order, p is the smallest
prime in TZ(H), and if in addition X contains no elementary subgroup
of order p3, then X has a normal p-complement.

Proof. Let ty be a SP-subgroup of X. By hypothesis, if § is a
subgroup of P̂, then S^f^Vii^) is empty. Application of Lemma 8.4
(ii) shows that N^)jC^) is a p-group for every subgroup § of Ŝ.
We apply Theorem 14. 4. 7 in [12] to complete the proof.

Application of Lemma 8.5 to a simple group © of odd order im-
plies that if p is the smallest prime in 7r(@), then © contains an
elementary subgroup of order p3. In particular, if 3e7r(®), then ©
contains an elementary subgroup of order 27.
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LEMMA 8.6. Let 9?lf 9J2, 9t3 be subgroups of a group X and suppose
that for every permutation a of {1,2,3},

Then %% is a subgroup of £.

Proof. W i ( W ) W ) S SRM i % W S W , as re-
quired.

LEMMA 8.7. If W is a pf-group of automorphisms of the p-group
P̂, if 21 has no fixed points on ty/Dity), and 21 acts trivially on

then U(!p) £ Z(?P).

Proof. In commutator notation, we are assuming [$P, 21] =
and [21, J9(*P)] = 1. Hence, [21, /)($), *P] = 1. Since [/>($), *P]
we also have LD(̂ P), ̂ P, 21] = 1. By the three subgroups lemma, we
have [*P, 21, /?(*P)] = 1. Since HP, 21] = «p, the lemma follows.

LEMMA 8.8. Suppose Q is a q-group, q is odd, A is an auto-
morphism of Q of prime order p, p = 1 (mod q), and £} contains a
subgroup Do of index q such that ^^L^(Qo) is empty. Then p =
1 + q + q2 and Q is elementary of order q*.

Proof. Since p = 1 (mod g') and q is odd, p does not divide q2 — 1.
Since fl(O)SQ0, Lemma 8.4 (ii) implies that A acts trivially on /)(£}).

Suppose that A has a non trivial fixed point on O/Z)(D). We can
then find an A-invariant subgroup 2Ji of index g in Q such that A
acts trivially on Q/2R. In this case, A does not act trivially on 2Ji,
and so 3Ji =£ d0, and 5UI fl Qo is of index q in 2Jt. By induction, p =
1 + q + q2 and 3Ji is elementary of order q3. Since A acts trivially
on £l/2Ji, it follows that Q is abelian of order g4 If ZX were elemen-
tary, O0 would not exist. But if Q were not elementary, then A
would have a fixed point on J2i(G) = 9JI, which is not possible. Hence
A has no fixed points on O//)(O), so by Lemma 8.7, D(&) S Z(O).

Next, suppose that A does not act irreducibly on Q/D(Q). Let
5R/JD(Q) be an irreducible constituent of A on Q/Z)(Q). By induction,
5ft is of order q\ and p = 1 + q + q2. Since Z)(Q) c 5R, D(O) is a
proper A-invariant subgroup of Sfl. The only possibility is Z)(O) = 1,
and |Q| = q* follows from the existence of £}0.

If |JD| = q\ then p = 1 + q + q2 follows from Lemma 5.1. Thus,
we can suppose that | O | > q\ and that A acts irreducibly on D/Z)(O),
and try to derive a contradiction. We see that O must be non
abelian. This implies that /)(£>) = Z(Q). Let |O : Z)(Q)| = g \ Since
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p = 1 (mod q), and qn = 1 (mod p), n^3. Since Z>(£>) = Z(Q), n is
even, O/Z(Q) possessing a non singular skew-symmetric inner product
over integers mod q which admits A. Namely, let E be a subgroup
of order q contained in Q' and let Ex be a complement for £ in Q \
This complement exists since O' is elementary. Then Z^mod^) is
A-invariant, proper, and contains /)(£}). Since A acts irreducibly on
n/Z)(Q), we must have D(d) = Z(Omod Si), so a non singular skew-
symmetric inner product is available. Now D is regular, since cl(Q) =
2, and g is odd, so 1^(0)1 = 1 0 : ^ ( ^ ) 1 , by [14]. Since cl(O) = 2,

is of exponent q. Since

we see that | Q^fCi) | ^ q\ Since Qo exists, ^(Q) is non abelian, of
order exactly g\ since otherwise £}0 n J2i(O) would contain an elemen-
tary subgroup of order g3. It follows readily that A centralizes
and so centralizes O, by 3.6. This is the desired contradiction.

LEMMA 8.9. If ty is a p-group, if ^^L^(^5) is non empty and
21 is a normal abelian subgroup of Ŝ of type {p, p), then 21 is con-
tained in some element of

Proof. Let @ be a normal elementary subgroup of *$ of order p*,
and let ^ = C@(2I). Then ©x < *P, and <2l, <£> = g is abelian. If
I SI = P2i then 21 = @! = g c @, and we are done, since @ is contained
in an element of <9*&L4^(ty). If | g | ^ p3, then again we are done,
since g is contained in an element of

If X and 2) are groups, we say that ?) is involved in X provided
some section of X is isomorphic to 2) [18].

LEMMA 8.10. Let ty be a Sp-subgroup of the group X. Suppose that
Z(̂ P) is cyclic and that for each subgroup 21 in 5̂ of order p which
does not lie in Z(^5), there is an element X = X(&) of 5̂ which
normalizes but does not centralize <2I, 0i(Z($))}. Then either SL(2, p)
is involved in X or J2i(Z($P)) is weakly closed in Sp.

Proof. Let © = fi1(Z(^P)). Suppose © = ®* is a conjugate of ®
contained in spt but that @ =£ ®. Let ® = <i)>, @ = <.&>. By hypo-
thesis, we can find an element X = X(G?) in 5̂ such that X normalizes

, Z>> = 55, and with respect to the basis (E, D) has the matrix
J). Enlarge g to a SP-subgroup 5̂* of C2(@). Since @ = SP,

f g C j ( E ) , so 5̂* is a SP-subgroup of X, and g f i W ) . Since Z($*)
is cyclic by hypothesis, we have Gr = ,01(Z(^*)). By hypothesis, there
is an element Y= F(S5) in 5̂* which normalizes g a nd with respect
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to the basis (E, D) has the matrix Q J). Now (J J) and Q )
generate SL(2, p) [6, Sections 262 and 263], so SL(2, p) is involved in
^(3 )* as desired.

LEMMA 8.11. If % is a psubgroup and S3 is a q-subgroup of £,
p =£ g, and 21 normalizes S3 Jfcew [35, 21] = [93, 21, 21].

Proof. By 3.7, [21, SB] < 2133. Since 2lS3/[2l, S3] is nilpotent, we
can suppose that [21, S3] is elementary. With this reduction, [S3,21,21] <
2IS3, and we can assume that [S3, 21, 21] = 1. In this case, 21 stabilizes
the chain S3 2 [S3, 21] 2 1 , so [S3, 21] = 1 follows from Lemma 8.1 and

LEMMA 8.12. Let p be an odd prime, and G? an elementary sub-
group of the p-group $p. Suppose A is a p'-automorphism of p̂ which
centralizes fi^C^®)). Then A — 1.

Proof. Since @ £ £i(C^(@)), A centralizes ©. Since @ is A-invari-
ant, so is C (̂@). By 3.6 A centralizes C (̂@), so if Gf S Z(?$), we are done.

If C (̂(£) c $, then Cy(®)B($) c % and by induction A centralizes
) Now [*P, ©] g /?($) and so [*P, @, <A>] = 1. Also, [@, <A>] = 1,

so that [©, <A>, ?P] = 1. By the three subgroups lemma, we have
[<A>, «pf @] = 1, so that [̂ P, <A>] E C¥(C)f and A stabilizes the chain
? ( e ) D l . It follows from Lemma 8.1 that A = 1.

LEMMA 8.13. Suppose ^ is a Sp-subgroup of the solvable group
@, ^g^^(^P) ts empty and © is o/ odd order. Then ©' centralizes
every chief p-factor of @.

Proof. We assume without loss of generality that (M©) = 1.
We first show that $P < @. Let § = OP(@), and let £ be a subgroup
of £> chosen in accordance with Lemma 8.2. Let SB = fi^S). Since
p is odd and cl(E) ^ 2 , SB is of exponent p.

Since Op,(@) = 1, Lemma 8.2 implies that ker (@ • Aut E) is a
p-group. By 3.6, it now follows that ker (@ —̂ -> Aut SB) is a p-group.
Since $P has no elementary subgroup of order p\ neither does SB, and
so | SB: Z7(3B) | ^ p2. Hence no p-element of © has a minimal poly-
nomial (a - l)p on 3B/Z?(SB). NOW (B) implies that ^P/kera < @/kera.
and so 5̂ < @, since ker a £ p̂.

Since $P < @f the lemma is equivalent to the assertion that if S
is a Sp/-subgroup of @, then £' = 1. If S' =̂ 1, we can suppose that
8' centralizes every proper subgroup of P̂ which is normal in ©. Since
8 is completely reducible on $P/Z)(̂ P), we can suppose that [̂ P, 8'] = sp
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and [Z)(*P), 8'] = 1. By Lemma 8.7 we have Z)(5P)gZ($) and so
Qffi) = 58 is of exponent p and class at most 2. Since 5̂ has no
elementary subgroup of order p\ neither does 58. If 5? is of order p,
2' centralizes 5? and so centralizes sp by 3.6, thus 2' = 1. Otherwise,
| $ : Z?(5J) | = p* and 2 is faithfully represented as automorphisms of
&ID(St). Since |2 | is odd, 2' = 1.

LEMMA 8.14. If & is a solvable group of odd order, and
S^^i4^(^) is empty for every Sp-subgroup $ o / S and every prime
p, then @' is nilpotent.

Proof. By the preceding lemma, ©' centralizes every chief factor
of &. By 3.2, &£F(&), a nilpotent group.

LEMMA 8.15. Let @ be a solvable group of odd order and suppose
that @ does not contain an elementary subgroup of order p3 for any
prime p. Let ^ be a Sp-subgroup of @ and let £ be any character-
istic subgroup of ty. Then E n ?' < @.

Proof. We can suppose that £ S 3$', since E f l ? ' char sp. By
Lemma 8.14 F(@) normalizes £. Since F(@)̂ P < @, we have @ =
F(@)JV(?P). The lemma follows.

The next two lemmas involve a non abelian p-group sp with the
following properties:

(1 ) p is odd.
(2) $P contains a subgroup P̂o of order p such that

where SR is cyclic.
Also, 21 is a p'-group of automorphisms of 5̂ of odd order.

LEMMA 8.16. With the preceding notation,
( i ) 21 is abelian.
(ii) No element of 2lf centralizes Qi(C($0)).
(iii) If 21 is cyclic, then either | S | divides p l*or

is empty.

Proof, (ii) is an immediate consequence of Lemma 8.12.

Let S3 be a subgroup of $P chosen in accordance with Lemma 8.2,
and let SB = O^fB) so that 21 is faithfully represented on 2B. If $ o g
SB, then $P03B is of maximal class, so that with 3B0 = SB, SBi+1 = [SB,, «P],
we have |SB,: S£i+1| = p, i = 0,1, • • -, n - 1, |SB| = pn, and both ( i )
and (iii) follow. If $P0S3B, then m(SB) = 2. Since [SB, $] S Z(SB),
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it follows that <$P0, Z(2B)> < «p. By Lemma 8.9, S^^^K^) is empty.
The lemma follows readily from 3.4.

LEMMA 8.17. In the preceding notation, assume in addition that
| S | = 9 is a prime, that q does not divide p — 1, that ?$ = [$,21]
and that CJSl) is cyclic. Then |?P| =p\

Proof. Since q\p-\, 21 centralizes Z(?P)f and so Z($P)E5p\
Since Cy($l) is cyclic, fii(Z20P)) is not of type (pf p). Hence, % S
i21(Za(̂ ?)). Since every automorphism of Qx(ZJi$)) which is the identity
on QiiZjfflMQiiZffl)) is inner, it follows that ty = QX(Z%<$)) • 3)f where
S) = C^fl^Z^sp))). Since SR is cyclic, so is ®, and so S) S
by virtue of 5̂ = [??, 21] and g \ p - 1.



CHAPTER III

9. Tamely Imbedded Subsets of a Group

The character ring of a group has a metric structure which is
derived from the inner product. Let 8 be a subgroup of the group
3E. The purpose of this chapter is to state conditions on 8 and X which
ensure the existence of an isometry z that maps suitable subsets of
the character ring of 8 into the character ring of 3£ and has certain
additional properties. If a is in the character ring of 8 and aT is
defined then these additional properties will yield information con-
cerning aT(L) for some elements L of 8. Once the existence of z is
established it will enable us to derive information about certain
generalized characters of X provided we know something about the
character ring of 8. In this way it is possible to get global infor-
mation about £ from local information about 8.

There are two stages in establishing the existence of r. First we
will require that 8 is in some sense "nicely" imbedded in 36. When
this requirement is fulfilled it is possible to define aT for certain
generalized characters a: of 8 with a(l) = 0. In this situation aT is
explicitly defined in terms of induced characters of various subgroups
of 3£. Secondly it is necessary that the character ring of 8 have
certain special properties. These properties make it possible to extend
the definition of z to a wider domain. In particular it is then possible
to define aT for some generalized characters a of 8 with a(l) =£ 0.
The precise conditions that the character ring of 8 needs to satisfy
will be stated later. In this section we are concerned with the
imbedding of 8 in BE. The following definition is appropriate.

DEFINITION 9.1. Let 8 be a subset of the group BE such that

(9.1) < l>S8s iV(8 ) = 8 .

Let 80 be the set of elements L in 8 such that C(L)S8, and let
® = 8* - So.

We say that 8 is tamely imbedded in X if the following conditions
are satisfied:

( i ) If two elements of 8 are conjugate in BE, they are conjugate
in S.

(ii) If ® is non empty, then there are non identity subgroups
©it • • > £>» of BE, n ^ 1, with the following properties:

803
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(a)
(b) & is a S-subgroup of
(c) % = &(8 n %) and & n 8 = 1;
(d) (| & |, | CS(L) |) = 1 for L e 8';
(e) For 1 ^ i ^ n, define

= I U
Then $? is a non empty T. I. set in X and %

(iii) If Z/oe2D, then there is a conjugate L of Lo in 8 and an
index i such that

If 8 is a tamely imbedded subset of X then for 1 ^ i ^ n, each of
the groups & is called a supporting subgroup of S. The collection
{£>t. 11 ^ i ^ w} is called a system of supporting subgroups of 2.

In one important special case, the definition of tamely imbedded
subset of X is fairly easy to master. Namely, if 55 is empty, the
reader can check that S is a T. I. set.

If 8 is a tamely imbedded subset of X with 8 = iV(8) then in
this section ^ ( 8 ) denotes the set of generalized characters of 8 which
vanish outside 8 and '^(8) denotes the complex valued class functions
of 8 which vanish outside 8. Similarly, ^(8)(^o(8)) is the subset of
^(8X^(8)) vanishing at 1. R. Brauer and M. Suzuki noted that if
8 is a T. I. set in X then the mapping r from ^0(8) into the ring
of class functions of X defined by

aT = a*

is an isometry ([24], p. 662). They were then able to extend this
isometry to certain subsets of ^ (8) . Several authors have since then
used this technique and it has played an important role in recent
work in group theory.

In this chapter these results will be generalized in two ways.
First we will consider tamely imbedded subsets of X rather than T. I.
sets in X. Secondly we will show that under a variety of conditions
r can be extended to various large subsets of ^(8) . The results
proved in this chapter are important for the proof of the main theorem
of this paper. However it is unnecessary in general to assume that
X has odd order or that X is a minimal simple group.

The following notation will be used throughout this section.
For a tamely imbedded subset 8 of S let 8 = JV(8) and for
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1 <Z i ^ n let ft and 9^ have the same meaning as in Definition 9.1.
Define £>0 = 1 and

, ( ) 3 t , } for 1 ^ i ^ n .

For L G 8<, 0 ^ t ^ w let

(9.2) Slz = {LH\ LH = HL, He ft} = L{ft n C(L)} .

Since 8 is tamely imbedded in 3E it follows from (9.2) and Definition
9.1 that for L e 2if 0 ^ i ^ n

(9.3) |C(L)| = | C ( L ) n 8 |

For a G ̂ 0(8) and 1 g i ^ w define

Let a^ be the class function of 9!*/& which satisfies

Let ai2 be the class function of 9^ induced by aiu Define

(9.4) a* = a* +

If a G ^f(8) then (9.4) implies that ar is a generalized character of S.
It is an immediate consequence of the definition of induced characters
that f or 1 ^ i ^ n

a{1(A) = a(L) for L e 2it A e SHL

(9.5) ai2(A) = 0 for L e 2i9 A e 2I£, A *= L

ai2(L) = | C(L) n ft | a(L) for L e 8, .

LEMMA 9.1. Suppose that & is a tamely imbedded subset of I .
If ae <%($) let aT be defined by (9.4). Then aT(X) = 0 if X is not

n

conjugate to an element of Slx for any L e \J 8< , while
0

J
%=0

aT(A) = a(L) for U
t=0

Proof. If JVGJJ^ then a complement of ft in ft<A/> is solvable.
Thus ([28] p. 162) for 1 ^i ^n every element of % is conjugate to
an element of the form HL = LH with L e 8 n %f He ft. Suppose
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that L is not conjugate to an element of 8f; then since a e
(9.4) implies that aT(HL) = 0. This implies that aT(X) = 0 unless X

n
is conjugate to an element of 2IZ for some L e \J 2* .

t=0

Let A e 2tz, L e 8* for some i with 0 ^ i ^ n. Suppose that
X^LXetflj for some J G I and some j with 1 ^ j ^n,i =£ j . Then
(|£y | , | C(L) | ) ^ l . Thus i=£0 and L e ^ . Furthermore C(L) =
C2(L)C^(L). By assumption (| & |, | & |) = 1 and (| & |, |C£(L) |) = 1.
Thus (| C(L) |, | ̂  |) = 1 contrary to the choice of L. Since a e
^ii — ̂ i2 vanishes on 9ty — ̂ J. Consequently (9.4) implies that

a(A) = a*(A) for i = 0
1 " ̂  a r ( A ) a * ( A ) + (<xix - ai2)*(A) for l ^ i

Since % is a T. I. set in X with N(%) = 8^ we get that

(aix - ai2)*(A) = (aix - ai2)(A) .

Thus (9.6) yields that

(9.7) aT(A) = a*(A) + (aix - ai2)(A) for 1 ^ i ^ n .

Assume first that A = L. Then a*(L) = | C(L) n & I «(£). Hence
(9.5), (9.6) and (9.7) yield that aT(A) = a(L). UA^L, then a*(A) = 0
and 1 ^ i ^ %. Thus (9.5) and (9.7) yield that also in this case
az{A) = a(L). The proof is complete in all cases.

LEMMA 9.2. Suppose that 8 is a tamely imbedded subset of X.
If ae 9fo(8) let aT be defined by (9.4). Then for l^i^n

a*(N) = a{1(N) for Ne %[)&.

Furthermore aT \mi is a linear combination of characters of

Proof. If NetQi then by Lemma 9.1 and the definition of

cr(N) = 0 = aft(l) = aa

If Ne$iif and aT(N) =£ 0, then N is conjugate to an element A of
2tz for some L e 8<. Thus by (9.5) and Lemma 9.1 aT(N) = a^N) as
required.

Let 0 be an irreducible character of 9^ which does not have &
in its kernel. Then
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(9.8) {& I*,, 6) = ^l-I

By Lemma 4.3 6 vanishes on 5R< — % — & hence (9.8) and the first
part of the lemma yield that

Since a:ix is a linear combination of characters of 9t</$< this yields
that (aT |W|f 0) = 0. The lemma is proved.

LEMMA 9.3. Suppose that 2 is a tamely imbedded subset of 3£.
If ae ^0(8) and ax is defined by (9.4) then

Proof. Let Ĝ , E2, • • • be all the conjugate classes of X which

contain elements of 2*. Let Llf L2, • • • be elements in U 2̂  such that

Lj e Sy fl 2f. The number of elements in X which are conjugate to
an element of 31^ is easily seen to be

Thus by Lemma 9.1 and (9.3)

| 2 | i | C ( L i ) n 2 | <

By assumption Ex n 2*, Ea fl 2
f, • • • are the conjugate classes of 2 which

contain elements of 21. Since a e ^ ( 2 ) this yields that

Therefore (9.9) implies the desired equality.

LEMMA 9.4. Suppose that 2 is a tamely imbedded subset of I.
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n

Let 6 be a generalized character of £ such that for Le\JZi9 9 is

constant on 2IX. / / a,/3e ^(8) and if a\ /3T are defined by (9.4)
then

(or, 0)a = (a,

(or, 0% = (a,

n

Proof. Since 0 is constant on 2IZ for L e U S< it follows from
i=0

Lemma 9.1 that

Thus by Lemma 9.3

(or, 0)2 = (ar0,12)2 2 g 8 fi)fl

By Lemma 9.1 /Sr is a generalized character of £ which is constant

on Slz for L e \J Si# If now 9 is replaced by /3r in the first equation
i=0

of the lemma the second equation follows.

LEMMA 9.5. Suppose that 8 is a tamely imbedded subset of
3£. Let 0 be a class function of 3E which is constant on 2lz for

n

L G U 8<. Let 3E0 be the set of all elements in 3E which are conjugate
n

to some element of 2tz with L e \J 8*.
i=0

. . | 8 |

Proof. Define a e <£fo(8) by

By Lemma 9.1

ConseQuently Lemma 9.3 implies that
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Lemma 9.5 is of great importance. Even the special case in
which 9 = l s is of considerable interest and plays a role in section
26. In this special case, Lemma 9.5 asserts simply that | £Q |/| £ | =

18f I / I * |.

10. Coherent Sets of Characters

Throughout this section let 2 be a tamely imbedded subset of the
group X. Let 8 = JV(8) and let ^ ( 8 ) be the set of generalized char-
acters of 8 which vanish outside 8. Let z be defined by (9.4).

DEFINITION 10.1. A set S? of generalized characters of 8 is
coherent if and only if

(i) ^h(^)^0.
(ii) It is possible to extend z from ^(Sf) to a linear isometry

mapping ^F(£f) into the set of generalized characters of X.
(Hi) ^ ( ^ ) £ ^ f ( 8 ) .
It is easily seen that if £? is a coherent set and _ ^ ~ £ ^ with

^(y) jz 0 then also ^ is a coherent set. It is more difficult to
decide whether the union of two coherent subsets of ^ ( 8 ) is coherent.
Examples are known in which Sf consists of irreducible characters of
8 and is not coherent though ^(S?) ^ 0 [25]. In these examples 8
is even a T. I. set in X. The main purpose of this section is to give
some sufficient conditions which ensure that a subset S? of ^ ( 8 ) is
coherent.

LEMMA 10.1. Suppose that 8 is a tamely imbedded subset of X.
Let £* = {\ 11 ^ i ^ n} with n ^ 2. Assume that for 1 ^ i ^ n, Xt

is an irreducible character of 8. Furthermore Xf(L) = X^L) for

L e 8 — 81. Then £f is coherent. Furthermore, if zx and ra are
extensions of z to & then either zx = ra or \ Sf \ = 2 and XI1 = — Xl±if

Proof. For 1 ^ i, j ^ n let a o = \< - \ i f then a o e
Thus ^o (Sf) =£ 0 since n ^ 2. Furthermore a\j is defined. Since
is an isometry this yields that

(10.1) (a[if a,V) = (*„, a r i 0 = 5«, - »$i. - diS. + *„. .
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In particular (10.1) implies that if i=£j then ||a<j||a = 2. By Lemma
9.1 aljil) = 0, therefore az

{i is the difference of two irreducible charac-
ters of X.

If n > 2, then it follows from equation (10.1) that (aT
u, al5) = 1

if 1 < i, j and i =£ j . It is now a simple consequence of (10.1) that
there exists a unique irreducible character of X which is not orthogonal
to any aT

u for 2 ^ i ^ n. Furthermore if Ax is chosen to be plus or
minus this character then it may be assumed that

(alu Ax) = l for 2 ^ i ^ n .

Now define A{ by

aT
u = Ax — Aif 2 ^ i ^ n .

This implies that

Hence (10.1) yields that the generalized characters Aifl^i^n are
pairwise orthogonal and that they each have weight one. It is easily
shown that a rational integral linear combination of the characters
Xi of degree zero is a rational integral linear combination of the
generalized characters au. Hence if &x is the set of generalized
characters Aifl^i^nf then the linear mapping sending X{ into A{ is
an isometry. Thus, £? is coherent and the extension of r to y is
unique in this case.

If n = 2, define A{ for i = 1, 2 by a\2 = Ax — A2, where A{ has
weight one. Any rational integral linear combination of \ and A,2 of
degree zero is a multiple of au. Thus, if rx is any extension of r to
£f9 XI1 = Ai or XI1 = —A3_i for i = 1, 2. The proof is complete.

Before proving the main result of this section, another definition
is needed. The following notation is introduced temporarily.

Let y be a subset of ^ ( S ) which consists of pairwise orthogonal
characters. If ^ t E £f9 let x(Si) denote the smallest weight of any
character in £{ of minimum degree. If Sf and Jf are coherent
subsets of & and z1 and r2 are extensions of r to SA and Jf re-
spectively, define

( i )
(ii) ar = 4 + d2, where

(a) 4e^(yr2),
(b) Ax is not orthogonal to
(c)
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DEFINITION 10.2. Let ^f be a coherent subset of & and let r*
be an extension of r to £/[. The pair (&{, r*) is subcoherent in &
if the following conditions are satisfied: If &~ is any coherent sub-
set of £f which is orthogonal to ^f and if zx and r2 are extensions
of z to ^ t and ^ " respectively, then

( i ) ^fri is orthogonal to ^ r j J .
(ii) If a e J^C^f, zx\ ^~t r2), then ar is a sum of two generalized

characters, one of which is orthogonal to S4T* and the other is in

If (£?, *"*) is subcoherent in ^ , we also say that S^ is subcoherent
in S^9 which causes no confusion in case r* has been designated.

Hypothesis 10.1.
( i ) 8 is a tamely imbedded subset of the group Hi.
(ii) For l^i^k,£( = {ki8 \ 1 g s ^ n j is a ŝ 6sê  o/ ^"(8).

(iii) i$^ = U -5f consists of pairwise orthogonal characters.

(iv) -For cms/ i wî fe 1 ^ i ^ fc, ^ is coherent with isometry zim

£f is partitioned into sets S^u such that each S^u either consists of
irreducible characters of the same degree and \ <&*, \ ^ 2 or (S^j, tu)
is subcoherent in &* where zi3- = zt on <5(j.

(v) For 1 ^ i ^ k, 1 ^ s g nif there exist integers si8 such that

(vi) Xn is an irreducible character of 8.
(vii) For any integer m with 1 < m ^ k,

(10.2)

THEOREM 10.1. Suppose that Hypothesis 10.1 is satisfied. Then
£f is coherent. There is an extension r* of z to ^F(£s) such that
either z* agrees with r4 on £^ or &? = {\lf X2} and \y = — M-y for
3 = 1, 2.

Proof. The proof is by induction on k. If k = 1 the theorem
follows by assumption.

It is easily seen that U ^satisfies the assumption of the theorem.
fc-i

Hence by induction it may be assumed that U S^ is coherent. Let

r* denote an extension of r to (J ^?f with the property that for
i
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1 ̂  i ̂  k — 1, T* agrees with ri on ̂ J, or 3^ = {Xu X2} and X)* = — XIL,,
3 = 1, 2.

Choose the notation so that Xkl has minimum weight among the
characters in Si of degree sklxn(l). Let S^x be the subset Sfki which
contains Xkl. For 1 ̂  s ̂ nk define

Thus P.e^iS*) and # is defined. Define the integer y by

(10.3) <X£\ fl) = • „ - * .

If (*, *) =£ (1,1) and 1 ̂  i ^ k - 1,1 ̂  t ^ w^ then by (10.3)

(10.4)
= ^.(4i - 2/) - ^*4i = - y / « .

Since \ u is irreducible and r is an isometry on ̂ |

(10.5) || tf |P = 4. + IIX*. II8 for 1 ̂  * ̂  nk .

By (10.4)

(10.6) fl = 4iXJT - V'"'"*

where ( ,̂ \J*) = 0 for l ^ t ^ f c — 1,1 ̂  8 ̂  n{ . Equations (10.5)
and (10.6) now yield that

(10.7) 42! - 2/kly + y> E S T T T ^ + ||J IP = 4S + || Xtt ||
a .

If 2/ =£ 0 then since /̂ is an integer (10.2) and (10.7) imply that

0^2/kl(y>-y)<\\Xkl\\>-\\J\\>.

Therefore

(10.8) ||J||'<||A, fc l | |' i f y * O .

We will show that y = 0. By Hypothesis 10.1 (iv), r can be ex-
tended from ^(Si) to a linear isometry zk on ̂ ( ^ f ) . For 1 ̂  s ^ wfc

let AB be the image of Xk8 under this extension. If (^y, rfci) is sub-
coherent in £f, then f̂/*̂  is orthogonal to \Ji=l<5fT\ Suppose that
Sij consists of irreducible characters of the same degree. If S^)ki

is not orthogonal to Ui^-^T** then there exists XeSij and X1e%9fm

for some i and m with 1 ̂  i ^ k — 1, such that (V*J, X[*) ̂  0. Assume
first that £fim consists of irreducible characters of the same degree.
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Then it may be assumed that X = Xkt, \kt, e Sijf Xkt =£ \kt, and Xx =
X<., **.' e f̂m, X<. =£ X*./. Thus Xjf = ex£ for suitable e = ± 1 . Hence

0 = (XJ, — XJa/, XAt — Xfct/) = e + (XJ,,, X]fct/) .

Hence Xfr = — sX^. Therefore

o = (xi; - xj;,)(i) = «(x;f
w + xif/)(i) = 2ex^(i),

which is not the case as ||XT*y ||a = 1. Suppose now that &\m is sub-
coherent in £fm Then f̂j[* is orthogonal to ^ r * by definition. There-
fore, for 2 ^ s g nfc,

(10.9)

Thus, A is not orthogonal to ^A(SSkl)
T. If ^ consists of irreducible

characters this yields that || A ||a ^ 1. Hence, y = 0 by (10.8). Suppose
that G5&, zkl) is subcoherent in ^ If y ^ o, (10.8) implies that

, ^ - A - J.) = (l3[9 ^Ax -A.)=-*s-\\ Xkl ||».

(10.10) # = A + A

where A e ±S^kl
kl and Ax is orthogonal to S^Z*1. By changing notation

if necessary it may be assumed that

(10.11) A = ±AX

by (10.9). Now (10.9), (10.10) and (10.11) yield that

Hence, (10.8) and (10.12) imply that y = 0 in all cases. Thus, (10.3)
becomes

For 1 ^ s ^ nk,

Therefore, (10.13) implies that

(10.14) (Xi;, 01) = 4 . , 1 ^ s ^

For 1 g s ^ nfc, define XJ*. by

(10.15) ft = 4AV - x j ; ,

and extend the definition to ^P(Sf) by linearity. This implies that
\\\ = \\k

a or ^ = {Xx, X2} and Xf = -xj* 4 for i = 1, 2. Hence, ^ r * is
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orthogonal to (J *$?r* and thus r* is an isometry on F(Sf). The
lt = l

proof is complete.

If £f is a coherent subset of ^ ( S ) , then r will be used to denote
an extension of z to

Hypothesis 10.2.
( i ) 2 is a tamely imbedded subset of X and & is a supporting

subgroup of S. % = JV(&).
(ii) If 0 is any non-principal irreducible character of £>< and

d is the character of ?}< induced by 0, then 8 is a sum of irreducible
characters of 3lif all of which have the same degree and occur with
the same multiplicity in 9.

LEMMA 10.2. Suppose that Hypothesis 10.2 is satisfied. For any
character a of & let 6^ be the set of irreducible characters of 9^
whose restriction to £>< coincides with a. If G is a generalized
character of X which is orthogonal to <J*o(£^)* for all a with
(a, 1^) = 0 then 6 is constant on the cosets of ^ which lie in

Proof. We first remark that by Lemma 4.3 characters in
vanish on 91* — SR< — &, and so generalized characters in
vanish on 9l< — 9?<. Suppose that 0U 02 are distinct characters in S^,
with (a, l$f) = 0. By assumption (0, (d1 - 02)*) = 0. Thus by the
Frobenius reciprocity theorem (@m , 01 — 02) = 0. Hence by Hypothesis
10.2 @m = y + j3, where 7 is a class function of 3lt induced by a class
function 7 of & and /5 is a generalized character of 3lJ^i. Thus
e(N) = /3(N) for Ne%- &. The proof is complete.

LEMMA 10.3. Suppose that Hypothesis 10.2 is satisfied. Let S^
be a coherent subset of ^ ( 2 ) which consists of pairwise orthogonal
characters of 8. Assume further that £f contains at least two
irreducible characters. Then if Xe £f, V is constant on the cosets
of & which lie in Sflt — $4.

Proof. Suppose that 0l9 02 are distinct irreducible characters of
% which do not contain §4 in their kernel such that 0llft = 02,~ . We
will show that

(10.16) (X^t, 61-0t) = O.

By Lemma 4.3 0x and 02 vanish on 9^ — SR€ — £>*. Since 3li is a

T. I. set in £ and Sft* = N(3li) the mapping sending 0x — 62 into
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(Pi — #2)* defines an isometry on ^({0U 0,}). By Lemma 10.1 this
can be extended to an isometry of ^?({0lt 02}). Let 0u 02 be the
respective images of 0lf 02 under this isometry. By assumption S^
contains two irreducible characters \ and X2. Since

for 3 = 1, 2, Lemma 9.2 implies that if (10.16) is violated then

(M,Ri, 0, -02)*O for j = 1, 2 .

Thus by the Frobenius reciprocity theorem

(X5, »i ~ »0 = (*•!. (»i - W) ^ 0 for i = 1, 2 .

Thus by changing notation if necessary it may be assumed that
X) = ±®J for j1 = 1, 2, where the sign is independent of j . Hence

(10.17) (\(1)XZ - X,(l)Mf ©, - 02) = ±(X1(1) + X,(l)) ^ 0 .

Since \ i ( l ) \ s — \(l)\e^(S^) Lemma 9.2 implies that

((Xi(l)M - X,(l)Xf),R|f *! - 0J = 0 .

Thus by the Frobenius reciprocity theorem

i - X2(1)XI, 9, - 6>2) = (X.ajXJ - X2(1)X1, (0, - 02)*) = 0

contrary to (10.17). Therefore (10.16) must hold. The result now
follows from Lemma 10.2.

LEMMA 10.4. Suppose that the assumptions of Lemma 10.3 are
satisfied. Let a be the least common multiple of all the orders of
elements in S. / / X is an irreducible character in £f% then &?*
contains all the values assumed by XT.

Proof. By assumption £f contains another irreducible character
Xlm Let a be any automorphism of ^ 2 , whose fixed field contains &?a.
Then since \(1)\ - \(l)Xle^(S^) it follows directly from (9.4) that

Therefore

As || V ||2 = || XI ||a = 1, this implies that a(Xx) = X\ As a may be an
arbitrary automorphism of <^S| whose fixed field contains <̂ a the result
is proved.
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LEMMA 10.5. Suppose that 2 is a tamely imbedded subset of X.
Let SJX have the same meaning as in (9.2) and let 8 be a generalized

n

character of X which is constant on 2^ for L e (J 2iu Let £f be a
t=0

coherent subset of ^(2) consisting of irreducible characters. Then
there exist rational numbers b, c, and generalized characters /3, 7 of
2 which are orthogonal to S/7 such that if Le2* then 8(L) = b/3(L)
if 8 is orthogonal to £fT, and V(L) = \(L) + cy(L) if & = V e &>\

Proof. It is an immediate consequence of Lemma 9.4 that if 8
is orthogonal to £fx and if £ = £<X<(l)\t, where X{ ranges over S^9

then

(10.18) 8(L) = b£(L) + bAlL) for L e 8*

where 6lf b2 are rational numbers and A is a generalized character of
2 which is orthogonal to £f. If 8 — V, then Lemma 9.4 yields that

(19.19) \T(L) = X(L) + erf(L) + c,7i(L) for L e 8*

where cl9 c2 are rational numbers and 7i is a generalized character of
2 which is orthogonal to £SL There exists a generalized character £'
of 8 which is orthogonal to & such that

Since pK(L) = 0 for L e S* (10.18) and (10.19) imply respectively that

6ySx(L)
- Clf (L) + c,7x(L) .

The lemma follows by a suitable change in notation.

It is worth noting that if the hypotheses of Lemma 10.3 are
satisfied for every subgroup in a system of supporting subgroups of
8, then that lemma implies that V satisfies the hypotheses of Lemma
10.5. This fact will be used later in this paper.

11. Some Applications of Theorem 10.1

In this section we are concerned with the problem of finding
conditions under which it is possible to apply Theorem 10.1. That
theorem will then allow us to conclude that certain sets of characters
are coherent. To clarify matters the main Hypothesis is stated
separately. This also serves to introduce the notation.
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Hypothesis 11.1.
( i ) 20 is a tamely imbedded subset of the group X and So =

N(20) has odd order. £>0 < 80 and 20 is a union of cosets of §>0. Let
8 = 2o/§>o and let 2 be the image of 80 in 2.

(ii) §> and ® are normal subgroups of 2 such that § is nilpotent
and

(n.i) £s u c^nsskfigs.

(iii) & is the set of all characters of 2 which are induced by
non principal irreducible characters of S, each of which vanishes
outside 2. Then £/* consists of pairwise orthogonal characters.

(iv) There exists an integer d such that d j 8:581 | X(l) for X e S^.
Furthermore £f contains an irreducible character of degree d|S:5B|.

(v) Define an equivalence relation on Sf by the condition that
two characters in £f are equivalent if and only if they have the
same degree and the same weight. Then each equivalence class of
£f is either subcoherent in £f or consists of irreducible characters.

(vi) For any subgroup 21 of §> which is normal in 2 let ^(21)
be the subset of £f consisting of those characters which are equiva-
lent to some character in &* that has 21 in its kernel.

In the application to the main theorem of this paper (11.1) will
always be augmented by one of the following conditions.

(11.2)

(11.3)

(11.4) £S U

THEOREM 11.1. Suppose that Hypothesis 11.1 is satisfied. Let
be a normal subgroup of 2 which is contained in § such that

(11.5)

If ^(§>i) is coherent and contains an irreducible character of degree
d 18: $ | then £f is coherent.

Proof. Let £>2 be a normal subgroup of 8 which is contained in
£>! and is minimal with the property that ^(£>2) is coherent. Suppose
that &a ̂ 6 <1>. Choose £>3 c £>2 such that §>2/£>3 is a chief factor of 8.
Let S^ifei) = Si = {Xu 11 ̂  s iS n^j where \ u is irreducible and
\u(l) = d|S:ft | . Let ^t, - . - ^ be the subsets of ^(£>3) - ^ ( A )
consisting of all characters of a given weight and a given degree. For
2 ^ i ̂  k let <iXn(l) be the common degree of the characters in £*.



818 SOLVABILITY OF GROUPS OF ODD ORDER

By Hypothesis 11.1 all the assumptions of Theorem 10.1, except possibly
inequality (10.2), are satisfied for ^ ( ^ 3 ) . We will now verify that
also inequality (10.2) is satisfied.

Let 0lf d2, - • • be all the irreducible characters of S which do not
have £> in their kernel. Let Sj denote the character of 8 induced by
0j. Then each B5 is in £f by Lemma 4.3. Furthermore if 0, ranges
only over characters of $/£>2 then

Therefore

(11.6) 2

If Si ^ 8j then (9if $,) = 0. Suppose that for a given j there are a,
values of i such that 95 = Sim Then (11.6) implies that

(11.7) i^ l )a ; } 2 l | 0 ; l l a = | 8 : & | - |8:©I

where the summation in (11.7) ranges over the distinct ones among
the SJm Since

{OiiDatf || 9,. |p = 0,(1)' 18: A | a, = ^(1)^(1)^- = ML
\\0j\\

(11.7) yields that

where «5f = {\lt} or equivalently

n i g )
( }

Since $? is nilpotent §2/^s is in the center of §/&$. Every irreducible
character of $ is a constituent of a character induced by an irreducible
character of §. Thus for 2 ^ m ^ fe, Lemma 4.1 implies that

or equivalently

(11.9)

Suppose now that inequality (10.2) is violated for some value of m.
Then (11.8) and (11.9) yield that

d
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Thus

or

Since every term is an integer this implies that

(11.10) |ft:fti| - 1 ^4d2 |fi:S?|2 .

However £>2S&i, thus |©:&| ^ |$:©i| . Now (11.5) and (11.10) are
incompatible. Therefore inequality (10.2), and thus all the assumptions
of Theorem 10.1, are satisfied. Hence by that theorem *5*(fQ3) is co-
herent contrary to the minimal nature of £>2. This finally implies
that £>2 = <1>. Therefore Sf = ^(£>2) is coherent. The proof is
complete.

The remainder of this section consists of applications of Theorem
11.1. Lemmas 11.1 and 11.2 are closely related to Theorem 2 of [8].
By using the argument of that theorem the assumption that | S | is
odd in the following lemmas can be replaced by suitable weaker as-
sumptions. However the stronger results are not relevant to this
paper and will not be proved here.

Hypothesis 11.2.
( i ) Hypothesis 11.1 and equation (11.2) are satisfied. Thus

d = l.
(ii) | 8 | is odd and 8/£>' is a Frobenius group with Frobenius

kernel £>/£'.

LEMMA 11.1. Suppose that Hypothesis 11.2 is satisfied. If

then £f is coherent.

Proof. By Lemma 10.1 and 3.16 (iii) &*(§') is coherent. The
result now follows from Theorem 11.1.

LEMMA 11.2. Suppose that Hypothesis 11.2 is satisfied. Then
£f is coherent except possibly if ^ is a non abelian p-group for some
prime p and
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Proof. If $ = & x ft,, where & and & are proper normal sub-
groups of 8, then

I ft*:©*'I = 1 (mod|S:ft|) for i = 1, 2 .

Since | S | is odd, this implies that

lft*:ft{| ^ 2 | 8 : § | + 1 for i = 1, 2 .

Hence | ft:ft' | > 4 18:ft |a + 1 and & is coherent by Lemma 11.1. As
£> is nilpotent this implies that Sf is coherent if § is not a p-group
for any prime p. Since | 8 | is odd

, c~x > 1ft:ft* | — 1 > o

Thus by Lemma 10.1 Sf is coherent if § is abelian. The result now
follows directly from Lemma 11.1.

LEMMA 11.3. Suppose that Hypothesis 11.2 is satisfied and 8 is
a Frobenius group with Frobenius kernel fp. Assume that § is a
p-group for some prime p and | ft:D(ft) | = p2. Then £f is coherent.

Proof. If & is abelian Lemma 11.2 implies that S^ is coherent.
If £> is not abelian then the second term of the descending central
series modulo the third is cyclic. Thus

p = 1 (mod|8:ft |) .

Therefore (p - 1) ̂  2 18: ft | as 181 is odd. Hence

and the result follows from Lemma 11.1.

LEMMA 11.4. Suppose that Hypothesis 11.2 is satisfied and 8 is
a Frobenius group with Frobenius kernel £>. Assume that & is a
p-group for some prime p and |ft:D(ft)| = p\ If

(11.11) p3-l>2p|S:ft|

then S^ is coherent.

Proof. If ft is abelian Lemma 11.2 implies that £f is coherent.
If § is non-abelian let ftx be a subgroup of JD(&) such that D(ft)/fti
is a chief factor of 8. As § is nilpotent Z)(ft)/fti is in the center of

Thus by Lemma 4.1 the degree of any irreducible character of
is either 1 or p. Hence the degree of any character in



11. SOME APPLICATIONS OF THEOREM 10.1 821

is either | S: & | or | S: § | p. Let &[, S^ be the subsets of Sf(&d con-
sisting of all the characters of degree | 8 : § | , | S : $ | p respectively.
Let /, = 1, ^ = p. By (11.11)

w > 2 2 ) = 2 ^
Thus by Theorem 10.1 ^(§1) is coherent.

If |D($):$i| = P or pa, then p = 1 (mod|S:$|) or

p a - l = 0 (mod|8:$ |) .

As (p3 — 1, pa — 1) = p — 1 this yields that in either case

p s l (mod 18:$ I).

Therefore p - 1 ^ 2 18: § |. Hence

and ^ is coherent by Lemma 11.1. Suppose that |D($):$i|
Then by (11.11)

Since SSQQJ is coherent the result now follows from Theorem 11.1.
The next two lemmas involve the following situation:

Hypothesis 11.3.
( i ) Hypothesis 11.2 is satisfied.
(ii) There exist primes p, q and positive integers a, b such that

18:£| = p\ | § : § ' | = |§:#(&) | = ga. Ttos \§\ is a power of q.

LEMMA 11.5. Suppose that Hypothesis 11.3 is satisfied and a ="2c~
is even. Then £f is coherent except possibly if qc + 1 — 2pb

f q
e is

the smallest degree of any non linear irreducible character of § whose
kernel contains [£>, £>'] and for no subgroup & of & with & =£ £>',
£>i < S is 2/^! a Frobenius group.

Proof. Suppose that S^ is not coherent. Then by Lemma 11.1
ip2b + l^qa. As (qc + 1, qc - 1) = 2 it follows that 2p61 ̂ c + 1 or
lph | qc — 1. If 2p6 =̂ gc + 1 this implies that 4p26 + 1 < qa contrary
to what has been proved above. Therefore qc + 1 = 2pb.

Let ^ 7 = {0u} be the set of non principal irreducible characters
>f &/[£>> §'] of degree g\ Lemma 4.1 implies that ^ 7 is empty for
J > c. Let ^ t = {̂ »i} be the set of characters in Sf of degree qlph.
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Since \S4\ = 2(qc - 1) > 2qc~\ it follows from Hypothesis 11.1 and
e—1

Theorem 10.1 that U £* is co
t=0

empty. Then 3.15 implies that

Theorem 10.1 that U £* is coherent. Suppose that U _^7 is non
t=0 t=l

Therefore

Thus by Theorem 10.1

is coherent. Since

Theorem 11.1 implies that £f is coherent. Thus it may be assumed
that qc is the smallest degree of any non linear irreducible character
of *&/[§> *&']•

Suppose now that £>' contains a subgroup & =£ £>' such that i?/£i
is a Frobenius group. Then & may be chosen so that £>7&i is a chief
factor of 8. Thus [£>, &'] ̂  fe and by the earlier part of the lemma
every irreducible character of £>/£>! has degree either 1 or qc. As
qc + 1 = 2ph, q2c is the smallest power of q which satisfies q2c = 1 (mod pb).
Since &7&1 is a chief factor of 8 this implies that £>7£i is in the
center of £/£>! and | §': ^ | = q2c. If 0 is an irreducible character of
£>/§! of degree q\ then the orthogonality relations yield that 0{H) = 0
for He §/& — §7§i. As every non linear character of §/& has degree
gc the orthogonality relations may once again be used. They impljr
that

(11.13) \C(H)\ = q2c for He

However

which contradicts (11.13). Thus £>' contains no subgroup & =̂  §' such
that £/£>! is a Frobenius group. All statements in the lemma are
proved.

LEMMA 11.6. Suppose that Hypothesis 11.3 is satisfied. Assume
further that a is odd and p = 3. Then Sf is coherent.
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Proof. As a is odd and qa = 1 (mod 3), it follows that q = 1 (mod 3).
Define the integer c ̂  1 by

q = 1 (mod 3C) , g * 1 (mod 3C+1) .

If 6 ̂  c, then q ̂  2.3* + 1. Thus if a =£ 1, 4-325 + 1 < ga and S* is
coherent by Lemma 11.1. If a = 1, then § is cyclic. Therefore £f
is coherent by Lemma 10.1.

Suppose now that b > c. Then since qa = 1 (mod 36) we must
have a = Sb~cx for some integer x. Therefore

qa ^ fa*1—1)8.

Since g3*-6-1 = 1 (mod 36"1), this yields that

<11.14) qa ̂  (1 + 2-36-1)3.

If 4.326 + 1 < qa then Sf is coherent by Lemma 11.1. Thus if ^ is
not coherent (11.14) implies that

4.326 + 1 ̂  qa ̂  (1 + 2.3*"1)3 > 8.33(6-1} + 1 .

Therefore 33 > 2.3*. Hence ft = 1 or 6 = 2. In either case this implies
that qa ̂  4.34 + 1 < 73. As a = 0 (mod 3) we get that q < 7. How-
ever q = 1 (mod 3). This contradiction arose from assuming that Sf
is not coherent. The proof is complete.

12. Further Results about Tamely Imbedded Subsets

In this section a fairly special situation is studied. Our purpose
here is to get some information about certain sets of characters which
may not be coherent.

Hypothesis 12.1.
( i ) Let q be a prime and let Q be a Sq-subgroup of the group

3L. Assume that O = 8 is tamely imbedded in X and 2 = iV(O) ^ Q
has odd order. Let 0 ^ 8 , 0 ^ 0 and let £ = O/QlfS = S/JQL

(ii) J*f is the set of all characters of S which are induced by
-non-principal irreducible characters of O. Define an equivalence
relation on & by the condition that two characters are equivalent
if and only if they have the same degree and the same weight. Then
each equivalence class of J*f is either subcoherent in <& or consists
of irreducible characters.

(iii) Let 1 = qfo < qfl • • • be all the integers which are degrees
of irreducible characters of O. Let n > 0 be a fixed integer. For
0 ^ i ^ n — 1 let £* be the set of all characters in £f of degree
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g / f |S :£ l | . Assume that each S^ consists of irreducible characters.
Let S^n be an equivalence class in Jtf consisting of characters of
degree g'« 18:Q |. Let £>* = U?=o ^

In case Hypothesis 12.1 is satisfied the following notation will be
used.

(12.1) | O : O ' | = <f , | 8 : Q | = e>l .

Since 181 is odd, | S^ \ ^ 2 and ^ ( ^ 1 ) =£ 0 f or O^i^n. Thus by
Lemma 10.1 £* is coherent for 0 ^ i ^ n — 1.

For 0 g i < n let a< be the number of non principal irreducible
characters of D of degree qf\ By Hypothesis 12.1 S/O acts regularly
as a permutation group on the non principal irreducible characters of
degree qfi for 0 ^ i < n. Since 181 is odd, no non principal irreducible
character of D is real. Thus a< is even. Therefore

(12.2) a , = 0 ( m o d 2 e ) , \Si\ = ^- for 0 ^ i ^ n - l .
e

Let j0 — 0. Define j8 inductively to be the largest integer not

exceeding n + 1 such that U •£? is coherent. Suppose that

o = io < • • • < it < i«+i = n + l .

For 0 ^ s ^ ,̂ define

(12.3) jr. = j'\jls*

and let m, = / , , . Define

(12.4) c . = '£liaiq
i«i-m') for 0 ^ 8 ̂ t ,

where i ranges from j , to j , + 1 — 1. Define

(12.5) d, = g»»+i-"f for 0 ^ 8 < t .

Then by Theorem 10.1 applied to ^ U S^,+l

(12.6) c. ^ 2ed, for 0 g s < t.

By (12.2)

(12.7) e, = 0 (mod 2e) for 0 ^ 8 < t .

By 3.15

(12.8) 1 + jiCifl1"' = 0 (mod 9J)"'+1) for 0 ^ s < t.
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LEMMA 12.1. Suppose that Hypothesis 12.1 is satisfied. Assume
that

| O:G' | = go^4e2 + l .

Then

d&<e + l for O^s<t.

Furthermore if a is odd, c, < e2 and c$ ^ 0 (mod g),

Proof. We will first prove that

(12.9) 1 + 2 c^2mi < eq2m* f or 0 ^ s < £ .
i=o

This is true if s = 0 since 1 < e. Suppose that s > 0. Then by (12.5)
and (12.6)

3=0 j=0

1 + 2e(l + g + . . . +

(Q ~ 1)
eq

2m*

Assume now that the lemma is false and choose s minimum tc
violate the result. Let c = ca, d = dB.

By (12.8) and (12.9)

gram*+i < eq2m* + cq2m* .

Hence by (12.5)

(12.10) d2 < e + c.

Inequalities (12.6) and (12.10) yield that d2 < e + 2ed or d2 - 2ed - e < 0
This implies that

e — Ve2 + e ^ d ^ e + Ve2 + e .

Consequently

(12.11) d ^ e + V¥Te < Se .

Suppose that
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Then by (12.9)

3gJ"«+i < (e + c)q2m> .

Hence by (12.7) U\< e + e g. 3c/2. Thus

c 2

since e > 2. This contradicts the choice of s. Hence

3=0

As c3 is even for 0 ^ i ^ s, (12.8) implies that

(12.12) 1 + S <^2w; = ?2w*+1 •

The group Q contains a normal subgroup Q, of index g2m*+i. Every
irreducible character of Q/QQ has degree strictly less than qms+1 and
the sum of the squares of the degrees of these characters is equal
to g2m»+i. Hence (12.12) implies that every character of S whose
degree is strictly less than qm*+1 has QQ in its kernel. Thus QQ is a
normal subgroup of 8 and S/QQ is a Frobenius group with Frobenius
kernel O/Qo. Therefore

(12.13) g*-+i = *?"•• = 1 (mod e) ,

and the center of D/Qo has order at least qa. Thus by Lemma 4.1

(12.14) qa^d2 .

Define the integer k by

(12.15) c + k = d2.

By (12.10) & < e and by (12.12) 0 < k. Thus

(12.16) 0 < k < e .

Define the integer 6 by

(12.17) q2m' = qa~h (mode), 0 ^ & ^ a - l .

Equations (12.7), (12.13), (12.15) and (12.17) imply that

(12.18) k = d2 = qh~a = qb (mod e) .
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If b = 0, then by (12.16) and (12.18) k = 1. Thus by (12.15) c =
d1 - 1, hence by (12.7)

c c c

If c < e2 and a is odd, then

d2 = c + 1 < e2 + 1 < g20 .

Thus by (12.18) d2 = ga. However this is impossible as a is odd.
Assume now that 6 ^ 0 . As d2 is a power of g, (12.14) and (12.18)

imply that either d2 = qa+b or d2 ^ q2a+b. Since 6 ^ 0, the latter case
leads to

d2 ^ gaa+6 = g^g6 > 4e2q > 9e2 .

Hence d > 3e contrary to (12.11). Thus

(12.19) d2 = qa+b, 2 ^ a - 6 .

The inequality follows from (12.17) and the fact that a + 6 is even.
Now (12.11) and (12.19) yield that

q < e .
H qa~b qa~b q2 ~

Thus 1 S qb < e. (12.16) and (12.18) imply that

(12.20) k = qb , b > 0 .

Equation (12.15) now becomes ds = c + g \ Hence

c = 0 (mod g) .

Furthermore by (12.19)

c = d2-qb = qb(qa - 1) .

Consequently

d2e _ qa+be ___ gae _ , e

- »(- i) - ^ z r " + lirrr
THEOREM 12.1. Suppose that Hypothesis 12.1 is satisfied. Assume

that for some j with 0 ^ j ^n — 1, XleS^ and \2 e S^+i. Define

a = q'J+i-nXi - x2 .

Suppose that S^S^ and

aT = A+ Ax
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where A1eKJr(x^
r
9
T) and A is orthogonal to ^F(^T). Then

Furthermore if a is odd, c = c, < ea and c ^ 0 (mod q) then

Proof. Let 3~ = &~%. If ^ + 1 g ^ then tfTe^(JHT and
J = 0. Thus the result is trivial in this case. Hence it may be assumed
that c^+i^^T In particular, £f is not coherent, hence j£f is not
coherent, so by Lemma 11.1 | Q: G' | ^ 4ea + 1. Consequently Lemma
12.1 may be applied. Furthermore fj+1 = mf+1 and s < t. Thus J7~
consists of irreducible characters. Let &~ — {X8i \ 1 ^ i ^ nt}, where
the notation is chosen so that \ =£ X,fl and Xai(l) | X, i+i(l) for 1 ^ i < n8.
Suppose that X1 = Xtk. Define the integer x by (a% XT

91) = — x. Then
since a e J ^ ( y ) Lemma 9.4 implies that

(a\ XT
9i) = -x "'**' + dikq

n'+i~f> for 1 ^ i ^ n. .

Then

Ax = g"f+1"7^XiI* — a; \

Therefore

(12.21)

where c = c, is defined by (12.4). Let d = d, be defined by (12.5).
Since \.1(1) = qn> and X,t(l) = g-̂ ' (12.21) yields that

(12.22) | |J |r= | |X l | |» + 2 ! B d - ^ .

As a function of x, 2xd — (x*c/e) assumes its maximum at * = ed/c.
Thus (12.22) implies that

(12.23) I t^H 1 ^ ||\,||' + 2 ^ 1 - ^ = Ijx.lf + f * .
c c c

As HJH1 is an integer Lemma 12.1 and (12.23) imply that || A\\* £
+ e. Furthermore if a is odd, c < es and c 3= 0 (mod q), then
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The proof is complete.

13. Self Normalizing Cyclic Subgroups

Hypothesis 13.1.
( i ) SB is a cyclic subgroup of the group £ with | SB | = w odd.

Suppose that SB = SBX x 3B2, where w{ = 12Bt-1 and w< =£ 1 for i = l,2.
Let

2B = SB - SB2 - SB2 .

For any non empty subset 2t of SB

(13.1) C(«) = N(%) = SB .

(ii) Let co10f o)01 be faithful irreducible characters of 3B/3BS, SB/SBX

respectively. Define

for 0 S i ^ wx - 1, 0 ^ j ^ w2 - 1.
If t0lf w, in Hypothesis 13.1 are both primes then (13.1) follows from
the assumption that JV(SB) = 3B. Thus the situation described above
is a generalization of this case.

LEMMA 13.1. Suppose that Hypothesis 13.1 is satisfied. Then
2B is a T. I. set in £. There exists an orthonormal set [7]^ \ 0 ^ i ^
wx — 1, 0 ^ y ^ î 2 — 1} o/ generalized characters of £ sttc/i that for
0 ^ i ^ w± — 1, 0 ^ j ^ w2 — lf the values assumed by rjih yiQ9 7]Qj lie
in &W9 £2^ 0^ respectively. r]m = l x and

for
- G)i0 - 0)oj ^*

Furthermore every irreducible character of £ distinct from all ±
vanishes on 2B.

Proof. It follows directly from Hypothesis 13.1 that 2B is a T. I.
set in 3E. Define the generalized character a{i of SB by

Clearly a^ vanishes on SB — 2B. Thus

a?,(W) = au(W) for
(13.2)
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for 1 ^ i, s ^ wx - 1,1 ^ j , t ^ w% - 1. Therefore || a£- ||a = 4 and
(ati9 aft) = 2 for i, j , t ^ 0,j i± t. It follows directly from the definition
of ai5 that the values of afs lie in ^ .

For any algebraic number field ^ and any generalized character
a of a group let ^"(ot) denote the field generated by J^~ and all the
values assumed by a. Since ^(a4y) = ^(a**) we see that <£?(aZ) =
^ for some v with v\w. If i, i =£ 0 then v = t̂ t;,, where v, | w, and
v. > 1 for s = 1, 2. By (13.2)

at* = i2 ± e1 ± e2 ± 93,

where 9U @2, ®3 are distinct irreducible characters of X.
Suppose that ^(9k) £ ^ for k = 1, 2, 3. Let

u 919 93) = a>(9» 92, Gz) .

Let © be the Galois group of &~ over O^m For fc = 1, 2, 3 let @fc be
the subgroup of © whose fixed field is <£?Vl(9k).

Assume first that © = ©! U ©a U ©3. By (13.2) ©, n ®t = 1 for
1 ^ s < t ^ 3. If © = ®k for some k then &(9k) S ^ contrary to
assumption. Let |© | = g and \®k\ = gk for k = 1, 2, 3. Then it may
be assumed that g > g^g^ g3. Since g = gi + g* + g3 — 1 — 1 — 1 + 1
we must have gx = flf/2. Therefore

1 = | ©! n ®31 ^

Hence

g 3 - 2, g2, g3 ^ 2

Therefore flf ^ 4. © is not cyclic as it is the union of proper sub-
groups. Hence © is the non cyclic group of order 4 and \®k\ =2
for k = 1, 2, 3. As v2 is odd this implies that v2 = 3. For k = 1, 2, 3
let ©* = <#*>, where the notation is chosen so that ^ = ^ ( ^ i ) .
Therefore 0i(a*j) = a*j. Hence o^a) = 93. Consequently &Vl(92) =
^(^a) as © is abelian. This implies that a3 = az which is not the
case. Thus © =£ ©x U ®a U ©3.

If a G © - ©! U ®2 U ©3, then by (13.2) (afjf o{at5)) ^ 2. Hence by
choosing the notation suitably it may be assumed that a{92) = 03. If
(fffii #2) =£ (#t*, (̂̂ 2)) then replacing a by o1"1 and 92 by 03 if necessary
we get that

By (13.2) a(92) ± 9U 92. Hence also a(92) ^ a\92). Therefore
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2 ^ = 1 — 1
= (01 +
^ (01 +

+
02,
02, GiBX) ̂  1

5>0 - a\9t))
+ B2, a\9x

since 0lf 02,0(9,) and 0"2(02) are all characters. This contradiction
establishes that (afjf 92) = (afj9 o(92)). Since a^(1) = 0 we see that

(13.3) af, = 12 ± {02 + <x(02) - 9,} .

Furthermore ®2 = ©3 and if 7 e © - ®i U ®2 then 0X =£ 7(02). By
definition 9, =£ T(02) for 7 e ©x U ®2. Therefore

f o r 7 G ® .

Suppose that 7(#2) = 92 for some automorphism 7 of ^ 7 Then
yo(0J = o(92) and (13.3) implies that (afjf 7(at5)) ^ 3. Thus by (13.2)
7(ct*j) — a*3. Consequently 7(9?) = 9, and so

(13.4)

If now 7 e ®*, 7 ^ o, 7 ^ a-1, then (13.3) yields that

2 ^ (at,,

Therefore 7(00 = 9, and 7 e ®,. Thus | ®2 [ ̂  | © | - 2. Since ®! ̂  ®
and | ®x | 11 ® | we get that | ® | ^ 4. If | ® | = 2 then j r g ^ . Thus
(13.2) and (13.3) yield that 2 = (afjf o(afj)) ^ 3. Since | tfj: ̂  | is
even we get that | ® | = 4 . Thus either v2 = 5 and ̂ * C ̂  or v2 = 3.
In the latter case (13.2), (13.3) and (13.4) imply that 0(9,) = 9,. Thus
© = ©! or equivalently g?(9,) S ^ contrary to assumption.

Suppose now that v2 = 5. Thus v, ^ 5 and the previous argument
with v, and v2 interchanged yields that <£?(9k) g ^,2 for k = 1 or k = 2.
Thus by (13.4) ^(Ojsa^. By (13.2) and (13.3) © = <(T>. Thus
o-2(0!) = 9, since (o\a*5), afj) = 2. Let 7 be in the Galois group of tf;
over < ,̂2. Then 7O"2(0i) = 0i and 7 can be chosen so that

(ati9

Hence (13.3) yields that

(02 + o(92) - Ou 7O\92) + 7O\92) - 9,) = 0 .

Since 9, is not conjugate to 02 this implies that

(02 + o(92), 7O\92) + 7o\92)) = - 1

contrary to the fact that 02, o(92), 7o\92) and 7o\92) are all characters.
Thus in any case there exists a non principal irreducible character
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X of X such that (9lf a?y) =£ 0 and 0(81) S ^ . Suppose that
^ = &% Since w is odd

(afif a*) = (aii9 a^) = l .

Therefore

1 = (la ± 9, ± 92 ± 0 3 ,1 2 ± 9, ± 82 ± 65) = 2 + (02 ± 03, 02 ± 03) .

Hence

(92±9z,82±&i)= - 1 .

Since 92 and 03 are characters this yields that 9k =£ Bk for fc = 2, 3.
Hence 02 = 93 and so 03 = 92. Consequently (92 ± 93, &2 ± 03) = ±2,
which is not the case. Therefore

(13.5) a9 * a*(9d s a^.

Similarly there exists an irreducible character 92 of X with (92, a?j) ̂  0
and & * ^(92) S ^,2. Thus by (13.5) 9X ̂  92. Now (13.2) yields
that

(13.6) at; = I3 - rjio - VOJ + Va

for 1 <L i -g. wx — 1,1 ^ 3 ̂ w2 — 1. The ±^y are distinct irreducible
characters of £ whose values lie in the required field. Suppose now
that

^oiga = g a>no>ii + dpn

with aoo = 0. Then by the Frobenius reciprocity theorem it follows
from (13.6) that

—a i 0 — aoj + aiS = — 8it ,
irj—1 W2

= % aiocoio + £
i

3=1

!—1 »2—1 v2—1 »i—1

Consequently for We 2B

In a similar way it can be shown that Vot(W) = o)ot(W). Then it
follows from (13.6) that y]Bt{W) = Q)8t(W) for We$2>.

This implies that if WeSS then
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The orthogonality relations for the irreducible characters of X now
yield that every irreducible character of X distinct from all ±7]^

vanishes on 2B. This completes the proof of the lemma.

LEMMA 13.2. Suppose that Hypothesis 13.1 is satisfied. If A is
a generalized character of X which vanishes on 2B then

IOI-I w a - l

A = a ^ + g ai0 g 7<y
W 2 - 1 « ! - l W!-l w 2 - l

+ S <*oi S ft; - aoo S S 7ii + ô
i=l i=0 »=1 i=l

= 0 for 0 ^ i S> Wi - 1,0 ^ j ^ w2 - 1.

Proof. Let
loi-l w 2 - l

^ = ô + S S ««?« .
»=o i=o

where (Jo, ^ y ) = 0 for 0 ^ i ^ ^ - 1, 0 g i ^ w2 - 1. By Lemma 13.1

(A, l s - ft0 - Vos + Va) = 0 for 0 ^ i ^ wx - 1, 0 ^ i ^ w;2 - 1 .

Hence

Goo — <lio ~ Go; +
 a<i = ° f o r ° = * ^ wi ~ 1» ° = J = wa "" 1 •

This implies the desired result.

Hypothesis 13.2.
( i ) The group 8 = X satisfies Hypothesis 13.1.
(ii) 2 contains a normal subgroup S such that

8 = £35$!, S n 2Bi =

and if $1 is a non empty subset of 2B — 3B2

= SB .

Since SŜ  is a S-subgroup of SDB, Hypothesis 13.2 (ii) implies that
is a S-subgroup of 2. Also, if We SBff then C(T7) n « = 2Ba.

LEMMA 13.3. Suppose that 2 satisfies Hypothesis 13.2.
SB — 2S2 is a T. I. set in 2 . For 0 ^i ^ Wi — 1,0 ^ j ^ w2 — 1 there
exist irreducible characters [X{j of 2 such that
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where {at} is a set of integers depending on j and the sign depends
only on j .

Proof. Hypothesis 13.2 implies that 2B - 282 is a T. I. set in 8.
For 0 ^ i, k ^ wx — 1,0 ^ j ^ w3 — 1, o)i5 — cokj vanishes on 2Ba. Define

£« = {o)iS | 0 ^ i ^ wl - 1} for 0 ^ i ^ w2 - 1 .

Then by Lemma 10.1 S^ is coherent for 0 ^ j ^ w2 — 1. Let /*o- =
±coT

ij9 where the sign is chosen so that /J<y(l) > 0. Then

((Oij - O)kJY = (O)i5 - COkj)* = ±{[li5 - fikj)

for 0 ^ i, k ^ w1 - 1, 0 ^ j ^ w2 - 1 .

The Frobenius reciprocity theorem now implies the required result
since {o)^ — cokj)* vanishes on 2B2.

LEMMA 13.4. Suppose that S satisfies Hypothesis 13.2. Let X be
an irreducible character of 8. Then there exists an integer a such
that

or

/or some i, i with 0 ^ i ^ wx — 1, 0 ^ j ^ wa — 1.

Proof. Let /Ĵ - be the characters defined in Lemma 13.3. If
X = /î - for some i, j with 0 ^ i ^ ^ — 1, 0 ^ j ^ w2 — 1 then the
result follows from Lemma 13.3. Furthermore Lemma 13.3 implies
that

I f*u(W) |J = w = | C(W) | for We SB?.
;=o i=o

Hence if X =£ [xi5 for all i, j we have that X( W) = 0 for TFe SQBf. This
completes the proof of the lemma.

We will use the fact that Lemma 13.4 is valid over fields of
characteristic prime to | 8 | , provided that X is absolutely irreducible.

LEMMA 13.5. Suppose that 8 satisfies Hypothesis 13.2. For
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0 g i ^ w1 — 1, 0 ^ j ^ w2 — 1 let Pa be the characters defined by
Lemma 13.3. Define

f i = £ Ay /or 0 ^ i ^ w2 - 1 .
i=0

Then £,- is induced by an irreducible character ft, of 5?. Further-
more

= ft for 0 ^ i ^ Wi — 1, 0 ^ i ^ w, — 1 .

Proof. By Lemma 13.4 the characters /*<,•, 0 g i ^ ^ - 1, 0 ^
j g w2 — 1 are the only irreducible characters of S which do not
vanish on 2B}. Since each [ti0 agrees on 85̂  with a suitable linear
character of S/ffl it follows from Lemma 13.1 that {fti0 \ 0 ^ i ^ ^ — 1}
is the set of irreducible characters of 8/51. Therefore ftnfty agrees
with fty on SB. Hence Lemma 13.1 implies that ftioftOj = /iiim Con-
sequently if ft = jMoiift then

= ft for 0 g t ^ wx - 1, 0 ^ i ^ w, - 1 .

Thus the Frobenius reciprocity theorem implies that fii3- is a constituent
of fif for all values of i, j . Since

^ = fid)
t=0

the lemma is proved.

LEMMA 13.6. Suppose that 8 satisfies Hypothesis 13.2, p is a
prime, and ft is an extra special p-group with ft* = 2B2. Let
15B:5t' | = p2n. Then wx divides either pn + 1 or pn — 1.

Proof. It is easily seen that a faithful irreducible character of
5? has degree pn. Thus by Lemmas 13.4 and 13.5

Vn = /*nd) = awx ± 1 .

This proves the result.

LEMMA 13.7. Suppose that 8 satisfies Hypothesis 13.2. Let fth fy
6e defined by Lemma 13.5. TAew aw irreducible character of $t
either induces an irreducible character of 8 or it induces f y /or some

0 ^ j ^ w2 — 1.

Proof. The group 2Bi acts as a permutation group on the conjugate
classes of 5?. If We 2Bi and TT leaves some conjugate class of St fixed,
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then since 2Bi is a Hall subgroup of 8, Wmust centralize, some element
of this conjugate class. Hence by assumption the only conjugate
classes of ® which are fixed by any W'eSBJ are those containing an
element of 3B2. There are at most w2 of these. The group 2Bi also
acts as a permutation group on the irreducible characters of 5?. There-
fore by 3.14 there are at most w2 irreducible characters of $ which
are fixed by any element TFeSBJ. By Lemma 13.5 the w2 distinct
characters pJf0^j< w2 are fixed by every We SBj. and these induce
£/, 0 ^ j < w2. Thus every other irreducible character of ® induces
an irreducible character of 8. The proof is complete.

Hypothesis 13.3.
( i ) 8 is a tamely imbedded subset of the group X and 8 = iV(S)

has odd order.
(ii) 8 satisfies Hypothesis 13.2, and X satisfies Hypothesis 13.1

with the same group SB.
(iii) 8 contains a normal nilpotent subgroup § such that

2BaS$S U

(iv) There exist subgroups tQl9 • • • ,&* such that {§, 11 ^ s ^ n)
is a system of supporting subgroups of 8 and 8^ Let 5ft, = iV(&.)
for 1 ^ s ^ n.

(v) -For 0 ^ i ^ Wi - 1, 0 ^ i ^ w2 - 1 let rjiit fiijf £y 6e defined
respectively by Lemmas 13.1, 13.3 and 13.5.

(vi) Let Sf be the set of characters of 8 which are induced by
non principal irreducible characters of Si, each of which vanishes
outside 8.

LEMMA 13.8. Suppose that Hypothesis 13.3 is satisfied. Assume
that for some i, j , k with 0 ^ i ^ wt — 1,1 ^ j , k ^ w2 — 1, fti(l) =
/*iJfc(l). Tfrew /jeo- — /iifc vanishes in 8 — 8f and

Proof. By Lemma 13.3 /î -, j«<fc do not contain 2B2 in their kernel,
thus they do not contain § in their kernel. Hence by Lemma 4.3

Pa, f*ik vanish on $ — 8. By Lemma 13.3 Pu^ = Pum^ T h u s
Pa — Pik vanishes on 8 — Sf. Hence || (p^ — pik)

T ||a = 2. By Lemmas
9.1 and 13.3



13. SE&F NORMALIZING CYCLIC SUBGROUPS 837

{(ft; - ft*)r MVa - Vik)}(W) = 0 - for We 2B . • .

Thus the result follows from Lemma 13.1. "}

LEMMA 13.9. Suppose that Hypothesis 13.3 is satisfied. Choose
k with 1 ^ k ^ w2 — 1. Let

? is coherent and

t=0

is an extension of z to S^ where either e = 1 or e = — 1.

Proof. Since 181 is odd Si =£ Si* Hence ^(S^) ^ 0. By Lemma
13.5

W l - 1

» = 0

Hence Lemma 13.8 yields that

(Si ~ SkY = "S ± tin - Va) •
t=0

By Lemma 9.1 (£, — SkY vanishes on SBL Thus Lemma 13.2 implies
that

(13.7) (Si - SkY = ± S (Va - Vik) .
i=0

Now define

where the sign is the same as in (13.7). It is easily seen that z is a
linear isometry on S^. Thus £^ is coherent.

LEMMA 13.10. Suppose that Hypothesis 13.3 is satisfied. Let &[
have the same meaning as in Lemma 13.9. Then (S^f r) is sub-
coherent in £f where z is defined on Si as in Lemma 13.9.

Proof. By Lemma 13.9 S4 is coherent. Let &~ be a coherent
subset of Sf which is orthogonal to £fx. Let r2 be an extension of
z to ^.

Every generalized character in Sf vanishes on 5B. Thus by Lemma
9.1 every generalized character in ^(S^Y vanishes on 2B. If X is
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an irreducible character in ^ then \ ^ X as | S | is odd. Further-
more (X — xyeU^i^Y and thus vanishes on 2B. Hence V2 =£ ±Tjif

for 0 ^ i ^ wx — 1, 0 ^ j" ^ w, — 1. Therefore V2 is orthogonal ta
^t r . If f, G ^ 7 then since (£?, (f, — f ,)r) = wlf £;2 is a linear combination,
of 3?i8 and ^ , with 0 ^ i ^ wx — 1. Hence fJ2 is orthogonal to ^tT-
Consequently ^~T2 is orthogonal to S^T.

Suppose now that a e ^(S?) with aT = Al + Aa, where A2 e <ST(̂ "T2),
Ax is not orthogonal to ^(SiT) and H ^ H 2 ^ ^ . Let ar = T + J,
where A is a linear combination of the generalized characters 7)^ and
(r, ^,) = 0 for 0 ^ i ^ wx - 1, 0 ^ j ^ w2 - 1. Let a be the set of
integers s such that £, e ^ Lemma 13.8 implies that every gener-
alized character in ^"r2 is orthogonal to r)i5 for 0 ^ i ^ Wi — 1, i g tx.
Let A = Ao + J(, where Jo is a linear combination of yi$ with s e a and
(A'x, Vu) = 0 for 0 ^ i ^ wx - 1, s e a. Then

(13.8) H j n r ^ w i .

By changing notation it may be assumed that f lf £a e Si and
(A'Xf f[ - f0 > 0. By Lemma 9.4

(A[, ff - fi)a = («% fl - «>3B = («. fi - « f i •

Hence (JJ, ff — f2
r) is a non zero integral multiple of wx. By (13.8)

(Af A r ^ r \ a < II A* I I 2 II £ r £ r I I 2 < 9 i / ? 2

Therefore

(13.9) (A'l9 fI - fi) = Wl .

By Lemma 13.2

(13.10) A[ = e "s ai0^0 + 6 "s {(a* + aol)^x + (ai0 + aO2)?ia} + A[9 ,
0 0

where 6 is as in Lemma 13.9 and where (AXf 7]it) = 0 for 0 ^ i ^ wx — l r

* = 0,1, 2. Now (13.9) yields that a01 - aM = 1. Thus (13.8) and
(13.10) imply

" V aol)
a + (ai0 + a01 - 1)'} ^ w1 .

Every term in the second summation is non zero. Thus ai0 = 0 for
O ^ i ^ ^ - 1 . Hence a01 = 1 or a01 = 0. Hence (13.8) and (13.10)
yield that A[ — ff or JJ = — f2

r. This shows that (£{, z) is subcoherent
in £f and completes the proof of the lemma.

In the proof of the main theorem of this paper we will reserve
the letter z to denote the extension of z to £fx defined by Lemma
13.9. Thus (,_9f, z) will always be subcoherent in £fm
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DEFINITION. A Z-group is a group all of whose Sylow subgroups
are cyclic.

Hypothesis 13.4.
( i ) 2 = 935B with 93 n ft = 1, ft < 8 and ft solvable. Furthermore

33 is a cyclic S-subgroup of 8 and | 8 | is odd.
(ii) For B e 93f, C^(B) = (^(93). Furthermore 6 (̂93) is a Z-group

and ft ^ C^(93).
(iii) 8 is faithfully and irreducibly represented on a vector space

y over a field of characteristic not dividing | 8 | . y contains a
vector space yi of dimension at most 1 such that if B e 93f, v e y
tfeen vB = v if and only if ve 2^.

LEMMA 13.11. Suppose that Hypothesis 13.4 is satisfied. Then
ft is nilpotent. Furthermore | 931 is a prime and the representation
of 8 on y is absolutely irreducible.

Proof. Let X be the character of the representation of 8 on y.
Let 5̂ be a Sp-subgroup of R which is normalized but not centralized
by S3. Then either CU93) = 1 or ^33 satisfies Hypothesis 13.2. Thus
by Lemma 13.4 only one absolutely irreducible constituent of X^ is
not linear. Hence X is absolutely irreducible. Furthermore Lemma
13.4 and 3.16 (iii) imply that X^ has p% as a constituent. Thus 193 |
is a prime.

The nilpotence of S is proved by induction on |A| . We assume
without loss of generality that the underlying field is algebraically
closed. If 93gF(S) then $gC(93) contrary to assumption. Thus by
3.3 93g£C(F(S)). Let g be a minimal nilpotent normal subgroup of
2 which is not centralized by 93. Then g is a p-group for some prime
p. Furthermore g' = D(%) and 93 S C(JD(g)). By Lemma 13.4 there
is exactly one non linear irreducible constituent of X^. Let

where each fa is a linear character of g93. Assume first that n =£ 0.
If v is an irreducible constituent of 0,g, then (v, 0,̂ ) = 1. Since
v jz fa^ for 1 ^ i ^ n, we have (X,̂ , fa^ = 1. Since X^ is a sum of
conjugate characters this implies that % is abelian and the fa are
distinct. Thus g33 = g0 x 3x93, where | g01 = p and &9S is a Frobenius
group. For L e 2 let /if(X) = fa(L~lXL). If L 6 8 such that tf = fa
for some i, j then L e JV(Si) since gi is the kernel of each /i<,g. Since
S permutes the constituents of \ , g transitively this implies that iV(gi)
acts transitively on {fa, • • •, /*„}. Hence w is odd. Thus X(l) = w + 1931
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is even contradicting the absolute irreducibility of X. Therefore n = 0
and A;|ĉ  is irreducible.

By Lemma 13.4 this implies that X(l) = 1931 or X(l) = 2 | SB | - 1.
If Ml) = 1331 then \ l f t is reducible since (|SB|f |ft|) = 1. As 1331 is a
prime this implies that X,,ft is a sum of linear characters and 58 is
abelian. Thus we can suppose that X(l) = 2 | SB | — 1. By Lemma 13.4
i,g is irreducible. Thus if £> is any proper 33-invariant subgroup of
5? with g^£> then 33£> satisfies the induction assumption and § is
nilpotent. If £> = P̂ x & with g £ P̂ then since X{^ is irreducible,
&SZ(8) . If g i s n °t a Sp-subgroup of 8 then g5?i is a proper sub-
group of ft where ftx is a 33-invariant p-complement in ft. Thus
fti£Z(ft) and ft is nilpotent. Suppose now that g is a Sp-subgroup
of 8.

Since B(g )£C(8) , Z>(g) is cyclic. Let & be the subgroup of
index p in Z>(5). Then g/gx is a p-group of class 2 and hence is a
regular p-group. If g/gj does not have exponent p then there exists
a characteristic subgroup of g of index p which is normal in 8 but
is not centralized by 33 contrary to the minimality of g. Thus g/g t

has exponent p. Therefore 33 acts without fixed points on S/-D(S) as
Cs(33) is cyclic and Z>(g)SC(8).

Let ffl/© be a chief factor of 8 with g ^ § . Suppose first that
33 does not centralize $/£>. Then 33$/£> is a Frobenius group which
is represented on S/^CS)- As 33 has no fixed points on 3/D(f$) Lemma
4.6 implies that ft/© acts trivially on S/Z)(g). Thus ft = gC®(g) is
nilpotent. Assume now that 8/£> is abelian. Then | f t : $ | = g for
some prime g =£ p. If 335J/& is represented faithfully on g/Z>(3), the
minimal nature of g implies that 33®/£> is represented irreducibly on
3AD(3). Let « /§ = <Q§>. Then Q acts without fixed points on
g/Z)(g). Since X,s is irreducible, Z(g) S Z(8). Thus Q e C J f l ^ ) ) ) .
Hence Q e C(Z)(g)). We will now reach a contradiction from the fact
that Q $ C(g). Let § = g x &. Then & £ Z(8). Thus 8/g is abelian.
Let ft be the linear character of 8/3 such that X(H) = X(l)fi(H) for
He &. Let \0 = x/i-1. Then \0(l) = x(l) = 2 1331 - 1 and Xo is an
irreducible character of 8/$i. The group 8/fe satisfies Hypothesis 13.2
where g&/©i is the normal subgroup. Thus by Lemma 13.4 no
irreducible character of S/& has degree 2 | SB | — 1. This completes
the proof of the lemma in all cases.

DEFINITION. Let 21 and 33 be subgroups of a group 8 with 33 £5
iV(2I). We say that 33 is prime on 21 if

for

If j 331 is a prime then 33 is necessarily prime on
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LEMMA 13.12. Let 2 = 2193 with 21 < 8, 21 solvable, 93 cyclic,
(| 211, (331) = 1 and |3RB| odd. Suppose that 93 is prime on 21 and
CffiB) ts a Z-group. If (^(93)^21' tfon 2I/F(2l) is nilpotent. If
furthermore | 93 | is not a prime then 21 is nilpotent.

Proof. Let 8 be a counter example to the result for which 1211
has minimum order. Since (| 81 |f | S31) = 1 the hypotheses are satisfied
by all 93-invariant factor groups of 21.

Suppose that | S3 | is not a prime. Let 9Ji be a minimal normal
subgroup of 8. Then 9JJ is a p-group for some prime p and 5Di^2I.
By induction 2I/5K is nilpotent. If O is a 93-invariant S,-group of 21
for q e 7r(2I), q =£ p, then 2RG < 2193 and 93 has no fixed points on
£} — Q'. If 21 is not nilpotent then it is possible to choose g so that
2RO is not nilpotent. Let d = Cc(2ft). Then 93G/G! is faithfully
represented on 2JJ. Hypothesis 13.4 is satisfied with 2JI in the role
of 3̂ r Thus by Lemma 13.11 1931 is a prime contrary to assumption.

Assume now that |93| is a prime. Suppose that 8 contains two
distinct minimal normal subgroups SSlx and 2ft2. For i = 1, 2 let g*
be the inverse image of F^SHl^ in 21. By induction 2I/& is nilpotent
for i = 1, 2. The result now follows from the fact that F(%) =
Si PI $2- Thus it may be assumed that 8 contains a unique minimal
normal subgroup 2Ji. Then 3K g OP(2I) = F(2l) for some prime p. Let
® = Z)(Op(2t)). Then F(2l/®) is a p-group. Thus the result follows
by induction if © =£ 1. Assume now that S) = 1. Then Cĝ aft) = OP(2I).

Let 2IX be a 93-invariant Sp,-subgroup of 21. Then 2̂ 93 is faith-
fully represented of 2JI. Hypothesis 13.4 is satisfied with 2Ji in place
of 2̂ ~ unless 2l1EC9r(93). Thus by Lemma 13.11 % is nilpotent or

Let 2l0 = 2I/OP(2l) and let P̂o be a 93-invariant Sp-group of 2l0. If
3̂o £ ^(2I0) then 2lo/̂ Po is nilpotent since it is a p'-group and the result

is proved. Assume that ^o §s ̂ (2I0). By induction 2lo/F(2lo) is nilpotent.
Hence 93 does not centralize P̂o by assumption.

Let $ be a p-group in 2I0 which is minimal with the property
that 93 normalizes ^ but does not centralize 5̂. Since F(2I0) is a pf-
group there is a prime q =£ p such that ^ D contains no normal p-sub-
group, where D is a Sg-group of F(2l0). Thus 93̂ 5 acts faithfully on
Q. Let 9J?! = C^(93). As D93 is faithfully represented on 2ft Lemmas
4.6 and 13.4 imply that 2^ =*= 1. Let Ox = Cc(93). As ^93 is rep-
resented faithfully on Q/Z7(D), Lemmas 4.6 and 13.4 imply that
Ox=3fcl. Thus Cgj(93) is a Z-group, 2Jlx < ^(93) and pq\\C^8)\.
Therefore

f 13.11) ^ '^1 (mod (7) .
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By 3.11 *$ is a special p-group and D(?)SC ? (8 ) . Thus D(^) is
cyclic. By Lemma 13.11 the representation of $P33 on Q/Z)(Q) has a
unique faithful irreducible constituent and this constituent is absolutely
irreducible. Let ft be the character of this constituent. If D(ty) =£ 1
then by Lemma 13.4 fi^ remains absolutely irreducible. Hence
q = 1 (modp) contrary to (13.11). Therefore P̂ is an elementary
abelian group and 33̂ 5 is a Frobenius group. Thus /*(1) = 1331 is a
prime. If sp is not cyclic then /i,^ is reducible in the field of q
elements as /i,^ is faithful. Thus q = 1 (mod p) contrary to (13.11).
Therefore s$ is a cyclic group of order p and 33̂ P is a Frobenius group.
Hence

(13.12) p = 1 (mod 1331) .

Let Do be a 33̂ 5 invariant subgroup of O which is minimal sub-
ject to spgCg^Qo). Thus the representation of 33$ on Q0/Z)(Q0) is
irreducible. Therefore £ioS(£yP)'. Since OP(2I) is elementary and
C (̂33) ^ 1 we get that the hypotheses of the lemma are satisfied.
Thus the minimal nature of SI implies that 2I0 = £}$ and O = Do-
Therefore the representation of 33D$ on 2Ji is irreducible. Let Ox
be a minimal normal subgroup of 33£}̂ 5 which is not centralized by
33. Thus SX^£L. Then QJ = ZKd) and 33 £ CWE^)- Hence Z^d)
is cyclic. Let X be the character of the representation of 33d on 2Ji.
By Lemma 13.4 A, has exactly one irreducible constituent which does
not have (33d)' in its kernel. Let 6 be this constituent and let

X = £ A* + * .
t = l

Since each X{ is a character of a group of exponent q \ 331 it follows
from (13.11) and (13.12) that each \ is absolutely irreducible. Thus
Xi(l) = 1 for 1 ^ i ^ n. By Lemma 13.11 0 is absolutely irreducible
in the field of p elements. By Lemma 13.4 0(1) ^ 2 1331 - 1. Since
1331 p is odd (B) and (13.12) yield that

(13.13) |3Ji| g r p ' ^ p W .

Thus n ^ 0. Let 0|C = £r=i vjf where each v, is an irreducible char-
acter of £\. Thus

(13.14) X = g \,1Di +

Since d < Q^^P, {\ i |Q, Vj} is a set of conjugate characters. Since
n ^ 0 they are all linear. Thus Q{ = 1. Hence £^33 = Da x
where £^33 is a Frobenius group and | O, | = q. Furthermore
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(13.15) m = 0(l) = | S31

Since OgSkerX* =£ £k for 1 ^ i ^ n we see that X<|jQ =£ i>y for all
i, j . Since v< =5t Vy for i 3= j we get that no constituent of X,IDi occurs
with multiplicity greater than one. Since { \ Q } is a set of distinct
linear characters of O2 we get that n ^ q. Now (13.13), (13.14) and
(13.15) yield that

P ^ Ml) = m + n^\S8\ + q .

This contradicts (13.11) and (13.12) since | S31 pq is odd. The proof is
complete.





CHAPTER IV

14* Statement of Results Proved in Chapter IV

In this chapter, we begin the proof of the main theorem of this
paper. The proof is by contradiction. If the theorem is false, a
minimal counterexample is seen to be a non cyclic simple group all
of whose proper subgroups are solvable. Such a group is called a
minimal simple group. Throughout the remainder of this chapter,
© is a minimal simple group of odd order. We will eventually derive
a contradiction from the assumed existence of ©.

In this section, the results to be proved in this chapter are summar-
ized. Several definitions are required.

Let 7T* be the subset of n(®) consisting of all primes p such that
if sp is a Sp-subgroup of ®, then either Sfif^ift) is empty or $P
contains a subgroup 21 of order p such that C^(2l) = 21 x 95 where 33
is cyclic. Let n? be the subset of TC* consisting of those p such that
if 5̂ is a Sp-subgroup of © and a is the order of a cyclic subgroup
of iV($P)/$pC($P), then one of the following possibilities occurs:

( i ) a divides p — 1.
(ii) $P is abelian and a divides p + 1.
(iii) | $P | = pz and a divides p + 1.
We now define five types of subgroups of ©. The basic property

shared by these five types is that they are all maximal subgroups of
©. Thus, for x = 1, II, III, IV, V, any group of type x is by definition
a maximal subgroup of @. The remaining properties are more detailed.

We say that 9K is of type I provided
( i ) 3K is of Frobenius type with Frobenius kernel §.
(ii) One of the following conditions is satisfied:

(a) § is a T. I. set in ©.
(b) 7r(£)S7r*.
(c) & is abelian and m(§) = 2.

(iii) If p e 7r(3K/§), then mp(2TC) ^ 2 and a SP-subgroup of 2Ji is
abelian.

The remaining four types are by definition three step groups. If
@ is a three step group, we use the following notation:

@ = ©'2^ , ©' n 25*! = 1 , C&iZ&J = SB*. *•• • •

Furthermore, !Q denotes the maximal normal niljxrtent S-subgroup of
©. By definition, § ^ S ' so WG let II be a complement for § in ©',

845
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In addition to being a three step group, each of the remaining four
types has the property that if 2Q0 is any non empty subset of
aÔaOS, - SB1 - 2B2, then iV@(2B0) = SJyBB,, by definition. The remaining
properties are more detailed.

We say that @ is of type II provided
( i ) U =£ 1 and U is abelian.
(ii) N9(O)&&.
(iii) iV®(2I) g @ for every non empty subset SI of @" such that

(iv) | 2&! | is a prime.
(v) For every prime p, if 2t0, 2tx are cyclic p-subgroups of U

which are conjugate in © but are not conjugate in @, then either
C (̂2I0) = 1 or Cc(8y = 1.

(vi) £>C(£>) is a T. I. set in @.

We say that @ is of type III provided (ii) in the preceding defi-
nition is replaced by

(ii)' A i ( U ) S © f

and the remaining conditions hold.

We say that @ is of type IV provided (i) and (ii) in the definition
of type II are replaced by

(i)" U ' * l ,
(ii)" AT<,(U)S©f

and the remaining conditions hold.

We say that <S is of type V provided
(i) U = l.
(ii) One of the following statements is true:

(a) @' is a T. I. set in ©.
(b) @' = sp x @Of where @0 is cyclic and ty is a Sp-subgroup of

© with

THEOREM 14.1. Let © 6e a minimal simple group of odd order.
Two elements of a nilpotent S-subgroup § of © are conjugate in ©
i / and only if they are conjugate in iV(£>). Either (i) or (ii) is true:

(i) Every maximal subgroup of © is of type I.
(ii) (a) © contains a cyclic subgroup 23 = SBx x 2B2 wi</& £fte

property that JV(2B0)=2B /or ever]/ non empty sw&set 2B0 o/ SB—2$^-SB!.
AZso, SB, * 1, i = 1, 2.

(b) © contains maximal subgroups @ and 2 not o/ type 7

e
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(c) Every maximal subgroup of ® is either conjugate to @ or
X or is of type I.

(d) Either @ or Z is of type II.
(e) Both @ and % are of type II, III, IV, or V. (They are

not necessarily of the same type.)
In order to state the next theorem we need further notation. If

8 is of type I, let

8 = 2, = U C2(H) ,

where £> is the Frobenius kernel of 8.
If 8 is of type II, III, IV, or V, we write 8 = 8'SB^ 8' n SBi = 1.

Let £> be the maximal normal nilpotent S-subgroup of 8, let 11 be a
complement for § in 8' and set SB = C^SBx), 2Ba = 2B n 8', 3& = 2B -

If 8 is of type II, let

8 = U C2,(H) .
ne§*

If 8 is of type III, IV, or V, let

8 = 8 ' .

If 8 is of type II, III, IV, or V, let

8t = 8 U U L-
zest

We next define a set s/ = J^(8) of subgroups associated to 8.
Namely, 3Ji e sf if and only if 2JI is a maximal subgroup of © and
there is an element L in 8* such that C(L) g; 8 and C(L) g; 9Ji. Let
{??!, • • •, SJJJ be a subset of s*/ which is maximal with the property
that 9^ and Sfty are not conjugate if i =£ i. For 1 ^ i g w, let £>* be
the maximal normal nilpotent S-subgroup of %.

THEOREM 14.2. If 8 is of type 7, / / , / / / , IV, or V, then 8 and 8X

are tamely imbedded subsets of © with

JV(S) = N(k) = 8 .

JTf J^(8) is empty, 8 and 8X are T. I. sets in ©. / / j^(8) is non
empty, the subgroups $ l f • • •, &n are a system of supporting subgroups
for 8 and for 8^

The purpose of Chapter IV is to provide proofs for these two
theorems.
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15. A Partit ion of 7r(©)

We partition 7r(©) into four subsets, some of which may be empty:
n1 = {p\A Sp-subgroup of © is a non identity cyclic group.}
7T, = {p 11. A Sp-subgroup of © is non cyclic.

2. © does not contain an elementary subgroup of order p3.}
7T8 = {p 11. © contains an elementary subgroup of order p3.

2. If P̂ is a Sp-subgroup of ©, then M(̂ P) contains a non
identity subgroup.}

7r4 = {p 11. © contains an elementary subgroup of order p3.
2. If P̂ is a Sp-subgroup of ©, then M(̂ P) contains only

It is immediate that the sets partition 7r(®). The purpose of Lemma
8.4 (i) is that condition 2 defining 7ra is equivalent to the statement
that Sf^^K^) is empty if ty is a Sp-subgroup of ©. Lemma 8.5
implies that 3 g nx U TT2.

16. Lemmas about Commutators

Following P. Hall [19], we adopt the notation 72133 = [21,S3],
r+i2 ls8»+i = [r.gsB«f » ] , n = lf 2f • • • f and 722I33(S: = [21, 93, £] .

If X is a group, ^f3^(X) denotes the set of normal abelian
subgroups of X.

The following lemmas parallel Lemma 5.6 of [27] and in the
presence of (B) absorb much of the difficulty of the proof of Theorem
14.1.

LEMMA 16.1. Let ^ be a Sp-subgroup of © and 2t an element of
^4C^(^). If % is a subgroup of © such that

(i) <2t, S> is a p-group,
(ii) % centralizes some element of Z(ty) fl 21*,

then 73S2t3 =

Proof. Let Ze C(g) n Z(¥) n 21*, and let G = C(Z). By Lemma
7.2 (1) we have 21 S <W<£) = ©. As sp is a Sp-subgroup of <£f Sft =
P̂ 0 § is a Sp-subgroup of §. Since 21 < spf so also 21 < SR, and since

21 is abelian, we see that 72£>2P £ OP>(£). Since § < £, we have
7^21 S § and so 73g2F S OP,(C). Since <2l, g> is assumed to be a p-
group, the lemma follows.

If P̂ is a non cyclic p-group, we define ^<0P) as follows: in case
is non cyclic, ^(^P) consists of all subgroups of Z(̂ S) of type

(p, p); in case Z(̂ P) is cyclic, ^(^P) consists of all normal abelian
subgroups of P̂ of type (p, p).

LEMMA 16.2. Let tybea non cyclic SPsubgroup of ©, 21 e
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and let % be a subgroiip such that » j :r
(1) <% 3> is a p-group,
(ii) 21 contains a subgroup S3 of %/(%) such that

/ / p ^ 5, then 74S2l4 = <1>, while if p = 3, tAen 76g2lQ =; <1>.
t / Hi == 51 n Z(«P) and p^5, then 7332t? =

Proo/. If 33O £ Z(SP), the lemma follows from Lemma 16.1. If
S30 g Z(?P)f then $P0 = C (̂a30) is of index p in P̂ so is of index at most
p in a suitable Sp-subgroup p̂* of C(33O) = G. In particular, p̂o < *P*.

Let § = (V,(G)f SRf = $* n ft, and % = *po n ft. Since % < *P*,
so also «R < *P*. Hence 7?fc*H S % n ft S «Rf and so 73W2I3 = <1>, 21
being in ^K^f(%). If p ^ 5, we conclude from (B) that H C ft, and
so 73£2F £ OP,(E). Since 7g2l £ ftf the lemma follows in this case.
(Since ^50 centralizes Hlf we have 73g2I? = <1>.)

Suppose now that p = 3. If SR* = %, then 72W2I2 = <1>, and so
by (B), 21 £ § and the lemma follows. If SJS* ̂  %, then $* = SR,5Pff
since \^*:^0\= p. In this case, letting H = 2lft/€>, f* = $*§/&, we
see that H e ^ O ^ ( ^ * ) and so H £ Or.,(C/ft), that is, 21 £ Of»iFi^,,(C) =
ffl. Hence, 7^21 £ S and since S < $ * , we see that 73g2t3£OP,,„.„>(£),
and so 73g2I3 £ ft. Continuing, we see that 74g2l4 £ 0,^(5;)% and so
78g2I8 £ Op>(£), from which the lemma follows.

LEMMA 16.3. Let ty be a Ss-subgroup of © and let
g be a subgroup of © such that
( 0 <S> £> is a S-group.
(ii) Ex = c y g ) * <i>.

= « lf and E, =

Proo/. First suppose H; £ Z(?P). Let ft = C(&x) 3 < P̂, g>. Since
*P is a Sg-subgroup of ft, (B) implies that G £ <Wft). Setting SR =
O.'..(ft) 0 SP, we have O3,,3(&) = O r(f tm. If C C TO, then S £ Z(!R)
and so 72ge2 £ O,,(ft) n <3, E> = <1>, since <g, E> is a 3-group. If
C £ Z(SP), then the definition of a'(SP) implies that 725E2 £ ^ ^ ( f t ) ,
so if 72g(£2 ^ <1>, we must have 723£2 = H-^H for suitable H in
0a'(ft). By definition of § it follows that H-^H = C^

We can suppose now that ^ g Z(?P). In this case, the definition
of %/W) implies that G = <3), Gx>, where S) = fli(Z(SP)). Let % =
C^GO and let $* be a S3-subgroup of § = CfGj) containing P̂o and
[et W = P̂* n O8»l8(ft). Since ^?0 is of index at most 3 in $P* and since
ip0 centralizes Gf we have 72^P*G2 = <1>, and so G £ $? . If SR* £ %,
it follows that 723<£2 £ OS'(ft) fl <G, g> = <1> and we are done. Hence,
we can suppose that SR* g ^Po. In this case, it follows that $* =
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since | $P* : *po| = 3. We also have Z>(W)S%, and s o E g C ^
©. If © £ *po, we have £ £ Z(@), and since Z(8) char @ char W, it
follows that 728E2 £ OA&) 0 <<£, 8> = <1> and we are done. We can
therefore suppose that £ §£ Z(@). Choose # in © - Ce((£). Since 5̂*
centralizes Ex it follows that E does not centralize 3) = <Z)>. Consider
[A # ] = * V 1 . Now E i Z f f i X r , and so FeZ(^0). On the
other hand, F lies in Z)($P*) since both E and J9 are in $po*. Since
Eed, it follows that E centralizes F. Since <$po, E> = $p*, it follows
that I*7 is in Z(?P*). But F is of order 3 and (^ = QX(Z($*)), since
Z(̂ 5*) is cyclic. It follows that <F> = Elf and so E normalizes (£ and
with respect to the basis (D, F) of & has the matrix (5 i )• On th e

other hand, P̂ possesses an element which normalizes E and with
respect to the basis (D, F) has the matrix Q IjM. Since these two

matrices generate a group of even order, we have the desired con-
tradiction which completes the proof of this lemma.

17. A Domination Theorem and Some Consequences

In view of other applications, Theorem 17.1 is proved in greater
generality than is required for this paper.

Let $ be a Sp-subgroup of the minimal simple group £ and let
21 be an element of ^^L^(^5). Let q be a prime different from p.

THEOREM 17.1. Let £}, O2 be maximal elements of M(2l; q).
(i) Suppose that O is not conjugate to £LX by any element of CS(2I).

Then for each element A in 21*, either CD(A) = 1 or C^(A) = 1.
(ii) If 21 e «5*g"L (̂$P), then Q and JQj are conjugate by an

element of C(2I).

Proof. The proof of (i) proceeds by a series of reductions. If
21 = 1, the theorem is vacuously true, so we may assume 21 =£ 1.

Choose Z in Z(̂ 5), and let G* be any element of M(2l; q) which
is centralized by Z. By Lemmas 7.4 and 7.8, if S is any proper
subgroup of £ containing 21Q*, then £>* C OP,(2).

Now let D* denote any element of M(2t; g) and let 8 be a proper
subgroup of X containing 2IQ*. We will show that D* S OP<(8). First,
suppose Z(?P) is non cyclic. Then Q* = <CD*(Z) |ZeZ(^)*>, so by
the preceding paragraph, £>* g OP>(8). We can suppose that Z(?$) i&
cyclic. Let Z be an element of Z(̂ P) of order p. We only need to
show that [O*, Z] S OP'(S), by the preceding paragraph. Replacing
£>* by [O*, Z], we may suppose that £>* = [£>*, Z]. Furthermore,
we may suppose that 21 acts irreducibly on D*/Z)(Q*).

Suppose ZeOP,,p(2). Then JQ* = [O*, Z] s 0,^(8) n D * S OP,(S>
and we are done. If 21 is cyclic, then Z is necessarily in OP',P(8),



17. A DOMINATION THEOREM AND SOME CONSEQUENCES 851

since 21 fl Op>>p(8) =£ 1. Thus, we can suppose that 21 is non cyclic.
Let 21, = Ca(£l*) = Ca(Q*/Z>(O*))f so that 21/21! is cyclic and

Zg2IlB We now choose W of order p in 2IX such that <Z, W> <$p.
Suppose by way of contradiction that O* g£OP<(8). Then by Lemma

7.8, we can find a subgroup $ of 2IC(2I1) which contains 2I£>* and
such that £>*gOP.(ft). In particular, D* g OP,(C(TF)). Thus, we
suppose without loss of generality that 2 = C(Tr). Let P̂* be a Sp-
subgroup of 8 which contains *p = *p n C(TF). If ty* = $, then
ZeOp>,p(2), by Lemma 1.2.3 of [21], which is not the case. Hence,
$ is of index p in P̂*. Clearly, 21 £ $ and ZeZ$>). Hence,
HP*, ^] £ Z($) £ 21. Let SJJf = *P* n 0P<,P(S) so that W is a Sp-subgroup
of OP,,P(8). Then RJf, <£>, Q*] £ [21, £>*] n OP,.P(8) £ Q* n OP,.P(S), so
that [5ft*, <Z>, O*] £ 0^(8). Let 93 = OP,.P(S)/OP,(S) and let ^ = C^O*).
The preceding containment implies that [53, (Zy\ g 53lB Let S32 =
JVSB^I)-

 T h e n ^ a c t s trivially on the Q*2l-admissible group SB^.
Hence, so does [<Z>, O*] = D*, that is, S32 £ SBlB This implies that
S3 = 5$! is centralized by Q* so Q* g OP(S). We have succeeded in
showing that if Q* is in M(2I; q) and 8 is any proper subgroup of X
containing WO.*, then D* £ 0,,(S).

Now let ^ , • • •, <^ be the orbits under conjugation by C(2l) of
the maximal elements of M(2I; q). We next show that if D e <^,
Dx G ^ and i =£ i, then JD n &i = 1. Suppose false and i, j , Of C^ are
chosen so that | Q n Oi I is maximal. Let £1* = iVQ(£} n Ox) and Of =
NQJJOL fl C )̂. Since D and C^ are distinct maximal elements of M(2I; g),
Q n D i i s a proper subgroup of both Q* and Of. Let 2 = JV(D n Oi).
By the previous argument, <X1*, Qi*> £ OP/(S). Let 5R be a S,-subgroup
of Op>(2) containing d* and permutable with 21 and let 5Ri be a S9-
subgroup of Op>(2) containing £i* and permutable with 21. The groups
31 and 3^ are available by Dpq in 2IOP>(8). By the conjugacy of Sylow
systems, there is an element C in OP'(8)2t such that W = 21 and
SR° = 5RL AS 21 has a normal complement in Op/(8)2t, it follows that
C centralizes 21. Let D be a maximal element of H(2I; q) containing
Six. Then D n Qi 2 Of =) D fl Qi, and so D e ^-. Also, Q n Qa 2
D*° D(Qfl O!)0 so that D e ^ and i = j .

To complete the proof of (i), let Qf C^ be maximal elements of
M(2I; g) with Q e ^ ^ e ^ . Suppose Ae21* and CC(A)^1, COi(A)^l.
Let 8 = C(A), let 5R be a iS,-subgroup of Op>(2) containing C^(A) and
permutable with 21, and let 9^ be a S9-subgroup of 0P'(8) containing
CfxJLA) and permutable with 21. Then W = % for suitable C in C(2I).
Let D* be a maximal element of M(2I; g) containing 3^. Then
D* n Oa 2 COl(A) gt 1 so Q* G ̂ -. Also, D* n D 0 2 (CD(A))* ^ l s o
D* G tfj and i = j . This completes the proof of (i).

As for (ii), if 21G ._5*if^($P), then there is an element A in 2t*
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such that Ca(A) =£ 1 and CDl(A) =£ 1. By (i), Q and D* are conjugate
under C(2t).

COROLLARY 17.1. If p e nz (J 7cit $p is a Sp-subgroup of © and
21 G ^^L^7(^P), tfeen /or eacfe prime q =£ p and each maximal element
Q o/ H(2I; g), £ftere is a Sp-subgroup of JV(2I) which normalizes Q.

Proo/. Let G e JV(2I). Then £}* is a maximal element of M(2t; q),
since any two maximal elements of M(2I; g) have the same order, so
Q? = £L° for suitable C = C(G) in C(2I). Hence, GC'1 normalizes Q.
Setting 3f = JV(jQ) n JV(a), we see that $ covers JV(2l)/C(3I), that
is, JV(£1) dominates 21. Now we have 3fC(2l) = JV(2l) and $ contains
21. Since C(2l) = 21 x 3) where ® is a p'-group, we have JV(2l) =

= 321© = 33), and 3 contains a SP-subgroup of JV(8l) as required.

COROLLARY 17.2. / / p e n3 u TT4, sp is a Sp-subgroup of
©, 21G S^'^VK^) and q is a prime different from p, then ty
normalizes some maximal element JQ of M(2t; g). Furthermore if G
is an element of ® such that 21* £5 $P, then 2F = 2F for some N in

Proof. Applying Corollary 17.1, some Sp-subgroup 5̂* of iV(2l)
normalizes Oif a maximal element of M(2l; q). Since P̂ is a iSp-subgroup
of JV(8t), P̂ = ^P*' for suitable X in iV(2I), and so sp normalizes Q =
Of, a maximal element of M(2l; </).

Suppose G e © and 21* S 5̂. Then 21* normalizes £1 since P̂ does,
so 21 normalizes Q*"1. Now Cl*"1 is a maximal element of M(2t; g)
since any two such have the same order. Hence, Q*"1 = £L° for some
C in C(2l), by Theorem 17.1 and so CG = N is in JV(D). Since 2F =

= 21s, the corollary follows.

COROLLARY 17.3. / / p G TT4, $ is a Sp-subgroup of ©
)f then M(«) is

Proof. Otherwise, M(2l; g) is non trivial for some prime q =̂ p,
by Lemma 7.4, and so M(̂ P; q) is non trivial, contrary to the definition
of 7r4.

Hypothesis 17.1.
(i) p G 7r3,5p is a SPsubgroup of © and 21G ̂ g^^(^P).
(ii) q is a prime different from p, M(2I; q) is non trivial and O

-is a maximal element of M(2I; q) normalized by SP.
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REMARK. Most of Hypothesis 17.1 is notation. The hypothesis
is that p e 7r3f for in this case a prime q is available such that (ii) is
satisfied. Furthermore, we let

SB = F M B ( « ) ; sp)f 5R = N(ZX) , and SRX

LEMMA 17.1. Under Hypothesis 17.1 if Ge® and 8P E sp, tfcen
= gp y o r s o m e element N in N(O) fl JV(SB).

Proo/. By Corollary 17.2, SI6' = 2F for some element X in 3d.
Since 5ft is solvable, Lemma 7.2 (1) and Corollary 17.2 imply that
91 = Or<$l) • JV̂ (SS), so we can write X = JViiNT where M e Or(M) and
JNTG JVR(SB). NOW 2F is in SB, so in particular is in sp. Also %**" = a x

is in «p. Hence, if A is in 21, then A"* • A»* = [A, Ntf is in sp,
and in particular is a p-element. Since [A, N^\ is a p'-element, we
•see that N,e C(2I). Hence «*!* = 21 ,̂ and the lemma follows.

LEMMA 17.2. Under Hypothesis 17.1, 9^ = Op(%).

Proof. Since Z(SB) char S3, and S3 is weakly closed in sp, ^
contains JV(*P)f so Theorem 14.4.1 of [12] applies. We consider the
double cosets ^Xty distinct from $llm Denote by $i(X) the kernel of
the homomorphism of $P onto the permutation representation of ty on
the cosets of % in %Xty. Let P = P(X) be an element of ^ such
that St(X)P is of order p in Z(?P/fl(X)).

Suppose we are able to show that P can always be taken to lie
in St. In this case, we have [U, P, P] = 1 for all U in $p. Since
# ^ 3 and © is simple we conclude from Theorem 14.4.1 in [12] that
•9*1 = Op(%).

We now proceed to show that P can always be taken to lie in 21.
The only restriction on the element X is that XtSHu that is, we
must have St(X) =£ ?P.

Now SlgSS, so Z(SB) centralizes 21. Since 2 I G ^ ^ L ^ ( ^ ) , we
have Z(S) E 21. It follows that % contains C(2I).

It suffices to show that 21 §£ ft(X). For if 21 g ft(X)f choose A
in 21 so that (R(X) n 2I)A is of order p in Z($ISt(X) H 21). It follows
that Sl(X)A is of order p in Z(tySl(X))m

Suppose by way of contradiction that 81 C St(X). Then 21 s SR'
so 21 5 ^P*x for p̂* a suitable SP-subgroup of %. But P̂* = P̂F for
some Y in %. Setting Xx = YX, we have 3l,X^ = 31XX^ and 21E 'P'I.
Hence, 2lxr1 S ?Pf so by Lemma 17.1, 81T1 = 21^ for some TF in
Itt n JV(33). Since JV(SS) E 5«lf we have 21 = 21*^ and We 5R n 9li. Let

Ex = X2. Since We%, we have SR^sp = %Xf$.
Since X2 normalizes 21, 21 normalizes Q'S"1. By Theorem 17.1,
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£LZ2X = £L° for some C in C(2I). Hence X^C"1 = Xf1 (this defines
normalizes O. Since X2 and C normalize 21, we see that Xz e 5ft D
Since C centralizes 21 and C(2I) £ %, we have S^-X^ = 3ii-X,5p.

We now write X3 = X,'X4, where X3' e 3d n W ) and X4eOP,(sJl).
Such a representation is possible since X5 e 31. Consider the equation
X, = X;- 1^. Since JV(33) £ 3^, we have %X& = ^Xft. If A e 21,
then [A, -Xr1] is a p'-element since X, e O,,(9i). But [A, -X^Xfl =
[A, X3'][A, -XB"1]'^ an identity holding in all groups. Since X[ e JV(8S),
[A,X3']e33. Since X3GiV(2l), [A, Xr1] e 21 E 55, so [Af-X,-1]^ € SB, a.
p-group. Hence

[A, Xr1] = [A, Xf'Xi] = 1 .

Since A is an arbitrary element of 21, we have X^ e C(2l) ^ 5RlB

however, we have

so Xe$ll9 contrary to assumption.

LEMMA 17.3. Under Hypothesis 17.1, % = Op>(%) • (^i n SR)f

Proof. We must show that 92 contains at least one element from
each coset &=Op>(3l1)W, We$lu from which the lemma follows directly.

Let § = 5P n OP,,P(
sJi1), ft = JV (̂£>), and C(«) = 21 x ®, © being

a ^'-group. Notice that 3) S OP'(?Ji) by Lemma 7.4 together with
C(2I) S %. (This was the point in taking Z(S3) in place of S3.)

By Sylow's theorem, ffi contains some element of E, so suppose
We ®. Since 21 is contained in § by Lemma 7.2 (1), we have
21^ £ § S SP, and 2P7 normalizes D. Hence, 21 normalizes CF"1 and
by Theorem 17.1, £F - 1 = Q5 for some S in C(2I). Write S = AD
where A e 21, D e ®, so that O* = D2', since 21 normalizes £X Hence,
DT7 normalizes D. But D T T G E , since D e O p W , so DTFeSlnSRi
and 5JI contains an element of E.

LEMMA 17.4. Under Hypothesis 17.1, if fg is a subgroup of ^
which contains 21, tAen iV(§) E SRX.

Proof. Let G e JV(§). Since 5p normalizes O, so does ©. Hence,
§ff normalizes Q*. But ^ = § and § contains 2t, so 21 normalizes
S¥. By Theorem 17.1, SCfl = OP for some C in C(2l). Let GC~X =
NeW. Now JV = NXN3 where 2^ e O,*(5R) and iV2 e 5R n 3li. Consider
the equation GC'Wr1 = JVi. Let ZeZ(%>).

We have GC-'Nf'ZN.CG-1 = GZ&~\ where Zi = Z** is in
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hence, Z-'GC^N^ZN^CG-1 = [Z, N.CG-1] = Z~XGZXG~X is a p-element
of §, since ^ 6 7 ( 8 ) 2 8 5 6 , so that GZfi-'eG^G'1 = £>. But
Z-'N.ZNr1 e OP,(5TC). Hence, [Z, i^CG"1] = [Z, JVf1] = 1. Since Z is
an arbitrary element of Z(33), it follows that Nx centralizes Z(s#), so
-Wi is contained in 3llu But now the elements Nlf N2 and C normalize
Z(33). Since G = N^C, the lemma follows.

LEMMA 17.5. Under Hypothesis 17.1, if $1 is a proper subgroup
of © which contains sp, Jftew 5? S OP'iP(ffl).

Proo/. If ^ = $ n OrM, and ^ = A^SR), it suffices to show
that 33 S %. By Lemma 7.2 (1), we have 21 E P̂̂  and so by Lemma
17.4, fflx C SHlm Thus it suffices to show that 53 S OP,lP(5R1). By Lemma
17.3, it suffices to show that S3 S Op>,p(9l). However, this last contain-
ment follows from Lemma 7.2 (1) and Corollary 17.1.

LEMMA 17.6. Under Hypothesis 17.1, if ® is a proper subgroup
of ©, and % is a Sp-subgroup of £, then

Proof. Suppose false, and that $ is chosen to maximize | fl |p and
with this restriction to minimize | ® \,,m Let ^ = 5̂0 PI 0P',P(®). By
minimality of | ̂  |p, we have ^ < ^. By maximality of | ̂  |Pf % is a
jSp-subgroup of iV(̂ Pi). We assume without loss of generality that
Wo S ?P. In this case, Lemma 7.9 implies that 21 C %. Since 21 S %,
t y Lemma 17.4 we have $ S ^ j by Lemma 17.5, 93 S Op',PCJii), so in
particular, V{ccl%(%)\ ̂ ?0) S %, as required.

18. Configurations

The necessary -©-theorems emerge from a study of the following
objects:

1. A proper subgroup ® of ©.
2. A Sp-subgroup 5̂ of ®.

<C)
3. A p-subgroup 2t of ©.
4. 93 = F(ccy2I); P̂), SSI = [OP,,P ,,(ft)f S3], 2B = Or>

DEFINITION 18.1. A configuration is any 6-tuple (SB, sp, 21; 33,3R, 2B)
satisfying (C). The semi-colon indicates that 33, 3Ji, 323 are determined
when SB, ̂ 5, 21 are given.

DEFINITION 18.2.

= {HI
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(i) 21 is a p-subgroup of ©.
(ii) for every configuration (ft, $P, 3 ; 33, 2ft, SB),

(a) 2ft centralizes Z(2B).
(b) If Z(SB) is cyclic, then 2ft centralizes Z2(3B)/Z(3B).}

DEFINITION 18.3.

ranging over all Sp-subgroups of © in both unions.

LEMMA 18.1. / / p ^ 5, «Aen ^<(p) U

Proo/. Let 21 e <%r(p) U ̂ K>^(p) f and let (ft, «p, 21; S3, 2ft, SB) be
a configuration. Suppose by way of contradiction that either 2ft faila
to centralize Z(2B) or Z(3B) is cyclic and 2ft fails to centralize
Z2(3B)/Z(3B). Since Op,,p(ft) centralizes both Z(3B) and Z2(3B)/Z(3B), it
follows that some element of 2ft induces a non identity p'-automorphism
of either Z(3B) or Z2(3B)/Z(2B), so in both cases, some non identity
p'-automorphism is induced on Z2(SB) by some element of 2ft. By 3.6,
some non identity p'-automorphism is induced on J2i(Z2(3B)) = SÔ  by
some element of 2ft. Let 2B0 = &i(Z(2B)) S SBi and let SB.! = <1>.

Let 2ft0 = ker(Op,,P,p,(S)->Aut2B0), 2ft1=ker(OJ,,>PlJ,,(ft)->Aut(2B1/2B0)).
By definition of 2ft, 2ft is contained in 2ft{ if and only if 33 acts trivially
on Op',p,P'(^)IS!Rit i = 0 or 1. Suppose that S3 does not act trivially on
OP>,P p'(ft)/5W,. Let 93 = W be a conjugate of 21 which lies in 33 and
does not centralize Op'P>P'(S)/2ft< (S3 depends on i). In accordance with
3.11, we find a subgroup 5ft» of OP>lP,p'($) such that 5fti/2fti is a special
g-group, is 33-admissible, and such that S3 acts trivially on ®J2fti,
irreducibly and non trivially on %l^)if where ®< = Z)(5ftimod2ft<). Let
S3, = ker (33 — Aut (9^/2^)), so that S3, acts trivially on 5fti/2fti and
S3/33, is cyclic.

Let X, be a subgroup of S3Si/SCB*_i of minimal order subject to being
332lradmissible and not centralized by 5ft{. The minimal nature of X,
guarantees that S3, acts trivially on 3£,. If 33,5, is a generator for
33/33,, then (B) guarantees that the minimal polynomial of B{ on X, ia
(x - l)r where r = r, = 193:33, |.

Suppose i = 0. Since £„ is a p-group, while Op>(&) is a p'-group,
we can find a p-subgroup £>0 of ft such that £0 and Xo are incident,
and such that £>0 is 33-admissible. In particular, S30 centralizes §0.
Let P̂* be a Sp-subgroup of JV(33), so that 5̂* is a Sp-subgroup of ©.
If S30 PI Z(̂ P*)* is non empty, we apply Lemma 16.1 and have a contra-
diction. Otherwise, Lemma 16.2 gives the contradiction.

We can now suppose that Z(3B) is cyclic. In particular, 3B0 is of
order p. Since Hx is of the form 2)i/3B0 where ^ is a suitable subgroup
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of S©!, we can find a p-subgroup & of S incident with 3)! and 33-
admissible.

Choose B in 33j. Since 33X centralizes ^/SB,, and since 2B0 is of
order p, it follows that £>2 = C^B) is of index 1 or p in &. If
^ n Z(̂ 5*)* is non empty, application of Lemma 16.1 gives 73§2333 = <1>,
and so T4©!®4 = <1>, the desired contradiction. Otherwise, we apply
Lemma 16.2 and conclude that T^SS4 = <1>, and so T 5 ^ 5 = <1>, from
which we conclude that 183: SBi | = 6. In this case, however, setting
3 = Z(ty*) fl 33, we have 33 = <33X, 3X and so the extra push comes
from Lemma 16.2 which asserts that 734,83 = <1>, and so 7*©i34 = <1>,
completing the proof of the lemma.

19. An ^'theorem

It is convenient to assume Burnside's theorem that groups of
order paqb are solvable. The interested reader can reword certain of
the lemmas to yield a proof of the main theorem of this paper with-
out using the theorem of Burnside.

If p, q e 7r3 U 7r4, we write p ~ q provided © contains elementary
subgroups G? and g of orders pz and qz respectively such that <G?, £$>c®.
Clearly, ~ is reflexive and symmetric.

Hypothesis 19.1.
(i) p e 7u3 (J 7r4, q e 7r(®) and p =£ q.
(ii) A Sp-subgroup ty of ® centralizes every element of M(̂ 5; q).

LEMMA 19.1. Under Hypothesis 19.1, if 33 e ^(p) , then 33 central-
izes every element of M(33; g).

Proof. Suppose false, and that JQ is an element of M(33; q) minimal
with respect to 733D =£ <1>. From 3.11 we conclude that 33 centralizes
D(O) and acts irreducibly and non trivially on £!//)(£}), so in particular,
D = 7O8 and 33O = ker (33 — Aut JD) =£ <l>. Let e = C(33O), let ?p be
a Sp-subgroup of JV(33), and let ^0 = C7(33) n ?P. Since 33 e ^(p) , %
is of index at most p in a Sp-subgroup % of (£, and so Spo < SR. Hence
ySRSB S 5ft,. Since ^0 centralizes 33, we have 72

1̂33* = <1>, so
B £ 0,<,,(G) = ft. Let 8 = Of ,(E). Since 33 £ ft < Cf 7O8 & ftf so
yjQ33 £ S n O g 8 . Since D = 7O8, we have O £ 8.

By Lemma 8.9, 33 is contained in an element 21 of <5*g*.^($P).
Since 21 centralizes 33, we have 21 £ 5ft,. Let S) = 2IS, and observe
that S is a normal p-complement for 21 in ®. By Hypothesis 19.1
[ii), Theorem 17.1, Corollary 17.2, and Dpq in ®, 2t centralizes a Sg-
mbgroup of 2), so 3) satisfies Ep

n
q and every p, g-subgroup of S>
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is nilpotent. But Q33 S ®, and JQ = 7Q33 =£ <1>, so Q33 is not
nilpotent. This contradiction completes the proof of this lemma.

Hypothesis 19.2.
( i ) p, q e 7T3 U TT4 and p ^ q.
(ii) p ~ g .
(iii) A Sp-subgroup ty of ® centralizes every element of M P̂; q)

and a Sq-subgroup Q o/ © centralizes every element of H(Q; p).

THEOREM 19.1. t/nder Hypothesis 19.2, © satisfies Ep
n

q.

We proceed by way of contradiction, proving the theorem by a
sequence of lemmas. Lemmas 19.2 through 19.14 all assume Hypothesis
19.2. We remark that Hypothesis 19.2 is symmetric in p and q.

LEMMA 19.2. <2I, 33> ©, whenever 21 e <%s(p) and 33 e <Zf(q).

Proof. Suppose <2t, 33> = 58 c ©, where 51 e ^(p), 33 e ^(q)f and
$ is minimal. By DPtq in 58, it follows that 58 is a p, g-group.

By the previous lemma 21® centralizes 0,(5?) and 33® centralizes
Op(58). Since 33 and 31 are abelian, 58/21® and 58/33® are abelian, so 58'
centralizes Op(58) x 0,(58) = F(58). Hence 58' g Z(F(58)) by 3.3.

Let ^ be a chief series for 58, one of whose terms is 5F, and
let (E/S) be a chief factor of <if. If 58' C S), then £/3) is obviously a
central factor. If E g 5?', and E/3) is a p-group, then 33® centralizes

and since E/S) is a chief factor, 21 must also centralize (E/S)f sc
is a central factor. The situation being symmetric in p and g,

every chief factor of ^ is central, and so 58 is nilpotent, and 58 =
21 x 33.

Let 31 = iV(2l), let 9K be a Sp ,-subgroup of 31 with Sylow systeir
5̂, D, 5̂ being a Sp-subgroup of ©, since 21 e ^<(p). By DPf9 in 5R, 33X =

%SN g iQ for suitable JV in ?i. Let ^ be a maximal p, (j-subgroup oi
© containing 9Ji, with Sylow system 5̂, JĈ  where O S C .̂ Let Q
be a Sg-subgroup of © containing Ox. Finally, let 33 = F(ccZ®(33);
and observe that 33j C 3S. By Hypothesis 19.2, ty centralizes
By the previous lemma, 33 centralizes Opi^Jli).

We next show that 33 S FiWl,). Consider Oq piWlJ, and let 5ft =
P̂ n 0,^(SUy. Since P̂ centralizes 0,(331,), so does ^ , so OfiF(SK,) =
P̂i x 0,(5Dii) is nilpotent. But now 33 centralizes P̂x, and so Lemmj

1.2.3 of [21] implies that 33 E O^^). It follows that 33 < 3JI,. Since
33 is weakly closed in a S,-subgroup of 3Jllf it follows that 3Jlx is ?
Sp.g-subgroup of ©.

Again, P̂ centralizes Off(2Jii), and now C^ centralizes Op(5Di1) botl
assertions being a consequence of Hypothesis 19.2 (iii). It follow:
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readily that every chief factor of SD̂  is central, and so 2)^ is nilpotent.
Since we are advancing by way of contradiction, we accept this lemma.

LEMMA 19.3. / / 2t e %f(p), then either C(2I) is a q'-group or a
Sq-subgroup Gf of C(2I) is of order q, and Gf has the property that it
does not centralize any 93 e

Proof. Let @ be a 5,-subgroup of C(2l), and suppose @ =£ <1>.
By Lemma 19.2, no element of ©* centralizes any S e ^ f a ) . Let £1
be a Srsubgroup of © containing @ and let 33 e <%r(£i). Then CQ(SS)
is of index 1 or q in O and is disjoint from ©. \(S\ = q follows.

Lemmas 19.2 and 19.3 remain valid if p and q are interchanged
throughout. In Lemmas 19.4 through 19.14 this symmetry is destroyed
by the assumption that p > q (which is not an assumption but a choice
of notation).

We now define a family of subgroups of @, &~ — ̂ (p). First,
^ is the set theoretic union of the subfamilies ^~(fy), where P̂
ranges over the Sp-subgroups of ©. Next, ^"(^P) is the set theoretic
union of the subfamilies ^"(21; P̂), where 21 ranges through the
elements of S"&L4^ffl). We proceed to build up JH2I; 5JS). Form
F(2t) = F(ccZ@(5t); 5JJ). Consider the collection 3tT = JT(2l) = JT(« f g)
of all p, ^-subgroups ^ of © which have the following properties:

l. spsfl.
(K) 2. F(«) S Og ,(«).

3. Every characteristic abelian subgroup of ty n O* P(^) is cyclic.
If JT"(2i, g) is empty, we define ^ ( 2 1 ; ?P) to consist of all

subgroups of 21 of type (p, p). If ^T"(2t, q) is non empty, we define
-^(21; P̂) to consist of all subgroups of 21 of type (p, p) together with
all subgroups of 5̂ n Oq,P(&) of type (p, p) which contain Q^Z^ n Oq ,(ffl)))f

and S ranges over J^"(2I, g).
Notice that ^"(p) depends on q, too, but we write ^~{p) to

emphasize that its elements are p-subgroups of ©. The nature of
is somewhat limited by

LEMMA 19.4. / / a lf 2t2 e S^if^VlW), ^ is a SP-subgroup of
©, ST(%) and STi^) are non empty, and if Stt e JT(^i)f i = 1, 2,

p n ofi,(5y = p̂ n o

Proo/. Let ^ = $ n O , „($<), i = 1, 2. Then 5ft < !pf i = 1, 2.
From 3.5 and the definition of ^*(p)f we have clfflt) = 2, i = 1, 2.
Hence T'SftSE = <1> and 73 P̂2̂ PJ = <1>. From (B), we conclude that
$a S Sft and 5ft S 5ftf as required.

Using Lemma 8.9 and Lemma 19.4, we arrive at an alternative
definition of J^^P), 5p being a Sp-subgroup of ®. If J!T(3[) is empty
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for all S G ^ S ^ ^ O P ) , j^(*P) is the set of all subgroups 33 of «p of
type (p, p) such that S3* is abelian. If ^T"(2l) is non empty for some
VLeS*&L4^W) and fte Jjr(«), then JHSP) consists of all subgroups
of type (p, p) in Oq F(ft) n % which contain Qx(Z(Oq.,(St) fl $)), together
with all subgroups S3 of Off,,(ft) fl P̂ of type (p, p) such that 33^ i»
abelian. Here we are also using (B) to conclude that Oq,P(St) n ^
contains every element of

LEMMA 19.5. Let ft e J2T(2l), wfcere 21 e ^gL^(^P) and $ is a
Sp-subgroup of ©. Let 5po = ?P fl O, P(ft). / / 2ft is any proper subgroup
of ® containing $P, then ty0OP>(%Jl) < 2ft.

Proo/. Since 73WS=1, it follows from (B) that 5pog*p n Or,(W) =
%, say. By Sylow's theorem, 2ft = 0P̂ (2ft)JV (̂̂ P1), so it suffices to
show that sp0 < Aj^SR) = 5ft. Choose N in 5ft. Then [W, %, P̂o, %] = 1.
Since 5R G 5ft G $* £ JKf it follows from (B) applied to ft* that
% S W, so that Sft = W, as required.

LEMMA 19.6. Lei ft e Jir(S), 21 e ^^L^(5P) f p̂ 6ewflr a SP-subgroup
of ©, arid te£ 8 6e a subgroup of index p in $po = O*,P(ft) 0 ?P.
55=

Proof. Since S^W^yf^(^P) is non empty, (B) implies that 2 is non
abelian. Now J2i(Z($P)) is of order p and is contained in 2. By 3.5
S/i21(Z(̂ P)) is abelian.

Let 8* = Sj be a conjugate of 2 contained in $P, G e ©. First,
suppose that (0i(Z(*P)))* = 3 is contained in p̂o. Then C?O(3) = Gi is
of index 1 or ^ in 5po. Set E2 = C(3). By Lemma 19.5, with £2 in
the role of 2ft, ^>G in the role of *P, W in the role of 5po, we see that
THEXS! = <1>, and it follows that y^SJ = <1>, so by (B), 2X G *po*
(Recall that p ^ 5.)

Thus, if fix g $p0, but Sx G sp, then 3 g 5ft. But S1 normalizes 5ftr
so % fl Si < 2j. Since 2X is of index p in sp?f any non cyclic normal
subgroup of 2X contains $. Hence, 5po n 2X is cyclic and disjoint from
3. If now J2i(5po) is extra special of order p2r+1, we see that 0i(&i)
contains an extra special subgroup 2! of order p*-1 which is disjoint
from ?p0.

Consider now the configuration ($, sp, 8; S3, 2ft, SB), and observe
that 2B = p̂o. ^ is disjoint from 5po, so is faithfully represented on
S=Og)P 9(ft)/Og,p(ft), a g-group. Furthermore, g is faithfully represented
on l?i(9B)/i3i(Z(9B))9 which makes sense, since Og,P(S) acts trivially on
QiQEfylQjiZQES)). Let 8X be the subgroup of g which acts trivially on
J?i(Z(2B))v which also makes sense, since Og,P($£) acts trivially on
QX(Z($&)). Then §/& is cyclic and 2 acts trivially on g/gx since p > q.
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Since £ is a p-group, Z acts faithfully on glf so acts faithfully on
&//)(&). If | & : />(&) I = <T, then | Z | divides fo--l)(g-*-l).. . f o - l ) ,
and so 1£ | < gB, by Lemma 5.2.

On the other hand, & acts faithfully on Q^jQ^ZiW)), and trivially
on fl^ZOEB)), so gi is isomorphic to a subgroup of the symplectic group
Sp(2r, p). Hence, | & | divides | Sp(2r, p) |p, = (p2" - 1) • • • (p2 - 1) [6],
so by Lemma 5.2 (ii), | gi I < P21"1- Combining this with the previous
paragraph, we have | £ | = p2'"1 < Qn ̂  | & | < P2r~\ a contradiction,
completing the proof of the lemma.

We can now translate this information about 8 to the general
p, (/-subgroup of @. To do this, we let £f(p) be the set theoretic
union of sets JŜ OP), P̂ ranging over the Sp-subgroups of ©. -Ŝ (̂ P)
is the set of all subgroups 8 which can occur in the previous lemma.
Formally, j£̂ (̂ P) is the set of all subgroups of index p in ty n Oq P(®)>
where ffie JT(2I), and

LEMMA 19.7. / / 2 6 ^ ( p ) and § is a p, q-subgroup of ©,

Proo/. Let (§, 5R, 8; 55, 2ft, 2B) be a configuration. The lemma is
clearly equivalent to the statement that 55 £ O9 „(£>). Let $P2 be a
Sp-subgroup of © containing S& and let ^ = 2G be a conjugate of 8
contained in ^ . Since Sj G JS^(P), we have 8X G £?(ty3) for some Sp-
subgroup sp3 of ©. Now ^3 = 5̂f for some X in ©, and so Sf S P̂3.
By Lemma 19.6, we have 73$3(8f)3 = <1>, and so 73^P28; = <1>; in
particular, 73 P̂i8? = <1>, so (B) and p ^ 5 imply this lemma.

LEMMA 19.8. / / a e 5 * g ^ ( p ) f *feen S3 S O? ,(ft) /or everi/ con-
figuration (ft, ?Pf 21; S3, 3JI, SB) /or ^feicfe S is a p, q-group.

Proof. Suppose false, and that ft is chosen to maximize $P, and,
with this restriction to minimize | ft |ff. It follows readily that OP(ft)
is a SP-subgroup of O,,p(ft) and that $ is a Sp-subgroup of every
p, g-subgroup of © which contains ft.

By Lemma 18.1 and the isomorphism OP(ft) = OfllP(ft)/Off(ft) = SBr

we conclude that 3Ji centralizes Z(Op(ft)). By minimality of | ft |,, we
also have ft = ^2Jt.

If P̂* is a Sp-subgroup of © containing ?p, we see that Z(̂ P*)
centralizes OP(ft), and so Z(̂ P*) g Z(O,(ft))f by maximality of sp. It
now follows that ft centralizes Z(^5*), and maximality of $p yields
¥ = **.

Since S3 does not act trivially on Oq p ,(ft)/Og,P(ft), and since p > q,
it follows that 3Jt contains an elementary subgroup of order q3. But
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2ft centralizes Z(OP(®)) = 3 and if 3 is non cyclic, then 3 contains
an element of ^(^P), in violation of Lemma 19.3. Hence, 3 is cyclic.
In this case, we conclude from Lemma 18.1 that a Sff-subgroup of 9K
centralizes Z2(OP(5S)) = 32. But 3 , contains an element of ^(^P), so
once again Lemma 19.3 is violated. This contradiction completes the
proof of this lemma.

LEMMA 19.9. / / 8 G £f(p) U S^W^r;(p)f then 8 £ OP(S) for every
p, q-subgroup S of © which contains 8.

Proof. By Lemmas 19.7 and 19.8, it suffices to show that 8
centralizes Oq(ft). If 8 G Sf&^V&v), Theorem 17.1, Corollary 17.2 and
Hypothesis 19.2 imply that 8 centralizes 0,(5?). If 8 e £f(p), then
8 e J£f OP) for some Sp-subgroup sp of ©. In this case, if 21 e S^^IW),
the definition of J*f(ty) implies that 21 fl 8 = 2l0 is non cyclic. Hence,
Oq(S£) is generated by its subgroups C(A) n 0«($) as A ranges over
31J. By the preceding argument, 21 is contained in Op(®0) for every
p, g-subgroup So of C(A) which contains 21. Lemma 7.5 implies that
% centralizes Off(S). In particular, fii(Z(^P)) centralizes 0,(5?).

Consider Cffl̂ ZOP))) 2 <$f Of(ft)>. Since 8 E O,(fl0 for every
p, g-subgroup j ^ of <̂ 5, Off(®)> which contains 8 by (B) and Hypothesis
19.2, a second application of Lemma 7.5 shows that 8 centralizes O,(5B),
as required.

LEMMA 19.10. If $$e^(p), then <8 centralizes every element of

Proof. Suppose false, and D is chosen minimal subject to
M(33; g) and 7DS3 =£ <1>, so that we have D = TOSS and 330 =

ker (S3 — Aut O) * <1>. Let (E = C(S50). Since S3 e ^"(p), we have
33 e JH^P) for a suitable Sp-subgroup P̂ of ©. By definition of J^OP),
either C(S3) contains an element 2tx of SS&l4^ffl>) or else C(33) contains
a subgroup SR of index pin^D Of,,(fl)f ft e ^T(«) and 21G ̂ »L^(5P).
Let § be a Sp,?-subgroup of E containing 2IX in the first case, and %
in the second case. Lemma 19.9 implies that %, S O,(©) in the first
case and ^ £ OP(£>) in the second case. In both cases, we have
33 £ Op(&). Now let & be a Sp,,-subgroup of E containing SBQ. By
Lemma 7.5, we have 33 £ O,($i) and so TO33 £ 0,($i) n D = <1>,
contrary to assumption.

LEMMA 19.11. / / » G j r ( p ) f 21 G ̂ <(g), then © = <2t, S3>.

Proof. Suppose <2l, S3> == ft c ®, and 21 and 33 are chosen to
minimize fi. By the minimal nature of SB, ft is a p, g-group. By the
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previous lemmas, 21® centralizes OP(S£), and 33® centralizes Oq(ft). It
follows readily that St is nilpotent, so ® = 21 x 33. But now C(2I)
contains S3 in violation of Lemma 19.3, with p and q interchanged.
This interchange is permissible since Lemma 19.3 was proved before
we discarded the symmetry in p and q.

LEMMA 19.12. If 5) is a p, q-subgroup of ® and if © possesses
an elementary subgroup of order p3, then a Sp-subgroup of 3) is
normal in 35.

Proof. Case 1. 2) contains a Sp-subgroup $ of ©. Let Q be a
Srsubgroup of ®, let d = D fl OP,(®), let 5 be a S,-subgroup of ©
containing d let 33 e ^(&) , and d = CDl(33). Then d is of index
1 or q in d -

Next, let $ = Op(®), and assume by way of contradiction that
ffic^P. By the preceding lemmas, 5? contains V(ccl&(^L); 5JS) for every
21G *$^L^J(SP). By the preceding lemma, no element of OJ centralizes
any element of ^~(p).

If ^ contains a non cyclic characteristic subgroup E, then every
subgroup of £ of type (p, p) belongs to ^(?P) f and so Ce(Q) is cyclic
for Q e JDj. This implies that i9*g*^(Q,) is empty, and if Q> possesses
a subgroup of type (q, q), then p = 1 (mod q). However, if $ does
not contain any non cyclic characteristic abelian subgroup, then every
subgroup of & of type (p, p) which contains Q^Zi®)) lies in ^""(5P)f
and we again conclude that S^i^Udi) is empty, and if da is non
cyclic, then p = 1 (mod q).

Now Qi = Op,g(®)/5! admits a non trivial p-automorphism since
5B c 5p, so 5 ^ ^ ( 0 0 is non empty, by Lemma 8.4 (ii) and p > q.
Hence, Da is non cyclic, being of index at most q in £iu and this
yields p = 1 (mod q). We apply Lemma 8.8 and conclude that p =
1 + Q + <Z2> and Ox is elementary of order g3. This implies that any
two subgroups of Qj of the same order are conjugate in 3). Since
at least one subgroup of d of order q centralizes 93, every subgroup
of d of order q centralizes some element of <Zf(q). Since at least
one subgroup of d of order q centralizes some element of
every subgroup of d of order q centralizes some element of
This conflicts with Lemma 19.11.

Case 2. ® does not contain a Sp-subgroup of ©. Among all 3>
which satisfy the hypotheses but not the conclusion of this lemma,
choose ® so that | ® n £i(2I) | is a maximum, where 21 ranges over all
elements of ^W^^(p) , and with this restriction, maximize |®|p .

Let ®! be a Sp-subgroup of ®, and let $ be a SP-subgroup of ®
containing ®la
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First, assume ®x centralizes Og(®). In this case, Op(®) is a Sp-
subgroup of O9jP(®). By maximality of | ® |p, ®x is a Sp-subgroup of
iV(OP(®)). This implies that ®2 contains every element of .S*£f^($P).
To see this, let 21 e *S*2f^(5P), and let 2IX = 21 n ®L Since O,(©) is
a Sp-subgroup of 0,,P(®), it follows that 21 n ®i S O,(©). If 2tx were
a proper subgroup of 21, then ®x would be a proper subgroup of
JV8rs)i(0p(©)). Since this is not possible, we have 21 = 2IlB But now,
F(ccZ@(2I); ©0 < ®, and by maximality of | © |p, ©t = 5p follows, and
we are in the preceding case.

We can now assume that ©j does not centralize 0,(35). Suppose
©i contains some element 33 of ^~(p). By Lemma 19.10, S3 centralizes
O?(®). Since ®x does not centralize O,(®), | O,(®) | > q, and so Lemma
19.11 is violated in C(Q), Q being a suitable element of O?(®). Thus,
we can suppose that ®x does not contain any element of ^(p). In
particular, ® n fii(2I) is of order 1 or p for all 21 e ^ g ^ ^ ( p ) . Let
S3 e ^(^?), and ®2 = C^SB). Since SS&^(<S>d is non empty by
hypothesis, ©a is non cyclic. Let © be a subgroup of ®2 of type
(P, P)- Since 33 g ®lf <©, S3> is elementary of order at least pz. If
© does not centralize O<,(®), then there is an element E in & such
that Gr does not centralize C(E) n O,(®). But in this case, a SPif-
subgroup of CC-E) is larger than ® in our ordering since 33 g C(E),
C(E) possesses an elementary subgroup of order p3, and a Sp-subgroup
of a SP,g-subgroup g of C(E) is not normal in g. This conflict forces
every subgroup of ®2 of type (p, p) to centralize Off(®). Thus, X?i(®i) =
®* centralizes Off(®), since ®* is generated by its subgroups of type
(p, p). However, we now have JV(®*) 3 <®lf S3, Ofl(®)> and a Sp ,-
subgroup Sx of JV(®*) is larger than ® in our ordering, possesses an
elementary subgroup of order p3, and has the additional property that
its Sp-subgroups are not normal in glB This conflict completes the
proof of this lemma.

Lemma 19.12 gives us a fairly good idea of the structure of the
p, g-subgroups of ©. The remaining analysis is still somewhat detailed,
but the moves are more obvious.

For the remainder of this section, $P denotes a Sp-subgroup of ©,
Q a S<,-subgroup of N(ty), and Q a S,-subgroup of © which contains Q.

LEMMA 19.13. «$*gL/fJ(£}) is non empty.

Proof. We apply Hypothesis 19.2 (ii) and let ® be a maximal
p, (/-subgroup of © which contains elementary subgroups of order p3

and q\ By Lemma 19.12, ®p < ®, ®p being a SP-subgroup of ®.
Since ® is a maximal p, g-subgroup of ©, ®p is a Sp-subgroup of ©,
so ®p = sp0 and the lemma follows.
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We now choose 33 in ^ ( 5 ) and set JDj = Ca(S3).

LEMMA 19.14.
( i ) ^ ^ ^ ( D i ) is empty.
(ii) D contains Q^ZiCi)).
(iii) p = 1 (mod q).
(iv) D* contains an element Y which centralizes an element of

and has the additional property that C^Y) contains an
elementary subgroup of order qz.

(v) If Xed* and X centralizes an element of ^~(ty), then X
does not centralize any element of ^(£i) , and C(X) does not contain
an elementary subgroup of order qA.

Proof. Let 6? be an elementary subgroup of D of order g3, and
choose @ in Di if possible. If 5̂ possesses a non cyclic characteristic
abelian subgroup £, then some element of 6? has a non cyclic fixed
point set on (£. Since every subgroup of £ of type (p, p) lies in
^~0P), (iv) is established in this case.

If every characteristic abelian subgroup of P̂ is cyclic, then some
non cyclic subgroup &x of @ centralizes Z(̂ P). Since any non cyclic
subgroup of P̂ which contains £?i(Z(̂ P)) is normal in P̂, by 3.5, some
element of Ĝ  centralizes an element of ^""OP), so (iv) is proved.

If @ £ Dx, then Lemma 19.11 is violated in C(E), Ee®*, E central-
izing an element of ^"(^P). Hence, (i) is proved.

On the other hand, *£*^L^(O) is non empty, so Ox possesses a
subgroup gj of type (q, q). If p ^ 1 (mod q), then some element of
^! is seen to centralize an element of ^(ty). Since this is forbidden
by Lemma 19.11, (iii) follows.

We now turn attention to (v). In view of Lemma 19.11, we only
need to show that if X in £}* centralizes an element of ^~(^P), then
C(X) does not contain an elementary subgroup of order q\

Let 21 be an element of ^(^P) centralized by X, let § be a Sp,q-
subgroup of C(X) and let 5? be a maximal p, g-subgroup of © containing
£>. By Dp>q in C(X), ^ = Sle g § g S, for some G in C(X). Suppose
by way of contradiction that C(X) contains an elementary subgroup
of order q*. By Dp,q in C(X), § contains an elementary subgroup of
order g4; thus, 58 contains such a subgroup.

We first show that a Sp-subgroup of fi! is not normal in 58. Suppose
false. In this case, since 58 is a maximal p, g-subgroup of ©, a Sp-
subgroup of 58 is conjugate to P̂, and so 58 is conjugate to SPQ.
However, (i) implies that Q does not contain an elementary subgroup
-of order q\ since | D : $X \ = q, so 58 does not contain one either.

We now apply Lemma 19.12 and conclude that 58 does not possess



866 SOLVABILITY OF GROUPS OF ODD ORDER

an elementary subgroup of order p3. It follows directly from Lemma
8.13 that 5? has p-length one. Let Sp be a Sp-subgroup of 5? containing
8tlf and let ^ = Viccl^,); £p). By Lemma 19.10, % centralizes O,(®).
Since $ has ^-length one, SSj < 58. But then JV(9Si) = 9£ contains Sp-
subgroups of larger order than \Stp\f and 5ft also contains $, contrary
to the assumption that $ is a maximal p, g-subgroup of ©. This
contradiction proves (v).

We now turn to (ii). Choose Y to satisfy (iv) and let S be an
elementary subgroup of CC(F) of order q*. If Q^ZiD)) = Qx were
not contained in Gc, then <£, Q^ would contain an elementary subgroup
of order q\ and (v) would be violated. This completes the proof of
this lemma.

We remark that Lemma 19.2 and Lemma 19.14 (ii) imply that
Z(D) is cyclic.

Theorem 19.1 can now be proved fairly easily. We again denote
by G? an elementary subgroup of O of order q3, and we let Y be an
element of @* which centralizes an element of ^($P). Let @x = Cg(33).
Since Qx = O^ZiCi)) centralizes 33, Qx does not centralize any element
of ^<(̂ P), by Lemma 19.2, and so does not centralize 5p. Thus, we
can find an element E in ©J with the property that Qx does not
centralize C%(E). Consider £ = C(E). We see that £ contains both
Y and S3. Since Y does not centralize S3, <F, 93> is a non abelian
group of order q*, with center Q1% Let S be a Sp g-subgroup of £
which contains < F, 33>; since S contains S3, 2 does not contain an
elementary subgroup of order p*. Since Q1 is contained in the derived
group of <Yf S3>, £?! is contained in 2'. We apply Lemma 8.13 and
conclude that Qx centralizes every chief p-factor of 2. It follows
that 7n2/2r = <1> for suitably large n, and so Qx S 0,(2). But now
if § is any Sp,9-subgroup of £ which contains Ql9 we have Qx S O,(£>),
by Lemma 7.5, and so [Olf C^(E)] is both a p-group and g-group, so
is <1>, contrary to construction. This completes the proof of Theorem
19.1.

COROLLARY 19.1. If p, q en^U 7cA9 p & q9 and p ~ q, then either
pen3 or

Proof. If © satisfies E£q, then both p and q are in n5. Other-
wise, Hypothesis 19.2 is violated and the corollary follows.

20. An ^-theorem for izz

Hypothesis 20.1 p, q e 7T3, p =£ q, and p ~ q.
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THEOREM 20.1. Under Hypothesis 20.1, © satisfies Ep>q.

The proof of this theorem is by contradiction. The following
lemmas assume that Hypothesis 20.1 is satisfied but © does not satisfy

LEMMA 20.1. If sp is a Sp-subgroup of © and D,is a Sq-subgroup
of ©, then either 5̂ normalizes but does not centralize some q-subgroup
of ©, or D normalizes but does not centralize some p-subgroup of ©.

Proof. This lemma is an immediate consequence of Hypothesis
20.1, Theorem 19.1, and the assumption that © does not satisfy EPtQ.

We assume now that notation is chosen so that ?̂, a Sp-subgroup
of ©, does not centralize d , a maximal element of M(̂ P; q). Let £i*
be a SQ-subgroup of JV(Qi) permutable with $p, and let D be a S,-
subgroup of © containing Q*.

LEMMA 20.2.

Proof. Suppose false. Let 21 be an element of S^W^Vl{£)). By
Lemma 7.9, we have 21 Q O,(^?D*). We apply Lemma 17.4 and conclude
that N($X) S N(8), where 3 = Z(33), % = V(ccl%{%)) Q), and so ©
satisfies Epg, contrary to assumption.

Let 5ft = OPW&*).

LEMMA 20.3. O* is a Sq-subgroup of every proper subgroup ®
of © which contains

Proof. Let Z be a Sp>9-subgroup of $ with Sylow system Da,
where Q * g O 2 and ^ £ ^ 2 , and let F(X) = X1xZ2, where X1 = OP(

We first show that Si ii f̂r. Suppose by way of contradiction
that ^ n ^ c 2;. Since £>* and 5ft both normalize 3^ n 5ft and both
normalize Zlf setting Sf = iVg-̂ Si n P̂O, we see that I f O*5ft is a
group, and that JO*5ft normalizes 2f. Let S*/£i fl P̂i be a chief factor
of £fQ*5ft with S* £ If. Since «ft < ?ftO*f it follows that 5ft central-
izes I*/£i 0 5ft, that is 7l*5ft £ Si fl 5ft. In particular S* normalizes
5ft. Now 5pD* is a maximal p, g-subgroup of © by Lemma 7.3, so
£i* is a S,-subgroup of JV(5ft). A second application of Lemma 7.3
yields that 5ft is a Sp-subgroup of Og'(iV(̂ ft)). But 5ftl* is normalized
by D*, so a third application of Lemma 7.3 yields 5ftS* £ Off/(JV(5ft))r
so I* S 5ft, contrary to our choice of I*. Thus, Ix ^ 5ft.

We next show that J2 i D*. To do this, it suffices to show that



868 SOLVABILITY OF GROUPS OF ODD ORDER

% centralizes £2, for if this is the case, then 2a £
and so Z2€i* is a (/-subgroup of iV(̂ Pi). Since D* is a S^-subgroup of

n* follows.
To show that % centralizes £2, we first show that % centralizes

By definition, O* is a S,-subgroup of JV(Oi), and since
is a g-subgroup of JVXQi), we have CX2(£\) £ &*. Hence,

^ ] S 3;, n [O*, %] S I . fl % = <1>. Suppose that ffc does
not centralize £2 and that £3 is a ^Ox-invariant subgroup of £2,
minimal subject to the condition 7£3̂ Pi ^ <1>. By minimality of £3,
we have £3 = 7£3^51. Since £3 is a g-group, 7Z3£\ c £3, and so
'f%£X&l = <1>. Since TSVPI = <1>, we also have 7a£1W£3 = <1>. The
three subgroups lemma now yields 72^i£3£>i = <1>, so Dx centralizes
7^Pi£3 = £3. By what we have already shown this implies that SR
centralizes £3. This conflict forces 7^!^ = <1>.

We next show that O* S 2,. To do this, consider Ĉ Ĉ i) = £ < 2.
Since 2^ ̂  %f we see that S ^ i E . On the other hand, Z(̂ Pi) central-
izes both Ex and 22, so Z(%) S 2i, by 3.3. Hence, £ £ C2(Z(^pi)) £
CWft)) S ^ ( Z ^ ) ) . Since £\ = O9(^Q*), Lemma 7.5 implies that
Oi £ O,(E) char E < 2, and so $X £ S2.

Consider finally C ^ ) . Since Ox £ £2, we have ^ ( 2 , ) £ Cz(ZXd £
CCd) £ N(SX). Since 5R = OP(^Q*), Lemma 7.5 implies that
$1 £ OP(CX(Z2)) char CX(Z2) < 2, and so % £ Zt. Since we have
already shown that 3^ £ %, we have 2^ = tyi <1 % an (i s o ^* is a
S^-subgroup of 2, as required.

To prove Theorem 20.1 recall that D is a S<-subgroup of © con-
taining Q*. Choose 21 in S*gW(£i), and let 21* = 21 n O*. We first
show that 21* c 21. Suppose by way of contradiction that 21* = 21.
Then 21 normalizes ^. Lemma 7.3 and the previous lemma imply
that 5R is a maximal element of M(2t; p). By Corollary 17.1, JV0Pi)
contains a Sg-subgroup of ©, and © satisfies Ep,q. Since we are
advancing by contradiction, we have 21* c 21.

We next show that 21* n Ox = <1>. To do this, we observe that
a * n d < o * f so if 21*n$x*<i> , then 2 t * n Q i n z ( n * ) ^ < i > . i n

this case, however, C(2l* n Oi fl Z(£i*)) contains ^ and also contains
£1*21, contrary to the previous lemma. Thus, 21* fl Qi = <1>. Since
?t* and &! are both normal in £}*, we have 72I*Qi = <1>.

Let 2IX = Nn(O>*), so that 21* c 2tx £ 21. Observe that 721^* £
JQ* n 21 c 2tx and so Q* normalizes 2^. Let 93 be any subgroup of 2^
which contains 21* properly. Since [33, £^21*] £ 21*, we see that 93
normalizes £^21* = $X x 21*. Since JQ* normalizes 93, D* also normal-
izes CGl(93) = ®, say. If 3) 9̂  <1>, then © n Z(Q*) =£ <1>. But then
the previous lemma is violated in C(3) fl Z(O*)). Hence, ® = <1>.
Since C(ax) n Oi«* S 21*, we have C(93) n Qi«* = 21*.



20. AN ^-THEOREM FOR TTS 869

Since 33 normalizes Ox x 21*, S3 also normalizes (£k x 21*)' = QJ.
Since S3 has no fixed points on Of by the above argument, Dx is
abelian. But now £^21* and 33 are normal abelian subgroups of <&!, 33>,
so <Oi, 33> is of class two, so is regular. It follows that if B e 33,
QeQj, then [B\Q] = [B,Qq] = [B,Q]q. But 33 is an arbitrary subgroup
of 2Ii which contains 21* properly, so we can choose 33 such that
a1^) S 21*. For such a 33, the element B centralizes ^ ( d ) . It now
follows that Ox is elementary.

We take a different approach for an instant. $p does not centralize
the elementary abelian group Dj, and JV(Oi) has no normal subgroup
of index p, by Lemma 17.3. It follows that C^ is not of order q.

Returning to the groups 21* and 33, since 33 has no fixed points
on d , if £e33, 5«2l*, then the mapping ^ r O ^ S * defined by
4B(Q) = [B, Q]$ Q in JQi, is an isomorphism of £X onto a subgroup of
"21*. Hence, 21* is not cyclic.

From the definition of 21*, we see that 21* contains Z(O). We
wish to show that 21* contains an element of ^ ( D ) . This is immediate
if Z(O) is non cyclic, so suppose Z(G) is cyclic. If 21* does not
contain any element of ^ (O) , then the element B above can be taken
to lie in some element of ^(£>). However, [Q, B] e Q^ZiD)), so 4>B

could not map Qi onto a subgroup of order exceeding q. We conclude
that 21* contains Z(G) and also some element of ^ ( O ) .

We will now show that for each element Z of Z(Q)*, we can find
a p-subgroup fe(Z) in M(2I; p) which is not centralized by Z. Namely,
21* is faithfully represented on %, since 21* fl Qi = <1> and 21* is a
normal abelian subgroup of D*. We first consider the case in which
Z(Q) is non cyclic. Let 6 be a subgroup of Z(O) of type (q, q) which
has non trivial intersection with <Z>, that is let @ contain Si = ^ i«^»-
Since & acts non trivially on ^pif & acts non trivially on C^(E) for
suitable E in @*. Let & = C(E), and let 9t be a Sp-subgroup of E
permutable with O. It is easy to see that & does not centralize
OP(Q5K) € M(2I; p).

If Z(D) is cyclic, we use the fact that 21* contains an element
U of %s(£i). We can find an element U in U* such that & = fii(Z(O))
does not centralize C^(U). Let (£ = C(C/). By (B), it follows that
U S O,,,g(e), and so [3lf C^(U)] S O^(E). Thus, E contains an element
of M(2l; p) which & does not centralize.

It now follows from Theorem 17.1 and the preceding argument
that if $ is a maximal element of M(Q; p), then Z(O) is faithfully
represented on $ . If $ is a Sp-subgroup of iV($) permutable with
£1, then Lemma 20.2 is violated with p and q interchanged. This
completes the proof of Theorem 20.1.
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2 1 . A C* ' theorem for 7T3 and a C-theorem for 7Ta

It is convenient to introduce another proposition which is "between"
Cx and Dx.

C*: X satisfies Cx, and if £ is a 7r-subgroup of 3£ with the
property that | Z \p = \ X |p for at least one prime p in iz, then % is-
contained in a S^-subgroup of S.

THEOREM 21.1 If p, <z e TT3 and p ~ q, then © satisfies Cp*<

Proof. We can suppose p =£ q. We first show that © satisfies
Cp,g. By Theorem 20.1, © satisfies i?p,g. Let § be a 5,,,,-subgroup-
of © with Sylow system P̂, D, where 5̂ is a Sp-subgroup of ©. We
assume notation is chosen so that |$P| > |JQ|. Then Op(§>) ^ <1> by
Lemma 5.2. Lemma 7.3 implies that Op(£>) is a maximal element of
H(Q; #)• If §i is another Sp>g-subgroup of © containing O, then Op(£>i)
is also a maximal element of M(O; p). From Section 17 we conclude
that Opi&i) = G-'Opi^G for suitable G in @. Hence, G^G"1 and &
both normalize OP(£>) so are conjugate in N(Op(fQ)).

Turning to C*,qt we drop the hypothesis |$P| > |Q| , and let 2
be a maximal p, g-subgroup of © containing 5p. Let £ be a Sp,,-subgroup
of © containing 3̂.

First, assume that 0,(2) =£ 1. In this case, O,(£) is a maximal
element of M(̂ S; g). If O,(&) ^ 1, then O,(£>) is also a maximal element
of M(̂ p; g). Thus, Theorem 17.1 yields that § is conjugate to Z.
(Here, as elsewhere, we are using the fact that every maximal element
of M(̂ ?; q) is also a maximal element of M(2I; q) for all 21 in S"&L4^W).y
Thus, suppose O,(&) = 1. In this case, if SI e S^^W), then 35 < §r

§8 = F(ccy2I); «P)f by Lemma 17.5, so | © |f = | JV(5?): C(5S) |f. But
N{Oq(%)) dominates 53, so | N{Oq(Z)) \q>\® \q, which is absurd.

We can now suppose that Og(£) = 1. We apply Lemma 17.5 and
conclude that 53 < 2, where S3 = F(ccy2l); $), and S l e ^ ^ ^ ( ^ ) .
Let O0 be a Sg-subgroup of 2 . Since 2 is a maximal p, g-subgroup
of ©, Do is a S,-subgroup of iV(S3).

Let $ be a SPf,-subgroup of © containing ty and let Q be a Sq-
subgroup of £>. Let D^ = O9(§). If C^ = <1>, then $ S iV(53), by
Lemma 17.5, and we are done. Otherwise, § = £XN§(%$), again by
Lemma 17.5, and we assume without loss of generality that iV§(93) g 2 .

Assume that iV§(33) n Qi ^ <1>. Then in particular, J n d ^ <1>,
contrary to 0,(2:) = <1>. Hence, JV^S) n d = <1>.

We will now show directly that iV (̂S3) = St. Since iV§(S3) £ Zr

it suffices to show that | iV (̂S3) |f ^ | S |f. Now JV(O0 = 0AN($\)) •
(iV(Di) n iV(S3)), by Lemma 17.1, and since iV (̂S3) nQi = <1>, it follows
easily that | N%(%) |f = | JV(£>i) n
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Let %=N(Z(^S)). By Lemma 17.3 we have ^ O
Let 2ft = N(ZXd n %. Since 2ft contains sp, Op,(2ft) = OA%) fl 2ft. By
Lemma 17.5, we now have 2ft = (O,,(9fei) n 2ft) • (JV(9S) n 2ft), which yields
Sfti = OF,(9W • (N(S\) n JV(33)). Now 5ftx contains Z and 2 n Op,(%) =
<1>, since 0,(2) = <1>. Thus, do is mapped isomorphically into
WA%) = (N(Od n N(%))I(OA%) n JV^) n N(®)), and it follows
that | JV(QO n iV(3S) I. ^ I Qo I = I £ I,, as required.

Since iV (̂SS) = Z, it follows that £ £i £>, proving the theorem.

THEOREM 21.2. Let a be a subset of nz. Assume that © satisfies
J£p q for all p, q in a. Then © satisfies C«.

Proof. By the preceding theorem, we can assume that a contains
a t least three elements. By induction on \a\, we assume that &
satisfies CT for every proper subset r of a.

Let a = {plf • • •, pn}, n ^ 3, and let at = a — pi9 a{j = a — p{ — ph

1 ^-i, j ^-n, i ^ j . Let @4 be a S^-subgroup of ©, 1 ^ i ^ n. Then
the So-^-subgroups of @< are conjugate to the S^,-subgroups of @y.

For t ^ i , let rao = |0P i(@i)|. Note that by C^, m{ i depends
only on i and j and not on the particular S^-subgroup of ® we choose.

Fix i, j,k,i^ j =£ & =£ i, let ^ be a Sp<-subgroup of ©, let @J
be a S^-subgroup of © containing P̂» and @* be a S^-subgroup of
© containing %, chosen so that @J n @* is a S^ ^-subgroup of ©
which is possible by C^ fcf C^ and C^.

Let 5&y = 0Fi(@y). P̂« = 0P|(@J). Suppose that %y n $<* = <1>.
With this assumption, we will show that mo- ^ myfc. We can assume
that i = 1, j = 2, fe = 3, that ^pi2 n

 s^i3 = <1>, and try to show that
m12 ^ m23.

Let $Pi, SR4, 3t5f •••,5Rn be a Sylow system for @2*n@3*, and let
%f SR3, • • •, 9tn and %, 5R2, SR4, • • •, SRn be Sylow systems for @2* and @3*
respectively. Here 3tt is a SPi-subgroup of ©, i = 2, • • •, n.

Since ^pi3 is the SPl-subgroup of F(@s*)f the condition 5pu n %s = <1>
says that ^pi2 is faithfully represented as automorphisms of F(<§?). Now

F(@3*) = F(@3*) n % x F(@3*) n 3ta x JF1(@,*) n 3t4 x • • • x F(@3*) n 5RW ,

where ^pl3 = F(@3*) n SR. Since P̂12 and ^pi3 are disjoint normal subgroups
of $!, P̂12 centralizes SR,. If 4 ^ s ^ nf then <>pi2, F(@3*) n 5R.> = ft.
is clearly contained in @* n @3* and so 5̂12 and /T(@f) fl 3^ are disjoint
normal subgroups of $f> and so commute elementwise. But ^?12 is
faithfully represented as automorphisms of F(@3*), so is faithfully
represented as automorphisms of F(@3*) fl 9^. It follows from Lemma
5.2 that m12 ^ m23.

Returning to the general situation, if 0P|(@/) fl 0Pi(@*) = <1>,
whenever i =£ j =£ k =t i, and ©,- fl @* is a S^ ^-subgroup of ©, then
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rriij g rrijk. Permuting i, j , k cyclically, we would have m̂ - ^ mjk ^
™>ki ^ W»J. The integers mijf mjk, mki being pairwise relatively prime,
we would find m^ = 1 for all i =£ j . This is not possible since a
S^-subgroup of © is solvable.

Returning to the groups @* and @3*, we suppose without loss of
generality that $12 n P̂i3 = ®m =£ <1>. Since ®123 s <p12 < @2*, ®123.
commutes elementwise with Op/(@*). Similarly, ®123 commutes element-
wise with OPi(@3*). Hence <splf OPi(@*), OPi(@3*)> = 8 is a proper sub-
group of © normalizing ®123. By Lemma 7.5, both OPi(@*) and OPi(@3*>
are S-subgroups of OPi(S); in particular, 8 has a normal pj-complement.
Since 8 has a normal pj-complement, we can find an element C in Cfi(̂ 3>
such that OPi(@*) is permutable with C-1OPi(@3*)C. For such an
element C, let 2ft = <OPl(@2*), C'H)^®i)Cy.

We will now show directly that for each q in a, iV(3K) contains
a Sff-subgroup of ©. This is trivially true if 9JI = <1>, so suppose
that 3K ̂  <1>. Let SH,, • • -f 2Jln be a Sylow system for 3J1 which is-
normalized by SR, where aJî  is an Sp<-subgroup of 3Ji, i = 2, • • •, n.
We remark that by C*liPi, each SUi* is a maximal element of M(̂ pi; p^.

Let 13K» | = Pi* and let | © \H = p{\ By Lemma 17.5 and C*vPi we
see that p/*-< = | JV(9S): C(») |p<, where 5? = F(cd@(2I); ?P)f P̂ = S&,
and a e ^ ^ L ^ ( S p ) .

Let 8^ = JV(Z(9S)). Let £ be a coset of Op,(%) in %. Then £
contains an element JV of JV(5S) by Lemma 17.5. Hence, SKf"1 =
i = 2, • • -,TI where C2, • • -,Cn all lie in C(2I). Let S = <^,3Jia,• -
C2, • • •, Cn>. Since ®123 n Z(^) ^ 1, and since S centralizes ®123

we have ^ c ©. Let 8 = Op,(tf) (p = px) so that 8 $ = ft by Lemmaa
7.3 and 7.4. Hence, 8 contains both 2Ji and SW*"1, and since 33
normalizes 2ft, SI normalizes both 2ft and aft*"""1. By C*Pf, i = 2, • • •, nr

2ft is a S-subgroup of 8. By the conjugacy of Sylow systems in 218,
there is an element C in 831 such that W = SI, 2ft" = 2ft""1. Since
SSI has a normal ^-complement, C e C(SI) E Op'(Sfti), so (£ contains-

Thus, if X = 5ftx n JV(2ft>, we have 5ftx = Of .(SRja;. Since ^ i S ,
we have Op,(£) = Sfl O, ,^) . Hence K = Or(Z)N%(%) by Lemma 17.5,
so that % = O^WiV^SB). Thus JVySB) maps onto JV(SS)/C(5S). Since
^(88 )0 3ft centralizes S3, it follows that | £ : Z n SW |,4 = P.r*--I,
i = 2, • • •, n. Hence | S2ft |p< = | © |P|f as required.

If now 2ft ± <1>, then iV(2ft) c © and so © satisfies Ev.
We now treat the possibility that 2ft = <1>. In this case, both

F(5Pi*) and F(^3*) are ^-groups. By (B), both groups contain SI. By
Lemma 17.4, both $p? and p̂3* are contained in JV(Z(9S))F so once again
© satisfies E*.

It remains to prove C*, given Ea and CT for every proper subset
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z of a.
Let § and & be two S^-subgroups of © with Sylow systems

P̂n • • • > ?$n and &!, • • •, On respectively, S& and JQ4 being SPi-subgroups
of ©, Uigw.

If F(£>) and F(§0 are prgroups, we apply Lemma 17.4 and conclude
that & and & are conjugate in JV(Z(SB))f where S3 = F(cda(S); *&),
21 e S^W^P^i^) and we have normalized by taking Sft = d .

If F(£>) is a ^-group, then CPl,P| for i = 2, • • •, n imply that F(^)
is a ^-group. Thus, we can assume that neither F(&) nor F(^) is
a p-group for any prime p.

Let ra< = | Op,(£>) |, m\ = | OPi(§x) |, U i ^ w . For each i, we can
choose G{ in © so that OJ* = ?pif 1 ^ i ^ w, i =̂ j . Let ft4 = $?*,
i = 1, • • •, n, so that § D ̂ * contains a S^-subgroup of ©.

Suppose OPj(ft*) n OPj(&) = <1> for some i, j , i * j . Then 0,/ft*)
is faithfully represented on /X£>), since OPj(^<) i i §. But in this case,
OPj(®i) centralizes OPj(§) and also centralizes OPit(£>) for fc =£ i. Hence,
OPj(^i) is faithfully represented on OPi(§>), and so m) ^ mi by Lemma
5.2. For the same reasons, m5 ^ m[, since OPj(§) is faithfully repre-
s e n t e d o n F i ^ i ) . I f f o r a l l i , j , l ^ i , j ^ n , i * j , OPj(Stt) n O P j ( © ) =
<1>, we find m'j ̂  m< ^ m'3i and so mj = m< = 1. This is not possible
since § and & are solvable.

Hence, we assume without loss of generality that ®12 =
O9l(StJ n OPl($) ^ <1>. We will now show that OPl(^2) is conjugate to
Opj(£>). To see this, we first apply Lemma 7.4 and CPliP| to conclude
that Op£®2) and OP̂ (§) have the same order. Since ®u centralizes
both OPi(^2) and 0Pi(§), it follows that S = <«&, OPl(S2), OP{(§)> c ©.
By Lemma 7.4, it follows that <0Pi($2), OPi(̂ ))> S Opj(8). By Theorem
17.1 and C*1>p<, OPi(S2) and OPi(§) are S-subgroups 'of OPi(2), so are
conjugate in S, being of the same order. Since OPi(6) =£ <1>, Co-
follows immediately.

22. Linking Theorems

One of the purposes of this section is to clarify the relationship
between 7r3 and 7cA.

Hypothesis 22.1.
(i) PGTT3, qen(&).
(ii) A Sp-subgroup ^ of & does not centralize every element of

MOP; g).

THEOREM 22.1. Under Hypothesis 22.1, if Ox is a maximal
element of M(̂ 5; q) and Q is an element of C^ of order q, then C^iQ)
contains an elementary subgroup of order qz. In particular, qen^U7r4.
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Proof. Choose £ char £LX in accordance with Lemma 8.2, and set
©! = Qx(&). From 3.6 and Lemma 8.2, it follows that s# does not
centralize Gt̂ . Since ci(E) ^ 2, Ĝ  is of exponent q.

Since NQKJ 3 N(£k), Lemma 17.3 implies that O'(N(<&d) = JV(d).
Since iV((£i) has odd order, this in turn implies that (Ŝ  is not generated
by two elements. Consider the chain ^ : Ĝ  2 7&1&1 5 7aEiQ! 3 • • •.
Since $P does not centralize Elf $P does not stabilize <g"f so we can
find an integer n and subgroups Slf 2l2 such that j " ^ ^ * 1 g 2IX £
a, S r d d r and such that 33 = «,/«! is a chief factor of iV(&i) and
with the additional property that ty does not centralize 93. Since

O W O ) . we also have 5TC = OP(5K), where 91 =
n JV(Q1))/(C(9S) n iVO^)). Since | N(£X) \ is odd it follows that

153 I ̂  q\ Since 7 2 1 ^ G St, it follows that | Q/Q) I ̂  g3. If C^(Q)
did not contain an elementary subgroup of order g3, then we would
necessarily have Q e SI2 since Sl2 is of exponent g. Since | C%2(Q) \ ^ q3,
the only possibility is that C,%2(Q) is the non abelian group of order
qz and exponent q. But in this case Q e C^2(QY S ZC î), and CQ^Q)
contains an elementary subgroup of order g3 since D^ does, by Lemma
8.13, Lemma 8.1, and the equation N(SX) = OP(N(SX)).

Hypothesis 22.2.
(i) ty is a Sp-subgroup of © and perr^.
(ii) q, r e TT3 U TT4; P̂ does not centralize every element of M(̂ 5; q)

and $P does not centralize every element of M(̂ p; r).

THEOREM 22.2. C/̂ der Hypothesis 22.2, g — r.

The proof of this theorem is by contradiction. The following
lemmas assume that q ^ r.

Since Hypothesis 22.2 is symmetric in q and r we can assume
that q > r, thereby destroying the symmetry.

Let S l e ^ ^ ^ O P ) . Let Dx, % be maximal elements in MOP; q),
; r) respectively.

LEMMA 22.1. If £> is an ^-invariant q, r-subgroup of ©, and
if a Sq-subgroup §g of § is non cyclic, then !Qq < &.

Proof. Let £>r be a Sr-subgroup of § normalized by 21. Since
q * r, either &&^VH&r) or ^«L^(f t f ) is empty. If *5*K^($r)
is empty, application of Lemma 8.5 to & yields this lemma.

Suppose £^^^Vl(^r) is non empty. Then S^^^/l^) is empty,
so & has g-length one. Thus, it suffices to show that §? centralizes
Or(£). We suppose without loss of generality that 21 normalizes £>,.
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Then by Corollary 17.2 ftff is contained in a conjugate of £\, so C(H)
possesses an elementary subgroup of order q* for H in ftg, H of order
<7, by Theorem 22.1. We will show that 42i(ft,) centralizes Or(ft). Since
ft, is assumed non cyclic, £?i(ft,) is generated by its subgroups @ which
are elementary of order q2, so it suffices to show that each such Gc
centralizes Or(ft). If @ does not centralize 0r(ft), then Gr does not
centralize Or(ft) n C(E) for suitable £ in 6*. By Lemma 8.4,
S^l4^(0r(^) (1 C{E)) is non empty for such an E, so q 1" r is violated
in C(E).

Since J?i($ff) centralizes Or(ft), it follows that < 5 ^ ~ ^ (Or(ft)) is
empty, since q^h r. Hence, ft< centralizes Or(ft) by Lemma 8.4, as
required.

We define JT* as the set of q, r-subgroups of M(2I) which have
the additional property that no Sq- or Sr-subgroup is centralized by 2t,

LEMMA 22.2. 3? is non empty.

Proof. Suppose that 7£>i2t = <1>. If we also had 73^21 = <1>,
then q + r would be violated in C(2l). Hence, 79ti2I =£ <1>, and we
can find % S 3tlf 3t2 =£ <1>, such that % = 7$R22t and such that Sti =
CsiI(3ta) ^ <1>. Consider C(%) 3 <Sl, C ,̂ SR2> = 8. By Lemma 17.6,
21 3 OP' P(S) and it follows readily that 8 possesses a normal comple-
ment §0 to a. We can then find C in C2(2t) such that § = <Q1, 9 0
is a g, r-group. By Lemma 22.1 and the fact that Qx is a maximal
element of M(2l; tf), we have SX < $. But now SH? G JV(Oi) = Op(iV(Qi)).
Since g ^ r , if @r is a Sr-subgroup of JV(Oi), then ^g^^(@ r ) is
empty. By Lemma 8.13 iV(Di)' centralizes every chief r-factor of
iV(Qi). It follows that 21 centralizes 3t?, contrary to construction, so
we can assume that 7di2t =£ <1>.

Suppose 73ti2I = <1>. Since 21 possesses an elementary subgroup
of order p3, we can find A in 21 such that CQX(A) is non cyclic.
Consider C(A) 3 <2l, C^/A), Sft̂ . By Lemma 17.6 we can assume that
§ = ^Ca^A), 9ti> is a g, r-group. Then Lemma 22.1 implies that
@* < ft, @g being a S,-subgroup of ft. Enlarge ft to 5B, a maximal
2I-invariant g, r-subgroup with Sylow system &q, 3^. Lemma 17.6,
Lemma 22.1 and maximality of ^ imply that $tq is a maximal element
of M(2I; g), contrary to q ^ r.

We can now assume that 7^21 =£ <1> and 75R!2t ^ <1>.
Let O2 be an 2l-invariant subgroup of C^ of minimal order subject

to 7Q22t =̂= <1>. Let SR2 be an 2t-invariant subgroup of 9^ of minimal
order subject to 79ta2I ^ <1>. Let 2IX = ker (21 — Aut Q2), 2I2 =
ker (21—Aut %). Since 21 acts irreducibly on Qj/Z^Q,) and on 5R2//)(9t2),
it follows that 31/31, is cyclic, i = 1, 2. Since 21 e ^^L^(^?), 2tx n 2l2 =
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An Sl-invariant S,,r-subgroup of <3I, Q,, 9ta> £ C(2l3) satisfies,
the conditions defining JT", by Lemma 17.6 and Dp>q§r in <3I, Q,, SR .̂

Let S be a maximal element of J?T, with Sylow system 5??, 5Br,
chosen so that 21 normalizes both $£q and 5Jr, $tq being a Sg-subgroup
of 5E.

LEMMA 22.3. Slq is cyclic and Og(S) = <1>.

Proof. Suppose $, is non cyclic. Then Lemma 22.1 yields Slq <] 5L
The maximal nature of 5£, together with Lemma 17.6, imply that
$, is a maximal element of M(2l; <j), so is conjugate to £tx.

By Lemma 17.3, N(®q) = 31 = Op(3l). Since q + r, N(ftq) does,
not possess an elementary subgroup of order r3. Now 91 = Op($l) and
Lemma 8.13 imply that 7®r2I = <1>, contrary to construction. Hence,
$tq is cyclic.

If Oq(B) ^ <i>, then QAO.i®)) = ii^) < ®. The maximal nature
of 5? now conflicts with Lemma 17.6 and Theorem 22.1 proving this,
lemma.

We choose C in C(2I) so that $t°r 5 9 ;̂ since $1° is also a maximal
element of J%T, we assume without loss of generality that $ r g %.

LEMMA 22.4.

( i ) 5?r is non abelian.
(ii) No non identity weakly closed subgroup of $tr is contained

in Or(®).
(iii) Or(5J) contains an element of ^(fR)f SR being any Sr-subgroup

of © containing a Sr~subgroup SR* of

Proof. We first prove (ii). Suppose 5£ ̂  <1>, 2 is weakly closed
in Str, and S £ Or(ffi). Then X < ®2I, so the maximal nature of St
together with Lemma 17.6 imply that 58r = 9^.

Since N(%) = Op(NQRd)f so also N(Z) = OP(N(X)). Since q ^ rr

Lemma 8.13 implies 7$tt®<, = <1>, contrary to construction, proving (ii).
If $ r were abelian, then Oq(St) = <1> and Lemma 1.2.3 of [21]

imply that Br = Or($), in violation of (ii). This proves (i).
Suppose r e 7T3. In this case, Cp*r implies 9t*=5R, and since 9t(=£<l>,

it is clear that 9ti contains an element U of ^(9t). Since Sr =
N(Or(St)) n SRi, it follows that U n Z(SR) £ ^r and so by (B), U n Z(3l) S
Or(ft). It now follows that U fi flrf and so U S Or(ffi)f again by (B).
Next, suppose that r e 7cA. In this case, since SR[ ̂  <1>, 5R* contains
an element S3 of ^<(SR), 5R* being a Sr-subgroup of N(Kh Since »
centralizes OP(̂ 5R*), by Lemma 19.1, we have 33 C SRL Since 33 £ SRlf

93nZ(5H)£Sr and so by (B), 33 n Z(SR) £ Or(£). It follows that
93 £ Or(5l). This proves (iii).
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To prove Theorem 22.2 we will now show that $tq centralizes
Z(Or(5£)) = 3- Suppose by way of contradiction that this is not the
case. We can choose & e ^ ( r ) such that £ S ®r but (£ §£ Or(®). Since
$£q is cyclic Sx = (£ n Or(S) is of order r. From (B), we then have

If r ^ 5, we apply Lemma 16.2 and conclude that 7*,8&4 =
contrary to the above statement. Hence r = 3, and by Lemma 16.3
we have 723®2 = ®n' in particular, Ĝ  g 3 . Now apply Lemma 16.3
again, this time with O3(5?) in the role of g, and conclude that

Let 2 = 7O3(S)S9. By Lemma 8.11, we have £ = yZ$tq, and so
E, s £^(2;)). Hence by (B), ftf acts trivially on ZIOl(Z(Z))9 and this
implies that 2 = /21(Z(S)), so that 2 is elementary.

The equality 72££2 = Ei and (B) imply that an element of S — Ej.
induces an automorphism of £ with matrix J3. Since | Sfl | divides 33 — lf

we have | JIJ = 13.
By definition of Jf we have p/12 = | Aut®13|. Since p =̂ r = 3,

we have a contradiction, completing the proof that ®q centralizes 3
in all cases.

Now Z ^ ) centralizes Or(&), so by maximality of S, we have
Z(5R1)^^r and (B) implies that Z(%)^Z(Or(®)). Hence, ftSiV(Z(3i1)) =
9ilB But 9̂ ! = Op(?ii) and since g o6 rf 9^ does not possess an elementary
subgroup of order g3. Lemma 8.13 implies that 7^,21 = <1>, contrary
to construction, completing the proof of Theorem 22.2.

For p in 7r3 U TT4, let "W^v) be the set of all subgroups 2Q of ©
of type (p, p) such that every element W of 2B centralizes an element
S3 of a'(p). We allow S3 to depend on T7.

Hypothesis 22.3.
( i ) p67T3, ?
(ii) p + q.

THEOREM 22.3. Under Hypothesis 22.3, if B is a p, q-subgroup
of & and if St contains an element of c%^{p), then a Sp-subgroup of
$1 is normal in $.

Proof. Let 3fT be the set of subgroups of & satisfying the
hypotheses but not the conclusion of this theorem and let J£f be the
subset of all 5£ in J%T which contain at least one element of *Z?(p).

We first show that J%<[ is empty. Suppose false and $t in J?% is
chosen to maximize \St\9. Let Sp be a Sp-subgroup of 5£, and let
35 = F(eda(S); ft,) where 93 e &(p) and S3 S ft,.

Since pi* q, Hypothesis 22.1 does not hold. Hence, Hypothesis
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19.1 holds. Apply Lemma 19.1 and conclude that S3 centralizes O,(ft).
Suppose ftp is a Sp-subgroup of @. Then ftp centralizes O,(ft).

By Lemma 17.5 and Hypothesis 22.3 (i), if 21 e ^ ^ ^ ( f f l , ) , and ^ =
V(ccl^); ftp), then ^ S O,,P(ft). Since ftp centralizes Og(ft), it follows
that ^ S O A and so SB^ ft. By Lemma 17.2, iV(Z(aS1))=Op(iV(Z(SS1))).
Since pr^ Q, JV(Z(85i)) does not possess an elementary subgroup of
order q\ so Lemma 8.13 implies that ftp < ft, contrary to the definition
of 3%. Hence,t in showing that %̂f is empty, we can suppose that
$tp is not a Sp-subgroup of @.

Since 33 centralizes Og(ft), we have ftp • Oq(St) £ JV(S3). Since 53 is
weakly closed in ftp and ftp is not a Sp-subgroup of ©, ftp is not a
Sp-subgoup of JV(9S). Maximality of | ft |p implies that ftp < ftp • O,(ft),
and so Op(ft) is a iSp-subgroup of Oq p(ft).

Let p̂ be a Sp-subgroup of © containing ftp, and let 21 e S^f^Vl^).
Since Op(ft) is a Sp-subgroup of O,,P(S), it follows from (B) that
31 n ftP = 21 n OP(ft). By maximality of | ft |p, ftp is a Sp-subgroup of
JV(Op(ft)) and it follows readily that 21 C OP(ft). But in this case,
532 = F(cci@(2I); ftp) < ft, by Lemma 17.5. Since ftp is not a Sp-subgroup
of ©, it is not a Sp-subgroup of JV(SS2), and the maximality of ftp is
violated in a Sp,,-subgroup of iV(932). This contradiction shows that
3^ is empty.

Now let ft be in J T with | ft |p maximal. Let 2B E ftp, 2B e ^\v).
If 732Og(ft) =̂ <1>, then SB does not centralize C( W) n O,(ft) for suitable
TT in SB*. But in this case a Sp,,-subgroup of C(W) contains an
element of ^/(v) and also contains non normal Sp-subgroups, and 3%
is non empty. Since this is not the case, SB centralizes O,(ft), and
so SBX = F(ccZ(S(SB); ftp) centralizes O,(ft), SB being an arbitrary element
of ^~(p) contained in ftp. Since ftp is not a Sp-subgroup of ©, it is
not a Sp-subgroup of JVXSBj), so maximality of | ft |p implies that ft
centralizes O9(ft). Hence, OP(ft) is a SP-subgroup of 09>P(ft). Since
ftp is a Sp-subgroup of JV(Op(ft)) in this case, Z(̂ P) £ OP(ft) for every
Sp-subgroup ?̂ of © which contains ftp. It follows that ftp contains
an element of *ZS(v). This contradiction completes the proof of this
theorem.

If p e 7r3 U ?r4, we define n(p) to be the set of primes q such that
j> ~ q, and we set 7T3(p) = 7r(p) n 7T8.

p

THEOREM 22.4. / / p,qe n3 and p ~ q, then n3(p) =

Proof. We only need to show that if r e izz and p ~ r, then r — q.
Apply Theorem 21.1, let ft be a SP,,-subgroup of © with Sylow

system *p, D, and let S be a Sp r-subgroup of © with Sylow system
<p, SR.
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If Hypothesis 22.2 is satisfied, Theorem 22.2 applies and yields
this theorem. Hence, we suppose without loss of generality that P̂
centralizes Og($).

Let « e £"&WW)9 5? = F(cda(«); $). Apply Lemma 17.5 and
conclude that 33 < S.

If $p also centralizes Or(8), then we also have 5? < 8, and g ~ r
follows from consideration of JV(9S). We can suppose that P̂ does not
centralize Or(8).

Suppose we are able to show that N(Or(£)) contains a Sg-subgroup
"of C(SP). Apply Lemma 17.3 and conclude that JV(Z(33)) = 9^ =
<V(9y • % n 91, where 91 = N(Or(2)). Let JĈ  be a S,-subgroup of C(*P)
which is contained in 91. Since sp centralizes 0,(5?), it follows that
JQi is a Sg-subgroup of Opl(%). Let 91? be a Sy-subgroup of 0,*(9ii),
so that 0P>(%) = 9i?Q1. Hence,

9^ = 0A%) •% n 9* = 91?^ •% n 9* = 9i? -91, n 9i ,

since Dj £j 9̂ ! n 9£. Since 9ix contains a S,-subgroup of ©, so does
9ix n 9i. But SSI contains a Sr-subgroup of © as well, and so q ~ r.

Thus, in proving this theorem, it suffices to show that N(Or(2))
contains a Sg-subgroup of C(̂ S).

We wish to show first that some element A of 21* centralizes a
subgroup 2B of W(r) with SB S Or(S). If D(Or(2)) = © is non cyclic,
then every subgroup of ® of type (r, r) is in 3f"(r) and since 31
possesses an elementary subgroup of order p3, an element A is available.
Suppose then that ® is cyclic. If © = <1>, then of course ^ centralizes
©. If © =£ <1>, then JV(©) = Op(iV(©)) and once again «p centralizes
©. It now follows that SI* contains an element A whose fixed-point
set on fl^O^S))/^©) is non cyclic, and this implies that C(2l) n Or(S)
contains an element of ^~(r).

For such an element A, let § be a Sg,r-subgroup of OP,(C(A)) which
is 2I-invariant and contains 09(S). Then Lemma 17.5 implies that $
contains an element of eW(r). Apply Theorem 22.3 and conclude that
& < £>, £>r being a Sr-subgroup of £>. If §* is a maximal element
of M(2I; q, r) containing £>, then Theorem 22.3 implies that £>r* < §>*,
§* being a Sr-subgroup of §*. By maximality of £>*, $* is a maximal
element of M(Sl; r). Since § contains a maximal element of M(2I; g),
namely, 09(S), so does §>*. It follows that JV(Or(£)) contains a maximal
element £>* of M(̂ ?*; q) where 5̂* is a suitable Sp-subgroup of N(Or(2)).
But % G JV(Or(S)), and so «p = P̂*̂  for some JV in iV(Or(8)), and so
£}*^ = Da is a maximal element of M(̂ 3; q) normalizing Or(S). By
Lemma 17.4, £}2 is a maximal element of M(2I; g).

Now 5̂ centralizes Oq($t), and 0,(S) is a maximal element of M(̂ P; q).
It follows that N(Oq(St))IC(Oq(St)) is a p'-group. Since D2 and Oq(St)
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are conjugate by Theorem 17.1, it follows that JVXQO/Ĉ Q,) is a p'-
group, and so ty centralizes Dj,. By C*q, it follows that Q2 is a Sq~
subgroup of COP), completing the proof of this theorem.

THEOREM 22.5. / / penB, then © satisfies C^(p).

Proof. By Theorem 22.4, if q, r e nz{p), then g ~ r. By Theorem
20.1, © satisfies Eqr for q, rexs(p). By Theorem 21.2, © satisfies CXz{p).

Hypothesis 22.4.
(i) pen,, qenz{}nA.
(ii) If ty is a Sp-subgroup of ©, then ty contains a normal

subgroup Gr of type (p, p) which centralizes at least one maximal
element of MOP; q).

LEMMA 22.5. Under Hypothesis 22.4, Gr centralizes every element
(@; q)of M(@; q).

Proof. Suppose false and D is an element of M(Gf; q) minimal
with respect to T£>@ ^ <1>. Then O = TQ© and @0 = Ce(£>) =£ <1>.
Let § = C(@o). Then § contains an element 21 of <5*if^(^) with
@ E 21. By Lemma 17.5, 21 S Op',p(©)» and so O = TO© is contained
in Op>(£>). If O* is an 2I-invariant S9-subgroup of OP/(§), it follows
readily that TQ*@ ^ <1>. If O is a maximal element of M(2I; g)
containing D*, then @ does not centralize O. Let Do be a maximal
element of M(̂ P; g) centralizing @. Since Do is also a maximal element
of M(2l; g), we have Do = & for suitable C in C(2l) S C(C). Since ©
does not centralize D, (£° = @ does not centralize Q,. This contradiction
completes the proof of this lemma.

The next theorem is fairly delicate and brings 7r4 into play ex-
plicitly for the first time.

Hypothesis 22.5.
(i) penz, qen4.
(ii) P - Q.

THEOREM 22.6. Under Hypothesis 22.5, if ty is a Sp~subgroup
of © and Di is a maximal element of M(̂ p; q), then C^ =£ <1>. i f
£}2 is a Sq-subgroup of N(SX) permutable with ty and Dg is a Sq~
subgroup of © containing Da, then D2 contains every element of

Furthermore,

Proof. By Theorem 19.1, 5̂ does not centralize £^f so in particular
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Suppose that Da contains an element 33 of ^(£1,). By Lemma
19.1, S3 centralizes Op^Qa) and since S3 is a normal abelian subgroup
of O,, (B) implies that 33 g O?0POa). Let 91 be an element of
^ ^ ^ ( O g ) containing 33. Let & = JV(33) 3 <£>3,0PWDj>. Since
<l e 7r4, Oq,{$) = <1>, and (B) implies that 21 S 0,(§). Hence,
[21 n Oa, 0 , ( m ) ] S O f») n 0,(5(50,) = <1>, and by (B), 21 n Q, S
•O^OPG*), and so 21 n Q, S 0,(^0,), that is, S n O, = « n Qi. If
H2Inn ic2t , then 8 n d c ^ ( Q J , contrary to JV^O S 21 n Q« =
"SI n Qi. Hence, a s f t . Since g e 7r4, Corollary 17.3 implies that
•1(81; p) is trivial, so 0P(^Oa) = <1>. By Lemma 7.9, it follows that
JQx contains every element of S*&^r(£ti, and not merely 21. This
proves the theorem in this case.

We can now assume that O2 does not contain any element of
^(Og), and try to derive a contradiction.

Since D2 is a S,-subgroup of the normalizer of every non identity
normal subgroup of ŜOa, if D(&i) =£ <1>, then iVQ3(Z)(O1)) contains an
•element of ^(O3), and since iVrQ3(Z)(Cl1)) = Qa in this case, Qa contains
an element of ^(£1,), contrary to assumption. Hence, D(£L,) = <1>.

Let Of = Op ,(^Da) n Qa- Since [Of f D,] = [0P ,W&d, QJ < ^ ,
and since every element of ^(£1,) normalizes [Of, C^], we conclude
that Oi S Z(df). Since D(Q?) n di is normalized by every element
•of ^(Ds) and also by <0P(̂ pOa), ^P^ fl JV(Of )> = ^Q2, we have
D(Qf) nQi = <1>. This implies that Of = C^ x g for a suitable
subgroup g of Of.

Since Z(£X) S £>2, we have Z ^ ) £ Of, by (B). Since Qa contains
no element of ^(Dg), Z(Og) is cyclic. For the same reason, Z(Og) PlOi =
-<1>, since otherwise, ^(ZfO,)) S Qi and every element of ^(Og)
normalizes Qlt In particular, Oi is a proper subgroup of Of. This
implies that 0,(^0,) =£ <1>. More exactly, Ox = CQ*(0,(^0,)).

Let 33 G ̂ (£>3) and let ^ = CQl(33), so that | Oi: Ox | = g.
Suppose Op(̂ PDa) is non cyclic. In this case, a basic property of

p-groups implies that Op&SX) contains a subgroup © of type (p, p)
which is normal in $p. Since Qx is a maximal element of M(̂ P; g),
Hypothesis 22.4 is satisfied. Since £X is of index q in Oif Theorem
22.1 implies that Oj ^ <1>. Hence, <SJ3, @> is a proper subgroup of
© centralizing Q1( Choose 33X G cc^(33) and ^ e ccZ@(@) so that ffl =
•^Bi. ®i> is minimal. By Z)p,g in ^, it follows that 5? is a p, g-group.
By Lemma 19.1, SB? centralizes 0P(&) and by Lemma 22.5, 6? centralizes
O,(ft). It follows that ft = 33X x <£. Let 8fl = ^(330. Since « € TT4, F(5«)
is a (/-group. By Lemma 22.5, @i centralizes (̂9 )̂ so 3.3 is violated.
This contradiction shows that Op(̂ pna) is cyclic.

Since Oi = CD*(OP(̂ Qa))i it follows that g is cyclic of an order
dividing p — 1.
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Let 33 = O^Of) = SX x 5,(8), and let & = -2^(88). We see that
m = &oP(m), & n oP(m) = <i>. Let a« = iv(as), a^ = cm. it
is clear that ^ n P̂G, = Of, since 5K2 n 0,(^0,) = <1>, and since Of
is a S,-subgroup of 0P ,(̂ P£}j)-

Let 8 = Og(2Jt mod 2M0. We see that 8 n $£}, = £>*, again since
Of is a Sg-subgroup of Op ̂ CPOs). We observe that since Q* contains
Z(Qs)» SW contains every element of ^(Qg), and so contains 33. By
Lemma 7.1, 8 contains S3. Hence, S D S K I .

We next show that 8/2)^ = 8 is elementary. If Z)(S) =£ <1>, then
by a basic property of g-groups, C«g(Z>(8)) is of order at least g2.
Hence, ZXi = Cfe(Z)(8)) f! Oi =£ <1>. But in this case, C^ is normalized
by ^OPO,), &,> = 5P&2, and is centralized by D (8 mod SKJ, and so
Oa is not a S^-subgroup of JV(Di). This is not possible, so Z)(S) = <1>.
We have in fact shown that if Sx < 2J1, and Wl, c 8X e 8, then C«(8i)
is of order g.

Since 8 is abelian, 8 normalizes [5?, S3] = Q^ZiZXJ). It follows
that CSB(8) = O^ZCO,)).

Let Sx = <S3TO, att,>f and let 3^ = 33*, JlfeSR. Since 33 and 332

are conjugate in 3Ji, [33,33!] is of order q and is centralized by 8. It
follows that [93LaJJ = QX{Z{&*)). Since 8 is abelian, and since 33^
covers 8 ^ = 8lf it follows that [33, SJ =_Q1(Z(£lz)). Let | d | = qn

f

and 18i: SWi | = qm. Since each element of 8} determines a non trivial
homomorphism of S / ^ Z C O B ) ) into /^(ZOQ,)), it follows that m ^ n.
Since CSBCSO = Q^ZiS^)), it also follows that m ^ w. Hence, m — n.
This implies that 8X = 8, since any g-element of Aut 33 which centralizes
Sj is in S*lf by 3.10. Here we are invoking the well known fact that
Sx is normal in a Sg-subgroup D of Aut 33 and is in fact in ,P*2*L/f (Q).
(This appeal to the "enormous" group Aut 33 is somewhat curious.)

Returning to 8, let 33* be a Sg-subgroup of 8, and let 2B = fl^SS*).
Since G\^>*) S Z(33*), and Z(33*) is cyclic, it is easy to see that
fi1(Z(3B)) = QAZiZXs)), and that ^IQ^Z^SS)) is abelian. Hence, 3B is
an extra special group of order q2n+1 and exponent q.

We next show that 20̂  is a p'-group. Since 2)^ C CCOJ, it suffices
to show that no non identity p-element of N(SX) centralizes 33. This
is clear by Dp,g in N(£k), together with the fact that no non identity
p-element of P̂O* centralizes 33.

Since SD̂  is a p'-group, so is 8. Since 8 < 3Ji, we assume with-
out loss of generality that iVip(33) normalizes 33*.

Let (£ e £*&L4^ffl), and set Ex = © n iV (̂33). Since P̂ =
Opffl&z) - ̂ (33) and 0,(^0,) is cyclic, ^ is non cyclic. Since ^ i&
faithfully represented on 33, it is faithfully represented on SB = 0i(93*).
Since p > q, (^ centralizes fl1(Z(SB)).
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We can now choose C in Ef so that Ex does not centralize Sd =
C^(C). Let 2£2 = [2^, EJ. We will show that 2B2 is non abelian.
To do this, we first show that SDBX is extra special. Let We SĤ  —
42^(28)). Since C centralizes W, C normalizes C^(W). Since p > q,
C acts trivially on SB/C^TF), and so C centralizes some element of
2 8 ~C^(W). It follows that Z(8Bt) = Z(SB), so that S^ is extra
special. We can now find 2B3 E SBi so that SDB,. = 2B2S333 and 2B2 n 2B3 S
Z(2B); in fact, we take 2B8 = Cm(3S2). By the argument just given,
2£3 is extra special. Since 2Bi is, too, it follows that 2B2 is extra special,
hence is non abelian.

For such an element C, let X = C(C) 2 <(£, 3B2>. By Lemma 17.5,
(£ S O,/,,(S). Since 2B2 = [3B2, <£Jf by Lemma 8.11, it follows that
2£2 £ Op>(£). It follows now that M(E; g) contains a non abelian group.
But now Theorem 17.1 implies that the maximal elements of M((£; q)
are non abelian. Since C^ is a maximal element of M((£; q) and C^
is elementary, we have a contradiction, completing the proof of this
theorem.

THEOREM 22.7. If p, q$ n3, and p ~ q, then n(p) = n{q).

Proof. Suppose p ~ r. By Theorem 22.4, we can suppose that
re7r4. Proceeding by way of contradiction, we can assume that a
S9-subgroup D of © centralizes every element of M(O; r), by Theorem
22.1. By Theorem 19.1, a SP-subgroup ty of © does hot centralize
every element of M(̂ P; r). Applying Theorem 22.2, we can suppose
that ?̂ centralizes every element of H(̂ 3; q).

Let Da be a maximal element of M(̂ 5; q) and let ^ be a maximal
element of M(̂ $; r). Let 5R2 be a Sy-subgroup of iV(SRi) permutable with
% and let SR3 be a Sr-subgroup of © containing 5R2. Let 21 e ,S"g^(5P).
By Theorem 22.6, OP0$R2) = <1>, so 21 does not centralize 3^. We
can then find A in 21* such that 91? = [C^A), 21] ^ <1>.

Suppose Oj is non cyclic. Then by C*,qt C^ contains an element
of J/r(q). Let § = C(A) 3 <2I, »*, Oa> = S, and let A be an 21-
invariant Sff r-subgroup of OP.{%) with Sylow system ®r, C .̂ By Theorem
22.3, SX < «. Since JVCd) = O îVCOx)), it follows that 72IS?r = <1>
by Lemma 8.11 and the fact that iV(Gi) does not contain an elementary
subgroup of order r\ This violates the fact that SR? = 7$Rf 21 =£ <1>,
by Dpr in §. Hence, $X is cyclic.

Since 7^?? = <1>, 5R = 0P(^P02) =£ <1>, where D2 is a S?-subgroup
of © permutable with 5̂ and containing C ,̂ which exists by Cp*,q.
Since N(^) = Og(JV(5pi))f it follows that C^ £ Z(O,)f Dx being a Sg-
subgroup of OP.(NWd).

Let S3 = F(crf^(a); %), and 9^ = JV(Z(9S)). By Lemma 17.3, % =
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% n iV(SRi). Since £k is a S,-subgroup of ( M ^ ) , it follows
readily that 9^ n JV(3ti) contains an element of *W(q). In particular,
^(3*0 contains an element of <W{q). If S is a Sq r-subgroup of JV(SRi)
with Sylow system 2q, 8r, then 8, < S, by Theorem 22.3. By Theorem
22.6, 3^ contains an element (£ of ^^L^(5ft3). By Corollary 17.3,
M((£) is trivial. Since 29 € M((£), we have a contradiction, completing
the proof of this theorem.

23. Preliminary Results about the Maximal Subgroups of @

Hypothesis 23.1.
(i) vf is a non empty subset of n^
(ii) For at least one pinvf, nr = n(p).

We remark that by Theorem 22.7, Hypothesis 23.1 (ii) is equivalent
to

(ii)' n(p) = tar for all p in vr.

Under Hypothesis 23.1, Theorem 22.5 implies that © contains a
Stf-subgroup £>. Since £> also satisfies E«x for all subsets vfx of ttr, §
is a proper subgroup of © by P. Hall's characterization of solvable
groups [IS]. This section is devoted to a study of § and its normalizer
3Ji = JV(£>). All results of this section assume that Hypothesis 23.1
holds. Let -& = {plf • • •, pn}, n ^ 1, and let 5ft, •••,^5n be a Sylow
system for §.

LEMMA 23.1. 3Ji is a maximal subgroup of © and is the unique
maximal subgroup of © containing £>.

Proof. Let $ be any proper subgroup of © containing £>. We
must show that $t £S 9JI. Since 5? is solvable we assume without loss
of generality that S is a -or, g-group for some q$vf. Let 5ft, • • •, $pw,
Q b e a Sylow system for ®. It suffices to show that 5ft < 5ftO.

Since g £ tar, px^ q. Theorem 22.1 implies that 5ft centralizes
Og(5ftO). By Lemma 17.5, S3 < 5ftQ, where S3 = F(ccZ@(St); 5ft) and
ae^KyfJ(Sft) . By Lemma 17.2, 91, = JV(Z(93)) = O*(9y. Since %
does not contain an elementary subgroup of order g3, Lemma 8.13
implies that 5ft centralizes every g-factor of 5ftJD and so 5ft < 5ftOf

completing the proof of this lemma.

LEMMA 23.2. / / pi e TT(F(&)), and 21, e S"&L4^($d, then CWSSW.

Proof. We can assume that i = 1. By C*liPJ § contains a SPj-
subgroup of Ĉ Sti) for each j = 2, • • •, w. Thus, it suffices to show
that if q £ tzr, and O is a S,-subgroup of C(2Ii) permutable with 5ft,
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then Q £ 3ft.
By the preceding argument, 5ft < SftQ. Since 5ft normalizes C(8d) =

«! x S, S being a pl-group, it follows that 5ftjQ = 5ft x Q.
Since F(fc) fl ?ft ^ <1>, it follows that 5K = JV(F(fc) n 5ft)f since

F(&) n 5ft char £> < 9Ji and 9Ji is the unique maximal subgroup of ©
containing $. The lemma follows since N(F($) n 5ft) S C(F(^) n 5ft) 3 Q.

L E M M A 23.3 . Let l^i^n, and let

Proof. We can assume that i = 1. If F(£>) is a ft-group, then
Lemma 17.5 implies that 5ft < £> and so 5?! < 501, since 5ft is weakly
closed in F(£>) n 5ft. In this case, JV(Sft) = 9Ji and we are done.

We can suppose that F(£>) is not a ^-group, and so 2 = OP>(&) ^
-<1>. Let £3, • • • , 2 , be a 5prinvariant Sylow system for Z, where %
is a SPi-subgroup of X and we allow £< = <1>. By C*liPi, S» is a
maximal element of M(5ft; p{).

Let JVe JV(Sft). Then by Theorem 17.1, %f = S?» where C2, • • •, Cn

are in C(%) S 9K. Since S char § < 3K, each S?» is contained in 2
and so X* = ST. Since 2 ^ <1>, 9K = JV(£) 2 iV(SSi), as required.

LEMMA 23.4. Let l^i^nt %e£«t?^K(%), 53, =
T̂ <C(2ti), iV(9S<)> £ 3Ji, f̂een 9K is tfce unique maximal subgroup of

<S containing 5p4.

Proof. We can assume that i = 1. Let Q be a g-subgroup of
<S permutable with 5ft. It suffices to show that O S SW.

Since O = Off(5ftO) • iV^SSi), it suffices to show that S\ = OqffljO) Q
HJl. If £1 is centralized by 5ft, then by hypothesis Q S 5Ui. Otherwise
ive apply Theorem 22.1 and conclude that qevr. By Theorem 17.1,
-£}? £ § for suitable C e CO )̂ £ 5Kf and the lemma follows.

LEMMA 23.5. For each i = l , « - , » , i / «<e
C(2I») £ 3Ji, ar̂ d 5K is f̂ee unique maximal subgroup of © containing 5&.

Proo/. First, suppose p{ e n(F($)). Then C(a4) £ 2ft, by Lemma
23.2. Then by Lemma 23.3, JV(^) £ 2R, 854 = F(cda(a,); 5&), and then
by Lemma 23.4, this lemma follows. We can suppose that p> g n(F(fe)).

We assume that i = 1. Let C(%) = SIi x ®, where 3) is a pj-group.
It suffices to show that for each q in 7r(©), 2Ji contains a S,-subgroup
JQ of 3). If g e tar, this is the case by Cp*,g, so we can suppose that

Since px $ 7r(F(§)), Si! does not centralize F(&). If F(§) were cyclic,
-and p = max {plf • • •, pn}, then a SP-subgroup of § would be contained
in F(£>) and so be cyclic. Since this is not the case, F($) is non cyclic,
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so we can assume that F(£) fl P̂2 is non cyclic. We can then find A
in a* so that C(A) n F(§) n P̂2 contains an element of 5T~(p2), say SB.

Let 8* = <®, SB, «,> S C(A)', and let £ be a SPl,P2>g-subgroup of
S* with Sylow system 8Pl, SP2, 2g, where % S 8Pl and O E Sff. Since
Six £ OPi,Pl(£*) by Lemma 17.5, it follows that 2IiOPl(8*)/OPl(8*) is a.
central factor of 2*. Hence, % is a SPl-subgroup of 2* and so 2* =
^ . 0 ^ 2 * ) .

We apply Theorem 22.3 and conclude that 2Pn < 2. If 2 is a
maximal element of M^; p2, q) containing 2Pa-2ff, it follows that 8Pa< 2,
where 2Pa is a maximal element of H(2Ii; p2). By construction, 2
contains D. By Theorem 17.1, there is an element C in C(%) such
that 2£2 = O^sPiSft). Since O° normalizes 2?2, it follow that
contains a Sg-subgroup of C ^ ) . But pa€7r(F(§)), so by what is
already proved, we have JVXOp^^pa)) £ 9Ji, and so 3Ji contains C(SIi)*
We apply Lemmas 23.3 and 23.4 and complete the proof of this lemma.

24. Further Linking Theorems

LEMMA 24.1. / / p e ni9 q e x3 U ;r4 and q ~ p, then n{q) £ n(p).

Proof. If q = p, there is nothing to prove, so suppose q =£ p-
Corollary 19.1 implies that q e TT,. Let r ~ q,r =£ q,r =£ p. We must
show that r ~ p.

If r G 7r4 and D is a Sg-subgroup of ©, then Q does not centralize
every element of M(D; p) and £1 does not centralize every element of
M(D; r). By Theorem 22.2, we have p — r.

If r G 7r3, then since also g G 7r3, we have r ~ p, by Theorem 22.7.
This completes the proof of this lemma.

If p G TT4 and fr G 7r(p), px ̂  p, let Trfo) = {p, plf • • •, pn}. By Theorem
22.7 and Lemma 24.1, Tt{p{) = ^(p^), 1 ^ i, i g n. It follows from
p G TT4 that Pi G 7r3,1 g i ^ ii. By Theorem 22.5, © satisfies C«g(Pl,. Let
§ be a Sc8(Pl,-subgroup of ©. Clearly, § c © since p g ̂ (p^.

It is easy to see that F(fQ) is non cyclic. Choose i so that the
SPi-subgroup of F(§) is non cyclic. Let SR, • • •, tyn be a Sylow system
for £>, spy being a SPj-subgroup of §. Thus, P̂i n F(&) is non cyclic,
so that P̂i fl /̂ C )̂ contains a subgroup 35 of type (p, p) which is normal
in Sp4. Let 21 be an element of £*if*>Vl($d which contains 33. Let
p̂o be a maximal element of M(Sl; p). By Lemma 24.1 and Theorem

22.6, sp0 =£ <1>- Let C(2I) = SI x ®, ® being a pi-group.

THEOREM 24.1. <̂ p0, O9i(§)9 ®> is a pl-group.

Proof. Let ^ be the set of Si-invariant subgroups $0 of P̂o such.
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that <&,<M§),2)>c©. Since <(Mfc)f 5>>SC(»)f it follows that
< l > ^

Suppose $0 e ^*, and X = <$0, Op<(£>), 5)>. Since 21 normalizes
£, <af £> = a s = 8 c ©. By Lemma 17.6, 21£ Op;>p<(8).

Let 21 be the image of 21 under the projection of Op>.,Pi(&) onto
OK p4(8)/OPi(S). Since 2t s 21, we see that 21 is a self centralizing sub-
group of bP,.,Pi(2)IOpfil), and it follows readily that Op,,p<(8)/Op;(8) is
centralized by %, 0P<(&) and ®. By Lemma 1.2.3 of [21], we have
<$o, OPi(£), ®>£O, ;(8) and hence X = OP<(2) is a pj-group.

Let Xlf • • •, £m be an 2I-invariant Sylow system of %, %s being a
S^-subgroup of £. If gje{p lf ••-,£„}, it follows from C *.,,,, that £,-
is a maximal element of M(2t; g )̂. Since ® £ £, this implies that
OP't(&) is a S-subgroup of £. If g, =£ p, q5£ {pl9 • • •, pn}, then Theorem
22.1 implies that 21 centralizes Xj9 so that S^-S®. Finally, if ĝ  = p,
then there is an element D of ® such that £f S P̂o, by Theorem 17.1.

Let $ be a fixed Sysubgroup of <®, O (̂&)>. By the preceding
paragraph, S is a SP'-subgroup of £, and p̂o n 3; is a SP-subgroup of
3;. Since $0 S P̂o n 2, it follows that <$01 $o e ^ > = P̂* is permu-
table with $ so that $P*S is a proper pj-subgroup of ®. This means
that ^ contains a unique maximal element. Since C^Q(B) is 2l-in-
variant for each JBeSS1, since % = <jCyo(B) | £ e 33*>, and since

, O P : (§) , ®> fi C(5) c ©, the theorem follows.

THEOREM 24.2. Let 3t = <̂ 50, Op<(fe), ®>, and 3K = JV Ĵl). Then
1HI contains £>, 2JZ is a maximal subgroup of © and 3D? is £fee (m£#
maximal subgroup of © containing S&.

Proof. Since 3̂0 ̂  <1>> 3Ji is a proper subgroup of ©. We first
show that 2Ji contains $p4. Let D be an 2I-invariant Sg-subgroup of
SR, so that O is a maximal element of M(2I; q), either by virtue of
q £ 7r(Pi), or by virtue of q i n(p{) so that 21 centralizes Q. For P in

P̂,-, Qp = £iD for some Z) in ® by Theorem 17.1 together with C(2I) =
S x i S . Since ®S5R, D p is a S,-subgroup of 5W. Hence, $RFg9i, and
so 5Hp = 9t. Thus, 5ft SSR.

To show that §S5W, we use the fact that ft = 0,4(&)-2VcC8),
where 55 = F(cci@(2l); Sft). Since OP<($) S 5R, it suffices to *show that
JV$0B)S2ft. We will in fact show that JV(33)g2Ji. Let O be a 33-
invariant S,-subgroup of ft. If ATe iV(SS), then 2P"1 S 93, so that 2F"1

normalizes d . Hence, 21 normalizes Q* = DD, De ©, and we see that
ft" = 5R. Thus, 3Ji contains § and iV(93).

Let aKi be a maximal subgroup of © containing 2R. It is easy
to see that 3t = 0^(500 by Lemma 7.3, so that a^gaii , and 2JI is a
maximal subgroup of ©.
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Let S be any proper subgroup of @ containing S&. To show that
$ ^ 2ft, it suffices to treat the case that $ is a q, p<-group. Let &„
be a S,-subgroup of $ permutable with 5R. Since JV(33) g 2ft, it suffices
to show that OP<(S)£3K. This is clear by Cp*>p if g e {pr, • • •, pn}. If
g = p, this is also clear, by Theorem 17.1, since C(2I)g2ft and ^P0S 2ft.
If g g {p, Pi, • • •, pn}, then Sft centralizes Off(${ftff) by Theorem 22.1, and
we are done, since C(2t)S2ft.

If q e 7T8 U 7r4f and D is a S,-subgroup of ©, we define

= {Do I Do C D, Do contains some element of •5"K>^(D)} ,

= {Do | Do S D, Do contains a subgroup Dx of type (q, q)

such that CD(Q) e J^f-^D) for each Q in DJ, i = 2, 3, 4 .

LEMMA 24.2. / / q e nz U TT4 and D is a Sq-subgroup of ©,
subgroup Do o/ D which contains a subgroup of type (q, q, q)

is in

Proo/. Let 93 e ^ ( D ) , Do* = CDo(S3), so that D? is non cyclic.
Let Di be a subgroup of Do* of type (q, q). If Q e Dx, then CQ(Q) 2 S3.
Since 33 is contained in an element of * £ ^ l ^ ( D ) , it follows that
CD(Q) is in

THEOREM 24.3. If qe nz, £i is a Sq-subgroup of ©, and D is
contained in a unique maximal subgroup of ®, then each element of

is contained in a unique maximal subgroup of ©.

Proof. Let 9K be the unique maximal subgroup of © containing
D. We remark that if this theorem is proved for the pair (D, 2Ji),
then it will also be proved for all pairs (D*, 9Ji) where Me SHI. This,
prompts the following definition: J^*(D) is the set of all subgroups
Do of D such that Do contains £* for some £ in S^^^K^X) and
some Mem. Clearly J^(D)SJ*f*(D).

Suppose some element of J^*(D) is contained in a maximal sub-
group of © different from 9Ji. Among all such elements Do of J^*(£i)r

let | Do | be maximal. By hypothesis, Do c D. Let 2)^ be a maximal
subgroup of © different from 2J1 which contains Do and let D* be a
Sg-subgroup of SWx which contains Do. If Do c Do*, then Do c iVc5(Do).
Since DoCJVD(Do), maximality of |Oo| implies that JV^Qo) Si 3ft, so
that A^Qo) S D^ for some M in <>ttl. Since aftx ^ 2ft, so also Sftf-1 # 3ft.
But AJQJOQO)*"1 e J^*(D), and maximality of |Do| is violated. Hence^
Do is a Sg-subgroup of 2fti.

Let e e ^ ^ ^ ( D ) be chosen so that E ' g G o for some Me2ft.
Since every element of M(E) is contained in 2ft, every element of
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( ) is contained in 2K* = 2ft. Hence 0^(2)^) £ 2ft. If 85 =
F(ccy<£); Do), then DoCJVQ(93), so JV^SS) £ 2ft, by maximality of
| Do I. Since 2ft2 = 0^(2^) • Ak̂ OB) by Lemma 17.6, we find that 2ft2 S 2K,
contrary to assumption. The theorem is proved.

THEOREM 24.4. Let q G 7r3 U TT4, awd let £i be a Sq-subgroup of @.
If each element of J^J(D) is contained in a unique maximal subgroup
2ft of @, then for each i = 2, 3, 4, and eacft element Do o/ t X P , 2ft
is the unique maximal subgroup of © containing DQ.

Proo/. For i = 2, 3, 4, let J}< *(D) be the set of subgroups Do
of D such that Do contains a subgroup Dx of type (q, q) such that C^iQ)
contains an element of J&l^isy1) for some M G 2ft and all Q G £\. Here
J^*(D") denotes the set of Do*, D o e ^ * P . Suppose i = 2, 3, or 4
is minimal with the property that some element of J&1*(&) is con-
tained in at least two maximal subgroups of ©. This implies that
S/i-^Sy) does not contain any elements which are contained in two
maximal subgroups of @, M being an arbitrary element of 2Ji. Choose
Do in ja<*(D) with |DQ| maximal subject to the condition that Do is
contained in a maximal subgroup SSlx of © with 2ftx =£ 2ft. We see
that Do is a S,-subgroup of 2)^. Let Dj be a subgroup of Do of type
(q, q) with the property that C^iQ) contains an element of J&ll^Sy1)
for suitable M in 2JI, and each Q in D^ (We allow M to depend on
Q.) Since O,.(SJW is generated by its subgroups OA^i) 0 C(Q), Q e Df,
it follows that Ofl,(2ft1) S 2J1.

Let E be an element of <S^<£fL (̂D). Then E g Do, or we are
done. Let Do = Do n Oq, Q(2R1). Since D o n e = Don6: by (B), it
follows that JVc(Do) 3 Do. Hence, JV(Do) S 2Ji, by maximality of | Do |.
Since 2^! = O (̂2K1)-JVb?1(Q0), we have 2^^2)1, completing the proof
of this theorem, since J^(G)SJ^*(Q) , i = 2, 3, 4.

THEOREM 24.5. If q£7c3 and D is a Sq-subgroup of ®, £/&en D
is contained in a unique maximal subgroup of ©.

Proof. If 7r(g)E7r3, this theorem follows from Lemma 23.5.
Suppose p G n(q) n 7T4. Let 7r(g) = {p, plf • • •, pn}, where g = plf and
let $ be a SU^^-subgroup of © containing D. If D n F(&) is non
cyclic, we are done by Theorem 24.2, so we suppose that D fl F(&)
is cyclic.

Let 2ft be the unique maximal subgroup of © containing &. Suppose
we are able to show that C((£) g 2ft for some (£ in ^ < i f ^ ( D ) . Since
F(&) n D is cyclic, F(2ft) n D is also cyclic. Hence, O (̂2ft) =£ 1. If
55 = F(cc^(E); D), then JV(SS) normalizes O (̂2ft), by Theorem 17.1,



890 SOLVABILITY OF GROUPS OF ODD ORDER

together with C((£)saJl. Since ® = Oq,(®) • N^8) for every proper
subgroup S of © which contains £}, it suffices to show that every
element of M(D) is contained in 2Ji. This follows readily by Cq*Pj,
Theorem 22.1 and C(<E)G2».

Thus, it suffices to show that C(&)i=2Ji. Choose i such that go
a Sp<-subgroup of F(&), is non cyclic, and let 5& be a Sp<-subgroup of
§ permutable with Q. It suffices to show that C^(C) e J^(^Pi) for
some CeK1, by Theorems 24.3 and 24.4 together with the fact that
3JI is the unique maximal subgroup of © containing s&.

Let g? = 0Pi(O^i), so that g* is a maximal element of M(JQ; p»).
By Lemma 17.3, £}£JV(3*)'. Since ^ is contained in 2Ji and no
other maximal subgroup, Q £ 2Ji'. Thus, if 0i(Za(t$<)) is generated by
two elements, then D centralizes Z2(S<) and we are done. If Z(g<)
is non cyclic, then every subgroup of Z(g<) of type (pif p{) is contained
in J^J(^). Since £ contains a subgroup of type (q, g, g), C(C) n Z(g»)
is non cyclic for some C in E*, and we are done in this case. There
remains the possibility that Z(%) is cyclic, while Qi(Z3(^i)) is not
generated by two elements. Since every subgroup of fii(Z2(i$»)) of
type (pif p^ which contains fii(Z(&)) is contained in J ^ ( ^ ) , by Lemma
24.2, and since C(C) contains such a subgroup for some C in £*, we
are done.

The preceding theorems give precise information regarding the
5?-subgroups of the maximal subgroups of © for q in n3.

THEOREM 24.6. Let qen3 and let 2J£ be a maximal subgroup of
©. If & is a Sg-subgroup of 2Ji and £L is not a Sq-subgroup of ®,
then D contains a cyclic subgroup of index at most q.

Proof. Let O* be a Sff-subgroup of © containing £>, let 93 e <
and let Do = CD(a3) so that |£l:Qo| = 1 or q. If £}0 is non cyclic,
then QQ e ja<(£}*), and so QQ is contained in a unique maximal sub-
group of ©, which must be 2J1, since QQ S 2ft. But £}* g 2J1, a con-
tradiction, so OQ is cyclic, as required.

Theorem 24.6 is of interest in its own right, and plays an important
role in the study of nif to which all the preceding results are now
turned.

Hypothesis 24.1.
1. 3G7T,.

2. ^ is a S3-subgroup of ©.
3. & is a proper subgroup of © such that

( i ) $ S ® .
(ii) / / § = O3(̂ ), there is a subgroup £ of § chosen in
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accordance with Lemma 8.2 such that Z(£) is generated by two ele-
ments.

THEOREM 24.7. Under Hypothesis 24.1, ty is contained in a
unique maximal subgroup 2ft of ©, and 3Ji centralizes

Proof. Let 8 be any proper subgroup of & containing Ĵ. We
must show that 8 centralizes Z(̂ P).

By Lemma 8.2, ker(S—>Aut(£) is a 3-group, so is contained in
&. It follows that Cs(£) = Z((£) and in particular C$(&) = Z(£).

Suppose £S0 3 (S) . Then Z(O3(8)) S C<p(E) g Z(£), so Z(O3(8)) is
generated by two elements. Since | S | is odd, a S3,-subgroup of 8
centralizes Z(O3(S)), so centralizes Z(̂ P). Since ty also centralizes Z(̂ P),
we have 2SC(Z($)) .

Suppose &§£O3(8). Since Z(S) is a normal abelian subgroup of ty
we have Z(E) S 0.(8). Since T V S Z ( E ) , we conclude that E g
03,3',3(8). By the preceding paragraph, JVOP n 03,3',3(8)) centralizes
Z($). Thus, it suffices to show that ^O3f3,(8) = Sx centralizes Z(^).
Since 8x = JV^^SJE)-[0,^(8), E], and since Ĵ normalizes 0,(8)Cf it
suffices to show that [O3>3̂ (8), E] centralizes Z(̂ P). Let 3 = Z(03(8)),
so that 3 contains Z(^5). Since 3 is a normal abelian subgroup of 5̂,
(B) implies that £ £ 0 3 ( S ) . Hence, 723&a = 1, which implies that
[03,3'(8), E] induces only 3-automorphisms on 3» and suffices to complete
the proof.

Hypothesis 24.2.
1 . 3G7T4.

2. P̂ is a S<rsubgroup of ©.
3. / / ® is any proper subgroup of © containing 5̂, and i / § =

03(S), *Aen every subgroup E o / § chosen in accordance with Lemma
8.2 satisfies ra(Z((£)) ^ 3.

REMARK. If 3e7r4, then Hypothesis 24.1 and Hypothesis 24.2
exhaust all possibilities.

LEMMA 24.3. Under Hypothesis 24.2, 5̂ contains an element 35
of ^(^P) such that the normal closure of S3 in C(J2i(Z($P))) is abelian.

Proof. If Z(̂ 5) is non cyclic, every element of W&) satisfies
this lemma. Otherwise, set S = C(£i(Z(^P))), and let SI be a non
cyclic normal abelian subgroup of 5?. Since 2t < ^5,2t contains an
element 35 of ^(^5) which meets the demands of this lemma.

THEOREM 24.8. Let pe7uA and let ^ be a Sp-subgroup of @. / /
p = 3, assume that %f(fy) contains an element 35 such that the normal
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closure of 33 in Ciii^Z^))) is abelian. If p ^ 5, let 33 be any ele-
ment of ^"(Sp). If $1 is any proper subgroup of © such that
OA®) = 1 and if ®p is a Sp~subgroup of®, then ® = 8-^(33), where
33 = F(ccZ@(33); $„), and 8 is £Ae largest normal subgroup of S which
centralizes

Proof. Observe that 8 contains
Since OP(S mod 2) = S-(5BP n Op (5J mod 8)), maximality of 2 guaran-

tees that 8 = OP (S mod 8). If 33 £ 8, then Sylow's theorem yields,
this theorem since 33 is weakly closed in 8 f] $tp.

Suppose by way of contradiction that 33 g 8. Let 8X = OP (® mod 8).
By Lemma 1.2.3 of [21], 7338^8.

Let S& = ft, n 8, and let Sx = Sx n N^). Let 33X be the normaL
closure of SB in NgjWd. Suppose 7 8 ^ g C(Z(®P)). Since 7 8 ^ <
and since 5? = S-iV^O by Sylow's theorem, we see that
Maximality of 8 implies that 781331 £ 8. In particular, 7^33 ̂  8. Since
8X = 8 -Slf by Sylow's theorem we have 33 ̂  Op (B mod 8), which is not
the case. Hence, 7S1331 g C(Z(SP)). Since Z(^0 a Z(®p), we also have
7 8 A S C(Z(5R)). Since <*lf 8^ s iV(Z(^)), the identity [X, TZ] =
[X, Z][Z, Y] z implies that 332 contains a conjugate 332 = 33* of 33 such
that 7S1331 g C(Z(^!)). Since 8X S iVft(^i), application of Theorem C of
[21] to «&/§! n C(Z(^)) yields a special g-group fi = O/^ n C(Z(^)>
such that 33i acts irreducibly and non trivially on Q/Z)(O). Since Q.
is a p'-group, and D does not centralize Z(̂ Pi), Q does not centralize
2B = ^(ZC^)). Furthermore, 2B = 3BX x aB2, where 3BX = CB(Q) and
3Ba = 73BD, and SB̂  is invariant under 3BA i = 1, 2.

Since 3B2 is a p-group and 3B2 ̂  1, we have 3B3 =£ 1, where 3B3 =
CgB2(330) and 330 = ker (33X-* Aut Q) =£1. If p ^ 5, Lemma 18.1 gives
an immediate contradiction. If p = 3, and 72SB8332

1 = 1, we also have
a contradiction with (B), since 730B3D =£ 1. If 7a3B333; =£ 1, Lemma
16.3 implies that Z(̂ 5) is cyclic, and that 33O = QX(Z$$*)). However,
the normal closure of 33! in CiQ^Z^0))) is abelian, and so 722B333? = 1,
the desired contradiction, completing the proof of this theorem.

REMARK. Except for the case p — 3, and the side conditions
OP,(®) = 1 and 8 < Si, Theorem 24.8 is a repetition of Lemma 18.1.

Hypothesis 24.3.
1. pe7T4,qe7i:(p),q =£ p.
2. jQ is a Sq-subgroup of ©, ?̂0 ̂

s a maximal element of M(£l; p),
and s#! is a Sp-subgroup of JV(̂ ?0) permutable with Q.

3. P̂ is a Spsubgroup of © containing %f emeZ
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for p = 3, the normal closure of 33 in CiQ^Z^))) is abelian.
4. 33 = V(ccl&m SR).

THEOREM 24.9. Under Hypothesis 24.3, either iVQ(33) contains an
element of J^(£x) or CG(Z(Spo)) contains an element of J ^ ( O ) . Further-
more, Sft = $p awd © satisfies Cx{

x{q).

Proof. Let 2 be the largest normal subgroup of B = JV(̂ P0) which
centralizes Z(̂ po). Then A = 8-JV®(33), by Theorem 24.8. Since 8 < A,
8 f l O < Q . If 8 n JO is non cyclic, then 8 n JO e J*J(JO).

Suppose 8 fl JO is a non identity cyclic group. By Lemma 17.6,
& £ $ ' . Since a Sylow (/-subgroup of 8 is cyclic, it follows that A'
centralizes Qn8-80 /80 , where 80 = 0^(8), and so O n S£Z(JO). If
33 centralizes Dn8-8o/8o, then JV̂ (SS) contains a S9-subgroup of A.
In this case, JO normalizes 33* for some if in St. Let <d, *p?> be a
S, ^-subgroup of A containing £133*, with SS'S^Pf. By the conjugacy
of Sylow systems in Af we have 5ft*** = 5ft, JQ*1 = JO for suitable ^
in A. Hence, JO normalizes 33*** and S3**1 S 5ft. Since 33 is weakly
closed in splf 33 = %$KKl and we are done. If 33 does not centralize
QnS-S0/80 , then 2V(33) n 8 is a g'-group, since D n 8 is cyclic. In
this case the factorization, A = 8-^(33), together with JO n SCZ(JO),
yields that JO = D n 8 x JÔ  for some subgroup C^ of JO. This in
turn implies that every non cyclic subgroup of JO is in J^(D).

Since A = S-A^SB) and 8 n JO is cyclic, the S?-subgroups of iVft(33)
are non cyclic. Hence, JO contains a non cyclic subgroup Do such that
Do normalizes 33* for some K in A. By the conjugacy of Sylow
systems, we can find Kx in A such that 33**1 S ^ and JOf1S JO. Since
33 is weakly closed in $plf 33 = 33**1, and we are done, since every non
cyclic subgroup of JO is contained in j^J(d).

Suppose 8 D JO = <1>. Then 8 is a g'-group. From A = 8-^(33),
we conclude that JQ normalizes 33* for some If in 58 and the conjugacy
of Sylow systems, together with the fact that 33 is weakly closed in
splf imply that JQ normalizes 33. This completes the proof of the first
assertion of the theorem.

If %c^p, then *& c JV<p(33). Since every element of J^(D) is
contained in a unique maximal subgroup 9Ji of ©, by Theorem 24.3,
if JV(33) contains an element of J^(O), then 5ft is not a SP-subgroup
of 3Ji. But %€l is a maximal p, (j-subgroup of ©, by Lemma 7.3. If
C(ZOPO)) contains an element of J*I(JO)f then since Z(%)2Z($) by
(B) and Theorem 22.7, we see that C(Z(^?)) contains an element of
J^(JO). Hence, ^ g 3 « . Thus, in all cases, ^pg2Ji. Since 2ft also
contains a S^^-subgroup of ©, © satisfies Exiq). Since JO is contained
in 9K and no other maximal subgroup of ©, © satisfies Cx{q) as required.
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Hypothesis 24.4.
1 . 3G7T4.

2. S$ is a S3-subgroup of @.
3. 5̂ contains a subgroup 21 which is elementary of order 27

with the property that 72C(A)2t2 = 1 for all A e 21*.

Hypothesis 24.5.
1. p G ;r4.
2. A Sp-subgroup ^ of ® is contained in at least two maximal

subgroups of ©.

LEMMA 24.4. Assume that Hypothesis 24.5 is satisfied and that
if p = Sf Hypothesis 24.4 is also satisfied. If p ^ 5, let 21 be an
arbitrary element of S^^^Y*^). / / p = 3, Ze£ 21 6e £fee subgroup
given in Hypothesis 24.4. Let SB 6e t&e weafc closure of 21 in $P, and
let SB* 6e £fce subgroup of S$ generated by its subgroups 33 such that
33 £ 21° and 21*733 is cyclic for suitable G in ©. Let SSI be a proper
subgroup of © containing S$, wî fe £fee properties that SSI is a pf q-
group for some prime q and SSI has p-length at most two. Let (X, ?))
be any one of the pairs (Z(SP)f SB), (Z(3B*), SB), (Z(5P), SB*). Then SSI =
SSltSSli, where SSlL normalizes X and SSlJCwffl is a p~group, and SSI*
normalizes 2).

Proof. Let O be a S,-subgroup of 3Ji, and let § = Op(SSl). Then
< 2Ji. The lemma will follow immediately if we can show that

normalizes X and induces only ^-automorphisms on X.
Suppose by way of contradiction that either some element of TQ2)

induces a non trivial g-automorphism on X, or TQ?) does not normalize
X. If $ = 2B, we can find S3 = W fi D such that either some element
of TO93 induces a non trivial (j-automorphism of X or else TO33 does
not normalize X. Similarly, if 2) = SB*, we can find 33 S 2) and G in
© such that S3 g 21*, 2lflr/S3 is cyclic and such that either some element
of TQS3 induces a non trivial g-automorphism of Z(̂ P) or else T£$3

does not normalize Z(̂ P).
Let O = Q&/$, so that 7OS3 = (7Q93)§/"§. Since TO93 is gener-

ated by the subgroups TQI93 which have the property that 93 acts
irreducibly and non trivially on Oi//)(Oi)9 we can find Dx

such that 7&i33 either does not normalize X or some element of
induces a non trivial g-automorphism on X, and with the additional
property that S3 acts irreducibly on £LJD0OH).

Let S30 = ker (33 — Aut QJ = ker (33 — Aut QJDi&J), so that 33/330

is cyclic. Let 2 ^ = fcSBQx, and & = 0,(3)^). Since §33 S *P, and since
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ft, it follows that Z(?P) S Z(&). Also, since Z(2B*) is a normal
abelian subgroup of *p, we have Z(2B*)g&.

Suppose that 3E = Z($P). If p = 3, then since 2le/a30 is generated
by two elements, it follows that S30 =£ <1>. Hence, Z(ftJ g C(33O).
Since the normal closure of 21* in C(33O) is abelian, we have 7aZ(&1)332 =
<1>, and (B) implies that a S9-subgroup of ftC^ centralizes Z(fti)v so
centralizes Z($P).

Suppose p ^ 5. We first treat the case that & n tt =£ <1> for some
U e ^ / ( ^ ) , 11S 21". Then <Z(&), 21* > E C(& nU) = E and ^ n & is
of index at most p in ty°. If 5̂* is a Sp-subgroup of & containing SJJ* n S,
then ^ n C < 5 P * . Hence, 7^*33 £ 7^*21* g $* n E, and so 7̂ P*S33 =
<1>. It follows that S3 S O,(C). (Note that CMC) = <1> since 21* E (£.)
Hence, 7Z(ftx)8 S Of(C)f and so 74Z(§1)a34 = <1>, so that a S9-subgroup
of ftdj centralizes Z(£>i) and so centralizes Z(̂ P).

We can now suppose that fenU = <1> for all U such that
U e f/W)9 U E 21̂ . In this case, since SÎ /SSQ is generated by two ele-
ments, there is a normal elementary subgroup Gf of $P° of order p3 such
that e s 2 t 0 . Hence, <E n S50 ̂  <1>. Since C n » b S 8 n f t i , we can
find E in B n ftf- Consider C{E) 2 <Z(&)f C r(^)>. Since 2I<7S3 is
cyclic, if U e ^ / ( ^ ) and U g 21°, then 8 n U = Uo * <1>. Let 17 e US.
Let $* be a «Sp-subgroup of C(E) containing C%G(E), SO that
| *P* : C%6(E) | = 1, p or p2. We have 73^*a5a g C^(^), and so 7*sp*aS* =
<1>. This implies that S5gOP(C(^)). Let ZeZfa); then [Z, C7]e
OP(C(E)), so that [Zf C7, C7, f / ] e C ^ ) . Since [ / e U 0 S U e ^ ( n it
follows that [Zf U, U, U, U] e Z(^) . Since & n 11 = <1>, and since
[Z, C7, C7, C/, C/] e Z(¥>°) n fti, we have [Zf Ĉ , C7, C7, C/] = <1>. This shows
tha£ a S,-subgroup of ftC^ centralizes Z(fti) and so centralizes Z(̂ P).

Suppose now that I = Z(2B*)f so that ?) = SB. In this case,
S3 = 21*. Hence, S30S 2B*, since 33/330 is cyclic. Since Z(2B*) is con-
tained in ftlf if 95* denotes the normal closure of S80 in ftSBJQx, then
Z(2B*) centralizes SB*, S3* being a subgroup of 2B*.

Let (£* = C(33*) n fti so that E* is normal in ftSC^. If p = 3,
we have 72£*S32 = <1>, since S30 =£ <1>, and it follows that a 5,-sub-
group of SUix centralizes E*. Namely, if (£* = EfiDS^Z) ••• is part
of a chief series for 21 ,̂ then ftx centralizes each IE?/(E?+lf so that a
S,-subgroup of 3Ji! centralizes each (Ef/Ef+lf so centralizes (£*. If p ^ 5,
then S30 n U ^ <1> for some U e ^ / ( ^ ) , U g 33, and we have T 4 ^ * ^ =
<1>, and we are done.

THEOREM 24.10. Under Hypothesis 24.5, p = 3 and TT(3) = {3}.
Furthermore, Hypothesis 24.4 is not satisfied.

Proof. Suppose that either p ^ 5 or Hypothesis 24.4 is satisfied.
Let 21 be any element of S^&^VIW) in case p ^ 5 and let 21 be the
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subgroup given by Hypothesis 24.4 in case p = 3. Let 2B, 2B* be as
in Lemma 24.4. Let % = N(Z(%)), % = JV(SB), % = JV(Z(2B*)), and
let ft be any proper subgroup of © containing $p. Then by Lemma
24.4 and Lemma 7.7, we have ft = (ft n 9Ii)(ft n %) = (ft n sJli)(ft fl 5TC3) =
(ft n 5R2)(ft n %). Taking § = %, we get ^ £ %%, % s SUM,. Taking
ft = 5fl2, we get 9R1ESR1W8fSR1£%SR1. Taking ft = 91,, we get 9i3S
9^91,, 91, £ 91,9 .̂ By Lemma 8.6, we conclude that %% is a group
and so ftiSSRiSfta for every proper subgroup § of © containing $p. If
9^91, = ©, then Op^) is contained in every conjugate of %, against
the simplicity of ©. Hence, 9^91, is the unique maximal subgroup of
© containing $p.

We can now suppose that p = 3 and that Hypothesis 24.4 is not
satisfied. Suppose q £ 7r(3), q =£ 3. Let Q be a S,-subgroup of ©
permutable with $P and let 2ft be the unique maximal subgroup of ©
containing O. If ft = O3(3K) and £ is a subgroup of ft chosen in
accordance with Lemma 8.2, then Theorem 24.7 yields that m(Z(E)) ^ 3.
Let © be a subgroup of Q of type (q, q, q) and let i3i(Z(K)) =
©! x • • • x (£r, each Ê  being a minimal ©-invariant subgroup. If ©
centralizes Z(E), then any subgroup of Z(K) of type (3,3, 3) will
serve as St. This is so, since in this case, C(A) £ 3Ji for all A in 31*.
Otherwise, | E* | ^ 27 for some i, and since S/Cf^i) is cyclic,
Cg((E<) e J^(D), so we let 21 be any subgroup of ©< of type (3, 3, 3).
The proof is complete.

25. The Isolated Prime

Hypothesis 25.1.
1. 3 e 7r4.
2. A S3-subgroup ^ of ® is contained in at least two maximal

subgroups of ©.

THEOREM 25.1. Under Hypothesis 25.1, there is a q-subgroup
O of © permutable with ty such that if ft = $PO and i / $P, JQ are
tffce images of $P, O respectively in ft/O3(ft), £/&ew $P =£ 1 is cyclic, $P

'is faithfully and irreducibly represented on D/J9(D), a?id Q does no^
centralize S3 = 0i(Z(Os(ft))).

Proo/. There is at least one proper subgroup of © containing P̂
and not normalizing Z(?$), since otherwise JV(Z($P)) is the unique
maximal subgroup of © containing $p. Let ft be minimal with these
two properties. Then ft = P̂O for some g-group D. Since 3 e 7r4,
0,(ft) = 1. Since S^14^(O) is empty, ft has g-length 1. Hence,
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< ft. By Lemma 8.13, $ is abelian. By minimality of ft, ^
acts faithfully and irreducibly on Q/Z)(Q). If !p = 1, then *$ < ft,
and Q normalizes Z(̂ P), which is not the case.

Since JQ does ljot normalize Z^P), £L does not centralize Z(O3(ft))
so does not centralize 0i(Z(O8(ft))). The proof is complete.

We will now show that Hypothesis 24.4 is satisfied. ^Q is rep-
resented on 33 = 0i(Z(O8(ft)))f and it follows from (B) that the minimal
polynomial of a generator of P̂ is (x — I)1*1. Hence, there is an ele-
mentary subgroup 21 of S3 of order 27 on which $p acts indecomposably.
Let % = C¥(«) and let @ = OX(Z(*&)) so that « £ « . Choose AeW.
and set £ = C(A). Let p̂* be a S3-subgroup of £ containing $p0. (It
may occur that ty = P̂* but this makes no difference in the following
argument.) If % = P̂*, then 72£2I2 = 1. Suppose | *P* : *po1 = 3. Then
<*P, *p*> s N(%), so that <*P, *P*> normalizes B. Since *p and *P* are
conjugate in JV(*P0)i any element of p̂* — ̂ po has minimal polynomial
{x - I)3 on C.

Let A = O3(<£). Then | A : A n % I = 1 or 3, so that TS@ S P̂O,
and 7"ACP = 1. By (B), S g S , If S g $ 0 , then S s Z(A), and
72<£2Ia = 1. Suppose | A : A n SRo | = 8. Then D(St) s p̂o, so that
© g Cft(D(A)). If Cft(D(A)) s p̂0, then © E Z(CS(D(^))), and once
again 7aS2Ia = 1. Hence we can suppose that Cg(D(&)) contains an
element K of 5B - A n %. Since A C P̂*, it follows from the preceding
paragraph that the class of C$(D(®)) is at least three. On the other hand,
if Xand Fare in Cft(W))i then [X, Y\ e C$(D(®)) n A'. Since A' g Z)(^),
we have [X, Y, Z] = 1 for all X, F, Z in Cft(Z)(A)). This contradiction
.shows that 72E2I2 = 1 for all A in SI1. Combining this result with
the results of Section 24 yields the following theorem.

THEOREM 25.2. / / pe7r4, and ^ is a SP~subgroup of ©, then ty
is contained in a unique maximal subgroup of ©.

THEOREM 25.3. Let p e 7r4 and let S$bea Sp-subgroup of ©. Then
each element of Ĵ J(̂ P) is contained in a unique maximal subgroup of ©.

Proof. First, assume that if p = 3, then ^(^P) contains an ele-
ment 99 whose normal closure in C(Z(̂ P)) is abelian, while if p ^ 5,
S3 is an arbitrary element of ^(^P).

Let 3Ji be the unique maximal subgroup of © containing $p. Let
J^*(^P) be the set of subgroups P̂o of $P such that p̂o contains £* for
suitable £ in •5*K^($P)f M in 3Ji. Suppose by way of contradiction
that some element % of J^*(^P) is contained in a maximal subgroup
m*! of © different from 9Ji, and that |$po| is maximal. It follows
readily that P̂o is a S>P-subgroup of SD̂ . Since % contains £* for
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suitable £ in ^5f^(SP) f M in SWf CMajy = 1. Thus the hypotheses
of Theorem 24.8 are satisfied, 23̂  playing the role of ® and ty0 the
role of ft,, S3 = F(ccl@(S3); 5ft). Since JV̂ (S3) 3 %, and since % ̂  K* 2
Z(̂ ?) (£* being self centralizing), we conclude from the factorization
given in Theorem 24.8 and from the maximality of p̂o that SSRX E 2ft.

There remains the possibility that for every 93 in ^(^P), the
normal closure of 93 in 2ft = C(Z(^)) is non abelian, and p = 3.

Let § = O3(2K). If $ contains a non cyclic characteristic abelian
subgroup 21, then 31 contains an element 93 of ^0P) f and 33^ is abe-
lian. Since we are assuming there are no such elements, every
characteristic abelian subgroup of £> is cyclic. The structure of £> is
given by 3.5. If £ is any element of ^<£f ~^0P), then £ E £>, by
(B), so £ e i S * g ^ ( $ ) .

As before, let ^poe J*f*0P) be chosen so that % is contained in
a maximal subgroup 2ft! of © different from 2ft, with | ty0 | maximal.
Then *po is a S3-subgroup of 2ftx and OA^ii) = 1.

Let X = O3(2fti). Since 722S2 = 1, (B) implies that X n £ = ^0 n C.
Since p̂o = Ny(%) by maximality of $pOi we conclude that £ S 2 . We
need to show that § C 5p0. Consider § n % = §0. Since 7a P̂0§2 S
^ ( Z ^ ) ) , we conclude that $0 C O88',8(2Bi), and maximality of |*po|
implies that JV(̂ 0 n (h.v *QDtd) S SW so it suffices to show that Zo =
m,3'(3Jti) S 3Jl, and it follows readily from £0 = NXo(Z^Q)'7^003A^i)
that it suffices to show that T&A.a'^i) S 2K. Since K g ! J , w e have
Z(2) E £ f so that 72Z(£)£j! = 1, and T^oOg.s'C )̂ induces only 3-auto-
morphisms on Z(£), so centralizes Z(̂ P), and 3D?! £ 2Ji follows in case

Suppose © S % . If § n £=)&, then fl^JSl', and since
J ' g D(2)f (B) implies that § S S . In this case,
< Wll9 so 5U?! S 5K. There remains the possibility

that § f l J = E.
If £ = £, then 722§2 = 1 and (B) is violated. Hence, 2 D £ , SO

that V * 1. Hence, 2' n Z{Z) * 1. If Ol(Z(^)) S X', then 722§2 E 2'
and we are done. If fl^Z^)) g J ' , we conclude that § centralizes
£' n Z(£), since 2' n Z(£) E £. This is absurd, since 0i(C (̂&)) =

(̂ZC P̂)) by (B) applied to 3ft, completing the proof of this theorem.

Before combining all these results, we require an additional result
about 7r4.

THEOREM 25.4. Let pen^ let ty be a Sp-subgroup of © and let
SK be the unique maximal subgroup of © containing $p. Then 5̂ E 501'.

Proof. Let £ e £f^*sK($), and suppose G in © has the property
that &G S ?P. Then £ E 2JF~l. By Theorem 25.3, we have aft*"1 = 2ft,
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so that Ge<m. Hence 5? = V(ccl®(&); $) = Viccl^S®)', $)• By (B)
and p e TT4, £* S 0p(2Ji) for each M in 2ft. Hence, 93 < 2R, so maxi-
mality of 2ft implies 2ft = JV(93). By uniqueness of 3Ji (or because S3
is weakly closed in sp), we have 5Pi 3 iV(̂ P). Furthermore, by Theorem
25.3, if mG =£ 9TC, then £ g 271". Thus, £ is not in the kernel
of the permutation representation of 5$ on the cosets of P̂ in
We can then find C in £ such that ®(G)C has order p in
so Theorem 14.4.1 in [12] yields this theorem.

We are now in a position to let 7r3 and 7r4 coalesce, that is, we
S e t 7V0 = 7TS U 7T4.

THEOREM 25.5. Le£ SSI be a maximal subgroup of ©. If pe7c0

and 2JZP is a Sp-subgroup of 2Ji, £/&ew either 3Jip is a Sp-subgroup of
© or 2)^ /&as a cj/cZic subgroup of index at most p, and Wlp £ J^(^P)
/or even/ Sp-subgroup 5̂ 0/ ©. / / -ar is the largest subset of n0 with
the property that 2Ji contains a Sw-subgroup @ 0/ ©, ifeew @ < 9JI,
and @ S 2W'.

Proof. Let $ be a Sp-subgroup of © containing SJlp. Suppose
2Jip c sp. Then 5mp e J<($)9 by Theorems 24.3, 24.5, and 25.3. Thus,
if 93 e ^OP), then C(») fl 2JiP is cyclic. Since 13RP: C(85) n 5KPI = 1
or p the first assertion follows.

Let @g be a S,-subgroup of @ for g in tsr. (If tsr is empty there
is no more to prove.) If q e TT3, then <3ff £ 2JF by uniqueness of 5Ui
and Lemma 17.2. If q 6 TT4, then @, £ 9J1' by uniqueness of 9K and
Theorem 25.5. Hence, @ S 3JI'. If rG7r(2W), r g -nf, then SJl' central-
izes every chief r-factor of 3K, by Lemma 8.13. Since @ £ 3K', we
conclude that © < 2Jt.

THEOREM 25.6. nQ is partitioned into non empty subsets alf • • •,
on, n ^ 1, wi£A Âe following properties:

( i ) / / r g 7r0, tfeew © satisfies ET if and only if z £ at for
some i = 1, • ",n.

(ii) / / fo is a Sff-subgroup of ©, Men 5R* = JV($*) is a maximal
subgroup of ©, §< s 9lt-, and £>< f| §f is 0/ square free order for
each G e © — %, i = 1, • • •, n.

(iii) / / Pi G at and sp4 is a Sp.subgroup of fQif and if ^ n ^ ? =
®i =£ 1 /or some G e © - 5R(, tfeen ®< is 0/ order p4 and C¥l(®4) =
®i x @i, where @» is cyclic, i = 1, 2, ••-,%.

Proof. By Lemma 8.5, 7T0 is non empty. By Corollary 19.1,
Theorems 24.3, 24.4, 24.5, 25.2 and 25.3 ~ is an equivalence relation on
TT0 and if au • • •, an are the equivalence classes of nQ under ~ , then (i)
holds.
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Let $ = & be a S^-subgroup of © and let $ = «p, be a SP|-
subgroup of & for p = p{ e 0̂ . By Theorem 25.5, JV(&) = SJi is a maxi-
mal subgroup of ©, and § S Sft'.

Suppose G e © - 5ft and ?p fl ^ = 35 =£ 1. If ^ is any non identity
characteristic subgroup of 35, then either JV(®i) fl 3̂ € -S<OP) or
N&i) n ^ « J*JOP')f by Theorems 24.3, 24.4, 24.5, 25.5 and 25.3. Since
JV(Z)(35)) contains every element of both ^OP) and ^ ( ^ ) , we con-
clude that 35 is elementary of order p or p%. Suppose | 351 = p2. If
35 contains Q^Z^)) then JV(35) contains an element of ^OP), so that
iV(35)n^ej^(^) . If 35 does not contain O1(Z(^)) then JV(55) n ̂ P
contains an elementary subgroup of order p3, so once again
JV(35) n ty 6 J^(^P). The same argument applies to Sp*, so that sp* S 5R.
Hence sp* = P̂2^ for some iV in 91. Hence GJV"1 e JV(SP) S 9lf so G e 8lf
contrary to hypothesis. Hence, 35 is of order p.

If Op(35) G j*I(5P)f then iV(35) £ Kf so that ^ 0 ^ 3 35, contrary
to the fact that *p* n P̂̂  has order l o r p for all N in % by the
preceding paragraph. Hence, C$(2)) g J^(^P). If 33 e &(%>), and
^(35) n C (̂S3) = e, then (g is of index at most p in (7̂ (35) and ffi is
disjoint from 35, since C (̂35) $ J^(^P). Hence, C«p(35) = 35 x @. This
proves (iii), the cyclicity of © following from C (̂35) i J^I(̂ P). The proof
is complete.

26. The Maximal Subgroups of ©

The purpose of this section is to use the preceding results, notably
Theorems 25.5 and 25.6, to complete the proofs of the results stated
in Section 14.

LEMMA 26.1. / / p e ^ U f f i and *P is a Sp-subgroup of ©, then

Proof. If $P is abelian, the lemma follows from Griin's theorem
and the simplicity of ©. If P̂ is non abelian, ^ is not metacyclic,
by 3.8. Also, p ^ 5, as already observed several times. Thus, from
3.4 we see that Qffi) is a non abelian group of order p3. The hypo-
theses of Lemma 8.10 are satisfied, so sp S N(Q1(Z(^))Y by Theorem
14.4.2 in [12] and the simplicity of ©. Since Nffl) E JV(0i(Z(SP)))f and
since N(Qi(Z(ty))) has p-length one, the lemma follows.

LEMMA 26.2. If pex2 and ^ is a Sp-subgroup of ©, then sp is
abelian or is a central product of a cyclic group and a non abelian
group of order pz and exponent p.

Proof. We only need to show that 3̂ is not isomorphic to (iii)
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in 3.4. Suppose false. Let 5ft = Qffi), and let $ be a fixed Sp,-
subgroup of JV(«p). Set ^ = A/Cg($). The oddness of | JV(5JS) | guar-
antees that ^ is abelian.

Let ^ be a chief series for 5ft one of whose terms is 5ft and
which is 5?-admissible. Let a{ be the character of 5BX on the ith term
of <af modulo the (i + l)st, where i = 1, • • •, / + 3, and 15p: 5ft | = p<
Since 5p/5ft is cyclic, ax = • • • = ax. From 3.4, we see that ax = <v+3.
Furthermore, a/+a = tfi<v+i» and a/+z = a^+1a/+2. Combining these
equalities yields a£+1 = 1, so a^+1 = 1, and Lemma 26.1 is violated.

If S3 normalizes 51 we say that S3 is prime on 51 provided any
two elements of S31 have the same fixed points on SI. If 133 | is a
prime, S3 is necessarily prime on 51. If 21 is solvable, then S3 is prime
on 51 if and only if for each prime p, there is a Sp-subgroup SIP of
3t which is normalized by S3 and such that S3 is prime on 5tp.

The next two lemmas are restatements of Lemma 13.12.

LEMMA 26.3. Suppose 51 is a solvable it-group, and S3 is a cyclic
it'-subgroup of Aut(5I) which is prime on 51. Assume also that
1511 • | S3 | is odd. If | S31 is not a prime, if the centralizer of S3 in
% is a Z-group, and if S3 has no fixed points on 51/51', then 51 is
nilpotent.

LEMMA 26.4. Suppose 51 is a solvable n-group and S3 is a izf-
subgroup of Aut (51) of prime order. Assume also that \ 511 • | S31 is
odd. If the centralizer of S3 in 51 is a Z-group, and if S3 has no
fixed points on 51/51', then 5t/F(5l) is nilpotent.

denotes the set of all proper subgroups of (3, ^ denotes
those subgroups 51 of © such that, for all pe7T0, 51 does not contain
an element of J^(^5) for any Sp-subgroup ^ of ®; £% = £f - <%?Q.
^ denotes the set of maximal subgroups of ©, ^ = ^ D ^T, i =
0,1.

If S e ^J, then & does not contain an elementary subgroup of order
p8 for any prime p, so 5̂  is nilpotent. Furthermore, if 7r(S) = {plf • • •, pn},
Pi > Pi > ' " > Pn, then $ has a Sylow series of complexion (pu • • •, pn).

Suppose p e nQ and % is a subgroup of type (p, p) with 5po e <£%.
Let 5ftf •••, $pw be the distinct Sp-subgroups of © which contain 5ft.
Since ^0 i ^ ( ^ k ) , l^i^n, it follows that 5ft a Q^Z^)), and that
JVOPo) — C^o) contains an element of order p centralizing 131(Z(5pi)).
Since N(%)IC(^0) is p-closed, this implies that Ol(Z(^i)) = QX{Z{%)),
1 ^ i9 j ^n. This fact is very important, since it shows that the
p + 1 subgroups of 5po of order p are contained in two conjugate
classes in ©, one class containing 0i(Z(5ft)), the remaining p subgroups
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lying in a single conjugate class.
If 3ft G ^ , If (3ft) denotes the largest normal nilpotent S-subgroup

of 3ft. Note that by Lemma 8.5, #(3ft) =£ 1. More explicitly, 7r(#(3ft)>
contains the largest prime in 7r(3ft). Note also that J5T(3ft) is a S-sub-
group of ©.

If 3ft G ^ , fl^Sft) denotes the unique jSk-subgroup of 3Ji, where
a = cr(ayi) is the equivalence class of TU0 under ~ associated with 3ft.
That is, pea if and only if pe7uQ and 3ft contains a Sp-subgroup of
©. Or again, pea if and only if 3ft contains an elementary subgroup
of order p\ Or again, pea if and only if penQ and 3ft contains an
element of J^OP) for some Sp-subgroup 5̂ of ©.

Suppose aft G ^ , q e 7r(2ft) - <x(3ft) and a S9-subgroup D of 3ft
centralizes fl^Sft). Since 9ft is the unique maximal subgroup of ©
containing fl^aft), it follows that N(D) S 2ft, so that Q is a Srsub-
group of ©. Then by Lemma 26.1, O g 3ft'. Since the derived group
of 2ft/i?1(2ft) is nilpotent, we have O < 2ft. Thus, if r is the largest
subset of 7r(2ft) — a(3ft) such that some Sr-subgroup of 2ft centralizes
fli(3R), then 3ft contains a unique ST-subgroup ^i(9ft), ^(aft) is a
normal nilpotent S-subgroup of 3ft, /^(aft) is a S-subgroup of ©,.
and the structure of the Sg-subgroups of ^(aft) is given by Lemma.
26.2. Weset£T(3ft)=<£'1(3ft), fli(3ft)>=^1(3ft)xflr

1(3ft). Since fii(S»)<3ft
and ^(3ft) centralizes jyi(3ft), and since 3ft is the unique maximal
subgroup of © containing fl^Sft), it follows that E^SDl) is a T.I. set
in ©.

If p G 7r0 n ?r* and 3̂ is a Sp-subgroup of ©, then the definitions;
of 7r0 and 7r* imply that i21(Z2(̂ P)) is of type (p, p). In this case, we
set TX̂ P) = C^LQJLZJW))), and remark that JX̂ P) char $ f | $ : 2\?P) | =
p. Furthermore, if P is an element of order p in T(ty), then C«p(P>
contains an elementary subgroup of order p3. If qe7r0 — n*, set
T(G) = D, D being any Sg-subgroup of ©. The relevance of T(D)
lies in the fact that if Q is any element of T(€i) of order q, then
C(Q) is contained in only one maximal subgroup of ©, namely, the
one that contains Q. This statement is an immediate consequence of
the theorems proved about J^(Q), explicitly stated in Theorem 25.5.

If 21G ̂ t , then 21 is contained in a unique maximal subgroup 3ft
of ©, so we set ilf(2I) = 3ft. The existence of the mapping M from
<2f to ^x is naturally crucial.

If 3ft G ^ , set HQOl) = JET(3ft)*. If 3ft G^^, let F(3ft) consist of
all elements H in ff(3ft)* with the property that some power of H,
say Hx — Hn is either in E^Wiy or is in T(D)* for some S,-subgroup
O of 3ft with q e ;r(Jli(2R)).

Let q e 7T0 and let D be a Sg-subgroup of © with T(Q) c Q; let
denote the set of subgroups Do of O of type (q, q) such that
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= O^C^Q)) for some element Q in Q,. If Qg G J^~(Q), then Qo 3
CZ(£})). Furthermore, if gG7r0 and C^ is a subgroup of © of type
q), and if C^ is contained in at least two maximal subgroups of
then Qi 6 ̂ ( Q ) for every Sg-subgroup Q of © which contains d .

LEMMA 26.5.

(i) 7/ 2 J i e ^ , tfon jy(W is a T.I. set in @.
(ii) / / S K G ^ J , ifeen fl(2R) is a T.I. set in ©.

Proof.
(i) #(211)' is cyclic and normal in 2Ji, by Lemma 26.2. Hence,

if HeH(m)'*nH(Wy* for some G in ©, then i V « # » 2 <3fl, 2tt*>,
so Ge 2Ji, as required.

(ii) It is immediate from the definition that fl"(3Ii) is a normal
subset of 2Rf so jy(2Ji) is a T.I. set in 2K. Suppose G e © and
i f e jy(ajl) n J^aJif. Choose n so that if = Hn is in either ^(271)* or
T(O)* for some Sg-subgroup O of H(3Ji), and such that X" is of prime
order. If X e W , then since (| ^(iDl)|f | JZi(aTO)|) = 1, it follows
that KeE^my*. Hence C(K) a <J3r

1(5UJ), fl;(3K)*>, and so Ge5K.
Suppose KeH^my. Then CD(JR:) e J^(Q) and so CPO S STO. This
implies that H^SHl) n HiiWl)0 contains non cyclic S?-subgroups. By
Theorem 25.6 (ii), we again have Ge2K. The lemma is proved.

With Lemma 26.5 at hand, it is fairly clear that the one remaining
obstacle in this chapter is 7C*. In dealing with n*, we will repeatedly
use the assumption that | ® | is odd.

LEMMA 26.6. Let pen0, let ^ be a Sp-subgroup of ©, and let
"3J1 = M(?$). If ^ is any non identity subgroup of T(ty) and SR is
contained in the p-subgroup 5̂* of ©, then JV(̂ P*) S 5K.

Proof. In any case, sp* S 2ft, by Theorem 25.6 (iii). If 3̂* is non
cyclic, then iV(42i(̂ P*)) contains an element of Ja<(̂ Po) for some Sp-
subgroup p̂o of 9Ji and we are done. Otherwise, fli(^P*) = -Oi(̂ Pi), so

) contains an element of Ja<(̂ 5), and we are done.

LEMMA 26.7. Suppose p, q e nx U n2, P =£ Q, £1 is a Sq-subgroup
of © and ^ is a Sp-subgroup of JV(Q). / / ^ is cyclic, then ^ is
prime on O.

Proof. Suppose false. Then q = ± 1 (modp), and every p, q-
subgroup ^ of © is g-closed. Also f?i(̂ P) S Z(ty*) for some Sp-subgroup
$* of ©, by Lemma 26.2 and | $ | > p. If P̂* is cyclic, or if ?̂* is
non abelian, then *P S NWAW, by Lemma 26.1. Since every chief
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^-factor of N(Q1(^)) is centralized by NiQ^W, it follows that 5J*
centralizes Co(i2i(^P)) and we are done.

If P̂* is abelian and non cyclic, then ^5* normalizes some Sq-
subgroup £i* of JV(J2i(̂ P)). Since the lemma is assumed false,
0^(0^)) * 1, so Q* =£ 1. If ® is a maximal p, g-subgroup of ®
containing ^P*D*, then & is g-closed, so contains a S^-subgroup of ©»
This violates the hypothesis of this lemma.

LEMMA 26.8. Let pe7r0, qe7r((S) and suppose that q^nx\Jn% or
p ^ q. If ^ is any p, q-subgroup of © and $t contains an element
of J*I(5P) for some Sp-subgroup $P of ©, then B is p-closed.

Proof. Let 2K = M(St)m The hypotheses imply that p||fli(2Ji)l
and q\\ H^Wl) |. The lemma follows.

LEMMA 26.9. Let pen0, qe 7r(@) and suppose that q e nx U TT2 or
p ^ q. If & is a q-subgroup of ® which is normalized by the cyclic
p-subgroup Ŝ of ©, tfeen ^ is prime on O.

Proof. If | ̂ P | = p, the lemma is trivial. Otherwise, the lemma
follows from Lemma 26.8, since NiQffi)) contains an element of

for some Sp-subgroup ^0 of ©.

LEMMA 26.10. Let We^f, and let sp be a Sp-subgroup of Wlfor
some prime p. If ^ is non abelian arid ty gj; W, then S$ does not
contain a cyclic subgroup of index p.

Proof. We can suppose that *p e ^ f for if ^ e ^ t , then 2Ji =
and ty ^=W by Theorem 25.6 (ii). Hence, proceeding by way

of contradiction we can suppose that ^ = gp<JPQ, Px \ Po
pB = P? = 1,

P^PoPx = Po14"'""1), where n ^ 2. Note that *& = <Po
ptt"1>.

If 2Ji' is nilpotent, then ^ ' < 2ft, so 3JI = iV(̂ P') by maximally of
OK. This implies that P̂ is a Sp-subgroup of © which is not the case.
Hence, W is not nilpotent. In particular, 9 J l e ^ ^ . It follows that
Vi- q for all q in ^(^(aJi)).

We first show that JÊ SW) = 1. For $ ' centralizes (̂STO), so if 2JiL
is an element of ^ ^ containing Nffl), then ^(SJi) normalizes some
Sp-subgroup p̂o of SJii with P̂ S ^?0. I t follows from Lemma 8.16 that
I?i(9Ji) centralizes ^po. If -Ei(2K) =̂  1, then % S 2J1, which is not the
case, so 15i(9Ji) = 1.

Choose q in n(H(SSl)) and let JQ be a Sg-subgroup of 9K normalized
by ^p. We can now choose 21 g T(Q) such that 21 is normalized by
Si(^P), is centralized by some non identity element P of i2i(5P), but is
not centralized by fl^sp). For otherwise, fii(^P) centralizes T(Q), and
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£ 2ft, which is not the case. For such a choice of 21 and
P, let S be a S^-subgroup of C(P) which contains 2Ifl1(*P). By Lemma
26.7, there is a Sg-subgroup $£q of $ which contains SI and is contained
in 3K. Since i2i(̂ 3) does not centralize 21, and since p ^ q, a Sp-
subgroup 5?p of $ is contained in 3f^ by Lemma 26.8.

We wish to show that $tq < $. This is clear if S£q contains an
element of J^(Cl*) for some 5,-subgroup D* of ©, by Lemma 26.6,
Otherwise, Lemma 8.5 implies that ®q < 5£, since q > p. By Lemma
26.6, £ S 2Ji, so 2Ji contains a Sp-subgroup of C(P). This implies that
<P> =£ (P**'1). Since the p subgroups of ty of order p different from
^pp*-^ a r e conjugate in % and since H(%R) is a normal subset of 9Ji,
we can suppose that P = Px.

Let ?P* be a Sp-subgroup of © containing *p and let 2B = Qx(ZJl$*)),
so that 2B n ty = <Po

pn~l>, or else pe 7r2. It follows that P0TF central-
izes Pj for some W in 2B. But 3Ji contains a Sp-subgroup of C(Pi),
so C(P0 nail contains an element of order equal to that of P0W.
Since P0W and Po have the same order, a Sp-subgroup of C(P0 n 3Ji
has exponent pn, which is not the case. The proof is complete.

LEMMA 26.11. Let Wle^f and let ^ be a Sp-subgroup of 9H for
some prime p. If $p is non abelian, then 5̂ £ 9K'.

Proof. First, suppose p e 7r0. If 5̂ G <=gf, we are done. Other-
wise, 5̂ contains a cyclic subgroup of index p and we are done by
the preceding lemma.

We can now suppose that pe7r2. If W is nilpotent, the lemma
follows readily from Lemmas 26.1 and 26.2. We can suppose that
%Jl' is not nilpotent and that 3̂ g 2Ji'. Since 5̂ is non abelian, Lemma
26.2 implies that Qffi) is of order p\ or else 5̂ is metacyclic. In the
second case, we are done by the preceding lemma.

We first show that 2gi(2K) = 1. Since QX(Z(^)) centralizes EJ&l),
it follows readily that N&QDt)) dominates sp, by Sylow's theorem.
If ^(3Ji) =£ 1, then m = N(El(S0l))9 and so P̂ S 2Ji', by Lemma 26.1,
and we are done.

Let O be a S,-subgroup of 2Ji which is normalized by $P, with
g e 7c(HQDl)h

We show that £1 = T(£l). For otherwise, ?P' centralizes Of by
Lemma 8.16, so that NQF) £ 2tt. By Lemmas 26.1 and 26.2, $ fi
iV(̂ P')', contrary to $P £ 3W. Hence, O = 5T(JQ).

Let 3 = Z(i?i(^P)). We next show that 3 has no fixed points on
£}*. Let D1 = Q n CCS), and suppose by way of contradiction that
Ox ^ 1. Let S = JV(8)i and let 20 be the maximal normal subgroup
of S of order prime to pq. Let &p, 2q be permutable Sylow subgroups of
2, $ S 2Pf Ox S 8,. Since 2P S S', it follows that S is not contained
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in any conjugate of 2J1. This implies that 8 , e ^ . This in turn
implies that &p centralizes every chief ^-factor of 8, by Lemma 8.13.
Hence, 2P < 2p2g, and it follows that N(2g) covers S/S08p. Since
N(2q) g 5K, by Lemma 26.6, we have a contradiction. Hence, C^ = 1.

We next show that if Pe Qffi) - 3, then C(P) S 3Ji. This is
clear if C(P) n Q is non cyclic, since JQ = T(O), so suppose C(P) n O =
Oi is cyclic. We remark that £XL =£ 1, an easy consequence of the
preceding paragraph.

Let SWj be a maximal subgroup of © containing C(P), and let
Q* be a Srsubgroup of 5Ki containing Ox. If Q* is non cyclic, then
Q* is contained in a unique maximal subgroup W of ®, Ge®,
and since O* S SKi, we have SKx = aii*. Since SK n SK* 2 Qi, and
since £\ £ 3T(Q)f we have 2M = 5K*. Thus, we can suppose that £>*
is cyclic.

Since 3 acts regularly on £lu we can suppose that a Sp-subgroup
P̂* of 2ft, normalizes £>* and that <P, 3> £ ^5*.

If SKI is nilpotent, then fl^JQ*) < 5KL Since fi^Q*) = fl^QO, we
have 3)? = SRj. Hence, we can suppose that 5KJ is not nilpotent.

Choose r in 7r(J7i(3Ri))9 and let SI be a Sr-subgroup of ^ normalized
by ^P*O*. Since O* is cyclic, q ^ r. Since q ^ r, O* does not cen-
tralize SR. It follows from Q* s (^*Q*); that SR = r(5R), by Lemma
8.16. Since D*3 is a Frobenius group, it follows that 3^ = 9t fl C(3) *
1. Let <£ = JV(3).

Let ^ be a S^-subgroup of E which contains 3^ and P̂*, and
let 5Jr be a Sr-subgroup of 58 containing SRlB If ^r is non cyclic, then
Sr G ^T, so i8 £ TOL If Sr is cyclic, then in any case Br £ SKlf since
SR = T(di). Let $p be a Sp-subgroup of St. If 5̂* does not centralize
%, then r > p, and so ^r < SB, and once again SB g SD̂ . If Ĵ* cen-
tralizes 3̂ ! and ®r <f\ S, then Sp < S. Since the structure of Bp is
determined by Lemma 26.2, and since % centralizes 5p*f it follows
that 5Ri centralizes ®p, so that fii(9ti) < ®, and once again ^ £ SK̂
Thus, in any case, we see that ^ £ SD̂ . This implies that 3 = 5KI»
so 3 centralizes every chief g-factor of SD̂ . This is absurd, since
3&* is a Frobenius group. We conclude that C(P) £ 2J1 for every P

in am - 3.
We will now show directly that JV(42i($))£2Jt. Choose Ne NIQW)).

Then ^(^P) normalizes O and O^. Since 3 has no fixed points on
D,N, £L» is generated by its subgroups D," n C(P), Pe ^(SP) - 3- By
the preceding paragraph, we conclude that £i* £ 2J1. Since 3Ji* is the
unique maximal subgroup of © containing £}^, we have 2Ji = 2Ji*,
so iVGaR. By Lemma 26.1, $ fi JVC^W, so P̂ £ W. The proof is
complete.

LEMMA 26.12. Suppose 5 K e ^ and ty is an abelian, non cyclic
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Sp-subgroup of 3J1 for some prime p. Suppose further that a Sp-
subgroup of © is non abelian. Then ty = ^ x p̂2, where | Sft | = p,
% centralizes jy(aJi), 5̂2jy(2Ji) is a Frobenius group with Frobenius
kernel Hi'HJl) and % contains QX{Z(^*)) for every Sp-subgroup P̂* of
© which contains Ŝ.

Proof. Let p̂o be a Sp-subgroup of © containing $p. If pe7r0,
then Qffi) e ^0P o ) , and if <r is any automorphism of % of prime
order s, then s < p, by Lemma 8.16. The same inequality clearly
holds if pen2.

Choose q in 7r(jy(2Jl)) and let Q be a S,-subgroup of 3JI normalized
by ?p.

Let 3 = fii(^OPo))- We will show that Q3 is a Frobenius group.
Let £ = N(S) and suppose by way of contradiction that d = O n £ =£ 1.
First consider the case that p e 7r0. Let 30̂  = M(£), and let P̂M be a
£p-subgroup of 2J*! normalized by d with *p C P̂oo. Then [C ,̂ sp] S
jQ n P̂oo = 1, so d centralizes p̂. Since fl^sp) s ^"(̂ Poo), it follows
that SX centralizes $Poo. Thus, if q e 7r(25i(2W)) or T(D) = O, we con-
clude that SPoo S 3Ji, which is contrary to hypothesis. Otherwise,
T(O) c Q , or q e ^ U TT2, SO that g' > p, or sp centralizes O. But in
these cases, we at least have N(£X) £ 93 ,̂ so d =̂  Q, which yields
q> p, and so a Sg-subgroup of 3Ji PI 9Jii is non cyclic, and centralizes
IPOO. Again we conclude that P̂oo £ %R, which is not the case. Hence,
we can suppose that pG7ra.

Let £ be a SPi<rsubgroup of £ containing ^Pd, 3̂ £ ®p, d S S,,
and let $* be a maximal ??, g-subgroup of © containing S, 5BP S ^J,
^, £ $*, where ^? is a Sp-subgroup of &* and S* is a S,-subgroup
of £*. Since p̂o is a Sp-subgroup of ©, $£p = ^* is a Sp-subgroup of
(S. If 5B* contains an elementary subgroup of order g3, then ®* < ^*,
and maximality of S* implies that ^* is contained in a conjugate of
$01, contrary to hypothesis. If $* does not contain an elementary
subgroup of order q3, then either q > p or ^ centralizes C .̂ If q > p,
then St* < 51*, so once again ^* C aJi0 for some G e ©. If q < p, then
-̂ J < 5B*, and since C^ centralizes P̂, C^ centralizes ^J, by Lemma
26.2. In this case, Of(ft*) * 1. If Oq{®*) is non cyclic, then ®* G 2Jl°,
either by Lemma 26.6, in case g e 7r0, or because Q < 2J1 in case g e TT2.
If O,(^*) is cyclic, then JQi < 51*. In this case N^ifO^)^ is conjugate
to a subgroup of ^*, since 5B* is a S-subgroup of N(Zk). Since
^J < 58* f it follows that 5̂ centralizes Na(SX) so that A^COJ centralizes
some Sp-subgroup of JV(Oi). If g e ^(^(aii)), this is not possible. But
if q e niH^Wl)), then A ^ d ) is non cyclic, so NiN^Ci,)) S SK. Thus,
in all these cases, 2J1 contains a Sp-subgroup of ©. Since this is not
possible, 3& is a Frobenius group, and so 3il(3tt) is a Frobenius
group.
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Suppose 2ft e ^ < . We will show that if So is any subgroup of
%> of order p with C(3o) fl HQUl) =£ 1, then C(So) S 2ft. Let 2)^ e ^
with C(3o) S 3Ki. First consider the case 2^ = 2ft*, for some G in
©. Let Q be a non identity S,-subgroup of C(30) fl #(2ft) and let
Q j b e a S^subgroup of C(3o) fl HQBt,) containing SX. If SX c Q* then
Lemma 26.2 implies that £>2 is a Srsubgroup of ©. In this case,
since SD̂  and 2ft are conjugate and since $P is a Sp-subgroup of 2ft, ^
contains a subgroup of order p which centralizes the Sg-subgroup of
2ft. Since 3#(9ft) is a Frobenius group, this implies that if & is
any subgroup of $P of order p, then either 3iHq(Wl) is a Frobenius
group, or Si centralizes J5T,(2ft), the S,-subgroup of 2ft. This violates
the choice of $X. Hence, $X = d - If a S,-subgroup of © is abelian,
then d < <2ft, 2^), so 2ft = 2ftx. If some Sg-subgroup of © contains
Q^SX) in its center, then by Lemma 8.10, 2ft = 2)^. Hence, we can
suppose that d is of order q and $X §= Z(H(Wl)). In this case,
JVXQi) 0 21^ is of index q in 3 ^ and iVCQi) D 2Ji is of index q in 3K,
and MOO n 2fli contains C(30).

Let S = JV(Di). If 2 is contained in a conjugate of 2ft, then
N($X) n tf(SRi) < 8 so 8 S 2Jix, since ^(QJ n JJ(3tti) < 9^. Similarly,
8 E 5UI, and we are done. If 2 is contained in an element of ^/^ then
since 3H(Wl) is a Frobenius group, we see that N(SX) fl £T(3K) < <S,2Jt>,
and S £ 2Ji.

Hence, in showing that C(3o) £ 37i, we can suppose that C(3o>
is contained in an element 2)^ of ^ . Since SKCCSo) fl H(Wl)) is a
Frobenius group, this implies that 3 §£ 2Jl{. Since $P is a Sp-subgroup
of 2Ji, we conclude that P̂ is a Sp-subgroup of 21 .̂ By what we have
already proved, ,8#(2fti) is a Frobenius group. This implies that
(C(3o) 0 J5T(2Jl))jyl(2Ji1) is nilpotent, so C(30) fl flr(8K) centralizes ^(23^).
Since 27̂  is the unique maximal subgroup of © containing £T1(2J£1), it
follows that H(Wl) centralizes fli^), so that 2K £ 2)^, which is absurd
since 2Ji e ^ f 21^ e ^^. We conclude that C(3o) S 3J1.

We next show that if 2Ji e ^/Sx and C(3o) contains an element of
H(m), then C(?o) £ 2ft. Here, as above, 30 is a subgroup of ^ of
order p. Let d be a ^5-invariant Sg-subgroup of C(3o) fl 2ft with
O 1 n£T(2ft)^0. From Lemma 26.7, we conclude that C(30) fl 3ft
contains a S,-subgroup d of C(8o)> and we can assume that $X — d .

Let 2ft, e ^ C(3o) S 3^. If 2^ = 2ftff, then 2ft n 2ft2 3 d , so
2ft = 2ftx. If 2ft[ is nilpotent, then by Lemma 26.7, we see that
2fti fl 2ft contains a Sg-subgroup $X of 2ftx which is ^-invariant. Since
3O3 is a Frobenius group, O3 < 2ftx and so 2ft! = 2ft. We can suppose
that 2KJ is not nilpotent, and that 2ftx =£ 2ft. In particular, 2ftx G ̂ £[.
It follows that $P is a Sp-subgroup of 2)^, so that 3^(2)^) is a Fro-
benius group, and so D2 centralizes £ (̂2)̂ ), and 2ft = 2ftx follows.
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Thus, 3Ji = ^ in all cases.
Suppose now that P̂ contains two distinct subgroups So, Si such

that C(So) n £T(2ft) =£ 0 and C(Si) n #(2ft) =£ 0 . We can choose P in
P̂o such that So = Sf • If 2ft G ~^ , we get an easy contradiction.

Namely, C(30) ^ 2ft D 2ftp, and so 2ft = 2ftp and P G 2ft n P̂o = $, so
that So = 3n contrary to assumption.

If 2ft G ^ , then 2ft fl 2ftp contains C(3o) fl ff (2ft). If #(2ft) contains
an abelian S^-subgroup O with C(So)nO^l, then C(3o)fl Q < <2ft,2ftp>,
and 2J2: = 2ftp, which is the desired contradiction. Otherwise, if O is
a S,-subgroup of JJ(2ft) with C(So) n Q = Q i ^ l , then JV(Qi) n 2ft is of
index g in 2ft and N(OJ n 2ftp is of index g in 2ftp, while both
N(SX) n J3r(2ft) and ^(jQJ n £T(2ftp) are S-subgroups of N(££. Further-
more, since a Spg-subgroup S?o of JV(Oi) is g-closed, it follows that
SP(JV(OI) n H(m)) and ^ ^ ( d ) n £f(2ftp)) are S-subgroups of JVfQJ.
Furthermore, P̂ has a normal complement in JV(Di), since gG7r2, and
no element of P̂* centralizes JV(Di) n Q. By the conjugacy of Sylow
systems in iV(Di), we can therefore find C e C(ty) 0 JV(Di) such
that (N(ZXd n IT(2ftp))<7 = N(Sdd 0 ^(2ft). Since (JV^) fl J?(2ftF))(7 =
i V ^ ) n ff(2ftP0), and JV^) n #(2ft) < 2ft, we conclude that 2ft = SSlpo

r

so PC G 2ft, which is not the case, since C is in 2ft and P is not.
Hence, there is exactly one subgroup So of $P of order p which

has a fixed point on 2/(2ft), so So centralizes JJ(SK). Since 5p = So x ?$*,
where ?̂* S S, the lemma follows.

Lemma 26.12 is quite important because, given 2ft, (and the
hypothesis of Lemma 26.12) it produces a unique factorization of Qi(ty).
Namely, exactly one subgroup S of 3̂ of order p is in the center of
a Sp-subgroup of ©, and exactly one subgroup So of Ŝ of order p
centralizes H(Wl), and S =£ So- This is a critical point in dealing
with tamely imbedded subsets. Furthermore, Lemma 26.12 shows
that £f(2ft) is nilpotent, a useful fact.

LEMMA 26.13. Suppose We^f and ty is an abelian, non cyclic
Sp-subgroup of 2ft for some prime p. Suppose further that a Sp-
subgroup of © is abelian. Then the following statements are true:

( i ) $P is a Sp-subgroup of ©.
(ii) C(Q1m) S 2ft.
(iii) / / P and Px are elements of sp which are conjugate in ©

but are not conjugate in 2ft, either C(P) Dflr(2ft)=l or CfPJ nJ5T(9K) = l .
(iv) Either 2ft dominates Qffi) or C(fli(?P)) fl £T(2ft) = 1.
(v) One of the following conditions holds:

(a) *pg2ft'.
(b) iV(SPo) i= 2ft for every non identity subgroup $po of $P such
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that cm n jy(aji) # 1.

Proof. If p e 7r0, then S$ e ^ t and all parts of the lemma follow
immediately. We can suppose that p e 7r2.

In proving this lemma, appeal to Lemmas 8.5 and 8.16 will be
made repeatedly.

If fl^SP) centralizes HQDt), then 2» = JVflWSP)) and all parts of
the lemma follow immediately. We can suppose that Qffi) does not
centralize HQBt). This implies that F(SW) n ?P = 1.

We first prove an auxiliary result: if ft is any p, (/-subgroup of
© containing Qffi) and if ft n J5T(3K) =£ 1, then ft is g-closed. To see
this, let D be a S,-subgroup of ft fl B(SOl)f and let ^ be a Sp-subgroup
of ft fl 501 which contains £?i0P). Let ft, be a S,-subgroup of ft con-
taining Q and let ftp be a Sp-subgroup of ft containing SR. If ft, e <3?f

then ft C 3Jlff for some G in © and so ft, < ft. If ft, e ^ f then ft does
not contain elementary subgroups of order p3 or q3, so either ft, < ft or
ftp < ft. If ftp < ft, and ft, i\ ft, then p > q. Suppose q e icx U TT2. Then
^ centralizes the S,-subgroup C^ of 501. There is no loss of generality
in supposing that ft is a maximal p, g-subgroup of ©. It follows
from this normalization that OQ(ft) is a SQ-subgroup of ©, and ft =
ftpXftq. Hence, we can suppose q e nQ. Since ftq [> ft, ftQe^j. If
OQ(ft) is not of order q, then ft is contained in a conjugate of 3Jt, by
Lemma 26.7, and we are done. Hence, we can suppose that £} =
OQ(ft) is of order q. But now N(d) n 5K contains iSQ-subgroups of
order exceeding q, so that Sp,g-subgroups of JV(O) are g-closed. Since
ft £ JV(D), ft is g-closed

(i) is an immediate application of the preceding paragraph, since
some element of $P* centralizes an element of £T(3Jl)*.

We turn next to (iv). Suppose C(i?i(5P)) n (̂501) * 1, and O* is
a non identity ^5-invariant S,-subgroup of C(0i(5P)) fl £T(50l). Let Q2

be a S,-subgroup of iV^^P)) permutable with $p. By the first
paragraph of the proof, ?P normalizes C ,̂ so by Sylow's theorem
JVCQi) dominates i3i(̂ P). Suppose for some n ^ 1, ?P normalizes Qn

and Qn dominates î(̂ P). Let Dn+1 be a S,-subgroup of iV(Q.n)
permutable with $p. Then ?p normalizes On+1 and so Dn+1 dominates
fii(5P). Since Q o f i ^ S •••, we see that some S,-subgroup of ©
dominates 0i0P) and is normalized by 5p. It follows that the normal-
izer of every S,-subgroup of 3Ji dominates 0i(5P*) for some M in 5IXi,
and so 3Ji dominates J?i(?p). (iv) is proved.

Notice that if C(̂ i(̂ P)) fl #00i) ^ 1, then by (iv), elements of $
are conjugate in E if and only if they are conjugate in 3)t. Thus,
in the case, it only remains to prove (ii). We emphasize that in any
case (i) and (iv) are proved.
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Since $ S 2Ji'f if 271 6 ^ , then $ < 271 and the lemma follows.
We can suppose that 271G ̂ . Let g G TT(#I(271)) and let D be a $-
invariant Sg-subgroup of 271. If Qffi) centralizes r(D), then (ii)
follows immediately. Thus, we can choose P in Qffi)* such that Qffi)
does not centralize T(&) n COP) = Ox. If Ox e ^f, then C(P) £ 271,
so that (ii) holds. If £X e g%, then SX is cyclic, by Lemma 8.16, and
the containment 5p g 271'. Hence J?i(5P) = <P> x SR,, where 5RA is a
Frobenius group.

Let £ = C(P). If £' is nilpotent, then jQx £ O,(£), so by Lemma
26.7, £ g 271, and (ii) follows. Suppose £' is not nilpotent. Hence,
£ contains an elementary subgroup of order r3 for some prime r. If
r e 7^(271)) then £ S 27iG for some G in ©. Since 271 n 27iff 2 Qlr

we have 271 = 2710 and (ii) follows. Suppose r & 7r(ZIi(27l)). In this case,
0i(*P)Qi normalizes a <Sr-subgroup 5R of £. Since P centralizes 9t
and SPo&i is a Frobenius group, and since q ^ r, it follows that
81 n C{Qx<m * 1. Let 271, = M(£). By (iv) applied to 27̂ , we get
$ C 271J. Since Ox n 1̂ (27̂ ) = 1, and since the derived group of
27l1/J5T(27l1) is nilpotent, P̂ centralizes C ,̂ which is a contradiction.
Hence, C(P) S 271, and (ii) holds. The lemma is proved in case

n ^(271) ± 1, and (i) is proved in all cases.
Throughout the remainder of the proof, we assume

(26.1) CmW) 0 #(271) 1

Suppose spo is a non identity subgroup of $P and

(26.2) cm n H(271) * 1 .

There are three cases:
( a ) 2TtG^ and Cflft) n #(271) * 0 ,
(b ) 2 7 i G ^ and C(%) n #(271) = 0
( c ) 2 7 1 G ^ J .

In each of these cases, we will show that

(26.3) JV($o) S 271

Case a1B JY(̂ PO)' is nilpotent.
Choose g so that C(̂ P0) fl #(271) contains an element of order g,

and let Do be a ^-invariant S7-subgroup of C(5R,) n #(271). By (26.1),
so Do S O9(JV(̂ P0)). If Q e ^(#^271)), we conclude that

£ .271, by Lemma 26.7. If g G 7r(^(27l)), then Oq(N(%))
centralizes #1(2Jt)GF for some G in ©, and so N(£X) 2 <#i(27l), #i(27l)G>,
and G G 271 follows.

Case a2. Nffio)' is not nilpotent.
In this case, JV(̂ P0) contains an elementary subgroup of order r3
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for some prime r. If r e 7r(H(%fl)), then M(N(%)) = Wf for some G
in @. Since W n i?(2Jt) =£ 0 , we have 2Ji = aft*. If r £ 7r(£T(9Ji)), let
5ft be a Sr-subgroup of iV(Spo) normalized by 0i($)£2ov where do is a
non identity S,-subgroup of C(%) 0 JET(9Jl), as in Case a^ Let Qffi) =
0i(SPo) x S& so that Oo^ is a Frobenius group by (26.1). If ^JR is a
Frobenius group, then £LQ centralizes 5ft, and SR £ 9K. This is not the
case, since r f f i for all rx e ^(i7i(9R)). Hence, 5ft has a fixed point
on SR*, so fi^) has a fixed point on jy(itf(5R)). By (iv) applied to
ilf(SR), it follows that fl^sp) £ M(5R)', and so fi^) centralizes Do,
which is not the case. Thus (26.3) holds in case (a).

In analysing case (b) , we use the fact that ^(iUi)* £ H(®1), and
that if 35 is any subgroup of H(%R) which is disjoint from JI(3Jl),
then 23 is of square free order and q e nQ f) n* for every q in 7r(23).

Let £i be a non identity ^-invariant S,-subgroup of C(%) C\ J9T(3Ji).
so that | jQ | = g. Suppose that (26.3) does not hold.

We will show that $PQ is contained in a maximal subgroup SKj
of © such that 2Ji{ is not nilpotent, and such that ^ is not conjugate
to 2R.

Case blB JV(̂ po) S 3JlG for some G in ©.
Consider iV(O). Since JV(D) n W and JV(Q) n 3Ji° have non cyclic

S,-subgroups, and since SSI ^ SK0, it follows that N(fD) is contained in no
conjugate of 2W. Let C^ be a ^-invariant S^subgroup of N(O) n 1T(SK).
If JV(O)' is nilpotent, then QL £ O,(JV(iQ))f and so N(&)SWl by
Lemma 26.7. This is not the case, since N(Sd) n SM61 has non cyclic
jSg-subgroups. Hence, JV(D)' is not nilpotent, so we take 2J?! =

Case ba. iV(̂ P0)' is nilpotent, but JV($P0) is not contained in any
conjugate of SSI.

Since O S JV(%)', O £ Oq(NW0)). If Ofl(JV(̂ P0)) is not of order q,
then iV(%) £ WlG for some G in ©. Suppose that O = Oq(N($0)) is
of order q. Let 8^ = iV(O), so that Sf̂  n 5K has non cyclic S,-subgroups
and iV(̂ Po) £ 9^. Since JV(̂ P0) is contained in no conjugate of 2Ji,
neither is %. If 9fi{ is nilpotent, then a S,-subgroup of 9^ n 2Ji is con-
tained in Oq(%), by (26.1) and so 8^ = 3Ji, which is not the case.

We apply (iv) to 2^. If C(QXW)) n J5T(2»i) * 1, then $ £ Wlf so
that P̂ centralizes d , which is not the case. Hence, (26.1) holds
with aJli replacing 2Ji. Let SR be any subgroup of P̂ of order p
different from Qffio). Then tyjQ, is a Frobenius group. Choose
r e (̂̂ (̂ UJj)) and let Sft be a Sr-subgroup of SKx invariant under ?PD.
If n does not centralize T($t), then C(%) n 3T(9t) =£ 1, so that case
(a) holds with SWi replacing 53K, spx replacing sp0.

Suppose then that Q centralizes T(Sft). Then JV(O) £ aĴ , so a
£g-subgroup jQi of JV(O) n 9JI is contained in 2)^. We suppose without
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loss of generality that C^ normalizes 9t. If now 3̂2 is any subgroup
of ?̂ of order p which does not centralize Qi/Q, then since Qi does
not centralize r(3t), we conclude that C(%) n 3T(SR) =£ 1.

Thus, in all cases, if 5ft*, 5ft* f •••,5p* are the distinct subgroups
of $P of order p which have fixed points on 2/(2^), then n^ p, so
that n = p or p + 1.

Choose JVe JV(£?iOP)). Then there are indices i, j , not necessarily
•distinct, such that 5ft* = 5p**. If i = jf, then Ne SD̂ , by (a). If i =£ i,
then JV(«ft*) E 50ix n W , so that 27(2^) n 5Uif * 0 and 5R = 50if.
Hence, JVffl̂ sp)) g SD̂ , so fl^) S SKI, and ^(50) centralizes O, which
is not the case. Hence, (b) implies (26.3).

We will now complete the proof of this lemma in case 3Ji e ^tlm

Since some element of Qffi)* has a fixed point on If(2J£), (ii) holds
fcy (26.3). Also, by (26.3), alternative (v)6 holds. It remains to prove
(iii). Suppose Plf P2 are elements of ^ which are conjugate in ©,
but are not conjugate in 3K, and that C(P<) n H(Wl) =t 1, i = 1, 2.
Theorem 17.1 is violated.

We next verify (26.3) under hypothesis (c).
Suppose by way of contradiction that (26.3) does not hold. Let

D be a non identity ^-invariant S,-subgroup of C($o) n J5T(STO). We
will produce a subgroup $t of © such that SF is not nilpotent, and
such that £^P S ^. Once this is done, then it will follow as in case
b2 that p of the p + 1 subgroups of ^ of order p have fixed points
on H(M(St))*, and (26.3) will follow.

Suppose SHii is a maximal subgroup of © containing JV(5p0). If
HRl is nilpotent, then Q g O ^ ) . If Oq^0ld is non abelian, then
HJli = ait* for some G in ©. Furthermore, from (26.1) and the fact
that JD is not a S?-subgroup of ©, we conclude that O = 0,(3)10 n C(s£0).
Hence, JV(D) contains C(5p0)* Let 3Jla be a maximal subgroup of ©
containing JV(Q). If 3Ji5 is nilpotent, then 3Ĵ  = 2Ji and (26.3) holds.
Hence, W2 is not nilpotent, so we can take 5? = 33 .̂ If Off(3Ri) is
abelian, then SW = 5% and (26.3) holds. Thus, (26.3) holds in all cases.

The completion of the proof that (26.3) implies this lemma is a
straightforward application of Theorem 17.1.

LEMMA 26.14. Suppose 5UI e ^ and tyisa non abelian Sp-subgroup
of 501. Then JV(i31(Z(̂ 5))) E 501. Furthermore, one of the following
conditions is true:

(a) fl!(Z(5p)) centralizes fl(5K).
(b) iV(̂ Po) C 2^ /or ever# won identity subgroup % of $p.
(c) 5p

Proo/. Suppose p G n0. If spe c^!, then 2Ji = 3f(5p)f and so
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£ SW. Since $ £ fl(SK)f the lemma is proved. If $ €
then $ contains a cyclic subgroup of index p. Since $p is assumed to
be non abelian, Sp is a non abelian metacyclic group, so $P g 2Ji', by
3.8. Lemma 26.10 is violated.

Through the remainder of the proof, we assume pen2.
Let 3 = Q^Zffl)), so that 3 is of order p, by Lemma 26.2 and

Lemma 26.10.
If W is nilpotent, then 3 <d 2W, and all parts of the lemma follow.

We can suppose that 2Ji' is not nilpotent. In particular, 2Ji e ^^. We
can further assume that p $ 7r(J7(SK)).

Since P̂ is non abelian, 3 centralizes 2?1(2Ji).
Choose q e Trffl̂ tK)) and let Q be a ^-invariant S?-subgroup of 2R.

If qen*, then 3 centralizes O.
Thus, if ft = 7^(2)?)) U fa* n 7r(fli(SK)))f then 3 centralizes a Sir-

subgroup of SW. If 7? = 7r(J5T(2Ji)), all parts of the lemma follow.
Let r e 7r(fl(3Ji)) — S and let 3ft be a Sr-subgroup of SK normalized

by P̂, and such that 3 does not centralize 9t. If there are no such
primes r, we are done.

Let SPx be any subgroup of $P of order p different from 3- We
will show that NQ&) £ 5K.

Since 3 does not centralize 9t, 3ft n C(5Px) g C(3). Set ^ = 3ft n C(%).
If 3fti e ^ , then N(^) £ 2JJ. Otherwise, 3ftj is a non trivial cyclic
subgroup of 3ft, and 33fti is a Frobenius group.

Let SWi be a maximal subgroup of © containing iVOR). If SKI is
nilpotent, then 3ftx £ 0,(2^), so 9^ £ SKf by Lemma 26.6. We can
suppose that 5KJ is not nilpotent and that ^ is not conjugate to SK.
If a Sp-subgroup of Tlx is non abelian, then 3 centralizes 3ftx, which is
not the case. Hence, a Sp-subgroup of 3Jlx is abelian and non cyclic.
We can apply Lemma 26.12 to SD̂  and a Sp-subgroup $P* of SD̂  which
contains ^ 3 . We conclude that 3#0Ki) is a Frobenius group. Since
33ft2 is a Frobenius group, % centralizes fl(5Ki), and so 2ft = 2)^. We
conclude that 2Ji contains N(^) in all cases.

Now let ?Pi, • • •, ?P» be the distinct subgroups of P̂ of order p
different from 3- Here n — p2 + p. Let 8 be any proper subgroup
of © containing fii(^P). Let Sx = OP'(2). Since Si is generated by its
subgroups C(SP,) n Si, 1 ̂  i^ n, we have 2, £ 2Ji. Let S2 = S n iV(̂ i(̂ P))r
and choose L in S2. We can then find indices i, j , not necessarily
distinct, such that spf = spy. Hence, N(^) £ 2 ^ 0 2^ .̂ Since iV(^)

contains an element of 3ft* £ fl(5K)f we have 2W = 27tz. Hence, S £ SK,
so in particular, JV(3) £ 2ft.

Let sp0 be any non identity subgroup of 5p. If ?̂0 is non cyclic,
then iV0P0)EiV(3)^2R. If P̂o is cyclic, then M îOPo)) £ 5K. The
proof is complete.
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LEMMA 26.15. Suppose Wle^f,® is a cyclic S-subgroup of W
and 21 n 2R' = 1. Then 21 is prime on H(Wl), and C(2I) n H(Wl) is a
Z-group.

Proof. Suppose 21 is prime on /7(3K), but that Q is a non cyclic
S,-subgroup of C(2I) n i?(3Jl). Choose pe7r(2I) and let 2tp be the
Sp-subgroup of 21. Since JV(HP) g SWf it follows that Q e ^ . Thus,
if q e TT2, O is a S,-subgroup of ©, while if q e 7tQ, JQ is also a S,-subgroup
of ©, by Lemma 8.12. Since D G ^ , w e have q e7r2, SO that 9K = iV(JQ).

Let SDli be a maximal subgroup of © containing JV(2Ip)- If a
Sp-subgroup of © is cyclic, then 3Ji = N(O) dominates 2IP, which is
not the case, since 3tp n 2ft' = 1. Hence, p e 7T0 U TT2. Let 2IJ be a
Sp-subgroup of 2)?! permutable with £1. If 2IJ is a Sp-subgroup of ©,
then £} normalizes 21J. Otherwise, JQ normalizes St* since 2lpc2lJ,
and Lemma 8.5 applies to £12tp\

Let B be a maximal p, g-subgroup of © containing £M$, and let
5?p be a Sp-subgroup of 5?. Then 5¥p < ^, so that Sp is a Sp-subgroup
of ©. Let 2Jl2 be a maximal subgroup of © containing N(StP).

If D were non abelian, then 2H £ 3Jl2 by Lemma 26.14, which is
not the case. Hence, Q is abelian. If p e nOt then by Lemma 26.13,
we have JV(J2i(£i)) S 2JJ2 since JQ centralizes 2IP ̂  1. Since this is
impossible, we see that psn2.

If 2lp g£ ffl;f then by Lemma 26.1, together with the fact that
JV(JQ) covers JV(̂ p)/JEpC(Sp), we see that 2IP n Sft' * 1, contrary to
hypothesis. Hence, 2lp S ^P. Since 2IP = C(JQ) n ^P, this implies that
®p is a non abelian group of order p* and exponent p.

Since some element of JQ* has a non identity fixed point on HQBty,
and since 3Ji' centralizes Df we see that 2ft' £ 3J£2, by Lemma 26.13.
Since JV(2tp) fi 2R2 and since 2IP n 2ft' = 1, it follows that 2ft C 9Ji2, the
desired contradiction.

Thus, in proving this lemma, it suffices to show that 21 is prime
on £T(a»).

First, suppose that 21 is a p-group for some prime p. We can
clearly suppose that 1211 ̂  p\ and that C(0i(S)) n fl(2W) ̂  1.

Case 1. p e 7r0. Let q e 7r(£'1(2ft)), so that q^nx\J n2. Lemma 26.9
applies. Let q e n(Hx(m)). Then p + q since 21 n 9W = 1. Lemma 26.10
applies. If %!fle^0, Lemma 26.9 applies.

Case 2. pe7r2 and a Sp-subgroup of © is abelian.
If gr e 7r(£i(2W))f or ge7r(fl(2ft)) and 2Jie^J, Lemma 26.7 applies.
Let q e 7r(flr1(2ft))9 and let JQ be an 2I-invariant S9-subgroup of 3Ji.

If 21 centralizes JQ, we have an immediate contradiction. Hence, 21
does not centralize JQ.

We can suppose by way of contradiction that \C(Q1^S)) D O, 21] =£ 1.
If C{Qx{yL)) n JQ e <g?f 2ft contains a Sp-subgroup of ©, which is not the
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case. Otherwise, q > p, so every p, g-subgroup of © is (/-closed, and
2ft contains a Sp-subgroup of ©, which is not the case.

Case 3. pen2 and a Sp-subgroup of © is non abelian.
Here, 21 S M W ) ) ' , by Lemma 26.2. Since 0(^(8)) n H(Wl) e J?Z,

the lemma follows.
Case 4. pe n1% In this case, also, we have 21 S iV(i?i(2l))', and

the lemma follows.
Next, suppose that 21 = 2^ x 2l2, where 2I< is a non identity Prgroup,

i — 1, 2. Suppose by way of contradiction that O is an 2t-invariant
Sg-subgroup of //(9K) and that 21 is not prime on Q. We can suppose
that 2I2 does not centralize JQ n C ^ S y ) = Q n C(Sli) = d .

Let aiix be a maximal subgroup of © containing JV(̂ i(5Ii))- Then
ajix is not conjugate to 9K, either because 2Ij is not a S-subgroup of
aKj, or because 2IX S Wlm Let ^ be a 5,-subgroup of 2J£ n 2Ki which
contains ^ and is 2I-invariant.

Suppose QiCQ, . Then 2^ g fl(afti), since [O2,21J ^ 1, and
q $ ̂ //(SKi)). Furthermore, C^ is non cyclic. Suppose q e x2. In this
case, q > plf so a SPl-subgroup Stf of SJli normalizes some S,-subgroup
of Wllf and it follows that 2IX* normalizes some Sq-subgroup of ©. This
implies that 2IX is a SPl-subgroup of (S. But in this case 2^
so that 2tx centralizes C^ and so C^ = C .̂ Suppose g e TT0. If
then iV(£i(3*i)) £ 3K, which is not the case. Hence, D^e^ so that
q > PL Once again we get that Dj = £V Hence, we necessarily have
Oa = Di in all cases.

Since 2ti is prime on Jff(9K), from the first part of the lemma, we
conclude that £^ is cyclic.

We next assume that 3Ji{ is nilpotent.
Suppose (̂O^aJta)) = ^(Qi). Since $X is a S,-subgroup of SD̂  fl 5K,

it follows that g e ^ and ^ is a S,-subgroup of ©, so that 9Ji = 3)^.
Since Dx = [Qx, 2l2] S O^SJii), we can suppose that Og(3Jii) is non cyclic.
In this case, however, Oqi^) is a Sg-subgroup of © and ^ is conjugate
to 9Ji, which is not the case.

We can now suppose that 5Ui( is not nilpotent.
Suppose px <£ niH^Wl!)). Let 6 be a complement for H âttO in 2)^

which contains £^21. Then ©' is nilpotent and so [SX, 21J C 0,(@).
Case 1. geTTj. In this case, 2IX is a SPl-subgroup of ©, and $X

dominates 21̂  This violates % D 5K' = 1.
Case 2. tfG7r2, and a iSg-subgroup of © is abelian. In this case,

£i(IA, 2IJ) = fliCOgC®)), so once again % is a SPl-subgroup of ® and
3Ji dominates 21̂

Case 3. qen2 and a Sfl-subgroup of © is non abelian. Since Qj
is cyclic, we have q > ft, so some SPl-subgroup @Pl of @ normalizes
some S,-subgroup of ©. But now 9Ji dominates 2IL since every plt q-
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subgroup of © is ^-closed, and Gf dominates St̂
Case 4. ge7r0. If qen*, then every plf g-subgroup of © which

contains a Sp^-subgroup of 2ft2 is g-closed, so once again 2ft dominates
^ and 2Ii is a SPl-subgroup of ©. Hence, q$n*. Since 2ftx is not
•conjugate to 2ft, it follows that if Qg is a S,-subgroup of @ containing
JDj, then £1$ e ^J, which implies that Q, is cyclic, and Qg £ 2ft. Hence,
A = Q», since Si! centralizes Q,. But now C^ = [ d , 2t2] < ©, so @ S 2ft.
Thus, once again 21! is a SP]L-subgroup of © and 2ft dominates Six.

All these possibilities have led to a contradiction. We now get
to the heart of the matter. Suppose p1en(H1(SSl^).

We will show that px$iz*.
Let $px be a SPl-subgroup of fli(3Jii) containing Six and invariant

under 2t2£li. Suppose that

<26.4)

will derive a contradiction from the assumption that (26.4) holds.
If q e 7cu (26.4) is an absurdity, since N([%, QJ) = 3Ji. If q e n2 \J 7c0,

then a S,-subgroup of iV([5I2, &J) fl 3K is non cyclic, so q e TT2, as already
remarked. If q < plf then 2^ centralizes a S,-subgroup of 2Ji, so Qi
is a Sg-subgroup of ©. In this case, however, [2I2, DJ < 2Ji, an absurdity,
by (26.4). Thus, if (26.4) holds, then q e n2 and q > plm

Since (26.4) is assumed to hold, it follows that $X is a Sg-subgroup
•of 2ft fl iV([2t2, Oi]). Hence, d is non cyclic. We have already shown
that d is cyclic. We conclude that (26.4) does not hold.

If plen*, then [2I2, DJ centralizes 5ft, by Lemma 8.16 (ii), so
<26.4) holds. Hence, p^n*.

Since (26.4) does not hold, and since p^n*, C([2I2, SX]) n ?Pi is
-cyclic. It follows that C(2l2) n P̂i is non cyclic. This implies that
JV(2t2) S 2ftlf since C(2l2) n % e ^? . Since p2 g 7r(H(2ft1)), and since g > p2,
it follows that a SP2>g-subgroup of 2ft1/fiT(2ft1) is g-closed. This in turn
implies that some SPa-subgroup of 2ft! normalizes some S,-subgroup of
©. Since 5l2 is a SPa-subgroup of 2ft, 2Ia is forced to be a Spa-subgroup
of ©. But N(%) £ 2ftlf and «, S N&W, so 2ta centralizes d . The
proof of the lemma is complete in case 7r(2t) = {#!, p2}.

If 17r(5t) | ^ 3, the lemma follows immediately by applying the
preceding result to all pairs of elements of 7r(5I).

LEMMA 26.16. Suppose SSle^T and £T(2ft) is not nilpotent. Then
\ 2ft: 2ft' | is a prime and 2ft' is a S-subgroup of 2ft.

Proof. Let p e 7r(2ft/2ft') and let 2lp be a Sp-subgroup of 2ft. By
Lemma 26.11, 2IP is abelian. Suppose 2IP is non cyclic. If a Sp-subgroup
of © is non abelian, then £T(2ft) is nilpotent, by Lemma 26.12. Hence,
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we can suppose that a Sp-subgroup of ® is abelian. By Lemma 26.15
Sip is a Sp-subgroup of ©. By Griin's theorem, the simplicity of ©,
and Lemma 26.15, 3IP contains elements Alf A2 which are conjugate in
© but are not conjugate in SSI. If O^A^) = i2i«A2» and if Q^A^)
has a fixed point on H(SSl)*, then JV(0i(<A») S SSI, so that Ax and A2

are conjugate in SSI. Since this is not the case, Q^A^H^Sl) is &
Frobenius group, and so JBT(2Jl) is nilpotent, contrary to assumption.
Hence, Q^AJ) =£ ^i«A2». By Lemma 26.13, either /21«A1»i3r(aJi) or
QiKA2y)H(SOl) is a Frobenius group, which is not the case. Hence,
2IP is cyclic.

Let SI be a complement to SSI' in SSI, so that 31 is a cyclic S-subgroup
o f SOt.

By Lemma 26.15, 31 is prime on H(SOl) and C(«) D H(SOl) is a Z-group.
Let St = [31, fl(SK)] and suppose that 1311 is not a prime. By

Lemma 26.3, B is nilpotent. By 3.7, St < H(SOl). Hence F(fl(2R)) 2 ft,
so that HQOl)IF(BQat)) is a Z-group. It follows that HQOl) g SW\ the
desired contradiction.

LEMMA 26.17. Suppose SSI e ^t and zx = 7r(#(9Ji)) D TT*, ra =
w(2R/fl(SW)) n 7T*. ^ ^ r, = {ftf • • -, pn}, p,>p3> -">pnf and z2 =
fen • • -i Qn}, Qi > ' • • > Qn. Set r = zx U r%. Then a ST-subgroup of SBt
has a Sylow series of complexion (plf • • •, pn, qlf • • •, qm). Furthermore,,
if rev, SDl has r-length 1.

Proof. We first show that 2Jt has r-length 1 for each r in r.
If r i 7c(Hi(SBl))9 this is clear, so suppose r e 7r(fli(2Ji)). Let 91 be a
Sr-subgroup of 2JJ and let 31 be a subgroup of SR of order r such that
CR(3I) = SI x S3 where S3 is cyclic.

Let Six = 9t n Or,,r(2Ji), and SD̂  = N^). It suffices to show that
afti has r-length one, since 3Ji = 97^0^(3^). Let S3 be a subgroup of
Sfti chosen in accordance with Lemma 8.2, and set 2B = Offi). Then
ker (aJii — Aut 838)5 9^(1 Or>.r(2ft). If St C SRlf then m(SB) ^ 2, and we
are done. We can suppose that 31 §£ $tlm This implies that m(2B) ^ r,
since C(SI) n 3B has order r and SB is of exponent r. We are assuming
by way of contradiction that 3Ji has r-length ^ 2 , so by (B), we have
m(3B) ^ r. Hence, m(2B) = r.

Set a*! = 2B/Z)(2B) and let 2R, = SD /̂ker (SSI,—Aut ffiy. Then 31 maps
onto a Sr-subgroup of SOl2. Hence 9K2 has a normal series l c ^ c E j g 3K2,
where Ex and 9Jl,/E2 are r'-groups and | S2: Ĝ  | = r.

Since m(SB) = r, Sx is abelian. Also aJia/Ej is faithfully represented
on &J&! and since r G 7r(£T(9Jl)), E2 c 3Ji2.

By Lemma 26.16, | SOI: SBV \ = q is a prime, and 9W is a S-subgroup
of 9M. We let O be a S<-subgroup of SSlu so that O is of order g'.
Since \SBt\SBV\ = \SBll\SBVL\9 it follows that O maps onto aJij/e,. Let-
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13 denote the image of 21 in 2Ji2 and let O denote the image of Q in
HJia. Since &i is a r'-group and a g'-group, we assume without loss
of generality that D normalizes 21.

Let a be the linear character of Q on 21, so that a =£ 1. Let £
be the linear character of Q on SBJ/TSB^. Since g divides (r — l)/2,
A B ^ ) is non cyclic. Hence, C(£>) n H($R) is not a Z-group, contrary
to Lemma 26.15.

Thus, 2Ji has r-length one for each rev. Since a Sr2-subgroup of
UJi has a Sylow series of complexion (ql9 • • •, qm) and since a Sr-subgroup
of 2ft is zvclosed, it suffices to show that a Sri-subgroup of 2J! has a
Sylow series of complexion (pl9 ••-,#»).

Let $ be a SP(>Pj-subgroup of 2Ji with Sylow system ^ , $, where
Pi > py. By Lemma 8.16, Stt n JV(fflj) centralizes 5?,. Hence S is ^-closed,
since $ has p^-length one. The lemma follows.

LEMMA 26.18. Let SKe^f and let d be a complement for i/(3Jt)
in 2Ji. Tfcen there is at most one prime p in 7r(@) with the following
properties:

(i) A Sp-subgroup of @ is a non cyclic abelian group.
(ii) A Sp-subgroup of ® is non abelian.

Furthermore, if 7r(G?) contains a prime p satisfying (i) and (ii), then
a Sp>subgroup of @ is a Z-group.

Proof. Suppose pu p2 e 7r(@), px =£ p2 and both pl and p2 satisfy (i)
and (ii). Let ^ be a SPl-subgroup of @ and let ©a be a SPj5-subgroup
of © permutable with <&lm

Let 8, = 21, x ®lf where 121, | = pif 21, centralizes fl(SK)f 8,fl(2R)
is a Frobenius group and ^(S,) S Z(̂ ?<) for some Sp4-subgroup ^ of
(S, i = 1, 2. Assume without loss of generality that px > p2. Then
©a normalizes Ĝ . It follows that Q^) centralizes © i ^ , and this
implies that £?i(@2) centralizes (̂SBx). It follows that © satisfies EPvP2.

By Lemma 26.17, JVOPi) contains a SPa-subgroup ^* of ©. By
Lemma 8.16, 5$" centralizes spif so centralizes <£lm Since C(%) S 2«,
we see that p2 e 7r2. By Lemma 26.2, and Lemma 26.10, sp2 now centralizes
3$!. This is a contradiction, proving the first assertion.

Now suppose p £ 7r(@) satisfies (i) and (ii), @p is a SP-subgroup of @ and
@, is a non cyclic S,-subgroup of E permutable with @p, q e 7r(@), q =£ p.

Case 1. @g is non abelian.
In this case, ©, is a S,-subgroup of © and q e n2, by Lemma 26.14.

Since ©, £ 3Ji', @p normalizes ©,. Write @p = 21 x 33, where 21 centralizes
£T(2Ji), S3jy(2ft) is a Frobenius group, and fi^S) £ Z(̂ 5) for some Sp-
subgroup of $ of © with epg^5. Then ^(@p) centralizes ©,/©g n C(fl(SK)).
If @p centralizes @g, then © satisfies Ep>q as can be seen by considering
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We now show that © does not satisfy GrPi,. Otherwise, since
N((£q) Si 2JI, we see that G?g normalizes some Sp-subgroup $P* of @.
Then (Sq centralizes $P* by Lemma 26.2, Lemma 26.14, and Lemma 8.16.
This is not possible since Gfp is abelian.

Hence, (S does not satisfy EPtq, so fli(@p) does not centralize Gfg and
q > p. This implies that | G?f: 8 f n C(fl(SW)) | = q. Hence Bf n C(fll(8,)) =
Gr* is of order #.

Consider N(Qi(<&p)) = Sft. Since a Sp-subgroup of sJi has order
p|G?p|, it follows that a SPi9-subgroup of -K is g-closed. Let gfl be a
S9-subgroup of 91 containing 6*. If gg is not of order q, then JV(0i(gff))
contains a S,-subgroup of ©, a Sp>9-subgroup of NiO^q)) is g-closed,
and a Sp-subgroup of iV(0i(3g)) has larger order than Gfp. As JV(©«) E
9K, this is not possible. Hence ^, = @* has order g. But now a
Sg-subgroup of JV(Sff) contains @p and Z(@9), so a SP9-subgroup of
JV(S«) is (/-closed. This in turn implies that a Sp-subgroup of iV(@9>
has order larger than |G?P|, which is a contradiction.

Case 2. Gf, is a non cyclic abelian group.
By the first part of the proof, and by Lemma 26.13, Gf, is a Sq-

subgroup of ©. Since Q^p) centralizes @ff/eff D C(£r(9K)), and since
©,gC(£r(2Ji)), it follows that © satisfies BPif. This implies that a
SPi9-subgroup of © is p-closed, by Lemma 26.2. Hence, (£q centralizes
the center 3 of some Sp-subgroup of ©, since £?i(Gfg) centralizes
(where @p = 21 x S3, as in Case 1). To obtain the relation [^(S,),
= 1, we have used Lemma 26.13 to conclude that there are at

least 2 subgroups of C?g of order q which have no fixed points on £T(3R), or
else Gr, Si 2ft' in which case G?p normalizes @ff and so J?i(§B) centralizes ©,•

But now JV(fii(83)) dominates ©g, so @7 centralizes some Sp-subgroup
of ©, contrary to C(@fl)S3ft. The proof is complete.

LEMMA 26.19. Let 9Jie^T. Suppose sJK/JBr(9K) is abelian. Sup-
pose further that either H(Wl) is nilpotent or | 3ft: J5T(Sft) | is not a
prime. Then 3)i is of type I or V.

Proof. Let g be a complement for U(2Ji). Since JI(ilR) = 2Ji'
by hypothesis (we always have H(0Jl) S W), @ = Sft/Sft' is abelian.

Case 1. © is cyclic.
We wish to show that 2?(2ft) is nilpotent, so suppose |G?| is not

a prime. Since | G? | is not a prime, since © is prime on J?(9ft), since
© has no fixed points on F(SK)/J5r(SR)'» and since C(@) n F(9») is a
Z-group, it follows from Lemma 26.3 that 2/(211) is nilpotent, so that

D H(Wl) = ©! is cyclic.
Case la. C2 = 1.
In this case, 2ft is a Frobenius group with Frobenius kernel
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J?(2K) = 3W, so condition (i) in type I holds. If HQDt) is a T.I. set
in ®, then 2Ji is of type I, since (ii) (a) holds, so suppose 2f(2R) is
not a T.I. set in ©. Let tf(2Ji) = %\ x • • • x <$», where ^ is the SPi-
subgroup of 2Ji and {Px, • • •, pn} = 7r(£T(2Ji)). If p{e7rl9 then clearly
Pi G 7T!*. If ^ G 7r0 n 7T*; then also Pi G nf9 since @Z(^) is a Frobenius
group. Similarly, if Pi€7c2 and $p4 is non abelian, then Pi^n?.

Suppose Vi$n?. Then either PiG7r2 and ^ is abelian, or
PiG7r0 — 7r*. We will show that the second possibility cannot occur.

Choose G in © - 2K such that & = JJ(SW) n #(21*)* =£ 1, and let
ff be an element of ® of prime order p. If p< G 7r0 — 7r*, and p =£ p»,
then C(#) a <0fr, $?>, and 271 = 2K*, contrary to assumption. Hence,
V = Pi. In this case, C(H) 2 <<C(H) n $«, C(#) n P̂?>, and since
^ G TT0 - 7T*, both (?(#) n P̂,- and C(H) n ?5? are in Mfl9 so 3Ji = 3J .̂
Hence, (TT0 - TT*) fl 7r(JJ(9K)) = 0 .

Thus, if n(H$Hl))<£n?, then 7r(ZT(aJl)) contains a prime q such
that the Sg-subgroup D of 3Jt is abelian and g G 7r2. Since | @ | does
not divide q — 1 or q + 1, but | © | does divide q2 — 1, we can find
ru r2G7r(e) such that r±\q — 1 and r21 q + 1. Let Gcri be the Sri-
subgroup of @. Then Q = £tx x D2, where £!< is normalized by ©ri and
di is cyclic, i = 1, 2. Since r21 q + 1, it follows that fC^ and Q2 are
isomorphic @ri-modules. Hence, @ri normalizes every subgroup of O.

Once again, choose G in © - 9K so that ® = #(211) n ^(aJi)61 ^ 1.
Then C(®) a <d, &°y, so C(®) is not contained in any conjugate of
Wl. Let CXS^gaKjG^. We apply Lemma 26.13 to 2)^ and Q.
Since C ^ Q ) ) = U(2Ji), we have ZT(gK) = STî

Suppose 2/(2Jl) were not abelian. Let 31 be a non abelian Sr-
subgroup of £T(2ft). Apply Lemma 26.16 to 2)^ and 3i, and conclude
that N(Q1{Z{^{))) E 2ftlf and so 2rt S SWi, which is not the case. Thus,
alternative (ii) (c) in the definition of type I holds, so 2Ji is of type
I. (Since JJ(2Ji) G <̂ T0, J7(2Ji) is generated by two elements.)

Case lb. (S, * 1.
Since JI(2Jl) = W, we have ©x £ JJ(2R)' S F(3tt) U {1}. It follows

that iV(e0) S 2ft for every non empty subset @0 of @f. Let g = ©(^ -
@ — ©!. If @0 is any non empty subset of @, then each element of
(l0 is of the form EElf Ee @f, Exe @{. Thus, if §0 = {^ig| I&oe@0},
then JV(e0) S JV(So) £ 2Ji. Since 2Ji n iV(©0) = ®©i, 2Ji is a three step
group with e in the role of D*, H(Wl) in the role of £>, (^ in the
role of $*. Since £f(2ft) = 2Ji', we take U = 1, so that (i) in the
definition of type V holds. If (ii) (a) holds, then 2Ji is of type V,
so suppose (ii) (a) does not hold.

Since ^ £ #(2J1)', #(2J1) is non abelian. Let H(Wl) = %> x ©Of

where ^ is a non abelian Sp-subgroup of //(2Ji) (there may be
several).
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We will show that @0 is a T.I. set in ©. Suppose G e © -9f t
and @o 0 @? = 3) is a maximal intersection, so that JV(®) is contained
in no conjugate of 9ft. Let 9ftx e ^// with JV(®) S 9ftx. Apply Lemma
26.14 to SDli and $P and conclude that 9ft £97^, a contradiction.
Hence, @0 is a T.I. set in ©.

Since J5T(9Jl) is not a T.I. set in ©, choose G e © - 9ft so that
1 =£ JJ(aK) n H(Wl)° is a maximal intersection. Since @0 is a T.I. set
in ©, we see that J5T(2») n ff(9ft)* = ®x = «p n ¥>°, and #(©,) is con-
tained in no conjugate of 9ft, while iV(3>i)3@0. Since @0 is a T.I.
set in JV(®!), and since JV(®j) g 9ft, <30 is cyclic. By construction, ty
is non abelian, so pen*. It only remains to show that pen?.

Apply Lemma 8.16 to ty and @. If @ does not centralize Z0P),
then | G | divides p — 1 and we are done. Suppose that @ centralizes

Then B is faithfully represented on 0i(Z1(5P))/fl1(Z($P)), so if
0I(Z(SP)) | = p, we are done. Otherwise, we let Po be an

element of ^ of order p such that C^(P0) = <P0> x 21, where 21 is
cyclic. Since | QX(ZJR)): 0i(Z($)) | ^ p2, we have Po e fli(Z,(?P))f so
<P0,fli(Z(?P))><5p. By Lemma 8.9, ^ ^ ^ T 3 ( ^ ) is empty. By
Lemma 26.2, $ is a central product of a cyclic group and £?i(̂ 3),
with | Q^) | = p3. Since $ S 3R' and since ® centralizes Z(*P), we
have | ̂ P | = p8. E is faithfully represented on *p/$P', and since @
centralizes p̂', each element of @ induces a linear transformation of

P̂/sp' of determinant 1. Thus, | © | divides either p — 1 or p + 1,
since © is isomorphic to a cyclic p'-subgroup of SL(2, p). Hence,
PG7T!*, and 9ft is of type V.

Case 2. @ is non cyclic.
Case 2a. There is an element p e 7r(Gc) such that the Sp-subgroup

Gfp of @ is non cyclic and a Sp-subgroup of (# is non abelian. In
this case, Lemma 26.18 implies that E = Ep x g where g is cyclic.

Let ©p = @p0 x EMf with | ©p01 = P, ©Po S Z(3ft), and with
©plZ/(9ft) a Frobenius group. Also g is a cyclic S-subgroup of 9ft.

We will show that @plgflX9ft) is a Frobenius group. If g = 1,
this is the case, so suppose S ^ 1. By Lemma 26.16, g is prime on
JZ(SK). Let §* = C(f$) n J3r(att), and suppose §* ^ 1. Then @pl§* is
a Frobenius group. Let 9ftj be a maximal subgroup of © containing
N(%i)> Si being a fixed subgroup of g of prime order. Then SWx is
not conjugate to 9ft. Hence, 9ft n 9ftx e M%. Since @Pi£>* is a Frobenius
group, G?pl n 9ft{ = 1, so a Sp-subgroup of 9ftx is abelian. By Lemma
26.12, <&plHQatJ is a Frobenius group, so ff(9ft) n SKx centralizes #(93^).
Since l c § * £ JJ(9ft) n SKi, we see that 9ft£9ftx, which is not the
case. Hence, £>* = 1, so gff(9ft) is a Frobenius group, as is @plgjy(9K).
9ft itself is a group of Frobenius type.

Suppose 9ft' is not a T.I set in © and ^SPO £ 7rf. It follows readily
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that 2ft' is abelian and is generated by two elements. 2ft is of type I.
Case 2b. Whenever a Sp-subgroup of @ is non cyclic, a Sp-

subgroup of © is abelian.
Let ft be the set of primes p fn 7r(g) such that a SP-subgroup

of @ is non cyclic. Let @ = @x x @2, where @! is the S;-subgroup of
6. Thus @2 is a cyclic S-subgroup of 2ft, and ff ^ 0 . By Lemma
26.13, ©! is a S-subgroup of @.

We first show that if p e ft and G?p is the Sp-subgroup of ffilf then

(26.6) CflWe,)) n £T(2ft) = 1

This is an immediate consequence of Lemma 26.13 (iv) and Griin's
theorem, since 2ft' n @p = 1.

We next show that either @ 2 = 1 or @2ZT(9Jl) is a Frobenius group.
Suppose @2 =£ 1. By Lemma 26.15 @2 is prime on 2/(2ft). Suppose
£* = C(@a) n J5T(2ft) =£ 1. Let @, be the 5,-subgroup of ©2 for some
^G7r(@2), and let ^ be a maximal subgroup of © containing iV(@fl).
Then 2ftx is not conjugate to 2ft.

By Lemma 26.13 (ii), together with 2ft' n ©P = 1, there is some
element of 0i(B,)f which has no fixed points on flXaft)1, so £>* is
cyclic. By construction <©,§*> GSKi. Suppose SD̂  n î Caft0) is non
cyclic for some G in ©. Let 3̂  be a non cyclic Sr-subgroup of
^ n H(W). If a Sr-subgroup of © is abelian, then ff^g^ by
Lemma 26.13 (i) and (ii). Since @S2fti, we have Wf = mif which
is not the case. Hence, a Sr-subgroup of © is non abelian. If 9i
were non abelian, then 3fti = 2ft*1 for some Gx in ©, by Lemma 26.14
with Sft in the role of ?̂. Hence, sJt is abelian. By Lemma 26.13,
H = 3*0 x 9tlf | S»o | = r, SR0 centralizes HQOtd and SR1iJ(2ft1) is a Frobenius
group. By (26.6), 9t S 2ft;, so 5ft0 < Sfti. Since 5RiJ(2ft1) < 2ftx, we can
find a Sr-subgroup 91* of 2fti which is normalized by @p. Since 2ft
and 2ftx are not conjugate, 7r(flX2ft)) n 7r(£T(2ft1)) = 0 , so sJt* does not
lie in //(2ft!), and 9t* does not centralize £T(2ft1). There are at least
p subgroups $Po of £?i(@p) with the property that P̂05R*/sJt0 is a Fro-
benius group, by (26.6). Each of these has a fixed point on U(2ft1)

f.
It follows from Lemma 26.13 (iii) that 2ftx dominates G?p. This is
absurd, by (26.6) and Lemma 8.13. Hence, 2ftx n U(2ft*) is cyclic for
all G in ©. In particular, 2ftx n #(2ft) is cyclic. This implies that
2fti n iJ(2ft) is faithfully represented on J5T(2ft1), so §* is faithfully
represented on JEr^J. By (26.6), at least p subgroups of @p or order
p have fixed points on 2/(2)^), so 2ft: dominates @p, which violates (26.6),
by Lemma 8.13. @2£T(2ft) is a Frobenius group. Thus, in the defi-
nition of a group of Frobenius type, the primes in 7r(G?2) are taken care
of. Let @p = @pl x @p2, with | @pl | ̂  | ©p21, p e ft, and where @P1- is cyclic,
i = l,2. If |@Pi |<|@P2 | , then fl^ffi,,) char @p. By Lemma 26.14
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(v), it follows that @P2ff(2tt) is a Frobenius group. If |®pl | = |(2w |r

then by Lemma 26.14 (iii), there is some element P of order p in (Sp.
such that <P>Z/(2ft) is a Frobenius group. Thus, © contains a sub-
group @* of the same exponent as Gc with the property that @*U(9K>
is a Frobenius group. 2tt is of Frobenius type.

If H(SSl) is not a T.I. set in ©, and 7r(jy(2Jt))g7r*, it follows-
readily that H(SSl) is abelian and is generated by two elements. The
proof is complete.

LEMMA 26.20. Let Stiles? and let ft be the subset of primes p-
in 7t(SSll H(SSl)) such that a Sp-subgroup of SSI is a non cyclic abelian
group and a Sp-subgroup of © is abelian. Let G? be a complement for
H(SSl) in SSI. Then a S«-subgroup S$ of @ is a normal abelian sub-
group of e and *p n @' = 1 or ?p.

Proof. We can suppose ty =£ 1. Let pert and let Gcp be a Sp-
subgroup of ©. We first show that G?p < @. Let q e 7r(@) and let
Cc9 be a Sg-subgroup of G? permutable with @p. If Gfff is non abelian,
then J V ^ Z ^ W S S K , by Lemma 26.14. If Ol(Z(^q)) centralizes.

(̂Gfp), then ©pg2Ji' so that @p centralizes @ff. We can suppose
that Q^ZiJSg)) does not centralize J2i(@P). Since fii(@P) centralizes-
ef/Gf n C(JJ(2R)), and since Cf £ C(ff(3fl)), it follows that ©P^2R' so
that @p centralizes ®9.

If G?? is a non cyclic abelian group, then qeft by Lemma 26.18.
If ©p <# ep®,, then ep normalizes @, and £i(@P) centralizes.
®f/®f n C(£T(SK)). If ©, n C(JJ(SW)) = I, then #(<£,) dominates fl^Cn),
so @p centralizes @g. If ®ff n C{H(W)) * 1, then @, fl 0(0^,)) domi-
nates @p, so that @g dominates Grp and once again @p centralizes @g.

Suppose ©, is cyclic. We can suppose that Gfp normalizes G?g.
Then Si(@P) centralizes ©,. If g e ^ U TT2, then Grp centralizes @gr

since @p £ iVCfî ®,))'. We can suppose ge7r0 and that a Sfl-subgroup
O of C(fli(e,)) is in <gf. In this case, however, C(P) £ 3f(Q) for all
Pe@p, so 5W = M(£L) which is absurd. Hence, @p < 8, so that 5̂ is
a normal abelian subgroup of @.

Suppose © contains a non abelian jSg-subgroup @ff for some prime
g. Then N(Qx(Z(1£q))) £ 2tt, which implies that ^C2Ji', since JV(©,)
dominates each Sylow subgroup of ?p.

Thus, in showing that $p n 9JI' = 1 or ?pf we can suppose that
every Sylow subgroup of © is abelian. By Lemma 26.18 and the defi-
nition of ft, this implies that a S^-subgroup g of G? is a Z-group.
This in turn implies that g n SSI' is a S-subgroup of SSI. Let g0 be
a complement for g n SW in g. Then g0 is cyclic. If g0 = 1, then
@ is abelian and we are done. We can suppose g0 =£ 1.

Suppose go is not of prime order. Let 2 = [g0,5ptf(2R)]. By
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Lemma 26.3, and Lemma 26.16 Z is nilpotent. If [g0, $P] ̂  1, then
[So, ©p] =£ 1, for some Sp-subgroup @p of ty. Hence, JV([g0, ©*]) domi-
nates every Sylow subgroup of p̂. Since [g0, H(SDl)] can be assumed
non cyclic, ty g 2JI', and we are done. If [g0, $ ] = 1, then *P n 5Kf =
1, and we are done.

We can now suppose that g0 is of prime order r. We can now
write *P = *po x ?&, where Sft = «p n C(g0) and % = [*P, g0], and we
suppose by way of contradiction that *p< =£ 1, i = 0, 1.

Choose p so that 6?p n P̂o =£ 1, where G?p is the Sp-subgroup of $p.
If *p0 n @P centralizes JBT(9Ji) n C(g0), then JV(̂ po) £ SW, by Lemma

26.13, since JZ(2R) n C(g0) * 1- Since % fl @P < JV(©P), p̂o n @p S SDV,
contrary to construction. Hence we can assume that ($P0 D @P)§*
is a Frobenius group, where £>* = £T(9Jl) fl C(%0)> Let SJii be a maxi-
mal subgroup of © containing JV(S0). Since p̂o n ©P < JV(@P), it
follows that %ne p saJ i ; , since JV(g0) dominates @p. Since ^ is
not conjugate to 2tt, it follows that ^(^(a)!!)) n ^(HiTl)) = 0 , so that
§* n i5r(2«1) = 1. Since [£*, % n ©P] ̂ = 1, both % n ©, and [&*, % n ®p}
are in Wlt so commute elementwise. Thus [§>*, % fl ©P] = 1, contrary
to the above argument. The lemma is proved.

LEMMA 26.21. Let 9Ji e ^ and suppose 7r(2Ji/2Jl') contains a
prime p such that a Sp-subgroup of 9Ji is non cyclic. Then %R is
of type I.

Proof.
Case 1. A Sp-subgroup of © is abelian.
Case 2. A Sp-subgroup of ® is non abelian.
In Case 1, let fc be the subset of those q in 7r(2Jl/H(2Ji)) such that

a Sg-subgroup of 2ft is an abelian non cyclic Sg-subgroup of (3. Then
pen, and if @ is a complement for J7(9Jl) in 9K, then a Sfc-subgroup P̂ of
£ is an abelian direct factor of @ by Lemma 26.20. Let © = P̂ x g.
[f g were not a Z-group, then some Sylow subgroup gr of g would
be non abelian, by Lemma 26.18 and the definition of ft. But then
N(j$r) S 3K, by Lemma 26.14. Since JV(gr) dominates every Sylow sub-
group of $p, we would find ^P£9K', which is not the case. Hence,
5 is a Z-group.

Let go be a complement for g' in g, and let gr be the Sr-
3ubgroup of g0. Let $* = JJ(3Ji) n C(Oi(gr)). Since §* is a Z-group,
and since iV(i?i(gr)) dominates every Sylow subgroup of $pf ̂ P central-
izes §*. By Lemma 26.13, $* = 1. Hence go^aft) is a Frobenius

Let g8 be the S.-subgroup of g', and let £* = J5T(9Ji) n
[f §* is a Z-group, then §* = 1 as in the preceding paragraph. If
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§* is not a Z-group, then since iV(fi1(ga)) dominates every Sylow
subgroup of $pf we find ^?£2ft', which is not the case. Hence,
gl/(2ft) is a Frobenius group.

If g is non abelian, then m(Z(fQr)) ̂  3 for every Sr-subgroup £>r

of £T(2ft), so that ff(2ft) is a T.I. set in ©. By Lemma 26.13, 2ft is
of Frobenius type, so 2ft is of type I. If g is abelian, Gr is abelian,
so 2ft is of type I by Lemma 26.19.

In Case 2, let @ be a complement for Z/(2ft) in 2ft, let G?pbe a Sp-sub-
group of G, and let g be a S^-subgroup of Gf. Let g0 be a complement
for g n 2ft' in g. Then g0 is a S-subgroup of 2ft, and g0 = 1 is a possi-
bility. We can suppose g0 is permutable with @p, so that g0 normalizes
@p, since by Lemma 26.18, g is a Z-group, and g0 fl 2ft' = 1.

Let ©p = 21 x S3, where 21 centralizes #(2ft), 33JJ(2ft) is a Frobenius
group, go normalizes both 21 and 33, and Q1(?b)i5kZ(<$) for some Sp-
subgroup ty of ©. By hypothesis, [g0, Gfp] c @p.

Suppose go =£ 1. Let g* = g0 n C(S3), and suppose that 1 c g* c
g0. Let go* be a fixed subgroup of g* of prime order. Then £>* =
jj(2ft) n C(g0*) = #(2ft) n C(3o) is a Z-group normalized by g0S3. Since
g0S3 is non abelian, §>* = 1. Hence g*S3fT(2ft) is a Frobenius group.
Since g0 is prime on jy(2ft), g0Z/(2ft) is a Frobenius group. In par-
ticular, every subgroup of g0 of prime order centralizes S3.

Let gi = g fl 2ft', and suppose that g2 =£ 1, so that our running
assumptions are: g0 4=- 1, 1 c g* c g0, gx =£ 1. Suppose faHiW) is not
a Frobenius group, and let g* be a subgroup of prime order such
that §* = £f(2ft) n C(g*) * 1. It follows that JV(g*)g2ft. But gr
centralizes fli(@P), so G?p is not a Sp-subgroup of JV(gf). Hence
S3g£f(2ft) is a Frobenius group, in case 1 c g* c g0. Hence, 2ft is of
Frobenius type in this case. If S3g is non abelian, then ra(Z(£>r)) ̂  3
for every Sr-subgroup £>r of flX2ft), r e 7r(jy(2ft)), so iy(2ft) is a T.I. set
in © and 2ft is of type I. If S3g is abelian, and J5T(2ft) is not a T.I
set in ©, and n(H(W))^nt, then m(£f(2ft)) = 2 and jy(2ft) is abelian.
2ft is of type I in this case.

Suppose now that g0 = g* =£ 1. In this case 2Ig <\ @. Since
33Z/(2ft) is a Frobenius group and 21 centralizes JET(2ft), it follows
readily that g£f(2ft) is a Frobenius group, and that 2ft is of type I.

Next suppose g* = 1, g0 ^ 1. Since g0 is prime on ZT(2ft), g0 is
of prime order. Since g0 does not centralize S3, g0 does centralize
21. Let $* = J?(2ft) n C(g0), so that §* ^ 1. Since 21 centralizes
l/(9ft), 2t centralizes £>*. Since S3g0 is non abelian and S32/(2ft) is a
Frobenius group, it follows that JJ(2ft) is a T.I. set in © and that
§* is cyclic.

Let 2ftx be a maximal subgroup of © containing iV(g0). Then 2ftA
is not conjugate to 2ft. Let Ĝ  be a complement to J3r(2ft1) which con-
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tains §*. If SlgflXSUy, then since C(2l)g2K, &* centralizes a non
cyclic p-group, which is not the case. Hence, 21 §£ H(Wl), and we can
suppose that 2lS@i.

Since JV(2)) g 2ft for every non empty subset 25 of (21£>*)f, it follows
that 2t§* is prime on flW. Let &0* = H(W) n SRi, so that § S &0*, and
§0* is prime on HQDld. Since iV(go)E2fti, it follows that &0* = ft*.

If SI is not a Sp-subgroup of 2»lf then fl^SB)* S Wl, for some M
in 2R. But then 01(a3)jrZT(SI»1) is a Frobenius group, as is ^(SB)^*,
so that §* centralizes J?(5Uli), which is absurd. Hence 51 is a Sp-
subgroup of 3D?!.

If go£fli(9Wi). then either I S o l ^ i or a S|gol-subgroup of W^ is
abelian. But in the first case, £>* dominates g0, contrary to
g0 n 3Ji' = 1, while in the second case £>*2I normalizes some S|gor
subgroup 58 of 2)?! with g 0 ^®, and [$, £>*2I]£*2I is a Frobenius group.
As £>*§! is prime on J7(3Ri) and | §*2I | is not a prime, it follows that
[$*», ®] centralizes ^(30^). If 58 is a S^-subgroup of ©, then &*2l
dominates ^, so go£=2ft', which is not the case. Otherwise, a <S|g ,-
subgroup of © is non abelian, and J2i([®, £>*2I]) is contained in the
center of some S|go,-subgroup of ®. But JV([£*2l, S]) E 3Jii, and a
S^-subgroup of SKx is abelian. Hence, So^ZTiOIfti).

We next show that £>*2l is a complement to 2/(2)^) in QJIL

Namely, turning back to the definition of g0, we have g = So(S fl 3Ji')«
But S3 S SK'f and 31 centralizes 1T(5K). Hence, g = g0 or g is a
Frobenius group with Frobenius kernel g fl 3K'. Now, since g0 S
jy^aJl,), it follows that ^ fl 5K £ ft*«JHr(3»i). This implies that §*SI
has a normal complement in ©lB If )̂*Sl ^ @i, then ^ is a Frobenius
group with Frobenius kernel ©I and ^ = Gf(£>*21. This is absurd
since §*2l is prime on #(3Jii), and | £>*2l | is not a prime. Thus £>*2l
is a complement to HiWli) in 50̂ . Now, however, Hi^) is nilpotent.
Since g0 has no fixed points on (ffi fl 5K')*» it follows that 2Ji n 9Wi =

Since $*2I centralizes gOf it follows that g o £ # ( W . We next
show that HQDIJ is a T.I. set in ©. Namely, | g01 divides p - 1,
since [S3, g0] = S3. Hence p > \ g01; since | g01 is a prime, | g01 £ ô — n*t
so J7(9R!) is a T.I. set in ©.

We now turn to iV(@P). Let 2J£2 be a maximal subgroup of ©
which contains JV(£?i(SB)). Then 2ft2 is not conjugate to either 3Ji or
3Jllf since the Sp-subgroups of these three maximal subgroups are
pairwise non isomorphic. Let $ be a Sp-subgroup of ^ containing

and normalized by g0- If P^^2, then g0 does not map onto
since g0 centralizes 21. But then JV(g0) covers
This is not the case since JV(go)£2fti, and 2tg5KI.

Hence, p$7c2, so p€7r0, and $ £

?p
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Since C(g0) fl flifSDW £ SRi, and since

it follows that C(g0) 0 fl^) = St. Hence, JV(g0) n 2R2 normalizes
« . But JV(go) n iV(2t) = So2t^*. (This turns the tide.) Suppose
N(%o) n 3Ji2 => SISo. Then 2fl2 contains a non identity subgroup £**
of ft*. But jET(3Ji2) contains 33, and we find that [&**, 53] = &** S

which is not the case. Hence JV(gf0) n 2ft2 = Stg0.
By Lemma 26.17, 2K2 has p-length one. Let 5S2 = OP,(2Ji2), so that
?2 = $ < 2R2 = 2Ji2/®2. Then 3Ji2/^S2 is a Frobenius group whose

Frobenius kernel is of index |go | , or else 3K2 = 5pft,g0.
 I n any case»

by Lemma 8.16, 2KJ centralizes tp/fp'. But now 2tg2R2
f, which is a

contradiction to ff(3Ji2) E W2.
We have now exhausted all possibilities under the assumption

that g0 ± 1.
Suppose %0 = 1. In this case, g £ 3K', g is cyclic and g is nor-

malized by @p. Since aBJ5T(97i) is a Frobenius group, J?i(93) centralizes
g, so fii(@P) centralizes g. This implies that g£T(3Jt) is a Frobenius
group, or U = 1. In both cases, SDl is of Frobenius type. If f$ =£ 1,
then 33g is non abelian, so ra(Z(§r)) ^ 3 for every Sr-subgroup £ r of
JZ(5m)frew(F(SK))f and H(a») is a T.I. set in®. If % = 1, then
© = @p is abelian, and the lemma follows from Lemma 26.19.

LEMMA-26.22. Let %T be the set of Z-subgroups 3 of © with
the following properties:

( i ) If p, q are primes, every subgroup of $ of order pq is
cyclic.

(ii) 3 = 3i x 3,, | & I = s* =£ M = 1, 2 and /or aws/ non empty
o o/ 3 - 3i - 32, JV(3o) S 3-
T is empty or consists of a unique conjugate class of

subgroups.

Proof. If 3 e ^ , and 3 = Si x 32 satisfies (i) and (ii), then
3 = 3 — 3i — 3a contains (zx — l)(z2 — 1) elements. Since 3 is a
Z-group, (zu z2) = 1. 3 is clearly a normal subset of 3 , so N(S) =
3 . Suppose Ge® and ZeSnS0- Then there is a power of Z, say
Zx = Zk such that Zx e 3 fl 3° and such that Zx has order PiP2 where
Pi is a prime divisor of | 3* I = z». Then <3i> < <3, 3 ^ and so 3 =
3e» G e 3- Thus, the number of elements of © which are conjugate
to an element of 3 is

(26.7) i|L(2l
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Suppose 3* is another subgroup of % and 8* = 3? x &Z satisfies
<i) and (ii). Set 3* = 3* - 3* - 3*. We can assume that 3* n 3 ^
0 , by (26.7), and it follows that 3* = 3 . The proof is complete.

LEMMA 26.23. Let 2ft e ^ , and suppose W is a S-subgroup of
2ft, 12ft: 2ft' | is not a prime, and 2ft/2ft' is c^/c^c. TTwm 501 is of
type I or V, or 3ft has the following properties:

( i ) /7(2ft) is a nilpotent T.I. set in @.
(ii) If ^ is a complement for H(SDl) in 2ft then

(a) Gf is a non abelian Z-group and every subgroup of Gf
of order pq is cyclic, pf q primes.

(b) @ is prime on #(2ft), and ©x = JJ(2ft) n C(@) is a non
identity cyclic group.

(iii) (£©! = 3 satisfies the hypotheses of Lemma 26.22.
Proof. If 2ft' = £T(2ft), the lemma follows from Lemma 26.19.

We can therefore suppose that Z/(2ft) c 2ft'. Let Gf be a complement
for H(%Jl) in 2ft, let % be a complement to @0 = ® PI 2ft' in @. Then
g is a cyclic S-subgroup of 3K, and | g | is not a prime.

If 2Ji is a Frobenius group, then m(Z(£>r)) ^ 3 for every non
identity Sr-subgroup § r of H^m), so jy(3K) is a T.I. set in ©, and
we are done. We can suppose that 9JI is not a Frobenius group.

Suppose gZ/(2Ji) is a Frobenius group with Frobenius kernel Hi^Dl).
With this hypothesis, we will show that 3Ji is of type I.

Let ep be a cyclic Sp-subgroup of @0. Suppose §* = #(21*) n C(#i(®p))
=£1. Then @pg0 normalizes ©*. Consider J V ( W P ) ) S < £ * , @P, §>.
Since | f$ | is not a prime and g£>* is a Frobenius group, it follows
that JV(Oi(eo))S

si». Hence, ©p is a Sp-subgroup of @. Since ©p

does not centralize JJ(2Ji), it follows that every subgroup of g of
prime order centralizes Sp. Since Gcp £ 2)?', | g | is not square free,
.and g contains a S,-subgroup gfl such that [Grp, gg] =̂ 1. Consider
NiQAft,)). U qe7r0, then [§?, ©p] = 1. If gen x or gen 2 and a Sg-
.subgroup of © is non abelian, then g« = ^V(̂ i(S«))'» s° once again
,lS«i ®p] = 1- If ^ G TT2 and a Sff-subgroup of © is abelian, then
iV^^©,,)) contains a S^subgroup of ©, contrary to NiQ^p)) £ 2R.
Hence &* = 1 and ©p£r(2Jl) is a Frobenius group.

Since 2Ji is not a Frobenius group, 1£0 contains a non cyclic Sp-
.subgroup ^p for some prime p. If @p is abelian, and a Sp-subgroup
•of © is non abelian, then G? = @P-@P', and G?p, is a Z-group. In this
case, @p/jy(2Jl) is a Frobenius group, and so 2Ji is of type I. If G?p

is abelian, and a Sp-subgroup of © is abelian, then Gcp is a Sp-subgroup
of ©. In this case, every subgroup of g of prime order centralizes
<£„/(£„ n C(2/(2Ji)), so centralizes @J for some non identity subgroup
of G?p. Since pen2 and a Sp-subgroup of © is abelian, it follows
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that if gg is a S9-subgroup of g which does not centralize ©J, then
q e 7r2, a S,-subgroup of © is abelian, and ©p is normalized by a S,-
subgroup Q of © with g , c jQ. Since 0(0^,))c2ft, C(©p) O D S g , .
Since & is of type (qa, qb), ab > 0, there is a direct factor of Q which
normalizes every subgroup of ©p. Hence, g, is this direct factor.
Hence, q divides p — 1, so we have ©p = ©pl x ©p2, where ©pi is
normalized by Q. It follows that ©p,jy(2ft) is a Frobenius group for
i = 1, 2.

Suppose every Sylow subgroup of © is abelian. Let ft be the
subset of p in 7r(@) such that a Sp-subgroup of © is non cyclic, and
let $ be a Sfc-subgroup of ©. By Lemma 26.18 and the preceding
paragraph, $ is a normal abelian subgroup of @. Hence, 2ft is of
Frobenius type. Since © is non abelian, £T(2ft) is a T.I. set in ©, so
2ft is of type I.

Thus, if g£T(2ft) is a Frobenius group and every Sylow subgroup
of © is abelian, then 2ft is of type I.

Suppose g2/(2ft) is a Frobenius group, and @p is a non abelian
Sp-subgroup of ®. Then @p is a Sp-subgroup of © and pen3. Since
every subgroup of g of prime order centralizes @P/©P fl C(iJ(3Ji))r

and since Gfp §£ C(£T(9Ji)), Lemma 26.9 implies that g centralizes
©P/©P fl C(£T(5ni)). This violates the containment @P S 5K'. Hence, if
g£T(2Ji) is a Frobenius group, 3JI is of type I.

Suppose now that gll^aJi) is not a Frobenius group. Let Ĝ  =
C(g) n Jy(2ft). By Lemma 26.15, <£t is a Z-group. By Lemma 26.3,
£T(3Ji) is nilpotent so Ĝ  is cyclic. Since every subgroup of g of
prime order centralizes G?'/®' H C(H(<i0l))9 it follows that @ normalizes
G?!, so centralizes ©x since Aut ©j is abelian. Hence, G?! ii 27(2)?)'.

Since every subgroup of g of prime order centralizes
©7©' n CiHiW)), it follows that @' is abelian. Suppose @' were non
cyclic. Let G?p be a non cyclic Sp-subgroup of @'. By Lemma 26.12,
together with Ĝ  =£ 1, Gcp is a Sp-subgroup of ©.

Let g, be a S,-subgroup of g which does not centralize
©p/@p n C(H(m)), and let ©J = ©p n CC^Cg,)) ^ 1. Then 5ft =
JV^Cg,)) 3 <g, ffi*f ©!>. It follows now from ffx £ HQBl)' S ^(2ft) U {1}
that either g, is not a Sg-subgroup of © or g9 £ 2ft', both of which
are false. Hence, @' is cyclic. This yields that every subgroup of
G? of order pq is cyclic, p, q being primes.

We next show that © is prime on #(2ft). Since C(E)^
C(g) n ff(2ft) = 6 lf for all #e@, it suffices to show that @x =
C(£^)ni3r(2ft) for all EedK Suppose false and ©p is a SP-subgroup
of © such that C{Q^P)) fl i?(2ft) = ©a 3 ©x. Since g©2/@x is a Fro-
benius group, it follows that ©p is a SP-subgroup of © and JV(©P)S
2ft. In this case, let gg be a Sg-subgroup of g which does not
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centralize @p and consider JV(fii(gg)) 2 <©P, g>. If q e TT0, Lemma 26.9
is violated; if qerclt then 8, E JVOWS,))' so [&, (£„] = 1; if ge;rlf 8 .
is not a Sg-subgroup of JV(@P), contrary to JV(@P)£3K. Hence, @ is
prime on H(Wl), and so @x = C(-E) n HQDt) for all # e ©f. Since (£ is
non abelian, J7(3R) is a T.I. set in @.

Let 3 = @@i, and let 3 = (W^ - flf - ©x. By construction, © =*= 1,
d * 1, and AX3) 0 aJl = 3- Since ©, £ £T(2K)' S £(2») U {1}, N(&) £
3K for every non empty subset 30 of ©f. Since (| © |, | (^ |) = 1, this
implies that JV(3) = 3 and JV(3o) £ 3 for every non empty subset 3o
of 3- Thus, 3 satisfies the hypotheses of Lemma 26.22. The proof
is complete.

LEMMA 26.24. Suppose Wle^f and 2W is of type V. Then W
is tamely imbedded in ©.

Proof. We can suppose that W is not a T.I. set in ©. Let
©x = W n C(@), where @ is a complement to W in 2W. Then ©x =£ 1,
and ©! E 2W". Hence, 2ft' is non abelian. Let W = % x @Of where
$P is a non abelian Sp-subgroup of W, and @0 is the Sp,-subgroup of
9Ji' for some prime p (there may be several).

We show that @0 is a T.I. set in @. If @0 = 1, this is the case.
Suppose @0 =*= 1, and S e @0 0 ©?f S ^ 1. Then C(S) 2 <̂ P, ̂ P^. Let
aJii be a maximal subgroup of © containing C(S). By Lemma 26.14,
^ ( ^ ( Z ^ ^ S S R i . Hence aTOSSTOi, so 501 = 3 0 ^ 2 ^ and so P̂ = sp*
and Ge9Ji.

Since W is not a T.I. set in ©, it follows that @0 is cyclic.
Suppose MeW, M =£ 1, and C(Af)g£2Ji. Since every subgroup

of @0 is normal in 2Ji, it follows that ilfe^p. Furthermore,
<M> n T(̂ P) = <1>, so M is of order p, and C^Af) = <Af> x 95 x @0,
where 95 is a non identity cyclic subgroup of 2p, and 35 3 QX(Z($))+
(Notice that since JtfgSW", CK(AT)E2R'.)

Let 9Kx be a maximal subgroup of © containing C(Af). Then a
Sp-subgroup of Sfftx is abelian, by Lemma 26.14, so <M> x 35 is a
SP-subgroup of SWi, by Lemma 26.6. By Lemma 26.12 35 (̂33 )̂ is a
Frobenius group.

Let % be a complement to HiSD^) in SD̂  which contains C^(M).
Since 35^(3)^0 is a Frobenius group, it follows that <M> x ^(35) < 8.
This implies that 8 E STO, so that 8 = 8W n SWi.

We next show that (|SW|f IHQOldl) = 1. This is equivalent ta
showing that (|(S|y |J7(9DIL)|) = 1. Suppose false and q is a prime
divisor of (|® |, |H(SHll)|). Since pen*,q divides p + 1 or p — 1.
Since p divides 1 ^ : HQSIJI, and 35^(3)^) is a Frobenius group,
g€7r0 — 7r*. Thus, if Q is any element of © of order q, then C(Q)
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is contained in a unique maximal subgroup of @. Let Q be an
element of E of order q, and let 2fta = M{C(Q)). Then &&, £ m2. Since
qen0 — n*, alia is conjugate to SD̂  in @. Since @@0 is a Frobenius
group or @0 = 1, ©i is a p-group. We can thus find G in © such
that 9K? = aKj, and we can suppose that <©?, M, 35> is a p-group.
This implies that ©f £ 9M, so that G e 3W. Since <Af, S> is a Sp-
subgroup of aJix, we have C? £ < Af, 33>. Since ^ £ 50i" and G e 501,
@?^50!" n <M, 93>, and so fl^tt?) = ^(89). But now [fl^Bf), C ] = 1,
contrary to Q°e HiWlJ and i21(a3)fir(9Ĵ 1) a Frobenius group. Hence,

By construction, C(M) £ 2Wi. We next show that JVgg({ilf» is a
complement to (̂aTlO in SD̂ . Since 8 = 3Ji n SSRlf it follows that
<M>< 8, since <M, S > < 8 and <M>£COOTO). Thus, 8 = i V ^ M ) ) .

We next show that two elements of W are conjugate in © if
and only if they are conjugate in 9Ji. Let M, Mx e 3Ji'#, and ilf = M?,
G G ®. Since @0 is a T.I. set in ©, we can suppose M, Mx e p̂. If
MeHCaJi), then C(Af)E2Ji, so ^ n SW is non cyclic, and so Ge2K.
We can suppose M$H(W). In this case C^(M) is a Sp-subgroup of
C(M). NowO(tf)3<fli(Zffl),fli(Z(f))), so we can find C G C ( M )

so that 0i(ZOP*))<7£C$CM'). As observed earlier, this implies that
^(ZC^))0 = fl!(Z(?P)). Since Q1(Z(^°))° = Q1(Z(Wia, and 2R =
i V ^ Z ^ ) ) ) , we have GC e2Ji. Then M?0 = M°, so AT and Mx are
conjugate in 2Ji, namely, by GC, since C e C(M).

Let Aflf • • •, Mm be a set of representatives for the conjugate
classes (Elf • • •, Em of elements in 2JI which are in SD̂ '* and satisfy
C(Mi) g 5Ui, 1 ^ i ^ m. As we saw in the preceding paragraph, C(Mi)
is contained in a unique maximal subgroup of ©, for each i, in fact,
iV«M i» is the unique maximal subgroup of © which contains
C«-M«>). Let Sfli = iy«Mi», 1 ^ i ^ m, and suppose notation is
chosen so that Six, • • • f Slw are non conjugate in ©, while 3lj is con-
jugate to some % with l£i^nfiin + l^j^m. Set & = £T(Sl<),
1 ^ i ^ n, so that (| ©, |, | fty |) = 1 if 1 ^ tf j ^ nf % * j .

Let
% = U

Since M^S%9 it follows that JV(3l*) = 31*. Also, 3lt = &(% n 501)
and$ 4 n2R = l . If 3l4 n 2JI £ 2Jl'f then % n 9JI is abelian, and in
fact 9l< n 501 = <Mi> x SBi x @0, where 95̂  is a cyclic subgroup of $p.
Since (33̂  x @0)̂ * is a Frobenius group,

(26.8) % = U

so is a T.I. set in ©.
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Suppose Wi n 2Jig2Ji\ Then 91, n 3JI' < 91* n 9R, and ^ n a K =
<% n 3K')-3> where g n 2Ji' = 1, and g<Aft> is a Frobenius group so
that | g | divides p - 1. Now g normalizes 33< x @0. (33£ can be so
chosen.) If gSB^o is abelian, then gSA&i is a Frobenius group by
Lemma 26.21, (together with g<Af{> a Frobenius group), and % is a
T.I. set in ©. If f$23»@o is non abelian, then since g is prime on
W, and g is prime on £>t, g is prime on 3B4@O&. If IgI is not a
prime, then [g, SS^o] centralizes £>>. Since @0 is cyclic and every
subgroup of @0 is normal in 9K, we have @0 = 1. But JV(33<)£2Ji
since i21(95i)£Z(9M')- Thus, we can suppose | g | is a prime. If g
centralizes 33<, Lemma 26.21 implies that % is of type I. Thus, we
can suppose that gSB* is a Frobenius group. Hence S934@O is a
Frobenius group, as is g<Mi>35i@0. Since 33*^ is a Frobenius group
and 333̂  is also a Frobenius group, & is a nilpotent T.I. set in ©.
Hence g* = C^^g) is a non identity cyclic subgroup and gg* satisfies
the hypotheses of Lemma 26.22 with the obvious factorization gg* =
g x g*. But @@! also satisfies the hypotheses of Lemma 26.22, so
gg* and @@! are isomorphic. In particular, p divides |gg* | , so
divides |g* | . This is absurd, since p divides |SB4| and 3 3 ^ is a
Frobenius group with Frobenius kernel ^ 2 g * . Hence, this case
cannot arise. Hence, ^ is a T.I. set in ©, and in fact (26.8) holds.
Since & is a S-subgroup of 3lif we have 9^ = JV(^).

Since 3l{ and 3lj are not conjugate in ©, 1 ^ i, j ^ n, i ^ j , by
construction, we have (| & |, | $y |) = 1 if i =£ j . The factorization of
C(Mk) is now immediate, 1 ^ k ^ m. We have already shown that
(| STO |f | & |) = 1. Thus, W is tamely imbedded in ©.

Hypothesis 26.1.
( i ) @ e ^ ^ and @' is a S-subgroup of @.
(ii) | © : ®'| = 9 ^s a prime and £}* is a complement to ©'

in @.
(iii) ©' is no* nilpotent.
(iv) §* = C@,(O*).

LEMMA 26.25. Under Hypothesis 26.1, £>* is cyciic and D*§*
satisfies the hypotheses of Lemma 26.22 wi£/& £/&e factorization
O*§* = £1* x §*; JV(D*) is contained in a unique maximal subgroup
J o / © ; @ n 2 = Q*&*; D* g 2'; everi/ element of ^/S is of type I or
is conjugate to © or £.

Proof. Since ©' is not nilpotent, §* =̂  1. Let 2 be any maximal
subgroup of © containing JV(D*).

Let n consist of those p in n(&) such that either pen* or
(^)*) or p $ 7r(J5T(@)), and let 11 be a £l*-invariant Sfc-subgroup of
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@, and let § be a Sfr-subgroup of @\ We will show that U is
nilpotent and that £> < @.

Choose p e n and let 3̂ be a D*-invariant Sp-subgroup of @. If
PGTT* or p<£n(H(&)), then @ has p-length one, by Lemma 26.17.
Hence, &' centralizes Op>iP(©)/OP/(©), so ©' has a normal p-complement.
If p«7r(©*), then by 3.16 (i) or Lemma 13.4, ©' centralizes-
Op',p(@)/OP/(@), so in this case, too, @' has a normal p-complement.
Hence, U is nilpotent and £> 0 @. Since @' is not nilpotent, $ =£ 1.
Furthermore, § * f l U g 11'. By construction, 7r(§)aTC0 - n*, so
iV(|>)S@ for every non empty subset h of £>*. Thus, $ is a T.I.
set in ©. Since &*nUgU' , Lemma 26.14 implies that JV(©)S©
for every non empty subset i> of £>*f. Thus £>*£}* = §* x Q* satis-
fies Hypothesis (ii) in Lemma 26.22.

Let £>** = ©' n &i3£>*. S is not conjugate to @f either because
D* is not a 5,-subgroup of © or because Q* a X'. Thus, §** n H(X) =
1. If §* c §**, then D* g S ' since [Q*, §**] ^ 1. But in that case,
some Sff-subgroup of X normalizes §>**, so Q* is a Sg-subgroup of ©..
But in that case, D* S N(ZX*)' S X'. Hence, £* = ©' n Sf so §*Q* =
@ n ^ . Since JV(|))a@ for every non empty subset h of §**, it
follows that &* has a normal complement in X, say 2 ,̂ and 3^ is a
S-subgroup of X. Suppose D* g X'. Then 2^ n S' is disjoint from
O*f §*(^i n 2') is a Frobenius group, and Xx = (^ n 2')O*. Further-
more, a §*-invariant Sg-subgroup O of ^ has a normal complement
in Xl9 and O is abelian, by Lemmas 26.10 and 26.11. Thus Q* is a
direct factor of JD, and JQ* c£>, since O* gX' and JV(D*)El, If a S?-
subgroup of © is abelian, then N(fe*) dominates D, so JQ* £ @f,
which is not the case. If a S9-subgroup of © is non abelian, then since
Xt fl %>' is nilpotent, D* is contained in the center of some S<,-subgroup
of ©. This is absurd, since JV(Q*) £ X and D is an abelian Sq-subgroup
of X. Hence, Q * g S ' .

Again, let O be a S,-subgroup of S normalized by £>*, and let
S3 be a Sy-subgroup of Zx normalized by £>*. Then either 53 = 1 or
£>*33 is a Frobenius group. In both these case, we conclude that
O < S. If S3 does not centralize Q, then by Lemma 26.16, q e K0 —
7T*, so 2 is the unique maximal subgroup of © containing JV(Q*). If
S3 centralizes D, then D* a Of

 f so if g e 7r0, S is the unique maximal
subgroup of © containing D*. But if q£n0, then jQ* < Xf so of
course X is the unique maximal subgroup of © containing JV(£}*).
Thus, in all cases, X is the unique maximal subgroup of © containing
Q*.

We next see that if plf p2 are primes then every subgroup of
£>* of order pxp2 is cyclic. We next show that $ * n t t g Z ( § * ) ,
Suppose false and £>? = &* n Ur §g Z(§*) where Ur is the S,-subgroup
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of U. If r e ^ U ^ a , then since UrS@', it follows that rG7r2 and Ur

is the non abelian group of order r3 and exponent r, so that | ft* | =
r. Since ft* fl U has a normal complement in ft* and every subgroup
of ft* of order p&2 is cyclic, ft* fi Z(ft*). Thus, we can suppose that
rG7r0. By definition of ft, we also have ren*. Apply Lemma 8.17
and conclude that q divides r — 1. Since ft* is a Z-group, Lemma
13.4 applied to C*Ur acting on the Sr,-subgroup of @' implies that
XtJ. centralizes the Sr/-subgroup of @'; since ft* £ U'r, it follows once again
that ft* S Z(ft*). Hence, ft* = (ft* n U) x (ft* n ft) with cyclic ft* n U.

If ft* nft^F(@), then ft* is cyclic. Suppose ft* is non cyclic.
Since U is nilpotent and since &'/F(®) is nilpotent by Lemma 26.4,
it follows that 7r(ft* n ft) contains a prime s such that a Sg-subgroup
of &'IF(&) n ft is non abelian. Hence, C@(U) contains a non abelian
58-subgroup. By construction, s e n0 — 7r*, SO C@(U) e £fx. This implies
that @' is a T.I. set in ©.

Since ft* is assumed non cyclic, hence non abelian, and since
every subgroup of ft* of order pxp2 is cyclic, it follows that | ft* : ft*' |
is not a prime. By Lemma 26.23 (i), 2^ is a nilpotent T.I. set in ®.
Set g = \®\, \&'\=ml9 |S x | = raa, |ft* | = h, |O* | = q. If Glf G2,
G3 G ©, the sets GT1(&'*GU G^W^, G^&O,* - ft* - D*)G3 have pair-
wise empty intersections. Hence,

9 ^ -2- (wi - 1) + - M m 2 - 1) + JL(fc - l)(g - l) ,

so that

Since mx ^ 3fe, m2 ^ 3g, the last inequality is not possible. Hence,
ft* is cyclic.

Let 8 be a maximal subgroup of © which is not conjugate to
either @ or £. If 8' is not a S-subgroup of 8, then Lemmas 26.10,
26.11 and 26.21 imply that 8 is of type I. If 8' is a S-subgroup of
8 but 8/8' is non cyclic, Lemma 26.21 implies that 8 is of type I.
If 8' is a S-subgroup of 8, 8/8' is cyclic, and 18:8' | is not a prime,
then by Lemma 26.23, 8 is of type I or 8 contains a subgroup 3 =
& x 32 which satisfies the hypotheses of Lemma 26.22. But D*ft*
also satisfies the hypotheses of Lemma 26.22, so 3 is conjugate to
£l*ft*. Since ,81^^(8) can be assumed, either fl&l, |JD* |) ^ 1, or
(13i I I ft* I) =£ 1. The first case yields 8 = £*, G e ©, the second case
yields 8 = &Gl, G±e® and we are done in this case. Lemmas 26.22
and 26.23 complete the proof.
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LEMMA 26.26. Under Hypothesis 26.1 X is either of type V, or
(i) | £>* | = p is a prime.
(ii) X satisfies

(a) | X : V | = p, and X' is a S-subgroup of I .
(b) X' is not nilpotent.

Proof. By Lemma 26.25, £1* £ 2' and §* is cyclic. As
§ * D U £ U ' and 7r(§)£7r0 - n*, it follows that JV(§)£@ for every
non empty subset £ of £>*f. Since @ n S = £>*£>*, this implies that
£>* has 2/ as a complement. If | £>* | is not a prime, X' is nilpotent,
by Lemma 26.3. This implies directly that X is of type V, condition
(ii) in the definition of type V following easily, since X' is non abelian.

We can suppose that 2: is not of type V. Hence, (i) is satisfied.
Since 2/ is not nilpotent, (ii) (a) and (ii) (b) also hold.

Lemma 26.26 is important, since if % is not of type V, then %
satisfies Hypothesis 26.1, as does @.

LEMMA 26.27. Under Hypothesis 26.1, one of the following holds:
(i) JV(U)§£@; (ii) ©' is a tamely imbedded subset of @, and U is a
S-subgroup of ©.

Proof. Suppose NQX) £ @. If & is a T.I. set in © we are done.
Hence, we can suppose that @' is not a T.I. set in ©.

Since S' is not a T.I. set in © and since § is a T.I. set in
© (7r(&)£7r0 - 7T*, so Lemma 26.5 (ii) applies), U =£ 1. We first treat
the case in which U is non abelian. Let U = 9t x 9t0, where 91 is a
non abelian Sr-subgroup of 9t, and 9t0 is the Sr,-subgroup of 11. We
show that © is the unique maximal subgroup of © containing 9t.

Suppose 9 t S S , 8 e ^ . By Lemma 26.1, N(Ol(Z(fH)))S2n&.
In particular, iV(SR) £ 8 n @, so 5R is a Sr-subgroup of ®. If S - ©*,
G e ©, then by Sylow's theorem, 3t is conjugate to G9W?'1 in @f 91 =
S-'GSRG^S, so that S^G G N(W) fi @, and G G S . Hence, we can
suppose 2 is not conjugate to @. Clearly, S is not conjugate to X9

since g 11X : Z' |. Hence, 8 is of type I. But then 9t £ £T(8), so that
8 = iV(SR) £ @, contrary to assumption. Hence, 91 is contained in @
and no other maximal subgroup of ©. This implies that U is a S-
subgroup of ©.

Choose Se @'f n @w, G e © - @. There are such elements S and
G since ©' is not a T.I. set in ©. If S is not a ^-element, then
Sx = SB G £>* n &f<? for some integer n, contrary to the fact that £ is
a T.I. set in ©. Hence S is a ff-element and we can suppose that
Se U. If S e 3tf then S2 = Sm e 9tJ n S'1* for some m, and C(S2) con-
tains a Sr-subgroup of both @ and @*, which is not the case. Hence,
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S e 91. Since 9t was any non abelian Sylow subgroup of U, it follows
that % is abelian.

Let 2e^f, C(S)S8. A Sr-subgroup of 8 is non cyclic. Let
SR be a Sr-subgroup of 8 containing CJR(S). If rG7r0, then by Lemma
26.7, N(Cm(S)) g @, so SR = Cm(S). If rG7T2, the same equality holds
by Lemma 26.14 and the containment JV(C^(S)) g JV(0i(Z(SR))). Thus,
8 is not conjugate to @. Since SR is non cyclic, 8 is not conjugate
to X. Hence, 8 is of type I, and this implies directly that 8 =
J7(S)(£ n @)f @ n £T(8) = 1. Since a Sr-subgroup of © is non abelian,
Lemmas 26.12 and 26.18 imply that

C2(H)\ - H(2)> = J5T(S)<S>* ,

and it is obvious that //(8)<S>* is a T.I. set in © with 8 as its
normalizer. We have verified all the properties in the definition of
a tamely imbedded subset except the conjugacy condition for @' and
the coprime conditions. By definition of H(2), together with the
fact that & is a S-subgroup of ©, it follows that (| 11(8) |, | @' |) = 1.
If (113(8) |f | Q* |) =£ 1, then 8 is conjugate to Z. This is not the case, as
5R is non cyclic. Thus, if Slf • • •, 8TO is a set of representatives for the
conjugate classes of maximal subgroups of © which contain C(S) for
some Sin @' and are different from @, it follows that (| H(2i) |, | H(2j) |) = 1
for i =£ j . It remains only to verify the conjugacy condition for
elements of @". Let S, Sx be elements of @'; which are conjugate
in ©. We can suppose that S and Sx have order r and are in 9t;
otherwise it is immediate that S and Sx are conjugate in @. Let
S = G~1S1G, then C(S) a <0i(Z(3i))f C1(Z(5R<?))>. Since JV^ZOR))) S
@, it follows that S and Sx are conjugate in @. (It is at this point
that we once again have made use of the fact that the subgroups in
^~(SR) have two conjugate classes of subgroups of order r.) Thus, @'
is a tamely imbedded subset of © in this case.

We now assume that U is abelian. We first show that 11 is a
S-subgroup of ©. Otherwise, U is not a S-subgroup of iV(Ur) for
some non identity Sr-subgroup Ur of U. Let JV(Ur) iS 8 e ^ . Then
8 is not conjugate to @, since 18 |;r =£ | © |«. Suppose 8 is conjugate
to 2 . Since UQ* is a Frobenius group, we have U^8' . Thus 8' is
not nilpotent, since by hypothesis JV(U)^@. Hence, X is not of
type V. By Lemma 26.26, | &* | = p is a prime. Since | D* | = q is
also a prime, it follows that if S3 is a S,'-subgroup of V normalized
by £>*, then §*33 is a Frobenius group, (53 =£ 1, since V is not
nilpotent). If ^(U)^TT(55), then since iV(U)S@, it follows that U is
conjugate to 53. But p divides | JV(53): C(S3) |, and so p = q, which
is not the case. Hence TT(U) g 7r(93). But n(VL) S *r(@) fl ^ ' ) S
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TT(93) U {q}, so q e 7r(ll), which is absurd since ©' is a g'-group. Hence,
8 is not conjugate to either @ or X, so 8 is of type I. Since Q* is
of prime order and O*U is a Frobenius group, USff(8) . Since
JV(U) S @, we have U = JI(8). Hence 8 G JV(U) £ @, which is absurd.
Hence, U is a S-subgroup of ©. This implies directly that JV(Ur) £ @
for all non identity Sylow subgroups Ur of @.

Since U is an abelian S-subgroup of ©, and § is a T.I. set in ©,
the condition iV(U) £ @ implies that two elements of ©' are conjugate
in © if and only if they are conjugate in @.

Suppose S e ©'•, and C(S) g @. Then S is a 7r-element, and we
can suppose S e l l . Let 2e^f, C(S)S£. Since U is an abelian S-
subgroup of © and since U g C ( S ) S 8 , it follows that 8 is not con-
jugate to @ or X. It is now straightforward to verify that @' is
tamely imbedded in ©.

LEMMA 26.28. Under Hypothesis 26.1, eitfeer & or % is of type
II. / / @ is o/ type II,

U y

is a T.I. se^ in ©. Both @ and 2 are o/ type II, III, IV or V.

Proof. First, suppose 2 is of type V, but that @ is not of type
II. Suppose JV(U)S@. By Lemma 26.27, ©' is a tamely imbedded
subset of ®. As U is a S-subgroup of © in this case, we have
(|@'|, |S'|) = 1. By Lemma 26.24, V is a tamely imbedded subset
of ©. We now use the notation of section 9. Suppose Se@'f, TeV*
and some element of 2t5 is conjugate to some element of 2lr. This
implies the existence of 8 e ^ such that 18 : £T(8) | divides (| @' |, | V |)
= 1, which is not the case. Setting 2B = §*Q* - $ * - £ > * , it
follows that no element of 2B is conjugate to an element of %s or
%T. We find, with h = \ §* |, 8 = \®'\, t = \V\, that by Lemma 9.5,

(26.9) g^ <*

which is not the case. Hence iV(U)g@. If Ur were a non abelian
£r-subgroup of ©, then JV(i?i(Z(Ur))) E @, by Lemma 26.14. Since
iV(U) G iV(fi!(Z(Ur))), this is impossible. Hence U is abelian, and
ra(U) ̂  2. Thus, @ is of type II in this case, since the above in-
formation implies directly that § is nilpotent.

Suppose now that X is not of type V. Then from Lemma 26.26
we have X = §*93£l, where Q is a normal Sg-subgroup of X, £>*33 is
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a Frobenius group with Frobenius kernel 93, and 93 is a non identity
g'-group. Since £>* is of prime order q, it follows from 3.16 that
£} contains a subgroup QQ such that QQ < £, JQ/QQ is elementary of
order qp (p = | £>* |), and 93 centralizes Qo.

We next show that 93' centralizes £}. This is an immediate
application of 3.16. If JV(93)g£, then X is of type III or IV accord-
ing as 93 is abelian or non abelian. If neither @ nor I is of type
II, then both ©' and 27 are tamely imbedded subsets of ©, by Lemma
26.27, since both @ and £ satisfy Hypothesis 26.1. Once again,
(26.9) yields a contradiction.

If @ is of type II, then § is a T.I. set in ®. Suppose

X, Ye U C@,(if)

and X = G"1 TG. Choose H, e C%{X)*, H2 e Ct( Y)\ Then C{X) 3
<J3if G-xH2Gy. If C(JST) S @, then G e @, since >̂ is a T.I. set in ©. We
can suppose C(-X")g@, and without loss of generality, we assume
that X has prime order r,XeU. If a Sr-subgroup of U is non
cyclic, then by Lemmas 26.12 and 26.13, C(X)£@. We can suppose
that the Sr-subgroup Xlr of U is cyclic, so that <JST> = QS)lr). Since

, it follows that JV(<X»g@. Choose 2 e ^ with
S. If C(X) n ft* =£ 1, it follows readily that C(X)g@, so

we can suppose C(X) fl §* = 1. In this case, (^(.X^Q* is a Frobenius
group, and this implies that C^(X) £ JJ(8), which is not the case.
The proof is complete.

LEMMA 26.29. / / 8 e ^ T and 8 is of type I,

U

is a tamely imbedded subset of ©.

Proof. We first show that H(2) is tamely imbedded in ©.
If H(2) is a T.I. set in © we are done. If JET(8) is abelian,

the conjugacy property for elements of J7(8) holds. Suppose £T(8) is
abelian, LeH(2), and C(L)g8. Let Vle^f with C(L)£$TC.

Suppose 9£ is of type I. Then 31 n 8 is disjoint from JET(5Ti), since
H(2) S 5ft n 8. Let @ be a complement for #($ft) in 51 which contains
3̂  0 8. Lemmas 26.12 and 26.13 imply that © = 5ft n 8.

If Si, • • •, 8n is a set of representatives for the conjugate classes
of maximal subgroups of © constructed in this fashion, then (| 11(8*) |,
| JJ(8y) |) = 1 for i* j . Also, (| 11(8,) |, | H(2) |) = 1. Suppose (| U(8t.) |,
| C2(L) |) ^ 1 for some L e ^(8)*, and some i. We can suppose that
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L has prime order r. Let s be a prime divisor of (| 2/(S<) |, | C%(L) \)f

so that s e 7r(S) — 7r(2/(8)), Since 8 is of type I, this implies that a
Sr-subgroup @ of 8 is non cyclic so that sen*. Since @ does not
centralize a Sr-subgroup of 8, s < r. But now Lemma 8.16 implies
that the Sr-subgroup of 8 centralizes a S,-subgroup of 2/(8*), which
is not the case. Hence, (| H(2i) |, | C&(L) |) = 1 for every L e H(2)*.

By construction

8,= U C

contains a non identity element. From Lemma 26.13 we have JV(8<) =
8, and 2{ is a T.I. set in ©. Thus, if H(2) is abelian and every 31
with the property that 3le^f and C(L) g Sft for some L e J7(8)f is
of type I, then 2/(8) is tamely imbedded in ©.

Suppose 9i is not of type I. Since 2/(8) S$ft, it is obvious that
31 is not of type V. It is equally obvious that 31 is not of type III
or IV. Hence, 31 is of type II. Since 27(8) is a S-subgroup of ©, it
is a S-subgroup of 31, and it follows that 31 n 8 is a complement to
H(3l). Since | H(3l) | is relatively prime to | H(2) | and to each | J3r(8<) |,
we only need to show that | H(3l) \ is relatively prime to | C${L) |,
L e 2/(8). Let q = 131: 31' |, so that g is a prime and 9i n 8 contains
a S,-subgroup Q* of 5JI. Since 7r(iI(5Jl)) £ 7r0 - 7T*, it follows that if S
is a Stf-subgroup of 8, vr = n(H(3l)) n TT(8), either S = 1, or &H(%) is
a Frobenius group. Thus (| H(3l) |, | Cfi(8) |) = 1 for L e £T(8)f, and J/(S)
is a tamely imbedded subset of ®. Since C(L) S 8 for every element
of

U
2

by Lemmas 26.12 and 26.13, the lemma is proved if 2/(8) is abelian.
We can now suppose that 2/(8) is non abelian, and is not a T.I.

set in ©. Let 91 be a non abelian ©-subgroup of 2/(8), and let
H(2) = 91 x %. Since 2T(8) is not a T.I. set in ® Lemmas 26.14 and
26.13 imply that % is a cyclic T.I. set in ©. It follows directly
from Lemma 26.12 that 2/(8) is a tamely imbedded subset of ©.

It remains to show that 8 is a tamely imbedded subset of ©.
This is an immediate consequence of Lemmas 26.12 and 26.13.

LEMMA 26.30. If ^ is a nilpotent Ssubgroup of ©, then two
elements of § are conjugate in © if and only if they are conjugate
in

Proof. Let S e ^ T , JV(£>)£8. If §£2T(8) and 8 is of type I,
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we are done. If &SzH(2) and 8 is not of type I, we are done. If
fcg£T(8), then & n #(S) = 1. If 8 is of type I, § is abelian, and
we are done. If 8 is not of type I, then 8 is of type III or IV, and
we are done.

We now summarize to show that the proofs of Theorems 14.1
and 14.2 are complete. By Lemma 26.30, the conjugacy property for
nilpotent S-subgroups holds. If every element of ^ is of type I, we
are done by Lemma 26.29. We can therefore suppose that ^0 con-
tains an element not of type I. Choose 8 G ^ ^ , 8 not of type I.
By Lemma 26.21, if p e TT(8/8'), a Sp-subgroup of 8 is cyclic. This
implies that 8' is a S-subgroup of 8. First, suppose 18:8' | is not a
prime. Then by Lemma 26.23, 8 is of type V or satisfies the con-
ditions listed in Lemma 26.23. Suppose that 8 is not of type V, and
@ is a complement to H(2) in 8. Let p be the smallest prime such
that a Sp-subgroup Gf„ of @ is not contained in Z(@) and choose
8 x e ^ , NiQ^p))^8X. By Lemmas 26.12 and 26.13, 8X is not of
type I. Lemma 26.21 implies that 2[ is a S-subgroup of 8X and 8^81
is cyclic. By construction, 81 is not nilpotent, and also by construc-
tion 8i is not conjugate to 8. We will now show that 18j: 8[ | is a
prime. Otherwise, since 8X is not of type I or V, 8X satisfies the
conditions of Lemma 26.23. In this case, both H(%) and H(2j) are
nilpotent T.I. sets in © and 8 n 8X satisfies the hypotheses of Lemma
26.22. L e t / = |8| f/J = |«i|f | 8 : J J ( 8 ) | = e f 18,: #(8,) | = elf g = \&\f

so that

(26.10) g > (« ~ W* ~ 1) g + ^Z±g + ^Lllg ,

which is not the case. Hence 18X: 8j | is a prime, so that 8X satisfies
Hypothesis 26.1. But then Lemma 26.25 implies that 8 is of type
V. Thus, whenever 8 e ^ satisfies the hypotheses of Lemma 26.23,
8 is of type I or V.

Suppose every element of ^ is of type I or V, and there is
an element 8 of type V. Let p e TT(S/8'), and let ©p be a Sp-subgroup
of 8. Choose 2, so that N(<£P)S2ie ^t. Then Sx is not of type I.
Suppose 8i is of type V. By Lemma 26.20, 8' and 8J are tamely
imbedded subsets of ©. Since (|8'|, |SI|) = 1, it follows that 2lz and
2IXl do not contain elements in the same conjugate class of ® ,Le8 ' ,
L±e2[. Setting g = |©| , |S' | =/; \2[\ = /lt | 8 : 8 ' | = e, [ Sx: SI | = elf

then (26.10) holds, by Lemma 9.5, which is not the case.
We can now suppose that ^ contains an element 8 not of type

I or V. Lemmas 26.21, 26.23 and the previous reduction imply that
8' is a S-subgroup of 8, 8' is not nilpotent, and 18:8' | is a prime.
Lemmas 26.25 and 26.28 complete the proof of Theorem 14.1.
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As for Theorem 14.2, Lemmas 26.28 and 26.29, together with
Theorem 14.1, imply all parts of the theorem, since if 2 is of type
II, III, IV, or V, 2 is any tamely imbedded subset of & which
satisfies JV(2) = 2, and 2B = 3&JB2 is a cyclic subgroup of 2 which satisfies
the hypothesis of Lemma 26.22, then adjoining all L'1^ - 2^ - 2B2) L,

L e 8, to S does not alter the set of supporting subgroups for S, as
C( W) g 2 for all We 2B - 25̂  - 2B2. The proofs are complete.



CHAPTER V

27. Statement of the Result Proved in Chapter V

The following result is proved in this chapter.

THEOREM 27.1. Let © be a minimal simple group of odd order.
Then © satisfies the following conditions:

( i ) p and q are odd primes with p > q. © contains elementary
abelian subgroups 3̂ and Q with \ fy \ = pq, | d | = qp. ty and O are
T.I. sets in ©.

(ii) N(ty) = $PUO*, where $pil and UD* are Frobenius groups with
Frobenius kernels $P, U respectively. |Q* | = q, \VL\ = (p9 — l)/(p — 1),
D * S O and {{p* - l)/(p -l),p-l) = l.

(iii) / / p̂* = C?(Q*), then \ *P* \ = p and ^P*D* is a self-normal-
izing cyclic subgroup of ©. Furthermore, COP*) = Sp£i*, C(d*) =
Q P̂*, and P̂* £ iV(Q).

(iv) C(U) is a cyclic group which is a T.I. se£ in ©. Further-
more, D* C iV(U) = JV(C(U)), i\T(U)/C(U) is a cyclic group of order
pq and N(Vi) is a Frobenius group with Frobenius kernel C(U).

In this chapter we take the results stated in Section 14 as our
starting point. The notation introduced in that section is also used.
There is no reference to any result in Chapter IV which is not con-
tained in Section 14. The theory of group characters plays an es-
sential role in the proof of Theorem 27.1. In particular we use the
material contained in Chapter III.

Sections 28-31 consist of technical results concerning the characters
of various subgroups of ©. In Section 32 the troublesome groups of
type V are eliminated. In Section 33 it is shown that groups of
type I are Frobenius groups. By making use of the main theorem
of [10] it is then easy to show that the first possibility in Theorem
14.1 cannot occur. The rest of the chapter consists of a detailed
study of the groups © and £ until in Section 36 we are able to supply
a proof of Theorem 27.1.

28. Characters of Subgroups of Type I

Hypothesis 28.1.
( i ) H is of Frobenius type with Frobenius kernel £> and comple-

ment G?.
(ii) © = 5133, where 21 is abelian, S3 is cyclic, and (| a |f | SB |) = 1,

943
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(iii) Gr0 is a subgroup of Gf with the same exponent as Gf such
that Gfoft is a Frobenius group with Frobenius kernel £>.

LEMMA 28.1. Under Hypothesis 28.1, I has an irreducible charac-
ter of degree | Gf01 which does not have fg in its kernel.

Proof. If 21 is cyclic, then X is a Frobenius group and the lemma
is immediate. We may assume that 21 is non cyclic.

Let &//)(§) be a chief factor of 21© with & S £. Let 2IX =
C%(&1ID(§)). Then 21/21! is cyclic. Since £ is of Frobenius type, the
exponent of 21/2^ is the exponent of 21. Hence, | C : St | = | G?o |. Let
% be the normal closure of % in Gf. Then % is abelian. Let fJt be
a non principal linear character of &JD($). Then $(fi) = ftSlf so
Lemma 4.5 completes the proof.

LEMMA 28.2. Suppose 2 is of type I, and 2 = X satisfies Hypo-
thesis 28.1. Suppose further that Z(&) contains an element E such
that C§(E) §£ ft* and C§(E) =£ ft. Then the set £f of irreducible
characters of 2 which do not have ft in their kernel is coherent.

Proof. By Lemmas 28.1 and 4.5, it follows that Hypothesis 11.1
and (11.4) are satisfied if we take ft0 = 1. St = 29 d = | Gr01 and let
Sf play the role of £f.

Since E is in the center of @, it follows that §'C§(E) < 2. Thus,
by assumption, &/.£>' is not a chief factor of 2. Therefore,

(28.1) § : § ' | > 4 | < £ o l ' - H .

Let £*(§') = {\818 = 1, • • •, n<; i = 1, • • •, k}, where the notation
is chosen so that XiB(l) — XJt(l) if and only if i = j , and where
M l ) < • • • < Xfcl(l). By (28.1) we get that (11.5) holds with & = ©'
and by Theorem 11.1 the lemma will follow as soon as it is shown
that c9*W) is coherent.

Set 4 = X»i(l)/d for 1 ^ i g k. Then each ^ is an integer and
1 = ^ < . . . < /hm By Theorem 10.1, the coherence of ^ ( £ ' ) will
follow once inequality (10.2) is established. Suppose (10.2) does not
hold. Then for some m with 1 < m g k,

(28.2) s V t t i ^ 2/m .

Every character in &(&) is a constituent of a character induced
by a linear character of §. Therefore,

(28.3) 4 g | G ? : G f o | .

Let § = §/§' and let & = C5(#), §2 = [f>, # ] . Thus, ft = & x &
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and £< =£ 1, i = 1, 2. If £>* is the inverse image of §* in £>, then
is of Frobenius type and satisfies Hypothesis 28.1. Two applications
of Lemma 28.1 imply that nx ^ 41 @ : @01. Hence, (28.2) does not hold
for any ra, 1 < ra ^ k. The proof is complete.

29. Characters of Subgroups of Type III and IV

The following notation will be used.
@ = @'D* is a subgroup of type II, III, or IV. £}* plays the

role of 2Si in the definition of subgroups of type II, III, and IV
given in Section 14. £>, U, and 2S2 have the same meaning as in these
definitions. Z = 2/aB2 is a subgroup of type II, III, IV, or V whose
existence follows from Theorem 14.1 (ii) (b), (e).

Let 7T(£>) = {plf • • -, pt} and for 1 ^ i ^ t, let % be the SP<-sub-
group of £>. Define

<£. = u n

Let | § I = K IUI = u, | JQ* | = q, \ (£, | = cif 1 ^ t ^ t, and | (£ | = c.
By definition, g is a prime.

S^ is the set of characters of © which are induced by nonprincipal
irreducible characters of ©'/©•

^ is the set of characters of @ which are induced by irreducible
•characters of @' that do not have 4) in their kernel.

The purpose of this section is to prove the following result.

THEOREM 29.1.

(i) If & is of type III then S^ U S^ is coherent except possibly
if I © I = Pq for some prime p and (£ = 1.

(ii) / / @ is of type IV, then S^ \J S% is coherent except possibly
= Vq for some prime p, £ = U' arid ^ is not coherent.

Hypothesis 29.1.
& is a subgroup of type III or IV.

Throughout this section, Hypothesis 29.1 will be assumed. Thus,
by Theorem 14.1 (ii) (d), % is of type II. Consequently, 2B2 has prime
order p. Let p = plf ?p = 5Rf and 2B2 = <$*. Thus, by 3.16 (i),
U g C(^) for 2 ^ t ^ *. Since II £ C(fc)f this yields that U £ C(*P).
As 11 does not act trivially on sp/D(SP), Lemma 4.6 (i) implies that

For any subgroup & of §E, let ^(?>i) denote the set of characters
in S^ U Sf which have the same degree and the same weight as some
character in 6^ U £f that has & in it kernel.



946 SOLVABILITY OF GROUPS OF ODD ORDER

LEMMA 29.1. Hypothesis 11.1 is satisfied if £f in that hypothesis
is replaced by <S/% U ̂ , & is replaced by §>£, £0 is taken as <1>, 8
is replaced by @, 8 am? SB are replaced by @'f araJ d = 1.

Proo/. By Theorem 14.2, Condition (i) is satisfied. Condition (ii)
follows from the fact that © is a three step group. Condition (iii)
is immediate and Condition (vi) is simply definition (consistent with
the present definition). Since UD* is a Frobenius group, S% contains
an irreducible character of degree q. Hence, Condition (iv) is satisfied.
The group @ satisfies Hypothesis 13.2. Hence, by Theorem 14.2,
Hypothesis 13.3 is satisfied with 8 = @, X = ©, and 8 = St = ©', and
with ^ replaced by £4\J£S. By Lemmas 13.7, 13.9, and 13.10,
Condition (v) of Hypothesis 11.1 is satisfied. The proof is complete.

LEMMA 29.2. / / ^((§E)') is coherent, then S^\J Sf is coherent.

Proof. As 11 g COP), U does not act trivially on 5P/Z>($P). Since
UQ* is a Frobenius group, 3.16 (iii) yields that | %: D($) | ̂  p9. As
either p ^ 3 and ^ 5 or p ^ 5 and g ^ 3, (5.9) yields that

$G : (ftC)' | ^ | * : DOP) I ̂  Pg > 4g2 + 1 = 41 © : & \J + 1 .

Hence, (11.5) is satisfied with & = (£<£).' By Lemma 29.1, Theorem
11.1 may be applied. This implies the required result.

LEMMA 29.3. / / ,$"((©<£)') is not coherent, then @" = $(£.

Proo/. Let 6 = ISC:©"!. We have $* £ ©", as P̂* S ©' and Q*
centralizes sp*. Hence, @/@" is a Frobenius group. Let dx < • • • < dk

be all the degrees of characters in £>*(($&)') and let /m = djq for
1 g m ^ fc. Then for each m, /m is an integer and /x = l. Every
character of @/@" is a constituent of a character induced by a linear
character of § £ . Thus, sm g u/c for 1 g m ^ i . There are at least

irreducible characters of degree q in ^((£>(£)'). Thus, if <Ŝ ((&(£)') is-
not coherent, inequality (10.2) must be violated for some m. In par-
ticular, this implies that

<2/L < 2 —
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Therefore, b - (c/u) ^ 2g, so 6 < 2q + 1, since c < u. As &(£/@" is a
normal subgroup of the Frobenius group @/@", we have 6 = 1 (mod q).
Since 6 and q are both odd, this implies that b = 1 as required.

LEMMA 29.4. / / ^((§£) ' ) is not coherent, then & = $p, sp' =

Proo/. By Lemma 29.3, @" = fcC. If 2 ^ t ^ t, then tt£> C
so that ft 11 ©': @" |. Hence, t = 1 and £ = $ . ff = IT fol-

lows directly from the fact that $C = @" £ $U\ If | ? : !>($) | > p*,
then since Csp(£l*) = p̂* is cyclic, Lemma 4.6 (i) implies that some
non identity element of ^P/#($P) is in the center of spu/JJ(5P). Thus,
p divides | VL&: @" | which is not the case. Since U does not act
trivially on ?$//>($), 3.16 (iii) now implies that | sp: U(«p) | = p\ Since
P̂* has prime order and lies outside Z>(̂ P), we get that Z)($P)U£}* ia

a Frobenius group. Hence, by 3.16 (i), Z)($P)U is nilpotent. Conse-
quently, Z7(?P)/SP' is in the center of $PU/$P\ As the fixed points of
U on Sp/̂ P' are a direct factor of sp/sp*, and since U has no fixed points
on P̂/Z)(̂ P), we have 5p' = D(SP). The lemma is proved.

LEMMA 29.5. / / ^((§E)') is wo£ coherent then $P is aw elementary
abelian p-group of order pq.

Proof. In view of Lemma 29.4 it suffices to show that 5̂' = 1.
By 3.16 (i), U S OT). Thus, if $P' =£ 1, there exists a subgroup P̂&.
of $' such that 5̂0 < SpU and | W : $01 = ft If U acts irreducibly on
P̂/̂ P', then SP'/SR, = Z(̂ P/̂ P0). Hence, /̂̂ Po is an extra special p-group

and | $P: ̂ P' | = p2b for some integer 6 contrary to Lemma 29.4.
Suppose that U acts reducibly on sp/sp*. Since the irreducible

constituents of this representation are conjugate under the action of
iQ*f all constituents have the same dimension. As |$P: $P'| = pq and
q is a prime, this yields that they must all be one dimensional. There-
fore, there exist elements Pu • • •, Pg in P̂ such that

and

U-'PW'U = P;i{U)W , UeU , 1 ^ i ^ (7,

where «lf • • - ,$ , are linear characters of U (modp) with si+1(Z7) =
«i(Q"*E/Q*) for UeVi and a suitably chosen generator Q of Q*. Since
| O*U | is odd, SiS3 =£ 1 for any i, j with l ^ i , j ^ q. Hence, if i, i
are given, there exists UeVL such that Si(U)Sj(U) =̂ 1. For 1 ^ k ^q-
let P& be an element of $P' such that
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Since SF/Sft S Z($/$o), we get that

[pit PA = u-\p
= [Pit PA'

Since s^U^U) * 1, this yields that [Pit Pj]e^0 for 1 ^ i, j ^q.
Since sp = <Plf -.., P9>, we get that ^' ^ 5̂0 contrary to construction.
Thus, Ŝ' = 1 as required.

LEMMA 29.6. / / ,5^((§(£)') is not coherent and (£ ^ 1,
coherent.

Proof. Suppose that (£ =£ 1. Assume that ^ 0 is coherent.
Let Si= S^. Let ^t, • • •, 6^k be the equivalence classes of
£S(($&y) — S^ chosen so that every character in £fm has degree /mq
for 2 ^ m ^ fc, and 4 ^ • • • ^ 4 . Suppose U*=i^t is not coherent.
By Hypothesis 11.1, and Lemma 29.1, all parts of Hypothesis 10.1
are satisfied except possibly inequality (10.2). Since ^((£>£)') is not
coherent, inequality (10.2) must be violated for some m.

Every character in U*=i «5t is a constituent of a character induced
by a linear character of £>£. Thus /m ^ (u/c) for 1 < m ^ k. Hence,
violation of inequality (10.2) yields that

^ 4 £
q c

Since c = 1 (mod 2q) and c =£ 1, this implies that

u - l <; 2 9 ^ = <&±V- u - i i ^ « - i i < u - 1.
c c c c

Hence U*=i^t is coherent. Since ^((§£) ' ) = U?=i^ , the proof is
complete.

The proof of Theorem 29.1 is now immediate. Lemmas 29.2, 29.4
and 29.5 imply statement (i). Lemmas 29.2, 29.4, 29.5, and 29.6
imply statement (ii).

30. Characters of Subgroups of Type II, III and IV

The notation introduced at the beginning of Section 29 is used
in this section. The main purpose of this section is to prove the
following result.
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THEOREM 30.1. Let @ be a subgroup of type II, III or IV.
Then £f is coherent except possibly if @ is of type II, £> is a non
abelian 3-group, £>U/@ is a Frobenius group with Frobenius kernel

u < Sql\ | &: §' | = 3' and X is a subgroup of type V.

All lemmas in this section will be proved under the following as-
sumption.

Hypothesis 30.1.
( i ) & is a subgroup of type II, III, or IV.
(ii) S^ is not coherent except possibly if @ is of type II.
(iii) U/U' has exponent a.

For any subgroup & of @' let <Ŝ (£>i) be the set of characters in
£f which have §x in their kernel. Notice that this notation differs
from that used in Section 29.

LEMMA 30.1. The degree of every character in £f is divisible
by aq.

Proof. Every character in £f is a constituent of a character of
@ induced by a nonprincipal character of £>. For any character 0 of
# let 0 be the character of £>U induced by 0. Set Ux = 3(0) n U.
Let | U: Ux | = 6. If @ is of type II or III, then by Lemma 4.5 it
suffices to show that if 0 ^ 1$, then a \ b.

Let St be the kernel of 0 and let He $ - ft such that flft e Z(©/ft).
Then ft < $1^ and U^HRU = H® for tfe 1 .̂ As (uf *) = 1, if ĈG VLlf

then 17 centralizes some element in fZft. Hence, Hi S @. Let Uo =
{Ub\Ue 11}. Then Uo char IX and Uo S Hi S ©.

Suppose Uo =̂ 1. If @ is of type II, then @ is a T.I. set in ®
by Theorem 14.2. Hence, N(U) S iV(U0) C © contrary to definition.
If @ is of type III, then by Theorem 29.1, UQ* is represented irre-
ducibly on £>. Since UQ < UQ*, Uo is in the kernel of this represen-
tation. Thus, Uo S C(§) contrary to Theorem 29.1. Thus, Uo = 1.
Therefore Ub = 1 for Ue U and so a 16 in case @ is of type II or III.

If @ is of type IV, we will show that Hypothesis 11.1 and (11.2)
are satisfied with £>0 in that hypothesis being taken as our present
iQ, 2 being taken as @/£>, § and 5? being taken as @'/$i a nd 80 being
taken as @'. Certainly (i) is satisfied. Since @/£ is a Frobenius group
with Frobenius kernel ©'/£>, (ii) and (11.2) are satisfied, and the
jemaining conditions follow immediately from the fact that @/§ is a
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Frobenius group. The present S^ plays the role of Sf in Hypothesis
11.1 (iii).

Notice now that Hypothesis 11.2 is satisfied. By Lemma 11.2
and the fact that S^ is not coherent it follows that @'/$ *s a n o n

abelian r-group for some prime r whose derived group and Frattini
subgroup coincide. But U s ©'/$• Since E = IT, U/E is of exponent
r, so a = r. As U has no fixed points on £>', it follows readily that
every non linear character of ©' has degree divisible by r, as required.

LEMMA 30.2. For l^i^t, 15R : /)(*&) | = p? awd !!/(£< fcas ex-
ponent a.

Proof. If @ is of type III or IV, the result follows from Theo-
rem 29.1. Suppose @ is of type II. Then % is a T.I. set in (3 by
Theorem 14.2. Let a{ be the exponent of !!/(£» for 1 g i ^ £. Let
U, = {E7°< | UeU}. Then U, S C, E @ and II, char U. Thus, if II, =£ 1,
then JV(U) S JV(U<) g; ©, contrary to definition of subgroups of type IL

Suppose 15& : D(^) \ > p\ for some i with 1 ^ i ^ t. Since C^(O*)
is cyclic, this implies the existence of a subgroup & with 2B2 S £>! c §•
such that ©/& is a chief factor of @. By 3.16 (i), $U/& is nilpotent.
Thus, U g l and iV(U) S @, contrary to definition.

LEMMA 30.3. For 1 ^i ^t, either a \ (p, — 1) or a \ (pi — 1) and
(a, Pi — 1) = 1. /w f̂ee first case, tyJDityi) is the direct product of q
groups of order pif each of which is normalized by U. In the second
case, Xl/E, is cyclic of order a and acts irreducibly on

Proof. By Lemma 30.2, UD* is represented irreducibly on
As U < UQ*, the restriction of this representation to U breaks up
into a direct sum of irreducible representations all of which have the
same degree d. By Lemma 30.2, d | q and so d = 1 or d = q.

If d = 1, the order of every element in ll/E, divides (Pi — 1)..
Hence, by Lemma 30.2, a | (p{ — 1).

If d = qf then U acts irreducibly on Sft/DOft). Thus, tt/(£f is
cyclic. By Lemma 30.2, | U: G* | = a. Therefore, a | (p? - 1). Let
U/gi = <{/>. Then the characteristic roots of J7 are algebraically
conjugate over GF(p). Hence, this is also the case for every power
of U. If (a, Pi — 1) 9̂  1, then some power I7i =£ 1 of Z7 has its charac-
teristic roots in GF(p) and thus is a scalar. This violates the fact
that UQ* is a Frobenius group.

LEMMA 30.4. Suppose (a, p, — 1) = 1 for some i, 1 ±i i <Lt. Let
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& = *P5 n ^,

and let | SR : ?P51 = p**. Then m\ = m^ for some integer m{. Further-
more, ^(£>i) contains at least

irreducible characters of degree aq and at least (pjli — 1) characters
of weight q and degree aq.

Proof. By Lemma 30.3, !!/£< is cyclic. By Theorem 29.1, @ is
not of type IV, so U is abelian. Hence, ©U/^Ef is a Frobenius group.
By Lemma 30.2, \VL : E< | = a. Furthermore, since U£l* acts irreducibly
on tyilDffii), § = §/§! is the direct product of q cyclic groups of the
same order p?\ Thus, qm{ = m-, and |C$(D*)| = p?\ By 3.16 (iii)
«very non principal irreducible character of tQ&JSQ&i induces an irre-
ducible character of ^U/^G^ of degree a. Since U is abelian, this
implies that every irreducible character of £>£»/£>i which does not have
§ in its kernel induces an irreducible character of £>!!/£>! of degree
a. Hence, §11/^ has at least

a

distinct irreducible characters of degree a.
Since ©/& satisfies Hypothesis 13.2, Lemma 13.7 implies that all

but pmi — 1 non principal irreducible characters of &U/&! induce irre-
ducible characters of @. The result now follows.

LEMMA 30.5. Suppose that a \ (p{ — 1) for some i with 1 ^ i g t.
Let

and let \ ̂  : S$ | = pt
TOi. Then mi = m\\q is an integer and

contains at least

(P?* - 1) u
a au'

irreducible characters of degree aq, where |U'| = u\

Proof. For any subgroup X of @f let X = XJQjfQi. By Lemma
30.3, § contains a cyclic subgroup ^ which is normalized by U such
that
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and such that & = ^ x £>0 for some subgroup £>0 which is normalized
by U. Since HO* acts irreducibly on ^JD^), it follows that m< =
m\\q. Let Ux be the kernel of the representation of U on ̂ {1. Then

is cyclic and so | U : VLX | ̂  a. There are at least

u

distinct linear characters of &Ui/£>0 which do not have tytl in their
kernel. Each of these induces an irreducible character of &U of
degree j U : Uj |. Thus, by Lemma 30.1, | U : Ux | = a and there are at
least

a-a-u'

distinct irreducible characters of £>U of degree a which have & in
their kernel, and as characters of ©' have £>0 in their kernel. If one
of these induced a reducible character of @ or two of these induced
the same character of @, then O* would normalize £>0, contrary to
the fact that UO* acts irreducibly on

LEMMA 30.6. / / Sf contains no irreducible character of degree
aq, then t = 1, ty[ = Z)^) , a = u = (p\ - 1 ) / ^ - 1), and c = c1 = 1.
Furthermore, S^(&) is coherent.

Proof. By Lemmas 30.3 and 30.5, (a, pi — 1) = 1 and a divides
(p\ — l)l(Pi — 1) for 1 ̂  i ^ t. Suppose that for some i,

"~L-(pr*-i)^o.
a

Then

Therefore, c< = 1, m{ = 1, and a = (p? - l)/(p< - 1). Thus,

(30.1) ( p r i - 1)c< - (p?< - 1) = 0 .
a

Now Lemma 30.4 implies that (30.1) holds for 1 ̂  i S t. Thus, t = 1.
Hence, c = cx = 1, ^ = a = (p? — l)/(p — 1), p = plm Also, mx = 1, and
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so «K
If a character 6 in £f U £^ is equivalent to a character in

then its degree is prime to | © |f so £>' S ker 0. Thus, the equivalence
relation in Hypothesis 11.1 has the property that the present set
Sf(&) is a union of equivalence classes. Therefore, £f($f) consists
of (p — 1) reducible characters of degree aq. Theorem 14.2 implies
that Hypothesis 13.3 is satisfied. Hence, Lemma 13.9 implies that

is coherent.

The remaining lemmas in this section will be proved under the
following stronger assumption.

Hypothesis 30.2.
(i) Hypothesis 30.1 is satisfied.
(ii) Sf is not coherent.

LEMMA 30.7. / / £s(fef) is not coherent, then £> = %, Ex = 1,
a = (p — l)/2, p = pl9 u T£ a, and D(^) = ?$[. The degree of every
character in £f(Q) is either aq or uq, and £f(&) contains exactly
2u/a irreducible characters of degree aq.

Proof. Let dx < • • • < dk be all the degrees of characters in
*9*(($&)')m Define < = djaq for 1 ^ i ^ k. By Lemmas 13.10, 30.1
and 30.6, all the assumptions of Theorem 10.1 are satisfied except
possibly inequality (10.2). Every character in <^((§E)') is a constituent
of a character of © which is induced by a linear character of £>£.
Hence, dk ^ qujc, and so 4 ^ u/ac.

Choose the notation so that a \ (pt — 1) for 1 ̂  i ^ t0 and (a, p{ — 1) =
1 for t0 + 1 ^ i ^ t. If S*((&&)') is not coherent then inequality
(10.2) is violated. Lemmas 30.2 and 30.3 imply that for t0 + 1 ^ i ^ t,
Ci = uja. Thus by Lemmas 30.4 and 30.5, there exists m with
1 < m <i k, such that

î u^ m (pr* — i) 4, / u (p?m* — 1) __ (yri — 1)
<=i a an' »=«0+i l a g a Q'

»=«o+1 ^ ca

Therefore,

/on O\ V (Pr{ — 1) , v {P\mi - 1) < 9 / a < 2 < 9
»=i aw t=«0+

1 ^a u c

For
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a

By Theorem 29.1, c ^ u'. Thus, (30.2) implies that

<30.3) t0 S 1- If t0 = 1, then ml = l9 t = 1 .

Assume first that t0 = 0. If £ = 1, then since q < p\ and a ^
(Pi - l)/(Pi - 1), (30.2) yields mx = 1. Thus, every character in
^((£>£)') has degree aq. Therefore the definition of subcoherence
implies directly that ^((£>(£)') is coherent contrary to assumption.
Suppose now that t ^ 2. Then (30.2) yields that (p, - 1) + (p2 - 1) ^
2g. Therefore,

(30.4) Pi & 1 (mod g) , i = 1, 2 .

Further, (30.2) also implies that

<30.5) 1 (U-l)
+

a (2>, - 1) a (p, - 1)
It follows from (30.4) that

Each term on the left of (30.5) is an integer. Hence, if px > p2,
(30.6) yields that

1 (rf ~ 1) ^ q + 1 (PI - 1)^ q + f

a (Pi - 1) a (pa - 1)
contrary to (30.5). Consequently, £0 ̂ = 0.

Now (30.2) and (30.3) imply that t = 1, so that $ = 5ft. We also
conclude that mx = 1, so that Z?(̂ ft) = ty[. Furthermore, c = c1 = u\
and (Px — l)/a ^ 2. Since apx is odd, we have px — 1 = 2a. Finally
we get that 4 = w/ac and so m = &. If fc = m > 2, or if ^((§&)')
contains more than 2u/a irreducible characters of degree qa, then (30.2)
is replaced by a strict inequality which is impossible as (px — l)/a = 2.
Thus, A; = m = 2, and so d2 = uq/c and the degree of a character in
^((&®)') is either a? or uqjc. If © is of type II or III, then (£>£)' =
§' and the result is proved.

Suppose that @ is of type IV. Since the degree of any character
in ^((&£)') is either aq or uq/c, U/E is generated by two elements.
Since K = IT, U is generated by two elements. Thus, if we set £>0 =
£ , replace & and ® by @'/$i a n ( i replace 2 by @ in Hypothesis 11.2,
then by Lemma 29.1, Hypothesis 11.2 holds and by Lemma 11.3 and
Theorem 29.1, we conclude that Sf = £>*($') j s coherent, contrary to
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assumption.

LEMMA 30.8. £S(&) is coherent.

Proof. By Lemma 30.7, it may be assumed that £> = $P is a p-
group for some prime p, that D(ty) = $P', and that £ = 1. Suppose
that ^ ( £ 0 is not coherent. Let S^ be the set of irreducible charac-
ters in £f{$) of degree aq. Then by Lemma 30.7

(30.7) 1̂ 1 = - ^ , a = S^L.
a 2

Let ^ t be the set of irreducible characters in £^(<Q') of degree uq. The
group @/£>' satisfies Hypothesis 13.2. Hence, by Lemmas 13.5, 13.7
and 30.7, there are (p — 1) reducible characters in 6f of weight q
and degree uq which have £>' in their kernel. As the sum of the
squares of degrees of irreducible characters of @/&' is pquq, we get
that

(30.8) uq + | &[ | q2a2 + (p - l)qu* + \St\ q2u* = pquq .

Since U is abelian and is generated by two elements, we also have

(30.9) u ^ a2.

Now (30.7), (30.8) and (30.9) yield that

(30.10) | J< | 2s pQ " {V " 1)U - 2 q a ~ 1

uq

Hence, by (5.8), ^ t is non empty.
Let <$t = {̂ « 11 ̂  s ^ »̂} for i — 1, 2. The character \ u is in-

duced by a linear character of some subgroup @0 of index a in @'.
Define

(30.11) a = (l@0 - \ n ) ,

where l@0 is the character of @ induced by l@0. Since @0 <3 @'» it
follows that l@0 induces /0S,/So on @'. Since O* does not normalize
@0» (30.11) is seen to imply that

Since % is tamely imbedded in © and a vanishes on @ — @, we get
that
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(30.12) \\cr ||a = | |a| |2 = a + 1 + (q - 1 ) ^ - .

Furthermore,

(a% XU - x y = (a, X2i - X3j) = 0

for all values of i and j .
Suppose that (ar, X2i) ̂  0 for some i. Then (ar, XT

2i) ^ o for all
i. Hence (30.10) and (30.12) imply that

^a + 1 + { q 1 )
qa2 aa q u

Thus

(30.13) 2{1 + • • • + p'-1} =
a

Therefore

< 4
p — 1

Hence

Thus q = 3 by (5.1). Now (30.13) becomes

2(1 + p + p2) ^ — (p — ]

Thus

— (1 + p + P2) ^ 4 + p - 1 + A (p - I)2 + -^L (p - 1)

This implies that

4 ^2 <- ^ i 5 2 , 2 o 2
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Therefore (l/2)p2 ^ p(l + (2a2/u))f or equivalents (l/2)p ^ 1 + (2a2lu).
Thus (30.7) yields that

This is impossible since a\u9 a ^ u and both a and w are odd. Thus,

(30.14) (a\ X2\) = 0 for x« e ^ J .

Define /3 = (w/a)Xu - \ai e ^ ( ^ ) . Suppose that (/Sr, X[x) = (u/a) - b.
As r is an isometry on ^(£^), this yields that

(F, XI,) = i t «tt - 6 for all < .
a

Therefore,

(30.15) F = (2- - ft) XI, - b g XI, + T + z/ ,

where F is a linear combination of elements in £%T and J is orthogonal
to 6^x U 6^\ Since (/3r, X2

r
x - xjx) =̂ 0, it follows that | | r | | 2 ^ 1.

Since

(30.16)

(30.7) and (30.16) yield

This implies that

a a

or 62 ^ 6. Since 6 is an integer, 6 = 0 or 1 and A = 0.
Suppose 6 = 1. Then (30.15) becomes

(30.17) p = ( i t - l ) X£ - £ ^ + r .

As a, /S vanish on @ — @, we have

(30.18) (a', 0') = (a, 0) = - i t .
a

Since (aT, XT
n - XI<) = - 1 , we get that
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(30.19) aT = (x - l)XT
n + x £ XU + A o ,

for some integer x and some AQ which is orthogonal to *$t. Now
(30.14), (30.17), (30.18) and (30.19) yield that

a \a 1 \ a

Reading this equality mod u/a, we get

0 3E - (» - 1) + s = 1 (mod —) .
\ a /

Thus u = a, contrary to Lemma 30.7. Hence, 6 = 0. Consequently
/3r = (ula)\T

n + r, and so r = ±XT
2j for some j . Since (,eT, \T

21 - XT
21) * 0,

Xjy = \21 or X,!. This implies directly that £% U *5f is coherent. Lemma
13.10 and Theorem 10.1 now yield that £?{&') is coherent. The proof
is complete.

LEMMA 30.9. © is of type II.

Proo/. If @ is of type III or IV, then Theorem 29.1 yields that
& = 1. Thus, by Lemma 30.8, Sf is coherent. Hence, Hypothesis
30.2 implies that @ is of type II.

LEMMA 30.10. / / Sf contains an irreducible character of degree
aq, then Hypothesis 11.1 is satisfied with £>0 = 1, 8 = @, 8 = @f ^ =
@' and d = a.

Proof. By Theorem 14.2, Condition (i) is satisfied. Condition (ii)
follows from the definition of three step group. Conditions (iii) and
(vi) are immediate, while Condition (iv) holds by assumption. The
group @ satisfies Hypothesis 13.2. Hence, by Theorem 14.2 Hypo-
thesis 13.3 is satisfied with X = ©, 8 = @, 8 = @ and 58 = ©'. By
Lemmas 13.7, 13.9 and 13.10, Hypothesis 10.1 is satisfied. Thus,
Lemma 10.1 yields that Condition (v) of Hypothesis 11.1 is satisfied.
The proof is complete.

LEMMA 30.11. / / £f contains an irreducible character of degree
aq, then

Proof. By Hypothesis 30.2, S? is not coherent. Thus, Lemmas
30.8, 30.9, and 30.10, together with Theorem 11.1 yield the result.
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LEMMA 30.12. For 1 ^ i ^ t, (a, p, - 1) = 1 and Sftl2/(£f is a
Frobenius group.

Proof. Suppose that a | (p< — 1) for some i. Then Lemmas 30.2
and 30.11 yield that p\ ^ 4aV + 1 ^ (Vi - 1)Y + 1. Thus, p?~2 < tf2.
Therefore, (5.1) implies that q — 3. Hence, p* = 5 or 7. Thus, a
divides 4 or 6. As a is odd and (a, q) = 1, this implies that
a = 1 which is not the case. Therefore, by Lemma 30.3, U/E» is
cyclic of order a for 1 ^ i ^ £. If SftU/S; were not a Frobenius
group, then for some b < a, {Z761 C7eU} = Uo would lie in @. Since
Uo =£ 1 and Uo char 12, this implies that JV(U) S JV(120) E @, contrary
to Lemma 30.9.

LEMMA 30.13. t = 1, px = 3, a < 3?/2 awd ?K = #($i).

Proof. By Lemma 30.8, £>' =̂  1. Choose the notation so that
$; ± 1. Let SR = ?u D SR, • • • D %, = ^ 3 SR..+lf where ^W^lii+1 is
a chief factor of @ for 1 ^ i ^ n. Thus, ^Pi/̂ i,n+i is of class two
and so is a regular p-group. By Lemma 4.6 (i) O* centralizes an
element of ^ — SR̂ +i for 1 ^ i ^n. Since C^(Q*) is cyclic, this
implies that ?R/5Piill+1 has exponent pn. Let 12/Ei = <17>. Then the
regularity of ^Pi/sPi,n+i yields that U has the same minimal polynomial
on SRADOR) as on SK/sp^+x. Hence, by Lemma 6.2, a < 39/2. Now
Lemma 30.11 implies that if | 5ft: ?K | = p?q, then

(30.20) pTf fl jfl ^ 4.3'g2 + 1 .
i=2

Since 3 ^ px, (30.20) implies that

pim-i)q n p? ̂  4g2 + 1 .
»=a

Hence, by (5.9), m = 1 and t = 1. Thus, (30.20) becomes

(30.21) p? ̂  4.3V + 1 .

If px ^ 11, (30.21) implies that

Thus, 3<-2 < g2 and so q < 5 by (5.1). Hence q = 3 and (30.21) yields
1331 = II3 < 4.3° + 1 < 1000, which is not the case. If Vi = 7, then
(30.21) and (5.6) imply that q < 7. Thus, q = 5 or q = 3. If g = 3,
then
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57
Pi-I

and a < 39/2 < 9. Since (q, a) = 1 and a | 57, this cannot be the case.
If q = 5, then

2 ± = 2801
ft-1

is a prime. Thus 2801 = a < 3g/2 < 27. Suppose now that p1 = 5.
Then by (5.7), q < 13. Thus, q = 3, 7, or 11. Let r be a prime
factor of a. Then r < 39/2 and 5* = 1 (mod r). Thus, r = 1 (mod 2g).
If g = 3, then r = 1 (mod 6) and r < 33/2, which is impossible. If
q = 7, then r < 37/2 < 50 and r = 1 (mod 14). Thus r = 29 or 43.
Since 57 = — 1 (mod 29) and 57 = — 6 (mod 43), these cases cannot
occur. If q = 11, then r < 311/2 < 437 and r = 1 (mod 22). Thus, r =
23, 67, 89, 199, 331, 353, 397, or 419. Since 511 = 1 (mod r), the quad-
ratic reciprocity theorem implies that (r 15) = 1, so that r = ± 1 (mod 5).
Thus, r = 89, 199, 331 or 419. Since 511 = 55 (mod 89), 511 = 92
(mod 199), 511 = - 2 (mod 331), 511 = - 4 0 (mod 419), these cases cannot
occur. Hence, px = 3, and the lemma is proved.

If £f is not coherent, then Lemmas 30.8 and 30.12 imply that
| SBj | is not a prime. Hence, % is of Type V. The other statements
in Theorem 30.1 follow directly from Lemmas 30.9 and 30.13.

31. Characters of Subgroups of Type V

In this section % = 2/2£2 is a subgroup of type V. Let @ be the
subgroup of © which satisfies condition (ii) of Theorem 14.1. By
Theorem 14.1 (ii) (d) @ is of type II. The notation introduced at
the beginning of Section 29 will be used.

^ is the set of all characters of % which are induced by non
principal irreducible characters of %'. For any class function a of %'
let a be the class function of % induced by a.

For 0 ^ i ^ q — 1, 0 ^ j ^ w2 — 1 let yu be the generalized charac-
ters of & defined by Lemma 13.1 and let vi5 be the characters of %
defined by Lemma 13.3.

Hypothesis 13.2 is satisfied with 8 = 2, ® = X' and 55̂  replaced
by SB2. By Lemma 13.7 2/ has exactly q irreducible characters which
induce reducible characters of X. Denote these by v{ for 0 ^ i S q — 1,
where v0 = 1%>. Let C< == v{ for 0 ^ i ^ q — 1. Since q is a prime
the characters v{ are algebraically conjugate for 1 ^ i g q — 1.
Therefore

vJtX) = Vi(l) for 1 ^ % ^ q - 1 .
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LEMMA 31.1. *9*(Q) contains an irreducible character of @ ex-
cept possibly if w2 is a prime and £>11 is a Frobenius group.

Proof. If @' is not a Frobenius group then there are strictly
more than w2 classes of ©'/£' whose order is not relatively prime to
]$ | . The result now follows from Lemma 13.7.

Suppose that @' is a Frobenius group. By Lemma 6.2 and 3.16
(iii) £> is abelian and | £> | = w\ if the result is false. Then Lemma
13.7 implies that @' contains exactly w2 — 1 conjugate classes which
are in £>'. Therefore

u

Hence

r/f -
This implies that £> is an elementary abelian p-group for some prime
p. Since 2B2 is cyclic w2 is a prime as required.

LEMMA 31.2. Let

<y =̂ 0 /or 1 ^ i ^ g — lf 0 ^ i ^ w;2 - 1.

Proof. Lemma 10.3 implies that by Lemma 9.4

Since %i is rational on S' by Lemma 13.1, a^ = â  is independent of
i. Thus (31.1) implies that

(31.2) %;i£' = fy>r - g

for some integer 6, where a is an integral linear combination of
irreducible characters of £ each of which vanishes on 28.

Let Q G £}*'. Let p be a prime dividing w2, let P be an element
of order p in 2Ba and let p be a prime divisor of p in the ring of
integers of ^ m . Let o)i5 have the same meaning as in Hypothesis
13.1. Thus by Lemmas 13.1 and 13.3

(31.3) VoAPQ) = <ooj(PQ) , a(PQ) = 0 f vi0(PQ) = ea>io(PQ) ,

where e = ±1 is independent of i. Therefore



962 SOLVABILITY OF GROUPS OF ODD ORDER

(31.4) g vi0(PQ) = s g a>io(PQ) = s S <oi0(Q) = -e .
t = l t = l %=l

In view of Lemma 4.2 (31.3) and (31.4) imply that

VoAQ) = VoiiPQ) = VoAPQ) = o)oj(Q) = 1 (mod*))

(31.5) | U o ( Q ) = ~ £ (modW

= 0 (modp).

Thus (31.2) and (31.5) yield that 1 = eaj (modj>). Thus a ^ O as
required.

The main purpose of this section is to prove that &~ is coherent.
Theorem 12.1 will play an important role in the proof of this fact.
The lemmas in this section will from now on satisfy the following
assumption.

Hypothesis 31.1.
is not coherent.

By Griin's theorem %j%" is a Frobenius group. Hence by Lemma
11.2 2/ = £> is a tf-group. Define

(31.6) | Q : G ' | = qh , \Z:£X\ = w1 = e.

Let 1 = qf° < qfl < • • • be all the integers which are degrees of
irreducible characters of Q. Let

(31.7) 1̂ (1) = qf*, n > 0 .

By Lemma 13.10 Hypothesis 12.1 is satisfied. Let ^ be defined
by (12.3) for 0 ^ s ^ t.

LEMMA 31.3. Suppose that b = 2c for some integer c. Then e
is not a prime power.

Proof. Suppose that e = ph for some prime p. Then by Lemma
11.5 qc + 1 = 2ph, ft = c and D contains a subgroup $\ which is
normal in X and satisfies | C : Di | = q and Q* £ £i — Of. Therefore
n = 1 and ^~ contains 2(gc — 1) irreducible characters \ l f X2, • • • of
degree e. Define

a = 1D - Xi, yS = g% - Ci.

By Lemma 9.4 we have that

(31.8) ||a*|r = e + l f

Furthermore
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Suppose that (ar, \J) =£ 0 for some i with 2 g i g 2(9" - 1). Then
(31.8) and (31.9) imply that

_ 9 l ± l + 1 = e + 1 = ||a* ||' ^ 1 + 2(q< - 1) - 1 .

Hence qc + 3 ^ 4gc — 4, or 7 ^ 3gc which is not the case. Therefore

(31.10) ax = 1@ - XI + r , (/\ XI) = 0 for 1 ^ i ^ 2(qc - 1) .

Equation (31.9) also yields that for some integer x

2(9e-l)

(81.11) /Sr = q'K -x S M + 4 ,
t=l

(\I, J) = 0 for 1 ^ 5 ^ 2(?c - 1) .

Furthermore Lemma 13.8 implies that for 2 ^ 8 ^ g — 1,

(31.12) (J, C.r - CD = (F, C - CD = 08, C. - Ci) = e .
Since /Sr vanishes on ^ and (@T, 1@) = 0 Lemma 13.2 yields that

(31.13) A = % ai0 % Vu + § ow- £ Vu + A ,
t = l i=0 j = l »=0

where (Jo, 37«) = 0 for 0 g i g 9 - 1, 0 ^ i ^ e - 1. Now (31.12) and
(31.13) imply that

0,0 — «io = ± 1 for 2 ^ 8 ^ q — 1 .

Define a = am. Then (31.13) implies that

(31.14) (o ± I)2 + (q- 2)aa + g ojy

+ 2 {(a ± 1 + aM-)» + (ff - 2)(a
l

For any value of j the term in the last summation in (31.14) is non
zero. Furthermore (a ± I)2 + (q - 2)a2 =£ 0. Thus (31.14) implies that
if there are exactly k values of j with aoj =£ 0, then

(31.15) k + e^\\4\\\ k is even.

The last statement follows from the fact that (%>, A) = (yOj, A) since
/Sr and thus A has its values in ^ D ) . By definition

l a - Ci)r = ?C(1D - \)T

Lemma 31.2 implies that for any value of j with 1 ^ j g e — 1
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(31.16) (or,V*)*0 or (p, %,) * 0 .

Now (31.8), (31.11) and (31.15) yield that

{q° - xf + x\2(q° - 1) - 1} ^ ff»

or

2(qe - l)x" ^ 2qex .

Therefore

qc — 1

Suppose that x =£ 0, then x = 1. Now (31.8) and (31.11) imply
that || A ||2 ^ q2e + e - {(qc - l)a + 2(qc - 1) - 1} = e + 2. By (31.15)
this implies f that fc = 0 or k = 2. Assume first that k = 0, then
(31.10) implies that | | r | | 3 ^ e - 1. Hence by (31.16)

B - l

r — v -+- 7)

This implies that (/3r, T) = 0. Consequently (31.8), (31.10) and (31.11)
yield that

-<f = {a\ p) = (-\f, P) = x - <f = 1 - q'

which is not the case.
Assume now that A; = 2. Choose 1', 2' with l ^ l ' < 2 ' ^ e - l

so that a0J * 0 for j = 1', 2'. Thus rjn, = rj^,, aov = aw = ± 1 and by
(31.16)

Since PT has its values in ^JDI and %i' has its values in <^, (̂ Oi» /3r) =£ 0
for any algebraic conjugate Ôi of %i- By Lemma 13.1 r]^, has at
least (p — 1) algebraic conjugates. Hence p = 3, therefore q ^ 3.
Since ar vanishes on 2B Lemma 13.1 implies that for 1 ^ s ^ q — 1

0 = (a% 1@ - .̂o - Vov + 7.i') = 1 + (^o, - V.o + V.v) - (r09 yn.) .

Hence if (r0, yn,) = 0 then

2 = | | r o | | a ; > ( < z - i ) > 2 .

Therefore (r0, %') ?t 0. Hence

r = S ±VOJ .
i=i

Consequently (31.8), (31.10) and (31.11) yield that



31. CHARACTERS OF SUBGROUPS OF TYPE V 965

- q e = ( a \ j3T) = ( - X I , / 9 T ) ± 2 = x - q c ± 2 = l - q c ± 2 .

The assumption that x =£ 0 has led to a contradiction in all cases.
Therefore (31.8), (31.11) and (31.15) imply that

Thus aoj = 0 for 1 ^ j ^ e - 1. Thus (31.14) implies that

(a ± lfe + (q - 2)a2e ^ e .

Hence a = 0 or q = 3 and a ± 1 = 0. Thus £r = g%r - G or g = 3
and £T = gc\[ + CJ. In either case this implies that the set of charac-
ters consisting of Xit 1 ^ i ^ 2(qc — 1) and £„ 1 ^ » ^ ^ — 1 is coherent.
This includes all characters in J7~ which have SX in their kernel.
Since | £}: £X \ = q2c+1 > 4p26 the result now follows from Theorem
11.1 with § = 8 = £ = O, & = £>! and 8 = St.

LEMMA 31.4. £f is coherent.

Proof. By Theorem 30.1 w2 is a power of 3 if Sf is not coherent.
By Lemma 31.3 b is odd. Thus the lemma follows from Lemma 11.6.

LEMMA 31.5. For 0 g i ^n — 1 let \{ be an irreducible charac-
ter of X with \i(l) = eqfi. Let DQ be the normal closure of D* in
Z. Let 1 = q°° < • • • < q9* be all the degrees of irreducible characters
of O/DQ. Then S/£i0 is a Frobenius group. For any value ofj with
0 ^ j ^ m let 0j be an irreducible character of 2/Do of degree eq°*.
Define

a = lc-XOt

0i = g/*-/*~i\j_1 - Xi for 1 ^ i ^ n - 1 ,

7, . = q ' i - ' i - i O j - i - 65 f o r l ^ j ^ m .

T h e n

0 8 J . Vot) = 0 f o r O ^ t ^ e - 1 , l g i ^ w - 1 ,

(75, ^Of) = o / o r O ^ ^ e - 1 , l g j ^ m .

Furthermore if e is a prime then one of the following possibilities
must occur:

a* = 1Q-XI + gjfo,

«r = 1© + V + S %« and 2e + 1 = IO: O' I ,
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w i t h ( r , rj9t) = 0 f o r 0 ^ 8 ^ q - 1 , O £ t £ e - I .

Proof. For 1 ^ i ^ n — 1, 1 <; i ^ m let

#r = Ao + 4)0 i 4?I = Ao + diQ , 7j = -Toy + AOj ,

where each An is a linear combination of the generalized characters
r]8t and each riS is orthogonal to each of these generalized characters.
Since for 1 ^ s ^ g — 1, (£, — Q r is orthogonal to a\ ffl and 75 and
all of these vanish on SB, Lemma 13.2 implies that

q-l e - 1 6 - 1 q-1 q-1 « - l

\o±.±() An — dQQjLm. •+• tt ^ j 2^ 'Jut 1 ,2-1 ̂ *ot JL» vtt — ^00 ^ j 2u J»t >
w

 a«=i t=0 t = l «=0 «=1 «=1

where {a} U {a.t} is a set of integers depending on (i, j). Since
(XT

0 - XJ, «r) ^=0, II Aw ||2 ^ e. Since (X\ - X}, 01) ̂  0, (0) - 0), 7}) ^ 0,
Theorem 12.1 implies that

(31.18) WAnW'^e for all (i, j) .

Assume first that (i, j) =£ (0, 0). Then c^ = 0. Thus (31.17) and
(31.18) imply that

(q - I)a2+(q - l ) S ( a + a<»)2 + Sofc ^ e .
i = l t = l

If a T£ 0 then for each value of £ either aot =£ 0 or a + aot ^ 0. Thus
(<7 — l)a2 ^ 1 which is not the case. Hence a = 0 and so

« - l g - l

(31.19) An = S<*OIS??.I •

As ^ ( ^ ) r is orthogonal to ^ ( ^ " ) r Lemma 31.4 yields that for all
(i. 3)

fL 4/) = 0 for 1 ^ fc, fc' ̂  e - 1 .

By (31.19) (da, SI) = ±aokq. Hence

o. = 0 .

Suppose now that aof ^ 0 for some .̂ Then aot ^ 0 for all t with
1 ^ t < e. Hence (31.18) and (31.19) imply that

e - l

q(<& — 1 ) ^ 9 X aot = 6

which is not the case. The result is proved in case (i, j) =£ (0, 0).
Let (i, j) = (0, 0). Then aw = 1. By assumption £fc(l) = £(1) for

l ^ i ^ e - 1 , since e is a prime. By (31.17)
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(4», « ) = ±{a(q - 1) + aokq - a^q - 1)} , for 1 g k ^ e - 1

where the sign is independent of fc. Since (JQOI f J — <fl) = 0 this yields
that aok = a01 for 1 ^ k ^ e - 1. Hence (31.17) and (31.18) imply that

(q - l)a2 + (e - I X + (e - l)(q - l)(a + a01 - 1)' ^ 6 - 1 .

If a01 =£ 0 this yields that a = 0 and a01 = 1 and the result follows.
If a01 = 0 then we get that

(q - l)a2 + (6 - l)(g - l)(a - I)2 ^ e - 1 .

Hence a = 1 and the result is proved also in this case.

LEMMA 31.6. Let X = \n^x have the same meaning as in Lemma
31.5. Define

/3* = 0 = qf*-f»-^ - Ci .

Then (/3r, yM) = 0 for 0 ^ t ^ 6 - 1.

Proo/. Let ^ be the equivalence class in Jf defined by (12.3)
which contains X. If Ci is in ^ 7 then the result follows from the
coherence of J7\. For any i, let aje be the number of characters
of degree qfie in ^\ and define c as in (12.4) by

(31.20) c =

where g/me is the minimum degree of any character in
Let

(31.21) F = Jo + J + r ,

where Joe^(^lT)f A is an integral linear combination of the gener-
alized characters 7]Mt and r is orthogonal to ^\T and to every rjat.
Theorem 12.1 yields that

(31.22) \\A\\*+\\r\\*<2e.

/Sr vanishes on 2B and (/Sr, 1@) = 0. Furthermore (CI - CI, A) = e for
2 ^ s ^ # — 1. Therefore Lemma 13.2 implies that

(31.23) A = e S Vu + a10 g § ?.f + g aot g r).t ,
t=0 »=1 t=0 t=l «»0

where e = ± 1 .
Since ^ C ^ T is orthogonal to ^ ( ^ ~ ) r Lemma 31.4 yields that

Jf J) = 0 for 1 ^ fc, A/ g « - 1 .
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By (31.23)

(fi, A) = ±{e + (q - l)a10 + qaok} ,

where the sign is independent of k. Therefore

f t ( l ) {s + (q — l)#i0 + qo>ok'} = f ib'(l) {̂  + (Q — 1)̂ 10

for 1 ^ fe, fc' g e. By (31.22) and (31.23) we see that

(31.24) S < + faxo + e)a + (9 - 2)aJ0 H

If a10 =£ 0 and a10 + e =£ 0 then for each t at most one of aot, ai0 + aot

£ + a10 + Ooi vanishes. Hence (31.24) yields that

(a10 + e)2 + (g - 2)a?0 ^ 2 .

This is impossible as either a10 or a10 + s is even. If a10 =5t 0 then
(31.24) implies that

2gaJ i + (g - 2) + ((/ - 2)

If q ^ 3, then 2 ao
a« + (g - 2)(a0, - e)2 ^ 2 for 1 ^ t < e. Hence g - 2 ^

2 which is not the case. Thus a10 = 0 or q — 3 and a10 + £ = 0. Thus
we get

(31.25) (£*' J )

( ){ } (l){ } for

Assume that the result is false. Then aot =£ 0 for some value of
t. We will next show that aQt ^ 0 for 1 g t < e. If this is false
then there exists j such that aoi = 0. If 7 is any character in Sf
then (7(l)f5 - ?;(l)7r, A + T) = 0. Thus (31.25) implies that

(31.26) (7% J + D = -=

Thus fy(l)| 7(1) for every 7 in ^ . Let a be the exponent of U. By
Lemmas 30.1, 30.4 and 30.5 ^(1) = aq. Thus &' is in the kernel of
&. Define

By (31.25)

_j_ te-1-\ \ p- /i \i

for 1 g
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Thus (31.22), (31.23) and (31.26) yield that

2e(o«)J 7z 2 7(1)' + i '£ {£,(1) - fid)}1 ^ S Td)1 + 4 S f.d)1,
g1 t=l ga t6<r

where a; = 4/9 if q =£ 3 and x = 16/25 if q = 3, and 7 ranges over
the irreducible characters in Sf. By Lemma 13.7 there exist irre-
ducible characters fit of @' which induce the characters £f for 1 g £ < e.
Consequently

2ea*q ^ £ %(D2 + * S ftM1 ^ * J S Z(Da + S A(

where x ranges over the irreducible characters of @' which are distinct
from all //t and do not have § in their kernel. Therefore C(£>) S §
otherwise since |©| is odd there are at least 2eq characters X of
degree at least a. Furthermore

*q ̂  x{u(h - 1) - aJ(e - 1)} .

This implies that

(31.27) yeqa* ̂  {2*L + e - l)aa ^ w(fe - 1) ,
I x )

where y = 4 if g = 3 and # = 5 otherwise. Let l c f c c § , where
& < @. Let *! = |&| f *, = | $ : ^ | , «x = | Ct(Q*) | and 6a = | CMl(O*) |.
Since @ is of type II aex < 2hx and a s^u. Thus (31.27) implies that
h2 — 1 ^ 2i/ge2. Since Aa ^ p*"1^ for some prime p dividing h2 we get
that p9"1 ^ 22/g. Thus g = 3 by (5.1). Hence p2 g 24 which is not
the case as p ^ 5. Hence no such group & exists. Thus § is an
elementary abelian p-group for some prime. Therefore e — p is a
prime and &(1) = ?i(l) for 1 ^ £ < e. Consequently aot = aoi = 0 for
1 ^ t < e contrary to assumption.

Returning to (31.24) we see that

Therefore aj, = 1 for 1 ^ < ̂  e - 1. Thus

(31.28) o0{ = ± 1 for 1 g i ^ e - 1 .

Now (31.24) implies that

(31.29) (aw + e)1 + (g - 2)a?0

s + a01)' + (g - 2)(aw + a01)
2}
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Suppose that q =£ 3. Thus q ^ 5 and a10 = 0. Then (31.29) im-
plies that (e - l)(q - 2) ^ e + 1. As q ^ 5 this implies that Se - 3 ^
e + 1 or e g 2 which is not the case. Therefore

(31.30) q = 3 .

By (31.29) either a1Q = 0, a01 = — (a10 + e) or a1Q + e = 0, aOi = — a10.
Now (31.23) and (31.28) imply that

{« - l f - l 2 1̂

t=0 t=l »=0 J

or

t=o t=i i=o J

This is equivalent to

(31.31) or

Since (/8r — £T, T) = 0, r is a real valued generalized character. Thus
)| r ||a * 1. By (31.31) || A ||2 = 2e - lf hence by (31.22) r = 0. Now
(31.21) implies that

(31.32) & = g^-/»-ixr - s 2 VJ g^-'-XJy + J ,

where for m ^ i g n — 1, \iS ranges over the characters of degree
eqfi in ^ .

Suppose that S^ contains an irreducible character y. Then by
Lemma 31.4

(7(1)£ - f,(1)7% /3r) = 0 for 1 ^ « ̂  0 - 1 .

As 7r is rational valued on elements of Q, 7r ^ XJy for all i, j . Thus
(31.31) and (31.32) imply that

±27(1) = (7(1)£, )8r) = (̂ (1)7% ^ ) = 0 .

Therefore £f contains no irreducible characters. Hence by Lemma
31.1

(31.33) e = p , p a prime.

Now Lemma 31.3 implies that 6 is odd, where b is defined in
(31.6). As || A ||2 = 2p - 1 > 2p - 2 Theorem 12,1 implies that if c is
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defined in (31.20) then

(31.34) c = 0 (mod q) or c ^ p* .

Assume first that m =£ 0 in (31.32). Let a be defined as in Lemma
31.5. Suppose that

p-i

Then (31.31) and (31.32) yield that

Thus by Lemma 31.5

(31.35) aT = IQJ ± XI + S V* + r0, || To ||
a ^ p - 3 .

Then

(31.36) r0 = ^ + y £ S ^^"^Mi ,

where (r^, My) = 0 f or m ^ i ^ n - 1 , 1 ^ i ^ (a»/p). Suppose that
1/ = 0. Then (31.31), (31.32) and (31.36) yield that 0 = (a\ /3r) = ± 1 .
Hence y * 0. Thus by (31.35) and (31.36)

= V = V

Thus (31.34) yields that

(31.37) c = 0 (mod q) .

Equations (31.31), (31.32), (31.35) and (31.36) imply that

0 = (aT, /3T) = ± 1 + yq'n-fn-iqfn-i-fm - Xy— .

Hence (31.37) implies that 0 = ± 1 (modg). This contradiction arose
from assuming m =fc 0.

Assume now that m = 0. Then

»—i

c = q" - 1 + S a<9J/< .

Hence c m 0 (mod g). Thus (31.34) and 3.15 imply that

(31.38) c^p2 , c + l = 0 (mod q2'*) .

Now (31.31) and (31.32) yield that
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g«/.-/—1> + p = || p ||» = g«/.-/—i) _ 2ag'» + a;
2 —
P

Therefore

(31.39) a2c + p(p - 1) =

By (31.38), (c + 1) > pq'». Thus (31.39) yields that

f(x) = x\pqJ* - 1) - 2»«/«p + p(p - 1 ) < 0 .

It is easily verified that f(x) is a monotone increasing function for
x ^ 2 and /(2) = p(p - 1) - 4 > 0. Thus x < 2. By (31.39) x > 0.
Hence as = 1. Now (31.39) becomes

c + P(P - 1) = 2^-p ,

or equivalently

(31.40) p* - p(l + 2q'*) + c = 0 .

Therefore (1 + 2g'*)2 - 4c ^ 0, hence

4c g 4g2/» + 4g/» + 1

Thus c < 2q2fn. As c is even, (31.38) now yields that c = qif» - 1.
Now (31.40) becomes

or

As p is a prime one of the factors is ± 1 and the other is ±p. As
the factors differ by 2 this implies that p ± 1 = 2. Hence p = 3.
Since p =£ q (31.30) implies that p 4=- 3. This contradiction establishes
the lemma in all cases.

THEOREM 31.1. &~ is coherent.

Proof. Suppose that J7" is not coherent so that Hypothesis 31.1
is assumed. Let a, /3if yjf Xif 0,- have the same meaning as in Lemmas
31.5 and 31.6. Choose Xo = 0Q. Then

(31.41)

(31.42)

(31.43)
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Lemmas 31.2, 31.5 and 31.6 together with (31.41) imply that

ar = 1® - x; + g %t

or

a* = l& + \i + g3?ot

and 2e + 1 = | jQ: jQ' |. If the latter possibility occurs then by Lemma
10.1 it may be assumed after changing notation that in any case

(31.44) ar = 1 a - \J + § %i •

Now Lemma 31.5, (31.43) and (31.44) imply that

(31.45) - ? * = (a\ (q«60 - 0.)')
- 0,)r), for 1 ^ s ^ m .

Since || (q"0o - 0.Y ||" = q>» + 1 and ((q»8Q - 0t)\ (0\ - 0\)) = - 1 , (31.45)
implies that

(31.46) (q°'6o - 0.Y = ĝ '̂ J - 01 for 1 ^ s ^ m .

Lemmas 31.2 and 31.5 and equations (31.42) and (31.44) yield that

(31.47) -</'« = ((ff'-X, - Ci)r, «r) = (te'-Xi, - d)r, ~ XJ) .

By Lemma 13.10 { C i | l ^ i ^ 9 —1} is subcoherent in ^ . Since
Xo - Ci)T IIs = Q*fn + e it follows from (31.47) that

(31.48) (q'*\o - d)T = q'**i - Cir .

Let Do have the same meaning as in Lemma 31.5. Then there
exists a subgroup ^ of Q, such that Qo/Qi is a chief factor of SC
and |Do: Oil = <?. Let ^"(OQ) be the irreducible characters of £ of
degree eq9*, 0 ^ j ^ m. Then (31.46) implies directly that J^(£>0) is
coherent. Hypothesis 11.1 is satisfied with § = 8 = $ = D and £ =
8. If ^~ is not coherent then Theorem 11.1 implies that | O : Co I <
4e2 + 1. As !E/Do is a Frobenius group this implies that OQ = G\
Therefore O/Qi is an extra special g-group. Thus | jQ: D' | = q2c for
some integer c. Define

U {Ci 11 ̂  < ̂  q ~ 1} .

Then ^(£k) consists of all characters in J7~ having the same weight
and degree as some character in ^ which has $\ in its kernel. By
(31.48) ^"(Qi) is coherent. Thus if &~ is not coherent Theorem 11.1
implies that
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(31.49) q*c+1 = | O : SX | ^ 4e* + 1 .

Lemma 13.6 applied to the group 2B2£V&i implies that e \ qe + 1 or
e | qc — 1 and | SB, | = e. As e is odd this yields that 2e ^ qc + 1 in
any case. Thus by (31.49)

This contradiction suffices to prove Theorem 31.1.

COROLLARY 31.1.1. If Xo is an irreducible character of Z of
degree w2 then

(V - \y = l© - xj + g1 %.

Proo/. Let a = 1%, - \ and let at = (ar, %t). By Theorem 31.1

(31.50) (1^)1*' - O r = ^(Da7 + fa

= ^i(l)^ - G

As 3?M is rational on 2', (%«, ̂ o) = 0. By Lemma 13.9 {f]QU CI) = 0.
Thus (31.50) implies that

( M D I r - Ci)T, %) = <Wd) for 1 g t£ w7 - 1 .

Hence by Lemma 31.2 (aT, rjot) ̂  0 for 1 ^ t ^ w3 - 1. As | ̂ " | > 2,
(ar, 1@) = 1, {a\ XI - \J) = - 1 and || a* ||2 = w% + 1 we get that

ar = 1® - x; + S ±rjot .

As ar vanishes on SB Lemma 13.2 now implies the required result.

COROLLARY 31.1.2. @' is a Frobenius group and w2 is a prime.

Proof. Suppose that £f contains an irreducible character 0.
Choose & in &(&). Then (d(l)£T

3 - ^(l)6r) e JRS'). If S? is not
coherent 6 may be chosen in £S(<Q') by Theorem 30.1 and Lemma 31.1.
Hence by Corollary 31.1.1 and Lemmas 13.9 and 30.8,

0 = ( ( ) ^ £ , d ) ,

(%i^Svot) = ±0(1).

Therefore ^ contains no irreducible characters. Lemma 31.1 now
implies that @' is a Frobenius group and w2 is a prime.
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32. Subgroups of Type V

THEOREM 32.1. ® contains no subgroup of type V.

Proof. Suppose that the result is false and % is a subgroup of
type V. 37 is tamely imbedded in © by Theorem 14.2. For 0 ^ i ^ n
let %i have the same meaning as in Definition 9.1 and let 2IZ be
defined by (9.2). Let ©! be the set of elements in © which are
conjugate to some element of 2IZ for Le U?=(&. By Lemma 9.5

(32.1)

Let X be an irreducible character of degree w2 in J7~. By Theo-
rem 31.1 and Lemmas 10.3 and 9.4

(32.2) V(T) = a + \(T) for Te V* ,

where a is independent of T. Now Theorem 31.1 and Corollary 31.1.1
imply that a = 0 in (32.2). Thus V(T) = X(T) for TeV*. Hence
Theorem 31.1 and Lemmas 10.3 and 9.5 imply that

(32.3) - L . 2®, I V(G) |a = - 1 - Sx't I MO la = 1 - T ^ r .

Let 2B be defined by Theorem 14.1 (ii) (a) and let 2B = 2B - 2Ba - O*.
Define

®a = U G-MHJG .

Thus Theorem 14.2 (ii) (a) implies that

(32.4) 1 1 1
w2 q qw2

Let ©3 be the set of elements in © which are conjugate to some
element of £>'. Since $ is a T.I. set in ©,

( 3 2 - 5 )

Define
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Then (32.1), (32.4) and (32.5) imply that

(32.6) (i
qu Qu\§\ / q w2q qu w2\%'\

1 >.L-^---L = -L.
g 3? 3? 3<7

By (32.3)

(32.7) - 1

By Corollary 31.1.2 w2 is a prime and £>U is a Frobenius group.
Hence by Lemma 13.1 yOi, "', Vo, u>2-i are algebraically conjugate
characters whose values lie in &PW%. Every element whose order is
divisible by w2 lies in ©2 U ©3. Thus yOj(G) = yQi{G) is a rational integer
for Ge&0 and 1 ^ j ^ w2 — 1. Now Corollary 31.1.1 implies that
1 - V(G) + (w2 - l)7]Oi(G) = 0 for G e ©0. Hence V(G) = 1 (mod 2) for
G e ©0. Therefore | V(G) | ^ 1 for G e ©0. Now (32.6) and (32.7) imply
that

or

(32.8) 3qw2 > \ V | .

Since 2" ^ 1, (32.8) yields that Sw2 > \ V : X" \ and | Z" \ = g. Thus,
2B2 acts irreducibly on %'j%". Therefore %' is an extra special group.
Let | V : X" | = q2c. Then by Lemma 13.6, w2 ^ (gc + l)/2. Thus (32.8)
implies that q2c < (S/2)(qc + 1 ) < 2qc. Hence q° < 2 which is not the
case. The proof is complete.

COROLLARY 32.1.1. Let @ be a subgroup of type II, III or IV.
Let S^ have the same meaning as in Section 29. Then £^ is
coherent.

Proof. This is an immediate consequence of Theorems 30.1 and
32.1.

33* Subgroups of Type I

LEMMA 33.1. Let 2 be a maximal subgroup of © and let 8 have
the same meaning as in section 14. / / 8 is of type I with Frobenius
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kernel & let J& be the set of all irreducible characters of 3 which
do not have £> in their kernel. If 8 is of type II, III or IV let .9f
be the set of characters of 8 each of which is induced by a non
principal irreducible character of 8' which vanishes outside 8. Let
2i have the same meaning as in section 9 and let 5HZ be defined by
(9.2). If Xe J*f then XT can be defined. Furthermore XT is constant
on %Lfo

Proof. Since |® | is odd Lemmas 10.1 and 13.9 imply that V
can always be defined as {X, X} is coherent.

If L e 80 then 2IZ = {L} and there is nothing to prove. If L e S<
with i =£ 0 let & be a supporting subgroup of 8 such that C(L) Q % =
N(tQi). If Sftt is of type I then the result follows from Lemmas 4.5
and 10.3. By definition % cannot be of type III or IV. If % is of
type II then the result is a simple consequence of Corollary 32.1.1.

The main purpose of this section is to prove

THEOREM 33.1. Every subgroup of type I is a Frobenius group.

All the remaining lemmas in this section will be proved under
the following assumption.

Hypothesis 33.1.
© contains a subgroup of type I which is not a Frobenius group.

If Hypothesis 33.1 is satisfied the following notation will be used.
a is a set of primes defined as follows: p{ea if and only if ©

contains a subgroup 8M4 of type I with Frobenius kernel S< such that
a SPi-subgroup of SSIJ^ is not cyclic.

p = pk is the smallest prime in a. 2W = 9Jifc; $ = $*.
$Po is a Sp-subgroup of 3Ji.
*$ is a Sp-subgroup of © with ^0 S *P.
8 is a maximal subgroup of © such that iV(fii(̂ P0)) £ 8.
J*f has the same meaning as in Lemma 33.1.
If 8 is of type I let U be the Frobenius kernel of 8. Let 8 =

1I(£ with U n B = 1.
If 8 is of type II, III or IV let § be the maximal normal nilpotent

S-subgroup of 8. Let 11 be a complement of § in 8' and let 2&! be
a complement of 8' in 8 with SŜ  £ JV(U).

LEMMA 33.2. 8 is the unique maximal subgroup of © which
contains iV(i2i($p0)). Furthermore 8 is either a Frobenius group or
8 is of type III or IV and ty can be chosen to lie in U.
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Proof. By Theorem 32.1 8 is not of type V. If 8 is of type II,
III or IV then 5po £i 8' since 5po is not cyclic. Since § is a T.I. set
in © it may be assumed that 5po i= U.

There exists P e f l ^ ) such that C(P) S 2K. Thus either $P =
P̂o or Z(5P) is cyclic and Z($) £ 5po. If a Sp-subgroup of U is abelian

then 5po is the Sp-subgroup of U. Hence (̂̂ Po) char U and so JV(U) £
jVOWSft)) S 8. Therefore 8 is of type III or IV and $ = % S 11.
By definition 8 is the unique maximal subgroup which contains
JV"(0iOPo)). If the Sp-subgroup of U is not abelian then 8 is of type
IV and it may be assumed that P̂ g U. Then J ? ^ ) S 8 and in this
case also 8 is the unique maximal subgroup of ® which contains

Suppose that 8 is of type I. Let 5ft be a Sp-subgroup of 8 with
£ *ft. If V e 7T(©), then 5ft is abelian. Thus, Sft = 5ft and so $po =

Hence, 5p is an abelian Sp-subgroup of ©. By construction,
8. Hence, 5p g 8', by Burnside's transfer theorem. Since

| 8 | is odd, if an element of iV(̂ P) induces an automorphism of $P of
prime order q, then q < p. By the minimal nature of p, a Sg-subgroup
of 8 is cyclic. Let $* = 5p n CQ1). Since 8 is of type I, $* is
cyclic. We can now find a prime q such that some element iV(5P)
induces an automorphism of order q on 5p/5p*. Let Q be a S9-subgroup
of © permutable with 5p. Since q < p, O normalizes P̂, and JQ is
cyclic. Since DU is a Frobenius group, fl^D) centralizes 5p/$p*. Let
W = 0 , (^(0)) . Then 5p = 5p*sp»f and [O, W] £ P̂*.

Let 8* be a maximal subgroup containing JV(£i(£i)). The minimal
nature of p implies that D £ 8*'. Hence, by Lemma 8.13, O centralizes
every chief p-factor of 8*, so d centralizes $po*, which is not the
case. We conclude that p $ 7r((£). Therefore pen(U). Hence spgll .
U is not a T.I. set since 5p is not a T.I. set in (3. This yields that
either p e 7t* or m(U) = 2. In either case this implies that every
prime divisor of | (£ | is less than p. The minimal nature of p now
implies that 8 is a Frobenius group.

The previous parts of the lemma imply that if 8X is a maximal
subgroup of © which contains JV(£?i(Spo)) then 8j is a Frobenius group
and p divides the order of the Frobenius kernel of S1B If P̂ is abelian
then 5p = 5p0 and 8 = Sx = N{Q^)). If P̂ is non abelian then 8 =
8X = JV(Z($P)). The uniqueness of 8 is proved.

LEMMA 33.3. There exists an irreducible character X e J*f which
does not have 5p in its kernel such that X(l) | (p — 1) or X(l) | (p + 1).

Proof. Let X be a character of 8 which does not have P̂ in its
kernel and is induced by a linear character of U if 8 is a Frobenius
group and by a linear character of 8' if 8 is of type III or IV.
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Either $P = % and so ra($P) = 2, or Z($P) is cyclic. In either case
this implies that if q e n (Nffl)ICffl))9 g =£ p then g | (p + 1) or g | (p - 1).
If 2 is of type III or IV then X(l) = | SĤ  | is a prime and the result
follows. Suppose that 8 is a Frobenius group. If p e 7cf then | C | =
X(l) has the required properties by assumption. If p g nf then £> is
abelian since § is not a T.I. set in ©. Thus sp = SR, and m(SP) = 2.
Suppose that qlf q2 e 7r(Gf) where qx \ (p — 1) and g21 (P + 1). Then an
element of @ of order ft acts as a scalar on sp. There exists Pety*
such that JV«P» E 9JJ. Thus 2ft contains a Frobenius group of order
pqx which is not the case. Therefore every prime in 7r(@) divides
(p — 1) or every prime in 7r(@) divides (p + 1). Since (p + 1, p — 1) =
2 this yields that 1611 (p + 1) or | 8? 11 (p - 1). The lemma follows
since X(l) =

LEMMA 33.4. Let X be the character defined in Lemma 33.3.
Then

\T(L) = X(L) for L G Sf

Proof. Set 0 = 12:8' |. Observe that if S is a Frobenius group,
then since pen*, it follows that 8' = U, so that X(l) = e. This
equality also holds if 8 is of type III or IV.

Set a = (18, — X) so that aT — \% — V + A, where J is a gener-
alized character of © orthogonal to 1@. Let X = X̂  ••-, X/ be the
characters in £f of degree e. Since e divides (p + l)/2 or (p — l)/2,
it follows that / > e + 1, and so (A, XJ) = 0, 1 g i ^ / .

We next show that £f is coherent. If 8 is a Frobenius group,
the coherence of J*f follows from Lemma 11.1 and the fact that 8
is of type I.

Suppose 8 is of type III or IV. Then Hypothesis 11.1 and (11.2)
are satisfied with the present 8 in the role of 80, § in the role of
£>of and 8'/£> in the role of £>. By Lemma 11.1, we may assume that
| 8 ' : 8 " | ^ 4 | S : S ' | 2 + 1. Hence, |S ' :S"| = P2 and e = (p + l)/2, so
that sp = U. If ?̂ is non abelian, then e divides (p — l)/2. Hence,
we may assume that Sp is abelian of order p2 and 8 is of type III.
By Theorem 29.1 (i), no element of sp1 centralizes £>. This implies
that if /*!, • • •, ftf, are the characters in JSf of degree pe, then / ' ^ 2p.
Hence, (A, ft) = 0, 1 ^ j ^ / ' .

Let /3 = (p\ - /O, so that /9r = pXl - x^Xl - [t{ + Au with
(A19 X}) = 0. If x = 0, the coherence of JZf follows from Theorem
30.1. As || & ||2 = pa + 1, and / = 2(p - 1), it follows that 0 ^ x < 2,
and || 4 H1 ̂  2. Hence, x = 1 and (Alf ft) = 0. But now (aT, /3r) =
(a, fi) = -p = - ( p - 1) + (A, AJ, so that (A, A,) = - 1 . This is not
the case as A and A1 are real valued generalized characters of ®
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orthogonal to 1@. The coherence of & is proved in all cases.
Since (J, V) = 0, the lemma follows from Lemmas 9.4 and 33.1.

LEMMA 33.5. Let X be the character defined in Lemma 33.3. Then

Proof. Let ©0 be the set of all elements in © which are conjugate
to an element of 2IZ for some LeS 1 . Let ®x be the set of all ele-
ments in © which are conjugate to an element of 21* for some Ke$i?.
No subgroup of © can be a supporting subgroup for both 8 and 2Ji.
If 8 were a supporting subgroup of 2Ji then p would not be minimal
in the set a. Thus ©0 is disjoint from ®lm Therefore by Lemmas 9.5,
4.5, 10.3, 33.1 and 33.4

LEMMA 33.6. Let 2M = XBg ii;/i6re g = 3D? n 8. Tfeew there exists
F in ($p0 n Z(g)) f sucfe ^Aa« C^(F) g; ^'. Furthermore 5K satisfies
Hypothesis 28.1.

Proo/. If 8 is of type I, then g £ U. Thus, g is nilpotent and
hence abelian. The result follows from 3.16 (ii) and the fact that
spo is not cyclic.

Suppose 8 is not of type I. If g §£ 12£>, then we may assume
that SDBx £ g. Then 2$MP0 is a Frobenius group and S5MP0 £ g. By
3.16 (ii), 35$! centralizes an element of ffl1. Since 12Bi | is a prime,
this contradicts the fact that 2Ji contains a Frobenius group of order
ISSyi |. Thus, g £ Uft. Let & = g n ft. Since § is a T.I. set in ©,
we get that gx is a cyclic normal S-subgroup of g. If gx = 1, then
g is abelian and the result follows from 3.16 (ii).

Assume now that & =£ 1. We may assume that g = gx(g n U).
If fii(^Po) does not centralize %19 then there exists 5̂* £ Qffio) such
that g ^ * is a Frobenius group. Hence, C®(¥>*) * 1 by 3.16 (ii). But
in this case, P̂* lies in no normal abelian subgroup of g contrary to
the definition of groups of Frobenius type. Thus, Qffio) centralizes gx.
Since g fl U is abelian and g = gx(g n U), this implies that
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. The lemma now follows from 3.16 (ii).

LEMMA 33.7. Let ^ be the set of all irreducible characters of
2Ji which do not have 58 in their kernel. Let X be the character
defined in Lemma 33.3. If ^ is coherent then V is constant on Stf.

Proof. Let ftlf • • • £>, be a set of supporting subgroups of 3Ji in
©, and let % = JV@(ft<). By definition,

Suppose Me$fl* and C&(M) g£ 5K. We will show that Me®. For
otherwise, some power of M is 3K-conjugate to an element A of 3*.
Since 5? is a supporting subgroup of some tamely imbedded subset of
<S, it follows that C&(A) g 3K. Hence, M is in $*.

We next show that 9}< is of type I or II, 1 ^ i ^ s. Suppose %
is not of type I. Then 9J< = ft^SR, n 3K), and we assume that % n 3TC =
<9̂ i D S) (9?i n ??). Since ftt- is a supporting subgroup of 2Ji, we may
choose ikf in 2Ji so that C@(Af) C %, C&(M) £ 5UI. By the first paragraph,
Me fl1. Hence, 5R< n ft =£ 1. If JV̂ W* n f i ) S 9 f̂ then by a well known
property of nilpotent groups, we have $ = 5R» n S, so that 90? S 91*,
which is not the case. Hence, N&(% fl A) ££ 5Tl», so 5Rt is not of type
III or IV; % is of type II.

Let a be the least common multiple of the orders of all elements
of 8. We will show that (a, | St |) = (a, | & |) = 1,1 ^ i ^ s. If S is
of type I, then S is a Frobenius group, so a divides |U|, and we only
need to verify that S is not conjugate to 9Ji or $lit 1 ^ i ^ s. As
none of the groups 9K, 9^, • • •, 9ia is a Frobenius group, this is clear.
Suppose S is of type III of IV, so that 8 = $U8&U 8 = §U, Since
none of 271,9 ,̂ -..,5R. is of type III or IV, we have (|&|,|ffi|) =
(I ft I, I & I) = 1,1 ^ i g s. Since JV@(U) g 8, it is trivial that (| U |, ] 5?|) =

We appeal to Lemma 10.4 and conclude that V is rational on 5?
and on every supporting subgroup of 3#.

Let ft, be a supporting subgroup of 9K and let a be a character
of fti with (a, l$t) = 0. Let ftu p2 be irreducible characters of 91* with
jtij,^ = /£,,̂ f = a. Then ||(ft — f*2)*\\2 = 2 and no irreducible character
of © appearing in (^ - ft)* is rational on ftiB Thus, (\T, (ft - ft)*) = 0.
If 9ii is of type I, then Hypothesis 10.2 is satisfied with our present
1JJI in the role of 8. If % is of type II, then a complement to ft, in
Uii is abelian, and again Hypothesis 10.2 is satisfied. Hence, by Lemma
10.2, V is constant on the cosets of ft, in 91* — ftif and in particular
is constant on all the sets 21*, ikfeSPi. As ^ is assumed coherent,
an appeal to Lemma 10.5 completes the proof of this lemma.
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Theorem 33.1 will now be proved by showing that Hypothesis 33.1
leads to a contradiction.

Choose Pe$J and KeC(P) n W. By Lemmas 33.1 and 33.4

(33.2) X*(KP) = V(P) = \(P) .

Let p be a prime divisor of p in ^J@|. By Lemma 4.2

(33.3) V(JT) = \T(PK) (mod p)

(33.4) \(P) = \(1) (modp).

Now (33.2), (33.3) and (33.4) yield that

\T(K) == V(P#) = \(P) = X(l) (mod p) .

By Lemma 10.4 XT(K) is rational. Thus

Xr(K) = X(l) (mod v) .

Since \(1) ^ (p + l)/2 by Lemma 33.3, we get that

(33.5) | XT(K) | ^ \(1) - 1 for Ke fl»f C?0(iT) ^ 1 .

If every element in $ f commutes with an element of SPS then (33.5)
implies that

(33.6) | \*(K) | ^ \(1) - 1 for Ke ®*.

If not every element in $* commutes with an element of SpS then
V is constant on ®* by Lemmas 28.2, 33.6 and 33.7. As (33.5) holds
for at least one element in $' we get that (33.6) holds in any case.
Now Lemma 33.5 and (33.6) imply that

This can be written as

(3S.7) J « £ L > M L l l L ( ± r L ) \ where e = Ml).

Since | S : S n 9Ji | > 1 andSn2J i i s a complement to $ in 5Ui, (33.7)
yields that

U _ AY >
V eJ -8 |ft | V eJ - \St\

Hence 3 | ft |/4 > | ffl | - 1 or | ft | < 4. Thus | ft | = 3 and a S3-subgroup
of © is cyclic contrary to the simplicity of © and the fact that \®\
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is odd. This contradiction completes the proof of Theorem 33.1.

THEOREM 33.2. © contains a subgroup of type II.

Proof. Suppose false. Then by Theorems 14.1 and 33.1, every
maximal subgroup of © is a Frobenius group. Let 9ft be a maximal
subgroup of © and let @ be a complement to the Frobenius kernel of
13ft. We will show that @ is abelian. Suppose false.

Let a be the set of primes p such that for some maximal subgroup
Utti with Frobenius kernel & and complement ©lf a Sp-subgroup of @! is
not in Z(G?i). Let p be the least prime in a. We may suppose that
a Sp-subgroup P̂ of (£ is not contained in Z(@). Then $ fl E' = 1. Let

be a maximal subgroup of © containing JV(£?iOP)). Since ^(^P) E
£ <i 3ft1# If $p is contained in the Frobenius kernel $ of 2)^,

then so is [̂ P, Gf] =£ 1. This is impossible as © does not centralize 5̂,
while ® is nilpotent. Hence @ n ® = 1. Since 3ft;' E ®, it follows
that P̂ is not contained in 3ftJ, and that a Sp-subgroup of 3fti is cyclic.
Hence, by Burnside's transfer theorem, © is not simple. Since this
is not possible, Gf is abelian.

Let G G ©*. Let 9ft be a maximal subgroup of © containing C(G).
It follows that C(G) is nilpotent. Hence, © is solvable by the main
theorem of [10]. The proof is complete.

34. The Subgroups @ and 2

By Theorems 32.1 and 33.2 © contains two subgroups @ and £,
•each of which is of type II, III or IV and which satisfy Condition
(ii) (b) of Theorem 14.1. The following notation will be used throughout
the rest of this chapter. This differs slightly from that introduced
previously.

§> = £}*©', 2 = ^p*2/ , | £}* | = q , | ̂ P* | = p .

Thus p and q are both primes. Let p̂ be the Sp-subgroup of @ and
let D be the S9-subgroup of 2. Then P̂* E *P, O* E £>. Let

2B = ^P*Q* , 2B = 2B — ̂ P* — D* .

Let U be a complement of $P in @' and let S3 be a complement of Q
in 2'. By 3.16 (i) U and 33 are nilpotent, thus

U c(P) = @,

if © is of type II and

U C(Q) = 2 ,
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if Z is of type II. Let

If @ is of type III or IV let II* =11. If @ is of type II then
a maximal subgroup 2J£ which contains iV(U) is not conjugate to Z
since 3Ji is not g-closed. Hence by Theorem 33.1 SSI is a Frobenius
group. Let U* be the Frobenius kernel of 2R. Thus U S U*. Define
S3* similarly. Let

| <E | = c f 13) | = d , | U | = uc , 13* | = vd ,

|U* | = w*c, 193* | = v*d , |@| =flr.

Sf is the set of characters of @ which are induced by irreducible
characters of @' which do not have $p in their kernel.

^" is the set of characters of Z which are induced by irreducible
characters of Z' which do not have O in their kernel.

The set £f as defined here is a subset of the £f as defined in
Section 29. Thus by Corollary 32.1.1 Sf and J/~ are coherent.

^oi 5̂ o are the sets of irreducible characters of JV(U*)f iV(5?*>
respectively which do not have U*, 35* respectively in their kernel.

For 0 ^ i ^ q — 1, 0 ^ j g p — 1, ^ are the generalized characters,
of © defined by Lemma 13.1; /iia- are the characters of @ defined by
Lemma 13.3; î - are the characters of Z defined by Lemma 13.3. For
0 ^ j ^ p — 1, £j is the character of @ defined by Lemma 13.5. For
0 ^ i ^ q — 1, C» is the character of £ defined by Lemma 13.5.

If ©i S ©a c ©, where ©2 is a maximal subgroup of © and if a
is a class function of ©x then a denotes the class function of ©2 induced
by a. Whenever this notation is used ©2 will be uniquely determined
by the context.

Throughout this section no distinction is made between @ and Z*
Any result in this section about one of these groups is automatically
valid for the other by symmetry.

LEMMA 34.1. Either

Pq-1
u

and U/S is cyclic or U/E is the product of at most q — 1 cyclic groups
and u | (p — I)*"1. For 1 ^ j ^ p — 1 £, is induced by a linear
character of $p(£, £,(1) = uq. Either ?̂U is a Frobenius group with
\%>\=pq and

u=v9-1

p-1
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or £f contains an irreducible character of degree uq which is induced
by a linear character of

Proof. If *p* s D(<$) then by 3.16(i) WID{^) is nilpotent. Thus
is nilpotent contrary to assumption. Hence P̂ contains a subgroup

% such that $P* D ̂ Po = 1 and $P/̂ po is a chief factor of @. Hence
UD* is represented on the elementary abelian group P̂/̂ P0. By 3.16 (i)
P̂0U is nilpotent. Therefore U£}*/£ is faithfully and irreducibly

represented on $P/$po. By 3.16 (iii) | $P : % | = p9.
Let $1% = ty<$*l% x %/%, where O* C N^). By Lemma 4.6 (i)

JVuOPO S ^(^/^Po). Thus JVu(5Pi) g CU(̂ P) = <£. Hence any non principal
linear character of spff/^E induces Si for some j1 with 1 ^ i ^ p — 1.
As p is a prime the characters Si are algebraically conjugate for
1 ^ j ^ P — 1. Thus fj(l) = uq for 1 ^ j ^ p — 1. Let Si — $i ^r
irj a linear character of spE/̂ yiL

Suppose that | ̂ 5E: Z)(Sp<£) | > p9. Then P̂E contains a subgroup
§ =£ p̂0S such that ?PE/ft is a chief factor of @. Let A, be a non
principal linear character of 5pE/§. Then r̂̂ * induces an irreducible
character of @ of degree %g.

Suppose that U is represented reducibly on P̂/̂ P0- Since U < UD*
the irreducible constituents of this representation all have the same
dimension. This dimension is 1 since q is a prime. Thus U/E is the
direct product of k cyclic subgroups for some integer k, each of which
has order dividing (p — 1). No element of U/E is represented as a
scalar as UQ* is a Frobenius group. Therefore fc < q and u | (p — I)9"1.
The irreducible constituents of the representation of U/£ on sp/SR are
distinct since U£l* is irreducibly represented on P̂/̂ P0. Let $P/$P0 =
^ x • • • x $Pff where ^i+1 = Q~*̂ PiQ* for some generator Q of O* and
such that U normalizes each ^ . Let

a

P —

with Px G P̂f, Pa = Q~xPrxQ and Q-^Q* = Pi+1 for 2 ^ i ^ q 1. Sup-
pose UeVL and i/Q^ centralizes Pfor some i. Let U^PtU P?{ then

Then Q^PpQ3 = P2+i. If j ^ q then P2+i is conjugate to Px. Hence
P2°'" is conjugate to Pa"1 which is impossible as | U£l | is odd. Therefore
j = q. Then U^PJJ = P< for 1 ^ i ^ g and so Ue E. This proves
that no element of (UJQ/E)1 leaves P fixed. Let ft be a non principal
linear character of ^P/̂ o with ker ft = SR x • • • x $pff. Let ft = /i?1"1;
then /i = ftftr2ft • • • ft induces an irreducible character of @ of degree
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Assume now that U is irreducibly represented on W%- Then Xt/E
is cyclic since U/E is abelian. If a subgroup of U/E acts reducibly on
$P/$P0 then it is represented by scalar matrices. As UQ* is a Frobenius
group every non identity subgroup of U/E acts irreducibly on W$o.
Thus U/E permutes the subgroups of order p in ?$ffi0 and no element
of (U/E)* leaves any such subgroup fixed. Hence

u
pq -
p-1

Suppose now that Sf contains no irreducible character of degree uq.
By an earlier part of the lemma this implies that | ̂ 5E : Z)(̂ $E) | = p9.
Thus E = 1 and | $ : D(%>) \ = pq. Since D(%>) n ¥>* = 1, we must have
Z)($p) = sp. By 3.16 (i) *P'U is nilpotent. If $' * 1 then there exists
a subgroup ?ft of W such that | $ ' : 5ft | = p. Hence SP'/^ is the center
of 5p/5ft since U acts irreducibly on SP/̂ P'« Thus ^5/^ is an extra special
p-group. This implies that q is even which is not the case. Thus
$P' = 1. Hence $U is a Frobenius group. Consequently 5̂11 contains
(p9 — l)lu irreducible characters of degree u. Lemma 13.7 now implies
that

p 1

LEMMA 34.2. Either 9PU is a Frobenius group with \ ?P | = p" and

u= p-1

or O5S is a Frobenius group with | jQ | = q" and

Proof. If the result is false then Lemma 34.1 implies that S^
contains an irreducible character \ of degree uq and ^~ contains an
irreducible character 6 of degree vp. Every character in _5^r is rational
valued on ty by Lemma 10.4. Since | © | is odd this implies that every
generalized character of weight 1 in Sfx is orthogonal to ^" r . Define

a = \-Gu £ = 9 - Ci •

Then a(l) = /3(1) = 0 and (a% /Sr) = 0. Thus

0 = (V - 6 , 0r - CO = ( ± 2 5?«i, ± g 7i

= ±(Vn, Vn) = ± 1 •
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This proves the lemma.

LEMMA 34.3. For 1 ^ j g p - 1

Proof. Since $P& is a T.I. set in © and ̂  is coherent the Frobenius
reciprocity theorem implies that for 1 ^ j ^ p — 1

a(X)) for

where a: is a generalized character of @'/̂ P, a nd £a = 1. Therefore

This implies that

(34.1) S

By Lemma 34.1, 2n + 1 ^ | $ |f thus

-2fxoj(l)a(l)

The result now follows from (34.1).

LEMMA 34.4. For 1 ^ i ^ g — 1

Proof. Since ^$£ is a T.I. set in © the coherence of Sf and the
Frobenius reciprocity theorem imply that y)iQ{X) = a(X) for Xe 5̂E — E,
where a: is a generalized character of @7*P- Therefore for 1 ̂  i ^ q — 1

(34.2) S |

If PG^P*1, QeQ*1 and q is a prime divisor of q in &pq then by
Lemma 4.2



988 SOLVABILITY OF GROUPS OF ODD ORDER

VdP) = VdPQ) = 1 (modq).

Thus the expression in (34.2) is non zero. The result now follows
from the fact that

' = 0 (mode).

LEMMA 34.5. Suppose that S^ contains an irreducible character
X of degree uq which is induced by a character of ^?E. Then

2 > uqc | $ | - (uq)2 - 2uq* .

Proof. As p̂(£ is a T.I. set in © the coherence of &s and the
Frobenius reciprocity theorem imply that

XT(X) = X(X) + a(X) for Xe

for some generalized character a of ©7̂ P- Therefore

f

(34.3) + S I «(^) r ^ wgc ISPI - (wg)1 - 2\(l)a(l)

If I a(l) | ^ g then by Lemma 34.1

= 2uq\ a(l) \ ^ 2ua(iy ^ {\ 91 -

Hence the result follows from (34.3) in this case. If | a(l) \ < q then
2\(1)| a(l) | < 2uq2 thus (34.3) also implies the result in this case.

LEMMA 34.6. Let ©0 be the set of elements in © which are not
conjugate to any element of sp(£, JQ or 2B. Suppose that £/* contains
an irreducible character X of degree uq. Define

% = {G\Ge ©0, V(G) ^ 0}
2I2 = { G | G G © O , ^ O ( G ) ^ O }

St3 = {G | G e ©0, %i(G) ^ 0, Voi(G) = 0 (mod (q - 1))} .

®o = sii u a2 u a , .

Proo/. Suppose that G G ®0 - (2^ U %). Let a = £x - \ . Then
- )̂T(G) = 0 and
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Since G e ®0, ^(G) is rational. Thus ^(G) = rju(G) for 1 ^ i ^ q - 1.
As G g Six U 5la we must have that

(34.4) 0 ^ g ^(G) = %(G) + (9 - l)?n(G)

Suppose that Voi(G) = 0. Then since aT(G) = 0 we must have that
Vn(G) = 0 for 0 ^ t ^ q - 1. Hence by Lemma 13.1

0 = (1© - ?io - %i + Vn) (6) = 1 - ?10(G)

contradicting the fact that G g 2l2. Hence %i(G) ^ 0 and by (34.4)
Ge St3 as required.

LEMMA 34.7.

( i ) / / q ^ 5 £/Hm | ̂ P | = pq and u/c > 9p«-V20g.
(ii) If p,q^5 then c = 1 and u ^ (13/20) pf-Vg.
(iii) / / p = 3 and c =̂ 1 tAen w = 121, g = 5, c = 11.
(iv) Ifq = Sthenc = lorc = 7. Furthermoreu > (p* + p + 1)/13.
(v) Ifq = S then ty is an elementary abelian p-group and | $P | =

p3 or p = 7, c = 1 and | ̂ 51 = V.
(vi) If q = 3 and c = 7 tften u >(p 2 + p + l)/2.

Proof. If P̂U is a Frobenius group with | ̂ J | = pq, u — (pq — l)j{p — 1)
then all the statements in the lemma are immediate. Suppose that
this is not the case. Then by Lemma 34.1 S? contains an irreducible
character X which is induced by a linear character of $P£. By Lemma
34.2 O5S is a Frobenius group with | Q | = qp, v = (qp - l)/(q - 1),

, O and S5 are T.I. sets. Let ©0, %, %, % have the same
meaning as in Lemma 34.6. Then

a \ o o va Ig \ p q pq

(34.5)

= i + i _ j i i i i i i
p q pq qu pv quc \ $P | pvq"

Since XT is rational valued on ®0 by Lemma 10.4, Lemma 34.5 implies
that

( }
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If Lemma 34.3 is applied to % then Lemmas 13.1 and 34.4 yield that

9 9 «
<34.7) ^ l - ( l - - l - l + i )

\ p q pq!p q pq! pvq" \ty\iiqc

- 1 . 1 I t> 1 , 1
q pq pqp uq

Lemmas 13.1 and 34.3 also imply that

<34.8)

9 (q- l ) 1 g si,

^ l U _ d _ 1 _ 1 + M
(?-l)a I \ p « p?

(q - D1

Lemma 34.6 and (34.5), (34.6), (34.7) and (34.8) now imply that

! + 1 _L- (q> - 1) + i- - _L _ _i_ ̂  "g
Q PQ QM p|5 c

| H 5 | C ^ ""•

1

+

Since t; = (gp — l)/(g — 1), this can be simplified to

1 ^ (u + 2)g (c - 1) 1 1̂

|5P|c | 5 P | M ? pg* q pq qu

* +

• ( g - 1 ) • 1 ... ^
pq" pq(q-l) qe \ ? | (? - I)1

134 9̂
(^ + 2)g (c-1) u

,. (g + 1) ,. (g - 1)' - 1
pq(q -1) pq'(q -1)
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By Lemma 34.1 u ^ (pq - l)/(p - 1 ) and | %> | ̂  p9; thus (34.9) implies that

1 ^ ft* + 2)g (q + 1) 1
p "" 1 ? I o P<Z(? - l) C(P - l) do - D1

rf4.10)
pqq pq*-1 '

Let | SP | = p*a then

(34.11) » = c = l(mod 2g) .

Suppose first that p, q ^ 5. Then (34.10) implies that

l g f * g H 2 g + 8 r 1 h 2

Hence by (5.2)

V

Therefore

(34.12)

Therefore

(34.13)
20g

Suppose that ca ^ 1. Then by (34.11) ex > 2q. Thus (34.12) implies
that

13 < 1 J L < 1 1
20p 2 p> 2 ( p - 1 ) *

Thus 13(p — 1) < lOp or 3j) < 13 which is not the case. Hence c =
x = 1 and (34.13) completes the proof of statement (ii) of the lemma.

Suppose now that p = 3. Hence (34.10) yields that

(34 14) -1 ^ (u + 2)g + (g + 1) + 1 +-!- + -!-^ + +
3 ~ c*3« 3?(? - 1 ) 2g(g - 1 ) 1

As 9 ^ 5 this implies that

1 ^ Q u 1 1 (2g» + 1) 1
3 ~ c* 3' 10 160 3'q 75 '

Hence by (5.3)
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q u -.
ex 3« "

Thus

<34.15)

This yields that

Hence Aq > ex.
Assume that

, 1
• 3

160

ex =£

1 1
10 16C

-48-3-
480

ex

2q > 9
ex " 10

1. Then (J

-24

3
<

20

3,-i

u

J4.ll

1
20

- 1 0

31
q

^ 3
" 5

L) imiD

1
75

75
480

lies thi

<34.16) ex = 2q + 1 .

Suppose first then q ^ 11. Then (34.14) implies that

1 ^ q u 2 1 1 2g 1 1

3 ~ ex 3' 55 2.103 10.310 ex 310 300

Hence

J L J L > _ L _ _ 2 _ _ _ I _ > J L - J L = _5_
ex 3' 3 55 60 3 54 18 '

Therefore

q -
ex

s 3 '
U

5 v

18 "
. 2.5 N

18 '
s 1

2

contrary to (34.16). Suppose that q = 7. Then ex = 15 by (34.16).
Thus x = 3 and c = 5 since a is a power of 3 and (c, 8) = 1. This
contradicts (34.11). Hence q = 5. Thus by (34.16) ex = 11. Hence
x = 1 and c = 11 since a; is a power of 3. Thus statement (i) of the
lemma follows from (34.15) and statement (ii). If c =£ 1 then q = 5
and c = 11. By (34.15)

<34.17) u > I L ? . > 2* = (p - I)'-1 .

Hence by Lemma 34.1 u | (36 - l) /2 = 121. Thus u = 121 by (34.17).
This completes the proof of statement (iii) of the lemma.

Assume now that q = 3. Let y = (p2 + p + 1)/%. (y is not neces-
sarily integral) Then (34.9) implies that
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3(P2 + P + 1 ) A_ 6 , 1
p cxyp* cxp* 3p3u

2
3p

(p2 + p + l) ., 2

Therefore

or

(34.18)

1 < 37(p2 + p + 1) 6 + 1 |
3p 128 3 3 3

1 < + ^ + +
Acxyp cxp* p*u 2-3p

Suppose that cxy ^ 13. Then (34.18) implies that

37 (pa + p + 1) 1 19 1
52 pJ p2 52 '

Therefore 37(p2 + p + 1) > 51p2 - 52-19, or

1 4 p 2 - 3 7 p - 5 2 . 1 9 - 3 7 < 0 .

Therefore, p < 11. Hence p = 5 or p = 7. Since (6, u) = 1, Lemma
34.1 now implies that u \ p2 + p + 1. Thus w 131 if p = 5 and u \ 57
if p = 7. Hence one of the following must occur:

p = 5, u = 31, y = 1, ca ^ 13

or

p = 7, u = 19, 1/ = 3, ca> ̂  5 .

By (34.11)

ex = 7, p = 7 or ca ̂  13 .

If ex ̂ 13 then by (34.18)

! < 37 (p
2 + p + 1) 19 1

52 p2 13p2 52 '

Hence p < 5, which is not the case. Therefore we have shown that
either cxy < 13 or p = 7, u = 19, y = 3 and c<& = 7. If c<ci/ < 13, then
y < 13, and by (34.11) ex = 7 or ex = 1. Thus in any case

(34.19) u > p2 + ^ + 1 , ex = 1 or c& = 7 .
13

This proves statement (iv) of the lemma.
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If x =£ 1 then (34.19) implies that c = 1 and x = 7, hence p = 7
and | $P | = 7 \ Since (w, 6) = 1, Lemma 34.1 implies that u | 57, thus
u = 19. If D($) =t 1 then U acts irreducibly on ̂ /Z)(^P) and centralizes
D($). If ̂ P is non abelian this implies that D($) = Z(%>). Hence ty
is an extra special p-group contrary to the fact that 15P: D(ty) \ = ps.
Thus Sp is abelian. Hence | sprfl^sp)! ^ p. If Qffl) =£ sp this implies
that HO is represented on Qffi) and so U acts irreducibly on Qffi)
contrary to Dffl) C fl^sp) and U s C(Z)(SP)). Thus 5̂ is elementary
abelian. Statement (v) of the lemma is proved.

Suppose that c = 7 and 2/ ̂  2; then (34.18) implies that

! < 37 (p2 + p + 1) 19 1
56 p2 7pa 54 "

Therefore, p < 5 which is impossible. Hence if c = 7 then i/ < 2.
This proves statement (vi) of the lemma and completes the proof of
Lemma 34.7.

LEMMA 34.8. / / q ̂  5 then $pU/£ is a Frobenius group and
u\(p'-l)l(p-l).

Proof. By Lemma 34.7 (i) | ?p | = pq. Thus if P̂U/E is not a
Frobenius group then by Lemma 34.1 u\[(p — l)/2]g-\ Thus by Lemma
34.7 (i)

Therefore q > 29~2-(9/10) which is not the case, since q ̂  5.

LEMMA 34.9. If p, q ̂  5 tfeen e = l f | 5 P | = p f and either u—
{pq—l)l(p—l) or p = 1 (mod g) and u = 1/g [(p9 — 1)1 (p — 1)].

Proof. By Lemma 34.7(ii) c = 1. Lemma 34.8 implies that | ?P | =
pg and w | (p9 - l)/(p - 1). Let ux = (pq - l)/(p - 1). If p & 1 (mod g>
then

V -
= i (mod 2g).

Thus x = 1 (mod 2q). If p = 1 (mod g) then (p9 - l)/(p - 1 ) = 0 (mod q).
Hence x = 0 (mod q) as (w, q) = 1. Thus in any case x^2q if the
result is false. Now Lemma 34.7 (ii) implies that

pq — 1 13
p - 1 ~~ = = 10

Hence
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Thus 13 > 3p contrary to the fact that p ^ 5.

LEMMA 34.10.
| iV(SS*):SS*C(5?*) | = p or pq if p, q ^ 5 or p = 3, g ^ 7

= 3 or 15 or 33 if p = 3,q = 5
= p, Sp or lp if q = 3.

Proof. Let © be a complement of 5?*C(SS*) in JV(33*) which contains
P̂*. Every Sylow subgroup of @ is cyclic and every subgroup of prime

order is normal in @ by 3.16 (ii) and Theorem 33.1. Thus © g iVOP*) =
O**P&. Hence (£ = 5̂* or | @ | = pq or © S *p*(£. The result now
follows from Lemma 34.7.

By Theorem 33.1 U* is tamely imbedded in © unless U* = U and
Cy(U) =£ 1. By Lemma 34.7 this can only happen if p = 7 and q = 3.
In that case let ^ be the set of characters of @ which are induced
by non principal irreducible characters of ©7̂ P- In all other cases let
^o = ^* Define 5̂ " similarly. Then ^(^)T and ^(5^*)T are always
defined.

LEMMA 34.11. Suppose that y is coherent and p > q. If

dv* -1 v-1

- 1

JV(5S*): S3* | ^ jig. / / furthermore \ JV(SS*): S* | = pq then 1/p ^

Proo/. Let 6 = | JV(SB*): ®* |. Let + e ^ with
a = l r - r̂. Then || aT ||3 = || a \\2 = e + 1. Define

iS@, /3% vanish on © — @lf % — Zt respectively. As @x and 3^ are T.I.
sets in ©

(34.20) ||0$|P = ||iB6|p = JLzL + 2 , ||0* ||« = | |0 t |p = , ± ^ - 1 + 2 .

Furthermore by Lemma 13.8

(34.21) 0* = i@ ± %i + r © , 0 | = i@ ± %o + r%
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where /^~, F% are real valued generalized characters of © which are
orthogonal to 1@. The assumed inequalities and (34.20) imply that
(fT, £ | ) = 0 = (r, £$). Thus if of = 19 ± fT + r% then

0 = (a\ /3|) = 1 + fa, rj (mod 2)
0 = {<x\ £*) = 1 + fa, r%) (mod 2) .

Since P^ is rational valued on 2B this implies that

(Vio, r%) = fa, P%) = 1 (mod 2)

for 1^i ^ q — 1, 1 ̂  j ^ p — 1. Hence by Lemma 13.1

(1© - Vio - Vos + Vih «r) = 1 + (Vio, P®)

+ fa, / y + (la, r%) (mod 2) .

Thus (ftif r̂ g) * 0 for 1 ̂  i g ^ - 1, 1 ̂  j ^ p - 1. Hence

e + 1 = | | a r | | a ^ pq + 1 .

Suppose now that e = pq then

(QA OO\ syT — 1 _l_ «/rr _J_ V 7? -4- V 77 • 4 -
q-1 p - 1 g - 1 p - 1

— — ~̂  V '
1 j=l

Let ©o be the set of elements in © which are conjugate to some
element of 2tr with FeSS**. Since y is coherent by assumption,
(34.22) Lemmas 33.1 and 9.4 imply that fr(VC) = +(V) for

Furthermore Lemma 9.5 and (34.22) imply that

(34.23) i j 1 - i-L.r//3\|i =

By Lemma 9.5

(34.24) i | M = i S

Let ©x be the set of elements in © — ©0 which are not conjugate to
any element of 2B, sp<£ or OS). Now (34.22) implies that if Ge®,.
then -f r(G) is rational and

0 = a*(G) s 1 + <fr(G) (mod 2) .

Thus | f r(G) P ̂  1 for G 6 <&. Hence (34.23) implies that

g pqv*d \ p q pq

pv\£X\d
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Therefore

M ! + ±--L—L+ i i i
v*d P q pq pq pqv*d qu gi

1 1
pv pv | jQ | d *

."Since u > 2q, v >2p and p > q ^ 3

pg pg qu pv ga = g

rthus the required inequality follows.

LEMMA 34.12. / / U* ts cyclic then U* is a T.I. set in ® unless
"tt* = U and iV(U) £ @.

Proof. Since U* is a cyclic S-subgroup in JV(11*), U* is a S-subgroup
-of ©. Suppose that U* is not a T.I. set in & and let 1 =£ U* n G-'U*^ =
Ho £ U*. Then {JV(U*), N(G-m*G)} £ iV(U0). Since A(U*) is a maximal
subgroup of © this implies that {U*, G~m*G} £ AT(U*). Thus G"1U*G =
U* and U* is a T.I. set in ®.

35. Further Results About @ and S

The notation of Section 34 is used in this section. However we
will destroy the symmetry of © and X by choosing the notation so that

><35.1) q < P .

The next three lemmas are restatements of Lemmas 34.7, 34.8,
"34.9 and 34.10.

LEMMA 35.1. If q ^ 5 then c = d=l,v = (q*- l)/(q -1), | $ | = p<
-and | Q | = gp. Either u = (pq — l)/(p — 1) or p = 1 (mod g) and % =
VQ [(Pq ~ 1)/(P — !)]• Furthermore tyU and D3S are Frobenius groups.

| JV(U*): II* ] = g or pg and | JV(«*): ®* I = P or pq .

LEMMA 35.2. Suppose that q = 3. Then | jQ | = 3P,

d 20 p

-and OSS/35 is a Frobenius group with v \ (3P —1)/2. Either d — 1 or
«d = 11, p = 5 and t> = 121. Furthermore 5^ = %" and

:SS* | = P , 3p or lp .



998 SOLVABILITY OF GROUPS OF ODD ORDER

LEMMA 35.3. Suppose that q = 3. Then

| JV(U*): U*C(U*) | = 3 or 3p if p ^ 7

= 3,15 or 33 if p = 5 .

Furthermore one of the following possibilities occurs:
(i) c = l , u > ( p a + p + 1)/13, Sp is an elementary abelian p-group

with 15p | = pz or \ ty \ = 7\
(ii) c = 7, %>(pa + p + l)/2, 5̂ is an elementary abelian p-group

with | *p | = p8.

LEMMA 35.4. Either q = 3, p = 5, v = 11, u = 31 or

P Q

Proof. By (5.12)

^> p ' m

0 - 1 P

Therefore if t; = (gp - l)/(g - 1) then by Lemma 34.1

V-l _ 1 + • •. + g -̂1 - 1 g ( g ^ -
p p(ff - 1 )

P9-l x
l — 1) ^ p — 1 ^

Q(P-D = flf -

Suppose now that v =£ (gp - l)/(g - 1 ) . Then g = 3 by Lemma 35.1. By
Lemma 35.2 v\(3p - l)/2 and v > 9/20 -(S^/p). Thus if (v - l)/p ^
(u — l)/g then by Lemma 34.2

9 3*-1

20 ' y p* + p
p = 3 '

Hence p < 11. Thus p = 5 or p = 7. If p = 7 then i; | (37 - 1 ) /2 = 1093.
As 1093 is a prime this implies that v = (37 —1)/2 and the result follows
from the first part of the lemma. If p = 5 then v | (38 - l)/2 = 121.
Thus v = 11 and u \ 31. Thus tt = 31. The proof is complete.

LEMMA 35.5. 3^ is coherent.

Proof. Suppose that 9^ is not coherent. Then by Lemma 11.2
v*d is a power of some prime r. As 33/® is cyclic r = 1 (mod p). Thus
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(35.2) r > 2p > 2q .

Let | 33* : 0(33*) | = rw, then n ^ 3 by Lemma 11.3. By Lemma 11.1

(35.3) r* ^ 41 JV(33*): S3* |a + 1 .

Suppose that | JV(33*): S3* | = Ip. Then p =£ 7 and (35.2) and (35.3) imply
that rn S 200p2 ^ 50r3. If n ^ 4 this yields that r ^ 7. Then p = 3
by (35.2) which is not the case as p > q. Hence n = 3. Thus Lemma
11.4 implies that r3 ^ 2r(7p) + 1. Hence by (35.2) r2 ^ 14p < Ir and so
r < 7 which is impossible.

By Lemmas 35.1 and 35.2 we may assume now that | iV(S3*): S3* | S
pq. Thus (35.2) and (35.3) imply that

< r4 ,

thus n = 3. Hence Lemma 11.4 implies that

r3 ^ 2rpq + 1 < — .

This completes the proof in all cases.

LEMMA 35.6. d = 1. If \ N(%*): 53* | g pg */iew v* = t; or p = 5,
9 = 3, v = 11, v* = 121.

Proo/. If | JV(93*): 93* | > M then c * 1. Hence d = 1 by Lemma
34.2. Assume now that | JV(SS*):S5* | ^ pg-.

Assume first that d¥=l. By Lemmas 35.1 and 35.2 d = 11, q =
3, p = 5 and v = 121. By Lemma 34.2 u = (53 -1)/(5 - 1 ) = 31. Thus

dv* - 1 ^ IV - 1 > l l a - 1 _ v - 1
|JV(33*):93*I 15 5 p

and

dv* - 1 > l l a - l > 3 1 - 1 = u-1
|JV(33*):33*| ~ 15 3 q '

Hence by Lemmas 35.5 and 34.11 1/p ^ pqjv*d.
Thus

II8 ^ v*d ^ p'q = 75 .

Therefore d = 1.
Assume now that q = 3, p = 5, v = 11, w = 31. Let v* = w . x =

1 (mod 10) as v = v* = 1 (mod 10). If v* ^ 11 and v* t̂ 121, then
x ^ 21. Thus v* ^ 21.11.



V*
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V*
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1
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1 1 -

15

and

_ 21.11 - 1 3 1 - 1 „ u-1
|JV(S3*):S3*| 15 3 q '

Thus Lemmas 35.5 and 34.11 imply that 1/p g pq/v*. Thus 21.11 ^
v* ^ p2q = 75 which is not the case. Therefore v = v* = 11 or v* =
121, and we are done in this case.

By Lemma 35.4 it may now be assumed that (v — l ) /p>(u —
If v* = vx, then x = 1 (mod 2p) since v* = v = 1 (mod 2p). Thus

(35.4) v* = xv, x > 2p > 2q if a; ̂  1 .

Therefore

?;* — 1 ^ v* — 1 ^ 2vq — 1 . v — 1 . w — 1

Hence by Lemmas 35.5 and 34.11 1/p < pg/v*. Hence (35.4) and
Lemmas 35.1 and 35.2 imply that

Thus gp-2 < 2p2. Hence p < 7 by (5.4). Thus p = 5. Hence a; ̂  11^
(/ = 3 and v \ 121. By assumption v =£ 11, hence v = 121. Thus II8 ^.
v* ^ p2g = 75. This completes the proof in all cases.

LEMMA 35.7.

\N(a*):U*CQl*)\ = q or pq .

Proof. This follows directly from Lemmas 35.1, 35.2, 35.3 and 35.6,.

THEOREM 35.1. / / JV(U*) is conjugate to JV(SS*) then the conclusions;
of Theorem 27.1 hold.

Proof. By Lemma 35.6 if 53* ^ S3 then p = 5, q = 3 and v* = 121.
Thus u = 31. Hence u does not divide v*. Thus by Lemmas 35.1
and 35.2, S3* = S3 is cyclic. By Theorem 33.1 JV(5$*) is a Frobenius.
group with Frobenius kernel S3*. Hence by Lemma 34.12 S3* is a.
T.I. set in ®. Since Q* S iV(U*) and p 11 N(%*): S3* | Lemma 35.7
implies that JV(U*)/U* is a cyclic group of order pq. Thus condition
(iv) of Theorem 27.1 holds. Since S3* is cyclic so is 11. Thus £ char
U. Hence if £ =£ 1 then JV(U) £ © which is not the case. Hence
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c = 1. By Lemma 35.6 d = 1. Thus C(Q*) = O%* and COP*) =
Hence condition (iii) of Theorem 27.1 holds. If | $P | =£ pq or | D | =£ qp

9

then JV(U)S@ or JV(SS) £ 2 respectively. This implies that $ is
elementary abelian of order pq and d is elementary abelian of order
qp. Hence condition (i) of Theorem 27.1 holds.

Since U is cyclic and E = lf 3̂U and U&* are Frobenius groups
and N(W = @' = W- Since U* is cyclic every divisor x of | U* |
satisfies x = 1 (mod pq). Thus (| U |, p — 1) = 1. Hence by Lemma 34.1
| U11 (pq - l)/(p - 1). Let (p* - l)(p - 1) = y\ U |. Suppose that
p ^ 1 (mod g). Then 1/ = 1 (mod pq) since

P - 1
|U| =l(modpq) .

Thus if y =£ 1, then 2/ > 2p#. Furthermore Lemma 35.1 implies that
in this case q = 3. Thus by Lemma 35.3 (i)

13 > J£±£±L = „ > 2pq = 6p

which is impossible as p > 3. Thus 2/ = 1 and so | U | = (pq — l)/(p —1). Sup-
pose thatp = l(modq). Thenq\(pq-l)l(p-l). Henceu\llq[(pq-l)l(p-l)]
since (u, q) = 1. As g < p and w = (p' — l)j(p — 1) = 1 (mod p) we see
that u * 1/q [(pq - l)/(p - 1)]. Thus if y * l, Lemma 35.1 yields that
q = 3. Since c = 1, Lemma 35.3 (i) implies that u >(p2 + p +1)/13.
This is impossible since u = 1 (mod 3p). This verifies condition (ii) of
Theorem 27.1 and completes the proof of the theorem.

36. The Proof of Theorem 27.1

In this section the study of the groups @ and % is continued. All
the lemmas in this section will be proved under the following assumption.

Hypothesis 36.1
(i) q < P.
(ii) iV(ll*) is not conjugate to JV(33*).

The following notation is used in addition to that introduced in
Section 34.

and

= | N(H*): U*C(U*) | ,

If & 6 ^ then $\ is defined since | © | is odd. Let <2/x =
Then
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(36
3\x

(36.2) (Igj. - irY = 1« - * ' + /*« + *«

(36.3) ( I ^ Q . - /«„,)* = l(g ± ?„ + F% + 3^ for l^j£p-

(36.4) (I^p. - y«)* = la ± >7.o + T a + S D f or 1 ^ i g « - 1

where S"u, S^ are in ^(^T), ^(VT) respectively, Fn, F^ are orthogonal
to ^", 5^r respectively, -ff̂ , 5"̂  are linear combinations of the
generalized characters i),t and r%, Pa are orthogonal to each t],t.
Then ru, F^, Fy and .To are real valued generalized characters each of
which is orthogonal to 1@. Thus

(36.5) (ru , yB1) + (Fv, p) m 0 (mod 2) ,

(36.6) (Fm, i?01) + (r^, r) * 0 (mod 2) .

(36.7) (r t t, %,) + (rD , ?>') ^ o (mod 2) .

It is a simple consequence of Lemma 13.1 that

(36.8) (Fn, Vox) + (Fyy, %) + (Fn, T)u) & 0 (mod 2) .

(36.9) (Fjg, %t) + (Fsg, r]w) + (F%, T)a) & 0 (mod 2) .

By Hypothesis 36.1 (ii) <%rx is orthogonal to 9̂ "r. Thus

(36.10) (ru , V ) + ( /V ^') m 0 (mod 2) .

Since r is an isometry (36.1), (36.2), (36.3) and (36.4) yield that

(36.11) || Tu |P 2£ | NQ1*): U*C(U*) | - 1

(36.12) ||

(36.13)

(36.14)

Q

= V

LEMMA 36.1. <%s is coherent.

Proof. If @ is of type IV then by Lemmas 35.2 and 35.3 c = 1
or 7 so by Lemma 11.1 the result follows from Theorem 29.1. If @
is of type III then U = U* is abelian and the result follows from
Lemma 11.2. Suppose that ^ is not coherent. Then ^ = ^ 0 and
by Lemma 11.2 U* is an r-group for some prime r. Furthermore @
is of type II. Let e = | N(VL*): 11* | then by Lemmas 11.1,11.3 and
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11.4 II*' = D(VL*) =£ 1,

(36.15) IU*: U*' | = r» with n ^ 3 ,

(36.16) rn ^ 4e2 + 1, n ^ 4 or r3 ^ 2re + 1 and n = 3 .

Suppose first that U is not cyclic. Then by Lemma 35.1 q = 3.
If c ^ 1, then by Lemma 35.3 £ is cyclic and

Thus by Lemma 34.1 U/K is cyclic. Hence U is generated by two
elements. If c = 1 then Lemma 34.1 implies that U is generated by
two elements. Thus U =£ U*. As @ is of type II @ is a T.I. set in
@. Consequently there exists an element R of order r such that
U = CU*(R). Thus Z(U*) is cyclic. Hence r = 1 (mod e). This contradicts
(36.15) and (36.16).

Suppose now that U is cyclic. Thus r = 1 (mod q). By (36.16)
JV(U*)/11* is irreducibly represented on U*//)(U*). Thus D* acts as a
group of scalar matrices on U*/Z)(U*). Hence by Lemma 6.4 U* has
prime exponent. Since U is a cyclic subgroup of U* this implies that

(36.17) | IX | = r .

If q > 3 then Lemmas 35.1, 35.7 and (36.15) and (36.16) imply that

I.9) g i u |8 < 4e2 + 1 ^ 4pV + 1 .
q J

Hence p3q~6 ^ 5q* and so

539-10 ^ g3*-10 .^ p3«-10 < 5 ^

Thus Sq — 10 < 1 which is not the case.
Suppose that q = 3; If n ^ 4 then (36.16) and Lemmas 35.3 and

35.7 imply that

Hence

2>8 < (P2 + V + I)4 < 134(36p2 + 1 ) < 3.13V .

Thus p° < 3.135. Hence p < 13. If n = 3 then (36.16) and Lemmas
35.3 and 35.7 imply that

Hence
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P4 < (p2 + P + I)2 < 132-6p < 133p .

Therefore p < 13 in this case also. Thus p = 5, 7 or 11. By Lemma
34.1 and (36.17) either | U | \{p - 1) or | U | |p2 + p + 1. If | U | \(p - 1)
then p = 11 and | U | = 5 since ( |U| , 6) = 1. However in this case

>i0>ini
13

which is impossible by Lemma 35.1. Thus | U11 p2 + p + 1. Hence by
(36.17) if p = 5, |1X| = 31, if p = 7, |11| = 1 9 and if p = 11 then |H| =
7 or | U | = 19. If p = 5 then (36.16) and (36.17) imply that

313 ^ 36.25 + 1

which is not the case. If p = 7 then (36.16) and (36.17) imply that

193 < 36.49 + K 1800 .

Thus 192 < 100 which is not the case. If p = 11 and | U | = 19 then
(36.16) and (36.17) imply that

15.360 < 193 < 36.121 + 1 < 4800

which is not the case.
Assume now that p = 11 and | U | = r = 7. Then (36.15) and

(36.16) imply that

(36.18) 7* ̂  36.112 + 1 , 7* = 1 (mod 11) .

Since

T > 104 > 5000 > 36.11J + 1

we must have n ^ 4. However

T = 5, 7s = 2, 74 = 3 (mod 11)

contrary to (36.18). The proof is complete.

LEMMA 36.2. q = 3.

Proof. Suppose that q =£ 3. Then by (36.10) either (r u , ^r) =£ 0
or (r%, F) ^=0. If u = 1/q [(pq - l)/(p -1)], then u m 1 (modp). Hence
by Lemmas 35.1, 35.5 and 36.1,

- l or
pq pq

Therefore by (5.11) p*'1 < (pq - l)/(p - 1 ) < p2q\ Hence pq~* < q* < p*
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which is impossible for q ^ 5.

LEMMA 36.3. c = 1, | iV(SS*): S3* | = p or 3p.

Proof. Uc^l then c = 7 and u >(p2 + p + l)/2 by Lemma 35.3.
Since [(p -1)/2]2 < (p2 + p + l)/2 Lemma 34.1 implies that u \ p2 + p + 1.
Thus w = pa + p + 1. By Lemma 34.2 v = (3P - l)/2.

Suppose first that | JV(U*): IX* | = 3. Then by (36.8) T u = ± (%,+%,).
Thus (ru , 3?01) = 0. Hence (r ? , ^T) =̂ 0 by (36.5). Since ^ is coherent
(36.13) implies that

7 u * — 1 < I. r I is. < u —1 < u * - l
3 ^ I I ^ N ^ 3 = 3 '

which is not the case.
Suppose now that | N(VL*): U* | ^ 3. Then by Lemma 35.7

I JV(U*):U* I = Sp. Let cu* = xu = x(l + p + p2). Then x = 1 (mod 6p)
since

ct6* = w = 1 (mod 6p) .

As 1 < c ^ a; this implies that x ^ 6p + 1. Hence by Lemma 35.2
and (36.12)

(36.19) cu* ~ 1 > ^ ^ 2w > Ip -
3p op

Since ^ is coherent this implies that ( r s , ^T) = 0. Thus by (36.10)

(36.20) (Fn, r) * 0.

Since ^ is coherent (36.13) and (36.19) imply that (7^, 0T) = 0. Thus
by (36.5)

(36.21) (rn, %) * 0 (mod 2) .

Since 3^ is coherent (36.11), (36.20) and (36.21) imply that

Hence by Lemma 35.2

Therefore 3P - 3 ^ 28p2. Hence p = 5 by (5.5). Thus u = 31 and
v = 121. If the S7-subgroup of U* has order 7W, then 7n = 1 (mod 5).
Thus n ^ 4. Therefore
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u _ l ^ 1 ^ 1 1 > 24 = v_^
Sp 15 p

Thus the coherence of <%f implies that ( r a , <f>T) = 0. Hence (36.7) yields
that (ru , J?w) ̂  0 (mod 2). Therefore (36.8), (36.11) and (36.21) imply
that

ti j-i HI ?ri

« ± E 7iy ±

contrary to (36.20). Thus c = 1 and consequently | JV(55*): 53* | = p
or 3p.

LEMMA 36.4. | JV(U*): U*C(U*) | = Sp.

Proof. If the result is false then | JV(U*): U*C(U*) | = 3 by Lemma
35.7. Thus (36.8) implies that Tu = ±(7j10 + yn). Therefore by (36.5)
and (36.10) (7^, ̂ r) ̂  0 and (r^, ̂ r) ̂  0. Since u* ^u (36.13) implies
that w* = u and

(36.22) r$ = ± ? ^ '

where & ranges over ^ . Thus by (36.6) ( r s , %i) is odd. Hence by
Lemma 36.3 and (36.12)

/« = &£« ±§%y +4B •

where 6 is odd and J<g is orthogonal to all # , %y. Therefore by (36.22)

0 = ((l^r - AO\ (1«. - ^)r) = 1 ± 1 ± 6 ^ ^ •

Since 6 =£ 0 this implies that 161 (w — l)/3 = 2. Hence w = 7. Thus
by Lemma 35.3 (i) 7 ^ (p2 + p + 1)/13, hence p < 10. Hence p = 5
or p = 7. In either of these cases u \ (p2 + p + 1) by Lemma 34.1
since (u, 6) = 1. Thus 7 | 31 or 7 | 57 which is not the case.

LEMMA 36.5. | ty \ = pq.

Proof. If | $ | =£ pq then N(VL) E @ as 5̂ is a T.I. set in ®. This
contradicts Lemma 36.4.

LEMMA 36.6. 11 is cyclic.

Proof. By Lemma 34.1 if U is not cyclic then U = l^ x U2, where
each U, is cyclic and | U, 11 (p - l)/2. Let | VL{ \ = (p - l ) /2^ for i =
1, 2. If 1̂/2 ̂  4 then Lemma 35.3 (i) implies that
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13
. 2>J

>>*
+ v

13
+ 1 - (p - 1)J ̂ « (P - DJ

16 16

which is not the case. Thus yxy2 < 4. If yxy2 = 2 then p = 1 (mod 4)
and so | U | = (p - l)2/8 is even. If yxy2 = 3 then p = 1 (mod 3) and
so 31 u which is not the case. Thus y±y2 = 1 and u = [(p — l)/2]2.
Therefore ( (p - l ) /2 , 6) = 1. Thus p ^ l l . Furthermore u = 1/4 (mod p).
Since w* = 1 (mod p) by Lemma 36.4 we have that u* = w# and x =
4 (mod p). By Lemma 34.2 v = (3P - l)/2. Hence Lemma 36.3 and
(36.10), (36.11) and (36.12) imply that

(36.23)

The first possibility implies that 3P - 3 ^ 18p2 - 6p. Thus 3P"2 ̂  2p\
Hence p < 7 by (5.4). The second possibility in (36.23) yields that

( p ~~ 1)2 x - 1 ^ 9p2 - Sp .
4

Therefore

- 12p + 4

As p ^ 11 this implies that

(36.24) x < 36 (—£-

Let a; = 4 + zp for some integer z. Then since p ^ 11 (36.24) yields
that z < 4. Furthermore

(36.25) p < 41 ; if z ^ 2 , p < 20 ; if * = 3 , p < 14 .

As p < 41 and ((p - l)/2, 6) = 1, p = 11 or p = 23. If p = 23 then by
(36.25) x = 27 which is impossible as a; = 1 (mod 3). If p = 11, then
JC = 15, 26 or 37. As x = 1 (mod 6) this implies that x = 37. Then
u = 2b and so 37 = 1 (mod 11) by Lemma 36.4 which is not the case.

LEMMA 36.7. u = p2 + p + 1 or u = (p* + p + l)/3 or w =

(p2 + p + l)/7.

Proo/. If u | [(p -1)/2] 2 then by Lemmas 34.1 and 36.6 u \ (p -1 ) /2 .
Thus by Lemma 35.3 (i) (p - l)/2 > (p2 + p + 1)/13. Hence
2p2 — l i p + 15 < 0 which implies that p < 5. Therefore by Lemma
34.1 p2 + p + 1 = uy, y an integer. By Lemma 35.3 (i) y < 13. If
r is a prime such that p2 + p + 1 = 0 (mod r) then either r = 3 or
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r = 1 (mod 3). Hence y = 1, 3, 7 or 9. If y = 9 then p2 + p + 1 = 0
(mod 9). Hence p = 1 (mod 3). Thus p = 1, 4 or 7 (mod 9). In none
of these cases is p* + p + 1 = 0 (mod 9). Hence y = 1, 3 or 7.

LEMMA 36.8. u = u* = j? + p + l.

Proof. Let u* = ux. Assume that x =£ 1. w* E= 1 (mod 6p) by
Lemma 36.4. If u = pa + P + 1, then w = w* = 1 (mod 6p), thus
a; = 1 (mod 6p) and so x ^ 1 + 6p. Ifu = (p* + p + l)/3, then x = 3
(mod p). Furthermore a; = 1 (mod 6) since u = u* = 1 (mod 6) and
p = 1 (mod 6) since p2 + p + 1 = 0 (mod 3). Thus if x = 3 + zp then
1 = 3 + z (mod 6). Hence x ^ 3 + 4p. If w = (p2 + p + l)/7 then
a; = 7 (mod p). If x = 7 then by Lemma 36.6 the S7-subgroup of
U* is generated by two elements. Hence 72 — 1 = 0 (mod p) by
Lemma 36.4. However 72 - 1 = 48 and (p, 48) = 1. Thus x ^ 7. Let
x = 7 + zp. Then p2 + p + l = u=l (mod6). Hence p = 5 (mod6).
Thus 1 = x = 7 + 5z (mod 6), hence z = 0 (mod 6). Therefore x ^
7 + %p. Thus in any case

(36.26) u* = ux , a; ̂  4p + 3 .

Therefore (u* -l)l3p>(u-l)/3. Hence by (36.13) and the coherence
o f <%r

(36.27) (*'f />) = 0 .

Assume first that (0r, rffi) =£ 0, then by (36.12) and the coherence
o f <%f

(36.28) u* -1 ^ 3p _ x ,
3p

Suppose now that (̂ r, T^) = 0. Then by (36.10) (^r, Tu) ^ 0.
Hence the coherence of 9̂ " and (36.11) imply that

(36.29) *̂ ~ 1 ^ 8p - 1 .
op

By (36.27) and (36.5) (%i, Tu) * 0 (mod 2). If also (%,, Tu) were odd
then by (36.8) (rjiif ru) * 0 for 1 g i ^ g - 1, 1 ^ i ^ P - 1. Thus
by (36.11) (^T, r u ) = 0 contrary to what has been proved. Therefore
fa, rn) = 0 (mod 2). Hence by (36.7) ( r c , 0r) ^ 0. Thus by (36.14)
and (36.29)

tt*-l ^ j ^ l ^ v*-l < 9 f f 3

Now (36.28) implies that in any case
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U* -1 ^ gp j

For any prime r let Ur be the Sr-subgroup of U*.
Suppose first that u = p2 + p + 1, then x > 6p. Hence (36.30)

implies that

6(p2 + p + 1) - 1 ^ 27p - 9 .

Therefore 2p2 — Ip + 4 ^ 0 which is impossible for p ^ 5.
Suppose now that u = (p2 + p + l)/3 then x ^ 4p + 3 by (36.26).

Hence (36.30) implies that

Thus 4p < 81 or p < 22. Since p = 1 (mod 3) this yields that p = 7,
p = 13 or p = 19.

If p = 7 then w = 19. If 1^1 = 19" then n ^ 6 as |U ig| = l
(mod 7). Thus (36.30) implies that 196 ^ 27.72 ^ 194. If p = 13 then
^ = 61. Let | U811 = 61n, then n ^ 3 as | U^ | = 1 (mod 13). Hence
(36.30) implies that 618 ^ 27.132 < 61s. If p = 19 then u = 127. Let
| U1271 = 127n, then n ^ 3 as | Uia71 = 1 (mod 19). Hence (36.30) implies
that 1273 ^ 27.192 < 1273.

Assume finally that u = (p2 + P + l)/7 then x ^ 6p + 1. Thus
(36.30) implies that

Therefore 6p < 27.7, so p < 32. Since p2 + p + 1 = 0 (mod 7),
p = 2 (mod 7) or p = 4 (mod 7). Thus p = 11 or p = 23.

If p = 11 then w = 19. Let |U19| = 19"; then n ^ 3 as |U19| = 1
(mod 11). Hence (36.30) implies that 193 ^ 27.112 = 287.11 < 193. If
p = 23 then u = 79. As | U* | s 1 (mod 23), | ̂  | S 793. Hence (36.30)
implies that 793 ^ 27.232 < 793.

Therefore u = u* in all cases. Hence u = 1 (mod p) by Lemmas
36.4 and 36.5. Since (p, 6) = 1, 7 =£ 1 (mod p) and 3 ^ 1 (mod p).
Hence by Lemma 36.7 u = p2 + p + 1.

The proof of Theorem 27.1 under Hypothesis 36.1 is now im-
mediate.

Let q = 3 and p have the same meaning as in the earlier part
of this section. By Lemma 35.2 | D | = qp. By Lemma 36.5 | ̂ 31 = pq.
The other properties of Condition (i) follow from the structure of @
and £ and Theorem 14.1. Thus Condition (i) is verified. By Lemma
35.6 C(D) S O. Hence C(O*) = $*£>. By Lemma 36.3 C(?P) E ? f

hence C(̂ 5*) = P̂iQ* by Lemma 36.5. The other properties of Condi-
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tion (iii) follow from the structure of @ and Z. Thus Condition (iii)
is verified. Lemmas 36.6 and 36.8 imply that U = C(U) is cyclic. By
Lemmas 34.12 and 36.4 U = U* is a T.I. set in ®. Hence Lemma
36.4 completes the verification of Condition (iv).

Lemmas 34.1, 36.3, 36.5 and 36.8 imply that $PU is a Frobenius
group. Lemma 36.8 implies that |U| = (pg — l)/(p — 1). Lemmas 36.4,
36.6 and 36.8 imply that if u0 \ | U | then u0 = 1 (mod pq). Thus
(| U |, p — 1) = 1. The other statements in Condition (ii) follow from
the structure of @ and £.

By Theorem 35.1 this completes the proof of Theorem 27.1 in
all cases.



CHAPTER VI

37. Statement of the Result Proved in Chapter VI

The purpose of this chapter is to prove the following result.

THEOREM 37.1. There are no groups ® which satisfy conditions
(i)-(iv) of Theorem 27.1.

Once it is proved, Theorem 37.1 together with Theorem 27.1 will
serve to complete the proof of the main theorem of this paper. In
this chapter there is no reference to anything in Chapters II-V other
than the statement of Theorem 27.1. The following notation is used
throughout this chapter.

© is a fixed group which satisfies conditions (i)-(iv) of Theorem
27.1.

| U | u
v -1

U* = C(U) and \VL*\=u*.
U* = <C^>, U = Url% . Thus U =
Do = [£}, «p*] so that 0 = Q * x Q o .

P and Q are fixed elements of sp** and £}** respectively.
For any integer n > 0, ^n is the ring of integers mod n. If n

is a prime power then ^~n is the field of n elements.
U acts as a linear transformation on 5̂. Let m(t) be the minimal

polynomial of U on sp. Then m(t) is an irreducible polynomial of
degree q over J^ . Let co be a fixed root of m(t) in ^ » . Then a>
is a primitive uth root of unity in ^pq and Q),o)p, •••,<w»flr~1 are all
the characteristic roots of U on $p.

38. The Sets J ^ and &

LEMMA 38.1. There exists an element YefCfi such that $P* nor-
malizes

Proof. £}* normalizes U* and D* is contained in a cyclic sub-
group of JV(U*) of order pq. Hence some element of order p in C(Q*)
normalizes U*. Since C(Q*) = £$$* every subgroup of order p in
C(D*) is of the form Y-^*Y for some F e £ V Hence it is possible
to choose FeOo such that F"1^* Y normalizes U*. Since [ $ * , U ] E $ ,

ion
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SP* does not normalize U*, hence F G D J and ̂ p* normalizes YVL*Y'\

From now on let

(38.1) Z, = YU.Y-1, Z = YUY-1 = Zf1"

where Y satisfies Lemma 38.1. Notice that D* normalizes <Z2>, since
Q* normalizes 11 * and Y centralizes Q*. Define v, we%*u* by

(38.2) P-1Z1P = Z1\ Q-1Z1Q = Z?

LEMMA 38.2. / / Zo e <Zj>, ae3Tp, bearg then
unless a = 0 and 6 = 0.

Proo/. Zo-\P-aQ-%Q>Pa = 2J-1-1 . Hence PaQ6 acts trivially on
(ZoXZ;0"6-1). However if Zo # 1 then ^*d*<^o> is a Frobenius
group with Frobenius kernel <^0>. Thus <Z0> = (Zo1**1"1) as required.

LEMMA 38.3. Every element of $PU Aas a unique representation
in the form PmilU)Ua

f where ae%*u and m^t) is a polynomial of
degree at most q — 1 over %p.

Proof. There are upq ordered pairs (m^t),a) with a e ^ t t and
mx(t) of degree at most q — 1 over ^ , . Thus it is sufficient to show
the uniqueness of (m^t), a) in such a representation.

If pmiunfja = Pmnu)Ua>u T h e n reading mod ^yields that a = a'.
Since m(£) is irreducible we get that m^t) = m[{t) (mod m(t)). Thus
mx(t) = wl(t) as required.

LEMMA 38.4. Every element of $PU — U has a unique representa-
tion in the form U*PVU', where x9ze^u and ye%Tp, y =£ 0.

Proof. If X e $ U - U and

X= UXPVU'= U*iPv>U'i

then reading mod P̂ we get that x + z xx + zlm Hence

Since X&VL, y =£ 0. As (i6, p — 1) = 1 we have that x = xlf and so
y = yu % — zx. The representation is unique. There are u\p — 1)
ordered triples (x, y, z) with x,zz %*u and y e ̂ , , y =£ 0. Each triple
gives rise to an element of SPU - U and |*PU - U| = u\p - 1). The
result now follows.

LEMMA 38.5. Let x,z,ge2rp = ^ ; y,f,he %*u. Then
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p*UvP'UfP°Uh = 1

if and only if
( i ) V+f+h = 0
(ii) xcov + z + gcov+h = 0.

Proof. Let R = P*UvP'UfP°Uh. Then

Thus by Lemma 38.3 12 = 1 if and only if

y + h+f=O, x + zt~v + gt~y-f = 0 (mod m(t)) .

The first equation allows us to rewrite the second as

xP + z + gty+h = 0(mod m(t)) .

Thus the lemma is proved.

DEFINITION 38.1. The set s/ is defined to consist of all ordered
triples (alf a2, a3) such that

( i ) a{ £ 3TUf a{ ^ 0 for i = 1, 2, 3.
(ii) ax + aa + a3 = 0.
(iii) PUaiP-*Ua>PUa* = 1.

DEFINITION 38.2. ^ is the set of all elements ax e ^ t t such that
(alf a2, a3) e j y for suitable a2f a3.

LEMMA 38.6. \ \ \ \

Proof. If (alf a2, a3) e J^ then by Lemma 38.4 a2 and a3 are de-
termined by Ox.

LEMMA 38.7. (alf aa, a3) ejV if and only if
( i ) a< G jTtt> a4 9fc 0 /or i = 1, 2, 3
(ii) a1 + a1 + a1 = 0
(iii) a)01 + G>°1+O» - 2 = 0.

Proo/. By Lemma 38.5,

PUaiP-*Ua*PUa* = 1

if and only if ax + aa + a3 = 0 and <wai — 2 + coai+a* = 0. This implies
•the result.

LEMMA 38.8. / / (alf a2, a3) e j ^ , f̂eew (—a3, — alf —a3) e j ^ .
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Proof. If (alf a2, a3) e s/ then by Lemma 38.7 or"2 — 2 + a)*1 = 0.
As ax = —a2 — a3 this yields that

o)-«2 — 2 + ty-°2-a3 = 0 .

As — a, — a1 — a8 = 0 the result follows from Lemma 38.7.

LEMMA 38.9. For 0 ^ i ^ p — 1 let ^ be the conjugate class of
SPU which contains P* and let ^ be the sum of the elements in E£

in the group ring of 5$U over the integers. Let

If q>3, then c2 ̂  2.

Proof. Let fi0, fJtlf • • • be all the irreducible characters of
and let Xu X*> ''' ^ a ^ the other irreducible characters of spit. It
is a well known consequence of the orthogonality relations ([4] p. 316>
that

Since II is cyclic, ^(P) = ^(Pa) = /^(l) = 1 for all i. By 3.16 %;(1) =
for all i. Thus

(38.3) s ^ \

By the orthogonality relations

^ I Xy(-P€) I" ̂  I C(P*) | ^ f̂  for U i S P » l .

Therefore

(38.4) | S ZiCP)2^^) I ̂  (max | %i(Pa) I) £ I Z,(P) I2 ̂  P3"2.

By (38.3) and (38.4)

I P'Ci - u* | ^ p 3 f f / 2 .

Thus

(38.5) p«c2 ^ %a - p3?/a .

Since u = p ' "" 1 > p*~l (38.5) yields that
p - 1

ca ^ — -
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As q > 3 and q is a prime we have q ̂  5, and the lemma follows.

LEMMA 38.10.

Proof. Assume first that q = 3. Consider the set of polynomials
of the form fa(t) = t* + at2 + (a + 6)t - 1 with a e %TP. There are p
of these and none of them has 0 as a root. Thus if fa(t) were re-
ducible for every value of a there would exist a =£ b such that fa(t)
and fb(t) have a common root c e J^~v. Then

ac2 + (a + 6)c = 6c2 + (6 + 6)c .

Since c =£ 0 this yields that a(c + 1) = b(c + 1), hence c = — 1. How-
ever /.(—1) = — 8 =£ 0. Thus there exists some polynomial fa(t) which
is irreducible over ^*v. Let a be a root of fa(t) in J^~v%. Then

= l f ( 1 + a)p«+F+i = - / . ( - l ) = 8 .

Therefore a = a>°3 for some a3 e ̂ , a3 ̂  0, and 1 + a = 2a)~ai for some
«i e %**, a>i * 0. Furthermore -coa* + 2o)"ai = 1. Thus <yO1 + a>ai+a3 - 2 = 0.
Since co^ ̂  1, ax + a3 ̂  0. Hence by Lemmas 38.6 and 38.7 | J ^ | =
j . ^ I > 0.

Assume now that q > 3. Then Lemma 38.9 implies the existence
of a, be %*„, with a =£ 0 or 6 =£ 0 such that

jj-aPUaU-bPUb = P 2 .

Therefore

<38.6) puip-tu-apua-b = !

Let ax = 6, a2 = —a, a3 = a — 6. Then ax + a2 + a3 = 0. If 6 = 0
then (38.6) becomes P~lXJ-aPUa = 1; as ̂ 511 is a Frobenius group this
implies a = 0 contrary to the choice of a and 6. If a — 0 then (38.6)
implies that PWP^U^ = 0, hence 6 = 0. I f a - 6 = 0 then (38.6)
yields that PUaP-2U~aP = 1 or Ua commutes with P2. Thus a = 0,
hence also 6 = 0. Therefore alf a2, a3 are all non zero and by Definition
38.1 and Lemma 38.6 \J*\ = \&\>0.

The following result about finite fields is of importance for the
proof of Theorem 37.1.

LEMMA 38.11. For xejrpq define N(x) = x^^"'^'1 and for

x =̂ 2 let x" = — - — . If ae J^* - ^ , then for some i, Nia**) ̂  1.
£t — X

Proof. Assume that the result is false and N{ofx) = 1 for all i.
We will first prove by induction that
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(38.7) of* = - ( / - l)g + * for i = 1, 2, • • •
-%OL + (% + 1)

If i = 1 (38.7) follows from the definition of a. Assume now that
(38.7) holds for i = k - 1. Then

«•* =
o f-(fc-2)« + A;-l

I -(k -l)a + k
__ -(fc - l)a: + A;

-2(/k - l)a + 2k + (k - 2)a - (k - 1)
-(A; - 1)« + A;

This establishes (38.7).
Now (38.7) implies that for j ^ 1,

Therefore

Thus

(38.8) N(-aa + a + 1) = 1 for a e jrv .

Define /(*) by

(38.9) / ( * ) = (t - a ) ( t -a>)-..(t- a""1) .

Thus /(«) has coefficients in J*~r an<i (38.8) yields that

(38.10) o*/(-5L±i) = a'ivf-^-±A - a) = AT(o + 1 - oa) = 1
\ a / \ a /

for a e ̂ , a ^ 0 .

Let 6 = a + 1 for a ^ 0, then a = — i — . Hence (38.10) yields that
a 6 — 1

for 6 e ^ , 6

Therefore

(38.11) /(6) - (6 - 1)' = 0 for 6 e ̂ , 6 * 1 .
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f(t) — (t — l)q is a polynomial of degree at most q. By (38.11)
f(t) — (t — I)9 has at least (p — 1) roots. As (p — 1) > q we must
have that f(t) = (t - \)\ By (38.9) a is a root of f(t), hence a = 1
contrary to the choice of a. The proof is complete.

39* The Proof of Theorem 37.1

LEMMA 39.1. There exist functions f, g, and h such that
( i ) / and h map 2TP x 2TU x 3£p into %*„,
(ii) g maps 3?px 3?ux %rp into 3?p,
(iii) p*UyP'Uf{x-v'9)P9{x'y'a)Uh{x'v'M) = 1 .

Furthermore for x^O, y=£0, z=£0 (iii) determines f(x, y, z), g(x, y, z)
and h(x, y, z) uniquely and f(x, y, z), g(x, y, z), h(x, y, z) are all non-
zero.

Proof. By Lemma 38.4 the functions exist and are uniquely de-
fined by

P*UvP'UfP°Uh = 1

provided that PXUVPK does not lie in U. It is easily seen that if
x =£ 0, y =£ 0 and z ^ 0, PXUVP* does not lie in 12.

Suppose that f(x, y, z) = 0. Then PxUyPt+0 = U-heVL. Then
y = -h and UvPg+9U-y = P~x e 5p*. Therefore either y = 0 or x = 0.

Suppose that g(x, y, z) = 0. Then PXUVP' = U~f-k. Thus y =
- / - A and UvPgU~v = P~x. Hence s = 0 or y = 0.

Suppose that h(x, y, z) = 0. Then UvP'UfP0+x = 1. Hence
2/ + / = 0, then UvP'U-y = P"'—. Thus 2/ = 0 or 2 = 0. This com-
pletes the proof of the lemma.

Throughout the rest of this section / , g, h will denote the func-
tions defined in Lemma 39.1. For x e ^P9 Fas in Lemma 38.1, define

Yx= Y-XP-XYPX .

LEMMA 39.2.

( i ) Y9 = Y-'P-X YPX = P~x YPX y - 1

(ii) YP'Y-'= YziP'
(iii) YP'Y-1 = P'Y0 ,

for x,z,ge %p.

Proof. Since Pe 5̂* g JV(JDo) and Do is abelian, ( i ) is immediate,
(iii) is a direct consequence of ( i ) . By definition Y-B = Y^
Thus Yzl = P'Y~1P-Y= YP'Y-'P-' which implies (ii).

LEMMA 39.3. For aejT,, p-*UPx = Y~lUmmYm.
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Proof. By (38.2) P*ZP~* = Z°s. By (38.1) Z = YUY~\ Hence

Y-1PmYUY-1P—Y= Uv~x .

Conjugating both sides by P*f we get that

If both sides are raised to the i^th power, the lemma follows.

LEMMA 39.4.

Proof. Substitute (38.1) into (iii) of Lemma 39.1 to get

P* Y'ZV YP" Y-'Z' YPg Y^Zh Y=l.

Conjugate by Y"XPM to get

Now use the results of Lemma 39.2 to derive that

YsZ
vYilP'Z*P°YgZ

hP* = 1

which implies the lemma.

LEMMA 39.5. / / (alf a2, a3) e s/\ then

Proof. In the definition of j y conjugate (iii) by P2. Then

p-Hjaip-2U«*PUa*P2 = 1 ,

or

Hence Lemma 39.3 yields that

(Y^U^Y^Yf'

Since O is abelian, this implies that

Conjugating by T"1 implies the result by (38.1) and the fact that O
is abelian.

LEMMA 39.6. For (alf a2, a3) e s/ define
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91 = 9(2, a,v9 - 3 )
92 = 9(1, -a3v\ - 3 )
9s = 0(1, a%v\ - 2 )
kx = h(2, axv, - 3 ) - h(l, -azv\ -
k7 = - / ( 2 , alV, - 3 ) - h(l, a,v\
kz = - / ( I , a2v\ -2)v-*+f(l, -a,v\ -3)

k = - f l f s - 1 .

Proof. Use Lemmas 39.4 and 39.5 to obtain

,-3) y - i p-gca.a^.-s) ̂ -/(a.onj.-s) pa

a.-S) y - i p_&(1>_o3

-1 »(1 -o3t»2,-3)*

Multiply on the left by Y^^^Z^^'^P2 and on the right by

to get

where

C =

or equivalently

A = p-*iZk*P2, 5 = PkZk*P°*, C =

The lemma follows.

LEMMA 39.7. Let (alt aa, a3) G j ^ . C/se the notation of Lemma
S9.6. / / &! =£ 0, ifeen there exist elements clf cB e %*p such that

( i ) fcs*0
(ii) k2

Proo/. Conjugate (39.1) by Q. Since SP*Q = C(Q), this yields
that
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Y^Z^PY-1 = p-'LZwk*P2Y-1PkZv>k*P°>.

Taking inverses we get

Y^P-'Z-^Y-1 = p-oiZ-^P-xY^P-'Z-

Multiplying this by (39.1) on the left yields

2 i 7 = p i Z % p Y P Z * P Y p-*Z~wk*P01 .

Conjugating by P~01 yields

P9lY Z{1~w)klY~1P~Oi = zk2P2Y~1PkZa~~w)k*P~kY p-*z~xok*.

Use Lemma 39.2 (iii) and (38.1) to get

YP91 Y'1 YUa~w)kl Y~l YP~Qi Y~x

Conjugate this by Y to obtain

~1P~kY p-*

Multiply on the left by U~k* and on the right by Uwk* to obtain

U-kipOijja-w)k1p-Olii'wk2 = y^JJHa-w)^-!
(39.2)

Wx= Y-lP*Y-lP*Y.

Suppose that Uk*{1-W) = 1. Then (39.2) implies that

-gi __ fj{\-w)k2 ^

By Hypothesis kx ̂  0, hence by Lemma 38.2, U{1-W)kl =£ 1. By Lemma
39.1 & =£ 0. Thus the above equality cannot hold in the Frobeniua
group $PU. Hence Uk^~w) 4=- 1. This proves statement ( i ) of the
lemma.

Let Uo= WlU
k^'w)Wr\ By (39.2) Uo is a conjugate of Uk*a-W)

which lies in spit. All conjugates of Uk^l~w) which lie in 11 are of
the form

with c3 e 3TP, c' e 3?g. Hence

(39.3) u0 = WJJW-** wr1 = wa-
1^rt3(1-|O)ijC3ll'c' w2

for some W,e^. Thus W2W1eN(U). Since QeiV(lX), we get that
Q-'W.W.Q e N(U). By (39.2) W& = QWlf thus Q~YW2WXQ = Q"1 W2QW^
Hence

&-1 WflQ = W2 W^Q-1 Wr1 W^Q) e N(U) .
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However W2Q-1W2~
1Q e ^. Since 5pnJV(U) = l, this yields that

Q e C( W2). Hence W2 e $ n C(Q) = $*. Thus

(39.4) W2 = Pc*

for some c2 e 2TP. Now (39.2) and (39.4) show that

Since P e i V « Z » , we have Y'lPY e N(0), thus £VP* n N(U) =
<y-1PF>. Therefore

(39.5) tr 2 w;= r-ip«or

for some coe 3T9. Consequently

(W2W1)-
1Uk*{1-w)vC3v)GtW2Wi = i/*3(i-«

If this is compared with (39.3) we see that

(39.6) c0 + c3 = 0, c' = 0 .

Using (39.4) and (39.6) in (39.5) leads to

(39.7) Wx = P~e* Y-lP"* Y.

Comparing (39.2) and (39.7), we get

p-c2Y-ip-ciY = Y~1P*Y-1PkY.

Conjugating by Y~x gives

(39.8) yp-Ciy-ip-c3 = piy-ip* .

If we substitute (39.7) into (39.2) we get

Multiply on the left by XJ-^P'* and on the right by
to get

Since the right hand side is the left hand side conjugated by Q, we
see that Q centralizes the left hand side. Hence

(39.9) u-k*vC3Pc*U-k*P°iUkl = PCl

for some cx e %v. Reading (39.9) mod ty yields that

kx = k2 + kj)c*

which proves (ii) of the lemma. Substituting ( i i ) of Lemma 39.2
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into" (39.8) we get that

(39.10) P*Y£Pk = Y~

Substituting (39.10) into (39.1) leads to

Y ZklPY~x = p-^Zk*Yr

Multiply on the left by P01 and on the right by P~g*. Then using
Lemma 39.2 (ii) and (iii) this becomes

Use Z = YUY-1 to get

YP9lUklY"1PYP"°*Y~1 = YUk*Y~lYr1P~~er~c*YUk*Y~1 .

Conjugate by Y and multiply on the left by U~k2 to get

(39.11) tf-*ip*tf*iy-ipyp-t« = Y^Y^P-r-

Conjugate by Q and take inverses, then

Multiply by (39.11) on the right to get

Conjugate by Wr1 to get

~XP~X YU~klWP~01 Uk*{w~x)Pgi Ukl Y-

Using (39.2) and (39.3), this yields

'^P-1 Y{ U-klWP~91 Uk*{w-l)P01 Ukl} Y-

Now by the second equation in (39.12)

Thus the first equation in (39.12) implies that

By (39.3) and (39.4), C(U0) = p-°*VL*Pc\ Hence

(39.13) U'k^P9lUh^Y'lPYP'9*Wcl

for some U2eVL*. We wish to show that UaGU. To do this con-
jugate (39.13) by Q to get
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(39.14) u-k*w*Poi Ukiw2 Y-'PYP-o* W,-1 = P~c* U?PC*

by (39.7). Multiply (39.13) by the inverse of (39.14) on the right to
get

(39.15) u-**>p9iUkvU-klW*P-9lUk*°* = p-c*Ul-wPC2.

By Lemma 38.2 U2 and U^ have the same order. Since the left
hand side of (39.15) is in SPU, this implies that the order of U2 divides
u, thus U2eVi.

Multiply (39.13) on the left by U^P** and on the right by
WXP'*Y-1P-1Y to get

(39.16) U^P** U-k^P°l U^w = Pc* WxP
g* Y^P-1 Y.

By (39.7) the right hand side is in C(Q), while the left hand side is
in %n. Since C(Q) n W = P̂*, this yields that

(39.17) u-ipc2jj-k*wPOlUkiv> = Pc"

for some c" e 3Tpm Conjugate by Q~x to get

U2-
w~lPC2U-k*P°iUki = Pc" .

Comparing this with (39.9) yields that

so that

J7,-'1 = Uh*91, d = c"

Using (39.16) and (39.17) this yields

pCl =

or

Hence by (39.7)

This immediately implies (iii) of the lemma and thus completes the
proof.

LEMMA 39.8. Let (alf a2, a3) e s/> and let kx have the same meaning
as in Lemma 39.6. Then kt = 0.

Proof. Suppose that k± =£ 0, so that Lemma 39.7 may be applied.
Let
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h, = h(2, a,vf - 3 )

h2 = A(l, a2v\ - 2 )

h5 = ha, -a,v\ -3) .

By Lemma 38.5 (i)

, a,vf - 3 ) = -axv - h,

/ ( I , a2v\ - 2 ) = - a ^ - h2

/ ( I , -azv\ - 3 ) = a3i>
2 - fc3 .

Hence in the notation of Lemma 39.6

k1 = h1- Jk.tr1

k2 = axv + hx — hiV*

Since ax + a2 + a3 = 0, this yields that

k5 = —dtV* + hiV"1 — h3

kx — k%= —axv + h2v~2

Thus

or

k2

By Lemma 39.7 (ii) this implies that kz{y
c* - v~x) = 0. If c3 ̂  - 1 ,

then by Lemma 38.2, (vc* — v~x) has an inverse in ^ . Thus k3 = 0
contrary to Lemma 39.7 (i). Therefore c3 = —1. Now Lemma 39.7
(iii) becomes

(39.18) Y-'PYP-0* = P-c* Y^PY.

Reading (39.18) mod O implies that flr2 = clB Thus (39.18) yields that
Y~XPY and P"^2 commute. Since g2 ̂  0 by Lemma 39.1, this implies
that

Thus yeOo fl C(P) = {1} which is not the case. Therefore kx = 0 as
required.

LEMMA 39.9 Let (au a2, a3) e j y , Ze£ &2 and A;3 have the same
meaning as in Lemma 39.6. Then k2 = k3 = 0.

Proof. Since ^ = 0 by Lemma 39.8, (39.1) becomes
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<39.19) Y^PY-1 = p-°iZk>P*Y-

•Conjugating by Q and using (38.2) we get that

{39.20) Y9lPY£ = P-*Z"h*P*Y

Now (39.19) and (39.20) imply that

Y

Therefore

(39.21) par-\p*z*s ( i-w)p-*r,3p-a =

Suppose that fc3 =£ 0. Then by Lemma 38.2 fc3(l - w) =£ 0. As
<Z> is a T.I. set in ©, (39.21) now implies that P a r- \P*e AT(<Z>).
As P e i V « Z » this implies that

y-ip-,3yp,3 = Ygz e N{(Z» n Qo = <1> .

Therefore POi commutes with Y. Hence g3 = 0. This is contrary to
Lemma 39.1. Thus &3 = 0.

Now (39.21) implies that k2(w — 1) = 0. Therefore by Lemma
38.2 k2 = 0.

LEMMA 39.10. Let (alf a3, a3) e sf and g3 have the same meaning
•as in Lemma 39.6. Then g3 = 1.

Proof. In view of Lemmas 39.8 and 39.9 equation (39.1) becomes

(39.22) YOlPY~l = P-°iP2Y-1PkP0* .

Reading (39.22)}nod Do implies that

1 = - 0 i + 2 + k + g2

•or using the definition of k

(39.23) - 1 - & = k = - 1 + gx - g2 .

Hence g3 = g2 — gx and (39.22) becomes

<39.24) Y^PY-1 = P2-'1 Y-L,^-1.

P acts as a linear transformation on Do. It is convenient to use
the exponential notation. Thus Yp = P^YP, so that Ys = Y~1+p\
(39.24) can be rewritten as

In exponential notation this becomes
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(39.25) y(-i+p&1)p+u-p*a) __ ya-pw-f i jpn- 1

Define

(39.26) A = ( - 1 + P^)P + (1 - P") - (1 -
= (1 - P) + P ' I - ^ P 2 - 1) - P°*-\P - 1) .

Since Sp*O0 is a Frobenius group with Frobenius kernel Do, 1 — P is
an invertible linear transformation on OQ. By (39.25) A annihilates
Y. Hence also A(l - P)"1 annihilates Y. By (39.26)

- P)-1 = 1 - P°i-\P + 1) +
= 1 - P'1 + 1 - P'1"1 - 1 +

Therefore

V V"1 V"1 — yt

Thus

(39.27) y ^

By Lemma 39.3

By (39.27) this yields that

(39.28) y-ix y-1 ̂ -f*"x y

Lemma 39.2 also implies that

Raising this to the v99r9l~1th power we get that

(39.29) y - 1 Uv°2'1 Y9l = P-'1 ̂ •gi~gi"1P

Now (39.28) and (39.29) yield that

(39.30) Y-^P-'iCT-'i-'i-'p*ygi_x =

Another application of Lemma 39.3 gives

(39.31) F-I^-X-i = P-^

Thus (39.30) and (39.31) imply that

Since & =£ 0, P - ^ ^ ^ ^ P ^ g U . Therefore
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As ty is a T.I. set in © (39.32) now implies that

Therefore P*1"1 commutes with Y and so g1 = 1. Now (39.27) yields
that Y§r.i = Y19 or

y-ip-(ga-i)yp(aa-i) = Y'~1P"mXYP

Consequently p-<n-» yp<n-» = F. Hence & = 2. Now (39.23) implies
that & = 1 as required.

LEMMA 39.11. Let & have the same meaning as in Definition
38.2. J / a e ^ then — a e ^ .

Proof. Let 0 = ^ 6 ^ and suppose that (a19 a2, a3) e j y . By
Lemma 38.8 (—aa, — alf -a 3) G j / . Let (—a2, — aif —a3) play the role
of (alt a2, a3). By Lemma 39.10 g3 = g(l, —a^v*, —2) = 1. Thus Lemmas
38.5 and 39.1 imply that

(39.33) -ay + / ( I , -axv\ - 2) + *(lf - a ^ 3 , - 2 ) = 0

(39.34) <w-aitj3 - 2 + a>-«i«l+*tt--^8.-» = o .

Let b, = - a ^ , 62 = / ( l , - a^ 3 , - 2 ) and 63 = h(l, - a ^ , - 2 ) . By
Lemma 39.1 6< ̂ = 0 for i = 1, 2, 3. By (39.33) 6X + 62 + 63 = 0. Now
it follows from (39.34) and Lemma 38.7 that (6lf 62, 63) e j ^ . Thus

Since a was an arbitrary element of & we get that for any
integer n, a(—v*)n£&- Thus in particular, a ( - v 3 ) p e ^ . Hence
by (38.2), —a = — av*pe & as was to be shown.

It is now very easy to complete the proof of Theorem 37.1.
Define the set <£f by

Since | ^ | = 1^1, Lemma 38.10 yields that <gf is not empty. The
definition of & and Lemma 38.7 yield that l g ^ and a e ? if
and only if 2 - a G ^ 7 . Lemma 39.11 implies that a e ^ if and only

if a~x e <£r. Therefore if a e & then —=— e <if. Since u = 1 + p H
2 - a :

+ pf~\ we have N(a:) = a1+p+m"+pQ~1 = 1 for a: e <£f. Thus if a has the
same meaning as in Lemma 38.11 then there exists a e ^~v* — ^
such that N(a"%) = 1 for all values of i. This contradicts Lemma
38.11, and completes the proof of the main theorem of this paper.
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