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Introduction. Let &(w) be a random variable which takes only
a finite number of values

Lyy Ly 200y Xp
with probabilities
Ty Mgy =0y TTp

Let A(x) be the distribution function of &(w).
We shall be concerned here with infinite convolutions of the type

(L1) F(z, ) = A(ﬁc_)*A(-“’_)* *A<ﬁ>*
71 Ty T
where r = (r, 7y +++, 7, +++) i8S a given sequence of non-vanishing

real numbers. From standard theorems of Probability theory it
follows that the convolution product in (I.1) converges (if we exclude
the trivial case p =1, #, = 0) if and only if 3,7 < o« and either

(1.2) E@) =0
or
(1.3) E(@) # 0 but >,r, is convergent.

In either case, the limit distribution F'(x, r) is continuous and pure.’
A proof of this result in the case that @(w) takes only the two
values +1 with equal probabilities can be found in [4].

We can and shall restrict our study to the case E(@) =0. Our
main result here concerns the distributions F(x, r) generated by
sequence {r,} such that, for some 0<A<1,

1.4) T, = 0[8"] .

Under this hypothesis it is easy to see that for a given A(x), when
G is sufficiently small, F'(x, r) is necessarily singular. This result
follows from the simple fact that the set of points of increase of
F(z, r), for all sufficiently small B, has zero measure. On the other
hand, as B increases towards one F'(x,r) in general will become
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t That is either absolutely continuous or purely singular.
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absolutely continuous. We are interested in finding a lower bound
for the B’s for which this may happen. Considerations involving the
:set of points of increase of F'(z, r) stop short of being helpful for,
-as we shall see, in general we can be sure that F'(z, r) will remain
singular beyond the first B for which this set acquires positive
‘measure.

Our discovery consists in the faet that, without further informa-
tion on the relations between the values @, %, - - -, ¢, and the sequence
{r.}, the best possible dividing line between singularity and absolute
-continuity of F'(z, r) is given by the entropy [8] of the distribution
D(w).

More specifically we shall show that

Tueorem 1.1 If {r,} satisfies 1.4 and
—}fj w;logm; < logl/8,
‘then the function F(x,r) is necessarily singular.

Our methods bring also to light some peculiarities of the Pisot-
Vijayaraghavan numbers. The latter are algebraic integers whose
conjugates are all in absolute value less than one [6]. Let « be in
the interval (1,2) and set #=1/a. Let H,(a) denote the entropy of
‘the distribution of the random variable

(1-5) Yp = 518 + 6282 + oo+ Gpo ’

‘where the ¢; are independent random variables taking the values +1
with equal probabilities. We can show the following result:

THEOREM 1.2. For every « in (1, 2) the ratio H,()/p is convergent,
-and if a is a P.V. number

(1.6) lim H(a)/p < loga .
We note that Theorems I.1 and I.2 combined provide an explana-

tion for the singularity [2] of the distribution function of the random
‘variable

Ms

Y= 3&8",
n=1

It

‘when B is the reciprocal of a P. V. number®’. This is obtained by
letting A(x) be the distribution of the variable y, and setting

2 Cfr. [3] for further references and a history of this question.
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7, = £"?, then taking p sufficiently large.
The inequality in (I.6) contains the fact that the numbers

iﬁiﬁzi"'iﬁpf

for sufficiently large p, cannot be all distinct. This implies that
each P. V. number in (1, 2) satisfies a polynomial equation with
coefficients +1 or 0. Two different proofs of this results can be found
in [7] and [3]. Here we shall show that even more is true, namely

THEOREM 1.3 Let 1/8 be a P. V. number in the interval (1, 2),
For any increasing sequence of integers {m,} such that

1/B)n, = 0(2%)
the corresponding powers of 8
B"l’ Bﬂz’ “ee, B"k, cas

cannot be independent over the coefficients +1,0.

A result of the same type as Theorem I.1 holds for convolutions
of the form

(1.7 F(x) = A(x)x Ay(x)* - -« A ()%« ,

where for each #, A,(x) is the distribution of a random variable
which takes only a finite number of values. Such a function when
it is defined, is either totally discontinuous, continuous but purely
singular or absolutely continuous. We shall be concerned with the

cases in which F(x) is continuous.
We can visualize (I.7) as being the distribution of a sum of in-

dependent random variables
y:$1+x2+ coe +xn+ cee

where x, has distribution A,(x). The continuity of F'(x) is assured
as soon as ¥ is not probabilistically equivalent to a series of constants [5].
In the case that

(1.8) Ex,) =0, > E()< o
the result corresponding to Theorem I.1 reads as follows. Let H,
denote the entropy of the distribution A,(z).

THEOREM 1.4. If {R,} is & sequence of positive numbers tending
to zero for which

lim inf R/(E(2.,) + (@) + ++) > 0
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then an estimate such as
(1.9) liminf (H, + H,+ --- + H)/logl/R, < 1
wmplies the singularity of F(x).

It can be shown that, although the condition (I.9) is best
possible, no estimates on the entropy of the partial sums

Yo =T+ @+ o0 @,

are necessary for the singularity of F(x). However, it is worth-
while to note that the situation is quite different if we look for
necessary and sufficient conditions for F' to be absolutely continuous.
with a derivative in the L log L class. To this effect we have the:

following theorem. Let vy =y, + 2z, with ¥, and z, independent and
bounded and

E(Z)—0 as n— oo,
Let F(x) be the distribution of ¥ and F,(x) be that of y,. Suppose:

that F'(x) is continuous.

THEOREM 1.5. If A, is a sequence of positive numbers tending-
to zero and such that

lim inf A2/E(z2) > 0

then a mecessary and sufficient condition for F to be absolutely-
continuous and F' to be in the L log L class is that as n— o« we:
have

‘log [F(kA, + A,) — F(kA)] = 0Q1) .

1. Awuxiliary lemmas and definitions.

1.1 It will be useful to consider sequences {¥3,} of ordered pro--
bability distributions

(1011) %n = (}01(%), pz(n)v ttty pN(n)(n)) 3
To be specific, for each # we shall suppose that

(@ pm)=pm) = = Pyw® =0

(1.12) o) p(n) + pu(n) + <o+ + Pyw(n) =1.

For a given probability distribution P = (py, py, - -+, py) the distribu--

3 We shall assume that N(n) »> « as n —> .
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tion function F'(x) defined by the condition that

Oforx<OQoraz=1

F(x) = : .
Np; for (1 —1)/N <z < /N,

will be called the “associated ” distribution funetion.
Given a sequence {¥3,} such that (1.11) and (1.12) hold we shall
have the sequence {F,} of associated distribution functions and the

family {F,} of the distributions that can be obtained as limits of
the F.’s.

1.2. LeMMA 1.21. For a given {,} the functions of {F.,}, except
Sfor a posstble jump at the origin, are absolutely continuous.

Proof. Because of (a) we have that for each ¢ =1,2, -+, N
1zp+ 0+ -0 D 2905
this gives that for (+ — 1)/N = & < i/N.
F'(x) = Nji < 1/x .

Thus the associated distribution functions are uniformly absolutely
continuous on the right of one, hence the same will hold for their
limits.

LEMMA 1.22. The functions F, are uniformly absolutely con-

tinuous if and only if the functions of {F} are continuous at the
origin.

Proof. First of all it is clear that the functions F, are uniform-
ly absolutely continuous if and only if they are equicontinuous. But
if the F,’s are equicontinuous, their limits are continuous. Vice
versa if their limits are continuous at the origin, a standard argu-
ment shows that the F,’s must be equicontinuous.

DEFINITION. If in the family {F,} there are discontinuous funec-
tions, we shall say that {§3,} is a “singular” sequence. In this case
the maximum of the jumps of the functions of {F.} will be called
the “deficiency ” of the family {,}.

Clearly {%,} has deficiency = v > 0 if and only if there exists a
subsequence {n,} such that for any ¢ > 0 we have

}GI_.IE [p[eN](nk) + e+ pN(nk)] = 1—vs

¢

t [eN] is to mean ‘‘ integral part of en .
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1.3. We shall now give a sufficient condition for a {{,} to be a
singular sequence.

LEMMA 1.3, The sequence {B,} fails to be singular only if
(1.31) lim —(3 pi(n) log py(n))/log N(n) =1 .
As a matter of fact, if (1.31) does not hold, the deficiency v of {B.}
satisfies the inequality
(1.32) 1 — 7 = liminf — (3. p(n) log pi(n))/log N(n) .

Proof. Since a sequence {,} is singular with deficience =~ if a.
a subsequence {S'Bw} is such, we can assume that
(133)  lim — (3 pu(n) log pi(m))/log N(w) =1 — 7, < 1.
We define the quantities a,(=a,(n)) for k =1, 2, ---, N(n) by setting

@, = klp, — ]l (set Py =0).

Note that from our assumption 1.12 (a) it follows that a, = 0. We
also have that

D=k + @k + 1)+ -+ +ay/N (k=12 ---,N).
From 1.12 (b) we have
U+ Ot s F Oy =P Pty =1

From the concavity of Y(x) = —«xlogx, for any nonnegative con-
stants (b, b, -+, by) We have

220, Y (b)) = YO aby) .
Using this inequality with (b, b,, « -+, by) replaced by

(0’0""’0’%’ml~1"""11\7>

we get
N N N .
— S aufklog 1]k = —(3 ai/k) log (3 aifk) = —p/log . -
k=1 k=1 k=1

Summing with respect to ¢« we obtain
N N N
2> afklogl/k = Y a,logk.
= k=1

1 k=1

N
—;pi log p; = —

1
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Making the substitution a,=60,—0,_, (setting 6,=0, 0,=a,+a,+ «+ + +a,)..
we get

(1.34) —Spilogp; = log N+ 3.0, log /(L + k) = —ki 0,/k + log N .
=1 k=1 =1

Now let v(n) be a sequence of integers taken with the sole restric—
tion that v(n) ~ eN(n) for some € > 0. Then from (1.34) we deduce:
that

log N + 3 p:log pi < 0,0, log N + log N/v(n) .

Dividing by log N and passing to the limit we get

Y < lim inf 0, .

n—oo

In view of the fact that o, +p,+ -+, 20, +a;+ -+ + @, and
the definition of v(n) we deduce that the functions of {F,} must all
have a jump at the origin at least as big as 7,. This establishes the:
inequality in (1.32).

Suppose we are given a sequence of probability distributions

Qn = {ql(n)r Q2(n)’ %y QN(n)(n)} .

In case the g,n) are not ordered we shall say that the sequence {Q,}
is singular if and only if the ordered sequence {¥3,} that we obtain.
by rearranging the probabilities of the @,’s is a singular sequence..
Similarly the deficiency of Q, will be the deficiency of P,. Lemma 1.3.
remains valid for unordered sequences of probability distributions.

2. Proofs of the results,

2.1. Theorem I.1 can be readily obtained from Theorem I.4..
We shall thus concentrate in proving the latter. To this end we.
need the following result. Let y and y, denote random variables.
with distributions F'(x) and F,(x) respectively with F'(x) continuous..
Assume in addition that the random variable z, =y —y, is in-
dependent of y, and that E(z2)— 0.

LemMmA 2.1. If R, is a sequence tendimg to zero in such a way
that

liminf R;/E(z)) > 0,

then a mecessary and sufficient condition for the distribution F(xy
to have a singular part is that for an M so large that the quantity
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(2.11) M= > [FukR, + R,) — F.(kR,)]

IkEqi<

18 bounded away from zero, the probability distributions
Q. = [(F.(kR, + R,) — F,(kR,))/\,; V integers k> |kR,| = M]
Sform a singular 'sequence.

This result follows from Lemma 2.5 of [3].

2.2. Assume then, with the notation and the hypotheses of
Theorem 1.4, that

(2.21) liminf (H, + H, + +-- + H,)/log1/R, < 1.

n—roo

Let us set
yn:xl+xz+"°+wn.

We shall visualize the probability space 2 where y, and y are
defined as the product of the probability spaces 2,, 2,, ---, 2, where
the variables #,, %,, -, «, are defined. Then the equivalence relation

o ~ " if and only if 2. (@) = z(®”) for 1 =1,2, -+, n

generates a partition of £ which is finer than the partition generated
by the relation

(2.22) o' ~ " if and only if y.(0) =y, (®").

Thus denoting by D, the entropy of the distribution of y,, in view
of well known properties of the entropy funection, we shall have

(2.23) D,<H + .-+, + H,.
Suppose now that ¥, takes the values
Y Y2 ** s Yvim n
with respective probabilities
0(n), ¢(1), *++, Qyeu(n) .

We shall consider, for a given M, a partition of the indices
1,2, .-+, N(n) into two sets S’ and S’ defined as follows. S’ is the
set of all ¢ such that |y;.| = M and §” is the complement. Let

Q.=>'aq, D, = -3/ q,/Q,1og ¢./Q)
Q. =>"q;, D,=-"q/Q)logqlQ),
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where the summations > and > are carried out over S’ and S”
respectively. We have then that

229) Q.D.+@QD;=D,+Q,logQ,+Q;logQ=D,.

By choosing M sufficiently large, by the hypothesis 1.8, we can
guarantee that @, after a while remains as close to one as we wish.
In particular, since D] = 0, by 2.23, 2.24 and the hypothesis 2.21
we can make sure that we have also

(2.25) liminf D,/log1/R, < 1.

n — o

In the subset of 2 where |y,| < M we introduce a partition by
means of the equivalence ' = ” if and only if y,(®) and y.(®")
belong to the same interval [kR, + R,, kR,). Since this partition is
even coarser than the one induced by the equivalence in 2.22, for
the entropy E, associated with this partition we must have

(2.26) E'<D,.
On the other hand if we let A, be as in 2.11 and set

|kRp| < M
we must have
E,~FE,.
Combining this relation with (2.26) and (2.25) we deduce that

liminf F,/log 1/R, < 1.

n—co

Using this inequality in conjunction with Lemmas 1.3 and 2.1 we
obtain the singularity of the distribution F'(x). This completes the
proof of Theorem 1.4

REMARK. It should be pointed out that Theorem I.4 gives a
simpler condition and is more general than Theorem 2.6 of [3].

2.8. Proof of Theorem 1.2. For a given n and p we can write
the variable y,, defined in I.5 in the form

Yur(@) = Yp(@)) + B?Y,(w;) + + -+ + B Vy,(w,),

where ¥,(®,), ¥,(w,), « -, y,(w,) are supposed independent and equally
distributed. If m = np + » where 0 < » < p we have that

ym(w) = ynm(a)) + Bnpy'r(wn+1) .
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By an argument similar to that used in §2.2 we deduce that the
entropy of the variable y,(®w) is less than or equal to the sum of
the entropies of the summands. In other words, with the notation
of the introduction, we must have

H,(a) = nHya) + H(a) .
Dividing by m and passing to the limit as m — o we obtain

lim sup H,.(a)/m < H(a@)/p .

Since p was arbitrarily chosen we deduce that

(2.31) lim H,(a)/m = inf H(a)/p .
Clearly the limit in (2.31) may differ from log 2 only when « satisfies
polynomial equations with coefficients +1 or 0.

If @ is a P. V. number it can be shown (for instance by means
of Lemma 2.5 of [3]) that H,(a)/p eventually takes values below
log «. This accounts for the estimate in I.6. It would be of some
interest to know whether or not 1.6 holds for other than P. V.
numbers.

2.4. Proof of Theorem 1.3. For a P. V. number a« we have
the following estimates. If each a; (¢t =1,2, .-+, n) takes only the
values +1 or 0 then either

aa+ a0+ oo Faat =0
or
(2.41) o, + a0 + -+ +a,a"|=c

where ¢ is a constant depending only on «. This result can be
easily deduced from the definition of P. V. numbers. (See for
instance Lemma 1.51 of [3]).

Let then {n,} be a sequence of constants satisfying the condition
of Theorem 1.3. If the numbers

iﬁ”lilgwi cee 4+ B

(with @ = 1/a) were all distinet, the minimum distance between any
two of them, in view of (2.41) would be greater than a fixed con-
stant divided by 2*. Theorem 1.2 of [3] would then apply, and we
would deduce that the distribution of the random variable

Y= =B
k=1
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is absolutely continuous with a bounded derivative. This is of course
absurd since it is known [2] that the distribution of

e

is singular.

2.5. We shall omit the proof of Theorem I.5, for it can be
carried out step by step as it was done for Theorem 1.10 of [3]..
The difference here is that Orlicz spaces methods would have to
replace the L, spaces methods used there. There is one point of
the proof that is worth noting. Namely, it is known [1] that a
bounded functional on an Orlicz space does not necessarily have an.
integral representation. However, at a point of our proof of Theorem
1.10 in [3] we use the Riesz representation theorem. Nevertheless,
in carrying out the proof of Theorem I.5 even this point need not.
be modified. In fact, for functionals of the type

Lw) = | y@dF (@)

such a representation holds in an Orlicz space just as well as in an.
L, space.
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