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Introduction. In this paper the entropies of several sets of real
valued functions are calculated. The entropy of a metric set, a notion
introduced by Kolmogorov [2], is a measure of its size in terms of the
minimal number of sets of diameter not exceeding 2¢ necessary to
cover it. The most striking use of this notion to date has been given
by Kolmogorov [4] and Vituskin [7] who have shown that not all
functions of n variables can be represented by functions of fewer
variables if only functions satisfying certain smoothness conditions are
allowed. For an exposition of this and other topics related to entropy
see [5]. For other entropy calculations by the present author see [1].
The Kolmogorov-Vituskin result makes use of the following entropy
calculation:

Let F}-,..(C, K) = F; denote the class of real valued functions
f@) = f(@, ---,x,) defined on the unit cube S, in the Euclidean n
space which satisfy | f(x)| < C and have all partial derivatives of the
order k < p, with the pth order derivatives satisfying a Lipschitz
condition of order «, 0 < @ <1, with Lipschitz constant K:

[fPw) — f@) | = Kle —2'*, x,2¢8,.

Under the uniform metric p,

of, 9) = max |f (@) — g(@) |,
Kolmogorov [4, Th. XIV, p. 308] obtains
(1) H(F;) =< (1/e)" .

(The various symbols are defined below). In particular, with » = 0
and » = 1, this reads

(2) H(Lipg o) = (1fe)

where we have written Lip, « in place of F.

The object of this paper is first to generalize (2) to sets of functions
which satisfy a smoothness condition (§ 1), and second to show that
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1086 G. F. CLEMENTS

(1) holds under the L, metric (§2).

Before stating our results more precisely we collect the basic
facts and definitions [4, p. 279]: Let A be a non-void subset of a
metric space W.

DEFINITION 1. A system v of sets U S W is called an e-cover of
A if for each U in v, the diameter of U, d(U), does not exceed 2¢,
and AS Uypey U

DEFINITION 2. A set US W is an e-net for A if each point of A
has distance not exceeding ¢ from at least one point of U.

DEFINITION 3. A set US W is said to be e-distinguishable if the
distance between any two points of U is greater than e.

- In what follows we will deal exclusively with totally bounded
sets; that is, sets having a finite e-cover for each ¢ > 0, or, equivalently,
sets having a finite e-net for each ¢ > 0, or sets for which each e-dis-
tinguishable subset is finite. In particular, compact sets are totally
bounded. We are interested in the following funections:

NF(A), the minimal number of points in W which form an e-net
for A.

N,(A), the minimal number of sets in an e-cover of A.

N.(4), the maximal number of points in an e-distinguishable sub-
set of A.
The dyadic logarithms of N.(A) and M.(A) are called the entropy and
the capacity of A and are denoted H.(A) and C.(A) respectively:

HS(A) = IOg N, E(A) ’ CE(A) = log M(4) .

It is unusual to be able to determine these functions exactly and
one is usually content with finding their order. We write f(c) = g(¢)
for f(e) = 0(g(¢)) and f(¢) =< g(¢) if both f(e) = 0(g(e)) and g(c) = 0(f(¢)).
Thus for various sets A we seek a function k(c) for which H, =h(e)
holds. The basic tool to this end is the following [4, Th. IV, p. 282]:

THEOREM. For each totally bounded set A of a metric space W,
the inequalities

M,(4) = N(A4) = N7 (4) = M(A4)
hold, and therefore
Cx(4) = H(4) = C(4) .

In §1 we consider sets of continuous functions f defined on [0, 1]
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and satisfying a smoothness condition. The modulus of smoothness
of f, w'(¢), is defined by

(3) () = max | 4./ @)] ,

ze[0 1]

where 4.f(x) is the second difference of f at « with increment ¢:

(4) 4.f(@) = f(w +2t) — 2f (@ + 1) + f () .

It is of course assumed that the maximum in (8) is taken over only
those t for which (4) is defined.

For a fixed strictly increasing function ¢(¢), let Ay be the set of
continuous functions f defined on [0, 1} which satisfy |f(x)| = K, and
() = ¢(e). With the uniform metriec on A,, we give the best possible
estimate from above for H.(A4,) in the sense explained below (Th. 1).
For the cases we examine, we will find the estimation of H.(4;) from
below quite simple (Th. 2).

In § 2, we show that Kolmogorov’s result (1) is also correct when
the uniform metric is replaced by the L, metric p, defined by:

1 1
our0) = | 1F~glav={ [ 17@, -2
L g@y, e, @) ey e da,
1. With A; as defined in the introduction, we now estimate
H,(A;) from above:
THEOREM 1. If log (1/¢()) = 1je and M) = 3.7, 96(e/2)) < o,
then
H(Ay) = 1/M(e) .
This result is best possible within a constant factor; that is, there

exists ¢ such that H(A4;) = 1/M (). In fact, with ¢() =¢, one
checks that Lip,, 1 < 4, and from Kolmogorov’s result (2),

H.(Lipyy 1) = /e = 1/M7¢) .

The main idea in the proof of this theorem is that even though
a function from A, may increase or decrease with arbitrary rapidity
over a small interval, it will be approximated there well by its secant
line. This is contained in the following lemma.

LeMMA 1. Suppose f is defined and continuous on [x, x, + 9]
and that w’(e) < ¢(e). If F(0) = (1/2) 32, 9(3/2) < o and

L(x) = f(@) + (@ — @)(f (% + 0) — f(@))/0 ,
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then
| f(®) — L) | = F(0) for xelx,x, + ] .

Proof. We shall show
(5) f(@) — L(x) = FO), wel, s +0];
the proof of
—F@©) = f(®) — L(x)y, x¢clx, 2, + 9]

is similar. To prove (5), it is sufficient to prove the inequalities
k

(6) f(ap) — L(xi) = (1/2) X 6(9/2°), ©=0,1,--+,2"; k=1,2,-.-
i=1

where #} = x, + (¢/2¥)6. For if (6) is established (5) follows from the
continuity of f(x) — L(x).

We prove (6) by induction. For k =1, we have

F(@ + 0) — 2f (0 + 0/2) + f () = dspnf () = — 6(5/2) ,
f@o +0/2) = {F (@) + (f (@ + 0) — f@))/2} + (1/2)$(5/2)
= L(x1) + (1/2)¢(0/2) ,

and
f) — L(xi) = (1/2)$(0/2) .

We also have f(x)) — L(x}) = f(x}) — L(x}) = 0, so (6) is established
for k = 1. Assuming the inequalities (6) hold for &, we consider them
for £ + 1. Let 7 be given, 0 < ¢ < 2¥*, If 4 is even,

Thyy = % + (4/2*7)0 = @, + (4/2)(1/2")0 = x}*
and

. N k . k+1 .

f (@) — L(xii) = (1/2) % $(0/2°) = (1/2) gi $(0/2°)

by the induction hypothesis. If ¢ is odd, we have

x}‘cﬂ — x](ci—l)/z + 3/2k+1 ; w;&ﬁ_l — xl(ci+1)/2 - 5/2k+1
and

F@EDR) = 2f @) + @) = Ay F@) 2 —4(0/2°%)

or

(7) F@in) = Q2KF @) + f@H) + (1/2)9(0/25)
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By the induction hypothesis, f(xi~"/%) — L(z{~"%) and f(xF+0/%) — L(xg"?)
do not exceed (1/2) >\r_, #(6/2Y), so from (7) we have

Flk) S Q@) — L@ + £ @) — L ™)
+ UDL@E) + L) + (129012

= (1/2) é $(0/2%) + L) + (1/2)p(5/24+) ,
and

) . k41 i
S(@hsn) — L(®@hra) = (1/2) > $(0/2°) .
Thus (6) and the lemma follow.
Proof of the theorem. Let ¢ > 0 be given. Put n =n, = [1/e] + 1

(here and below [x] denotes the largest integer not exceeding z),
0 =1/n<e, and 7 = ¢(0). With fe A;, associate the sequence

(8) Sf:klykm"':kn

where k, = [f(#0)/1],2=1,2, --+, n. Notice that for given k; and
ki, K,y takes on one of seven values. This is because

7 = (0 + 2)0) — 27(( + 1)) + f(9)

is a second difference with increment 4, so

(9) —¢(0) = v = (ko +1— 2k, + k; + 1)y
and
(10) Fivo — 2k — 2+ k) = v < 600)

From (9) and (10) we have
—1= =60 = kirs + {2 — 2k, + b} = 6(0)/7+ 4 =5
hence if ¢ = —{2 — 2k, + k;}, k;., is one of
¢9—-1,¢,9+1, -, 0a+5.

Since [f(®)| < K for x¢c[0,1], k., and k, are each one of
2[K/n] + 1 < 3[K /7] integers. Then the number of distinct sequences
S; does not exceed

BK [T .

With S; we associate the function P;, the graph of which is the
polygonal line determined by the points (0, k%),1=1,2, .-+, n. For
x € [0, 1], it follows from the lemma that
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|f(@) — P@)| < [f(®) — L(x)| + | L(w) — Prx)]
= F©@) +7=FQ@) + ¢0) = F(e) + ¢(c) = M(e) .

Thus o(f, Py) = M(¢) and the set {Py}sey, is an M(e)-net for A,. Since
the functions P; and the sequences S; correspond in a one-to-one way
and 0 =<¢, we have

Nyw(Ag) = K9y,
and
Hy(A4y) = log (1/n) + 1/e = log (U/¢(e)) + 1/e < 1/e;
hence,
H(Ay) = 1/ M7() .

When ¢(¢) is concave and strictly increasing, H.(A;) may be es-
timated from below in the following way. Take

n=[1s )] —1, d=1n>¢e), #, =10, i=1,2 -, n.

With each sequence of positive and negative ones

(11) Mgy My =+ =y Minja

associate the function f = S mgpmgseeempa defined by
f@) = A2ymp(x — 2y-,) , ® € [Xg;—g, Lgi—1)
f(QG) = —(1/2)m¢{¢(x - m2i—1) - ¢(5)} re [xzi—u wzi)
f@)=20 % € [@orpm, 1],

’521,2,"',[%/2].

Each of these functions is in A, since | f(x + &) — f(®)| =< (1/2)4(¢) by
the concavity of ¢(¢), and the set D of all such functions is e-dis-
tinguishable since each pair of functions in D differ by 2(1/2)¢(d) > ¢
at some x;. Since there are 2" gequences (11) and therefore 2%
funetions in D, we have

MJ(Ay) z 2, and CiAy) = n = 1/67) .

This proves:

THEOREM 2. If ¢(¢) is concave and strictly increasing, then

C(44) = 1/7Xe) .

ExAMPLES. If ¢,(¢) =¢% 0 < a =1, then for the class 4, we
have M(e) = 3.2, (/2%)* =< ¢&”, so Theorems 1 and 2 give
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12) C(4, ) < H(A, ) =<1/ M~(e) = 1/e" .
For 0 < a < 1, it is known that

(13) Lipes © Ay, C LiDgs

for suitable K, K,. Since the entropy of Lipg. is independent of K
[4, p. 286], this inclusion and (12) give (2). If a = 1, Lip, 1 is properly
contained in A;,. For example, the function

(1/2 log 2)x log « x#0

fe) = 0 5= D

is not in Lipg1l since f'(x) is unbounded on (0,1]. But f is in A,
since one may verify that |4,f(x)] = |t]| for £€][0,1] and therefore
w’(h) = h.

Also, if ¢(¢) = ¢ + elog (1/¢), our results give for A,, which is
intermediate between Lip1 and each of the classes Lipa, 0 < a < 1,
the estimate H.(A4;) =< (1/¢) log (1/¢).

Our Theorems 1 and 2 thus contain the special case (2) of (1) and
somewhat more.

2. We now show that (1) also holds under the L, metric.
THEOREM 3. Under the L, metric, H(Fp?) = (1/e)"",

Proof. Since the L, metric is smaller than the uniform metrie,
the estimate H.(F) =< (1/e)*? is immediate from Kolmogorov’s result
(1). To get the reverse estimate we show the existence of a large
number of ¢/M-distinguishable functions in F,* without actually pro-
ducing them. M is a constant which will be implicity determined
later.

The functions we seek are among those given by Kolmogorov [4,
p. 311] to establish the estimate H,(F;") = (1/¢)” in the uniform metric.
Set

¢(y) = ¢((y1’ Yoy = vy yn))
— aH?:l(l'{_yi)q’ fyzlély i=1727"'7,n
N 0 otherwise .

Put 4 = (¢/a)’s and let a° &', ---, * be a maximal 24-distinguishable
set in S,. It is clear that

s> 1/4" = 1[e"? ,

Let U consist of all functions of the form
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F@) = Fippes (@) = gjv4q¢< & —Axr >

R n @ — W\ _ @ — W
_Eagrsnm(1+ ~ )(1 v )

where 5, = +1,»r=0,1, ---, s.

For suitable ¢ and small ¢, U is contained in F. U is e-dis-
tinguishable in the uniform metrie, but not in the L, metric; however
we can show the existence of a subset of U which is ¢/ M-distinguish-
able in the L, metric and contains enough functions for our purpose.
We do this as follows: Let k(¢) be the largest integer such that for
each function f of U there exist no more than k(¢) other functions
f’ of U which satisfy

14) o, (f, f') = el M .

If one now selects f© arbitrarily from U and with it all functions of
UF®, oo, 4, r(1) £ k(e), which satisfy (14) with f = £, and then
from the remaining functions of U selects f® arbitrarily and with it
all funections of Uf®, .--, %, n(2) = k(s), which satisfy (14) with
f=rF%, and so on until U is exhausted, one obtains at least ¢ =
[(2)/(k(e) + 1)] groups of functions. The functions f©,f®, .., f®
are mutually more than ¢/M apart in the L, metric and therefore
form an ¢/ M-distinguishable subset of F;*. Thus
ME/M(Fqn) z "‘—2—3"‘—

k() +1
and
(15)  Hepw(F7) = s — log, (k(e) + 1) = e(L/e)"? — logy(k(e) + 1)
where ¢ > 0. We will show that when M is taken favorably

log, (k(e) + 1) = (1/2)e(L/e)?,
so from (15) it will follow that
HyulFY) = (100, or H(FY) = Ay,

completing the proof.
To estimate k(¢) from above notice that for functions f;, =

(16) 0r,(f1 f2) = e[M

implies that j! = 72 with at most ¢,/(K™?) exceptions, for some constant
¢,. This is because if ji # 72, then
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S |f—gldV = 284”{81 a- tz)th}n = (1fe e+ |
G 4(z™) —1
where

Ga™) = Gy, -+ -, o7)
:{(xhxm "',wn)llxi_x:{nl _S_A”I:erzr “'7”}'

Thus for fixed f.€ U, the number of functions f,€ U which satisfy
(16) does not exceed
Ceq/aeeml a1

’

( j) < ([e) Me™'e} + 1)([02/en/q] )

[e./ M)

i=0

therefore

logz k(e) =< 10g2 ([Cl/ME”/‘I] + 1) i 10g2 ([02/8”/'1] ) .

[e./ Me™?]

If M is taken suitably large, one finds from Stirling’s formula that

log, (n/n M> < (1/4)en

for large n. Then for small ¢ and a suitable M, we have
log, k(e) = (1/2)c(1/e)"'

and the theorem follows.

Since functions of the class Lip 1 are functions of bounded variation,
the above calculation accomplishes part of showing that H.(V) =<1/,
in the L, metric where V is the set of functions f defined but not
necessarily continuous on [0,1], which satisfy |f(x)|<M, and
Vary . f = B, where B is a constant not depending on f.

COROLLARY. H/(V)=<1/e.

Proof. Since VDO Lipl, H(V) = 1/e follows from the theorem.
To get the reverse estimate, take n = [1/¢],d = 1/n and #; = 19/2,
t=20,1,---,n. For given fe V, let m,_, be the largest integer such
that dm,_, < f(x) for all xe[x,_, ;] and let m,_, be the smallest
integer such that dm,_, > f(x) for all xe[wy,, 24],2=1,2, -+, n.
If g/(x) is the function the graph of which is the polygonal line
determined by the points

(wiy 57’)@1’), 1= 0’ 1’ ] (2”’ - 1) ’ and (1’ am%—l) s

we claim that p,(f, 95) =ce for ¢ < (1/2), where ¢ =2(L + 2) is
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independent of ¢. This is because
If(x) - g(w)[ é 3m2i—1 - Bmzi—z y X € [xzi—zy xzi] ’

and therefore

S @) — 9@)| AT < Mgsy — Mays_)0" .

Tos—2

Then
0ulf, 9) = || |7@® ~ 9@ do < 8 3} (mases — i)
It is clear that
0 ﬁl_l(mzi_l —1—(my_,+ 1) <Var,yf< B,

S0
Puf 9) < O(B + 2md) < ce .

Thus the functions {g/(®)};er form a ce-net for V. We now
estimate from above how many functions are in this net. To do this
notice that labeling the function gq(x) with the (finite) sequence

(17) Ny Mgy =+ Ngp—1
where n, = m, and
n; = (=1 m; —m;_) =0, =12 +--,2n—1

gives a one-to-one correspondence between the functions in our net
and some sequences of the form (17). It therefore suffices to estimate
how many different sequences (17) will be required to label the functions
in the net. Since (n; — 2)0 < Vary,, ..f, we have

ome +8°S (n; — 2) < OMJ5 + B,

or
21—

"0, < M3 + Bl + 4/5 = B[S,

=0
so the nonzero terms among (17) form a composition [6] of not more
than 2n parts of an integer k¥ < B’/6. Since the number of composi-
tions of %k with exactly ¢ parts is (k - %) [6, p. 124], and 2n — %
zeros can fall in <2n211 i)ways among 2n places, the number of labels

’1} -—
(17) with ¢ nonzero parts which add to k¥ does not exceed
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o))

Then in all there are not more than

B7/8 min(2n,k) ( 2n (k -1 - (B’/B)Zn(2n><B,/5
PP 2n—~i> q:~1): n B’/25>

functions in our ce-net; hence

2n\/ B'n
N, < B'2n? .
W= 827 )

Since log (J/bz) =< n, we finally obtain

2n B'n
H, (V) =< logn + log n)+10g " )§2n+B’n§n_ﬁ_1/e,

or
H(V) = 1je.

The author is indebted to his teacher, Prof. G. G. Lorentz of
Syracuse University, for suggesting these problems and for many
helpful conversations concerning them.
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