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This paper concerns certain cones of functions @ and their duals.
The functions of these cones can be deseribed globally by determinantal
inequalities with the aid of certain auxiliary functions r, «--, ¥,
or locally, if @ is sufficiently smooth, by differential inequalities. In
the latter case smoothness hypotheses are imposed on +, +--, 4, in
order to define the relevant differential operator. The cones considered
can be regarded as generalizations of the classical cone of convex funec-
tions. Various special cases occur in moment theory, problems of inter-
polation, differential equations, probability theory and elsewhere.

The elements of the corresponding dual cones are measures du
(not necessarily nonnegative) which are orthogonal to +,, ---, ¢, and
in addition satisfy an inequality deseribed with the aid of an integral
operator (see (20) below). A sufficient condition for membership in the
dual is that d¢ have the minimal oscillation compatible with being
orthogonal to +, ---, 4., a condition depending on k but not otherwise
on the choice of 4, «--, 4, (see Lemma B).

In the first section we consider the classical case of the cone of
convex functions (and their discrete analogues, convex sequences).
This case is presented in some detail, despite its familiarity and ele-
mentary character, in order to motivate the remainder. Much of
this section was anticipated in [3] and elsewhere in the subsequent
literature, but our viewpoint is somewhat different.

We introduce the general cones C(¥r, +--, ) in § 3 where for
ease of exposition we restrict ourselves to smooth «r,, «+-, 4. In
this case the associated differential operator is easy to describe. We
also impose strictness in certain constraining inequalities satisfied by
Wy oo, Y. A characterization of the dual cone and the corresponding
sufficient condition for membership in it are then given (Theorem 1
and Lemma B). As applications we list several known inequalities of
previously unrelated character, and obtain some new ones. In §5 we
weaken some of the strictness conditions referred to above by introducing
a useful procedure for approximating a cone with weakened hypotheses
by one with strictness. In §4 we exploit the translation invariant
character of the cone whose associated differential operator is itself
translation invariant (i.e. linear with constant coefficients).

Evidently we can weaken the hypothesis of smoothness concerning
A, <+, ¥, and we can extend the considerations of § 4 to more gener-
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al cones by introducing the notion of translation invariant with respect
to more general differential operators. A full treatment of these
matters and others is planned for a future publication. For example,
we will describe fully the structure of the extreme rays of C(yry, - -+, 1))
and its dual. We also extend our considerations to cones which are
the intersections C(v,) N C(¥ry, 4ry) N +++ N C(Yry, - -+, 4,) of those studied
here and obtain corresponding inequalities (e.g., for functions which
are positive, increasing and convex).

1. Ordinary convexity, continuous case. We consider the class
K of convex functions @ defined on a finite interval [a, b] and ask
what measures d¢ (in this context measures are not necessarily non-
negative) on [a, b] satisfy

(1) [pan=zo0,

for all  in K. We call the set of such measures K* and note that
K and K* are convex cones. The restriction that [a, b] be finite is
inessential, and with proper interpretation of various possibly divergent
expressions, the results that follow remain true even if [a, b] is
infinite. We refer the reader to [5] for a full treatment of the
corresponding modifications. (A function @ is said to be convex in
[a, b] if

1z o)
(2) 1 x, ox)|=0 for a=u <z <x,=0.)
1z o(x)

It is easily seen that the C? elements of K are weakly dense in K,
so that it is enough to investigate (1) for pc C* N K. If dy is in
K* then clearly

(i) S:dﬂ =0
and
(ii) S:xd/z ~0

since @,(¢) = 1 and c;:;;(w) =g satisfy @, €K, +@,€ K. It follows
that in considering S @dit we may assume @(a) =0, ®'(a) =0, and
peC*NK. ’

Let ft(a) = S“”d;z and fy(x) = S:/Jl(t)dt. Then (i) implies /(b) = 0,
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and (i) and (ii) together imply t,(b) = 0 so that integrating by parts
twice we have the identity:

(A) [[de = | o @)

A consequence of (A) is that the condition
(iii) U(x) =0 in [a, b]

is necessary in order that d¢te K*. However, conditions (i), (ii), and
(iii) together are in fact sufficient as well: for @ € C* and g satisfying
(ib) and (ii) the identity (A) holds, so that (i), (ii), and (iii) show that

S @dp = 0 for the C? member of K, and thus for arbitrary ¢ in K.

a

We single out the special case of absolutely continuous measures
d/¢t = f(x)dx, for which the corresponding necessary and sufficient
conditions are explicitly:

(i)* SZf(w)dw =0
(ii)* Sbacf(w)dm =0
(iii)* mef(t)dtds >0 a=<z<bh.

(We remark again that equality holds in (iii)* for x = b as a conse-
quence of (i)* and (ii)*.)

We claim no novelty for this result, which is implicit in [3] and
undoubtedly can be found elsewhere.

We now state two simple lemmas which are well-known, and
whose proof is in any case contained in the results of § 3.

LEMMA a. If dp is non-null and satisfies (i) and (ii), then [a, b]
must have at least two intervals on which dp(x) (or its negative) is
nonnegative separated by one on which dit is nonpositive and in each
of which it is nonnull. We summarize this state of affairs by saying
that dpt has at least 2 strict changes of sign. (An atom of nonzero
measure is also considered an interval, cf. Example 3.)

LEMMA b. If dpe satisfies (i) and (ii), then a sufficient condition
that dpre K* is that dp(x) have exactly two strict changes of sign
and be “positive mear a”’ (i.e., be monnegative and nonnull in some
anterval [a, x,], a < %, < b).

The point of Lemma b is that its sign-change property (which
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we may call the “minimal sign-change” property in virtue of Lemma
a) is frequently easier to verify than condition (iii). It is useful to
observe that the sign change property is invariant under monotone
changes of variable. When d/t(x) = f(x)dx then of course the meaning
of sign-change for dtt reduces to the familiar one for the function f(x).

Applications.
(1) Favard’s Inequality [1]. Let f(x) be a nonnegative continu-
ous concave function in [a, b], not identically 0, and let ++(y) be convex
b

in [0, 27], where 7= (b — a)“lg f(®)dz. Then:

1 b
F S dy > g HLf (@)ldes
(F) 57 Vs V(y)dy = — VIf(@)lde
It is sufficient to establish (F') under the assumption that f is C*
and strictly concave; the general case then follows by a limit pro-

cedure. We introduce the measure dy; defined for all continuous
functions 6 by

b oo

A or@ys = {Towe, .

— Q@ a 0
In the case under consideration, dg,(y) = (1/(b — a))m(y)dy where m(y)
is given by the wncreasing function > (|f'(x)|)™ for ¥ in [fuminy Sfimaxl
(and zero elsewhere), the sum extending over the at most two values
of x satisfying f(x) = v.

We now consider the difference:

2o\ vty — A [vr@lds = [ Wl — )
where
Y o=zy=ef
w(y) = {2f !
1 2f=y.

It is immediate from the choice of v(y) that this difference vanishes
for ¥.(y) =1, ¥,(y) = v, so that (i) and (ii) with respect to the inter-
val [0, 2] are satisfied by dv(y) — d¢t(y). By Lemma a, dy(y) — dte(y)
must have at least 2 sign changes (implying fu. < 2f, a result also
stated by Favard). Since m(y) is increasing it is easy to see that.
dyv(y) — d¢t(y) has exactly two sign changes, in the order +, —, +.
It follows by Lemma b that (F) holds.
A similar argument proves
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) st [ vwar = 2 [v(r@na
2f — 2¢ Jo T b—a Ja

for any 0 < ¢ < fum Where ¥(y) is convex on the interval [¢, 2f — c].

With the guide presented by (F') we can assert a version of (F')
applicable in the case where f(x) is continuous nonnegative and convex
on [a, b]. A similar analysis as above shows that when f is convex then
m(y) for duts(y) = 1/(b — a)m(y)dy is decreasing on [ fuin) fmazl. L€t &> Fruin.
The difference dy(y) —dgAy) (dv(y)=@2f—2d) on [d, 2f—d]; =0
elsewhere) exhibits the sign change arrangement —, 4+, — as y
traverses the positive axis. This leads with the aid of Lemma b to the
inequality

F) L vy = 2 v
- < x))dx
a7 —2d)e TOWEFL N

when (y) is convex on [d, 2f — d]. Note that this inequality is in
the opposite direction to that of (F). We also emphasize that ¢ and
d can be specified arbitrarily provided only that d > fo. > ¢. Favard’s
case (F) is special corresponding to ¢ = 0. The better formulation
appears to be our extensions (F') and (F").

(2) If F(x) is a distribution of a nonnegative random variable
(i.e., dF is nonnegative with support [0, ] and total measure 1) with
finite mean ¢ = gwmdF =r(1 — F(x))dx. Suppose further that dF =
e v dx where ios convexo. Then:

o o dw
4 dF(x) = —ale 2
(4) |, #@aF@ < | e

for convex @ in [0, o] (both sides may be infinite). This is again a
new result (cf. Example 5 of §2). If d¢t =dG — dF where dG =
e~“M(dx[pe) in [0, oo] then (i) and (ii) are clearly satisfied. The differ-
ence e V™ — (1/¢)e~*'* has the signature of x/tt + log ¢t — v(2) so that
Lemma b applies to give the desired result. It is entirely elementary
that if dF = f(x)dx where:

f(wl_yl) f(x1_y2)_2_0 for O§w1<x2,0§yl<y2,
f@ —y) @ — )

then f(x) = ¢ ¥® for convex + and conversely. Such densities are

called Polya frequency of order 2 (PF},) on [0, -] and are of independ-

ent interest in statistical applications [8]. It should be remarked,

that this example applies without modification to comparison of densi-

ties of the form dF = h[y(x)]dx, dG = h(x)dx whenever g (11— F)dx =
0

S:(l — G)dw, v is convex and k is any strictly decreasing function.



1256 SAMUEL KARLIN AND ALBERT NOVIKOFF

(3) Let F be a distribution function as in Example 2, but not
restricted as to the support of its corresponding measure dF. Then
for all convex @

(5) 2(1) = | p@dF (@)
(Jensen’s inequality, cf. [1]).
Indeed, if
0 e<p
6=} 2h

then it is trivial to verify Lemma b (or indeed (i)-(iii)) for dy =
dF(x) — dG(x). Since:

+ oo
2(1) = | o(0)dG()
this gives us the desired result.

2. Ordinary, convex, discrete case. Consider at first the cone
of finite sequences {a,, ---, @,} such that

(6) }Z:akw(lc) >0

for every convex sequence @(k), k=0,1, ---, n.

It is easy to see that this discrete analogue of the previous sec-
tion is subsumed by the consideration there, and corresponds to the
subclass of purely atomic measures dp which have their support on
the integers £ =0,1, ---, n, with associated masses a, ---, a,. The
conditions

iy %‘.ak;—o

(iiy Sk, = 0

(iiiy S Sa; =0, k=011
7=01t=0

are necessary and sufficient for (6) to hold for all convex . We
remark that there is no need to restrict ourselves to finite series,
but the interpretation of >}y a,(k) = 0 for convex ®(k) is that this
have the usual meaning if the series is convergent, and that the left-
hand side, if divergent, diverges to + co.

The following lemmas are easily verified:
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LEMMA a’. If (i) and (ii) hold, then {a,, ---,a,} has at least
two changes of sign.

LEMMA V. If (i) and (i) hold, and the signatures of ay, ++-, a,
are +, —, + in the sense that:

a, =0 for 0=k=k
(7) =0 for k,+1=<k=k
a, =0 for k,+1=k=<n

with strict imequality holding at least once in each of the three
indicated regions, them (6) holds for all convex o(k), k=0,1, ---, n.

Applications.
1) Let0=p; =1, ¢=1,:-+,n, p;,+¢q; =1 and define {b,} by

ﬁ;_‘, byt = I=I1 (¢; + pix) .
Further, let:
4. = (} ) — oy
ie.,
ﬁo_‘, d.@* = (¢ + po)
where p = (1/n)(p, + «++ + p,). Then
(8) 3 bipb) < 33 duplh)

for all convex @(k). This result is due to Hoeffding [4] and can be
interpreted as an inequality of the form:

(9) Ex(p) = Er(P)

for convex ®. (Ex(®) denotes the expectation of the function with
respect to the random variable X.) Here X and Y are random vari-
ables denoting the number of successes in % independent binomial
trials of probability p; (: =1, ..+, n) and » independent binomial trials
each of probability » respectively.

It was this result which motivated the present investigation.
For the proof we need only show that a, = d, — b, satisfies (i)'-(iii)’.
However, we establish rather more in the next example.

2 Let 0=p,=1,9=1,.-+,n beasin Example 1. Let 7;; be
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a doubly stochastic matrix 0=, j=n (.e., 7;=20, Sr,m,;=
Sram;=1) and let p} = S0, w5, 1 =1, .-+, n. Let b, be defined
as in Example 1 and b;, be defined similarly by >\ b.4* = T]%~, (¢} + pi).
If Y’ is the random-variable consisting of the number of successes in
n independent binomial trials of probability »; (¢ =1, -.-, n), then
E.(p) < E,(®) for convex @, or equivalently

(10) 3 ()b — b) = 0

for convex @. Example 1 is obtained by an obvious specialization of
the matrix m;;. We assert that it suffices to establish this in the case:

p; = tp1 + (1 - t)pz
pi=0—-tp +tp, 0<t<1
D= p; 1=28,4, -+, M.

If the matrix of this transformation is replaced by one in which
the 1st two rows and columns are interchanged with arbitrary rows
and columns, the result still holds, since only the order of the {»;}
and {pi} are changed. However, as shown in [2 Chapter 1], an arbi-

trary doubly stochastic matrix is a finite product of just such matrices,
with differing choices of ¢.

A simple computation now shows that:

b, — b, = (pip; — p0)4'R,, 4R, =R, ,—2R,_,+R,, R_,=R_,=0
where

n—2

S Rt =1 (¢ + p) -
It follows that
3% 306 — b) = (618} — ppIRs
which is nonnegative since R, clearly satisfies R, = 0 while
1P, — PPy = H(1 — O)(0] + P2 — 2pps) =0 .

(8) Consider an infinite sequence of independent binomial trials
with probabilities of success

D1y D2y D3y *** 0<p@§1-

Suppose >, p; = A < . The probabilities a, of & successes can be
calculated from the generating function
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éﬁﬁh=gxﬁ+pﬂ% G+p=1.
We assert that

a S (k) < 3 2 e o)

for any convex sequence ®(k) which grows as k — o no faster than
an exponential. Combining the facts that log (k! a,) is strictly concave
(see [2], page 51) and that the Oth and 1st moment of

by="-e¢*—aqa
k k! k

vanish, we deduce, that {b,};-, changes sign exactly twice. Moreover,
=11 (1 —p) < e = e
1=1

shows that b, > 0. Applying Lemma b gives (11). The same result
can also be achieved by a suitable limiting process from Example 2.
This can also be written:

Ex(p) = Ex(9)

where X is the number of successes in an infinite sequence of inde-
pendent binomial trials and Y a suitable Poisson variable.

(4) Define a, by means of the generating function

where p,, p,, -+, p, are prescribed such that 0 < p; <1, p;, + ¢, = 1.
We know

,21,(%;—%; I)Q"pkwk = <1 —qpxy .

According to [2, p. 164],
Ay
[t
is strictly convex as a sequence in k unless p, = p, = «++ = p,.
In particular, if p is determined by the equation

m_ 1,11
p ‘p] 172 pn
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and p + ¢ = 1, then the hypotheses of Lemma b are satisfied, and
we conclude that

A s /nm+k—1 "
(12) Saw) = 3(" 5 5T Dptee
for every convex sequence @(k). (Notice the reversal of the sense

of inequality compared to (11).)
We may extend this as follows: If

pl—zm (G=1,,m) 0=p|=<1, pi+¢i=1
J=

g

J

and 7;; is again doubly stochastic then
(12) S o) = 3 p(k)a

where @ is convex. (This includes the possibility that both sides are
infinite.)

(5) The discrete version of Example 2 of § 1 asserts > C,.p(n) <
1 — p) S50 0"p(n) for all convex @(n) where (o/1 — p) = 3.7 nC, and
{C,} satisfies 3 C, =1 and is a Polya frequency sequence, i.e.,
det; j=12(Copm;) = 0 for n, < nyy my < My,

It is worthwhile to point out the connection of the conditions
(i)—(iii) with the familiar condition of Karamata [2 Chap. 1] in order
that

(13) S () = 3 ela)
whenever @ is convex. It is established in [2] that (13) holds when

{a;} and {a}} are arranged so that 0 <o, <@, < --- <@, 0= a] =
ay < --- < a) if and only if

=
|
=
o
S
l
=

ﬁMs
n/\

(K,) IR

s\

Ms
n

() 2

Il
-

T

Let dy, (dp,) denote the measure with unit mass located at each of
the points {a;}*-, ({a}}). (If equalities are present among the a; then
we assign at the common point a mass equal to its multiplicity.)

We define

vi(x) = S:d/xl = Number of a;, < =
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V() = S:dﬂz = Number of a <

for all # > 0. The relations (i)-(iii) become

(i) [dm@) = [dim@) =
(ii)” [adpne) = 30, = 50t = [adpata)
()" [y = | vy -

It is not difficult to verify directly the equivalence of (iii)” and
(K,) which we do below. (In view of this the characterization by
means of (i)”—(iii)"” can be regarded as a generalization of the Karamata
theorem pertaining to the inequalities (K,).) Note that by its defini-
tion, v(y) = k in (ay, @4:] and vy(y) = k in (a}, ¢i1].

We begin by observing that

S:k”l(y)d?/ = (@, — @) + 2(a; — @) + -+ + (b — 1)@, — a;—,)

= —0; —Q— *+++ —a; + ka, .

On the other hand if [ = I(k) is chosen so that a] < a, < a},,, then
Sokvz(y)dy =—a]—a;— - —a; + la,.

If we now assume (iii)"” for all z, then it holds in particular for ¢ = a,,
and we have

1 k l
(14) —Ekla;+kak;~21.a£+lak or >.a;+lay = 3 a + kay .

From (14) we now deduce (K,):
If | <k, then >!a} + ka, < 3¥ai+ la, since aj,, = a, while if
1>k Stal < Skal+ (I — k)a,. In either case (14) implies (K,).
On the other hand if (14) holds for k¥ =1, ---, n, then (iii)"” will
hold for x = a,, ay, --+, a,. Since S v,(y)dy is linear in the intervals
* 0
between these points, while S v,(y)dy is convex, the inequality (iii)” is
0
still true between these points, i.e., for all . Thus it suffices to
show (K,) implies (14) to show that (K,) implies (iii)”’ and thus com-
plete the proof of equivalence. Assume therefore > a;, < >Fal for
k=1,--e,n; if LSk, Sta, < >tai+ (K —lDa, while if [ >k we
have SFa) + (I — k)a, < Stal. Thus Sta; < Stal < Stal+ (K — Day,
and so in every case we have the inequality between the extremes,
which is precisely (14).
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3. Generalized convexity inequalities. Our objective in this see-
tion is to characterize the duals to cones which generalize the cone
defined by (2) of §1. We formulate and analyze a continuous version
in detail; corresponding results in the discrete case are actually simpler
to discuss.

To consider the simplest continuous analogy, let w,(x), ---, u,(x)
be positive C* functions on the finite interval [a, b], and let

V@) = (),
1@ = u@ |uEds,

........

Vi) = (o) | @) -+ | Tw e - dsy

(15)

If we let D; be the differential operator of first order defined by

Df= s

then clearly
(16) Dj+++ Dpjyy = %1 >0, J=1 k-1
and

D+ Dy;=0, J=1,k
and so

D,--+Dy; =0, J=1,k.
The Wronskian Wy, -+, ¥;) = wiui™ - .- u; and so is positive in [a, b]

for =1, ---,k, so that the differential operator D, --- D, enjoys
“property W” of [10]. In particular, no nontrivial linear combination
of 4, ++-,9; can have more than j — 1 zeros in [a, b] (counting
multiplicities) and 4+, -+-, ¥, form a basis for the solutions of
D, .-+ Do =0. The cone we shall be concerned with is closely related
to the totality of C* functions @ satisfying

17) D,---Dp =0
namely the cone of all @ satisfying

Yo(@;) e () P(4,)
(18) :

v
=

"/’1(5.'7k+1) cor Y Bhrr)  P(Tpra)

fore=o < <24, =0b.
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This cone we denote C(yy, - -, ¥; [, b]).

Between (17) and (18) the following relations are known to hold
[5]: (17) implies (18), and strictness in (17) implies strictness in (18).
If (18) holds and @ is assumed C*, then (17) is true; strictness of (18)
need not imply strictness in (17). In addition (18) itself imposes some
smoothness restrictions on @ (see [5]).

Note that D;_, --- Dar; = u; > 0 which is a case of strictness in
(17), necessarily implies

(171) q_/'(wl’ gy ** xa) —
1,2 .-,

"»”1(971) e ql’j(%)
: >0

(@5) + (@)

for j=1, -,k i.e., v;€C(y, =+, ¥z [a, b]). In the case u,(x)=
u(x) =1, or P(x) =1, y(x) =« which was discussed in §1, we see
that (17) reduces to d’p/dx* = 0, while (18) is the definition of convexity.

It is possible to remove some of the restrictions we have imposed
on 4, +++, ¢, and thus to generalize even the class of cones considered
here. For example in § 5 we weaken the assumption (17). The restric-
tion to finite [a, b] is entirely inessential, as in § 1, and the modifica-
tions and reinterpretations of the treatment below we leave to the
reader. We shall feel free to give examples from the infinite as well
as the finite case at the end of this section. It is also possible to
remove the assumption that ¥, «--, 4, be C*, merely requiring (17’).
We will not needlessly burden the exposition by going into the cor-
responding analogues to (15) and (16) and the corresponding reformu-
lation of Theorem 1 here.

The functions of C(y, « -+, ¥; [@, b]) have been called “generalized
convex functions in [a, b]’; the domain [a@, b] is omitted without
ambiguity whenever convenient. This terminology was employed in [7].

We are interested in characterizing the dual cone to C (yry, -« «, ¥;
[a, b]), i.e. the set of signed measures d/ on [a, b] such that

19) | P@)iu@) = 0

for all pe C(yy, +++, ¥). For simplicity assume first that du(x) =
f(z)dx. The extension to the general case will be clear. We remark
that every ® in C(y, +--, ¥,) can be approximated weakly by solu-
tions of (17), so that it suffices to assume in (19) that @ e C*.

LEMMA. The “moment conditions”

® |/ @ i@ds = 0 =100k

are equivalent to the conditions
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(0) LG =0, LLAO) =0, -, L L)) =0

where the integral operators I;,5 =1, «++, k are defined by

I@m@ = - wbdue

and
L(f)@) = —| )@t
when applied to measures and functions respectively.

Proof. We proceed by induction on k. It is only necessary to
observe that the functions and operators ‘

and I, ---, I, satisfy the induction hypotheses and play the roles of
Yy vy Y, fy Ly oo+, I, respectively. We omit the formal details.
We may now state the main theorem of this section.

b
THEOREM 1. A necessary and sufficient condition for S Jfedx =0

whenever @ satisfies (17) is that f satisfy the “moment conditions”
(a) and also '

(20) (I - D)f(x) =20 ae=z=bH.

Proof. Clearly conditions (b) are necessary, since =q; satisfy
A7) for =1, --+, k, and by the lemma, this establishes the necessity
of (a) as well. However, when (a) holds integration by parts shows
that

S:f@dw = S:(Dk co- D), +-- Lf)dw .

Thus (20) is sufficient in the presence of (a). Since we may take
D,--- D@ to be an arbitrary positive continuous funection in [a, b],
we see that (20) is also necessary.

The same proof shows that a necessary and sufficient condition

on a measure d/ in order that Sbsvd/z =0 whenever @ is in C(yry, «« -+, Pry;
[a, b]) is that

quﬁjdﬂzo j=1,"',k
and
Ly -+ L)d(x) 20 a=sx=b.
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We make the standard abuse of terminology and say that f(x) is in
the dual cone if the measure f(x)dx is in the dual cone.
We now establish a lemma (Lemma B below) which is useful in

b
providing a sufficient condition that S Sfedx = 0 for all ¢ satisfying
D,---D@=0. We begin with a preliminary lemma.

LEmMMA A. If ?F(T‘?’>>O for asa, <o < =b (see

amy), =1, -+, k and Sbf(w)q/rj(x)dx —0,j=1, -,k and f is con-
tinuous and nonnull, thefn f must have at least k sign-changes.

This is well-known, but we give the proof for the sake of com-
pleteness. If there were j points a < 2, < :+- < x; < b such that f
is of constant sign and nonnull in each of [a, ], [%,, 2], «- -, [2;, ],
the signs alternating between successive intervals, where j <k — 1,
then the function

7() w‘(xl...a;j x)
r) = ..
1.-057+1

“lfl(.wl) e 1#54_.1(561)
= q//\l(.wj) PP "/fj-!-.l(xj) = Clq/rl(x) + -0+ Cj+1'1,b"j+1(x) (Cj+1 > O) ,
Ya@) v ()

would enjoy the same alternation property, vanish only at x =x,,-- -, x;,
so that f(2)-¥(x) would be nonvanishing and of constant sign, contra-
b

dicting Sbf(x)q/ri(x)dx —0(G=1,2 .- k).

LEMMA B. If, under the same assumptions as Lemma A, f
changes sign exactly k times in [a, b], and is nonnegative and mon-

null in some ome-sided mneighborhood of b then gbfqadx =0 for all
PpPe C(“/’lv ) "/rk)'

Proof. Let [a, x,], <+, [%4, b] be intervals of alternating sign for
f, and let

P(x)  Pu(®) - Pul)
¥(x) = ¢(.x1) Yy (21) + v+ ()

q)(.wk) Po@r) ==+ Pi(@)

= !F(a;‘ o Z")qn(a;) + linear combinations of v (x), - -, ¥.(%) .



1266 SAMUEL KARLIN AND ALBERT NOVIKOFF

Then
XLy oo Xy

g:f(pdx:yr(l“_k

)gbfgodx
where f@ is nonnegative throughout the interval and nonnull in some
neighborhood of b.

We may also give a proof of Lemma B by repeated application
of the lemma that if g(z) = S’”u(t) F(®)dt, u(t) > 0 in [a, b] and g(b) =
0, then the number of zeros of g is less than the number of zeros of
f by at least 1. Applying this k& times for wu, ---, u,, we establish
that the minimal sign change condition implies I, - -+ L f is of constant
sign. Any further information concerning f to assure that the sign
of I,--- If is indeed positive then constitutes a sufficient condition
to assure that f is in the dual cone to C(yy, -, ¥; [, D]).

We remark that Lemmas A and B remain valid for measures
dp(x) in place of f(x)dx, and in particular for discrete versions. The
appropriate notion of sign change is described by subdivision of [a, b]
into consective intervals in each of which d¢ is of alternating sign
and not null. We leave the details to the reader.

ExAMPLES.
(1) The first example we give concerns the cone C(1) (i.e., £k =1,
() = 1). These are the functions ¢ satisfying

1 o) -
1 o]

for x, < x,, i.e., the increasing functions. We cite the inequality of

Steffanson [1]: if 0 < g(t) =1 in |a, b], and @€ C(1;[a, b]) then

®) | et = [pewar < | owat
where
c = [lowar .

We prove the first inequality. Let g.(t) be the characteristic function
of the interval [a, @ + ¢]. Then g(t) — g.(t) satisfies the moment con-
dition with respect to ¥, () =1 by the choice of ¢, is negative near
a, and has exactly one change of sign (namely at a + ¢). Thus Lemma
B applies. The second inequality is proved similarly.

(2) The discrete version of the cone C(1) consists of the cone of
increasing sequences. The corresponding necessary and sufficient con-
dition that X' a,d, = 0 for all increasing {a,} is that >.'d, = 0 and
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Sk¥d; =0, k=1, --+,n. An application of this yields the well-known
theorem of Techbeycheff on rearrangements. Let o, < --- Za,, and
let o denote a permutation of {1, ---,n}. Then

5_1‘4 oy = 2. akdo'o(k)
where 0, is that permutation such that

d«ro(l) é da‘o(2) é e é dcro(n) .

(8) Another application concerning the same cone as the previous
examples is the following theorem of Mirsky [9]. Let A and B be real
symmetric matrices with eigenvalues o, < .- 2@, 6, = -+ £ B,
respectively. Then trace AB = 3, a;8;. Clearly, there is no loss of
generality in choosing a basis so that B is in diagonal form

(ﬁ, 0
0 '&)

in which case trace AB = >\7a;;58;. Since >ra,; = >ra;, = trace A
the necessary moment condition is satisfied by the sequence {(a; — a;;)}.
It remains to verify

k k
zia'iéz,la“ k:].,"',n.
i= =

We will employ our earlier examples to further illustrate the utility
of our methods. In virtue of the Karamata result of §2 it suffices
to establish

E:] Pla;) = ;:} P(a:;)

for arbitrary convex @. We remark that the left-hand side is trace
P(4). Let A = SxdEA be the spectral decomposition of A. Then if

x is a vector such that (x, ) = 1 then (dE,x, x) is nonnegative meas-
ure of total mass 1 on the real axis. By Jensen’s inequality, we have

#((45,) = 2 ((MaEw, ) = |p()AEBw, 2) = (2(4)3, 0) .
In particular taking for x the basis vectors with 1 in the ith com-

ponent and other components zero and adding the resulting inequalities
gives the desired result.

(4) Berwald’s inequality [1]. This is a generalization of Favard’s
inequality (Example 1 of §1) using the cone C(1, ¥(x)) (where ()
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is necessarily increasing (cf. (17')) in place of C(1, xz). Let f(x) be
concave, or more generally such that d/, is increasing in the notation
of §1, Example 1. Let Z be the sole positive root of

L@y = 22— vz = [ vwan) .

The result of Berwald is that

z b
®) L {owy =z 21— 2 @)ds
z Jo b—a Je
for e C(1, v*). The proof is identical with that of (F), namely an
application of Lemma B. The definition of z is precisely the moment
condition for the corresponding measure dyv(y) — dt(y)(dv(y) = 1/z for
0 =<y =<7 and equals zero elsewhere) with respect to the function

¥ (y).

(6) Let F and G be probability distribution functions of positive
random variables with the same mean, so that we have

o

(2) S:dF= S G =1

(b) S:(l — Fyds = S:a —Qds = p.

Assume further that
(c) 1— F=en®, 1—G = e 2@

where +r, is in C(yr,) and «, is strictly increasing. (This is equivalent
to A/y)vy(¥i*(y)) being in C(1), i.e., increasing.)

Such distribution functions have been studied in [6], especially
under the additional assumption of convexity for +, and +,.

We assert that (a), (b), and (c) together imply

rgvdF < S“<pdG
0 0

for convex . For simplicity we will assume @ is in C?, since the
general case follows by the approximation procedure mentioned in § 1.
Moreover, by (a) we may without loss of generality take @(0) = 0.
Note that |

r@dF = S”go'a — F)da = g”go'e—mdx
0 0 0



GENERALIZED CONVEX INEQUALITIES 1269
and so we need to establish
g P'(e" — e)dw < 0
0

for increasing ¢@’, i.e., that e ¥2 — ¢~¥1 is in the dual cone to C(1).
We note that

sign (e~?2 — e~¥1) = sign (¥, (%) — ,(x)) = sign (1 _ “Fz(ﬁlf;(y)) )

where y = ¢r(x) >0 for « > 0. By hypothesis (b) we know that the
difference must have at least one strict sign change (unless identically
0), and Lemma B applies.

We note that an arbitrary strictly decreasing function g(y) could
have been used in the hypothesis (c)

1-=F=g@x), 1—G=g((y))
providing 0 < g(y) < 1 implies ¥ > 0.

(6) Suppose now that the assumations on +, and +, are that
4, is strictly increasing and 4, convex with respect to ¥, that is,
4, is in C(1, ¥, (or equivalently, +,(vi'(w)) is convex in u). Thus

1 () ra()
1 () o) | =0 for 2, <2, < 2;.

1) yralass)

We assume F'(0) = G(0) =0 so that ¥,(0) = ¢,(0) = 0, as well as (a)
and (b) of Example 5. We have

e-—n/r2(a:) — e—',h(x) — e—yr(u,) — e ¥

where () = (7' (w)) is convex by assumption, and +4(0) = 0. Now
we see that «+(#) — u can have at most two intervals of positivity,
but because the difference vanishes at % =0, it must in fact be
negative near 0, and ultimately [positive (the possibility of r(u) = u
throughout (0, «) is excluded by Lemma A). Thus we can say in this
case also for @ convex, that

S”gadF < S”godG .

0 0

We remark that the hypotheses +,€ C(y,) and +r,e C(1, +,) are not
unrelated (cf. [2], Th. 127). We defer a complete discussion of such

relations to a later paper.

4. Convolution of inequalities. In this section we concentrate
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on the fact that the cone C = C(1, , ---, ¥, (— o0, + o)) is invariant
under translation. That is, if we" introduce the translation operator
T,»(x) = @(x + y) then the cone is mapped into itself by T,. (We
note that one can introduce more generally a translation operator T,
associated with the cone C(4, ---, ¥) when the cone is defined as
in §3 in terms of the functions u,(x), ---, u,(®). This T, will, in
particular, reduce to ordinary translation when each u,(x) is constant.
The precise definition of 7, and the corresponding modifications of
the remainder of this section will not be given here, but will be
discussed elsewhere.) ,

Turning our attention now to the dual cone C*, we observe that

| rax @i = (T )@@

i.e., T, induces the adjoint operator T}* which in this case is merely T_,.
It follows that the dual cone is itself invariant with respect to trans-
lation. An immediate consequence is that for all ¢ in C(1, ---, *;
(—o, + o)) and f in the dual cone, we have

(21) S:f (®)p(x)de = 0
whenever
(22) F@ = (e

for any nonnegative measure do. This is to be interpreted as allowing'
Foo
the value + o for S f(@)p(x)dx in the absence of further restrictions

on the measure do, but we shall give some examples, in the case
k = 2, where convergence of the integral is apparent. It is also clear
that the above considerations extend to

(23) a@) = d| (T p(@)do)

where the measure dy is in the dual of C(1, 2, -+, 2"} (— o0, + )).
In particular, if fi(®)— fi(x) =h(x) e C*, @¢(®) — 9:(x) = hy(x) e C*,
where C and hence C* is a cone invariant under translation, then

fl*gl_fz*gz=h1*g2+fz*h2+h1*h2

is again in C*. Let us introduce the notation dy, < dt, to denote:
dp, — dp,e C*. Then we have in general

(24) BUD 5 e e x D & AP 5+ 5 A
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where dpf € dp, 1 =1, ---,n. If du, and dy, are the probability
distributions of random variable X, and X, respectively, we write
X, € X, to indicate E;(p) < E (@) for all ¢ in C or, equivalently
dp, —dp,e C*.  In this notation we have X; K Y;, ¢=1, ---,n,
implies

(25) X4 oo+ XK Tih oee + Y,

EXAMPLES.

(1) If G is the distribution function of a random variable Y of
mean 0, and F' the distribution funetion of a random variable X of
finite mean, then

dF K (dF)*x(dG) or XK X+ Y.

This results from convoluting both sides of

dG, € dG
with dF, where
0 <0
Gox) = 1 220

(cf. Jensen’s inequality, (5)). Generally, X + (mean YY)« X + Y.

(2) Recall that fi(x) € p(x;\), 2 =1, +++, n where fi(x) is a Pblya
frequence density of order two on [0, o] with mean \; and

(l 6—-9:/)\ @ g 0
(26) (@, \) = ?7”

0 <0
(cf. §1, Example 2). It follows that
(27) Jixooox fr K PN * 20 % DT, N) &

If we denote the n-fold convolution of the Pdlya frequency density
f(x) with itself by f™ then from f(x) € p(x, ) we deduce

(28) f(@) < p™(@, N)

and, of course,

A e =0
(29) p™(x, \) = { M I(n)
0 <0,

It is observed that f™(x) is again in Pdlya frequency density of



1272 SAMUEL KARLIN AND ALBERT NOVIKOFF

order 2 with mean nA and null on [— o, 0] from which we obtain
(30) S (@) < p(x, 7N .

If we take for f in (30) the choice of f(x) = p(x, \), we see that
(31) p™(x, N) < p(z, ©A) .

Comparing (28), (30) and (31), shows that (28) is sharper than (30).

In the previous example we have restricted ourselves to the con-
sideration of densities which are PF, and have used the fact that
the class of such densities is closed under convolution. We now
exploit the slightly deeper fact due to Barlow and Marshall that if
F, and F, are distribution functions such that 1 — F, and 1 — F, are
PF,, then 1 — F} is again PF, where

F@) = [P - vaFw (see ref. [5]) .

Assume therefore that
1-F,=e¢Y and 1—F,=¢"

where 4, and +r, are convex increasing. We known by Example 5 of
§ 3 that

1 — Fiy(x) € e®™ 1=1,2

where )\; is the mean of the distribution F;(x). Following the method
of Example 2, we obtain

1 — F), L e #Mx gmslh
and
1 _Fl* coe *Fn<<e—xl)\1* cee *e—z/)\n.

As an example of this, we obtain

n—1
39 1 — F®™ 1Y —z/A
(82) < (n)\» ¢

where F'(x) is a PF, cumulant of mean \.
This is to be compared with the simpler relation

—z[nA

(33) 1—Fwg Lo
A
which is weaker than (32).

(3) Consider densities f on (0, ) possessing all moments, with
mean f, and let f™ denote the n-fold convolution of f with itself.
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Let g be continuous and bounded (or of growth no greater than ex-

ponential).
Let

B,(\, 9) = S:g<%>f ®(z)dax .

Then the following facts about B,(\, g) are established in [7]

(@ B.(\1)=1

(b) B,(\, @) =\

(¢) If g is a polynomial in x, B,(\, g) is a polynomial of the same
degree in ». ((a) and (b) are special instances of this.)

(d) If g is bounded and continuous then lim,.. B.(A, 9) = g(\)
uniformly on bounded intervals. This is actualy a simple application
of the law of large numbers, and in fact one can assert more generally,
the same conclusion to hold if f,* --- % f, replaces f™, providing the
densities fi, - -+, f, have variances o}, - - -, 02 permitting the application
of the law of large numbers.

We remark also that the class of summability or approximating
kernels obtained in this way contains, as a limiting case of a discrete
analogue, the celebrated Bernstein polynormal kernels.

(e) If g is convex, then B,(\, g) is convex in A and

) B.(\, 9) = gV
Property (e) requires only the positivity of f and property (f) uses
the fact that the mapping g — B,(\, g) preserves convexity, positivity,
and linear functions.

To these results, quoted from [7], we now add an application of
our main theorem.

THEOREM. Whenever f is PF., vanishes for <0, and g is
convex, then B,(g,\) ts monotone in n.

Proof. We first consider the case f(x) = (1/¢)e** in [0, o],
null elsewhere, which clearly satisfies

S:f(w)dx =1, S:xf(m)dx =M.

We desire to show that

S:g<%>f(n)(x)dx = S:g<@__‘f___7\;m>f(n+n(x)dm )

Let & = n€ in the left hand side and = = (» + 1)¢ on the right, so
that the desired inequality is

@) (oS )er e — o+ D7+ DN 2 0
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for convex g. The presence of the scale factor A being of no im-
portance, it suffices to show that

nf @ (m2) — (1 + D ((n + o)

has exactly two changes of sign and is positive near 0. Since

S:nf‘”’(nx)dx = g:f‘”’(x)dx =1

and
rnxf‘”)(nx)dx =1 rxf‘”’(w)dw =/
0 n Jo

we see that the difference has zero moments with respect to 1 and

% and so has at least two sign changes. On the other hand, it is
immediate from the expression

F@) = s e @>0)

that the difference has at most two sign changes in (0, ). The
same result is true for

l_ e—(ﬁ—'a)ll'- @ > a
fa(@) = { a>0.

0 r<a

We now remark that if f and g are such that nf™(nz) >
(n+ DFf"(n + x) and ng™(nx) > (n + 1g”((n + 1)x) then
nh™(nx) > (n + A"V (n + 1)) where h = f*g, by §4. Indeed

nh™(nx) = nf ™ (ne) * ng™(nx)

the left-hand side representing the density of (1/n){(X, + YY) + -+« +
(X, + Y,)} where each X; has density f and each Y; has density g.

It follows from the general structure of PF,, densites on (—oo,
4 o) which vanish in (—c0,0) as given in [11], that the inequality
(84) is true for the entire class of PF., distributions on the positive
axis, as asserted.

5. An approximation procedure. The assumption that strict
inequality in (17’) prevails can be considerably weakened and a result
of the type of Lemma B will hold. Specifically, assume +; are con-
tinuous and that



GENERALIZED CONVEX INEQUALITIES 1275

Vi(®), V(@) <o, ()
(17n) W"(i;b Lyy 2y x;) — "1"2(?01); "l’z(xz): tt "Fz(xj) >0
/‘lb\j('xl)’ "l"j(xz)y ttcy "lfj(wj)
(a§m1<wz< b <xa—§b)
and does not vanish identically (y =1,2, ---, k). We associate with
Jri(x) the function

Fiw) = -1 ("exp| =L @ — gy,
(®5) ¥i@) = —2— | exp| =5 @ — o) prwiay
j = 17 27 ) k
{0 > 0) and with @ the function

1
Vora

b
5@ = —2— | exp| —-L- @ — v fpray -
a 20
If +; satisfy (17") and @ fulfills (18) then the functions ~, ¥y, **+, ¥4, P
enjoy the inequalities (17') and (18). Now however, +,, -, ¥, satisfy
the requirements of Theorem 1. (Frequently even the assumption
that 4, -+, ¢y, are continuous can be relaxed.) These facts are an
easy consequence of the assumptions and the identity

q’?(ml’ Loy *** w:) — S.S N,(xl’ Ly = * xj)
]-9 ey J a5y <Yp<-.. <y Sb Yy Yoy ***y Yj

~ Y1y Yoy ***y Yj
X U dy.dy, + - dy;
(1’ 2, .-, J.)?/ Y, Y
where
N <x1’ Loy =%y xi)
‘ Yy Yoy ** 5 Y;
— — 2 LY ————1 — . 2
. exxa( Py (2, yl)) exp( Py (%, — ¥5) )
= (Warmoy 1: 1: >0
exp (——5 (%5 — yl)*) -+ €XDp <_F(x" - y»’)
for all

{x1<xz< e < T
=

F=o
N<Y< - < Y

(see [5]). Clearly as 0 — 0+, 4(x) — ¥;(x) boundedly and &(x) — @(x)
for a < 2 < b.
Assume now that f(x) € C* in [a, b], exhibits exactly & sign changes,
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is orthogonal to each +;(x) and has only simple zeros. We define
o k -
Fl@) = (@) - 3 a(0)7.(@)

where a;(c) are chosen so that

[T @ ads =06 =1,2, -, b).

Clearly, as 0 — 0,

b b
40) = ||| F@F@ds | — 4 = ||| vi@w@da|
which is nonsingular, since () are linearly independent by assump-
tion. Therefore, a;(o) tend to zero (¢ =1, -+, k). Finally, we note
that for all ¢ sufficiently small f(z) exhibits exactly %k sign changes
or otherwise the hypothesis that f has only simple zeros would
be contradicted. Now, appealing to Lemma A, we know that

Sbf (x)P(x)dz = 0. Letting ¢ — 0 we infer that

S F@)p@)ds =0 .

The discrete version of this approximation procedure applies in a
simpler manner, described below.

w(xl’ cee, a;])
1’ e, g

but not identically vanishing, j = 1,2, «++, k, and that £(1) (0 <1 < N)
orthogonal to +r; has no more than k sign changes, in the sense that an
arbitrary assignment of sign to any possible zeros in the range of f will
produce no more than k strict sign changes. Let f(N)=0, and if f(N) =
0, we assume the assignment of a positive value at N is compatible
with achieving a maximum number of strict sign changes. In this
case >F F(D)p(t) = 0 for all @ in the cone C(yry, -+, v,) defined by

":[fl'(xl) ce ";’k.(xl) @(.xl)

LEMMA B'. Assume

\%

0

v
=

'S”l.(xkﬂ)’ . ’“/fk(‘.”kﬂ) @(a;kﬂ)

ExAMPLES.
1. Let a; be defined by the generating function

)  Neo=I@+ps) pt+a=1; 0=p=1.
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Since a,-/ (?’-)p"(l — p)*¥ is strictly logarithmically concave, i.e.,

log a; — log (’;)p"(l — "

is strictly concave in j unless constant [2, pp. 51, 52], we deduce that
(37) by = a; — ("H)pit — py §=0,1,-0m

changes sign at most twice. Note that this is true for every 0 < » < 1.
In particular if np = p, + p, + --+ + », then the 0th and 1st moment
of (b;)7-, are zero and taking account of Lemma a, we conclude that
{b;} changes sign exactly twice excluding the trivial case for p, =
«++« =1p,. The conditions of Lemma b are thereby satisfied and again
(8) is proved.

2. Consider

0 x=0,1,---,7
1 =1, jry = .
V¥1(%) V() 1 s=a+1 - m r<m

cation of "Lemma B'. The set of @ defined by (18) consists of those
sequences of length 7 which are decreasing in the sub-interval [0, 7]
and inecreasing in [r + 1, n].

Let a; be defined by (36) and determine p by the moment condition

Now W@“ §2> = 0 with inequality if «, < r, ®, > r, permitting appli-

Sa=3 (HFC-p.
j=r+1 j=r+1

Then, apart from the trivial case p, = -+ = p,, we know that the

sequence (87) with p replaced by » changes sign twice (provided we

adopt the convention that zero terms are given signs to produce the

maximum number of sign changes).

It remains to examine the sign of the endpoint b, (or b,). To
accomplish this we consider two cases: (i) (P, + *++ + D) =D=D
and so p" < 7. But a, = pp, -+, < 7" (recall that the case p, =
<. = p, is excluded) by the inequality between the geometric and
arithmetic means so that b, = a, — 7" < 0. Similarly, if » > P then
@ < @ and it follows analogously that b, < 0. This yields

z b(H)P(d) < 0

for all @ in C (¥, 9,), i.e. for @ decreasing in [0, ] and increasing in
[+ 1, n].
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REMARK. While a; /[(?)pj(l — pynd ] is logarithmically concave
as a sequence in j for all p in (0, 1), permitting the use of Lemma B’,
examples can be given showing that log (e;/a}) is not necessarily
concave where >\ ajx’ = [, (¢} + pix) and (p') = (x)(p) for an arbi-
trary doubly stochastic matrix (7). However, it follows from loga-

rithmic concavity of Example 1 that whenever 7 can be adjusted so
that

S ) (a0 = ()F - 1) =0

and +,(j) is non-constant and non-decreasing, then the above applica-
tion of Lemma B’ holds without change. As a consequence, we have

2 P(Ja; = Z ( )p’(l — P)"ip(9)

whenever @ is in C(1, y).
We may combine the original Hoeffding result with the fact that

S <;D(,7)( >p’(1 P)*~7 is increasing in p whenever @ is increasing in
7 (cf. [5]) to observe that

S e = 5 a() (3)F0 - 51 < S o) ()pa - oy
whenever @ is both convex and increasing and » > p = (p,+ + -+ + p,)/n.

8. Let X be determined so that

~

?:-Iyz

Following the methods of the previous example, we obtain that

)

Sl < 3

—*sv(k)

Ev]?fl

for all sequences @(k) which are increasing on the segment [0, r] and
decreasing on [ + 1, o),
There are continuous analogs of Examples 2 and 3.
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