AN EFFECTLESS CUTTING OF A VIBRATING MEMBRANE

HANS F. WEINBERGER
AN EFFECTLESS CUTTING OF A VIBRATING MEMBRANE

H. F. WEINBERGER

Let G be a multiply connected domain bounded by an outer boundary Γ_0, inner boundaries $\Gamma_1, \Gamma_2, \cdots$, and possibly some other inner boundaries $\gamma_1, \gamma_2, \cdots$. Let u be the eigenfunction corresponding to the lowest eigenvalue λ_1 of the membrane problem

\begin{equation}
\Delta u + \lambda_1 u = 0 \quad \text{in} \ G
\end{equation}

with

\begin{equation}
u = 0 \quad \text{on} \ \Gamma_0, \Gamma_1, \cdots
\end{equation}

\begin{equation}
\frac{\partial u}{\partial n} = 0 \quad \text{on} \ \gamma_1, \gamma_2, \cdots.
\end{equation}

We shall show that there exists a cut $\tilde{\gamma}$ consisting of a finite set of analytic arcs along which $\left(\frac{\partial u}{\partial n}\right) = 0$ which separates any given one of the fixed holes, say Γ_1, from the outer boundary Γ_0 and the other holes $\Gamma_2, \Gamma_3, \cdots$. This means that the membrane G may be cut in two along $\tilde{\gamma}$ without lowering its lowest eigenvalue. This fact is used in the preceding paper of J. Hersch to establish an upper bound for λ_1.

We assume that $\Gamma_0, \Gamma_1, \cdots$ have continuous normals and that $\gamma_1, \gamma_2, \cdots$ are analytic. Then it is well-known that u has the following properties:

\begin{equation}
\begin{align*}
(3) \quad & (a) \quad u > 0 \text{ in } G, \quad \text{and} \quad \frac{\partial u}{\partial n} < 0 \text{ on } \Gamma_0, \Gamma_1, \cdots. \\
& (b) \quad u \text{ is analytic in } G + \gamma_1 + \gamma_2 + \cdots. \\
& (c) \quad u_{xx} \text{ and } u_{yy} \text{ do not vanish simultaneously.}
\end{align*}
\end{equation}

(The last property follows from (3a) and (1)).

We define G_1 to be the set of points of G from which the fall lines, i.e. the trajectories of

\begin{equation}
\begin{align*}
\frac{dx}{dt} &= -u_x \\
\frac{dy}{dt} &= -u_y
\end{align*}
\end{equation}

reach Γ_1. By property (3a) G_1 contains a neighborhood in G of Γ_1, and its exterior contains neighborhoods in G of $\Gamma_0, \Gamma_2, \cdots$. Since $u_=
and \(u_x \) are continuous, \(G_1 \) is open.

Let \(\tilde{\gamma} \) be the part of the boundary of \(G_1 \) that lies in \(G \). Let \(P \) be a point of \(\tilde{\gamma} \) where the gradient of \(u \) does not vanish. Then there is a trajectory \(\gamma \) satisfying (4) through \(P \). Let \(Q \) be any other point on \(\gamma \). Since \(P \) is not in \(G_1 \), it follows from the definition that \(Q \) is not in \(G_1 \). On the other hand, if a whole neighborhood of \(Q \) were not in \(G_1 \), it would follow from the continuity of the trajectories with respect to their initial points that a whole neighborhood of \(P \) would be outside \(G_1 \). This would contradict the fact that \(P \) is a boundary point of \(G_1 \).

Thus we have shown that the whole trajectory \(\gamma \) lies in \(\tilde{\gamma} \). It cannot go to \(\Gamma_1 \). Since the set of points from which trajectories go to \(\Gamma_0, \Gamma_2, \ldots \) is also open, \(\gamma \) cannot go to these boundary components.

We note that \(u \) is monotone on \(\gamma \), and

\[
(5) \quad \frac{d u}{d s} = |\nabla u|.
\]

Thus \(\gamma \) is either of finite length, or it must contain a sequence of points \(Q_1, Q_2, \ldots \) on which \(\nabla u \) approaches zero. These will have a limit point \(Q \) at which \(\nabla u = 0 \). (It may be that \(Q \) lies on one of the \(\gamma_i \). In this case we think of \(u \) extended across \(\gamma_i \) as an analytic function by reflection).

There is a neighborhood of \(Q \) in which the trajectories can be determined by examining the first few terms of the power series for \(u \). Using property (3c), we find that \(\gamma \) is of finite length. This is, of course, true in both the \(t \) and \(-t \) directions.

The free boundary curves \(\gamma_i \) are composed of trajectories of (4) and critical points, i.e., points where \(\nabla u = 0 \). Hence it follows from the uniqueness of the initial value problem for (4) that if \(\gamma \) ends on \(\gamma_i \), the end point must again be a critical point. Thus, each trajectory \(\gamma \) in \(\tilde{\gamma} \) connects two critical points.

It follows from properties (3b) and (3c) and the implicit function theorem that a critical point \(Q \) is either an isolated critical point or lies on an analytic arc of critical points. These arcs are again isolated.

Thus we have shown that \(\tilde{\gamma} \) is composed of a finite number of analytic arcs of finite length along which \((\partial u / \partial n) = 0 \), and a finite number of critical points. We delete any isolated points of \(\tilde{\gamma} \).

The fact that \(\tilde{\gamma} \) separates \(\Gamma_1 \) from \(\Gamma_0, \Gamma_2, \ldots \) is clear from the definition of \(G_1 \).

The above considerations apply to any function with properties (3).

The author wishes to thank J. Hersch and D. Ludwig for helpful discussions of this problem.

UNIVERSITY OF MINNESOTA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS
Stanford University
Stanford, California

J. DUGUNDJI
University of Southern California
Los Angeles 7, California

M. G. ARSOVE
University of Washington
Seattle 5, Washington

LOWELL J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH
D. DERRY
H. L. ROYDEN
E. G. STRAUS

T. M. CHERRY
M. OHTSUKA
E. SPANIER
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2 chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Dallas O. Banks, **Bounds for eigenvalues and generalized convexity** 1031
Jerrold William Bebernes, **A subfunction approach to a boundary value problem for ordinary differential equations** 1053
Woodrow Wilson Bledsoe and A. P. Morse, **A topological measure construction** 1067
George Clements, **Entropies of several sets of real valued functions** 1085
Sandra Barkdull Cleveland, **Homomorphisms of non-commutative *-algebras** 1097
William John Andrew Culmer and William Ashton Harris, **Convergent solutions of ordinary linear homogeneous difference equations** 1111
Ralph DeMarr, **Common fixed points for commuting contraction mappings** 1139
James Robert Dorroh, **Integral equations in normed abelian groups** 1143
Adriano Mario Garsia, **Entropy and singularity of infinite convolutions** 1159
J. J. Gergen, Francis G. Dressel and Wilbur Hallan Purcell, Jr., **Convergence of extended Bernstein polynomials in the complex plane** 1171
Irving Leonard Glicksberg, **A remark on analyticity of function algebras** 1181
Charles John August Halberg, Jr., **Semigroups of matrices defining linked operators with different spectra** 1187
Philip Hartman and Nelson Onuchic, **On the asymptotic integration of ordinary differential equations** 1193
Isidore Heller, **On a class of equivalent systems of linear inequalities** 1209
Joseph Hersch, **The method of interior parallels applied to polygonal or multiply connected membranes** 1229
Hans F. Weinberger, **An effectless cutting of a vibrating membrane** 1239
Melvin F. Janowitz, **Quantifiers and orthomodular lattices** 1241
Samuel Karlin and Albert Boris J. Novikoff, **Generalized convex inequalities** 1251
Tilla Weinstein, **Another conformal structure on immersed surfaces of negative curvature** 1281
Gregers Louis Krabbe, **Spectral permanence of scalar operators** 1289
Shige Toshi Kuroda, **Finite-dimensional perturbation and a representation of scattering operator** 1305
Marvin David Marcus and Afton Herbert Cayford, **Equality in certain inequalities** 1319
Joseph Martin, **A note on uncountably many disks** 1331
Eugene Kay McLachlan, **Extremal elements of the convex cone of semi-norms** 1335
John W. Moon, **An extension of Landau’s theorem on tournaments** 1343
Louis Joel Mordell, **On the integer solutions of y(x + 1) = x(x + 1)(x + 2)** 1347
Kenneth Roy Mount, **Some remarks on Fitting’s invariants** 1353
Miroslav Novotný, **Über Abbildungen von Mengen** 1359
Robert Dean Ryan, **Conjugate functions in Orlicz spaces** 1371
John Vincent Ryff, **On the representation of doubly stochastic operators** 1379
Donald Ray Sherbert, **Banach algebras of Lipschitz functions** 1387
James McLean Sloss, **Reflection of biharmonic functions across analytic boundary conditions with examples** 1401
L. Bruce Treybig, **Concerning homogeneity in totally ordered, connected topological space** 1417
John Wermer, **The space of real parts of a function algebra** 1423
James Juei-Chin Yeh, **Orthogonal developments of functionals and related theorems in the Wiener space of functions of two variables** 1427
William P. Ziemer, **On the compactness of integral classes** 1437