SEMIGROUPS OF MATRICES DEFINING LINKED OPERATORS WITH DIFFERENT SPECTRA

CHARLES JOHN AUGUST HALBERG, JR.
1. Introduction. The concept of "linked operators" was introduced by A. E. Taylor and the author in [1]. This concept was originally suggested by work involving bounded linear operators on the sequence spaces l_p. For example, if the infinite matrix (t_{ij}) defines operators T_p and T_q that are bounded on l_p and l_q, respectively, then these operators are linked. The somewhat complicated general definition of linked operators is deferred until § 2 of this paper. In [1] an isolated, specific example of linked operators with different spectra was given. The purpose of this paper is to exhibit three infinite semigroups of infinite matrices (t_{ij}), with complex coefficients, such that each of their elements defines linked operators with different spectra.

In the next section we give some preliminary definitions and notation and in the final section we prove a basic lemma and our principal theorems.

2. Preliminary definitions and notation. We first give the definition of linked operators.

Definition. Let X, Y be complex linear spaces, and Z a non-void complex linear space contained in both X and Y. Let X be a Banach space X_1, Y a Banach space Y_2 under the norms n_1, n_2 respectively. Let Z be a Banach space Z_N under the norm N defined by $N(z) = \max |n_1(z), n_2(z)|$. With the usual uniform norms let T_1, T_2 be bounded linear operators on X_1, Y_2 respectively, such that $T_1 z = T_2 z \in Z$ when $z \in Z$. Operators satisfying these conditions are said to be "linked."

Our basic notation will be as follows: If T denotes the infinite matrix (t_{ij}), with complex coefficients, then T^* will denote its transpose, and \bar{T} the matrix (\bar{t}_{ij}), where \bar{z} is the complex conjugate of z. Let T_p denote the operator defined on l_p by the matrix T, $\| T_p \|$ its norm, and $[l_p]$ the algebra of bounded linear operators on l_p. Also let $\rho(T_p)$ denote the resolvent set of T_p, consisting of all complex λ such that $\lambda I - T_p$ defines a one-to-one correspondence of l_p onto l_p; $\sigma(T_p)$ denote the spectrum of T_p, consisting of all λ not in $\rho(T_p)$; and $|\sigma(T_p)|$ the spectral radius of T_p.

The matrix (t_{ij}) is said to be "regular" in case for every convergent sequence $[\zeta_n]$, $\lim_{n \to \infty} \zeta_n = \zeta$, each of the series $\sum_{k=1}^{\infty} t_{ik} \zeta_k$ is convergent.

Received December 6, 1962. Part of the work done on this paper was carried on while the author was an NSF Fellow, visiting at the University of Copenhagen, Denmark.
and \(\lim_{n \to \infty} \sum_{k=1}^{\infty} t_{ik}^n = \zeta \). It is well known that a set of necessary and sufficient conditions for a matrix to be regular are:

1. \(\sup_{i} \sum_{k=1}^{\infty} |t_{ik}| < \infty \)
2. \(\lim_{i \to \infty} t_{ik} = 0 \) for \(k = 1, 2, \ldots \)
3. \(\lim_{i \to \infty} \sum_{k=1}^{\infty} t_{ik} = 1 \).

3. Principal theorems.

Lemma. Suppose that \(C = (c_{ij}) \) and \(D = (d_{ij}) \) define elements of \([L_1]\), and \(C' || C_1 || \) and \(D' || D_1 || \) are regular. Then \((CD)' || (CD)_1 || \) is regular and \(|| (CD)_1 || = || C_1 || || D_1 || \).

Proof. Since the product of regular matrices exists and is regular, we have,

\[
\lim_{i \to \infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{d_{ik} c_{ij}}{|| D_i || || C_1 ||} = 1,
\]

whence,

\[
1 = \lim_{i \to \infty} \left| \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{d_{ik} c_{ij}}{|| D_i || || C_1 ||} \right| \leq \lim_{i \to \infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{c_{jk} d_{ki}}{|| C_1 || || D_1 ||} \leq || (CD)_1 || \leq 1.
\]

Therefore \(|| (CD)_1 || = || C_1 || || D_1 || \), and \(D' C' || D_1 || || C_1 || = (CD)' || (CD)_1 || \) is regular. The following result is a simple consequence of this lemma, coupled with the well known fact that

\[
\lim_{n \to \infty} || T^n ||^{1/n} = |\sigma(T)|,
\]

whenever \(T \in [X] \), where \(X \) is a complex Banach space.

Corollary. If \(T \in [L_1] \) and \(T' || T_1 || \) is regular, then \(|\sigma(T_1)| = || T_1 || \).

We are now ready for our principal theorems.

Theorem 1. Suppose that both \(T = (t_{ij}) \) and \(T' = (t'_{ij}) \) define elements of \([L_1]\), \(T' || T_1 || \) is regular, and \(|| T_1 || < || T_1 || \). Then \(|\sigma(T_1)| > |\sigma(T_p)| \), \(p > 1 \).

Proof. Using the fact that the spectral radius of an operator is less than or equal to its norm, and the special case where \(q = 1 \), of the inequality

\[
|| T_p || \leq || T_q ||^{(q+p\{1-q\})/(2-q)p} || (T')_q ||^{(p-q)/(2-q)p},
\]
between \(q \) and \(q' \), (which in turn is a special case of a more general inequality, (2), p. 729 in [2]), we see that

\[
\sigma(T_p) \leq \| T_p \| \leq \| T_i \|^{1/p} \| T_i \|^{1-1/p}.
\]

Since by hypothesis \(\| T_i \| < \| T_i \| \), it follows immediately that \(|\sigma(T_p)| < \| T_i \| \). But since by hypothesis \(T_i/\| T_i \| \) is regular, we have by our corollary that \(\| T_i \| = |\sigma(T_i)| \), and our theorem is proved.

One might wonder if the result of Theorem 1 is perhaps attributable to the "lopsided" nature of the matrix; that is, the property that the supremum of the \(l_i \) norms of the column vectors is greater than that of the row vectors. The following theorem demonstrates that is not the case.

Theorem 2. Suppose that both \(T_i/\| T_i \| \) and \(T_i/\| T_i \| \) are regular and that \(\| T_i \| < \| T_i \| \). Then \(A = T_i + T \) is a hermitian symmetric matrix such that \(|\sigma(A_p)| < |\sigma(A_i)| \), \(1 < p < \infty \).

Proof. The assumptions of regularity guarantee that

\[
\lim_{j \to \infty} \sum_{i=1}^{\infty} t_{ij} = \| T_i \| \quad \text{and} \quad \lim_{j \to \infty} \sum_{i=1}^{\infty} t_i^* = \| T_i \|.
\]

Thus we see that

\[
\| T_i \| + \| T_i^* \| \geq \| T_i + T_i^* \| \geq \lim sup_{j \to \infty} \sum_{i=1}^{\infty} (t_{ij} + t_i^*) = \| T_i \| + \| T_i \|,
\]

whence \(\| T_i + T_i^* \| = \| T_i \| + \| T_i \| \).

Now

\[
\| T_p + T_i^* \| \leq \| T_p \| + \| T_i^* \| = \| T_p \| + \| T_i \| \\
\leq \| T_i \|^{1/p} \| T_i \|^{1-(1/p)} + \| T_i \|^{1/p} \| T_i \|^{1-(1/p)},
\]

the last inequality being a result of (A) above. We shall now show that the right hand member of this inequality is less than \(\| T_i \| + \| T_i \| \).

From the hypothesis that \(\| T_i \| < \| T_i \| \), we can conclude that \(\| T_i \|^{1/p} - \| T_i \|^{1/p} > 0 \) and \(\| T_i \|^{1-(1/p)} - \| T_i \|^{1-(1/p)} < 0 \) for \(1 < p < \infty \).

It is now an immediate consequence that

\[
0 > (\| T_i \|^{1/p} - \| T_i \|^{1/p}) (\| T_i \|^{1-(1/p)} - \| T_i \|^{1-(1/p)}) \\
= -\| T_i \| - \| T_i \|^{1/p} \| T_i \|^{1-(1/p)} + \| T_i \|^{1-(1/p)} \| T_i \|^{1/p},
\]

whence

\[
\| T_i \|^{1/p} \| T_i \|^{1-(1/p)} + \| T_i \|^{1-(1/p)} \| T_i \|^{1/p} < \| T_i \| + \| T_i \|.
\]

Using these inequalities together with the fact that
we see that
\[|\sigma(T_p + \bar{T}_p)| \leq ||T_p + \bar{T}_p||, \]
we see that
\[|\sigma(T_p + \bar{T}_p)| < ||T_1 + \bar{T}_1||. \]

It is obvious that the operator
\[\frac{T_1 + \bar{T}_1}{||T_1 + \bar{T}_1||} \]
is regular and thus
\[|\sigma(T_1 + \bar{T}_1)| = ||T_1 + \bar{T}_1||. \]
This with the last inequality implies the desired conclusion,
\[|\sigma(T_p + \bar{T}_p)| < |\sigma(T_1 + \bar{T}_1)|. \]

Theorem 3. Suppose \(T = (t_{ij}) \) defines an element of \([l_1, T_1]\), \(t_{ij} \) is positive for all \(i \) and \(j \), and the infimum of the column sums of \(T \) is greater than \(||T_p|| \). Then \(|\sigma(T_p)| < |\sigma(T)| \).

Proof. Let \(T^n = (t_{ij}^{(n)}) \), \(n > 1 \). By hypothesis \(\inf_j \sum_{i=1}^\infty t_{ij} = K > ||T_p||. \)
If \(\inf_j \sum_{i=1}^\infty t_{ij}^{(n)} \geq K \), then
\[\inf_j \sum_{i=1}^\infty t_{ij}^{(n+1)} = \inf_j \sum_{i=1}^\infty \sum_{k=1}^\infty t_{ij}^{(n)} t_{kj} = \inf_j \left(\sum_{k=1}^\infty t_{kj} \sum_{i=1}^\infty t_{ij}^{(n)} \right) \]
\[\geq \inf_j \sum_{k=1}^\infty t_{kj} K^n = K^{n+1}. \]
Thus by induction we have \(\inf_j \sum_{i=1}^\infty t_{ij}^{(n)} \geq K^n \) for all \(n \). It follows that \(||T^n|| \geq K^n \) for all \(n \), whence
\[|\sigma(T_j)| \geq K > ||T_p|| \geq |\sigma(T_p)|, \]
and our theorem is proved.

Final Remarks. Matrices satisfying the hypotheses of the above theorems are easily constructable. The matrix \(T = (t_{ij}), \)
\[t_{ij} = \begin{cases} j/(i-1)i & \text{if } i > j \\ 0 & \text{if } i \leq j \end{cases}, \]
cited in [1], satisfies the hypotheses of each of theorems (where in particular \(p = 2 \) in Theorem 3).
That the set of matrices satisfying the hypotheses of any one of these theorems forms a semigroup is a simple matter of computation.
BIBLIOGRAPHY

UNIVERSITY OF CALIFORNIA, RIVERSIDE, AND
KØBENHAVNS UNIVERSITETS MATEMATISKE INSTITUT.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Dallas O. Banks, *Bounds for eigenvalues and generalized convexity* 1031
Woodrow Wilson Bledsoe and A. P. Morse, *A topological measure construction* 1067
George Clements, *Entropies of several sets of real valued functions* 1085
Sandra Barkdull Cleveland, *Homomorphisms of non-commutative *-algebras* 1097
William John Andrew Culmer and William Ashton Harris, *Convergent solutions of ordinary linear homogeneous difference equations* ... 1111
Ralph DeMarr, *Common fixed points for commuting contraction mappings* 1139
James Robert Dorroh, *Integral equations in normed abelian groups* 1143
Adriano Mario Garsia, *Entropy and singularity of infinite convolutions* 1159
J. J. Gergen, Francis G. Dressel and Wilbur Hallan Purcell, Jr., *Convergence of extended Bernstein polynomials in the complex plane* 1171
Irving Leonard Glicksberg, *A remark on analyticity of function algebras* 1181
Charles John August Halberg, Jr., *Semigroups of matrices defining linked operators with different spectra* .. 1187
Philip Hartman and Nelson Onuchic, *On the asymptotic integration of ordinary differential equations* ... 1193
Isidore Heller, *On a class of equivalent systems of linear inequalities* 1209
Joseph Hersch, *The method of interior parallels applied to polygonal or multiply connected membranes* .. 1229
Hans F. Weinberger, *An effectless cutting of a vibrating membrane* 1239
Melvin F. Janowitz, *Quantifiers and orthomodular lattices* 1241
Samuel Karlin and Albert Boris J. Novikoff, *Generalized convex inequalities* 1251
Tilla Weinstein, *Another conformal structure on immersed surfaces of negative curvature* .. 1281
Gregers Louis Krabbe, *Spectral permanence of scalar operators* 1289
Shige Toshi Kuroda, *Finite-dimensional perturbation and a representation of scattering operator* ... 1305
Marvin David Marcus and Afton Herbert Cayford, *Equality in certain inequalities* .. 1319
Joseph Martin, *A note on uncountably many disks* .. 1331
Eugene Kay McLachlan, *Extremal elements of the convex cone of semi-norms* 1335
John W. Moon, *An extension of Landau’s theorem on tournaments* 1343
Louis Joel Mordell, *On the integer solutions of y(y + 1) = x(x + 1)(x + 2)* 1347
Kenneth Roy Mount, *Some remarks on Fitting’s invariants* 1353
Miroslav Novotný, *Über Abbildungen von Mengen* .. 1359
Robert Dean Ryan, *Conjugate functions in Orlicz spaces* 1371
John Vincent Ryff, *On the representation of doubly stochastic operators* 1379
Donald Ray Sherbert, *Banach algebras of Lipschitz functions* 1387
James McLean Sloss, *Reflection of biharmonic functions across analytic boundary conditions with examples* ... 1401
L. Bruce Treybig, *Concerning homogeneity in totally ordered, connected topological space* .. 1417
John Wermer, *The space of real parts of a function algebra* 1423
James Juei-Chin Yeh, *Orthogonal developments of functionals and related theorems in the Wiener space of functions of two variables* 1427
William P. Ziemer, *On the compactness of integral classes* 1437