COMMON FIXED POINTS FOR COMMUTING CONTRACTION MAPPINGS

RALPH DEMARR
COMMON FIXED POINTS FOR COMMUTING
CONTRACTION MAPPINGS
RALPH DEMARR

Kakutani [1] and Markov [2] have shown that if a commutative family of continuous linear transformations of a linear topological space into itself leaves some nonempty compact convex subset invariant, then the family has a common fixed point in this invariant subset. The question naturally arises as to whether this is true if one considers a commutative family of continuous (not necessarily linear) transformations. We shall show that it is true in a rather special, but non-trivial, case, thus giving some hope that further investigation of the general question will yield positive results. The main result of this paper is the following.

Theorem. Let B be a Banach space and let X be a nonempty compact convex subset of B. If \mathcal{F} is a nonempty commutative family of contraction mappings of X into itself, then the family \mathcal{F} has a common fixed point in X.

Note 1. A mapping $f: X \to X$ is said to be a contraction mapping if $\|f(x) - f(y)\| \leq \|x - y\|$ for all $x, y \in X$.

Note 2. If the norm for B is strictly convex, then the above theorem is almost trivial since in this case each contraction mapping has a fixed-point set which is nonempty, compact, and convex. In the general case, however, the fixed-point set of a contraction mapping is not convex. An example illustrating this fact is constructed as follows. Let B be the space of all ordered pairs (a, b) of real numbers, where if $x = (a, b)$, then $\|x\| = \max \{|a|, |b|\}$. Define $X = \{x: \|x\| \leq 1\}$ and $f: X \to X$ as follows: if $x = (a, b)$, then $f(x) = (|b|, b)$. It is easily shown that f is a contraction mapping and that $x = (1, 1)$ and $y = (1, -1)$ are fixed points for f. However, $1/2(x + y) = (1, 0)$ is not a fixed point for f.

In the proof of the theorem we shall make use of the following two lemmas.

Lemma 1. Let B be a Banach space and let M be a nonempty compact subset of B and let K be the closed convex hull of M. Let ρ be the diameter of M. If $\rho > 0$, then there exists an element $u \in K$ such that

Received November 14, 1962.
Proof. Since \(M \) is nonempty and compact, we may find \(x_0, x_1 \in M \) such that \(\|x_0 - x_1\| = \rho \). Let \(M_0 \subset M \) be maximal so that \(M_0 \supset \{x_0, x_1\} \) and \(\|x - y\| = 0 \) or \(\rho \) for all \(x, y \in M_0 \). Since \(M \) is compact and we are assuming \(\rho > 0 \), \(M_0 \) must be finite. Let us assume \(M_0 = \{x_0, x_1, \ldots, x_n\} \). Now let us define

\[
u = \sum_{k=0}^{n} \frac{1}{n+1} x_k \in K.
\]

Since \(M \) is compact, we can find \(y_0 \in M \) such that \(\|y_0 - u\| = \sup \{\|x - u\|: x \in M\} \). Now

\[
\|y_0 - u\| \leq \sum_{k=0}^{n} \frac{1}{n+1} \|y_0 - x_k\| \leq \rho
\]

because \(\|y_0 - x_k\| \leq \rho \) for all \(k = 0, 1, \ldots, n \). Therefore, if \(\|y_0 - u\| = \rho \), then we must have \(\|y_0 - x_k\| = \rho > 0 \) for all \(k = 0, 1, \ldots, n \), which means that \(y_0 \in M_0 \) by definition of \(M_0 \). But then we must have \(y_0 = x_k \) for some \(k = 0, 1, \ldots, n \), which is a contradiction. Therefore, \(\|y_0 - u\| < \rho \).

Lemma 2. Let \(X_0 \) be a nonempty convex subset of a Banach space and let \(f \) be a contraction mapping of \(X_0 \) into itself. If there is a compact set \(M \subset X_0 \) such that \(M = \{f(x): x \in M\} \) and \(M \) has at least two points, then there exists a nonempty closed convex set \(K_1 \) such that \(f(x) \in K_1 \cap X_0 \) for all \(x \in K_1 \cap X_0 \) and \(M \cap K_1' \neq \phi \). (\(K_1' \) is the complement of \(K_1 \).)

Proof. If we take \(K \) as the closed convex hull of \(M \), then by Lemma 1 there exists an element \(u \in K \) such that

\[
\rho_1 = \sup \{\|x - u\|: x \in M\} < \rho,
\]

where \(\rho \) is the diameter of \(M \). Since \(M \) has at least two points, we have \(\rho > 0 \), so that our use of Lemma 1 is valid.

For each \(x \in M \) let us define \(U(x) = \{y: \|y - x\| \leq \rho_1\} \). Since \(u \in U(x) \) for each \(x \in M \), we have \(K_1 = \bigcap_{x \in M} U(x) \neq \phi \). It is clear that \(K_1 \) is closed and convex. For any \(x \in K_1 \cap X_0 \) and any \(z \in M \) we have \(x \in U(z) \), i.e., \(\|x - z\| \leq \rho_1 \). Since \(M = \{f(y): y \in M\} \), there must exist \(y \in M \) such that \(z = f(y) \). Since \(f \) is a contraction mapping, we have

\[
\|f(x) - z\| = \|f(x) - f(y)\| \leq \|x - y\| \leq \rho_1;
\]

i.e., \(f(x) \in U(z) \). Since this is true for any \(z \in M \), we have \(f(x) \in K_1 \cap X_0 \). We have shown that \(f(x) \in K_1 \cap X_0 \) for all \(x \in K_1 \cap X_0 \).
Since M is compact, there exist $x_0, x_1 \in M$ such that $\|x_0 - x_1\| = \rho > \rho_1$. Thus, we see that x_1 does not belong to $U(x_0) \supseteq K_1$, i.e., $x_1 \in M \cap K'_1 \neq \emptyset$.

Proof of the theorem. One may show by using Zorn's lemma that there exists a minimal nonempty compact convex set $X_0 \subseteq X$ such that X_0 is invariant under each $f \in \mathcal{F}$. If X_0 consists of a single point, then the theorem is proved. We shall now show that if X_0 consists of more than one point, then we obtain a contradiction.

We may use Zorn's lemma again to show that there exists a minimal nonempty compact (but not necessarily convex) set $M \subseteq X_0$ such that M is invariant under each $f \in \mathcal{F}$. We will now show that $M = \{f(x) : x \in M\}$ for each $f \in \mathcal{F}$. Since each $f \in \mathcal{F}$ is continuous and M is compact, $f(M)$ must also be compact. For all $f \in \mathcal{F}$ we have $f(M) \subseteq M$. Let us assume that for some $g \in \mathcal{F}$ we have $g(M) = N \neq M$. Now for any $x \in N$ there exists $y \in M$ such that $x = g(y)$. Since all functions in \mathcal{F} commute, we have for all $f \in \mathcal{F}$ $f(x) = f(g(y)) = g(f(y)) \in N$ because $f(y) \in M$. Thus, we have $f(N) \subseteq N \subseteq M$ for all $f \in \mathcal{F}$. But since N is a nonempty compact subset of X_0 which is invariant under each $f \in \mathcal{F}$ and since $N \subseteq M$ and $N \neq M$, we have contradicted the minimality of M. Consequently, our assumption that $M \neq N$ is false. We may assume that M has at least two points; otherwise, the theorem is proved.

We may now apply Lemma 2 to each $f \in \mathcal{F}$. Referring to the notation of Lemma 2, we see that the set $K_1 \cap X_0$ is invariant under each $f \in \mathcal{F}$. Since K_1 is closed, we see that $K_1 \cap X_0$ is a nonempty compact convex subset of X_0. Since $X_0 \cap K'_1 \supseteq M \cap K'_1 \neq \emptyset$, we see that $K_1 \cap X_0 \neq X_0$. Thus, we see that if X_0 has more than one point, then we obtain a contradiction to the minimality of X_0.

References

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunkan Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Dallas O. Banks, *Bounds for eigenvalues and generalized convexity* .. 1031
Woodrow Wilson Bledsoe and A. P. Morse, *A topological measure construction* 1067
George Clements, *Entropies of several sets of real valued functions* 1085
Sandra Barkdull Cleveland, *Homomorphisms of non-commutative *-algebras* 1097
William John Andrew Culmer and William Ashton Harris, *Convergent solutions of ordinary linear homogeneous difference equations* .. 1111
Ralph DeMarr, *Common fixed points for commuting contraction mappings* 1139
James Robert Dorroh, *Integral equations in normed abelian groups* 1143
Adriano Mario Garsia, *Entropy and singularity of infinite convolutions* 1159
J. J. Gergen, Francis G. Dressel and Wilbur Hallan Purcell, Jr., *Convergence of extended Bernstein polynomials in the complex plane* 1171
Irving Leonard Glicksberg, *A remark on analyticity of function algebras* 1181
Charles John August Halberg, Jr., *Semigroups of matrices defining linked operators with different spectra* ... 1187
Philip Hartman and Nelson Onuchic, *On the asymptotic integration of ordinary differential equations* ... 1193
Isidore Heller, *On a class of equivalent systems of linear inequalities* 1209
Joseph Hersch, *The method of interior parallels applied to polygonal or multiply connected membranes* ... 1229
Hans F. Weinberger, *An effectless cutting of a vibrating membrane* 1239
Melvin F. Janowitz, *Quantifiers and orthomodular lattices* .. 1241
Tilla Weinstein, *Another conformal structure on immersed surfaces of negative curvature* ... 1281
Gregers Louis Krabbe, *Spectral permanence of scalar operators* 1289
Shige Toshi Kuroda, *Finite-dimensional perturbation and a representation of scattering operator* ... 1305
Marvin David Marcus and Afton Herbert Cayford, *Equality in certain inequalities* 1319
Joseph Martin, *A note on uncountably many disks* ... 1331
Eugene Kay McLachlan, *Extremal elements of the convex cone of semi-norms* 1335
John W. Moon, *An extension of Landau’s theorem on tournaments* 1343
Louis Joel Mordell, *On the integer solutions of y(y + 1) = x(x + 1)(x + 2)* 1347
Kenneth Roy Mount, *Some remarks on Fitting’s invariants* ... 1353
Miroslav Novotný, *Über Abbildungen von Mengen* ... 1359
Robert Dean Ryan, *Conjugate functions in Orlicz spaces* ... 1371
John Vincent Ryff, *On the representation of doubly stochastic operators* 1379
Donald Ray Sherbert, *Banach algebras of Lipschitz functions* 1387
James McLean Sloss, *Reflection of biharmonic functions across analytic boundary conditions with examples* ... 1401
L. Bruce Treybig, *Concerning homogeneity in totally ordered, connected topological space* ... 1417
John Wermer, *The space of real parts of a function algebra* .. 1423
James Juei-Chin Yeh, *Orthogonal developments of functionals and related theorems in the Wiener space of functions of two variables* 1427
William P. Ziemer, *On the compactness of integral classes* ... 1437